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In this paper we investigate the reliable single allocation p-hub location problem with multiple capacity 

levels and flow dependent discount factor. We first present new and novel MIP formulations that are 

built upon the well-known uncapacitated FLOWLOC model proposed by O’Kelly and Bryan (1998). 

The proposed reliable models aim at simultaneously determining (a) the optimal location of the hubs, 

(b) the allocation of demand to these hubs,(c) the backup facilities for each demand point, (d) the hub 

capacity level to handle the normal flow, (e) the additional capacity to handle excessive rerouted flows 

due to  possible hub disruption, (f) the values of discount factor for inter-hub links at normal and (g) the 

discount factor to be applied on inter-hub links should volume of flow increases because of hub 

disruption. The proposed mathematical models could solve small instances to optimality using a 

commercial optimiser such as CPLEX. To solve large instances we propose a variant of the VNS 

algorithm, namely, the reduced VNS. We present computational results including lower and upper 

bounds of the optimal solutions to problems with 15, 20 and 25 nodes and the upper bounds of the 

solutions to larger problems up to 170 nodes.  Managerial insights for the reliable hub location problem 

with and without the use of flow dependent discount factors are presented and recommendations on the 

use of trade-off curves between the two objectives of minimising the network cost in normal and 

disrupted conditions are also provided. 
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1. Introduction 

Everyday, an enormous number of shipments deliver materials, parts and parcels to customers around 

the globe to support the local and global economy. Logistics networks play a major role in this 

competitive environment by facilitating the movement of commodities, appliances, data etc at a lower 

cost. Hub and spoke is one of the most popular paradigms that is used by various companies operating 

in air and freight transport, parcel delivery, telecommunication and computer networks. A hub system 

or simply hub location problem is concerned with the optimal location of hubs, the hub network design 

and directing the flow through this network in such a way to minimise the total transportation cost and 

or service level. The hub system has a number of advantages over a system with direct links between all 

origin-destination pairs including lower transportation and in some cases transmission cost. This is 

usually achieved by exploiting economy of scales in hub links and fewer direct links which ultimately 

leads to lower operational cost. Hub location problems are categorised into two distinctive groups 

namely single and multiple allocation problems. In the former, all incoming and outgoing traffic to and 

from every node is transferred via a single hub, while in the latter each node is allowed to receive and 

send flow through more than one hub.  

The research on hub location problem started with the work of O’kelly (1987) who provided the first 

discrete model for the single allocation version of the problem. Early research on hub location 

concentrated on the development of efficient formulations and solution techniques. Campbell (1994) 

developed a linear integer formulation for the problem. Based on the idea of multicommodity flow, Ernst 

and Krishnamoorthy (1996) proposed a new set of formulations for both single and multiple allocation 

cases. A widely used formulation in the literature for single and multiple allocation p-hub median 

problems is given by Skorin-Kapov et al (1996) where tight linear relaxation is derived. Over the years, 

a number of solution techniques based on approximation and exact methods have been developed and 

successfully applied to a variety of hub location problems. As an example, these include Simulated 

Annealing (Ernst and Krishnamoorthy1999), Genetic Algorithm (Kratica et al, 2007), Hybrid GA and 

Tabu Search (Abdinnour-Helm 1998), Particle Swarm Optimisation (Azizi, 2019), Lagrangian 

Relaxation (Contreras et al, 2009), Benders Decomposition (Contreras et al. 2012) among others. The 

interested readers in historical development of hub location are referred to the recent surveys of Farahani 

et al (2013), Contreras and O'Kelly (2019), and Alumur et al (2020).  

From a practical point of view, any logistic system including those with a hub and spoke topology 

are often negatively affected by two types of phenomena: (1) demand, cost and time uncertainty or their 

variation and (2) supply uncertainty. The first type of uncertainty is highly related to the level of 

inaccuracy in input data while the second type is associated with the risk of supply disruption. 

Regardless of the source, the impact of uncertainty on daily operations could be significant ranging from 

excessive transportation cost and low service level to customer dissatisfaction. In general, a number of 

approaches have been developed to deal with demand variation and supply disruption. To incorporate 

uncertainties in input data, researchers often recommend a stochastic programming and/ robust 
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optimisation approach while to reduce the impact of supply disruption the common approach is usually 

network resilience and reliability. The focus of this study is on the latter. More specifically in this paper 

we propose methodologies to enhance hub network reliability. We relax two frequently made 

assumptions, namely, the use of unlimited hub capacity and the utilisation of a fixed discount factor in 

hub links.  

2. Literature Review 

Given the inherent similarities between network robustness and resilience or reliability, we present our 

literature review by looking first at network robustness in hub systems and then resilience/reliability. 

2.1  Network Robustness 

Variation in demand, cost (price) and time uncertainty are an inherent part of the logistics and supply 

chain networks which are largely unavoidable. They are often measured as the amount of deviation from 

the expected values of the interested data. In hub systems for instance, long term decision of hub location 

is made based on an estimate for the cost of unit transportation and prediction of future demand at 

spokes. In practice however, none of these measures are fixed and constantly fluctuate over time. For 

example, Yang (2009) considers demand variation in hub systems and proposes a two-stage network 

design model. The first stage looks for hub locations for different demand levels and the second stage 

attempts to determine the transport paths and flow allocation in response to demand change. Contreras 

et al (2011) study stochastic uncapacitated hub location problems considering uncertain demand and 

transportation costs. In the case of uncertain independent transportation costs, Contreras et al (2011) 

provide an interesting result which shows that the corresponding stochastic problem is not equivalent to 

its expected value problem. Alumur et al (2012) consider uncertainty in demand and hub setup cost. 

Another important result is given by Alumur et al (2012) where they demonstrate that the structure of 

the solutions of the hub location problem with and without uncertainty are likely to be different. In 

addition, the authors show that optimal solutions are sensitive to the inclusion of uncertainty. Ghaffari-

Nasab et al (2015) explore a robust optimisation approach to single and multiple allocation hub location 

problem while assuming only limited features of known demand distribution. They consider the 

uncertainty in the capacity constraints and use the nominal demand value in the objective function. 

Ghaffari-Nasab et al (2018) extend their previous work and consider three variants of polyhedral 

uncertainty. They propose a Tabu search algorithm to solve instances of the problem.  Habibzadeh 

Boukani et al (2016) study robust capacitated hub location problems with both multiple and single 

assignments under capacity and setup cost uncertainty. Merakli and Yaman (2017) work on robust 

uncapacitated multiple allocation hub location problem under polyhedral demand uncertainty. They 

used a hose uncertainty and a hybrid model to characterize demand uncertainty. Zetina et al (2017) 

present models and solution techniques for robust counterparts of the well-known uncapacitated hub 

location problem with multiple allocation considering uncertainty in demand, transportation cost and 

both simultaneously. The authors compare solutions obtained from deterministic, stochastic and robust 
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models in both worst-case and risk-neutral settings and show that when transportation costs are 

uncertain, commodities are routed through multiple paths. De Sa et al (2018) propose a robust 

optimization approach for multiple assignment incomplete hub network under demand and hub arc fixed 

setup cost uncertainty. The authors found that a robust model performs better than the deterministic 

version in avoiding budget constraints violation. Zhalechian et al (2018) propose a bi-objective two-

stage stochastic programming model taking into consideration both operational and disruption risks. To 

design hub location networks with demand uncertainty has been also studied from the hub congestion 

perspective. Examples of such studies are but not limited to Marianov and Serra (2003), de Camargo et 

al (2009), Elhedhli and Wu (2010), Rahimi et al (2016) and Azizi et al (2018).      

2.2  Reliability and Resilience 

The cause of hub failure or disruption vary from severe weather condition and natural disasters to labour 

dispute and sabotage. While a set of disruption causes like earthquake may occur less frequently, a large 

number of other causes are likely to strike the network at any time. Traditional approaches to hub-and-

spoke network design ignores the possibility of hub disruption. These approaches are mainly concerned 

with the location of the facilities and the allocation of demand to these facilities in such a way to 

minimise the total network cost. In recent years however, a number of studies have highlighted the 

importance of considering hub failure at the design stage. Some of these studies are discussed here.  

 In the context of hub design and compare to other locational problems, the number of works dealing 

with reliability and hub disruption are limited. For instance, O'Kelly et al (2006) propose response 

strategies (e.g., delaying, cancelling, rerouting) if and when disruptions occur. These measures are 

important for coping with disruption but are reactive in nature and can be expensive to implement. A 

more robust approach to dealing with hub disruption is to consider it at the design stage when deciding 

where to locate hubs in the first place. Among the first studies that explore this issue is the one by Kim 

and O'Kelly (2009) who formulate two p-hub location problems in telecommunication network with 

reliability consideration. The authors investigate both single and multiple allocation cases without 

considering backup hubs and rerouting the affected flow. Kim (2012) extend the previous work by 

proposing a series of hub location models to mitigate against hub failures, including two variants in 

which disrupted flows can be rerouted through a single intermediate backup hub. 

 The use of backup hubs has also been successfully employed by An et al (2015), Tran et al (2015), 

Azizi et al (2016) and Rostami et al (2018).  An et al (2015) study the uncapacitated reliable single 

allocation hub median problem considering backup facilities and propose a mixed integer nonlinear 

formulation to solve the problem optimally on problem instances with up to 25 nodes.  The authors show 

that a reliable network can transport more passengers by its regular routes than a network with classical 

configuration. However, it is worth stressing that in their study, the flow transported in the network is 

assumed to be symmetrical which may not always be the case in practice. Tran et al (2015) study a 

similar problem where the flow transported in the network is also assumed to be symmetrical and hubs 
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are uncapacitated. The authors propose a mixed integer nonlinear model to find the optimal location of 

a pre-determined number of hubs. They linearize the model and use a tabu search algorithm to solve the 

same problem instances up to 25 nodes. Azizi et al (2016) propose mixed integer nonlinear formulations 

to design uncapacitated hub-and-spoke network taking into account the probability of hub failure and 

re-routing cost applicable to network with sympatric and asymmetric flow. They first investigate a 

special case assuming disrupted flow are re-assigned to a single hub. The assumption was then relaxed 

to allow affected nodes to be re-allocated to any hub in the network Azizi (2019). Instances up to 81 

nodes are solved using CPLEX, Genetic Algorithms and Particle Swarm Optimization.  

 Similar to that in Azizi et al (2016) study, Rostami et al (2018) consider an uncapacitated case where 

a single backup hub completely reroute the flow affected by the failed hub. The authors model the 

problem as a two-stage formulation and propose an interesting branch-and-cut framework based on 

Benders decomposition to solve large problem instances. Their computational results confirms the 

importance of considering hub breakdowns in the strategic planning phase of a transportation network. 

 Mohammadi et al (2019) study a bi-objective reliable p-hub location model considering hubs and 

links uncertainties to minimize both the total cost and the maximum transportation time. They solved 

randomly generated large instances of the problem using a hybrid algorithm based on GA and VNS 

algorithms. Analysing a case study, the authors report considerable cost saving when possibility of 

random disruptions is considered in design stage.   

The performance of reliable hub networks relies heavily on the availability of adequate capacity in 

the network. Therefore, capacity or dimension of hubs in normal operations and more importantly at 

disruption situations should not be discarded and has to be decided simultaneously with other decisions 

like hub locations, allocations and the location of potential backup facilities among others. Nevertheless 

to the best of our knowledge in the large majority of previous studies, it is assumed that hub facilities 

have unlimited capacities and there is no fixed cost associated with hub installation. Even if capacity is 

considered it is assumed the capacity is known in advance and do not differentiate between the capacity 

in normal and disruption situations. In this paper, we will respond to these two important practical issues. 

Another shortcoming of recent studies on hub systems reliability is about how economies of scale is 

modelled. In the classic single and multiple allocation models because of flow consolidation it is often 

assumed those arcs that connect all hubs carry large volume of flow. Therefore the same value of the 

discount factor 0 ≤ α ≤ 1 applied to the regular unit cost for all inter-hub traffic. It is further expected 

that the flow volume in all spoke to be low and therefore, no discount applied to these unit costs. 

However in the optimal solutions that employ this simple cost function, it has been found (e.g., see 

O’Kelly and Bryan,1998 and Campbell, 2013) that in many situations some of the inter-hub links carry 

a low level of flow while some spokes carry a relatively high level. In other words in those solutions the 

traffic in inter-hub links are subject to the same discount factor regardless of the volume. In practice, as 

noted by Alumur et al (2020) it would be uneconomical to send a partially filled large vehicle (on an 

inter-hub link) and multiple full small vehicles (on a spoke) when a small vehicle on the hub-link and a 
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full large vehicle on the spoke would be sufficient. Furthermore, in general approaches to reliability in 

hub location problem, the objective is to find an optimal network with backup hubs to maintain network 

operations following an incident at a hub facility without substantially increasing the day to day 

operating cost. Therefore the trade-off of interest is between the expected network cost in normal and 

that in disrupted situations. On the other hand research have shown that assuming flow-independent 

costs, not only miscalculate total network cost, but also incorrectly select optimal hub locations and 

allocations (e.g., see O’Kelly and Bryan (1998), Campbell, 2013 and Alumur et al, 2020). In our opinion, 

a network with back up facilities based on wrong network costs, incorrect hub locations and allocations 

may not necessarily represent a “reliable” network. This study will also revisit this sensitive and 

important issue by proposing a reliable hub and spoke model with flow-dependent transportation costs. 

An illustrative example that compares three networks (a) without reliability consideration, (b) with 

reliability and flow dependent cost and (c) with reliability and fixed discount factor has been presented 

in Figure 1. 
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Figure 1(a).    Optimal solution to the classical problem with 10 

nodes and 3 hubs-CAB dataset (network cost: 491450860) 
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Figure 1(b). Optimal solution to the same 

problem with reliability consideration and 

flow-dependent discount factor (network 

cost: 904651569) 

Figure 1(c). Optimal solution to the same 

problem with reliability consideration and fixed 

discount factor (network cost: 670623945) 
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Figure 1. Comparison between reliable with and without flow dependent cost and 

unreliable networks 
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In short, in this paper we propose models for reliable hub and spoke networks with multiple capacity 

levels that applies the discount based on the flow on the inter-hub connections. The proposed model 

aims at determining the optimal location of hubs, allocation of demand to these hubs, capacity of hub 

facilities both in normal and disrupted situations, the backup hubs to serve each demand point in case of 

disruption and the flow dependent discount factor to be applied to inter-hub connections in normal and 

disrupted situations. We first propose a FLOWLOC formulation with multiple capacity levels. This 

formulation is used as a base to develop a new mathematical model for the reliable single allocation p-

hub location problem. We use the new formulation to solve small instances of the problem to optimality. 

A variation of this new model with fixed discount factor is then developed.  This model provides upper 

bound whenever necessary for larger instances and hence assesses the efficiency of our proposed RVNS 

metaheuristic.  The lower bounds are established by solving the FLOWLOC formulation with multiple 

capacity levels.  

Our contribution is four folds:  

 To develop a  new nonlinear formulation for the reliable single allocation p-hub location 

problem with multiple capacity levels and flow-dependent discount factor 

 To improve linear and nonlinear formulation for the above problem that could solve problem 

instances with and without symmetrical flow including fixed discount factor 

 To design a simple but efficient VNS algorithm to tackle large instances including new 

randomly generated datasets up to 170 nodes which can also be used for benchmarking purposes 

 To establish lower and upper bounds for instances up to 25 nodes, set upper bounds for the large 

instances, and to finally provide managerial insights in terms of scenario analysis. 

The remainder of the paper is organised as follow. In the next section, we describe the problem 

followed by mathematical models in Section 4. In Section 5, a VNS-based heuristic is presented to solve 

instances of CAB, TR datasets and also larger randomly generated datasets up to 170 nodes. 

Computational results and analysis are given in Section 6. The paper ends by summarising our findings 

and highlighting some research avenues in the last section.  

3. Problem Description  

The problem we study is about determining the location of hubs, their respective capacities, the 

allocation of demand points to these hubs and the discount factors to inter-hub links in normal and 

disruption situations. The location decision select a set of nodes from a set of potential sites to establish 

hubs while the network design decisions concern the design of the links to connect nodes of the network. 

We also need to assign a backup hub to each demand point, design the hub network and find the best or 

‘optimal’ routes to transport/transmit flows through the network. Our objective function minimises the 

sum of the expected transportation and installation costs in both normal and disrupted operations. A 

typical solution to such problem is illustrated in Figure 1(b).  
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Let N be the set of nodes that exchange traffic, K be the set of potential nodes for hubs, L be the set 

of capacity levels and R be the set of linear functions ( 𝑟 ∈ 𝑅 is one of the piecewise lines). In our case, 

we set N≡K. For each 𝑘 ∈ 𝐾 there is a number of capacity levels e.g., l=l1, l2, or l3 (𝑙 ∈ 𝐿 ) to select from 

to handle normal and excessive flow should any of the operating hubs become disrupted. For each 𝑘 ∈

𝐾 depending on k’s capacity level there is also a number of installation costs, Fl
k . For each pair i , j (i , 

j ∈ N| i ≠ j), there are wij ≥ 0 units of traffic to be sent from i to j. The traffic must be routed through one 

hub k or two, hub k and hub m (k, m ∈ K). When using two hubs the traffic wij is sent on link i−k first, 

then routed through the inter-hub connection k−m, to be finally delivered on link m−j (i−k−m−j| k ≠ m). 

If only one hub is used, the traffic wij is routed on link i−k and then on link k−j (i−k−j). The unit cost 

of traffic in links i−k and m−j are cik and cmj respectively. Therefore, the transportation cost incurred on 

these links (i.e., i−k and m−j) are wijcik and wijcmj. The cost on the inter-hub connection k−m is a 

piecewise linear concave function of the total traffic on that link (O’Kelly and Bryan, 1998). The 

aforementioned cost function can be viewed as the lower envelope of a set R of linear functions in which 

each element r (𝑟 ∈ 𝑅) is a piecewise line (Klincewicz, 2002). Therefore, the total cost on the inter-hub 

link k−m is given by a linear function that minimises (𝑏𝑘𝑚
𝑟 + 𝑎𝑘𝑚

𝑟 ∑ ∑ 𝑤𝑖𝑗𝑗𝑖 𝑥𝑖𝑘𝑚𝑗)𝑐𝑘𝑚. The parameters 

br
km ckm and ar

km ckm are the intercept and slope of the rth linear function (𝑟 ∈ 𝑅) respectively, and cik 

represents the cost per unit flow. Figure 2 illustrates a piecewise-linear concave cost function with three 

line segments for the inter-hub connection k-m. The decision variable yr
km =1 if br

km and ar
km are applied 

to the total flow 𝑔𝑘𝑚
𝑟  of the inter-hub k-m. 

 

 

 

 

 

 

 

 

4. Mathematical Formulations 

In this section, we present mixed integer linear and nonlinear programming (MINLP &MILP) models 

for Reliable Single Allocation p Hub Location Problem with Multiple capacity levels and flow 

dependent discount factor (RSAPHLPM). In subsection 4.1, we first present a formulation for the 

Capacitated Single Allocation p-Hub Location Problem (CSAPHLPM) with multiple capacity levels 

and flow dependent discount factor. In subsections 4.2 and 4.3, we extend the CSAPHLPM model and 

introduce linear and nonlinear formulations for RSAPHLPM.  For clarity, we summarise all the notation 

including those that have already given in the text:  

Figure 2.    Piecewise-Linear Concave Cost Function on Inter-hub link k-m 

a3
kmckm 

b2
kmckm 

Cost 

b3
kmckm 

a1
kmckm 

b1
kmckm 

k-m traffic flow 
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Sets: 

N 

 

the set of nodes that exchange traffic 

K the set of potential nodes for hubs 

L 

R 

Parameters: 

the set of capacity levels 

the set of linear functions 

wij Flow to be sent from node i to node j (𝑖, 𝑗 ∈ 𝑁) 

cij Transportation cost per unit flow 

qk    Probability of failure at hub  k 

𝐹𝑘
𝑙  Fixed cost for installing a hub with capacity level l at node k (𝑘 ∈ 𝑁, 𝑙 ∈ 𝐿𝑘) 

Γ𝑘
𝑙  Capacity of a hub installed at node k with capacity level l (𝑘 ∈ 𝑁, 𝑙 ∈ 𝐿𝑘) 

br
km ckm   Intercept of piecewise r (𝑟 ∈ 𝑅) 

ar
km ckm Slope of piecewise r (𝑟 ∈ 𝑅) 

Variables: 

xijkm 1 if flow from node i to node j routed via hubs located at nodes k and m and 0 

otherwise 

zik 1 if node i is allocated to hub k and 0 otherwise 

ℎ𝑘
𝑙  1 if capacity level l is decided for hub k and 0 otherwise 

𝑔𝑘𝑚
𝑟  Total flow of inter-hub link k-m when segment r(𝑟 ∈ 𝑅) is used 

𝑦𝑘𝑚
𝑟  1 if  br

km and ar
km are applied to the total flow 𝑔𝑘𝑚

𝑟  of inter-hub k-m 

𝑢𝑖𝑘𝑛 1 if n is the backup hub for node i assigned when hub k is disrupted and 0   

otherwise 

𝜓𝑘𝑛
𝑙  1 if node n is a hub with capacity level l when hub k is disrupted and 0 otherwise 

𝑓𝑚𝑛𝑘
𝑟    Total flow of inter-hub link n-m when hub k is disrupted and segment r (𝑟 ∈ 𝑅) is 

used 

Θ𝑚𝑛𝑘
𝑟  1 if  br

km and ar
km are applied to the total flow 𝑓𝑚𝑛𝑘

𝑟  of inter-hub n-m when hub k is 

disrupted and 0 otherwise 

𝐷𝑖𝑗𝑛
1  Auxiliary continuous variable (transformation) 

𝐷𝑖𝑗𝑛
2  Auxiliary continuous variable (transformation 

Ω𝑘
𝑙  Auxiliary continuous variable (transformation) 

𝑇𝑛
𝑟 Auxiliary continuous variable (transformation) 

𝑆𝑛
𝑟 Auxiliary continuous variable (transformation) 

𝐻𝑛𝑚 Auxiliary continuous variable (transformation) 

𝑣𝑖𝑘𝑛𝑗 Auxiliary continuous variable (transformation) 

𝐵𝑛 Auxiliary continuous variable (transformation) 

𝐸𝑛𝑗 Auxiliary continuous variable (transformation) 

λ𝑛𝑚𝑘 Auxiliary binary variable (linearization) 

𝛾𝑖𝑗𝑛 Auxiliary continuous variable (linearization) 

η𝑗𝑚𝑛𝑘 Auxiliary continuous variable (linearization) 

𝜉𝑛
𝑟 Auxiliary continuous variable (linearization) 

𝜇𝑛
𝑟  Auxiliary continuous variable (linearization) 

𝜌𝑖𝑗𝑛 Auxiliary continuous variable (linearization) 

𝜋𝑘𝑛
𝑙  Auxiliary continuous variable (linearization) 
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4.1  CSAPHLPM Problem with Flow Dependent Discount Factor 

In the hub location literature two streams of research address the capacitated single allocation hub 

location problem. In the first stream, the level of capacity in a potential hub node is assumed to be 

known. Examples within this category include Campbell (1994), Ernst and Krishnamoorthy (1999), 

Labbé et al (2005) and Contreras et al (2009). The other stream of research address a case where the 

size of a hub capacity is also a decision and has to be chosen from a range of possibilities. This group 

of models are often called capacitated single-allocation hub location problem with multiple capacity 

levels or CSAHLPM. The models proposed by Correia et al (2010) are the earliest works on the hub 

location problem with multiple capacity levels. The authors provide an interesting assessment of the 

efficiency of several CSAHLPM formulations and propose different sets of inequalities to enhance the 

models.  In the following, we present an extension of their CSAHLPM model by introducing important 

factors, namely, the flow dependent discount factor. The proposed formulation can also be considered 

as an extension of the uncapacitated single allocation FLOWLOC model proposed by O’Kelly and 

Bryan (1998).  The proposed (Classical) Formulation for Capacitated Single Allocation P-Hub Location 

Problem with flow dependent discount factor (CF-CSAPHLPM) is presented as follows. 

CF-CSAPHLPM: 

𝑚𝑖𝑛(∑∑∑∑𝑤𝑖𝑗(𝑐𝑖𝑘 + 𝑐𝑚𝑗
𝑗𝑚𝑘𝑖

)𝑥𝑖𝑘𝑚𝑗 +∑∑∑𝑐𝑘𝑚
𝑚𝑘

(𝑎𝑘𝑚
𝑟 𝑔𝑘𝑚

𝑟 + 𝑏𝑘𝑚
𝑟 𝑦𝑘𝑚

𝑟 )

𝑟

+                  

∑∑𝐹𝑘
𝑙

𝑙∈𝐿𝑘𝑘∈𝑁

ℎ𝑘
𝑙 )                                                                                                                                                      (1)  

S.t. 

∑𝑧𝑖𝑘
𝑘

= 1        ∀𝑖                                                                                                                                                 (2) 

∑𝑧𝑘𝑘
𝑘

= 𝑝                                                                                                                                                             (3) 

𝑧𝑖𝑘 ≤ 𝑧𝑘𝑘          ∀𝑖, 𝑘                                                                                                                                               (4) 

∑𝑥𝑖𝑘𝑚𝑗
𝑚

= 𝑧𝑖𝑘          ∀𝑖, 𝑗, 𝑘                                                                                                                                 (5) 

∑𝑥𝑖𝑘𝑚𝑗
𝑘

= 𝑧𝑗𝑚         ∀𝑖, 𝑗,𝑚                                                                                                                               (6) 

∑∑∑𝑤𝑖𝑗𝑥𝑖𝑘𝑚𝑗
𝑚

≤ ∑ Γ𝑘
𝑙

𝑙∈𝐿𝑘

ℎ𝑘
𝑙               ∀𝑘                                                                                                  (7)

𝑗𝑖

 

θ𝑖𝑘𝑚𝑛𝑗 Auxiliary continuous variable (linearization) 

τ𝑖𝑘𝑚𝑛𝑗 Auxiliary continuous variable (linearization) 

𝜁𝑛𝑚𝑘 Auxiliary continuous variable (linearization) 

𝜙𝑘𝑛 Auxiliary continuous variable (linearization) 
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∑ ℎ𝑘
𝑙 = 𝑧𝑘𝑘

𝑙∈𝐿𝑘

                 ∀𝑘                                                                                                                                   (8) 

∑𝑔𝑘𝑚
𝑟

𝑟

=∑∑𝑤𝑖𝑗
𝑗𝑖

𝑥𝑖𝑘𝑚𝑗           ∀𝑘 ≠ 𝑚                                                                                                     (9) 

𝑔𝑘𝑚
𝑟 ≤ 𝑦𝑘𝑚

𝑟 ∑∑𝑤𝑖𝑗
𝑗𝑖

                 ∀𝑟, 𝑘 ≠ 𝑚                                                                                                 (10) 

∑𝑦𝑘𝑚
𝑟

𝑟

≤ 𝑥𝑘𝑘𝑚𝑚              ∀𝑘 ≠ 𝑚                                                                                                                  (11) 

𝑧𝑖𝑘 , ℎ𝑘
𝑙  , 𝑦𝑘𝑚

𝑟 , 𝑥𝑖𝑘𝑚𝑗  ∈ {0,1}       ∀𝑖, 𝑙, 𝑟, 𝑘 ≠ 𝑚                                                                                             (12) 

𝑔𝑘𝑚
𝑟 ≥ 0                  ∀𝑟, 𝑘 ≠ 𝑚                                                                                                                           (13)                                                                                                             

The objective function (1) minimizes the total installation and transportation costs. Constraint set (2) 

ensures every node is assigned to exactly one hub. Constraint (3) limits the number of hubs to open to 

exact number of p facilities. Constraint (4) guarantees that a node will be assigned to an open hub. 

Constraint (5) and (6) ensure that all the traffic between an origin-destination pair has been routed via a 

hub sub-network. Constraints (7) are capacity constraints for the non-processed incoming flow at hubs. 

Constraints (8) are consistency constraints assuring that for each potential hub at most one capacity level 

can be chosen. Constraints (9) compute the amount of flow on the inter-hub connection k-m. Constraints 

(10) ensure that the flow on the inter-hub link k-m using piecewise r and the slope 𝑎𝑘𝑚
𝑟 , is associated 

with the right intercept 𝑏𝑘𝑚
𝑟 . Constraints (11) guarantee exactly one segment of piecewise-linear concave 

function is used for every inter-hub connection k-m (only one 𝑦𝑘𝑚
𝑟 activated for each k-m when k and m 

are selected as hubs). In the following subsection we use this model as the base formulation and develop 

a reliable hub system with multiple capacity levels and flow dependent discount factor.  

4.2. Reliable Hub System with Multiple Capacity Levels and Flow-Dependent Discount   Factor: The 

original and the improved formulation 

Original formulation- When disruption occurs we assume the affected demand points will be reallocated 

to one of the operating hubs (i.e., backup hubs in the network). We also assume only one hub can be 

disrupted at a time with a certain probability which we consider to be different from one potential 

location (to install a hub) to another. To calculate the expected network transportation cost we 

distinguish the following three different types of flow: i) flow that need to be transported in part of the 

network not affected by disruption (figure 3-a), ii) flow initiated from the affected nodes to all unaffected 

nodes in the network (figure 3-b) , and iii) exchanged flow between all affected nodes that are re-

allocated to the same and/or different backup hubs (figure 3-c). The three types of flow are used to 

compute the expected transportation cost of the network assuming one of the operating hubs in the 

network become disrupted (one at a time). The objective of the proposed reliable model minimises the 

sum of the expected transportation and hub installation costs in normal and disruption situations. The 

MINLP formulation for the Reliable Single Allocation p-Hub Location Problem with Multiple capacity 

levels and flow dependent discount factor, RF1-RSAPHLPM is presented as follows. 
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RF1- RSAPHLPM: 

𝑚𝑖𝑛(∑∑∑∑𝑤𝑖𝑗(𝑐𝑖𝑘 + 𝑐𝑚𝑗
𝑗𝑚𝑘𝑖

)𝑥𝑖𝑘𝑚𝑗 +∑∑∑𝑐𝑘𝑚
𝑚𝑘

(𝑎𝑘𝑚
𝑟 𝑔𝑘𝑚

𝑟 + 𝑏𝑘𝑚
𝑟 𝑦𝑘𝑚

𝑟 ) +

𝑟

  

∑∑𝐹𝑘
𝑙

𝑙∈𝐿𝑘𝑘

ℎ𝑘
𝑙   )(1 − (∑𝑞𝑛𝑧𝑛𝑛

𝑛

)) + (∑∑∑𝐹𝑘
𝑙

𝑙𝑛
𝑛≠𝑘

𝜓𝑛𝑘
𝑙

𝑘

𝑞𝑘 +    

 

∑∑ ∑∑∑𝑤𝑖𝑗
𝑗𝑛𝑚≠𝑛𝑘≠𝑛𝑖

(𝑐𝑖𝑘 + 𝑐𝑚𝑗)𝑥𝑖𝑘𝑚𝑗𝑧𝑛𝑛𝑞𝑛 + ∑ ∑ ∑∑𝑐𝑚𝑛
𝑟𝑘

𝑘≠𝑚

(𝑎𝑚𝑛
𝑟 𝑓𝑚𝑛𝑘

𝑟 + 𝑏𝑚𝑛
𝑟 Θ𝑚𝑛𝑘

𝑟 )
𝑛
𝑛≠𝑘

𝑞𝑘
𝑚
𝑚≠𝑛

+ 

2(∑∑∑∑∑𝑤𝑖𝑗
𝑗𝑛𝑚𝑘

𝑘≠𝑚
𝑖
𝑖≠𝑘

(𝑐𝑖𝑛 + 𝑐𝑚𝑗)𝑢𝑖𝑘𝑛𝑧𝑗𝑚𝑞𝑘)+ 

∑∑∑∑∑𝑤𝑖𝑗
𝑗𝑛𝑚𝑘𝑖

(𝑐𝑖𝑛 + 𝑐𝑚𝑗)𝑢𝑖𝑘𝑛𝑢𝑗𝑘𝑚𝑞𝑘 +∑∑𝜑𝑖𝑗
𝑗𝑖

𝑤𝑖𝑗(𝑞𝑖𝑧𝑖𝑖 + 𝑞𝑗𝑧𝑗𝑗))                             (14) 

s.t 

(2)-(11) 

∑𝑢𝑖𝑘𝑛 = 𝑧𝑖𝑘         ∀𝑘, 𝑖 ≠ 𝑘 

𝑛≠𝑘

                                                                                                                           (15) 

𝑢𝑖𝑘𝑛 ≤ 𝑧𝑛𝑛         ∀𝑘, 𝑛, 𝑖 ≠ 𝑘                                                                                                                              (16) 

n m 

k 

a. Network with one disrupted hub 

(k) 

j 

n 

i 

m n m 

b. Flow in part of the network not affected by 

disruption 
c. Flow from affected nodes (e.g., i) to all 

destination (e.g., j) except to other affected nodes  

n 

i 

m 

j 

d. Flow between all affected nodes if assigned to the 

same and (i and i’)/or different backup hubs (i and j) 

Figure 3.    Expected flow to be transported in the network following a disruption at e.g., hub k 
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∑𝜓𝑛𝑘
𝑙

𝑙∈𝐿𝑘

= 𝑥𝑛𝑛𝑘𝑘        ∀ 𝑘, 𝑛                                                                                                                              (17) 

∑∑𝑤𝑖𝑗
𝑗𝑖

𝑧𝑖𝑛𝑧𝑘𝑘 +∑∑𝑤𝑖𝑗𝑢𝑖𝑘𝑛
𝑗
𝑗≠𝑘

𝑖
𝑖≠𝑘

≤  ∑ Γ𝑛
𝑙

𝑙∈𝐿𝑘

𝜓𝑛𝑘
𝑙       ∀𝑛, 𝑘                                                                   (18) 

∑𝑓𝑚𝑛𝑘
𝑟

𝑟

=∑∑𝑤𝑖𝑗
𝑗𝑖

𝑥𝑖𝑛𝑚𝑗  𝑧𝑘𝑘 +∑∑𝑤𝑖𝑗
𝑗𝑖

𝑢𝑖𝑘𝑛  𝑧𝑗𝑚 + ∑∑𝑤𝑖𝑗
𝑗𝑖

𝑢𝑗𝑘𝑚  𝑧𝑖𝑛 +      

∑∑𝑤𝑖𝑗
𝑗𝑖

𝑢𝑖𝑘𝑛𝑢𝑗𝑘𝑚    ∀𝑘,𝑚, 𝑛 ≠ 𝑚 ≠ 𝑘                                                                                                     (19) 

𝑓𝑚𝑛𝑘
𝑟 ≤ Θ𝑚𝑛𝑘

𝑟 ∑∑𝑤𝑖𝑗
𝑗𝑖

                ∀𝑘,𝑚, 𝑟, 𝑛 ≠ 𝑚 ≠ 𝑘                                                                            (20) 

∑Θ𝑚𝑛𝑘
𝑟

𝑟

≤ 𝑥𝑛𝑛𝑚𝑚  𝑧𝑘𝑘                ∀𝑘,𝑚, 𝑛 ≠ 𝑚 ≠ 𝑘                                                                                  (21) 

𝑧𝑖𝑘 , ℎ𝑘
𝑙  , 𝜓𝑛𝑘

𝑙 , 𝑦𝑘𝑚
𝑟 , Θ𝑚𝑛𝑘

𝑟 , 𝑥𝑖𝑘𝑚𝑗 , 𝑢𝑖𝑘𝑛 ∈ {0,1}    ∀𝑖, 𝑛, 𝑚, 𝑘, 𝑟, 𝑙                                                                 (22) 

𝑔𝑘𝑚
𝑟 , 𝑓𝑚𝑛𝑘

𝑟 ≥ 0                  ∀𝑟, 𝑘,𝑚, 𝑛 ≠ 𝑚 ≠ 𝑘                                                                                             (23) 

For asymmetric flow the seventh term in the objective function is replaced by the following expression 

(∑∑∑∑∑𝑤𝑖𝑗
𝑗𝑛𝑚𝑘

𝑘≠𝑚
𝑖
𝑖≠𝑘

(𝑐𝑖𝑛 + 𝑐𝑚𝑗)𝑢𝑖𝑘𝑛𝑧𝑗𝑚𝑞𝑘 +                                                                                    (24)  

∑∑∑∑∑𝑤𝑖𝑗
𝑗𝑛𝑚𝑘

𝑘≠𝑚
𝑖
𝑖≠𝑘

(𝑐𝑖𝑚 + 𝑐𝑛𝑗)𝑢𝑗𝑘𝑛𝑧𝑖𝑚𝑞𝑘) 

The objective function (14) calculates the expected sum of transportation and hub installation costs in 

normal operation and the expected transportation and installation cost should any of the operating hubs 

become disrupted. More specifically, the first and the second terms in the objective function jointly 

calculate the network transportation cost; the third and fourth terms computes the hub installation costs 

in normal and disrupted situations respectively; the fifth term calculates the expected cost of transporting 

flow at spoke links which are not affected by a possible hub disruption; the sixth term calculates the 

expected cost of the traffic at inter-hub links should any of the operating hubs become disrupted. This 

cost includes the cost of transporting flow from both unaffected and affected nodes that need to be 

transported via inter-hub links should any of the operating hubs become disrupted; the seventh term 

calculates the expected cost of transporting flow from all affected nodes (via backup hubs) to all 

destinations at spoke nodes except to other affected nodes; the eight term calculates the expected cost 

of transporting flow between all affected nodes at spoke nodes. The affected nodes are either assigned 

to the same or different backup hubs. The ninth term penalizes the loss of flow/demand in disrupted 

situations where the source or destination of the flow is a hub. 

Constraint (15) guarantees each node i has only one backup facility (n) and it differs from the hub 

initially assigned to (i.e., k). Constraint (16) ensures the candidate backup n for the affected node i is an 

open “hub” facility. The constraint set (17) ensure that for each hub n  when another hub k in the network 
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is disrupted at most one capacity level can be chosen. Constraints (18) are (nonlinear) capacity 

constraints to ensure the sum of the unprocessed incoming flow at hub n and the re-routed flow through 

hub n (when hub k is disrupted) is not more than its capacity. The nonlinear constraints (19) compute 

the amount of flow on the inter-hub connection n-m when hub k is disrupted. More specifically the first 

term in the right hand side of the constraint calculate the exchanged flow between nodes directly 

connected to hubs n and m and are not affected by disruption at k. The second term computes the 

potential incoming flow originated from the affected nodes being re-allocated to n because of disruption 

at hub k and destined to j (j’s are unaffected nodes assigned to another hub m ≠ n). The third term 

computes the flow originated from the unaffected nodes assigned to n and destined to all affected nodes 

allocated to m. The fourth term computes the exchanged flow between the affected nodes whether being 

reallocated to the same backup hub (e.g., m or n) or to two different hubs. Constraints (20) ensure that 

the flow on the inter-hub n-m using the linear function r  with its slope 𝑎𝑛𝑚
𝑟 , is associated with the right 

intercept 𝑏𝑛𝑚
𝑟  when hub k is disrupted. Constraints (21) guarantee exactly one segment of the piecewise-

linear concave function is used for every inter-hub connection n-m  when hub k is disrupted. In other 

words, there is only one Θ𝑚𝑛𝑘
𝑟  activated for each n-m when n, m and k are selected as hubs. Finally, 

constraints (22) and (23) enforce the binary condition and indicate the non-negativity restriction of the 

utilised variables. 

The proposed nonlinear model contains a number of quadratic terms in both the objective function 

and constraints. This type of model is termed Mixed Integer Quadratically Constrained Program 

(MIQCP). A linearized MIQCP like the above developed for the RSAPHLPM problem is 

computationally intensive even for small instances due to these large numbers of quadratic terms.  

A Preliminary Experiment- We linearize the RF1-RSAPHLPM formulation (for simplicity, we do not 

present the linear model here) and conducted a limited experiment using an instance of the CAB dataset 

with 10 nodes and 3 hubs. We set the piecewise parameters with 4 slopes of 1.0, 0.8, 0.6 and 0.4 (see 

Table 3). The number of capacity levels is set to three (large, medium and small). We set the optimality 

gap to 0.5%. Unsurprisingly it takes about 10770 seconds (3.12 hours) of computational time for CPLEX 

to return the optimal solution for this relatively small problem instance. In the next subsection, we briefly 

discuss a procedure to transfer the RF1-RSAPHLPM into a new MINLP formulation that could be 

efficiently linearized. Details of the procedure could be found in Appendix A. 

The improved formulation- To improve the efficiency of the RF1-RSAPHLPM formulation, wherever 

possible we replace the quadratic terms both in the objective function and in the constraints with 

nonlinear terms each defined as a product of a continuous and a binary variable (Adams and Sherali, 

1990; Azizi et al, 2016). Replacing all quadratic terms will transform the model into a convex MINLP. 

Here, we show that substituting only part of the quadratic terms in RF1-RSAPHLPM will significantly 

improve the efficiency of the resulting new formulation. The improved (nonlinear) formulation is called 

RF2-RSAPHLPM and presented in Appendix A. The mixed-integer linear programming formulation of 

the RF2-RSAPHLPM will be discussed in the following section. 
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4.3.  Linear RF2-RSAPHLPM formulation 

Linearization of the improved RF2-RSAPHLPM model (see appendix A), is straightforward. The 

nonlinear terms in the objective function and/or in the constraints are either the product of two binary 

variables, or the result of multiplying a binary and a continuous variable. To linearize the model, we use 

the standard technique and replace the nonlinear terms with auxiliary continuous or binary variables 

depending on the nature of the presented nonlinearity. To enforce the relationship between the variables, 

additional constraints are added to the model as appropriate. For example, the first nonlinear term in the 

objective function of RF2-RSAPHLPM is the product of a continuous variable 𝐷𝑖𝑗𝑛
1 , and a binary 

variable 𝑧𝑛𝑛. We define the nonnegative auxiliary (continuous) variables 𝜌𝑖𝑗𝑛 such that 

𝜌𝑖𝑗𝑛 = 𝐷𝑖𝑗𝑛
1 𝑧𝑛𝑛                      (25) 

The relationship between these variables could be ensured by adding the following set of constraints to 

the model 

𝜌𝑖𝑗𝑛 ≤ 𝑀1𝑧𝑛𝑛            ∀𝑖, 𝑗, 𝑛       

𝜌𝑖𝑗𝑛 ≤ 𝐷𝑖𝑗𝑛
1          ∀ 𝑖, 𝑗, 𝑛   

𝜌𝑖𝑗𝑛 ≥ 𝐷𝑖𝑗𝑛
1 −𝑀1(1 − 𝑧𝑛𝑛)       ∀𝑖, 𝑗, 𝑛    

The linear counterpart of the RF2-RSAPHLPM is presented as follows. 

RF2-RSAPHLPM: 

𝑚𝑖𝑛(∑∑∑∑𝑤𝑖𝑗(𝑐𝑖𝑘 + 𝑐𝑚𝑗
𝑗𝑚𝑘𝑖

)𝑥𝑖𝑘𝑚𝑗 −∑∑∑𝜌𝑖𝑗𝑛
𝑛𝑗𝑖

𝑞𝑛 + 

∑∑∑𝑐𝑘𝑚
𝑚𝑘

(𝑎𝑘𝑚
𝑟 𝑔𝑘𝑚

𝑟 + 𝑏𝑘𝑚
𝑟 𝑦𝑘𝑚

𝑟 )

𝑟

− (∑∑(𝜉𝑛
𝑟 + 𝜇𝑛

𝑟 )

𝑛𝑟

𝑞𝑛 ) + 

∑∑𝐹𝑘
𝑙

𝑙∈𝐿𝑘𝑘

ℎ𝑘
𝑙 −∑∑∑𝜋𝑘𝑛

𝑙

𝑛𝑙∈𝐿𝑘

𝑞𝑛 
𝑘

) + (∑∑∑𝐹𝑘
𝑙

𝑙𝑛
𝑛≠𝑘

𝜓𝑛𝑘
𝑙

𝑘

𝑞𝑘 +∑∑∑𝛾𝑖𝑗𝑛
𝑛𝑗

𝑞𝑛
𝑖

+          

2(∑∑∑∑∑(𝑐𝑖𝑛 + 𝑐𝑚𝑗)

𝑗𝑛𝑚𝑘
𝑘≠𝑚

𝑖
𝑖≠𝑘

θ𝑖𝑘𝑚𝑛𝑗𝑞𝑘)+∑∑∑∑∑(𝑐𝑖𝑛 + 𝑐𝑚𝑗)

𝑗𝑛𝑚𝑘𝑖

τ𝑖𝑘𝑚𝑛𝑗𝑞𝑘 + 

∑ ∑ ∑∑𝑐𝑚𝑛
𝑟𝑘

𝑘≠𝑚

(𝑎𝑚𝑛
𝑟 𝑓𝑚𝑛𝑘

𝑟 + 𝑏𝑚𝑛
𝑟 Θ𝑚𝑛𝑘

𝑟 )
𝑛
𝑛≠𝑘

𝑞𝑘
𝑚
𝑚≠𝑛

+   ∑∑𝜑𝑖𝑗
𝑗𝑖

𝑤𝑖𝑗(𝑞𝑖𝑧𝑖𝑖 + 𝑞𝑗𝑧𝑗𝑗))                    (26) 

s.t 

(2)-(11);(15)-(17);(20) 

𝜙𝑘𝑛 +∑∑𝑤𝑖𝑗𝑢𝑖𝑘𝑛
𝑗
𝑗≠𝑘

𝑖
𝑖≠𝑘

≤  ∑ Γ𝑛
𝑙

𝑙∈𝐿𝑘

𝜓𝑛𝑘
𝑙       ∀𝑛, 𝑘                                                                                            (27) 

∑𝑓𝑚𝑛𝑘
𝑟

𝑟

= 𝜁𝑛𝑚𝑘 +∑∑θ𝑖𝑘𝑚𝑛𝑗
𝑗𝑖

+ ∑η𝑗𝑚𝑛𝑘
𝑗

+∑∑τ𝑖𝑘𝑚𝑛𝑗
𝑗𝑖

  ∀𝑘,𝑚, 𝑛 ≠ 𝑚 ≠ 𝑘                     (28) 
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∑Θ𝑚𝑛𝑘
𝑟

𝑟

≤ λ𝑛𝑚𝑘                ∀𝑘,𝑚, 𝑛 ≠ 𝑚 ≠ 𝑘                                                                                             (29) 

𝐷𝑖𝑗𝑛
1 =∑∑𝑤𝑖𝑗

𝑚𝑘

(𝑐𝑖𝑘 + 𝑐𝑚𝑗)𝑥𝑖𝑘𝑚𝑗           ∀ 𝑖, 𝑗, 𝑛                                                                                     (30) 

𝐷𝑖𝑗𝑛
2 = ∑ ∑ 𝑤𝑖𝑗

𝑚≠𝑛𝑘≠𝑛

(𝑐𝑖𝑘 + 𝑐𝑚𝑗)𝑥𝑖𝑘𝑚𝑗           ∀ 𝑖, 𝑗, 𝑛                                                                                  (31) 

Ω𝑘
𝑙 = 𝐹𝑘

𝑙ℎ𝑘
𝑙             ∀ 𝑘, 𝑙                                                                                                                                     (32) 

𝑇𝑛
𝑟 =∑∑𝑐𝑘𝑚

𝑚𝑘

𝑎𝑘𝑚
𝑟 𝑔𝑘𝑚

𝑟             ∀𝑟, 𝑛                                                                                                          (33) 

𝑆𝑛
𝑟 =∑∑𝑐𝑘𝑚

𝑚𝑘

𝑏𝑘𝑚
𝑟 𝑦𝑘𝑚

𝑟              ∀𝑟, 𝑛                                                                                                          (34) 

𝐻𝑛𝑚 =∑∑𝑤𝑖𝑗
𝑗𝑖

𝑥𝑖𝑛𝑚𝑗     ∀ 𝑛,𝑚                                                                                                                   (35) 

𝑣𝑖𝑘𝑛𝑗 = 𝑤𝑖𝑗𝑢𝑖𝑘𝑛                            ∀ 𝑖, 𝑘, 𝑛, 𝑗                                                                                                      (36) 

𝐵𝑛 =∑∑𝑤𝑖𝑗
𝑗𝑖

𝑧𝑖𝑛         ∀𝑛                                                                                                                              (37) 

𝐸𝑛𝑗 =∑𝑤𝑖𝑗
𝑖

𝑧𝑖𝑛   ∀𝑗, 𝑛 ≠ 𝑗                                                                                                                              (38) 

𝜌𝑖𝑗𝑛 ≤ 𝑀1𝑧𝑛𝑛            ∀𝑖, 𝑗, 𝑛                                                                                                                               (39) 

𝜌𝑖𝑗𝑛 ≤ 𝐷𝑖𝑗𝑛
1          ∀ 𝑖, 𝑗, 𝑛                                                                                                                                     (40) 

𝜌𝑖𝑗𝑛 ≥ 𝐷𝑖𝑗𝑛
1 −𝑀1(1 − 𝑧𝑛𝑛)       ∀𝑖, 𝑗, 𝑛                                                                                                           (41) 

𝜉𝑛
𝑟 ≤ 𝑀2𝑧𝑛𝑛            ∀𝑛, 𝑟                                                                                                                                     (42) 

𝜉𝑛
𝑟 ≤ 𝑇𝑛

𝑟           ∀𝑛, 𝑟                                                                                                                                             (43) 

𝜉𝑛
𝑟 ≥ 𝑇𝑛

𝑟 −𝑀2(1 − 𝑧𝑛𝑛)       ∀𝑛, 𝑟                                                                                                                    (44) 

𝜇𝑛
𝑟 ≤ 𝑀3𝑧𝑛𝑛            ∀𝑛, 𝑟                                                                                                                                    (45) 

𝜇𝑛
𝑟 ≤ 𝑆𝑛

𝑟         ∀ 𝑛, 𝑟                                                                                                                                             (46) 

𝜇𝑛
𝑟 ≥ 𝑆𝑛

𝑟 −𝑀3(1 − 𝑧𝑛𝑛)       ∀𝑛, 𝑟                                                                                                                  (47) 

𝜋𝑘𝑛
𝑙 ≤ 𝑀4𝑧𝑛𝑛            ∀𝑘, 𝑛, 𝑙                                                                                                                             (48) 

𝜋𝑘𝑛
𝑙 ≤ Ω𝑘

𝑙           ∀𝑘, 𝑛, 𝑙                                                                                                                                      (49) 

𝜋𝑘𝑛
𝑙 ≥ Ω𝑘

𝑙 −𝑀4(1 − 𝑧𝑛𝑛)       ∀𝑘, 𝑛, 𝑙                                                                                                            (50) 

𝛾𝑖𝑗𝑛 ≤ 𝑀5𝑧𝑛𝑛            ∀𝑖, 𝑗, 𝑛                                                                                                                              (51) 

𝛾𝑖𝑗𝑛 ≤ 𝐷𝑖𝑗𝑛
2           ∀𝑖, 𝑗, 𝑛                                                                                                                                    (52) 

𝛾𝑖𝑗𝑛 ≥ 𝐷𝑖𝑗𝑛
2 −𝑀5(1 − 𝑧𝑛𝑛)       ∀𝑖, 𝑗, 𝑛                                                                                                         (53) 

𝜁𝑛𝑚𝑘 ≤ 𝑀6𝑧𝑘𝑘            ∀𝑛,𝑚, 𝑘                                                                                                                        (54) 

𝜁𝑛𝑚𝑘 ≤ 𝐻𝑛𝑚          ∀𝑛,𝑚, 𝑘                                                                                                                              (55) 

𝜁𝑛𝑚𝑘 ≥ 𝐻𝑛𝑚 −𝑀6(1 − 𝑧𝑘𝑘)      ∀𝑛,𝑚, 𝑘                                                                                                     (56) 

λ𝑛𝑚𝑘 ≤ 𝑧𝑘𝑘             ∀𝑛,𝑚, 𝑘                                                                                                                              (57) 
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λ𝑛𝑚𝑘 ≤ 𝑥𝑛𝑛𝑚𝑚          ∀𝑛,𝑚, 𝑘                                                                                                                          (58) 

λ𝑛𝑚𝑘 ≥ 𝑥𝑛𝑛𝑚𝑚 + 𝑧𝑘𝑘 − 1     ∀𝑛,𝑚, 𝑘                                                                                                           (59) 

𝜙𝑘𝑛 ≤ 𝑀7𝑧𝑘𝑘           ∀𝑛, 𝑘                                                                                                                                 (60) 

𝜙𝑘𝑛 ≤ 𝐵𝑛          ∀𝑛, 𝑘                                                                                                                                         (61) 

𝜙𝑘𝑛 ≥ 𝐵𝑛 −𝑀7(1 − 𝑧𝑘𝑘)      ∀𝑛,                                                                                                                   (62) 

η𝑗𝑚𝑛𝑘 ≤ 𝑀8𝑢𝑗𝑘𝑚            ∀                                                                                                                                (63) 

η𝑗𝑚𝑛𝑘 ≤ 𝐸𝑛𝑗          ∀𝑗,𝑚, 𝑛, 𝑘                                                                                                                         (64)  

η𝑗𝑚𝑛𝑘 ≥ 𝐸𝑛𝑗 −𝑀8(1 − 𝑢𝑗𝑘𝑚  )       ∀𝑗,𝑚, 𝑛, 𝑘                                                                                          (65) 

θ𝑖𝑘𝑚𝑛𝑗 ≤ 𝑀9𝑧𝑗𝑚        ∀𝑖, 𝑘,𝑚, 𝑛, 𝑗                                                                                                               (66) 

θ𝑖𝑘𝑚𝑛𝑗 ≤ 𝑣𝑖𝑘𝑛𝑗        ∀𝑖, 𝑘,𝑚, 𝑛, 𝑗                                                                                                                   (67) 

θ𝑖𝑘𝑚𝑛𝑗 ≥ 𝑣𝑖𝑘𝑛𝑗 −𝑀9(1 − 𝑧𝑗𝑚  )      ∀𝑖, 𝑘,𝑚, 𝑛, 𝑗                                                                                      (68) 

τ𝑖𝑘𝑚𝑛𝑗 ≤ 𝑀10𝑢𝑗𝑘𝑚       ∀ 𝑖, 𝑘,𝑚, 𝑛, 𝑗                                                                                                           (69) 

τ𝑖𝑘𝑚𝑛𝑗 ≤ 𝑣𝑖𝑘𝑛𝑗         ∀𝑖, 𝑘,𝑚, 𝑛, 𝑗                                                                                                                  (70) 

τ𝑖𝑘𝑚𝑛𝑗 ≥ 𝑣𝑖𝑘𝑛𝑗 −𝑀10(1 − 𝑢𝑗𝑘𝑚  )      ∀𝑖, 𝑘,𝑚, 𝑛, 𝑗                                                                                 (71) 

𝑧𝑖𝑘 , ℎ𝑘
𝑙  , 𝜓𝑛𝑘

𝑙 , 𝑦𝑘𝑚
𝑟 , Θ𝑚𝑛𝑘

𝑟 , 𝑥𝑖𝑘𝑚𝑗 , 𝑢𝑖𝑘𝑛, λ𝑛𝑚𝑘 ∈ {0,1}    ∀𝑖, 𝑗, 𝑛,𝑚, 𝑘, 𝑟, 𝑙                                               (72) 

𝛾𝑖𝑗𝑛, η𝑗𝑚𝑛𝑘, 𝐷𝑖𝑗𝑛
1 , 𝐻𝑛𝑚, Ω𝑘

𝑙 , 𝜉𝑛
𝑟, 𝜇𝑛

𝑟 , 𝑇𝑛
𝑟, 𝑆𝑛

𝑟, 𝜌𝑖𝑗𝑛, 𝜋𝑘𝑛
𝑙 , 𝐵𝑛, 𝑣𝑖𝑘𝑛𝑗 , θ𝑖𝑘𝑚𝑛𝑗 , τ𝑖𝑘𝑚𝑛𝑗 ≥ 0    ∀𝑖, 𝑗, 𝑘, 𝑛,𝑚, 𝑟 

𝐷𝑖𝑗𝑛
2 , 𝑔𝑘𝑚

𝑟 , 𝑓𝑚𝑛𝑘
𝑟 , 𝜁𝑛𝑚𝑘, 𝜙𝑘𝑛 ≥ 0                  ∀𝑟, 𝑘,𝑚, 𝑛 ≠ 𝑚 ≠ 𝑘                                                          (73) 

𝐸𝑛𝑗 ≥ 0                      ∀𝑗, 𝑛 ≠ 𝑗                                                                                                                     (74)   

In the above formulation, the function (26) is the linearized objective function presented in (14). 

Constraints (27)-(29) are the linear counterparts of the constraints (18), (19) and (21) respectively.  

Equalities (30)-(38) define the auxiliary variables used to transform the original nonlinear model (RF1-

RSAPHLPM) into a new MINLP (RF2-RSAPHLPM). (39)-(71) are auxiliary constraints to insure that 

the new variables representing nonlinear terms in the objective function and in the constraints will 

assume the appropriate values.  Finally, constraints (72)-(74) enforce the binary condition and indicate 

the non-negativity restriction of the utilised variables.  

In Table 1, we compare the number of variables in both proposed nonlinear formulations (i.e., RF1-

RSAPHLPM and RF2-RSAPHLPM) and their linear counterparts. The total number of variables in the 

two nonlinear formulation are quite identical. However, as expected, linearizing RF2-RSAPHLPM 

yields to a formulation with significantly less number of binary variables. This could make the solving 

of those instances of the RF2-RSAPHLPM computationally less challenging. This is due to the difficulty 

of mixed integer programs which is usually more dependent on the number of integer variables than the 

number of continuous variables. Furthermore, as reported by Klincewicz (2002) and Camargo et al 

(2009) the FLOWLOC formulation can present large integrality  gaps and may result in very long 

computational time (e.g., 13 hours to solve a medium size problem instance). The quality of these gaps 
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found to be due to the use of Big-M formulation that is needed to activate the right variable with inter-

hub links aggregated flow.  

 

In our proposed classical formulations (i.e., CF-CSAPHLPM) this means a weak coupling between 

𝑔𝑘𝑚
𝑟 and 𝑦𝑘𝑚

𝑟  in constraint (10). We identify another Big-M formulation in constraint (20). To deal with 

the possible instability caused by using a large number of Big-Ms, we replace all Big-M formulation in 

the linear RF2- RSAPHLPM with Indicator Constraints (Bonami et al, 2015) before solving the model 

by CPLEX.  

RF2-RSAPHLPM vs the original formulation RF1-RSAPHLPM –we evaluate and compare the 

performance of the improved (linear) RF2-RSAPHLPM formulation against the original (linear) 

formulation of RF1-RSAPHLPM.  We tested these two models on the same problem instance with 10 

nodes and 3 hubs using the same parameters. Significant reduction in CPU time is observed as the 

improved linear formulation returns the optimal solution in about 10 minutes compared to more than 3 

hours that is required for the initial formulation. The optimal solution to the problem is depicted in 

Figure 4. The discount factors applied to inter-hub links 4-7, 4-9 and 7-9 in normal operations are 

respectively piecewise linear function  2 with slope  (0.8), linear function  4 with slope 0.4 and linear 

function  1 with slope 1.0 respectively. For disruption situations the discount factors for the same inter-

hub links are linear function 3 (if hub 9 becomes disrupted), line 4 (if hub 7 is disrupted) and line 2 if 4 

is disrupted instead. In summary, we argue that the observed improvement in computational efficiency 

of the linear RF2-RSAPHLPM formulation is a result of replacing quadratic terms with nonlinear terms 

defined as the product of continuous and binary variables and using indicator constraints to replace Big-

M formulations. Despite the above improvement made, the formulation is still limited and cannot be 

used to solve instances beyond 10 nodes by CPLEX. To solve larger instances one way forward is to 

explore using an efficient metaheuristic. In this study, we propose a Variable Neighbourhood Search 

(VNS) algorithm. In order to comment on the solution quality of large instances obtained by the heuristic 

algorithm, we propose to use the lower bounds of the optimal solutions. In the following and prior to 

presenting details of the proposed heuristic, we show that optimal solutions to the CF-CSAPHLPM 

problems are the lower bounds for the optimal solutions to the same problems with reliability 

consideration i.e., RF1-RSAPHLPM. 

Formulation 

Nonlinear Linear 

Total# of variables Binary  

Variables 

Total# of  

variables 

Binary 

 variables 

RF1-RSAPHLPM n4+n3(1+2r)+ 

n2(1+2r+l)+nl 

n4+n3(1+r)+ 

n2(1+r+l)+nl 

5n5+n4+n3(2+4r

)+2n2(1+r+l)+n

(l+r) 

5n5+n4+n3(4+4r

)+2n2(1.5+r+l)

+nl 

RF2-RSAPHLPM 2n4+3n3+2n3r+ 

n2(3+2r+l)+n 

(2l+2r+1) 

n4+n3(1+r)+ 

n2(1+r+l)+nl 

3n5+n4+2n3(2+r

)+n2(3+2r+l)+n

(2l+4r+1) 

n4+2n3+n3r+n2(

1+r+l)+nl 

Table 1.  Number of variables in RF1- RSAPHLPM and RF2- RSAPHLPM 
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4.4. Lower Bound Establishment  

Preposition. An optimal solution to a CSAPHLPM problem is the lower bound for the optimal solution 

to the same problem with reliability consideration, RSAPHLPM.  

Proof. Let 𝑥̅𝐶
∗  and X*

R be the optimal solutions to CF-CSAPHLPM and RF1-RSAPHLPM respectively 

with the corresponding cost functions of zC and ZR. Assume 𝑞𝑘 is the probability that kth hub in the 

network will be disrupted. In the following, we will show   

𝑧𝐶(𝑥̅𝐶
∗) ≤ 𝑍𝑅(𝑋𝑅

∗)                                                    (75) 

Beginning with the objective function of RF1-RSAPHLPM, ZR(X*
R) could be written as  

𝑍𝑅(𝑋𝑅
∗) = 𝑧𝑅(𝑥𝑅

∗ ) (1 −∑𝑞𝑘
𝑃

𝑘=1

) +∑𝐸𝑁𝐶𝑘𝑞𝑘
𝑃

𝑘=1

    𝑜𝑟 

𝑍𝑅(𝑋𝑅
∗) = 𝑧𝑅𝑁𝐶

∗ (1 −∑𝑞𝑘
𝑃

𝑘=1

) +∑𝐸𝑁𝐶𝑘𝑞𝑘
𝑃

𝑘=1

    (76) 

With the same token, 𝑧𝐶(𝑥̅𝐶
∗) could also be written as     

     𝑧𝐶(𝑥̅𝐶
∗) = 𝑧𝐶𝑁𝐶

∗                                                                (77) 

where 𝑧𝑅𝑁𝐶
∗  is the optimal network cost of the RF1-RSAPHLPM for a given problem (only 

transportation and hub installation costs) and  𝑧𝑅𝑁𝐶
∗ = 𝑧𝑅(𝑥𝑅

∗ ) = 𝑧𝑅(𝑧𝑖𝑘 , ℎ𝑘
𝑙  , 𝑦𝑘𝑚

𝑟 , 𝑥𝑖𝑘𝑚𝑗). 𝐸𝑁𝐶
𝑘  is the 

expected network cost when kth hub becomes disrupted and 𝑧𝐶𝑁𝐶
∗  is the optimal cost of the CF-

CSAPHLPM for the same problem (the classical network without reliability  consideration). 

Similarly 𝑧𝐶𝑁𝐶
∗ = 𝑧𝐶(𝑥̅𝐶

∗) =  𝑧𝐶(𝑧𝑖̅𝑘 , ℎ̅𝑘
𝑙  , 𝑦̅𝑘𝑚

𝑟 , 𝑥̅𝑖𝑘𝑚𝑗).  Substituting for 𝑧𝐶(𝑥̅𝐶
∗) and 𝑍𝑅(𝑋𝑅

∗) in (75) we 

obtain 

𝑧𝐶𝑁𝐶
∗ ≤ 𝑧𝑅𝑁𝐶

∗ (1 −∑𝑞𝑘
𝑝

𝑘=1

)+∑𝐸𝑁𝐶𝑘𝑞𝑘         
𝑝

𝑘=1

      (78)   𝑜𝑟 

  

𝑧𝐶𝑁𝐶
∗ ≤ 𝑧𝑅𝑁𝐶

∗ − 𝑧𝑅𝑁𝐶
∗ ∑𝑞𝑘

𝑝

𝑘=1

+∑𝐸𝑁𝐶𝑘𝑞𝑘
𝑝

𝑘=1

     (79) 

Figure 4.    Graphical representation of the optimal solution to a problem with 10 nodes 
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Now, from the RF1-RSAPHLPM formulation, it can be easily verified that 

∑ 𝐸𝑁𝐶𝑘𝑞𝑘𝑎𝑛𝑑 
𝑝
𝑘=1 𝑍𝑅𝑁𝐶

∗ ∑ 𝑞𝑘  
𝑝
𝑘=1 are quite identical as both terms account for the total hub installation 

and transportation costs therefore they will largely cancel each other out. Also given the low probability 

of hub failure, the result of both expressions ∑ 𝐸𝑁𝐶𝑘𝑞𝑘
𝑝
𝑘=1  and 𝑧𝑅𝑁𝐶

∗ ∑ 𝑞𝑘
𝑝
𝑘=1  are negligible compare 

to 𝑧𝑅𝑁𝐶
∗  (also shown in the following numerical example) and they could be ignored. As a result, (79) 

will reduce to (80) and one just need to show that  

𝑧𝐶𝑁𝐶
∗ ≤ 𝑧𝑅𝑁𝐶 

∗               (80) 

As CF-CSAPHLPM is the base formulation for the RF1-RSAPHLPM (it could be directly 

obtained from RF1-RSAPHLPM by setting 𝑞𝑘 = 0,∀𝑘), the two cost functions zC and zR are identical 

i.e.,  

𝑧𝐶 ≡ 𝑧𝑅                   (81) 

Also an optimal network configuration obtained for the RF1-RSAPHLPM, 

                                     will satisfy all the CF-CSAPHLPM  constraints therefore, it will be a feasible 

solution to CF-CSAPHLPM. This will result in  

𝑧𝐶(𝑥̅𝐶
∗) ≤ 𝑧𝐶(𝑥𝑅

∗ )      (82) 

With (81)  

𝑧𝐶(𝑥̅𝐶
∗) ≤ 𝑧𝑅(𝑥𝑅

∗ )     𝑜𝑟    𝑧𝐶𝑁𝐶
∗ ≤ 𝑧𝑅𝑁𝐶

∗     (83) 

Otherwise, it will be a contradiction because 𝑥̅𝐶
∗(𝑧𝑖̅𝑘, ℎ̅𝑘

𝑙  , 𝑦̅𝑘𝑚
𝑟 , 𝑥̅𝑖𝑘𝑚𝑗) is the optimal solution to the CF-

CSAPHLPM.  In conclusion, an optimal solution to CF-CSAPHLPM is a lower bound of the optimal 

solution to RF1-RSAPHLPM i.e.,  𝑧𝐶(𝑥̅𝐶
∗) ≤ 𝑍𝑅(𝑋𝑅

∗). 

Numerical Example. Through the following example, we also show for illustration purposes the 

validation of inequality (79).  We tested six problems with 10 and 25 nodes from CAB dataset. The 

lower bounds are obtained by solving the CF-CSAPHLPM formulation. As shown in Table 2, in all 

cases, 𝑧𝐶𝑁𝐶
∗  is lower than the total Obj. cost and both ∑ 𝐸𝑁𝐶𝑘𝑞𝑘𝑃

𝑘=1  and  𝑧𝑅𝑁𝐶
∗ ∑ 𝑞𝑘

𝑝
𝑘=1  are significantly 

less than 𝑧𝑅𝑁𝐶
∗ . 

 

 

 

 

 

Problem  

 
RSAPHLPM 

Lower Bound 

𝑧𝐶𝑁𝐶
∗    

 Total Obj.1  
Network cost 

(𝑧𝑅𝑁𝐶
∗

) 
∑𝐸𝑁𝐶𝑘𝑞𝑘   
𝑃

𝑘=1

 𝑧𝑅𝑁𝐶
∗ ∑𝑞𝑘

𝑝

𝑘=1

 

cab10 

f1  921381261 908463496 92862553 79944788 908463496 

f2  904651569 890999439 92060080 78407951 890999439 

f3  845120640 829755726 98340487 82975573 829246258 

cab25 

f1  10104901940 9873082506 1288239263 1056419828 9868585775 

f2  8857144502 8524475034 1304459622 971790154 8524475034 

f3  7780167054 7394637449 1228518274 842988669 7391365540 

𝑥𝑅
∗(𝑧

𝑖𝑘
,ℎ𝑘
𝑙  ,𝑦𝑘𝑚

𝑟 , 𝑥𝑖𝑘𝑚𝑗)  

Table 2.  Numerical example for the lower bound establishment 

1) 𝑇𝑜𝑡𝑎𝑙 𝑂𝑏𝑗 = 𝑧𝑅𝑁𝐶
∗ − 𝑧𝑅𝑁𝐶

∗ ∑𝑞𝑘
𝑝

𝑘=1

+∑𝐸𝑁𝐶𝑘𝑞𝑘
𝑃

𝑘=1
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5.  A Variable Neighbourhood Search Implementation 

Variable neighbourhood search is originally developed by Mladenović and Hansen (1997) and has been 

successfully applied to many combinatorial optimization problems including hub location. The 

interested reader may refer to Hansen et al. (2010) for an excellent review of the VNS algorithm and its 

applications, and for an overview on heuristic in general including VNS in Salhi (2017). 

In this study, we developed a VNS-based search algorithm to solve more realistic instances of the 

model, as CPLEX is found to be inappropriate for solving larger instances. The proposed simple 

algorithm could be regarded as a variation of the Reduced VNS (RVNS) which is a variant of VNS that 

does not require a local search. This variant is found to be useful for instances that require relatively an 

excessive amount of computational effort. See Hansen et al. (2010) and Salhi (2017) regarding more 

details on this variant and other related ones. We would like to stress that we are not proposing novel 

attributes to this VNS implementation but carried out to generate good feasible solutions to such 

complex problem where the exact methods fails to do so. 

Our proposed reduced VNS is similar to the classical RVNS except of the following attributes, 

namely, the way the new solution is accepted, the number of solutions to be examined from each 

neighbourhood structure and the generation of the initial solution that is linked to the mathematical 

model.  The main steps of our RVNS implementation are provided as follows. The initial solution is 

generated using the following scheme. First n number of solutions (n is the number of nodes) are 

constructed and the best of these is then selected as our initial solution. To construct these solutions, 

first a number of nodes e.g., 3 are randomly selected as hub facilities then the remaining nodes are 

assigned to these hubs according to their proximity to each of these facilities. This process is repeated 

for n times and the solution with the lowest cost is then selected as the RVNS algorithm initial solution.  

Neighbourhood structures. In the proposed RVNS, four neighbourhood structures are considered (see 

Figure 6). In other words we have Nk(.); k=1,…,kmax=4. In the first structure (type 1), in N1(.), a 

neighbouring solution is generated by replacing a hub facility with one of the demand points (i.e., node) 

allocated to this hub. In the second structure (type 2), N2(.),  the allocation of two non-hub nodes is 

exchanged to create another solution. In the third structure (type 3), N3(.), the allocation of a randomly 

selected node is changed to generate a neighbouring solution. In the fourth structure (type 4), N4(.), , a 

hub is selected randomly and all of the nodes allocated to this facility are reallocated to another  

(randomly selected) facility.  

The search begins with an initial solution (S) produced through the above procedure. The four 

neighbourhood structures described above are then used sequentially to generate a number of solutions 

within each neighbourhood. For types 1, 2, 3 and 4 structures, a total of NI1 (NI1=Number of nodes-

Number of hubs),  NI2(NI2 =Number of nodes), NI3(NI3 =Number of nodes), and NI4 (NI4 =Number of 

hubs) solutions are generated respectively. The overall best solution found in each iteration of the 

algorithm (i.e., when all four neighbourhoods are tested) is recorded as the iteration best solution (Sitr*). 
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Input: NIi (The number of solutions evaluated within the neighbourhood structure i), Tmax (search time) and 

all other parameters used in the model 

t←0; S←Sini;  

S*←S; ƒ(S*) ←ƒ(S) 

Sitr*←S; ƒ(Sitr*) ←ƒ(S) 

Repeat 

  For i =1 to 4 

     For j =1 to NIi (NI1=Number of nodes-Number of hubs; NI2 = NI3 = Number of nodes; NI4 = Number of 

Hubs) 

          Generate a new solution, Scur , from  Ni(S),  

          Calculate the cost of Scur, ƒ(Scur) 

          Update Sitr* and ƒ(Sitr*) using Scur and ƒ(Scur) 

     Next j 

  Next i 

     Update S* and ƒ(S*) using S itr* and ƒ(Sitr*) 

       S← Sitr* 

      Update t 

While t < Tmax 

Report the best solution found 
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e. Neighbourhood structure type 4 
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Figure 6. The four neighbourhood structures of the proposed RVNS 

Figure 5. The pseudocode of the proposed RVNS 
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This solution is used as the initial solution for the next iteration of the algorithm. This process is repeated 

until the stopping criterion is satisfied. In this study, the proposed algorithm is run for a fixed time 

depending on the size of the benchmark problems. The pseudoco  de of the proposed VNS is presented 

in Figure 5. 

6.  Computational Results and Analysis 

In this section, we examine three problems and models namely, the CSAPHLPM and our proposed 

formulation for this classical problem CF-CSAPHLPM, the RSAPHLPM and the proposed formulation 

RF2-RSAPHLPM, and the RSAPHLPM problem with fixed discount factor and our proposed 

formulation RF3-RSAPHLPM. As the focus of this study is on RSAPHLPM with flow dependent cost, 

we present RF3-RSAPHLPM in Appendix B. We solve instances of the CF-CSAPHLPM by CPLEX 

and by our proposed RVNS to: (1) provide some results for this new problem (2) demonstrate the 

performance of the RVNS and (3) provide lower bounds for solutions to RF2-RSAPHLPM that CPLEX 

is unable to solve. We solve small instances of RF2-RSAPHLPM by CPLEX while solutions to medium 

and large problem instances are obtained by the proposed RVNS. Finally, small instances of 

RSAPHLPM with fixed discount factor (RF3-RSAPHLPM) are solved by CPLEX to compare solutions 

to reliable hub location problem with and without flow dependent cost. While medium and large 

instances have been solved by the RVNS to provide upper bounds to the optimal solutions. The 

mathematical models are run in CPLEX 12.9 and the experiments are carried out on a PC–Intel Core i5 

CPU@2.6 GHZ with 16.0 GB RAM.  

6.1.  The CF-CSAPHLPM Model 

We begin the computational analysis by solving eight problem instances from the CAB dataset with 10, 

15, 20 and 25 nodes and with 3 and 5 hubs using the CF-CSAPHLPM formulation. For every potential 

hub, we generate three capacity levels: Small (S), Medium (M) and Large (L). The capacities are 

equivalent to 30% (small capacity), 60% (medium capacity) and 90% (large capacity) of the total flow 

in the network (i.e., ∑ 𝑤𝑖,𝑗𝑖,𝑗 ). The associated fixed costs are set to 50(10⁶), 100(10⁶) and 150(10⁶) 

respectively. We set the piecewise parameters with 4 slopes of 1.0, 0.8, 0.6 and 0.4 (see Table 3).  

Table 3.   Piecewise-linear concave cost functions 

 

 

 

 

 

The problem instances are solved by the proposed RVNS and CPLEX 12.9. The computational 

results are presented in Table 4. In this table, the optimal hub location and demand allocations are 

presented in the fifth column. For instance, for the first problem instance, 6-6-6-4-6-6-7-7-6-7 means 

Flow (k-m) 

(×1000) 

Function 1 

 Slopes (f1) 

Function 2 

 Slopes (f2) 

Function 3 

 Slopes (f3) 

0 ≤ fr
km< 50 1.0 1.0 0.8 

50 ≤ fr
km< 100 0.9 0.8 0.6 

100 ≤fr
km< 200 0.8 0.6 0.4 

200 ≤ fr
km 0.7 0.4 0.2 

mailto:CPU@2.6
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the three selected hubs are 6, 4 and 7; nodes 1, 2, 3, 5,6 and 9 are allocated to hub 6; 4 allocated to itself; 

and 8 and 10 are allocated to hub 7. In column 6, the selected capacity levels for hub 6, 4 and 7 are 

presented. In the last column we report the recommended inter-hub discount factors for each pair of 

hubs in the same order of hubs in column 6 (i.e., between hubs 6 and 4; 6 and 7 and 4 and 7 respectively). 

The computational time for CPLEX ranges from 10 seconds for the smallest instance with 10 nodes to 

17 hours for the large problem instance with 25 nodes and 5 hubs.  

As shown in Table 4, the proposed RVNS solves all problem instances to optimality in less than 1 

second. This result clearly show the efficiency of the proposed VNS and its capability of tackling 

relatively large instances of the problem within very short computing times.   

6.2.  The RF2-RSAPHLPM Model 

We conducted a series of computational analysis using the two standard hub location datasets (i.e., CAB 

and TR) and a number of larger Randomly Generated Problems (RGPs) which we constructed. The 

computational results pertain to the benchmark problems are discussed in the following subsections. 

 6.2.1  The small and medium size problems (the CAB and TR datasets) 

The CAB dataset include problem instances of 10, 15, 20 and 25 nodes. The selected small and 

medium size problem instances from the TR dataset include problems with 10 and 25 nodes. The three 

capacity levels, small, medium and large, are generated by calculating 50%, 70% and 99% of total flow 

to be transported in the network (i.e., ∑ 𝑤𝑖,𝑗𝑖,𝑗 ) respectively. The fixed cost to stablish small, medium 

and large hubs are set to 50(10⁶), 100(10⁶) and 150(10⁶) respectively. In our computational experiments, 

we used three different piecewise-linear concave cost functions with four slopes proposed by Klincewicz 

(2002). The three functions represent moderate (f1), intermediate (f2) and aggressive (f3) scale 

economies and are presented in Table 3. The probabilities of hub failure have been generated from 

Uniform distribution (0.01, 0.05). A total of 18 small and medium size problems are generated based on 

the CAB and TR datasets and the three piecewise linear concave cost functions. The computational 

results are presented in Table 5. In this table, the values under the columns “best solution” and “time” 

are the best solution obtained over 20 runs and the time when this solution has been found within a 

limited computational time. The computational times for problems with 10, 15, 20 and 25 are set to 3, 

10, 20, and 40 seconds respectively. Note that the solutions found for all small instances with 10 nodes 

are optimal solutions as optimality is guaranteed by CPLEX and solutions are confirmed by the proposed 

RVNS.  

RVNS vs HPSO- The performance of the proposed RVNS has been also compared with a hybrid Particle 

Swarm Optimisation (PSO) algorithm (Azizi, 2019). The hybrid algorithm (HPSO) is made of three 

main components: (1) a classical PSO search engine (2) an elite list made of global best solutions and 

(3) a crossover operator. We implemented the HPSO and solved instances of the proposed model for 

reliable hub systems. The results are presented in Table 6. We use the same 18 small and medium size  
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problems generated from CAB and TR datasets and the three piecewise linear concave cost functions 

(see Table 3). The swarm size is set to 25 for all test problems. C1 and C2, the acceleration coefficients 

are set to 2 and the inertia factor, ω, to 1. The HPSO algorithm is also run 20 times for each test problem 

and the computational times are the same used to run the RVNS earlier. The best solutions found by 

each algorithm have been reported in Table 6. The results show that both algorithms performs well in 

solving small instances with 10 nodes. However, for the rest of the problem with 15, 20 and 25 nodes, 

the RVNS clearly outperforms the HPSO. The gaps between the cost of the best solutions found by the 

RVNS and the HPSO increases as the size of the problem increases (see also Figure 7). 

6.2.2  The large problem instances (TR and randomly generated datasets) 

To provide solutions to large instances of the reliable hub location problem with flow dependent cost 

RSAPHLPM, and to further evaluate the performance of the proposed RVNS, we have used the two 

largest instances of the TR dataset with 55 and 81 nodes and also randomly generated larger problems 

with 100, 130, 150 and 170 nodes. The generation is carried out as follows. The flow and unit 

transportation cost between each origin-destination pair have been generated from the Poisson 

(λ=10,000) and Uniform (500, 1000) distributions respectively. The probabilities of hub failure have 

Problem 

instance 
p 

Optimal 

solution* 

Time (RVNS/ 

sec.) 
Hubs & 

allocations 
Capacity 

Inter-hub 

discount factors 

cab10 

3 952124311* <1 
6-6-6-4-6-6-7-7-

6-7 
6(M)4(S)7(S) 0.4-0.8-0.8 

5 962703933* <1 
1-6-6-4-4-6-7-7-

9-7 

1(S)6(S)4(S) 

7(S)9(S) 

1-1-1-1-0.6-1-1-

0.8-0.8-1 

cab15 

3 2740126717* <1 

13-4-4-4-4-4-13-

8-4 13-4-8-13-13-

4 

13(S)4(M)8(S) 0.4-0.6-0.4 

5 2656972877* <1 
1-6-6-4-6-6-7-8-

6-7-4-8-1-1-4 

1(S)6(S)4(S)      

7(S)8(S) 

0.6-0.8-1-1-0.6-1-

0.8-0.8-0.6-0.8 

cab20 

3 5741145734* <1 

4-17-17-4-4-17-

7-7- 4-7-4-7-4-

17-4-7-17- 17-7-

17 

4(S)17(M)7(S) 0.4-0.4-0.4 

5 5350957256* <1 

13-17-17-4-4-4-

13-8- 4-13-4-8-

13-14-4-13- 17-

17-8-17 

13(S)17(M)4 

(S)8(S)14(S) 

0.4-0.6-0.6-0.8-

0.4-0.4-0.4-0.4-

0.6-1 

cab25 

3 8624475034* <1 

4-18-18-4-4-4-4-

4-4- 4-4-12-4-18-

4-4-18- 18-12-18-

4-12-12-18-18 

4(M)18(M) 

12(S) 
0.4-0.4-0.4 

5 7975216282* <1 

4-17-17-4-4-4-7-

7-4- 7-4-12-7-14-

4-7-17- 17-12-17-

4-12-12-14- 17 

4(S)17(M)7(S ) 

12(S)14( S) 

0.4-0.4-0.4-0.6-

0.4-0.4-0.4-0.6-1-

1 

Table 4. Computational results for CPLEX & RVNS: CSAPHLPM problem 
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been generated also from Uniform distribution (0.01, 0.09). Similar to that for the standard datasets, the 

three capacity levels, small, medium and large, are generated by calculating 50%, 70% and 99% of total 

flow to be transported in the network (i.e., ∑ 𝑤𝑖,𝑗𝑖,𝑗 ) respectively. We use the same three different 

piecewise-linear concave cost functions with four slopes presented in Table 3. The computational time 

for problems with 55, 81, 100, 130, 150 and 170 are 90, 120, 900, 1300, 2400 and 4200 seconds 

respectively. To solve these problems the RVNS is run 10 times and the best solution found is recorded. 

Due to space limitation, we only report the value of the objective function and the location of hubs for 

large instances (see Table 7). Details of the solutions could be found in the supplementary file.   

6.2.3. The lower bounds: Solving instances of CF-CSAPHLPM by CPLEX 

In order to comment on the solution quality of the problem instances with more than 10 nodes which 

are obtained by the RVNS algorithm, we have compared our results with the optimal solutions’ lower 

bounds. In section 4.2, we showed that an optimal solution to a CSAPHLPM problem provides a lower 

bound to the optimal solution for the same problem with reliability consideration. The lower Bounds 

(LBs) for the problems up to 25 nodes are found by solving instances of CF-CSAPHLPM formulation 

using CPLEX. To solve instances of CSAPHLPM and RSAPHLPM, the same values for all the 

parameters (e.g., hub capacities) have been used.  

The computational results for the LBs are summarised in Table 8. In this table, for problem instances 

with 10 nodes the “% Gap” represents the gap between the objective function of the solutions returned 

by the RVNS and the CPLEX. For larger instances with 15, 20, and 25 nodes, it represents the gap 

between the objective function of the RVNS solutions and the lower bound of their optimal solutions 

obtained by solving CF-CSAPHLPM formulation. The reported percentage gaps vary from 0 for small 

instances with 10 nodes to a maximum of 4.9% for a problem instance with 25 nodes. In Table 8, we 

also report the percentage of UB improvements. This will be discussed in detail in the following section.  

6.2.4. The upper bounds: Solving Reliable Model with Fixed Discount Factor 

The two proposed models, RF1-RSAPHLPM and RF2-RSAPHLPM, can be easily modified to 

develop a reliable capacitated single allocation hub location problem with multiple capacity levels and 

fixed cost.  As the focus of this paper is on models with flow dependent discount factor, we present only 

a nonlinear model (RF3-RSAPHLPM) for this problem in Appendix B. The purpose of developing and 

presenting RF3-RSAPHLPM is two-fold. First, to estimate the Upper Bounds (UBs) for the optimal 

solutions to all problem instances of reliable model with flow dependent cost. Second to compare 

solutions to the problem with and without a flow dependent discount factor. We proceed by solving 

instances of RF3-RSAPHLPM for extreme or near extreme values of α (e.g., α = 0.99 in f1 and f2; α = 

0.80 in f3). This enables us to estimate upper bounds for all problem instances with 10, 15, 20, 25, 55, 

81, 100, 130, 150 and 170 nodes. The UBs for problem instances with 10 and 15 nodes in Table 8 are 

obtained by CPLEX and RVNS (i.e., they are optimal solutions). For the rest of the problems, the upper 

bounds are the solutions to the RSAPHLPM problems with fixed discount factor provided by the RVNS. 
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The %UB improvement compares the UBs (6th column) and the solutions to the RSAPHLPM with flow 

dependent cost also obtained by the RVNS (3nd column-RVNS).  

Reliable models with and without flow dependent cost. In Figure 8, we depict solutions obtained 

using linear RF2-RSAPHLPM (the model with flow dependent cost) and RF3-RSAPHLPM (the model 

with fixed discount factor). We solved RF3-RSAPHLPM for three values of α (0.8, 0.5 and 0.2) and 

RF2-RSAPHLPM for three concave piecewise linear functions (see Table 3) representing moderate, 

intermediate and aggressive scale economies. Analysing the solutions presented in Figure 8, as expected, 

the value of the objective function decreases as smaller values of α and functions with more aggressive 

slopes are employed. The proposed network topologies in solutions with fixed α appears to be sensitive 

to lower discount factors i.e., higher value of α. In those networks where the value of α decreases from 

0.5 to 0.2 the hub locations, demand allocations and backups remain unchanged. In contrast, it is worth 

noting that in the solutions with flow dependent discount factors, the network topology is more sensitive 

to the use of functions with intermediate to aggressive scale economy (i.e., lower values of slopes).  

Comparing the values of the objective function returned by the model with fixed α and the one with the 

model with flow dependent α, it is clear that the total transportation costs are underestimated in the 

solutions obtained by the model that utilises a fixed α. For example, to calculate the total transportation 

cost of the network (Figure 8-e) in normal operation, the proposed model recommends the use of three 

different slopes in inter-hub links 4-7, 4-9 and 9-7. The utilised slopes for the three inter-hub links are 

0.8, 0.4 and 1.0 respectively. 

As the amount of flow transported in some inter-hub links increases should any of the operating hubs 

in the same network become disrupted, the model adopts new slopes of 0.6, 0.4 and 0.8 to respond to 

the increased flow being transported in those links. Whereas in all solutions provided by the model with 

fixed α, the inter-hub links are treated the same way regardless of the situation (normal or disruption) 

and irrespective of the amount of flow being transported. This is an important observation that needs to 

be considered at the strategic stage of locating the chosen hubs. 

6.2.5.  Trade-off Curves  

The objective function of the proposed reliable model RF2-RSAPHLPM minimises the total 

transportation and hub installation cost in normal (Obj.1) and disrupted (Obj.2) conditions. The model 

could be presented as a bi-objective program that minimises a weighted sum ω×Obj.1+(1-ω)×Obj.2 of 

the two objectives where 0 ≤ ω ≤ 1. Solving the model for different values of ω and a given piecewise 

linear function, a trade-off curve between the network cost in normal and disrupted conditions could be 

generated. For illustration, we constructed three trade-off curves for the RSAPHLPM using the 20 nodes 

problem instance from CAB dataset and the three piecewise linear functions of f1, f2 and f3. The results 

are depicted in Figure 9. The horizontal and vertical axes outline the (expected) network cost in normal 

and disrupted conditions respectively. The first point (from left) on each curve represent a solution to 

RSAPHLPM with ω=1 and the last point represent a solution with ω=0.05. The three trade-off curves 
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Problem 

instance 

 

Best/optimal 

solution* 

Time 

(sec) 
 

Hubs & assignments 

backup hubs 

Capacity 

 Normal 

[hub(size)] 
Disruption 

[hub(size)- if 

disrupted] 

cab10 

f1 
 921381261* <1 4  9  9  4  4  9  7  4  9  7 

9  4  4  0  9  4  0  7  0  4 

4(S)9(S)7(S) 4(M)-9;4(S)-7;7(S)-

4;7(S)-9;9(S)-4;9(S)-7 

f2 
 904651569* <1 4  9  9  4  4  9  7  4  9  7 

9  4  4  0  9  4  0  7  0  4 

4(S)9(S)7(S) 4(M)-9;4(S)-7;7(S)-

4;7(S)-9;9(S)-4;9(S)-7 

f3 
 845120640* <1 4  6  6  4  6  6  7  7  6  7 

6  4  4  0  4  0  0  4  4  4 

4(S)6(S)7(S) 4(M)-6;4(S)-7;7(S)-

4;7(S)-6;6(S)-4;6(S)-7 

cab15 

f1 

 2901237982 5.8 5  5  5  4  5  5  11  11  4  

11  11  11  5  5  4 

4  4  4  0  0  4  5  4  5  5  0  

4  11  4  11 

5(S)4(S)11(S) 5(S)-4;5(S)-11;4(M)-

5;4(S)-11(S);11(S)-

5;11(S)-4 

f2 

 2779810667 3.2 13  4  4  4  13  4  13  8  4  

13  13  8  13  13  4 

4  13  13  0  4  13  8  0  13  

8  4  13  0  4  13 

13(S)4(S)8(S) 13(M)-4;13(S)-

8;4(M)-13;4(S)-

8;8(S)-13;8(S)-4 

f3 

 2592554585 5.0 13  4  4  4  13  4  13  8  4  

13  13  8  13  13  4  

4  13  13  0  4  13  8  0  13  

8  4  13  0  4  13 

13(S)4(S)8(S) 13(M)-4;13(S)-

8;4(M)-13;4(S)-

8;8(S)-13;8(S)-4 

cab20 

f1 

 6451879841 12.3 4  18  18  4  4  4  7  7  4  7  

4  7  4  18  4  7  18  18  7  

18 

18  4  4  0  18  18  0  4  18  

4  7  4  18  4  18  4  4  0  4  

4 

4(S)18(S)7(S) 4(L)-18;4(S)-

7;18(M)-4;18(M)-

7;7(S)-4;7(S)-18 

f2 

 5809183976 11.8 4  18  18  4  4  4  7  7  4  7  

4  7  4  18  4  7  18  18  7  

18  

18  4  4  0  18  18  0  4  18  

18  7  4  7  4  18  4  4  0  4  

4 

4(S)18(S)7(S) 4(L)-18;4(S)-

7;18(M)-4;18(S)-

7;7(S)-4;7(S)-18 

f3 

 5253730319 23.5 4  18  18  4  4  4  7  7  4  7  

4  7  7  18  4  7  18  18  7  

18 

7  4  4  0  18  18  0  4  18  

4  7  4  4  7  7  4  4  0  4  4 

4(S)18(S)7(S) 4(M)-18;4(S)-

7;18(M)-4;18(S)-

7;7(S)-4;7(S)-18 

cab25 

f1 

 10104901940 10.0 4  2  2  4  4  2  4  4  4  4  4  

12  4  2  4  4  2  2  12  2  4  

12  12  2  2  

2  0  4  0  2  4  2  12  2  2  

2  0  12  4  2  2  4  4  4  4  

2  4  4  4  4 

4(S)2(S)12(S) 4(L)-2;4(S)-12;2(M)-

4;2(S)-12;12(S)-

4;12(S)-2 

f2 

 8857144503 26.12 4  18  18  4  4  4  4  4  4  4  

4  12  4  18  4  4  18  18  

12  18  4  12  12  18  18 

18  4  4  0  18  18  18  18  

18  18  18  0  18  4  18  18  

4  0  18  4  18  4  18  4  4 

4(S)18(S) 12(S) 4(L)-18;4(S)-

12;18(L)-4;18(S)-

12;12(S)-4;12(S)-18 

f3 

 7780167054 19.8  4  18  18  4  4  4  4  4  4  

4  4  12  4  18  4  4  18  18  

12  18  4  12  12  18  18 

18  4  4  0  18  18  18  18  

18  18  18  0  18  4  12  18  

4  0  4  4  18  4  4  4  4 

4(S)18(S) 12(S) 4(L)-18;4(S)-

12;18(M)-4;18(S)-

12;12(S)-4;12(S)-18 

Table 5.   Computational results for RVNS: RSAPHLPM (small and medium instances) 
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Table 5. continue 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem 

instance 
 

 

Best/optimal 

solution* 

Time 

(sec) 
 

Hubs & assignments 

backup hubs 

Capacity 

 Normal 

[hub(size)] 
Disruption 

[hub(size)- if 

disrupted] 

tr10 

f1 

 811736069* 2.7 1  2  2  1  5  2  1  5  1  5 

0  0  5  5  0  5  5  1  5  2 

1(S)2(S)5(S) 1(S)-2;1(S)-5;2(S)-

1;2(S)-5;5(S)-1;5(S)-

2 

f2 

 784598185* <1 1  2  2  1  5  2  1  1  1  2 

0  0  5  5  0  5  5  5  5  5 

1(S)2(S)5(S) 1(S)-2;1(S)-5;2(S)-

1;2(S)-5;5(S)-1;5(S)-

2 

f3 

 715911193* <1 1  2  2  1  1  2  7  1  7  2   

0  0  1  7  2  1  0  2  2  1 

1(S)2(S)7(S) 1(M)-2;1(S)-7;2(M)-

1;2(S)-7;7(S)-1;7(S)-

2 

tr25 

f1 

 20009637631 17.7 1  1  3  3  15  15  1  15  1  

1  1  15  15  3  15  3  15  

15  1  1  3  15  1  3  15 

0  3  0  15  1  3  3  3  3  3  

3  3  3  1  0  1  1  3  3  3  

15  3  3  15  3 

1(S)3(S)15(S) 1(S)-3;1(S)-15;3(S)-

1;3(M)-15;15(S)-

1;15(M)-3 

f2 

 17011148770 22.5 1  1  3  3  15  15  1  15  1  

1  1  15  15  3  15  3  15  

15  1  1  3  15  1  3  15 

0  15  0  15  3  3  3  3  3  

3  3  3  3  1  0  1  3  3  3  

3  15  3  3  15  3 

1(S)3(S)15(S) 1(S)-3;1(S)-15;3(S)-

1;3(M)-15;15(M)-

1;15(M)-3 

f3 

 14885007407 22.1 9  9  3  3  15  15  9  15  9  

9  9  15  15  3  15  3  15  

15  9  9  3  15  9  3  15 

3  3  0  15  3  3  3  3  0  3  

3  3  3  9  0  15  3  3  3  

15  15  9  3  9  3 

9(S)3(S)15(S) 9(S)-3;9(S)-15;3(S)-

9;3(M)-15;15(M)-

3;15(M)-9 

Problem 

instance 

 
RVNS  

 
HPSO 

  %Cost 

difference 

 
Best/optimal 

solution 

Time 

(sec) 

 

 Best/optimal 

solution 

Time 

(sec) 

 

  

cab10 

f1  921381261 <1  921381261 <1  0 

f2  904651569 <1  904651569 <1  0 

f3  845120640 <1  845120640 <1  0 

tr10 

f1  811736069 2.7  811736069 1.7  0 

f2  784598185 <1  784598185 <1  0 

f3  715911193 <1  715911193 <1  0 

cab15 

f1  2901237982 5.8  2903024099 7.4  0.06 

f2  2779810667 3.2  2819029214 7.8  1.40 

f3  2592554585 5.0  2650218030 2.4  2.18 

cab20 

f1  6451879841 12.3  6586574486 15.8  2.04 

f2  5809183976 11.8  6028691753 16.6  3.60 

f3  5253730319 23.5  5506677408 20.0  4.59 

 f1  10112461057 9.7  11038422686 37.8  8.39 

cab25 f2  8859484032 27.4  9485522693 31.37  6.60 

 f3  7775056414 23.1  8480890437 40  8.30 

 f1  20009637631 17.7  21740871911 40  7.96 

tr25 f2  17011148770 22.5  19111442931 37.6  10.99 

 f3  14885007407 22.1  17449319705 40.0  14.70 

Table 6.   Computational results RVNS vs HPSO: RSAPHLPM problem  
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illustrate remarkable results. The curves are clearly “steep” indicating a large reduction in Obj.2 (i.e., 

expected network cost) could be achieved with only small increase in Obj.1 (i.e., the normal network 

cost). The first 10 solutions in the curve representing solutions with f1 piecewise linear function (starting 

with the solution obtained with ω=1) are listed in Table 9. Managers are unlikely to accept large 

increases in day-to-day operating cost (solutions in right of the trade-off curves) to improve  network 

reliability but might be willing to spend 2% more to reduce the expected network cost by 32% (9th 

solution in Table 9).   

 

 

Problem instance 

 

Best solution found 
Time (sec) 

 
Hubs 

 

tr55 f1  34177996143 70 34  4  30   

 f2  29198978757 52 34  4  30   

 f3  25605287546 69 34  4  26 

tr81 f1  60658500004 118 38  3  41   

 f2  53032302897 54  46  6  41   

 f3  47167485137 21 44  6  41   

rgp100 

f1  142305033291 866 5  3  100  52  63   

f2  136160884921 883 20  4  8  76  80   

f3  127844345945 836 1  3  79  53  52   

rgp130 

f1  248860360811 1299 79  94  112  12  37  50  20   

f2  228386662030 1300 26  71  37  106  56  20   11   

f3  215060898295 1300 10  94  5  118  127  13  74  

rgp150 

f1  316905136914 4200 119  105  122  106  11  111  69  95   66   

f2  296082212247 2075 11  13  122  89  83  86  119  116  87  

f3  277993079733 2400 57  92  68  32  27  86  82  149  30   

rgp170 

f1  390287053301 4200 77  131  108  7  156  113  64  123  22  33  146 

f2  369811366515 4200 94  155  136  71  27  108  163  151  32  61 164  

f3  349808328948 4200 94  92  124  19  5  123  93  88  126  47 146   

Table 7. Summary of the computational results for the RVNS: RSAPHLPM (large instances) 

Figure 7. Comparison of the solution costs obtained by the RVNS and HPSO 
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Problem instance 

 RVNS CPLEX Lower Bound  
(CF-

CSAHPLPM) 

Upper 

Bound 
( RF3-

RSAPHLPM ) 

%GAP(

RVNS vs 

CPLEX/ 

LB) 

%UB 
Improvement 

 

cab10 

f1  921381261* 921381261*   908463496 923817005 0 - 

f2  904651569* 904651569* 890999439 923817005 0 - 

f3  845120640* 845120640* 829246258 866641210 0 - 

tr10 

f1  811736069* 811736069* 802573860 823026752 0 - 

f2  784598185* 784598185* 774825101 823026752 0 - 

f3  724133151* 724133151* 707446344 765220126 0 - 

cab15 

f1  2901237982 - 2868296327 2929587177 1.1 1.0 

f2  2779810667 - 2736792284 2929587177 1.5 5.1 

f3  2592554585 - 2528995100 2780188705 2.5 6.7 

cab20 

f1  6451879841 - 6358396687 6782480233 1.4 4.9 

f2  5809183976 - 5662188829 6782480233 2.5 14.4 

f3  5253730319 - 5007619054 6266798949 4.7 16.2 

cab25 

f1  10104901940 - 9868585775 10723982767 2.4 5.7 

f2  8857144502 - 8524475034 10723982767 3.8 17.4 

f3  7780167054 - 7391365540 9807200045 4.9 20.7 

tr25 

f1  20009637631 - 19690928564 21954170964 1.6 8.9 

f2  17011148770 - 16627593981 21954170964 2.3 22.5 

f3  14885007407 - 14343357648 19899361591 3.6 25.2 

 f1  34177996143 - - 37100361827 - 7.9 

tr55 f2  29198978757 - - 37100361827 - 21.3 

 f3  25605287546 - - 34117994191 - 25.0 

 f1  60658500004 - - 64850309011 - 6.5 

tr81 f2  53032302897 - - 64850309011 - 18.2 

 f3  47167485137 - - 60569224181 - 22.1 

 f1  142305033291 - - 143675567040 - 1.0 

rgp100 f2  136160884921 - - 143675567040 - 5.2 

 f3  127844345945 - - 142333944538 - 10.2 

 f1  248860360811 - - 262035124539 - 5.0 

rgp130 f2  228386662030 - - 262035124539 - 12.8 

 f3  215060898295 - - 256174176743 - 16.0 

c) α = 0.2; obj: 670623945 b) α = 0.5; obj: 779505164 

d) f1; obj: 921381261 

 

f) f3 ; obj: 845120640 
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a) α = 0.8; obj: 880935159 
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Figure 8.    Comparison of networks made by models with and without flow dependent discount factors 

 

e) f2 ; obj: 904651569 

 

Table 8.   Estimated lower and upper bounds for all benchmark problems: RSAPHLPM problem 
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7.  Conclusions and Suggestions 

In this research, we investigate strategies for the design of reliable and resilient hub and spoke systems 

under random hub failure. In our approach, every demand point in the network will have a backup hub 

and backup route designed to maintain network operations if a hub failure occurs. In case of network 

disruption, the existing hubs may need to cope with a significant amount of additional flow that needed 

to be rerouted through these hubs. This fact highlights the importance of available hub capacities in 

Problem instance 

 RVNS CPLEX Lower Bound  
(CF-

CSAHPLPM) 

Upper 

Bound 
( RF3-

RSAPHLPM ) 

%GAP(

RVNS vs 
CPLEX/ 

LB) 

%UB 
Improvement 

 

 f1  316905136914 - - 363026747683 - 12.7 

rgp150 f2  296082212247 - - 363026747683 - 18.4 

 f3  277993079733 - - 355059496381 - 21.7 

 f1  390287053301 - - 477780897813 - 18.3 

rgp170 f2  369811366515 - - 477780897813 - 22.6 

 f3  349808328948 - - 466130632708 - 25.0 

Solution Obj.1 (×107) Obj.2 (×107) %Increase 

Obj.1 

%Decrease 

Obj.2 

1 553.53 125.58 - - 

2 553.53 116.32 0.00 7.37 

3 553.53 116.37 0.00 7.33 

4 554.94 106.62 0.25 15.09 

5 554.94 106.57 0.25 15.13 

6 554.94 106.62 0.25 15.09 

7 554.94 106.89 0.25 14.88 

8 554.94 106.75 0.25 14.99 

9 566.84 84.96 2.35 32.34 

10 584.87 62.18 5.36 50.49 

Table 9.  First 10 solutions in trade-off curve with “piecewise function f1” 

Figure 9.  Trade-off curves for 20 nodes problem from CAB dataset 

Table 8. Continued 
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disruption situation especially in cases where backup facilities and rerouting the traffic are considered. 

In our proposed approach we model reliable hub and spoke systems with multiple capacity levels. Our 

proposed models differentiate between the required hub capacities in normal and in disruption cases. 

This will allow managers to estimate the lowest and the highest level of capacities needed to satisfy both 

existing and the expected demand should any hub failure occur in future.  

Unlike other studies that concern reliability and resilience within the context of hub and spoke, we 

propose models that measure the inter-hub transportation cost using flow dependent discount factors. 

As the volume of the flow being transported/transmitted on inter-hub links may differ in normal 

operation and under disruption, our approach adds an invaluable attribute by considering situation-

dependent discount factors. This is achieved by having one for each link under normal operations and 

another for the case of disruption. The proposed linear model could solve small instances using CPLEX. 

For larger instances, we build a simple but efficient RVNS based algorithm that considers the insight of 

the problem.  We present computational results for existing datasets (up to 81 nodes) and newly 

generated problem instances up to 170 nodes. We also highlight the efficiency and effectiveness of our 

proposed algorithm by  

(1) solving instances of F1-CSAPHLPM (i.e., single allocation p-hub location problem with multiple 

capacity levels and flow discount factors) all to optimality in a very short computing times (2) comparing 

its performance against a hybrid PSO (HPSO) and (3) reporting tight (i.e., relatively very low) gaps 

between our RVNS results and the lower bounds for medium instances with 25 nodes, as well as gaps 

based on lower and upper bounds for the larger instances. 

We provide an interesting comparison of the networks obtained from formulations with and without 

flow dependent discount factors. The result of our analysis reinforces previous research finding in that 

in solutions with fixed discount factors the actual network cost is underestimated. We also highlight an 

important observation that the optimal solution of a reliable hub and spoke problem with and without 

flow dependent discount factor may differ significantly in terms of hub location, demand allocation and/ 

backup selections and all together. This is an important ad strategic fact that senior management could 

not ignore. We also conduct a scenario analysis by further modifying the objective of the proposed 

reliable model to minimise the weighted sum of two objectives (i.e., the network cost in normal and in 

disrupted conditions). A plot of the trade-off curves for a problem instance with 20 nodes is used as an 

example to empirically demonstrate that significant improvements in reliability could be achieved with 

small increase in the network cost in normal condition.    

The following research avenues would be worthwhile exploring. One way would be to develop 

efficient exact methods that could be used to solve large instances of the problem. This could be achieved 

by introducing efficient valid inequalities. Furthermore, the way the discount factor is expressed in our 

formulations is a good and correct representation of economies of scale though it leads to intractable 

model especially for large instances. The use of e.g., linear expressions that could properly characterise 

and model economies of scale would reduce model’s complexity and increase its tractability. In term of 
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heuristic search we adopted a variation of reduced VNS in a simplest form but this metaheuristic could 

be made stronger by generating for each neighbourhood pk neighbours instead (k=1,…,kmax) where pk 

needs to be identified adaptively. The proposed RVNS could be also hybridised even more with large 

neighbourhood search resulting in a more powerful adaptive search engine.   
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Appendix A. Model transformation and RF2-RSAPHLPM nonlinear formulation 

Transformation of the quadratics terms - Beginning with the first quadratic term in the objective 

function. This expression calculates the transportation cost of the flow in spoke links in normal 

operations.  It is written as 

∑∑∑∑∑𝑤𝑖𝑗
𝑗𝑛𝑚𝑘𝑖

(𝑐𝑖𝑘 + 𝑐𝑚𝑗)𝑥𝑖𝑘𝑚𝑗𝑧𝑛𝑛𝑞𝑛               

Now let define the continuous axillary variable 𝐷𝑖𝑗𝑛
1  as  

𝐷𝑖𝑗𝑛
1 =∑∑𝑤𝑖𝑗

𝑚𝑘

(𝑐𝑖𝑘 + 𝑐𝑚𝑗)𝑥𝑖𝑘𝑚𝑗           ∀ 𝑖, 𝑗, 𝑛      (1 − 𝐴) 

Then the above expression in the objective function could be re-written as 

   ∑∑∑𝐷𝑖𝑗𝑛
1

𝑛𝑗𝑖

𝑧𝑛𝑛𝑞𝑛 

Similarly, each of the following quadratic terms in the objective function and those in 

constraints could be replaced by a product of a continuous and binary variables as shown below 

in order of their appearance in the model 

∑∑∑∑𝑐𝑘𝑚
𝑛𝑚

(𝑎𝑘𝑚
𝑟 𝑔𝑘𝑚

𝑟 + 𝑏𝑘𝑚
𝑟 𝑦𝑘𝑚

𝑟 )

𝑘𝑟

𝑧𝑛𝑛𝑞𝑛 ≡∑∑(𝑇𝑛
𝑟 + 𝑆𝑛

𝑟)

𝑛𝑟

𝑧𝑛𝑛𝑞𝑛                              

∑∑∑𝐹𝑘
𝑙

𝑛𝑙∈𝐿𝑘

ℎ𝑘
𝑙 𝑧𝑛𝑛𝑞𝑛 

𝑘

≡∑∑∑Ω𝑘
𝑙

𝑛𝑙∈𝐿𝑘

𝑧𝑛𝑛𝑞𝑛                                                                          
𝑘

 

∑∑ ∑∑∑𝑤𝑖𝑗
𝑗𝑛𝑚≠𝑛𝑘≠𝑛𝑖

(𝑐𝑖𝑘 + 𝑐𝑚𝑗)𝑥𝑖𝑘𝑚𝑗𝑧𝑛𝑛𝑞𝑛 ≡∑∑∑𝐷𝑖𝑗𝑛
2

𝑛𝑗𝑖

𝑧𝑛𝑛𝑞𝑛                         

∑∑∑∑∑𝑤𝑖𝑗
𝑗𝑛𝑚𝑘

𝑘≠𝑚
𝑖
𝑖≠𝑘

(𝑐𝑖𝑛 + 𝑐𝑚𝑗)𝑢𝑖𝑘𝑛𝑧𝑗𝑚𝑞𝑘

≡∑∑∑∑∑(𝑐𝑖𝑛 + 𝑐𝑚𝑗)

𝑗𝑛𝑚𝑘
𝑘≠𝑚

𝑖
𝑖≠𝑘

𝑣𝑖𝑘𝑛𝑗𝑧𝑗𝑚𝑞𝑘                                               

∑∑∑∑∑𝑤𝑖𝑗
𝑗𝑛𝑚𝑘𝑖

(𝑐𝑖𝑛 + 𝑐𝑚𝑗)𝑢𝑖𝑘𝑛𝑢𝑗𝑘𝑚𝑞𝑘

≡∑∑∑∑∑(𝑐𝑖𝑛 + 𝑐𝑚𝑗)

𝑗𝑛𝑚𝑘𝑖

𝑣𝑖𝑘𝑛𝑗𝑢𝑗𝑘𝑚𝑞𝑘                                              

∑∑𝑤𝑖𝑗
𝑗𝑖

𝑥𝑖𝑛𝑚𝑗  𝑧𝑘𝑘 ≡ 𝐻𝑛𝑚𝑧𝑘𝑘                                                                                                 

∑∑𝑤𝑖𝑗
𝑗𝑖

𝑧𝑖𝑛𝑧𝑘𝑘 ≡ 𝐵𝑛𝑧𝑘𝑘                                                                                                           
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∑∑𝑤𝑖𝑗
𝑗𝑖

𝑢𝑗𝑘𝑚  𝑧𝑖𝑛 ≡∑𝐸𝑛𝑗
𝑗

𝑢𝑗𝑘𝑚                                                                                         

Where 

𝐷𝑖𝑗𝑛
2 = ∑ ∑ 𝑤𝑖𝑗

𝑚≠𝑛𝑘≠𝑛

(𝑐𝑖𝑘 + 𝑐𝑚𝑗)𝑥𝑖𝑘𝑚𝑗           ∀ 𝑖, 𝑗, 𝑛                                                             (2 − 𝐴) 

Ω𝑘
𝑙 = 𝐹𝑘

𝑙ℎ𝑘
𝑙             ∀ 𝑘, 𝑙                                                                                                                  (3 − 𝐴) 

𝑇𝑛
𝑟 =∑∑𝑐𝑘𝑚

𝑚𝑘

𝑎𝑘𝑚
𝑟 𝑔𝑘𝑚

𝑟             ∀𝑟, 𝑛                                                                                         (4 − 𝐴) 

𝑆𝑛
𝑟 =∑∑𝑐𝑘𝑚

𝑚𝑘

𝑏𝑘𝑚
𝑟 𝑦𝑘𝑚

𝑟              ∀𝑟, 𝑛                                                                                         (5 − 𝐴) 

𝐻𝑛𝑚 =∑∑𝑤𝑖𝑗
𝑗𝑖

𝑥𝑖𝑛𝑚𝑗     ∀ 𝑛,𝑚                                                                                            (6 − 𝐴) 

𝑣𝑖𝑘𝑛𝑗 = 𝑤𝑖𝑗𝑢𝑖𝑘𝑛                            ∀ 𝑖, 𝑘, 𝑛, 𝑗                                                                               (7 − 𝐴) 

𝐵𝑛 =∑∑𝑤𝑖𝑗
𝑗𝑖

𝑧𝑖𝑛         ∀𝑛                                                                                                      (8 − 𝐴) 

𝐸𝑛𝑗 =∑𝑤𝑖𝑗
𝑖

𝑧𝑖𝑛   ∀𝑗, 𝑛 ≠ 𝑗                                                                                                      (9 − 𝐴) 

The improved nonlinear RF2-RSAPHLPM formulation 

𝑚𝑖𝑛(∑∑∑∑𝑤𝑖𝑗(𝑐𝑖𝑘 + 𝑐𝑚𝑗
𝑗𝑚𝑘𝑖

)𝑥𝑖𝑘𝑚𝑗 −∑∑∑𝐷𝑖𝑗𝑛
1

𝑛𝑗𝑖

𝑧𝑛𝑛𝑞𝑛  + 

∑∑∑𝑐𝑘𝑚
𝑚𝑘

(𝑎𝑘𝑚
𝑟 𝑔𝑘𝑚

𝑟 + 𝑏𝑘𝑚
𝑟 𝑦𝑘𝑚

𝑟 )

𝑟

− (∑∑(𝑇𝑛
𝑟 + 𝑆𝑛

𝑟)

𝑛𝑟

𝑧𝑛𝑛𝑞𝑛 ) + 

∑∑𝐹𝑘
𝑙

𝑙∈𝐿𝑘𝑘

ℎ𝑘
𝑙 −∑∑∑Ω𝑘

𝑙

𝑛𝑙∈𝐿𝑘

𝑧𝑛𝑛𝑞𝑛 
𝑘

) + 

(∑∑∑𝐹𝑘
𝑙

𝑙𝑛
𝑛≠𝑘

𝜓𝑛𝑘
𝑙

𝑘

𝑞𝑘 +∑∑∑𝐷𝑖𝑗𝑛
2

𝑛𝑗𝑖

𝑧𝑛𝑛𝑞𝑛 +             

2(∑∑∑∑∑(𝑐𝑖𝑛 + 𝑐𝑚𝑗)

𝑗𝑛𝑚𝑘
𝑘≠𝑚

𝑖
𝑖≠𝑘

𝑣𝑖𝑘𝑛𝑗𝑧𝑗𝑚𝑞𝑘) + 

∑∑∑∑∑(𝑐𝑖𝑛 + 𝑐𝑚𝑗)

𝑗𝑛𝑚𝑘𝑖

𝑣𝑖𝑘𝑛𝑗𝑢𝑗𝑘𝑚𝑞𝑘 + 
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∑ ∑∑∑𝑐𝑚𝑛
𝑟𝑘

𝑘≠𝑚

(𝑎𝑚𝑛
𝑟 𝑓

𝑚𝑛𝑘
𝑟 + 𝑏𝑚𝑛

𝑟 Θ𝑚𝑛𝑘
𝑟 )

𝑛
𝑛≠𝑘

𝑞𝑘
𝑚
𝑚≠𝑛

+                                        

∑∑𝜑𝑖𝑗
𝑗𝑖

𝑤𝑖𝑗(𝑞𝑖𝑧𝑖𝑖 + 𝑞𝑗𝑧𝑗𝑗))                                                                                                (10 − 𝐴) 

s.t 

(2)-(11); (2-A); (1-A)-(9-A) 

∑𝑢𝑖𝑘𝑛 = 𝑧𝑖𝑘        ∀𝑘, 𝑖 ≠ 𝑘 

𝑛≠𝑘

                                                                                                   (11 − 𝐴) 

𝑢𝑖𝑘𝑛 ≤ 𝑧𝑛𝑛         ∀𝑘, 𝑛, 𝑖 ≠ 𝑘                                                                                                     (12 − 𝐴) 

∑𝜓𝑛𝑘
𝑙

𝑙∈𝐿𝑘

= 𝑥𝑛𝑛𝑘𝑘        ∀ 𝑘, 𝑛                                                                                                      (13 − 𝐴) 

𝑓𝑚𝑛𝑘
𝑟 ≤ Θ𝑚𝑛𝑘

𝑟
∑∑𝑤𝑖𝑗

𝑗𝑖

                ∀𝑘,𝑚, 𝑟, 𝑛 ≠ 𝑚 ≠ 𝑘                                                      (14 − 𝐴) 

𝐵𝑛𝑧𝑘𝑘 +∑∑𝑤𝑖𝑗𝑢𝑖𝑘𝑛
𝑗
𝑗≠𝑘

𝑖
𝑖≠𝑘

≤  ∑ Γ𝑛
𝑙

𝑙∈𝐿𝑘

𝜓𝑛𝑘
𝑙       ∀𝑛, 𝑘                                                                (15 − 𝐴) 

∑ 𝑓
𝑚𝑛𝑘
𝑟

𝑟

= 𝐻𝑛𝑚𝑧𝑘𝑘 +∑∑𝑣𝑖𝑘𝑛𝑗
𝑗𝑗

𝑧𝑗𝑚 +∑𝐸𝑛𝑗
𝑗

𝑢𝑗𝑘𝑚  + 

∑∑𝑣𝑖𝑘𝑛𝑗
𝑗𝑗

𝑢𝑗𝑘𝑚                       ∀𝑘,𝑚, 𝑛 ≠ 𝑚 ≠ 𝑘 ∈ 𝑁                                                       (16 − 𝐴) 

∑Θ𝑚𝑛𝑘
𝑟

𝑟

≤ 𝑥𝑛𝑛𝑚𝑚  𝑧𝑘𝑘                ∀𝑘,𝑚, 𝑛 ≠ 𝑚 ≠ 𝑘                                                            (17 − 𝐴) 

𝑧𝑖𝑘, ℎ𝑘
𝑙  , 𝜓𝑛𝑘

𝑙 , 𝑦𝑘𝑚
𝑟 , Θ𝑚𝑛𝑘

𝑟 , 𝑥𝑖𝑘𝑚𝑗 , 𝑢𝑖𝑘𝑛 ∈ {0,1}    ∀𝑖, 𝑛,𝑚, 𝑘, 𝑟, 𝑙                                            (18 − 𝐴) 

𝐷𝑖𝑗𝑛
2 , 𝑔𝑘𝑚

𝑟 , 𝑓𝑚𝑛𝑘
𝑟 ≥ 0                  ∀𝑟𝑘,𝑚, 𝑛 ≠ 𝑚 ≠ 𝑘                                                                    (19 − 𝐴) 

𝐷𝑖𝑗𝑛
1 , 𝐻𝑛𝑚,Ω𝑘

𝑙 , 𝑇𝑛
𝑟 , 𝑆𝑛

𝑟 , 𝐵𝑛, 𝑣𝑖𝑘𝑛𝑗 ≥ 0        ∀𝑖, 𝑗, 𝑘, 𝑛, 𝑟, 𝑙                                                           (20 − 𝐴)  

𝐸𝑛𝑗 ≥ 0     ∀𝑗, 𝑛 ≠ 𝑗                                                                                                                    (21 − 𝐴) 

 

Equalities (1-A)-(9-A) defines the auxiliary variables used to transfer the original model 

(Appendix I) into a convex MINLP. Constraints (18A)-(21-A) enforce the binary condition and 

indicate the non-negativity restriction of the utilised variables. 
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Appendix B. Reliable single allocation p-hub location problem with multiple capacity levels 

and fixed discount factor: RF3-RSAPHLPM nonlinear formulation. 

𝑚𝑖𝑛(∑∑∑∑𝑤𝑖𝑗(𝑐𝑖𝑘 + 𝑐𝑚𝑗
𝑗𝑚𝑘𝑖

)𝑥𝑖𝑘𝑚𝑗 +∑∑𝛼𝑐𝑘𝑚
𝑚𝑘

𝑔𝑘𝑚 +  

∑∑𝐹𝑘
𝑙

𝑙∈𝐿𝑘𝑘

ℎ𝑘
𝑙 )  (1 − (∑𝑞𝑛𝑧𝑛𝑛

𝑛

)) + 

(∑∑∑𝐹𝑘
𝑙

𝑙𝑛
𝑛≠𝑘

𝜓𝑛𝑘
𝑙

𝑘

𝑞𝑘 +∑∑ ∑∑∑𝑤𝑖𝑗
𝑗𝑛𝑚≠𝑛𝑘≠𝑛𝑖

(𝑐𝑖𝑘 + 𝑐𝑚𝑗)𝑥𝑖𝑘𝑚𝑗𝑧𝑛𝑛𝑞𝑛 +             

2(∑∑∑∑∑𝑤𝑖𝑗
𝑗𝑛𝑚𝑘

𝑘≠𝑚
𝑖
𝑖≠𝑘

(𝑐𝑖𝑛 + 𝑐𝑚𝑗)𝑢𝑖𝑘𝑛𝑧𝑗𝑚𝑞𝑘)+ 

∑∑∑∑∑𝑤𝑖𝑗
𝑗𝑛𝑚𝑘𝑖

(𝑐𝑖𝑛 + 𝑐𝑚𝑗)𝑢𝑖𝑘𝑛𝑢𝑗𝑘𝑚𝑞𝑘 + 

∑ ∑ ∑ 𝛼𝑐𝑛𝑚
𝑛
𝑛≠𝑘

𝑚
𝑚≠𝑛

(𝑓
𝑚𝑛𝑘
)

𝑘
𝑘≠𝑚

𝑞𝑘 +∑∑𝜑𝑖𝑗
𝑗𝑖

𝑤𝑖𝑗(𝑞𝑖𝑧𝑖𝑖 + 𝑞𝑗𝑧𝑗𝑗)

)

 
 
                                        (1 − 𝐵) 

s.t 

∑𝑧𝑖𝑘
𝑘

= 1        𝑖 ∈ 𝑁                                                                                                                    (2 − 𝐵) 

∑𝑧𝑘𝑘
𝑘

= 𝑝                                                                                                                                      (3 − 𝐵) 

𝑧𝑖𝑘 ≤ 𝑧𝑘𝑘         𝑖, 𝑘 ∈ 𝑁                                                                                                                 (4 − 𝐵) 

∑𝑥𝑖𝑘𝑚𝑗
𝑚

= 𝑧𝑖𝑘         𝑖, 𝑗, 𝑘 ∈ 𝑁                                                                                                    (5 − 𝐵) 

∑𝑥𝑖𝑘𝑚𝑗
𝑘

= 𝑧𝑗𝑚          𝑖, 𝑗, 𝑚 ∈ 𝑁                                                                                                 (6 − 𝐵) 

∑ℎ𝑘
𝑙 = 𝑧𝑘𝑘

𝑙

          𝑘 ∈ 𝑁                                                                                                             (7 − 𝐵)  

∑𝑢𝑖𝑘𝑛 = 𝑧𝑖𝑘        𝑖, 𝑖 ≠ 𝑘 , 𝑘

𝑛≠𝑘

∈ 𝑁                                                                                             (8 − 𝐵) 

𝑢𝑖𝑘𝑛 ≤ 𝑧𝑛𝑛          𝑖, 𝑖 ≠ 𝑘, 𝑘, 𝑛 ∈ 𝑁                                                                                             (9 − 𝐵) 
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∑𝜓𝑛𝑘
𝑙

𝑙∈𝐿𝑘

= 𝑥𝑛𝑛𝑘𝑘         𝑘, 𝑛 ∈ 𝑁                                                                                               (10 − 𝐵) 

(∑∑∑𝑤𝑖𝑗
𝑚𝑗

𝑥𝑖𝑘𝑚𝑗
𝑖

) ≤   ∑ Γ𝑘
𝑙

𝑙∈𝐿𝑘

ℎ𝑘
𝑙        𝑘 ∈ 𝑁                                                                  (11 − 𝐵) 

∑∑𝑤𝑖𝑗
𝑗𝑖

𝑥𝑖𝑛𝑘𝑘 +∑∑𝑤𝑖𝑗𝑢𝑖𝑘𝑛
𝑗
𝑗≠𝑘

𝑖
𝑖≠𝑘

≤  ∑ Γ𝑛
𝑙

𝑙∈𝐿𝑘

𝜓𝑛𝑘
𝑙       𝑛, 𝑘 ∈ 𝑁                                        (12 − 𝐵) 

𝑔𝑘𝑚 =∑∑𝑤𝑖𝑗
𝑗𝑖

𝑥𝑖𝑘𝑚𝑗           𝑘 ≠ 𝑚 ∈ 𝑁                                                                                 (13 − 𝐵) 

𝑓𝑚𝑛𝑘 =∑∑𝑤𝑖𝑗
𝑗𝑖

𝑥𝑖𝑛𝑚𝑗  𝑧𝑘𝑘 +∑∑𝑤𝑖𝑗
𝑗𝑖

𝑢𝑖𝑘𝑛  𝑧𝑗𝑚 + ∑∑𝑤𝑖𝑗
𝑗𝑖

𝑢𝑗𝑘𝑚  𝑧𝑖𝑛 +      

∑∑𝑤𝑖𝑗
𝑗𝑗

𝑢𝑖𝑘𝑛𝑢𝑗𝑘𝑚    𝑛 ≠ 𝑚 ≠ 𝑘 ∈ 𝑁                                                                                  (14 − 𝐵) 

𝑧𝑖𝑘, ℎ𝑘
𝑙  , 𝜓𝑛𝑘

𝑙 , 𝑥𝑖𝑘𝑚𝑗 , 𝑢𝑖𝑘𝑛 ∈ {0,1}    ∀𝑖, 𝑛,𝑚, 𝑘, 𝑟, 𝑙                                                                 (15 − 𝐵) 

𝑔𝑘𝑚, 𝑓𝑚𝑛𝑘 ≥ 0                  ∀𝑟, 𝑘,𝑚, 𝑛 ≠ 𝑚 ≠ 𝑘                                                                           (16 − 𝐵)  

 

 

  

 


