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Conceptualising a supply and demand resilience methodology using multi-criteria 
decision making 

Abstract 

 

Due to the growing globalisation and strategic sourcing, supply chains (SCs) are confronted 

with potential disruptions. Companies need to make further efforts and investments to improve 

their supply chain resilience (SCR) in becoming more prepared to minimise disruption risks. 

Sourcing is one of the main, strategic, key factors towards SC resilience. Also, organisations 

require resiliency in demand fulfilment to handle volatile marketplaces. This paper presents a 

methodology towards SCR to both supply and demand variations motivated by a real case study 

of a manufacturing company that works to improve its SC resilience. To this end, an integrated 

hybrid multi-attribute decision making-possibilistic bi-objective programming model 

(MADM-PBOPM) was developed. First, a new framework presenting pillars to assess 

suppliers’ resilience was developed based on a thorough literature review and decision makers’ 

input. Then, a hybrid DEMATEL-TOPSIS approach was proposed to quantify existing 

suppliers’ resilience and assess its performance. It also helped in categorising resilience pillars 

(RPs) as causes and effects. Thereafter, the obtained weights of suppliers and pillars were 

integrated into the developed PBOPM. The latter helps the purchasing team to (1) order 

materials from suppliers based on their resilience and performance efficiency; and (2) elevate 

the company’s resiliency to uncertain demands fulfilment. Therefore, the developed 

methodology can potentially be used by the purchasing teams to build up SCs that are resilient 

to supply disruption and demand uncertainty. This MADM-PBOPM model was validated as 

part of the case study investigation. Furthermore, the suppliers’ assessment output was 

validated by using two sensitivity analysis approaches including criteria weight variation and 

other MADM approaches. 

Keywords: COVID-19 disruption; Resilient sourcing; Supply chain resilience; Multi-objective 

programming; MCDM. 

 

 

 

 

 



 

 

1. Introduction 

Supply chains (SCs) are exposed to risks from different sources such as from the demand side, 

from the suppliers’ side, from manufacturing processes, from control systems and from 

external factors (Christopher and Peck, 2004). The special characteristics of these risks are that 

they range from low to extremely high levels, fluctuate overtime and affect various geographic 

service areas differently; as shown during various virus pandemic such as SARS, Ebola, and 

recently, Coronavirus (COVID-19/SARS-CoV-2). Araz et al. (2020) underline that the 

COVID-19 risks represent one of the major disruptions encountered during the last decades 

which is “breaking many global supply chains”. Particularly, from mid-February 2020, 

COVID-19 infected cases are drastically increasing across the globe leading to border closures 

and quarantined locations. It was reported that 94% of the “Fortune 1000” companies are seeing 

the coronavirus-outbreak as SC disruptions (Fortune, 2020). However, pandemic outbreaks are 

a special case of SC disruption (Ivanov, 2020). In this work, we consider the operational risks 

that may raise due to daily disruptions in the SC activities and process e.g., volatile 

marketplace, uncertain lead-time, and supply disruptions, but still have high-impact on SC 

operations (Kinra et al., 2019; and Xu et al., 2020). 

At the same time, the COVID-19 pandemic has certainly accelerated the need to enhance 

resilience to protect SCs against future disruptions (Ivanov, 2020). For instance, several 

companies have raised the importance of analysing critical dependencies as a highly important 

paradigm in respond to the COVID-19 disruption to embrace the SC resilience elements 

(Deloitte, 2020). The supply chain resilience (SCR) literature is presented with a plethora of 

quantitative approaches to support SC managers in the design of resilient SCs (Ivanov et al., 

2017). However, most previous studies have made efforts to develop resilience framework to 

single source of risk, especially from the supply-side risks (Spiegler et al., 2016).  

A set of sources and outcomes of supply risks is well documented and categorised by Zsidisin 

(2003). Between the late 1980s and early 1990s, procurement decisions have shown emphasis 

on reducing the numbers of suppliers due to the costly and complex task of managing multiple 

suppliers. This has consequently led to ineffective risk management. Nowadays, companies are 

focusing on supplier relationship management and development, therefore the processes of 

evaluating and selecting suppliers is of great importance (Hosseini & Al Khaled, 2019).   

Despite most works focusing more on risks arising from the supply side, disruptions also often 

occur due to variations in demand volume. Different from supply-side risks, demand-side risks 



 

 

have a reverse impact upstream SCs, impacting the whole SC system (Zhao et al., 2020). 

Demand-related resilience has been empirically evidenced by Blackhurst et al. (2011), Jüttner 

and Maklan (2011), Golgeci and Ponomarov (2013) and Purvis et al. (2016). Some of these 

works discussed the link between multi-sourcing strategies and demand uncertainty mitigation. 

The ability of selecting suppliers to adopt different roles: agile (fast and flexible) and lean (cost-

efficient) is fundamental to cope with demand variations (Purvis et al., 2016). Towards efficient 

SC resilience-related strategies, it is important to consider both supply and demand 

uncertainties (Ramezanian and Behboodi, 2017). However, most of the SC resilience literature 

is still limited to explore a single source of risks. Also, related research studies solve, as 

outlined in section 2, the order allocation problem – assigning the lot size among selected 

suppliers - neglecting the output of the supplier evaluation process.  

In this study, we address this gap in the literature by answering the following two research 

questions: 

1) How to select suppliers and allocate orders in order to achieve resilience to both 
supply and demand uncertainties while maintaining good business performance? 

2) How suppliers’ normal business/resilience performance can be embedded into the lot-
sizing decisions? 

In this paper, we develop and validate a quantitative methodology towards SCR to both supply 

and demand variations. However, operational disruptions related to supply and demand include 

several tangible and intangible aspects (e.g., demand increase or decrease, flexibility, and 

agility) that would not be captured efficiently along with opinions of several experts without 

the employment of multi-criteria decision-making (MCDM) methods. These include multi-

objective optimisation that helps in solving, for instance, the order allocation problem among 

suppliers towards specific managers’ desires (e.g., minimum cost and maximum service level) 

(Keller, 2017). However, this optimisation method does not capture experts’ opinions regarding 

alternatives’ (i.e., suppliers) performance vis-à-vis several criteria (e.g., costs, agility, 

flexibility, and quality). In other words, this methodology would assign orders size to suppliers 

regardless their performance. MCDM also includes multi-attribute decision making (MADM) 

methods that help in evaluating alternatives based on their performance in a group of evaluation 

criteria (Tzeng and Huang, 2011). This calls for a methodology that integrates MADM output 

into the multi-objective optimisation to handle managers ‘desires (e.g., minimum costs) and 

alternatives evaluation in the sourcing-related decision-making. 



 

 

To the best of our knowledge, our work is the first to consolidate resilient supplier selection 

(RSS) methods with demand variation by developing an integrated hybrid multi-attribute 

decision making-possibilistic bi-objective programming model (MADM-PBOPM). This 

methodology helps in retrieving normal business/resilience performance of alternatives and 

assigning order size between or among alternatives, considering their performance, via the 

developed PBOPM. To this end, and unlike other order size solutions, this MADM output 

(alternatives’ performance) is merged into the developed PBOPM. This supports the 

purchasing department (e.g., buyers) in incorporating their opinions regarding suppliers into 

the order allocation plan. Therefore, this research methodology aids the decision-making 

process for the purchasing team in precisely identifying the best resilient, in addition to the 

normal business concerns, suppliers. In addition, it supports decision makers towards an 

efficient resilient and economic order size allocation. Furthermore, the evaluation approach 

(via the proposed MADMA methods) could also be used by suppliers to test and improve their 

normal business and resilient capabilities. Thus, this work could guide, partially, SC managers 

in building SCR to guarantee business sustainability.  

The remainder of this paper is organized as follows. In Section 2, we provide a literature review 

of the existing studies in SCR, supplier selection and its relevant methodologies. In Section 3, 

we present the problem statement and the technical description of our approach. Section 4 

reveals the application of the proposed framework in the case company and discusses the main 

results obtained from the model with real dataset. We also indicate managerial implications for 

the focus company. Finally, in Section 5 we discuss major findings of this study and outline 

future directions. 

2. Literature review 

2.1. Supply chain resilience  

Contemporary SCs are complex networks that aim to deliver the right quantity of products in 

the right place at the right time under uncertain global market conditions. The unstable 

conditions in global markets expose SCs to a multitude of disruptions (Pettit et al., 2010). 

Hence, the ability to react appropriately to disruptions is a strategic necessity for business 

continuity in SCs. Therefore, SCR has been receiving much attention within the business world 

throughout the past decade (Kochan & Nowicki, 2018). SCR has been defined by different 

authors in extant literature. In summary, SCR refers to the ability of SCs to cope with 

unexpected disruptions (Carvalho et al., 2012). We use the SCR definition by Ponis and 



 

 

Koronis (2012) as it is comprehensive and covers different aspects of resilience in SCs. 

According to these authors, SCR is “The ability to proactively plan and design the Supply 

Chain network for anticipating unexpected disruptive (negative) events, respond adaptively to 

disruptions while maintaining control over structure and function and transcending to a post 

event robust state of operations, if possible, more favourable than the one prior to the event, 

thus gaining competitive advantage.” 

One dimension of SCR, which is mentioned in the above definition, is the capability of a SC 

to anticipate or sense disruptions. Sensing means minimising the lag between the event 

occurring and the SC’s recognition of the event, therefore maximising the number of options 

available to the managers to deal with adverse events (Purvis et al, 2016).  The other is the 

ability to respond adaptively to disruptions, which requires the SC to be both agile and flexible. 

Agility is “the ability of a supply chain to rapidly respond to change by adapting its initial 

stable configuration” (Wieland & Wallenburg, 2012) and to improvise when they can no longer 

operate in the same way they used to (Andersson et al. 2019). Whereas, flexibility is the ability 

of a SC to take different positions to better respond to disruptions and quickly adapt to 

significant changes (Lee, 2004). Therefore, Flexibility refers to having a variety of resources 

available, such as workforce, processes, and suppliers that lead to responsiveness in critical 

times (Ponomarov & Holcomb 2009). Very recently, (Deloitte, 2020) conducted a survey 

included 457 Board members of Swiss firms to identify avenues for building SCR, and they 

reported flexibility among the main aspects to elevate SCR. Transcending to a post-event 

robust state of operations requires SCs to be able to resist disruptions and remain effective 

(Vlajic et al., 2012), and thus, robustness can be identified as a dimension of SCR (Wieland & 

Wallenburg, 2013). Developing to a more favourable state of operations after dealing with 

disruptions is yet another dimension of SCR, which is explicitly stated in the definition. The 

development capability enables companies to keep up with environmental dynamics and to set 

a new trajectory by learning from disruptive events (Lengnick-Hall, Beck, & Lengnick- Hall 

2011). The dimensions mentioned above are commonly cited across the extant SCR literature. 

We present sensing, agility, robustness development and flexibility as the RPs.  

2.2. Resilient supplier selection 

In this research, we aim to address resilient supplier selection as a SCR practice by proposing 

a comprehensive methodology. RSS is a crucial strategic decision in SCs, specifically in the 

context of disruption management (Hosseini & Al Khaled, 2019). This is because suppliers can 

be a source of external risk to organisations (Rajesh & Ravi, 2015). For a SC to be resilient, 



 

 

the selected suppliers should be the least vulnerable to disruptions. Moreover, suppliers need 

to be able to respond to demand uncertainty. Supplier selection is essentially a MCDM 

problem, and there are many proposed methodologies to deal with it, examples of which are 

mentioned in the following section.  

The multitude of studies investigating supplier selection as a mean of achieving more resilient 

SCs indicate the importance of RSS. In this study, we mainly focused on the papers published 

in the last ten years that explicitly address RSS. We inputted the keyword “resilient supplier 

selection” in Scopus and Web of Science databases, as they are the most renowned scientific 

databases in the field of engineering. The search was focused on the title, abstract, and 

keywords of the papers, which resulted in finding 18 distinct papers. To take a step further, we 

searched the references mentioned in these papers and focused on the titles using the same 

keyword. We found seven relevant papers, which were not primarily detected in the search 

result. Altogether, 25 papers were analysed, we provide a concise and collective description of 

them next. 

Haldar et al. (2012) designed a hybrid MCDM model as a quantitative method for RSS. They 

merged Analytical Hierarchy Process (AHP), Technique for Order of Preference by Similarity 

to Ideal Solution (TOPSIS), and Quality Function Deployment (QFD) methods first to 

determine the importance of each criterion and then proceed with the selection of resilient 

suppliers. In their next research, Haldar et al. (2014), considered a disaster scenario where they 

developed a strategic RSS method in a fuzzy environment by considering a different set of 

supplier selection criteria. Later, by using fuzzy theory, Azadeh et al. (2014) introduced the 

idea of green RSS by proposing a model that uses Analytical Network Process (ANP) and Data 

Envelopment Analysis (DEA) to determine criteria weights for green RSS. Rajesh and Ravi 

(2015) used grey relational analysis (GRA) to acquire a set of possibility values based on the 

linguistic assessment of decision-makers for RSS. Torabi et al. (2015) developed a decision-

making model for creating a resilient supplier base using a bi-objective mixed possibilistic, 

two-stage stochastic programming model that addresses the uncertainty caused by disruptions 

and operational risks. Moving forward, Chen et al. (2016) proposed a model that quantitatively 

analyses how resilient suppliers are by taking advantage of Weighted Goal Programming 

(WGP) and Preemptive Goal Programming (PGP) methods. Hosseini and Barker (2016) 

developed a Beysian Network model that uses green and SCR criteria to choose the most 

feasible suppliers. Sen et al. (2016) devised a decision support framework for RSS that 

considers both resilience and green criteria at the same time. Using fuzzy set theory, they 



 

 

introduced a performance index, i.e., “g-resilient”, to help with RSS. Taking advantage of 

normal business criteria (NBC), Pramanik et al. (2017) introduced a model for RSS using a 

hybrid AHP-TOPSIS-QFD method.  Lee (2017) examined supply resiliency under supply 

failure risks by using a fuzzy multi-objective programming approach to minimise the cost, 

number of rejected items, and late deliveries. Parkouhi and Ghadikolaei (2017) proposed a 

model with which it is possible to determine the importance of RSS elements, using Fuzzy 

Analytic Network Process (FANP). Next, by using these elements, the supplier resiliency level 

can be specified through the grey VlseKriterijumska Optimizacija I Kompromisno Resenje 

(VIKOR) method. Wang et al. (2017) suggested a combined methodology using AHP and GRA 

to evaluate supplier performance by determining weights for resilience criteria and ranking 

suppliers for RSS, respectively. Malek et al. (2017) introduced a comprehensive model using 

GRA for evaluating and selecting green and resilient suppliers. Foroozesh et al. (2018) used 

interval-valued fuzzy sets (IVFSs) and possibilistic statistical theories to select potential 

resilient suppliers. Their research presents a comprehensive possibilistic statistical group 

decision model based on IVFSs and asymmetric information to facilitate RSS in SCs. 

Jabbarzadeh et al. (2018) presented a hybrid methodology for the design of a sustainable and 

resilient supply network. They developed a stochastic bi-objective optimisation model that 

employs a fuzzy C-means clustering method. The proposed model is capable of helping 

decision-makers with selecting outsourcing options and resilience strategies. 

Alimohammadlou and Bonyani (2018) used DEMATEL, ANP, and fuzzy goal programming 

to propose an integrated fuzzy model for RSS. Later, Parkouhi et al. (2019) conducted a study 

considering two dimensions of resilience enhancers and resilience reducers for selecting and 

segmenting suppliers. They applied Grey Decision Making Trial and Evaluation Laboratory 

(Grey DEMATEL) technique to determine the importance degree of the criteria for each of the 

mentioned dimensions, and afterward, by using the Grey Simple Additive Weighting technique 

(GSAW) they determined the score of each supplier according to each dimension. Gan et al. 

(2019) proposed a hybrid method that combines triangular fuzzy number, the best-worst 

method (BWM), and the modular TOPSIS to first rank the decision-makers and then proceed 

with best possible RSS. Mohammed et al. (2019a), after identifying the RSS criteria by using 

a unified framework and the input from experts in the field, developed an approach in which 

they used DEMATEL method to determine the importance and the weights of each criterion. 

Next, they integrated the resulted weights into the ELimination Et Choix Traduisant la REalité 

(ELECTRE) algorithm accompanied by the TOPSIS method to rank the suppliers. In a final 

step, they used the Spearman’s rank correlation coefficient (SRCC) approach to attain the 



 

 

statistical difference between the ranking orders. Mohammed et al. (2019b) designed a hybrid 

MCDM fuzzy multi-objective programming approach to design SCs that are both resilient and 

green. They used Fuzzy AHP and TOPSIS methods to select the most feasible suppliers. 

Davoudabadi et al. (2019) devised a methodology in which they gathered decision-makers’ 

input in the form of linguistic variables and converted them to interval-valued intuitionistic 

fuzzy (IVIF) numbers and then used the complex proportional assessment (COPRAS) method 

based on the attained IVIF numbers to rank the suppliers. Hosseini and Al Khaled (2019) 

merged classification and regression trees, binomial logistics regression, and neural networks 

to propose a model that quantifies suppliers’ resilience.  In their research, Hosseini et al. (2019) 

showed how to compute the probability of disruption scenarios for supplier selection by using 

a probabilistic graphical model. Next, they proposed a stochastic bi-objective mixed-integer 

programming model that supports the decision-making regarding when and how to use reactive 

and proactive strategies in supplier selection and also order allocation. Cavalcante et al. (2019) 

developed a hybrid method by combining simulation and machine learning in the context of 

data-driven decision-making support for RSS. Hasan et al. (2020) used Fuzzy Multi-Attribute 

Decision Making (F-MADM) and TOPSIS methods to develop a Decision Support System 

(DSS) that helps decision-makers include and process imprecise heterogeneous data in a 

unified framework to prioritise RSS. 

Table 1 includes a summary of the mentioned studies, along with the respective RSS criteria 

used in the supplier selection. 

Table1. Literature review on RSS  

Reference Methodology RSS criteria 
Haldar et al. (2012) TOPSIS, AHP, QFD  Buffer capacity 

 Supplier’s resource flexibil-
ity 

 Lead time 
 SC density  

 SC complexity  
 Responsiveness 
 No. of critical nodes in a 

SC 
 Re-engineering 

Haldar et al. (2014) FTOPSIS, AFW  Quality 
 Reliability of product 
 Functionality of product 

 Customer satisfaction 
 Cost of the product 

Azadeh et al. (2014) ANP, DEA  Quality 
 Finance (Financial stability, 

Price, Past financial perfor-
mance) 

 Service (On-time delivery, 
Credible delivery, Respon-
siveness, Design capability) 

 Corporate social responsibil-
ity 

 Environmental 
 Self-organisation 
 Reversibility 
 Flexibility 

Rajesh and Ravi 
(2015) 

GRA  Quality 
 Cost  

 Risk awareness 
 SC 



 

 

 Flexibility 
 SC velocity 
 SC visibility  
 Vulnerability 
 Level of collaboration  

 continuity management 
 Technological capability  
 Research and development 
 Safety 
 Concern for environment 

Torabi et al. (2015) Bi-objective mixed 
possibilistic two-stage 
stochastic 
programming 
model 

 Cost 
 Delivery 

 Capacity 

Chen et al. (2016) Weighted goal 
programming 
(WGP) and Preemptive 
Goal programming 
(PGP) 

 Finance 
 Quality 
 Delivery 
 Relationship 
 Service 

 Technology  
 Supply facility and infra-

structure and market repu-
tation  

 Management and organisa-
tion 

 Efficacy of corrective ac-
tion 

 Environment 
 Risk factors 

Hosseini and Barker 
(2016) 

Bayesian Network 
(BN) 

 Total cost 
 Quality of products 
 Service 
 Delivery and response 
 Distance between supplier 

and customer 
 Total emitted CO2 
 CO2 emission  

 Probability of tornado oc-
currence 

 Probability of flood occur-
rence 

 Segregation 
 Surplus inventory 
 Backup supplier availabil-

ity 
 Backup supplier 

Sen et al. (2016) Fuzzy set theory  Investment in capacity buff-
ers 

 Responsiveness 
 Capacity for holding strate-

gic inventory for crises 
 Use of environment-friendly 

technology 
 Use of environment-friendly 

materials 
 Green market share 
 Partnership with green or-

ganisations 
 Management commitment 

 Adherence to environmen-
tal policies 

 Green R&D projects 
 Staff training 
 Green process planning 
 Design for environment 
 Environmental certification 
 Pollution control initiatives 

Pramanik et al. 
(2017) 

AHP, TOPSIS, QFD  Quality 
 Delivery time 
 Reliability  
 Processing time 
 Profit margin 

 Buffer capacity 
 Number of critical nodes 
 Responsiveness 
 Re-engineering 
 Adaptive capability 

Lee (2017) A fuzzy multi-objective 
programming  

 Price 
 Failure probability 
 Output capacity 
 Emergency capacity 
 Minimum order quantity 

 Percentage of the rejected 
units delivered 

 Unit contracting cost of 
emergency capacity 

 Percentage of the units de-
livered late 

 Supplier maintenance cost 
Parkouhi and 
Ghadikolaei (2017) 

FANP, grey VIKOR 
method 

 Delivery 
 Flexibility 
 Quality 

 Relationship building 
 Cost of product 
 Cost of relationship 



 

 

 Culture 
 Joint growth 
 Supplier’s technology 

 Supply constraint 
 Buyer-supplier constraint 
 Supplier’s profile 

Wang et al. (2017) AHP, GRA  Product quality 
 Commodity price and cost 
 Delivery and service 
 Time flexibility 
 Product flexibility 
 Quantity flexibility 
 Management level 
 Risk reduction and respon-

siveness 
 Reputation and prestige 

 The political and legal en-
vironment 

 Service distance 
 The level of informatiza-

tion 
 New product development 
 New technology develop-

ment 
 Energy-saving and environ-

mental protection 
 Eco-design 
 Pollution 

Malek et al. (2017) GRA  Flexibility 
 Redundancy 
 Agility 
 Risk 
 Level of collaboration 
  Cost 
 Quality 
 Time 
 Delivery 

 Green competencies 
 Environmental competen-

cies 
 Safety competencies 
 Financial 
 Technical & equipment 
 Technological & innova-

tion 
 Information technology 
 Human resource & training 
 Organisational manage-

ment competencies 
Foroozesh et al. 
(2018) 

IVFSs  Responsiveness  Capacity for holding strate-
gic inventory stocks 

Jabbarzadeh et al. 
(2018) 

Stochastic 
programming, fuzzy c-
means clustering 
method 

 Extra production capacity 
 Raw material 
 Manufactured products 

 Shipped products 
 Lost sales 

Alimohammadlou 
and Bonyani (2018) 

DEMATEL, ANP, 
fuzzy goal 
programming 

 Vulnerability 
 Agility 
 Information sharing 
 Redundancy 
 Sustainability 
 Financial strength 
 Safety 
 Visibility 

 Demand management 
 Lead time 
 Human resource manage-

ment 
 Collaboration 
 Adaptive capability 
 Risk management culture 
 Flexibility 

Parkouhi et al. (2019) Grey DEMATEL, 
GSAW 

 Enhancers of supplier resili-
ency (e.g., Order lead time, 
Delivery reliability, Quality 
services, Cost-reduction ca-
pability, etc.) 

 Reducers of supplier resili-
ency (e.g., Supplier’s ca-
pacity limit, cost of inven-
tory, Vulnerability, Finan-
cial risk, etc.) 

Gan et al. (2019) BWM, modular 
TOPSIS 

  Surplus inventory 
 Location separation 
 Interdependency 
 Robustness 

 Reliability 
 Rerouting 
 Reorganisation 
 Restoration 

Mohammed et al. 
(2019a) 

DEMATEL, 
ELECTRE, TOPSIS, 
SRCC 

 Cost 
 Product quality 
 Technology capability 
 Implementation period 
 Successful previous related 

projects 

 Performance history 
 Staff training and support 
 Robustness 
 Agility 
 Flexibility 



 

 

Mohammed et al. 
(2019b) 

Fuzzy AHP Redundancy 
Agility 

 Leanness 
 Flexibility 

Davoudabadi et al. 
(2019) 

IVIF-COPRAS  Product quality 
 Reliability of the product 
 Functionality of the product 
 Customer satisfaction 

 Cost of the product 
 Investment in capacity 

buffers 
 Responsiveness 
 Capacity for holding strate-

gic inventory for crises 
Hosseini and Al 
Khaled (2019) 

Hybrid ensemble-AHP   Cost 
 Quality 
 Lead time 
 Response rate 
 Surplus inventory 

 Location separation 
 Interdependency 
 Robustness 
 Reliability 

Hosseini et al. (2019) Stochastic bi-objective 
mixed-integer 
programming 

 Supplier capacity 
 Violation cost 
 Expected disruption rate of 

suppliers 
 Disruption cost 

 Holding cost 
 Order cost 
 Penalty cost (of supplying 

low-quality products) 
 Distance between suppliers 

and the firm 
Cavalcante et al. 
(2019) 

Simulation, machine 
learning 

 Delivery reliability (On-time 
delivery) 

 Suppliers’ risk profile 

Hasan et al. (2020) F-MADM, TOPSIS  Pre-positioned inventory 
level 

 Lead time variability 
 Production capacity 
 Cost 
 Digitalization 
 Traceability 
 SC density 
 SC complexity 
 Re-engineering 
 Supplier’s resource flexibil-

ity 

 Automation disruption 
 Information management 
 Cyber security risk man-

agement 
 Supplier reliability 
 SC visibility 
 Level of collaboration 
 Restorative capacity 
 Rerouting 
 Agility 



 

 

As shown in Table 1, there are several criteria that can be used to select resilient suppliers. To 

choose the NBC criteria, we asked the purchasing manager from the case study to review the 

complied list of the criteria in Table 1 and shortlist it by selecting the most important ones. 

Based on his answers, we identified Purchasing Costs, Scrap Quality, Delivery Reliability, 

Performance history, Turnover, Lead Time, and Operating capacity as the most important 

criteria. We also selected Sensing, Agility, Robustness, Development and Flexibility as the five 

RPs that were described earlier in section 2.1.  

2.3. MCDM in RSS 

In modern supply chain management (SCM), the performance of prospective suppliers is 

assessed by multiple criteria rather than just a single criterion, i.e., cost. Selecting the right 

suppliers requires much more than just surveying price lists, and choices depend on a range of 

criteria that involve both qualitative and quantitative measures. Extensive MCDM 

methodologies have been suggested for supplier selection, e.g., DEMATEL, TOPSIS, ANP, 

AHP, DEA, Case-Based Reasoning (CBR), Genetic Algorithm (GA), Simple Multi-Attribute 

Rating Technique (SMART), mathematical programming, fuzzy set theory, etc., and their 

hybrids (Ho et al., 2010; and Pamucar et al., 2021). The MCDM methodologies used in the 

mentioned research for RSS are stated in Table 1.  

2.4. Research gaps 

After analysing the research in the extant literature, we could not find any work that proposed 

an integrated hybrid MADM-PBOPM capable of simultaneously addressing “supply 

resiliency” and “demand uncertainty” in RSS. We have addressed this gap in this paper. In 

addition, the reviewed research dedicated for solving the order allocation problem do not 

consider alternatives’ performance into the assigned order size. This traditional setting would 

not reflect decision makers’ perspective about alternatives’ capabilities in the assigned order 

size. Also, the literature pointed out the need for more integrated methodologies towards 

resilient SC that we address in this research. In this regard, we integrated alternatives’ normal 

business and resilience profile into a trade-off modelling between costs and resilience 

paradigms. In addition, the possibilistic modelling was employed to capture the uncertainty 

downstream the SC.  In terms of the research methodology, this, as far as the authors know, 

the first study that employees integrated and hybrid DEMATEL, TOPSIS and possibilistic 

multi-objective optimisation approaches in supplier selection and order size allocation 

problem.  



 

 

3. Research methodology 

3.1 Problem statement 

Several companies, mainly production, have become more subject to operational disruptions 

due the lean requirements and globalized structure. Furthermore, considering the recent 

tremendous impact of COVID-19 risks, managers of companies would be informed to build up 

their SCR. This target would enhance the network’s capability to sense, resist, absorb, and 

retrieve its normal state after disruptions to sustain its business. A laboratory instrumentation 

OEM company (Company X, henceforth) works to develop its purchasing strategy with a goal 

of a resilient SC. This study is motivated by this need, via a research collaboration with 

Company X, in providing the purchasing team with a sourcing methodology that considers 

NBC and RPs. This work conceptualizes and introduces a methodology to achieve resilient 

sourcing towards SCR. The case network consists of potential suppliers and Company X. The 

latter purchases various items from different suppliers to assemble the finished products.  

First, the NBC and RPs were presented based on literature and the purchasing manager’s point 

of view. Figure 1 shows the developed framework for the identified NBC/RPs. Second, the 

relative importance of criteria and pillars, shown in Figure 1, was quantified by using 

DEMATEL. This step is followed by the assessment and ranking of suppliers based on their 

performance in terms of NBC/RPs by using TOPSIS. Then, a bi-objective programming model 

was formulated to allocate the optimal order size from each supplier. This order allocation 

considers supplier’s performance by integrating suppliers’ performance score and relative 

criteria weight into the BOPM. This model was further development in embracing the 

possibilistic set theory to improve Company X’s resiliency to demand uncertainty rather than 

supply only. The PBOPM presents two objectives: minimisation of total related costs of 

sourcing and maximisation of resilience sourcing value. Then, a set of pareto solutions was 

derived from the PBOPM by using the ε-constraint method. Finally, the global criterion 

approach was applied to help buyers in selecting the final appropriate Pareto solution. Figure 

2 depicts a general overview and steps for the developed hybrid integrated methodology 

towards SCR. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A holistic framework for the NBC/RP.  
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Figure 2. MADM-PBOPM supply chain resilience methodology. 

 

3.2 DEMATEL 

In 1971, the DEMATEL approach was first created by the United States Bastille laboratory.  

So far, it has been commonly employed to handle the correlation and weighting among and of 

criteria (Ortíz et al. 2016; Kaya and Yet, 2019; Kilic et al., 2020; Li et al., 2020; Li et al., 2020; 

and Mohammed, 2020 and 2019). This approach works on revealing the correlation and 

relationship among criteria in addition to their relative importance based on experts’ judgment. 

In this research, DEMATEL was proposed to quantify relative weights of normal business 
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criteria (NBC1-NBC7) and resilience pillars (RP1-RP5) - previously presented in Figure 1 - to 

be used as input parameters for the PBOPM. In this work, DEMATEL was applied as clarified 

in Appendix A. 

3.3 TOPSIS 

Yoon and Hwang (1995) created TOPSIS as an aid approach in selecting an alternative based 

on its distance from the negative ideal solution and the positive ideal solution. So far, it has 

been identified as one of the most employed MADM methods in the SCM context (Rashidi et 

al., 2020; Govindan et al., 2015). In this work, TOPSIS was applied to evaluate and obtain a 

ranking order of alternatives (i.e., suppliers) based normal business/resilience performance. 

Also, this output is embraced, as a score for each supplier, in the PBOPM. In this research, 

TOPSIS was implemented as clarified in Appendix A. 

3.4 The integrated hybrid MADM-PBOPM 

This section introduces the developed MADM-PBOPM that helps the purchasing team to (1) 

order materials from suppliers based on their resilience and normal business performance; and 

(2) enhance the company’s resilience to demand uncertainty. This includes a BOPM that 

integrates the weight of NBC/RPs and suppliers achieved via DEMATEL and TOPSIS, 

respectively. This would help buyers to allocate order quantities among suppliers not merely 

based on normal business performance e.g., purchasing costs, but also their resilience 

performance. The two objective functions include: minimisation of total related costs (TRC) 

and maximisation of resilient sourcing value (RSV). 

The sets, parameters and decision variables included in the model formulation are as follows: 

Sets 

I    set of suppliers, i = 1,…,I 

 

Given Parameters 

  unit purchasing cost offered by supplier i 

     cost (unit/mile) of transporting units from supplier i 

𝐶௜
௔    unit ordering cost related to supplier i 

di        unit travelling distance in mile from supplier i 

   lorry shipping capacity (unit) 

     unit supply capacity related to supplier i  

p
iC

t
iC

T C

iS



 

 

Dn      minimum demand of the manufacturer 

Dx      maximum demand of the manufacturer 

𝑊௡      weight of NBC obtained via DEMATEL 

𝑊௥      weight of RPs obtained via DEMATEL 

𝑜௜
௡         normal business performance value related to supplier i derived from TOPSIS  

𝑜௜
௥          resilience performance value related to supplier i derived from TOPSIS 

 

Decision variables 

        number of units ordered from supplier i  

 

The two objective functions: 

𝑀𝑖𝑛 𝑇𝑅𝐶 = 𝑀𝑖n (𝑊௡ ෍ 𝑜௜
௡𝑞௜

௜∈ூ

) + ෍ 𝐶௜
௣

𝑞௜

௜∈ூ

+ ෍ 𝐶௜
௔𝑞௜

௜∈ூ

+ ෎ 𝐶௜
௧ ቜ

𝑞௜

𝑇𝐶
ቝ   𝑑௜

௜∈ூ

 

           (1) 

𝑀𝑎𝑥 𝑅𝑆𝑉 = 𝑊௥ ෍ 𝑞௜𝑜௜
௥

௜∈ூ

    (2) 

The above-mentioned two objective functions are subject to the following constraints: 

 

𝑞௜ ≤ 𝑆௜ ; 𝑖 = 1,2, . . . , 𝐼 (3) 

෍ 𝑞௜

௜∈ூ

≥ 𝐷୬

 

(4) 

෍ 𝑞௜

௜∈ூ

≤ 𝐷௫

 

(5) 

 (6) 

 

Eq.1 shows the objective function that aims to minimise the related sourcing costs i.e. 

purchasing, administration (e.g., ordering) and transportation costs. As shown in the first term 

of Eq.1, the relative weight and score of NBC and suppliers revealed via DEMTAEL and 

TOPSIS, respectively, are integrated. This formulation supports buyers in allocating order 

quantities among suppliers considering relative importance of NBC and suppliers’ NB 

iq

0iq i 



 

 

performance.  Eq.2 presents the objective function that aims to maximise the resilient sourcing 

value. In other words, it helps in pushing orders from the most resilient suppliers. To this end, 

resilience performance scores of suppliers revealed via TOPSIS were integrated as a coefficient 

of order quantities. The weight of resilience pillar was also multiplied by the formula to further 

express its importance from the buyers ’perspective. Eq.3 shows the supply constraint that 

limits the quantity of product ordered from supplier i by its capacity. Eqs.4 and 5 presents 

demand constraints that ensure fulfilment of the manufacturing company demands. Finally, 

Eq.6 shows a non-negativity constraint related to quantity of products. 

3.4.1 Modelling supply chain resiliency to demand 

Due to the high competition in the markets, uncertainties are existing in several input 

parameters. Among these, purchasing and transportation costs, supply capacity and demand 

are the most common. The latter is one of the crucial aspects that companies should consider 

in building up a resilient SC. This work not merely aims at building up sourcing approach that 

is resilient to supply, via resilient suppliers, but also to demand uncertainty. To this end, 

potential uncertainties in transportation and purchase costs, supply capacity and demands are 

formulated as triangular fuzzy numbers using the possibilistic approach developed by Jiménez 

et al. (2007). Based on this approach, the equivalent crisp model can be formulated as follows 

(Jiménez et al. 2007; and Mohammed, 2020): 

 

(7)
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 (12) 

where  

α confidence level for the uncertain data allocated by decision makers 

mos the most likely value 

pes the most pessimistic value 

opt the most optimistic value 

 

In this model, the constraints that include uncertain parameters (i.e., demand and supply 

capacity) in the PBOPM should be satisfied with a confidence value of α that is usually set by 

buyers (Jiménez et al., 2007). Also, the three values (i.e., mos, pes and opt) identify the possible 

domain for an uncertain input parameter. For instance, uncertain demand that is varied between 

100 and 130 could be presented as 100, 115 and 130 referring the mos, pes, opt values, 

respectively.  

Figure 3 depicts a graphical illustration regarding the corresponding membership functions for 

two objective functions. They can be measured as follows:  
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The minimum/maximum values for the two objectives can be measured as follows: 
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Figure 3. The corresponding membership functions for Min RC and Max RSV.  

 

3.4.2 Generating Pareto solutions: ɛ-constraint 

The ɛ-constraint is among the most efficient classical solution approaches used for solving 

multi-objective optimisation problem. It keeps one of the objectives as an objective function 

and shift the others to the constraint set limiting them by an ε-value (Ehrgott, 2005; and Wang 

et al., 2020). Decision makers hereby need to choose the objective function to be left based on 

their preferences. For instance, the cost minimisation would be left as an objective function if 

the company works towards a cost-oriented sourcing strategy. In this work, to minimise the 

related sourcing costs (based on the case company’s preference) while limit the resilience 

sourcing value in the constraint, the equivalent ɛ-constraint formula (Z) is presented as follows 

(Nujoom et al., 2019 and 2018):  
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(19) 

Subject to Eqs. 9–12, and: 

≥ 𝜀  
(20) 

As shown in Eq. 19, the minimisation to total related cost was left as an objective function and 

maximisation of resilience sourcing value is limited by an ε-value in the constraint set (see 

Eq.20). The boundaries of ε-value can be limited as follows: 

൥ ൩

୫୧୬

≤ 𝜀 ≤ ൥ ൩

୫ୟ୶

 
  (21) 

 

3.4.3 Selecting the final solution: global criterion 

So far, several decision-making approaches were proposed to select the final solution out of a 

pool of solutions.  In this work, the global criterion approach was proposed, as an aid tool, to 

facilitate the final solution selection.  This approach derives the solution that reveals the 

shortest distance to the ideal solution. The decision-making formula X can be expressed as 

follows (Rangaiah, 2009): 

  
                                                  

(22) 

Where On refers to the value of the nth
 objective and O*n refers to the ideal value of the nth 

objective. The latter can be derived via the individual optimisation of the two objectives. 

Generally, is 1, as in this study. 

4. The integrated hybrid MADM-PBOPM: Application and evaluation 

In this section, the MADM-PBOPM was applied on data collected from the purchasing 

manager in Company X. It is a medium-sized manufacturing company that assembles – 

assemble-to-order - and produces technical equipment for thermal desorption. Its equipment 

can be utilised for several applications e.g., monitoring of environmental measures and quality 
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and safety of food products and detecting chemical warfare agents. The company has a 

production target to be met by 2020. A major element of its senior managers’ plan is the 

development of the current purchasing strategy, withing a strategic target for the entire 

company, in enriching its resiliency.  Based on a research collaborated project, this study was 

conducted to provide the purchasing team with a decision-making methodology that aims to 

improve their sourcing activity in building the resilience aspect. The purchasing manager 

shared some concerns regarding shortages of some critical items and a real sense that their 

business is subject to operational (i.e., assembly) disruption due to the poor performance of 

some current suppliers. However, the purchasing team had no clear methodology to coin 

resilient sourcing. Furthermore, the resilience to demand was suggested by the research team 

to handle demand uncertainty. This was suggested because the purchasing manager clarified 

that the company experience some unexpected demand that the company cannot normally 

handle due to relative low performance of current supplier. Thus, this study presented the 

following points to the purchasing team: 

1. A framework that embraces NBC/RPs in which buyers should use in assessing 

suppliers’ performance. 

2. An easy, to re-adjust and re-apply, decision-making tool to help buyers in assessing and 

ranking suppliers. 

3. A user-friendly tool that helps buyers to allocate quantities of order among suppliers, 

considering their performance. Then, they can use the Economic order quantity (EOQ) 

approach to determine the lot size. 

It is important to mention that the previous evaluation process by buyers was based on limited 

NBC by using an old-school of filling forms. In other words, every buyer would use a form to 

write down his or her opinion regarding a supplier performance against some criteria (e.g., 

costs, lead time and quality). Also, there was no order allocation based on suppliers’ 

performance as even low performance suppliers may be asked to provide a big order regardless 

its performance.  

The application of the MADM-PBOPM was over two stages (1) assessing and ranking 

suppliers by using the DEMATEL-TOPSIS approach (see section 5.1) using Excel; and (2) 

allocating quantities of orders among suppliers by solving the PBOPM (see section 5.2) using 

LINGO11. 

 



 

 

4.1 Ranking suppliers via the DEMATEL-TOPSIS approach 

Company X sources several materials and units from different suppliers. The purchasing 

manager was asked to nominate one key item, that has frequent shortage due to low supplier 

performance, to test the DEMATEL-TOPSIS approach. The purchasing manager suggested 

metal sheet that is currently sourced from six different suppliers. Also, the purchasing manager 

was asked to nominate a number of decision makers to involve in the evaluation process.  Four 

buyers were asked by the purchasing manager to work with the research team on the evaluation 

process. Thus, the decision-making team includes five members: the purchasing manager, a 

buyer, a senior buyer and two junior buyers. 

4.1.1 Quantifying criteria importance via DEMATEL 

In this step, the five decision makers were first interviewed together to illustrate the evaluation 

process and to present the evaluation of NBC/RPs procedures. The identified criteria and pillars 

previously presented in Figure 1 were clarified during the interviews with decision makers 

participated in this evaluation process.  NBC/RPs were unified based on literature review and 

the purchasing manager’s perspective. It is worthy to mention that the purchasing team was not 

quite familiar with the RPs, mainly. However, the discussions and illustrations that were done 

during the group interview, have tackled this issue. Also, the purchasing manager has suggested 

to add two NBC including turnover and operating capacity. This addition was justified to know 

the expansion capabilities of a supplier in the near future. As clarified by him, this would help 

him to select suppliers that can cope with his company's growth.  

Afterword, each decision maker was interviewed to build up the direct-relation matrix based 

on his or her opinion by performing a pairwise comparison among NBC/RPs, individually. 

This was based on the evaluation scale presented in Table A1. Tables 2 and 3 present the 

aggregated direct-relation matrix for NBC and RPs, respectively. It was generated by applying 

Eq.23, based on five influence matrices generated by the five decision makers. 

 

 

 

 

 

 



 

 

Table 2. The aggregated decision matrix for NBC 

Criteria NBC1 NBC2 NBC3 NBC4 NBC5 NBC6 NBC7 

NBC1 0 4 2 4 4 3 4 

NBC2 4 0 0 4 3 1 2 

NBC3 4 1 0 3 0 1 0 

NBC4 2 3 2 0 1 1 0 

NBC5 1 1 3 2 0 1 1 

NBC6 3 1 4 4 0 0 0 

NBC7 2 0 0 4 4 0 0 

 

Table 3. The aggregated total-influence matrix for RPs 

Pillars RP1 RP2 RP3 RP4 RP5 

RP1 0 1 4 0 1 

RP2 1 0 0 2 0 

RP3 4 3 0 0 1 

RP4 4 2 4 0 4 

RP5 0 4 1 4 0 

 

Then, the normalised direct-relation matrices for NBC/RPs were generated by applying Eqs.24 

and 25. Tables 4 and 5 show the two matrices. Tables 6 and 7 present the total-relation matrices 

T for the two criteria sets. These matrices were built by implementing Eq.26. 

 

 

 

 

 

 

 



 

 

Table 4. The normalised direct-relation matrix for NBC 

Criteria NBC1 NBC2 NBC3 NBC4 NBC5 NBC6 NBC7 

NBC1 0 0.1905 0.0952 0.1905 0.1905 0.1429 0.1905 

NBC2 0.1905 0 0.0000 0.1905 0.1429 0.0476 0.0952 

NBC3 0.1905 0.0476 0 0.1429 0.0000 0.0476 0.0000 

NBC4 0.0952 0.1429 0.0952 0 0.0476 0.0476 0.0000 

NBC5 0.0476 0.0476 0.1429 0.0952 0 0.0476 0.0476 

NBC6 0.1429 0.0476 0.1905 0.1905 0.0000 0 0.0000 

NBC7 0.0952 0.0000 0.0000 0.1905 0.1905 0.0000 0 

 

Table 5. The normalised direct-relation matrix for RPs 

Pillars RP1 RP2 RP3 RP4 RP5 

RP1 0 0.0714 0.2857 0.0000 0.0714 

RP2 0.0714 0 0.0000 0.1429 0.0000 

RP3 0.2857 0.2143 0 0.0000 0.0714 

RP4 0.2857 0.1429 0.2857 0 0.2857 

RP5 0.0000 0.2857 0.0714 0.2857 0 

 

Table 6. The total-influence matrix (T) for NBC 

Criteria NBC1 NBC2 NBC3 NBC4 NBC5 NBC6 NBC7 

NBC1 0.2409 0.3458 0.2622 0.4757 0.3630 0.2462 0.2866 

NBC2 0.3323 0.1455 0.1356 0.3897 0.2809 0.1404 0.1858 

NBC3 0.2968 0.1612 0.0946 0.2917 0.1081 0.1212 0.0770 

NBC4 0.2154 0.2265 0.1722 0.1567 0.1417 0.1116 0.0694 

NBC5 0.1607 0.1289 0.2099 0.2250 0.0777 0.1011 0.0942 

NBC6 0.2906 0.1778 0.2852 0.3624 0.1128 0.0862 0.0777 

NBC7 0.1898 0.1006 0.0978 0.3085 0.2668 0.0640 0.0584 

 

 



 

 

Table 7. The total-influence matrix (T) for RPs 

Pillars RP1 RP2 RP3 RP4 RP5 

RP1 0.1330 0.2008 0.3509 0.0642 0.1243 

RP2 0.1544 0.0761 0.0984 0.1730 0.0675 

RP3 0.3723 0.3204 0.1396 0.0834 0.1318 

RP4 0.5143 0.4323 0.5131 0.1790 0.4102 

RP5 0.2177 0.4539 0.2561 0.3922 0.1459 

 

Next, the D୩ and R୩  values were determined by applying Eqs.27 and 28. These two values 

were utilised to generate prominence (D୩ + R୩) and relation (D୩ − R୩). These two values were 

used to categorised NBC/RPs into causes and effects. Tables 8 and 9 present the results of this 

step. As shown in Tables 8 and 9, the criterion or pillar is a cause when its “relation” value 

(i.e., D୩ − R୩) is positive and an effect when its “relation” value is negative. The weight of 

NBC/RPs were quantified by dividing the prominence (D୩ + R୩) of each criterion and/or pillar 

by the summation of all prominences (∑D୩ + R୩). Table 10 lists the revealed weight for 

NBC/RPs.  

Table 8. DEMATEL output related to NBC 

Criteria Di Ri Di+Ri Di-Ri Cause-effect? 

NBC1 2.2204 1.7265 3.9469 0.4939 Cause 

NBC2 1.6101 1.2864 2.8965 0.3237 Cause 

NBC3 1.1507 1.2575 2.4082 -0.1068 Effect 

NBC4 1.0935 2.2098 3.3032 -1.1163 Effect 

NBC5 0.9975 1.3510 2.3485 -0.3535 Effect 

NBC6 1.3928 0.8707 2.2634 0.5221 Cause 

NBC7 1.0859 0.8490 1.9350 0.2369 Cause 

 

 

 

 

 



 

 

Table 9. DEMATEL output related to RPs 

Pillars D R D+R D-R Cause-effect? 

RP1 0.8733 1.3917 2.2650 0.5184 Cause 

RP2 0.5694 1.4835 2.0529 -0.9141 Effect 

RP3 1.0476 1.3581 2.4058 -0.3105 Effect 

RP4 2.0490 0.8919 2.9408 1.1571 Cause 

RP5 1.4658 0.8798 2.3456 0.5860 Cause 

 

Table 10. Numerical weights for NBC/RPs revealed via DEMATEL 

Aspect Criteria/Pillars  Weight Ranking 

NBC NBC1 0.2648 1 

 NBC2 0.1944 3 

 NBC3 0.1616 4 

 NBC4 0.2216 2 

 NBC5 0.1576 5 

 NBC6 0.1519 6 

 NBC7 0.1298 7 

RSP RP1 0.1886 4 

 RP2 0.1709 5 

 RP3 0.2003 2 

 RP4s 0.2449 1 

 RP5 0.1953 3 

 

4.1.2 Ranking suppliers via TOPSIS 

In this section, the evaluation and ranking of suppliers are presented. In the individual meeting 

with the five decision makers, they were asked to evaluate the six suppliers of metal sheet vis-

a-vis NBC/RPs using the scale presented in Table A2. Table 11 shows the aggregated decision 

evaluation matrix by taking the mean values of the five decision matrices.  

 



 

 

Table 11. Aggregate decision matrix for TOPSIS 
 

NBC1 NBC2 NBC3 NBC4 NBC5 NBC6 NBC7 RP1 RP2 RP3 RP4 RP5 

S1 4 5 5.5 4 7 6.5 7 3 2 5 3.5 5 

S2 6.5 6 6.5 5 7.5 6.5 3 5 7 5 6.5 7 

S3 7 5.5 6 6 4.5 4.5 4 4 4.5 7 4.5 5 

S4 3.5 3 5 6.5 6.5 4 4 3 4 3.5 3.5 3 

S5 6 5 4.5 6.5 4.5 5 6 5 5 7 7 7 

S6 4 5 5.5 6 2.5 4 2.5 3.5 3.5 3 5 3.5 

 

Based on the decision matrix, the normalised decision matrix was generated by applying Eq. 

10, as shown in Table 12. The weighted normalised decision matrix was then generated by 

multiplying the normalised decision matrix by the relative weight of NBC/RPs (see Table 10) 

as shown in Table 13. This was followed by measuring the distance from best/worst 

performance for each supplier form NBC/RPs, individually. Tables 14 and 15 present the 

outcome of the latter step.  

Table 12. Normalised decision matrix for TOPSIS 
 

NBC1 NBC2 NBC3 NBC4 NBC5 NBC6 NBC7 RP1 RP2 RP3 RP4 RP5 

S1 0.718 0.921 0.957 0.686 1.228 1.177 1.360 0.619 0.392 0.905 0.639 0.905 

S2 1.167 1.105 1.132 0.857 1.316 1.177 0.583 1.031 1.373 0.905 1.187 1.268 

S3 1.257 1.013 1.044 1.029 0.789 0.815 0.777 0.825 0.883 1.268 0.822 0.905 

S4 0.629 0.552 0.870 1.115 1.140 0.724 0.777 0.619 0.784 0.634 0.639 0.543 

S5 1.078 0.921 0.783 1.115 0.789 0.905 1.166 1.031 0.981 1.268 1.278 1.268 

S6 0.718 0.921 0.957 1.029 0.439 0.724 0.486 0.722 0.686 0.543 0.913 0.634 

 

 

 

 

 

 

 

 



 

 

Table 13. Weighted normalised decision matrix for TOPSIS 
 

NBC1 NBC2 NBC3 NBC4 NBC5 NBC6 NBC7 RP1 RP2 RP3 RP4 RP5 

S1 0.190 0.179 0.155 0.152 0.194 0.179 0.177 0.117 0.067 0.181 0.156 0.177 

S2 0.309 0.215 0.183 0.190 0.207 0.179 0.076 0.195 0.235 0.181 0.291 0.248 

S3 0.333 0.197 0.169 0.228 0.124 0.124 0.101 0.156 0.151 0.254 0.201 0.177 

S4 0.166 0.107 0.141 0.247 0.180 0.110 0.101 0.117 0.134 0.127 0.156 0.106 

S5 0.285 0.179 0.127 0.247 0.124 0.138 0.151 0.195 0.168 0.254 0.313 0.248 

S6 0.190 0.179 0.155 0.228 0.069 0.110 0.063 0.136 0.117 0.109 0.224 0.124 

 

Table 14. Distance to best performance for TOPSIS 
 

NBC1 NBC2 NBC3 NBC4 NBC5 NBC6 NBC7 RP1 RP2 RP3 RP4 RP5 

S1 0.143 0.036 0.028 0.095 0.014 0.000 0.000 0.078 0.168 0.073 0.156 0.071 

S2 0.024 0.000 0.000 0.057 0.000 0.000 0.101 0.000 0.000 0.073 0.022 0.000 

S3 0.000 0.018 0.014 0.019 0.083 0.055 0.076 0.039 0.084 0.000 0.112 0.071 

S4 0.166 0.107 0.042 0.000 0.028 0.069 0.076 0.078 0.101 0.127 0.156 0.141 

S5 0.048 0.036 0.056 0.000 0.083 0.041 0.025 0.000 0.067 0.000 0.000 0.000 

S6 0.143 0.036 0.028 0.019 0.138 0.069 0.113 0.058 0.117 0.145 0.089 0.124 

 

Table 15. Distance to worst performance for TOPSIS 
 

NBC
1 

NBC
2 

NBC
3 

NBC
4 

NBC
5 

NBC
6 

NBC
7 

RP1 RP2 RP3 RP4 RP5 

S1 0.024 0.072 0.028 0.000 0.124 0.069 0.113 0.00
0 

0.00
0 

0.073 0.000 0.07
1 

S2 0.143 0.107 0.056 0.038 0.138 0.069 0.013 0.07
8 

0.16
8 

0.073 0.134 0.14
1 

S3 0.166 0.089 0.042 0.076 0.055 0.014 0.038 0.03
9 

0.08
4 

0.145 0.045 0.07
1 

S4 0.000 0.000 0.014 0.095 0.111 0.000 0.038 0.00
0 

0.06
7 

0.018 0.000 0.00
0 

S5 0.119 0.072 0.000 0.095 0.055 0.028 0.088 0.07
8 

0.10
1 

0.145 0.156 0.14
1 

S6 0.024 0.072 0.028 0.076 0.000 0.000 0.000 0.01
9 

0.05
0 

0.000 0.067 0.01
8 



 

 

 

Then, the distance of each supplier from the positive ideal solution ( ) and from the negative 

ideal solution ( ) from all NBC/RPs were determined. Finally, the closeness coefficient 

value (CC) was determined by applying Eq.37. The ranking of suppliers was taken based on 

the revealed CC value. Table 16 presents values of , , CC and the final ranking of the 

six suppliers. Figure 4 shows a graphical illustration regarding suppliers’ normal business 

performance, resilience performance, and total normal business and resilience performance.  

Table 16. The rank of suppliers based on their CC value 

 

 

Figure 4. Suppliers’ performance. 

4.1.3 Sensitivity analysis  

This section presents two sensitivity analyses that were accomplished to explore the robustness 

of the DEMATEL-TOPSIS evaluation process.  

1. Sensitivity analysis via criteria weights 
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This analysis aims to change criteria weights and explore the correspondence suppliers’ rank. 

To this end, 10 different sets (see Table 17) of weights were assigned randomly to NBC/RPs 

in the TOPSIS application (Eq.33 in the Appendix). Table 18 shows the obtained 10 ranks of 

suppliers based on the new 10 sets of NBC/RPs weight. The criteria weight sensitivity analysis 

proved that this model is partially subject to variation based on criteria weight as quite a few 

ranks (see Table 18) show reversal for some suppliers. This can be observed in sets 4 and 10 

whereas supplier 2 is ranked second rather than its 1st rank in the other eight sets. Similarly, 

supplier 1 is ranked the 5th in sets 8 and 10 compared to its 4th rank in the others. This minor 

changes in the ranking could be due to a major variation in the weight of one, or more, of the 

important criteria.  However, arguably, the model showed robustness in ranking suppliers 2 

and 5 as the 1st and 2nd best suppliers for most sets of criteria weights, respectively. 

Table 17. 10 different sets of weights assigned to the TOPSIS approach  

Set NBC1 NBC2 NBC3 NBC4 NBC5 NBC6 NBC7 RP1 RP2 RP3 RP4 RP5 

1 0.692 0.692 0.494 0.791 0.198 0.791 0.494 0.593 0.395 0.198 0.296 0.494 

2 0.791 0.593 0.889 0.889 0.791 0.099 0.099 0.593 0.395 0.692 0.198 0.494 

3 0.099 0.494 0.494 0.296 0.494 0.889 0.494 0.198 0.395 0.198 0.494 0.296 

4 0.593 0.593 0.889 0.494 0.692 0.198 0.296 0.296 0.889 0.296 0.791 0.692 

5 0.494 0.395 0.889 0.889 0.791 0.395 0.198 0.099 0.692 0.296 0.791 0.198 

6 0.889 0.395 0.198 0.889 0.296 0.593 0.791 0.494 0.395 0.296 0.494 0.494 

7 0.395 0.296 0.296 0.791 0.099 0.494 0.494 0.889 0.099 0.395 0.692 0.395 

8 0.494 0.099 0.099 0.099 0.889 0.198 0.494 0.593 0.494 0.593 0.791 0.099 

9 0.296 0.198 0.296 0.791 0.593 0.791 0.889 0.791 0.395 0.395 0.198 0.494 

10 0.198 0.395 0.296 0.692 0.889 0.395 0.296 0.099 0.494 0.395 0.791 0.099 

 

 

 

 

 

 

 



 

 

Table 18. Ranking of the six suppliers in correspondence to the 10 sets of criteria weights 

Set Correspondence rank 

1 S2>S5>S3>S1>S4>S6 

2 S2>S5>S3>S1>S4>S6 

3 S2>S5>S3>S1>S4>S6 

4 S5>S2>S3>S4>S3>S6 

5 S2>S5>S3>S1>S4>S6 

6 S2>S5>S3>S1>S4>S6 

7 S2>S5>S3>S1>S4>S6 

8 S5>S2>S3>S4>S1>S6 

9 S2>S5>S3>S1>S4>S6 

10 S2>S5>S3>S4>S1>S6 

 

2. Sensitivity analysis via other MADM approaches 

In this analysis, the obtained rank via TOPSIS was validated via the application of other well-

known MADM approaches known as MAPAC, VIKOR, MAIRCA and OCRA to compare the 

output. Table 19 shows the revealed rank for the six suppliers based on these approaches. It 

can be inferred that the obtained rank in having suppliers 2 and 5 ranked as the 1st and 2nd, 

respectively, is validated as all other approaches led to the same ranking apart from OCRA that 

ranked supplier 5 in the 3rd position. However, this is common considering the difference in 

the application steps among MADM approaches. It should be noted that these approaches were 

applied using the same criteria weight, previously shown in Table 10. 

Table 19. Validation of suppliers’ ranking via other MADM approaches  

Approach  Correspondence rank 

TOPSIS S2>S5>S3>S1>S4>S6 

MAPAC S2>S5>S1>S3>S4>S6 

VIKOR S2>S5>S3>S1>S4>S6 

MAIRCA S2>S5>S3>S1>S4>S6 

OCRA S2>S4>S5>S3>S6>S1 

 

4.2 Allocating order quantity via MADM-PBOPM 

In this section, the MADM-PBOPM (see section 4.2.1) was solved by using the ɛ-constraint 

method by keeping the minimisation of the total related cost as an objective function and 

limiting the maximisation of resilient sourcing value by an ɛ-value in the constraint set. Table 



 

 

20 presents related data collected from Company X and retrieved from DEMATEL-TOPSIS. 

Data related to the uncertain inputs (i.e., transportation and purchase costs, supply capacity and 

demands) were set as fuzzy numbers in between the presented range. To achieve ɛ values, the 

maximum and minimum values for objective function two were determined via the individual 

optimisation (see Eqs.15 and 18).  Then, the distance between the maximum and minimum 

values were segmented into ten segments. Each of the latter was assigned as an ɛ-value to 

derive a set of ten Pareto solutions. Regarding the integration between the output of 

DEMATEL-TOPSIS and PBOPM, the obtained relative importance and suppliers ‘scores were 

derived from Tables 10 and 16, respectively. Finally, ten α-levels (from 0.1 to 10) were 

assigned incrementally, by a step of 0.1, to the constraint equations 9-11 in every iteration. 

Table 21 presents the derived set of Pareto solutions, the membership functions values and the 

assigned ɛ-value for each solution. Pareto front between the two objectives is depicted in Figure 

5. For instance, Solution#1 in Table 18 was achieved by an assignment of ɛ-value of 782.236 

that led to a minimum total related cost equal to 88,8214.69 and a maximum resilient sourcing 

value equal to 789.88. Table 22 and Figure 6 present the revealed distribution of order 

quantities of metal sheet among the six suppliers.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 20. Real parameters collected for the application of MADM-PBOPM 

 S1 S2 S3 S4 S5 S6 

£/unit 
40 45 42 39 40 40 

  £/mile 1.5 1.7 1.5 1.3 1.5 1.5 

 £/unit 
1.2 1.2 1.2 1.2 1.2 1.2 

di   (mile) 150 13 122 82 133 98 

TC   (units) 100 100 100 100 100 100 

 (unit) 
21850 16100 9200 6900 5750 9500 

 Dmin (units)   20286    

 Dmax (units)   24380    

wn 0.398 0.398 0.398 0.398 0.398 0.398 

wr 0.602 0.602 0.602 0.602 0.602 0.602 

𝑜௜
௡ 0.576 0.670 0.588 0.429 0.591 0.153 

𝑜௜
௥ 0.372 0.828 0.586 0.372 0.828 0.586 
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Table 21. Pareto solutions derived from the MADM-PBOPM via ε-constraint 

 

 

Figure 5. Pareto front between minimum related costs and maximum resilient sourcing value. 
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Table 22. Purchasing allocation among the six suppliers for Pareto solution#1 

              Order allocation 

# S1 S2 S3 S4 S5 S6 

1 7342.359 6900 0 293.641 5750 0 

2 6240.406 6900 1552.822 0 5750 0 

3 5461.212 6900 2710.205 0 5750 0 

4 4682.018 6900 3867.565 0 5750 0 

5 3902.801 6900 5024.948 0 5750 0 

6 3123.607 6900 6182.331 0 5750 0 

7 2344.413 6900 7339.714 0 5750 0 

8 1565.196 6900 8497.097 0 5750 0 

9 749.2770 6900 9200,000 360.6630 5100 790.320 

10 374.3020 6900 8439.770 1106.142 5750 932.901 

 

 

Figure 6. Quantity allocation among the six suppliers for Pareto solution#1. 

Finally, the purchasing team should select one solution out of the ten (See Table 21) to achieve 

the final trade-off between minimisation of total related cost and resilient sourcing value and 

the order allocation among suppliers. Arguably, this was a challenging decision for the 
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purchasing manager, particularly because the purchasing team is not familiar with such an 

output with precise details about related costs, resilient sourcing score and suppliers scores. 

Therefore, the research team suggested the application of global criterion approach to relax the 

purchasing team in identifying the appropriate output.  The global criterion approach was used 

by applying Eq. 22 on the revealed Pareto solutions individually. Based on this step, solution#4 

was identified as the possible appropriate solution because it turned out the shortest distance 

(Min X = 0.239) to the ideal solution. In this solution, only four suppliers are considered for 

purchasing the metal sheet. Figure 7 depicts the final allocation of required metal sheet 

quantities among the selected suppliers.  

 

 

 

 

 

 

 

 

 

 

Figure 7. Metal sheet orders from the four suppliers based on solution#4. 

4.3 Discussion  

SC networks are prone to disruptions as a result of various potential unanticipated events e.g., 

natural catastrophes, terrorists and strikes. The concern of SC disruption is increasing due to 

growing need for globalisation and strategic suppliers. As a result, selection of resilient 

suppliers has become a paramount need for industry sector towards continuous competitive 

advantage.  This is because the disruption in supply can halt companies’ business and 

potentially impedes other activities along the SC network. 

This study was conducted to support the purchasing team at a manufacturing company in 

developing its purchasing strategy towards SCR with a focus on selecting suppliers based on 

the resilience performance. To this end, an integrated hybrid MADM-PBOPM was developed 

to help decision makers to easily evaluate suppliers ‘performance and allocate orders among 

them, accordingly.  
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The first stage of the research output (see section 5.1.1) showed the superiority of RPs over 

NBC since they revealed higher importance weights based on decision makers’ evaluation. 

This conforms with the company’s general goal towards achieving a resilient business as 

justified by the purchasing manager. The research team expects that once the decision makers 

build up the company’s resiliency, the evaluation would reveal the traditional superiority of 

NBC. In the same context, RPs of development revealed the highest weight (0.2449) followed 

by robustness (0.2003) as presented in Table 15. This was justified by the purchasing manager 

that current suppliers have elements of other pillars e.g., flexibility and agility but there is a 

lack of robustness and resilience development based on experienced disruptions. However, the 

research team argued, with the purchasing team, that the sensing pillar should also be taken 

into account since it has a significant contribution in elevating resilience performance. Finally, 

it was agreed to run the evaluation of NBC/RPs after addressing the resilience concern.  

In the supplier evaluation context (see section 5.1.2), arguably, all supplier revealed low 

performance. It is hereby worthy to mention that the suppliers’ evaluation results were 

validated via two sensitivity analysis approaches. First, 10 different sets of criteria weights 

were assigned to the TOPSIS approach to explore its impact on the obtained suppliers’ rank. 

Second, the evaluation was conducted by using other four MADM approaches (i.e., VIKOR, 

OCRA, MABAC, and MAICRA) and the results were compared. Suppliers can be segmented 

into three segments based on the CC values presented in Table 16:  

1. good performance (7 < CC < 8): suppliers 2 and 5; 

2. intermediate performance (CC >= 5): supplier 3; and 

3. low performance (CC < 5): suppliers 1, 4 and 6. 

It was agreed to prioritise the improvement of supply performance with suppliers 1, 4 and 6. 

This improvement includes either working with these suppliers to improve their performance 

based on the identified pillars or switch to other suppliers. Once those suppliers are either 

improved or replaced by others, the purchasing team will work on improving intermediate 

performance suppliers followed by good performance suppliers. Finally, it is worthy to mention 

that the supply of metal sheet will be limited by four suppliers as per the potential purchasing 

strategy to be achieved by 2020.  

The last stage of the research output presented the optimal allocation of quantities of orders 

among suppliers. Based on the selected solution (Solution#4 in Table 19), the purchasing team 

was advised to satisfy its company need from the metal sheet by ordering 4,682 units from 



 

 

supplier 1, 6,900 units from supplier 2, 3,868 units from supplier 2 and 5,750 from supplier 5, 

as previously shown in Figure 7. A shown in Table 19, most solutions present no orders 

allocated to suppliers 4 and 6. These suppliers were categorised in the low performance group 

that needs urgent performance improvement or replacement. This was achieved by the 

integration of weight of NBC/RPs and supplier’s performance into the order allocation 

planning determined via PBOPM.  

Finally, the purchasing manager suggested to apply the quantification of NBC/RPs twice a 

year. Also, the supplier evaluation to be conducted after every supplier visit or receival of a 

new supply proposal from suppliers. The research team hereby frozen all equations and coding 

of DEMATEL/TOPSIS apart from the decision matrices that will be used frequently by the 

purchasing team. 

4.4 Managerial and theoretical implications  

This methodology helped the purchasing team in identifying a clear resilience sourcing 

approach. It includes a decision-making tool used for diagnosing current suppliers ’resiliency. 

Based on this evaluation, the purchasing team was advised to work heavily with most suppliers 

to enhance their performance vis-à-vis RPs. Otherwise, those low performance suppliers will 

have to leave the field to new more resilient suppliers. In terms of being resilient to demand, 

the formulated bi-objective model has proved its applicability to handle uncertain demand 

considering the two defined objectives. The purchasing manager clarified that the proposed 

evaluation approach shall be followed in the upcoming evaluation processes that are scheduled 

every six months for current suppliers. This will be conducted by asking buyers to evaluate 

suppliers and then return their evaluation to the purchasing manager who will insert them into 

the Excel sheet for the aggregation and final evaluation. Furthermore, it was suggested to 

review their evaluation regarding criteria every six months as well as to consider any possible 

changes into their business orientation. 

In terms of theory, this research presents a new framework represented by Sensing, Agility, 

Robustness, Development and Flexibility towards resilient supplier profile. This framework 

was built not only based on literature, but also expert’s opinions to accommodate real resilient 

sourcing needs. Furthermore, the proposed methodology presents the integration between 

MADM methods’ output and multi-objective optimisation modelling. This helps in 

incorporating both quantitative and qualitative evaluation – based on decision makers’ opinions 

– into the mathematical optimisation.  It was approved that decision makers’ evaluation, given 



 

 

for the MADM application procedures, is given attention in the assigned order sizes where low 

performance suppliers were excluded. 

5. Conclusions 

In modern SCs, decision makers need to manage globalized chains including dealing with 

various national and international firms. This modernisation led companies getting more and 

more possible threats of SC disruptions due to unexpected events e.g., supplier closure, human-

made catastrophes, and natural disaster. For instant, current COVID-19 pandemic has affected 

several SCs. Dun and Bradstreet (2020) mentioned that Wuhan city houses one or more direct 

suppliers for 51,000 firms and one or more tier-two suppliers for at least 5 million firms around 

the world. Among factors that may influence SCR, suppliers and demand uncertainty play a 

paramount role in being proactive and reactive against SC disruptions. Thus, it is significant to 

diagnose the surviving ability of (1) suppliers vis-à-vis resilience pillars; and (2) companies to 

cope with uncertain demand.  

In view of the significant role of being operationally resilient to supply and demand towards a 

robust business against SC disruptions, this work proposes supplier selection and order 

allocation methodology to deliver a resilient business to supply and demand disruptions. The 

work begun by exploring SCR pillars, in the sourcing context, towards a unified framework to 

assess suppliers’ performance. This includes NBC (e.g., purchasing cost and delivery 

reliability) and RPs (e.g., flexibility and agility). Then, the relative importance of these 

criteria/pillars were quantified via DEMATEL and then its outcome used in TOPSIS to assess 

suppliers ’resiliency. Next, to have a business that is resilient to demand uncertainty, the 

PBOPM was developed, incorporating the outcome from DEMATEL (relative criteria weight) 

and TOPSIS (supplier’s performance score). Two objectives were formulated towards the 

minimisation of total related costs of sourcing and maximisation of resilient sourcing value. 

Then, this model was optimised in revealing a set of solutions by applying the ε-constraint 

approach. Finally, the final possible appropriate solution was recommended based on the global 

criterion outcome. 

This research has some limitations that could be explored in future research agendas. This work 

might be extended by simulating several scenarios for short- and long-term supply disruptions 

by some suppliers. Also, the impact of other supply resilience factors such as environmental 

uncertainty on business resiliency could be examined.  In this case study, there are six suppliers 

evaluated by five decision makers, it would be useful to investigate the efficacy of the current 



 

 

methodology in a case of larger numbers of suppliers and decision makers. Mainly, this will 

examine how the order allocation would be set by having many suppliers. Furthermore, the 

experts’ opinions were taken as certain inputs which may not reflect the most real-world states, 

and therefore further development might employ the fuzzy set theory to capture closer 

evaluations. In this context, the relative importance weights of NBC, RPs, and normal busines 

and resilience performance scores were rated subjectively by buyers/managers, and thus it is 

recommended to conduct a sensitivity analysis on the changes in these weights.  Finally, the 

application and evaluation of the presented methodology was limited by a manufacturing 

company in one country. Future research could apply this methodology to other sectors and 

countries.  

Appendix A 

DEMATEL 

In this research, DEMATEL was implemented as follows (Tzeng et al., 2007; Wu et al., 2021; 

and Mohammed, 2020): 

Step 1: Apply Eq.23 to build the direct-relation matrix C to compare among criteria based on 

the scale listed in Table A1.  

Table A1. Initial evaluation scale 

 

 

𝑐௜௝
௞  represents the judgement of the kth decision makers, m is the number of participants and n 

is a number of evaluation criteria. 

Step 2: Apply Eqs.24 and 25 to build the normalised direct-relation matrix N. 

N = 𝑥 ∙ C (24) 



 

 

where  

 

 Step 3: Apply Eq.26 to build the total-relation matrix T that illustrates the relationship among 

criteria.  

 

Step 4: Measure the  𝐷௞ + 𝑅௞ value and 𝐷௞ − 𝑅௞ value to categorise each criterion either as a 

cause or an effect as follows: 

 

  

 

Step 5: Apply Eq.29 to quantify the relative weight of criteria. 

 

TOPSIS 

 

TOPSIS was applied as follows (Mohammed et al., 2019; and 2021): 

Step 1: Build the normalised decision matrix (N) via Eqs.30 and 21. Table A2 lists the linguistic 

and numerical scale applied for assessing alternatives. 

 

 
(30) 

where 

 

(31) 

Where dij are element from the decision matrix build by decision makers to evaluate supplier i 

vis-à-vis criterion j. 
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Step 2: Multiply matrix Nij by the weight for NBC/RPs as in Eq.32 to build the weighted 

normalised decision matrix W.  

 
(32) 

where eij is obtained by using the following equation: 

 
(33) 

Step 3: Measure the distance from the positive (A+) and negative (A-) ideal solutions from each 

NBC/RPs for each supplier as follows: 

 
(34) 

 
(35) 

Step 4: Measure the distance of each supplier from the positive ideal solution ( ) and from 

the negative ideal solution ( ) for all NBC/RPs as follows: 

 
(36) 

where  and are the positive and negative ideal points for criterion ‘j’, respectively. 

Step 5: Measure the closeness coefficient (CC) as shown in Eq.37. 

 

(37) 

 

Table A2. linguistic and numerical scale applied for assessing alternatives 
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