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Abstract—In this paper, a new data partitioning algorithm, 

named “local modes-based data partitioning”, is proposed. This 

algorithm is entirely data-driven and free from any user input 

and prior assumptions. It automatically derives the modes of the 

empirically observed density of the data samples and results in 

forming parameter-free data clouds. The identified focal points 

resemble Voroni tessellations. The proposed algorithm has two 

versions, namely, offline and evolving. The two versions are both 

able to work separately and start “from scratch”, they can also 

perform a hybrid. Numerical experiments demonstrate the 

validity of the proposed algorithm as a fully autonomous 

partitioning technique, and achieve better performance 

compared with alternative algorithms. 

Keywords— data partitioning; evolving clustering; parameter-

free; data cloud; data- driven. 

I. INTRODUCTION 

Clustering has long been considered as one of the most 
effective tools for recognizing the underlying patterns within 
the data. As a supervised machine learning method, clustering 
currently is a very hot topic in the field of data analytics. 

Established clustering algorithms [1-6] require different 
kinds of user inputs. For instance, the k-means algorithm [2]  
requires the number of clusters to be known beforehand, the 
DBScan algorithm [4] requires the radius and the minimum 
number of data samples within the radius to be predefined, etc. 
Although, these algorithms can achieve relatively high 
accuracy, their performances heavily rely on the user- and 
problem-specific parameters, which require clear prior 
knowledge. However, in most real cases, the prior knowledge 
is too limited for pre-defining the user input, which, in turn, 
influences the efficiency and accuracy of the clustering 
algorithms. 

The concept of a data cloud was introduced in [7] as a 
collection of data samples entirely based on the mutual 
distribution and ensemble properties. Thus, data clouds are 
nonparametric and they do not have a specific shape. The data 
clouds directly represent the distribution of the observed data 
samples instead of giving some desirable/excepted (often, 
subjectively) pre-defined smooth functions. A number of focal 
points (not necessarily to be the centres or means of the data 
clouds) representing the modes of the data density. They attract 
the nearest data samples to them and then form data clouds 
forming Voroni tessellations [8] in the data space.  

In this paper, we propose a new, fully autonomous 
algorithm named local modes-based data partitioning. This 
novel algorithm is entirely driven by the observed data samples 
and their mutual distribution in the data space. It can 
automatically identify the focal points representing the main 
modes of the data pattern merely based on the empirically 
observed data samples and then uses them to form data clouds. 
Thus, there is no need for any kind of user- or problem-specific 
parameters or assumptions. 

This algorithm has two versions, i) offline and ii) evolving. 
The offline version is designed to partition the offline dataset 
while the evolving version is for streaming data processing. 
They have the ability of starting “from scratch”, thus, they can 
both work independently. While a hybrid between the two 
versions is also possible. In this paper, we will introduce the 
two versions of the proposed method as two independent 
algorithms without loss of generality. 

The remainder of this paper is organised as follows. Section 
II describes the theoretical basis of the proposed algorithm. 
The offline and evolving versions are separately introduced in 
sections III and IV. Section V summarizes main procedures of 
the proposed algorithm and section VI presents the numerical 
experiments and a discussion. The paper is concluded by 
section VII. 

II. THEORETICAL BASIS 

In this paper, the theoretical basis of the proposed local 
modes-based data partitioning algorithm will be introduced.  

Frist of all, let us assume the data set/stream in the Hilbert 

data space d
R  as   1 2, ,..., kk

x x x x , 
T

,1 ,2 ,
, , ...,

i i i i d
x x x   x ,  

1,2,...,i k  indicates the time instance that the i
th
 data sample 

arrives.  To be more general and realistic, we assume that some 
data samples within the data set/stream repeat more than once, 

namely, ,i j i j  x x . The set of unique data samples can 

be denoted as    1 2, ,...,
klk

u u u u  (
T

,1 ,2 ,, ,...,i i i i du u u   u , 

   
k k
u x , 1 kl k  ) and the corresponding frequencies of 

occurrence    1 2, ,...,
klk

f f f f  (
1

1
kl

i

i

f


 ). 

In the rest of this section, the main operators of the recently 
introduced Empirical Data Analytics (EDA) [9]-[12] and their 
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corresponding recursive expressions disclosing the ensemble 
properties of the observed data samples will be introduced. At 
the end, the well-known Chebyshev inequality and its new, 
simpler form within the EDA framework will be briefly 
presented. The most widely used Euclidean type of distance is 
used in this paper for derivation clarity, but we have to stress 
that, the proposed algorithm can work with various types of 
distance as well. 

A. Cumulative proximity 

The cumulative proximity   of a particular data sample 

ix  ( 1,2,...,i k ) is defined as the sum of square distances 

between this data sample to all other data samples existing in 
the data space [9],[10]: 

         
2 2 2

1

k

k i i j i k k k

j

k X


     x x x x μ μ       (1) 

where  
22

, ,

1

d

i j i l j l

l

x x


  x x . kμ  is the mean of  
k

x  

and kX  is the average scalar product, and they can be updated 

recursively as: 
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1 1
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k k



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X X X

k k



  x x             (3) 

B. Standardized eccentricity 

Standardized eccentricity is a very important measure for 
anomaly/fault detection [11]. The standardized eccentricity   

of ix  ( 1,2,...,i k )  is defined in [11] as: 

           
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The sum of the cumulative proximity of  
k

x can be 

expressed using  kμ  and kX  instead [11],[12]: 

                        22

1

2
k

k i k k

i

k X


  x μ                      (5) 

Combining equations (1) and (5), the recursive expression 
of the standardized eccentricity,  is expressed as follows: 

               
2

2
1 ; 1,2,...,

i k

k i

k k

i k
X




  


x μ
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C. Unimodal density  

Unimodal density [12] is defined as the inverse of 
standardized eccentricity  . The unimodal density D  of the 

data sample 
ix  ( 1,2,...,i k ) is expressed as follows [12]: 

           
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D. Multimodal density 

The multimodal density, MMD  of a specific unique data 

sample iu  ( 1,2,..., ki l ) is a weighted sum of its unimodal 

density by the corresponding frequency if  , expressed as [12]: 
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E. Chebyshev inequality 

The well-known Chebyshev inequality [13] describes the 

probability of the distance between a certain data sample ix  

and the mean value to be larger than n times the standard 
deviation, namely, “ n ”.  We introduced earlier a more 

elegant and general form of Chebyshev inequality in terms of 
standardized eccentricity, , expressed as [11]: 

                       2

2

1
1 1k iP n

n
    x                         (9) 

The inequality (9) can be applied to anomaly detection 
directly regardless of the distribution of data samples [11]. 

III. OFFLINE LOCAL MODE-BASED PARTITIONING 

The proposed offline version of the local modes-based 
partitioning algorithm employs the multimodal density, 

MMD as the main operator. The main procedure of the offline 
algorithm is summarized as follows: 

Stage 1: Identifying the global maximum 

For every unique data sample within the dataset  
k

x , its 

local density,  L

k iD u  ( 1,2,..., ki l ) can be calculated using 

the following equation: 

                     

 
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k i i L
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D f
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where d  is the average distance between the data samples of 

 
k

x  and is derived from equation (5):  
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The unique data sample with the highest 
LD  is selected as 

the reference sample in the ranked unique data samples set 

 *

k
u : 

                      *(1)

1,2,...,

arg max
k

L

k j
j l

D


u u                             (12) 

where *(1)
u  is the unique data sample with the global 

maximum of the local density LD  and assign * *(1)r u u . If 

there are more than one maximum, choose any one of them to 

be *r
u . 

Stage 2: Re-ordering the local density  

Then, we find the unique data sample which is nearest to 
*r

u . Assuming there are q unique data samples holding the 

smallest distance to *r
u  at the same time, they all will be 

selected and put into  *

k
u  together as 

*(2)
u , 

*(3)
u ,…,

*( 1)q
u , 

and their order will be decided by their local density 
LD in 

descending order. Once the unique data samples are put into 

 *

k
u , they will be removed from  

k
u . 

This process continues with the rest of the data samples 

remaining in  
k

u , and the last unique data sample, 
*( 1)q

u , in 

 *

k
u  is used as the reference data sample (

* *( 1)r qu u ) to 

find its closest unique data samples, and then put them into 

 *

k
u and remove from  

k
u . By repeating this procedure till 

 
k

u  becomes  , we can finally get the ranked unique data 

samples, denoted as    * *(1) | 1,2,..., k
k

i lu = u  and their 

corresponding ranked local density collection:   *L

kD u  

      *( )*(1) *(2), ,..., klL L L

k k kD D Du u u . 

Stage 3: Detecting all local maxima 

At this stage, we need to derive all local maxima of the 

ranked local density   *L

kD u  using the sign function: 
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




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u u

u u

u u
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where  sgn   is the sign function:  

1 0

sgn 0 0

1 0

x

x x

x




 
 

 . We 

denote the set of the local maxima of LD as the set 

    **** *| 1,2,...,
j

k
k

j l u u  ( *

k kl l ). 

Stage 4: Forming data clouds 

Each local maxima, 
 ** i

u  is then set as a focal 

point/prototype of a data cloud. All other data samples are 
then assigned to the nearest focal point (local maximum) 
forming data clouds according to the following rule:            

                  **

*1,2,...,

arg min ,
j

k

i
j l

cloud label d


 x u                (14) 

After all the data samples within  
k

x  are assigned to the 

data clouds, the actual center (mean) ,k jμ and the standard 

deviation ,k j (
*1,2,..., kj l ) of each data cloud can be 

calculated. Then we consider the set of centers, ,k jμ  

(
*1,2,..., kj l ) of the data clouds as if this is our dataset and 

calculate their multimodal density, MMD using equation (8). 
The respective frequency of each data cloud is determined 
based on the sum of frequencies of the unique data samples 
associated with it.  

The centers ,k jμ  (
*1,2,..., kj l ,

*

k kl l ) are ranked again in 

the same way as described in stages 1 and 2, denoted as  *

k
μ  

and the corresponding standard deviations  *

k
  as well. 

Then, the set of centers  *

k
μ is filtered according to the 

following rule:  

  

           
  

* 1 * * 1 *

*

*
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j j j j

k k k k

k
j

k

IF d
j l
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 
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
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μ

(15) 

From the Chebyshev inequality (equation (5)) we can see 

that   
3

5
4

k iP   x , which means more than 
3

4
 of the 

data samples are expected to be within 2  from the mean. 

 After the filtering operation, the collection of the filtered 

data cloud centers denoted as     **** **| 1,2,...,
j

k k
k

j l μ μ  

(
** *

k kl l ) is obtained, and they are passed to stage 4 for 

another round of filtering until the data cloud centers do not 
change any more.  

Finally, we can get the filtering result, re-named as  o

k
μ , 

and use the  o

k
μ  as the focal points/prototypes to build data 

clouds using equation (14). 



IV. EVOLVING LOCAL MODE-BASED PARTITIONING 

The evolving version of the proposed local modes-based 
data partitioning algorithm works with the eccentricity,  and 

unimodal density, D of the streaming data. The evolving 
algorithm has three stages as follows. 

Stage 1: Identification of the evolving local modes 

For each new data sample, denoted as 
1kx , that arrives, 

the global 
kμ  and 

kX  are updated to 
1kμ  and 

1kX 
 firstly 

using equations (2) and (3).  

After the unimodal densities of 
1kx  and all the existing 

local modes,  1 1k kD  x  and  1 ,k k iD  μ  ( 1,2,..., ki C ) are 

obtained using equation (7), the following condition [14] is 

checked to see whether 
1kx  is associated with a new local 

mode: 
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where we use kC  as the number of existing local modes at the 

k
th

 time instance.  

If this condition is met, a new local mode is added in the 

data space ( 1 1k kC C   ). On the contrary, if the condition is 

not satisfied, 1kx  is associated with the nearest existing local 

mode and 1k kC C  . 

Assuming 1kx is assigned to the i
th

 ( 11,2,..., ki C  ) local 

mode which is decided by equation (14), the support of the i
th

 

local mode is updated as 1, , 1k i k iS S   ; ,k iμ and ,k iX  are 

updated to 1,k iμ and 1,k iX    using  equations (2) and (3). For 

other local modes, their parameters stay the same for the next 
processing cycle. 

Stage 2: Filtering main local modes 

Once there are no new data samples available, the data 
clouds will automatically be formed based on the existing 
local modes as focal points or poles of attraction around which 
to form data clouds. However, because data clouds do not 
have specific shapes, they may overlap with each other, thus, 
the redundant local modes need to be removed first. 

The filtering stage begins from the data cloud with the 
smallest support and ends with the one with the largest 
support. For each data cloud, we check the following principle 
according to the Chebyshev inequality using the standardized 
eccentricity (equation (9)) [11]: 

  
     

 

, , , ,k i k j o k j k i o

th th

IF OR

THEN Merge the i and j data clouds together

    μ μ
 (17) 

Here, we use 5o  , which corresponds to 2 as 

described earlier.  , ,k i k j μ  and  , ,k j k i μ  are the 

standardized eccentricities calculated per data cloud 
expressed as follows ( i j ) [12]: 
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where  ,p q i or j  and p q . 

If the principle in equation (17) is met, the two data clouds 
merge: 
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Stage 3: Forming data clouds 

After the main local modes were filtered out, the output is 

generated. The remaining local modes, re-named as  o

k
μ ,  

are used as the focal points/prototypes to build data clouds 
using equation (14). 

V. ALGORITHM SUMMARY  

In this section, the overall procedure of the two versions 
(offline and evolving) of the proposed local modes-based 
partitioning algorithm are presented in the form of pseudo-
code in two separate subsections. 

A. Offline local modes-based partitioning algorithm 

i. Calculate  L

k iD u  ( 1,2,..., ki l  ) using eq. (10); 

ii. Find the unique data sample *(1)
u  with global maximum 

of 
LD using eq. (12); 

iii. Send *(1)
u  into  *

k
u  and  *(1)L

kD u  into   *L

kD u  

and delete *(1)
u  from  

k
u ; 

iv. * *(1)r u u ; 

v. While  
k
u   

      * Find the unique data sample(s) which is/are nearest 

to *r
u ; 

      * Send the data sample(s) and the corresponding 
LD  

to  *

k
u  and   *L

kD u , respectively; 

      * Delete these data sample(s) from  
k

u ; 



TABLE I. DATASET DESCRIPTION-PART 1 

Dataset 
Details 

Number of Data 

Samples 

Number of 

Clusters 

Number of 

Attributes 

G1a
 450 3 2 

G2b 800 2 2 

WWc 750 5 3 

a. Gaussian dataset 1; b. Gaussian dataset 2; c. Wrist-worn accelerometer dataset. 

 

      * Set the latest element in  *

k
u  as *r

u ; 

vi. End While 

vii. Filter  *

k
u  and   *L

kD u using eq. (13) and obtain 

 **

k
u  as focal points of the data clouds; 

viii. While  o

k
μ are not fixed 

      * Use the focal points to form the data clouds from 

 
k

x using eq. (14); 

      * Obtain the parameters  
k

μ and  
k

 of the data 

clouds; 

      * Calculate  MM

k jD μ ( *1,2,..., kj l ) using eq. (8); 

      * Find the *(1)
μ  with maximum MMD  using eq. (12); 

      * Send 
*(1)
μ  into  *

k
μ  and  *(1)MM

kD μ  into 

  *MM

kD μ  and delete 
*(1)
μ  from  

k
μ ; 

      * 
* *(1)r μ μ ; 

      * While  
k
μ   

           - Find the element(s) of  
k

μ  which is/are nearest 

to 
*r
μ ; 

           - Send the element(s) and the corresponding MMD  

into  *

k
μ ; 

           - Delete the element(s) from  
k

μ ; 

           - Set the latest element in  *

k
μ  as 

*r
μ ; 

      * End While 

      * Apply eq. (15) to filter  *

k
μ and obtain new focal 

points  **

k
μ ; 

      *   **o

k k
μ μ  

ix. End While 

x. Build the data clouds with  o

k
μ using eq. (14). 

B. Evolving local modes-based partitioning algorithm 

i. While the new data sample 1kx  of the data stream is 

available (or until interrupted) 

      * If ( 0k  ) Then 

           - 1 1μ x  

           - 1 1C  ; 

           - 1,1 1S  ; 

           - 1,1 1μ x ; 

           - 
2

1,1 1X  x ; 

      * Else 

           - Update kμ  and kX  to 1kμ  and 1kX  using eqs. 

(2) and (3); 
           - If (Condition (eq. (16)) is met) Then 

                   1. 
1 1k kC C   ; 

                   2. 
11, 1

kk CS
  ; 

                   3. 
11, 1kk C k μ x ; 

                   4. 
1

2

1, 1kk C kX
  x ; 

           - Else 
                   1. Use eq. (14) to decide the i

th
 local modes 

1kx  is assigned to; 

                   2. Update ,k iμ and ,k iX  to 1,k iμ and 1,k iX    

using eqs. (2) and (3); 

                   3. 1, , 1k i k iS S   ; 

           - End If 
       * End If 
ii. End While 
iii. While data clouds exhibit overlap 
      * If (Condition (eq. (17)) is met) Then 
           - merge the two overlapping data clouds into one 

using eq. (19); 
      * End If 
iv. End While 

v. Obtain  o

k
μ  from the remaining local modes; 

vi. Build the data clouds with  o

k
μ using eq. (14). 

VI. NUMERICAL EXAMPLES 

In this section, a number of benchmark problems were 
considered to evaluate the performance of the proposed 
algorithm. 

For better analysis, we also consider a number of 
performance measures: 

1) Inp: the parameters that have to be predefined (user 
input);  

2) NoC: number of clusters/data clouds in the processing 
results; 

3) AvP: the average purity of the clusters/data clouds, but 
may disguise poor results [5]; 

4) MaP: the maximum cluster/data cloud purity [5]; 

5) MiP: the minimum cluster/data cloud purity [5]; 

6) T: the execution time (in seconds). 

A. Evaluation of the offline version 

In this subsection, we will test the performance of the 



TABLE III. DATASET DESCRIPTION-PART 2 

Dataset 
Details 

Number of Data 

Samples 

Number of 

Clusters 

Number of 

Attributes 

G3a
 1200 4 2 

G4b 1250 5 2 

Cc 938 2 2 
a. Gaussian dataset 3; b. Gaussian dataset 4; c. Real climate dataset 

TABEL II . Comparison between offline algorithms 

 Inp 
Data 

set 

Measures 

NoC AvP MaP MiP T 

LM a  

G1 

3 0.9978 1.0000 0.9934 12.13 

MS b 
0.3 3 0.9911 1.0000 0.9740 0.02 

0.4 3 0.9844 1.0000 0.9554 0.02 

KM c 3 3 0.9978 1.0000 0.9934 0.17 

LM  

G2 

2 0.9475 0.9661 0.9303 10.07 

MS 
5 4 0.9413 1.0000 0.7647 0.03 

8 2 0.9325 0.9832 0.8914 0.03 

KM 2 2 0.9475 0.9661 0.9303 0.14 

LM  

WW 

5 0.9973 1.0000 0.9868 5.11 

MS 
10 5 0.9947 1.0000 0.9804 0.02 

12 3 0.6000 1.0000 0.5000 0.02 

KM 5 5 0.9973 1.0000 0.9868 0.14 

a. Local Modes-based Partitioning Algorithm; b. Mean Shift Algorithm; c. K-means Algorithm. 

 

 

 
(a) Gaussian dataset 1 

 
(b) Gaussian dataset 2 

 
(c) Wrist-worn accelerometer dataset 
Fig. 1 Offline partitioning results (Blue “*” stands for the focal points, 
if “  ” is in different colours, then it stands for different data clouds) 

offline version of the proposed local modes-based partitioning 
algorithm on two synthetic Gaussian problems and a real 
problem (wrist-worn accelerometer dataset [15]) on a 
benchmark. The datasets used in the evaluation are tabulated in 
Table I. The partitioning results are presented in Fig. 1. The 
detailed experimental results are tabulated in Table II. 

For further discussion of the performance, the offline 
version of the proposed algorithm is compared with two well-
known offline clustering algorithms: mean shift [1] (needs the 
kernel size.   to be predefined) and k-means [2] (needs the 

number of clusters to be predefined). The experimental results 
of the two comparative algorithms are tabulated together in the 
Table II as well.  

As we can see from Table II, the mean shift algorithm [1] is 
the fastest one from all the three, however, it is less accurate. 

The k-means algorithm [2] is somehow comparable to the 
proposed local modes-based partitioning algorithm in terms of 
accuracy, but one has to keep in mind that the high accuracy of 
the k-means algorithm relies heavily on the properly pre-
defined user input. In real cases, the number of clusters within 
a dataset is often hard to be decided because of the very limited 
prior knowledge. Comparatively, the proposed algorithm is not 
as fast as the other two algorithms, but it has the high accurate 
performance, and the most important point is that, it does not 
require any kind of user input. 

B. Evaluation of the evolving version 

The performance of the evolving version of the proposed 
local modes-based partitioning algorithm will be evaluated in 
this subsection. Similarly, we will test it on two synthetic 
Gaussian problems and a real problem (climate dataset [16]) as 
well as on a benchmark. The datasets used in the evaluation are 
tabulated in Table III. The partitioning results are presented in 
Fig. 2. In addition, we compare the proposed evolving version 
with the well-known DBScan [4] (the radius and the minimum 
number of data samples within the radius need to be 
predefined) and ELM [5] (initial radius needs to be predefined) 
algorithms. The detailed experimental results of the three 
evolving algorithms are tabulated in Table IV. 



TABEL IV . Comparison between evolving algorithms 

 Inp 
Data 

set 

Measures 

NoC AvP MaP MiP T 

LM  

G3 

4 0.9958 1.0000 0.9900 2.00 

DB a 

0.06,

10 c 
4 0.9325 1.0000 0.9965 0.10 

0.08,
10 

3 0.7350 1.0000 0.5017 0.16 

ELMb 
0.04 10 0.9967 1.0000 0.9870 1.06 

0.06 3 0.7425 0.9802 0.5000 0.41 

LM  

G4 

5 0.9920 1.0000 0.9689 2.24 

DB 

0.06,

10 
5 0.9464 1.0000 0.9957 0.11 

0.08,

10 
3 0.5928 1.0000 0.3360 0.17 

ELM 
0.03 9 0.9912 1.0000 0.9689 1.18 

0.04 6 0.8896 1.0000 0.6507 0.87 

LM  

C 

2 0.9691 0.9747 0.9634 1.58 

DB 

1.6, 
10 

7 0.7985 1.0000 0.9966 0.04 

2,10 3 0.8902 1.0000 0.9908 0.06 

ELM 
3 4 0.9670 1.0000 0.9592 0.42 

5 3 0.6215 1.0000 0.5639 0.24 

a. DBScan Algorithm; b. ELM Algorithm; c.[Radius, minimum number]. 

 

 

 
(a) Gaussian dataset 3 

 
(b) Gaussian dataset 4 

 
(c) Real climate dataset 
Fig. 2 Evolving partitioning results (Blue “*” stands for the focal points; if 
“  ” is in different colours, then it stands for different data clouds) 

The comparison results as depicted in Table IV 
demonstrate that, the proposed algorithm is the most accurate 
one of the three, and the most importantly, it is entirely data-
driven and free from any pre-defined parameters or 
assumptions. In contrast, the DBScan algorithm is the fastest, 
but it is less accurate and needs two parameters to be decided 
by the user. ELM algorithm exhibits comparably accurate 
performance with the proposed algorithm; however, this also 
depends on the user input. With improperly defined radius, its 
performance can be significantly degraded. 

C. Hybrid example between the offline and evolving versions 

We use the same real climate dataset [16] as tabulated in 
Table II to study a hybrid between the offline version to start 
and the evolving version afterwards. The offline version is 

applied to the first 300 data samples of the climate dataset [16] 
and the evolving version then is used to process the remaining 
638 data samples as a data stream. The results of using the 
hybrid are shown in Fig. 3. From the figure we can see that the 
offline version builds two data clouds based on the 300 data 
samples. Then, the evolving version takes over the task and 
continues to process the rest of the data samples. The density 
changes with more data samples arriving and more clusters 
being formed based on the new data samples. Once, there are 
no anymore new data samples, the algorithm performs a 
filtering operation of the main modes and successfully 
identifies the two focal points representing the two main modes 
of the data density. Finally, the two focal points are used to 
form the two data clouds.  

VII. CONCLUSION 

In this paper, a novel “local modes-based” partitioning 
algorithm is introduced as a fully autonomous technique to 
partition the data space into parameter-free data clouds 
according to the modes of the distribution of the data pattern. 
The proposed algorithm is driven entirely by the observed data 
samples and is free from any kind of user- and problem- 
specific parameters. The algorithm has two versions, offline 
and evolving; each one of them can operate independently, and 
they can perform a hybrid as well. Numerical experiments 
demonstrate the validity of the proposed algorithm as a fully 
autonomous data partitioning technique and also shows its 
advantages as compared with the well-known comparative 
algorithms. 



 
(a) Offline result 

 
(b) 300 new data samples processed as a data stream (green “  ”) 

 
(c) Final results 
Fig. 3 An example of a hybrid method (Blue “*” stands for the focal points; 
if “  ”is in different colours, then it stands for different data clouds) 
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