
Romlay, Muhammad, Ibrahim, Azhar Mohd, Toha, Siti Fauziah, De Wilde, 
Philippe and Venkat, Ibrahim (2021) Novel CE-CBCE feature extraction 
method for object classification using a low-density LiDAR point cloud. 
 PLoS ONE, 16 (8). ISSN 1932-6203. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/90023/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1371/journal.pone.0256665

This document version
Publisher pdf

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/90023/
https://doi.org/10.1371/journal.pone.0256665
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


RESEARCH ARTICLE

Novel CE-CBCE feature extraction method for

object classification using a low-density LiDAR

point cloud

Muhammad Rabani Mohd RomlayID
1☯*, Azhar Mohd IbrahimID

1☯, Siti Fauziah TohaID
1☯,

Philippe De Wilde2☯, Ibrahim VenkatID
3‡

1 Department of Mechatronics Engineering, International Islamic University Malaysia, Jalan Gombak, Kuala

Lumpur, Malaysia, 2 University of Kent, Canterbury, United Kingdom, 3 School of Computing and

Informatics, Jalan Tunku Link Gadong, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei

Darussalam

☯ These authors contributed equally to this work.

‡ IV also contributed equally to this work.

* banie91@gmail.com, rabani.romlay@live.iium.edu.my

Abstract

Low-end LiDAR sensor provides an alternative for depth measurement and object recogni-

tion for lightweight devices. However due to low computing capacity, complicated algorithms

are incompatible to be performed on the device, with sparse information further limits the

feature available for extraction. Therefore, a classification method which could receive

sparse input, while providing ample leverage for the classification process to accurately dif-

ferentiate objects within limited computing capability is required. To achieve reliable feature

extraction from a sparse LiDAR point cloud, this paper proposes a novel Clustered Extrac-

tion and Centroid Based Clustered Extraction Method (CE-CBCE) method for feature

extraction followed by a convolutional neural network (CNN) object classifier. The integra-

tion of the CE-CBCE and CNN methods enable us to utilize lightweight actuated LiDAR

input and provides low computing means of classification while maintaining accurate detec-

tion. Based on genuine LiDAR data, the final result shows reliable accuracy of 97% through

the method proposed.

Introduction

A LiDAR sensor provides a solution for mobile applications where the system needs to be

compact, lightweight and handy [1, 2]. It has a 360˚ degree field of view [3], possesses high

accuracy of distance measurement and in contrast to a camera, it does not depend on the light

intensity of the surroundings [4, 5]. The LiDAR sensor is robust to illumination variation [6],

and can be used to obtain the transformation matrix between 2D coordinate system and 3D

model of the scene [7]. Its detection range is also comparatively higher in accuracy and pro-

vides better reliability when compared to stereo methods [8, 9].

In some applications where portability and mobility are of prime importance, a single sensor

which acts as the detection system is required [10, 11]. Examples of such applications are mobile
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monitoring robots [12], robotic navigation aids [13], skateboarder near-crash identification [14],

smart canes for blind people and traffic monitoring for electric-assisted bicycles (e-bikes) [15].

Hence, there is a demand for system navigation by using a single portable 3D sensor [16].

Related works

An integral parts of robotics [17–20], object recognition with LiDAR sensor commonly

depends on feature extraction for classification of objects. Accurate object detection and classi-

fication allows object tracking, road signs detection [21], scene understanding [22] and behav-

iour recognition [23]. 3D LiDAR traits based on local surface and key-points are amongst the

main features for extraction within object recognition [24]. These key-point detection algo-

rithms detect variances, normal vector, curvature or any other spatial geometric attributes as

its feature extraction objectives. Following transformation, these key-points are examined for

matches between predicted object and newly identified object. However, this does result in a

significant increase in computational cost and time as the feature extraction solely depends on

finding neighboring surrounding and determining adjacent points [25].

Other researchers suggested usage of histograms based on key-points to gather spatial fea-

tures of point clouds in varying dimensions. The authors of [26] measured orientation angles

in between points and their neighbors to create a histogram which is based on feature descrip-

tors; namely fast point feature histogram (FPFH). Despite the FPFH showing promising results

in terms of processing timing, the neighboring space of the FPFH descriptor is still consider-

ably broad, resulting in a large execution time.

Yamada et al. [27] present a gait-based human identification using a real-time multi-line

LiDAR. The author combines LiDAR data with long short-term memory for gait recognition

with different appearances. Even though it performs well for on face recognition and human

identification, gait-based feature extraction is mostly suitable for biometric recognition.

Hence, limiting its object of detection from other objects in the environment.

The authors of [28] proposed a 3D convolutional kernel at varying scales to derive the fea-

tures of targeted objects with distinct resolutions. Hence, the positional structure of the point

clouds can be assembled in a more particular manner in which object classification accuracy,

semantic recognition and other applications in the sequence are enhanced. However, the

requirements of revising new points in a tree-based storage construction are high, specifically

where point clouds were collected incrementally along the process.

In contrast to spatial feature extraction from individual points, clusters of points can be

considered as voxels to be processed as coarse feature extraction. In [29], the authors suggested

a semantic classification, partitioning spatial space into organized fixed-sized voxels. This

solves the issue of processing difficulties within uneven density distributions. However, voxels

with fixed size segregation may be inadequate for object recognition because of the unsymmet-

rical framework of the point clouds and its densities.

The authors of [19] computed a feature vector for pedestrian recognition with 195 collected

features including 2D covariance matrix, normalize 2D histogram and slice feature. Tian et al.

[30] proposed multiple feature extraction which consists of 9 features including density, cen-

troid and variance. However, the features are from a global voxel are made from the entire

LiDAR’s point of view thus contributing to heavy computation. This is mainly due to calcula-

tion cost is proportion to the number of voxels rather than the number of points [31]. Choi

et al. [32] proposed using the Region of Interest (ROI) method with smaller number of features

extracted. Even though only basic features are extracted such as width length and height, it

does require an eagles-eye point of view by an airborne LiDAR or integration of numerous

numbers of LiDAR’s for accurate scanning.
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A few researchers chose bottom-up or top-down approaches to extract information and dis-

tinguish objects, however they do not consider the variation of point densities which will cause

significant change of accuracy [33]. This is due to density changes with the distance from the

LiDAR [34]. Especially in a very sparse LiDAR data recognition performance drastically

decrease as distance between human and LiDAR increases, due to the number of points being

inversely proportional to the square of the distance between a human to LiDAR [35].

An object detection network which views data in the form of a matrix is proposed by [36],

with continuous properties from channel views as its extracted features and 2D convolution

network. However, the approach requires LiDAR’s with higher density to feed channels of

scanning for extraction. Due to disparity in object detection using sparse LiDAR point cloud,

there is a necessity to develop a method which could perform well with such limited input.

Existing works mainly provide solutions for high density point clouds, often involving heavy

computational cost and computing load. Alternative methods which work on low density data

are commonly limited to binary classification and insubstantial when dealing with multiple

class detection. Table 1 shows the findings of main comparison feature extraction methods.

Contributions

It is vital to develop a classification method which can work with a sparse 3D point cloud,

while providing enough leverage for the classification process to accurately recognize objects

within limited computing capacity. Thus, this paper proposes an object recognition system

with multiple feature extraction based on segregated clusters from LiDAR point clouds. To

extract geometry features, we rasterize each point cloud of the object in a local voxel slice

model based on its centroid.

Table 1. Summary of the findings of selected existing works.

Ref Method Extracted features Dimensional

count

Class of Object Results Remarks

[30] Multiple feature

extraction

(MFE)

Point count (N), point density

(ρ), voxel centroid (μ), point

variance (σ2), point covariance

(�s�2), point eigenvector (ν), point

eigenvalue (γ), surface curvature

(k) and divergence degree (F)

27 Bush, Tree,

Pedestrian, Pole,

Wall

Accuracy of 92.84% Tested with varying machine

learning algorithm, with less

comparison with other feature

extraction method. Comparison

with our proposed method is

shown in results section.

[19] Feature vector

(FV)

2D covariance matrix in 3 zones,

2D histogram for x-y plane and

2D histogram for y-z plane

175 Pedestrian True positive rate is increased

approximately 0.15 and 0.1 from

classifier trained by SVM.

Deals with high dense point

cloud data, high computing load

for mobile robot usage

[32] Region of

interest (ROI)

Width (w), length (l), height (h),

width difference (Δw) and length

difference (Δl)

5 Ground

Classification

Filter out the amount of unwanted

raw data for the actual tracking.

Introduce feature-based Object

geometry for precise estimation of

the system state. Average

processing time of 20ms.

Limited feature extracted, would

be tough to differentiate

classification of numerous

subjects due to indistinct

extracted value.

[37] Depth Map

(DM) method

RGB images (using monocular

camera), depth maps (or range

view) and 3D point clouds

3 Pedestrian,

Vehicle (cars,

vans and trucks),

Cyclist

Average F1-score of 96.62% Involving fusions of two main

sensors which is the monocular

camera and LiDAR.

[38] Distance

Dependent

method feature

extraction

Max height, height, density,

intensity, binary and

Multichannel max height voxels:

6 Cars, pedestrians

and cyclists.

These changes lead to

improvements, most notably of

2.7% accuracy percentage on the

0-35meter range for easy category

and 5.0% on the 35–70 meter

range for hard category.

Involving high density dataset

taken from Velodyne 64 channel

LiDAR sensor.

https://doi.org/10.1371/journal.pone.0256665.t001
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The method proposed introduces local abscissa, ordinate and applicate (z-axis) voxels to

reduce the computational cost of computing global voxels in the spatial domain while remov-

ing uncertainties of varying densities, discarding rigid transformation and unsymmetrical

structure of point clouds associated with global voxel with arranged fixed-sized segregation.

This research further introduces a novel feature extraction technique which considers a collec-

tion of features viz., density to centroid height ratio and density to volume ratio. These features

capture the point cloud disparity and achieves a higher detection rate when compared to other

state-of-the-art feature extraction methods. The proposed feature extraction helps to overcome

the inconsistent point cloud detection due to the single point of view in scanning, allowing

accurate object recognition from using a single actuated LiDAR sensor.

Employing machine learning for object classifiers has been a major interest of researchers

as a means to train extracted features including for LiDAR point cloud classification [39, 40].

Bobkov et al. [41] implement a convolutional neural network (CNN) with 5 filters and pooling

for layer extraction. Whereas Tian et al. [30] implemented multiple object features with anno-

tated labels incorporated with an initialized neural network. Considering the success of

machine learning algorithms in various areas including feature-based object classification

[42], this research further optimizes the features extracted from the proposed method to be

trained with selected machine learning optimizers. The algorithms selected are the k-nearest

neighbor (k-NN), decision tree (DT) and convolutional neural network (CNN).

For the class of object detection, static object classification has been shown with target-level

and with low level data [43]. In this paper, we will focus on methods addressing moving road

users in conventional streets. We selected three important class of objects detection, categori-

cally pedestrians, motorcyclists and cars. These three objects are typical on-road scene [44, 45].

Thus, its detection provide critical information for security and surveillance, law enforcement

monitoring, search and rescue team [46, 47].

To the best knowledge of the authors, no existing work in the field of machine vision explic-

itly exploits information from a single unit, sparse LiDAR sensor for 3D scanning to achieve

object recognition with high accuracy rates. We prove that object recognition can be obtained

using a single unit, single stripe, actuated LiDAR with low computing necessity via the fusion

of Clustered Extraction and Centroid Based Clustered Extraction (CE-CBCE) methods to

accomplish high-reliability object recognition from sparse LiDAR point cloud data. To sum-

marize, our main contributions are

• State-of-the-art combination of the Clustered Extraction (CE) and Centroid Based Clustered

Extraction (CBCE) method which includes features extracted from the abscissa, ordinate

and applicate voxels, a novel density to centroid height interval ratio and density to volume

ratio. These features of sparse LiDAR point cloud data allow accurate classification from a

single detection sensor.

• Result analysis and comparison of the CE-CBCE method trained by using k-NN, DT and

CNN classification methods. The CE-CBCE optimized with the CNN classification recorded

the best accuracy, excellent and consistent scores in terms of recall, precision and F1-score.

The results show that the proposed method outperforms other state of the art feature extrac-

tion methods.

• Genuine 3D LiDAR point cloud data taken from a custom-built mobile robot with a detec-

tion system from a single LiDAR sensor. The data consist of 1200 scans of 3 main objects

classes with 4 pose orientation headings. The data have been made public and can be

accessed accordingly [48].
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The rest of the paper is organized as follows. Section II introduces the technical issues and

proposed methods for gathering and processing data from the LiDAR sensor. Here, the

description of each step is explained in detail. Section III presents the results and analysis of

the output from our experiment. Finally, conclusions and future recommendations are dis-

cussed in Section IV.

Proposed method

Primarily the research intends to propose a novel clustering-based feature extraction technique

to exploit discriminative features from the scarce LiDAR point cloud data. Initially, the process

starts with background filtering and clustering the raw point cloud data. Then the proposed

method extracts features from the clustered object point clouds. The proposed method is

divided into two parts namely Clustered Extraction (CE) and the Centroid Based Clustered

Extraction (CBCE) method. Through this method, there are less computational power

required when compared to using global voxels within the spatial domain. The final stored ele-

ments were taken from sparsely distributed values in the LiDAR point cloud, which will then

be trained by selected classification methods (k-NN, DT and CNN) for human detection. A

written consent of this research which involves detection of human subjects have been

approved by IIUM Research Ethics Committee (IREC) with ID No: IREC 2017–066.

The following section explains the details of each procedure step by step. The sequence

starts with data collection, filtering, clustering and finally object classification.

Data collection

For genuine data collection purposes, we have constructed a mobile robot with LiDAR based

sensor. The hardware components include Garmin LiDAR Lite v3, Arduino Uno, FS5109 servo

motor, L298N motor driver. For wireless communication, XBee which comes readily with TX

and RX communication modules, allowing wireless data transmission [49] and Li-Po external

battery are required, providing mobility to the system. The scanning degree is fixed at 130˚,

resembling a human’s point of view [50]. The mobile robot scanning can be seen in Fig 1.

Over 1200 scans have been collected which contained 400 objects for each of the three clus-

ter categories viz., human, motorcyclist and cars. These three classes of objects are the most

commonly found for on-road scene. For comparison purposes, we have selected the same

number of samples for each class and orientation. The scenes are recorded within indoor and

Fig 1. Mobile robot prototype with a single actuating LiDAR sensor for object recognition.

https://doi.org/10.1371/journal.pone.0256665.g001
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outdoor environments, during day and night for better reflection of the real-world environ-

ment. The position of the object detected varies with distance up to 40 meters from the mobile

robot. This is the effective distance of the proposed method and the range of detection for the

LiDAR sensor. The clustered point clouds are classified into 3 categories as mentioned before.

However even for the same object, different poses (rotations as well as translations) with

respect to the LiDAR could result in different coordinates (ex: varying x/y/z minimum and

maximum, object centroid and volume size). Therefore, we have taken the sample with various

distance from 1 m to 40 m, with different pose orientation of the object from front, right left

and back side of the targeted sample. Fig 2 below shows the total number of samples across the

3 class of object detection and its orientation facing the mobile robot.

Filtering

From the raw point cloud data collected with the mobile robot, unnecessary noises are

removed from the scene. A threshold value of 500 z coordinate is fixed, approximately 5 meters

from the ground. The points above the threshold are considered as non-disturbance. It does

not pose as an obstacle for the mobile robot movement and does not represent any classes

from the targeted class of object detection. Therefore, all points which surpass the set threshold

value are subtracted from the point cloud, before entering the clustering process.

Clustering

Following filtering, the remaining point cloud goes through the process of clustering with the

k-means clustering algorithm. Fig 3 shows raw, filtered and clustered data of all subjects of

recognition.

Up until this point all classification methods go through the same scanning, filtering and

clustering procedures. In the next step of feature extraction, the proposed technique will be

compared with other state-of-the-art classification method. To solely compare the perfor-

mance of each feature extraction method, we have designed the process to be non-end-to-end

classifiers with pre-processing procedures (filtering & clustering) and post-processing steps

(classification methods using DT, k-NN and CNN).

Clustered Extraction (CE) method

The LiDAR point cloud gives output in Cartesian coordinate system with the x, y & z origin

set to be the position of the LiDAR on top of the mobile robot.

Fig 2. No of point cloud samples for each class and its pose orientation.

https://doi.org/10.1371/journal.pone.0256665.g002

PLOS ONE CE-CBCE feature extraction method for object classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0256665 August 25, 2021 6 / 18

https://doi.org/10.1371/journal.pone.0256665.g002
https://doi.org/10.1371/journal.pone.0256665


The first part of our proposed clustered extraction (CE) method is the feature extraction of

α, β, γ. Given a point cloud,

p ¼ ½x; y; z� ð1Þ

the CE method proposed is explained below as,

P ¼ ½a; b; g� ð2Þ

where P is the clustered LiDAR point cloud data, extracted into three parts. The first part is

denoted by alpha α, which stores the values of width (w), length (l), height (h) of the object,

and the number of points in the cluster (N). The second part is represented by the array beta β
which stores the number of elements within the segregated intervals represented as xdataset, yda-
taset and zdataset. The unique feature of β is the number of points derived from abscissa, ordinate

and applicate voxels. The third part is the minimum and maximum value of each axis in the

clusters, denoted by gamma γ.

a ¼ ½w; l; h;N� ð3Þ

b ¼ ½xdataset; ydataset; zdataset� ð4Þ

Fig 3. Point cloud data example of human, motorcyclist and car subject showing raw data, point cloud following filter process and

point cloud post clustering.

https://doi.org/10.1371/journal.pone.0256665.g003
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g ¼ ½xmin; xmax; ymin; ymax; zmin; zmax� ð5Þ

From Eq (1), we compute the centroid of the cluster c,

c ¼
x1 þ x2 þ � � � xn

N
;
y1 þ y2 þ � � � yn

N
;
z1 þ z2 þ � � � zn

N

h i
ð6Þ

Centroid c acts as the origin of the local voxels for each cluster. From the centroid, addition

for voxel borders is constructed with a predetermined increment value. These will act as the

abscissa, ordinate and applicate voxels. Therefore,

xdataset ¼ ½jxcj; jxc� Dj; . . . jxfloor j;

jxcj; jxcþD�; . . . jxceilingj�

ydataset ¼ ½jycj; jyc� Dj; . . . jyfloor j;

jycj; jycþDj; . . . jyceilingj�

and

Zdataset ¼ ½jzcj; jZc� Dj; . . . jZfloor j;

jZCj; jZcþDj; . . . jZceilingj�
ð7Þ

where |.| indicates cardinality. The initial value of the dataset interval is denoted as xfloor; where

xfloor presents the value of xmin rounded down to increment value Δ (in this case we set it to be

50),

xfloor ¼ b
xmin
D
c � D ð8Þ

Finally, the end value of the dataset is defined as xceiling, which is the xmax value rounded up

to the nearest hundred,

xceiling ¼ b
xmax
D
c � D ð9Þ

The stored elements of maxima and minima of the coordinate together with the number of

elements within a determined interval serve as the input for the human detection classifier.

The same procedures are done to acquire ceiling and floor value of ydataset and zdataset.

Centroid Based Clustered Extraction (CBCE) method

From here onwards, two additional collective features are extracted from the point cloud

denoted by delta δ (for features related to density to centroid height ratio (r=h) and epsilon ε
(for features related to density to volume ratio (r=V). First, the collective features of δ are dis-

cussed.

d ¼ h; nhi� 1
; nhi ; n

h
c ; r

c
i� 1
; rci ; r

diff
i ; r=h
� �

i

� �
ð10Þ

Initially, the height of the object h is determined and it is divided by the total number of

parts t set to be 10 as default to acquire height of i-th part of n ðnhi Þ. For each part, the centroid

height is calculated as a reference point.

nhi ¼
h
t
þ ni� 1 ð11Þ
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For i = 1,2,. . .t. Height of cluster n, ðnhi Þ is calculated in (12).

nhc ¼
nhi � n

h
i� 1

2
þ nhi� 1

;

for ½a; bÞ ¼ ½a; b½¼ fnhc 2 Rja � n
h
c < bg ð12Þ

For nhi ; n
h
iþ1

. . . nht . Then density between interval is denoted by r
diff
i acquired through sub-

tracting current cluster density rci to previous cluster density rci� 1

r
diff
i ¼ r

c
i � r

c
i� 1

ð13Þ

From here we obtain the density to height ratio.

r=h
� �

i ¼ r
diff
i =

nhc ð14Þ

Next, the collective features related to density to volume ratio (denoted by ε) is defined as:

ε ¼ Vc
i� 1
;Vc

i ;V
diff
i ; r=V
� �

i

� �
ð15Þ

For i = 1,2,. . .t. The total number of parts t set to be 10 as default as shown in Eq (11)

i ¼
zmax � zmin

n
ð16Þ

where i represents the number of parts. The volume difference Vdiff
i is acquired by subtracting

current cluster volume Vc
i to previous cluster volume Vc

i� 1

Vdiff
i ¼ Vc

i � V
c
i� 1

ð17Þ

The density difference is acquired as shown in (13). Therefore, the density to volume ratio

is denoted by:

r=V
� �

i ¼ V
diff
i =

Vc
i ð18Þ

The flow chart of the proposed CE-CBCE feature extraction method can be seen in Fig 4.

Summary of features extracted are shown in Table 2 with its dimensional count and feature

description.

From the extracted features, classifications are done with 75%-25% split of training and

testing data. Training aimed to decrease the model loss function value against training data as

each step was processed. Model performance was indicated and measured through improve-

ments in accuracy of the model against the test dataset [51].

The accuracy of the classifications is calculated as follows:

Pk
i¼1

TPiþTNi
TPiþTNiþFPiþFNi

k
ð19Þ

With k representing the total number of class, TPi as the true positive, TNi as the true nega-

tive, FPi as false positive and FNi as false negative; for i = 1,2,3,. . .k.True positive is when the

model correctly predicts the positive class, and a false negative is recorded when a class is

incorrectly predicted to be negative. False positive occurs when a class is incorrectly predicted

to be positive, and true negative is considered when the model correctly predicts the negative
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class. However for multiclass classification such as our case [48], true positive occurs only

when the right class is correctly predicted, and similarly for false negative etc.: they all depend

on the class.

Results and discussions

Post CE and CBCE extraction, the collective features are optimized with kNN, DT and CNN.

The method proposed is compared with three feature extraction methods which are the region

of interest (ROI) [32, 52], feature vector (FV) [19] and multiple feature extraction (MFE) [30].

The chosen comparative method is considered as it similarly handles sparse point cloud,

has low computing cost, employs geometrical features and runs on real-time execution. For

ROI, the authors proposed taking width (w), length (l), height (h), width difference (Δw) and

length difference (Δl) as the extracted features for classification. So, the complete geometric

feature is ΔG = [w,l,h,Δw,Δl].

Fig 4. Flowchart of the proposed feature extraction method through CE-CBCE.

https://doi.org/10.1371/journal.pone.0256665.g004

Table 2. Summary of features extracted.

Feature name Variable

abbreviation

Dimensional

Count

Feature Description

Clustered Extraction (CE) α 4 Width (w), height (h), length (l) & number of points (N)

β 120 Points within abscissa, ordinate and applicate voxel

γ 6 X minimum (xmin), x maximum (xmax), y minimum (ymin), y maximum (ymax), z

minimum (zmin) & z maximum (zmax).

Centroid based Clustered

Extraction Method (CBCE)

δ 8 Total clustered height (h), previous clustered height (nh
i� 1), current clustered height

(nh
i ), centroid clustered height (nh

c ), previous clustered density (ρc
i� 1), current clustered

density (ρc
i ), clustered density difference (ρdif f

i ) & density to centroid height ratio

( ρ=h
� �

i)

ε 4 Previous clustered volume (Vc
i� 1), current clustered volume ðVc

i Þ, volume difference

(Vdif f
i ) & density to volume ratio ( ρ=V

� �

i)

https://doi.org/10.1371/journal.pone.0256665.t002
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The second comparison method is the feature vector (FV) introduced by Wang et al. [19].

The feature extracted includes 2D covariance matrix in 3 zones, 2D histogram for x-y plane

and 2D histogram for y-z plane. The total dimensional count amounts to 175 features.

The third comparison method is proposed by Tian et al. [30], with multiple feature extrac-

tion which includes point count (N), point density (ρ), voxel centroid (μ), point variance (σ2),

point covariance (�s2), point eigenvector (ν), point eigenvalue (γ), surface curvature (k) and

divergence degree (F). The final feature extraction of MFE includes 27-dimensional count,

with 9 counts from point eigenvector, 3 counts each from voxel centroid, point variance, point

covariance, point eigenvalue and divergence degree, and finally a single dimension count from

point count, point density and surface curvature.

The results obtained are then compared in terms of accuracy, precision, recall and

F1-score. k-Fold Cross-validation is performed on the classifiers to select model parameters

which best fit our data. Table 3 shows the complete hardware and software configurations for

the experiments conducted. The simulation was done on an Intel (R) Core (TM) i7-5500U

CPU @ 2.40GHz, 8Gb RAM and 64-bit operating system.

Classification experiments

The experiment was done on an Intel(R) Core (TM) i7-5500U CPU @ 2.40GHz, 8Gb RAM

and 64-bit operating system.

The results of our experiment are represented in Table 4. The "Parameter" column shows

the varying parameters to be determined to achieve the best configuration for each optimiza-

tion algorithm. The parameters refer to the number of nearest neighbors for k-NN, the maxi-

mum depth for DT and the number of layers for CNN. For DT and k-NN the parameters are

set in the range of 1 until 30. For CNN, the number of hidden layers is ranged between 1 to 10,

with the batch size of 10, 1000 the number of epochs, and an activation function of Rectified

Linear Units (ReLUs) and Softmax function. For the proposed method, initially the CE and

CBCE methods are implemented separately, before combining both collective features to show

the improved performance.

Table 3. Complete hardware and software configurations.

Configuration Function

Hardware Configuration Lidar Lite V3 Scanning LiDAR point cloud

Arduino Nano/Uno Microcontroller

LiPo Battery 2200mah Power supply

FS5109 Servo Motor x 2 Moving actuating LiDAR

DC motor x 2 Enable mobile robot movement

L298N Motor Driver Controlling DC motor

Arduino XBee Wireless data transmission

Tyre x 2 Moving compartments

Acrylic sheet frame Frame body parts

Servo Bracket Servo placement

Capacitor Power supply smoothing

Connecting wires Electricity connections

Software configuration Google Colaboratory Processing and computing in central computer

Jupyter notebook Processing and computing in central computer

Meshlab 2016.12 Point cloud visualisation

Arduino 1.6.8 Processing and computing in the mobile robot

https://doi.org/10.1371/journal.pone.0256665.t003
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Table 4 shows the comparison of the results in terms of accuracy for ROI, FV, MFE, CE,

CBCE and fusion of CE-CBCE combined. The selected results displayed are with the incre-

ment of 5 for k-NN and DT parameters and 2 for CNN parameter.

From Table 4, the general accuracy overview results in over 65% accuracy for all feature

extraction methods. In terms of consistency, the CE method scores the highest mean accuracy

at 88.3%, followed by CE-CBCE (85.4%), CBCE (84%), MFE (83.2%), ROI (79%) and finally

FV with 69.3%.

A complete comparison in terms of mean accuracy, precision, recall, and F1-score can be

seen in Fig 5. In general, the CE method prevails in terms of accuracy, precision, recall and

F1-score across all optimization methods of k-NN, DT and CNN.

Table 4. Accuracy results comparison of ROI, FV, MFE, CE, CBCE and CE-CBCE.

Method Parameter Value Accuracy (%)

FV [19] ROI [52] MFE [30] CE CBCE CE-CBCE

k-NN Nearest Neighbour 5 70 85 87 90 89 90

10 68 82 85 90 87 88

15 67 80 82 88 85 86

20 66 81 80 89 83 84

25 66 81 79 89 83 84

30 63 79 76 88 80 81

DT Max Depth 5 74 77 82 86 80 87

10 76 86 85 93 85 91

15 77 84 86 92 87 89

20 76 84 87 90 87 88

25 78 84 87 90 86 89

30 77 85 86 91 74 87

CNN No of Hidden Layers 2 64 67 88 90 89 91

4 62 80 91 93 89 95

6 64 76 87 93 91 97

8 67 69 90 91 93 95

10 66 79 90 92 89 92

https://doi.org/10.1371/journal.pone.0256665.t004

Fig 5. Accuracy, precision, recall and F-1 score of all feature extraction methods across each optimization

algorithms.

https://doi.org/10.1371/journal.pone.0256665.g005
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After analysis of the statistics across all optimization methods, a particular examination of

each best performing optimization parameter is done. Specifically, the CE-CBCE method opti-

mized by CNN with 6 hidden layers recorded best accuracy for object recognition and classifi-

cation at 97% detection. This is followed by both the CE and CBCE method optimized with

k-NN with the k-value of 1 and CNN with 8 hidden layers, respectively. Both methods

recorded accuracy of 93% detection. The rest of the feature extraction methods achieved 91%

for MFE, 87% for ROI and 79% for FV. Fig 6 shows the best optimization results in terms of

precision, recall, F1-score and accuracy for each feature extraction method.

The best parameter choice for each method can be seen in Table 5. The precision, recall and

F1-score for each individual class of human, motorcyclists and cars are presented with its final

accuracy.

Full results of CE-CBCE across all optimization techniques are shown in Fig 7 on the fol-

lowing page. Results achieved across all parameters are in the graphs within said figure.

As satisfying results are achieved for object recognition amongst 3 classes of objects,

another experiment with added difficulty is conducted. The aim of classifying within 3 classes

of objects remains the same, however this time around the output of the prediction includes

the pose of subject. Therefore, for each detected object, the direction pose needs to be pre-

dicted whether it is facing front, right, back of left side towards the mobile robot. The same

number of samples have been provided as the input, with 300 samples for each class and 100

Fig 6. Best optimization result for each feature extraction method.

https://doi.org/10.1371/journal.pone.0256665.g006

Table 5. Best result with its method of optimization and parameter for each class of objects.

Feature Extraction Optimization Human Motorcyclist Car Acc

Method Parameter Pre Re F1 Pre Re F1 Pre Re F1

ROI kNN 3 91 98 94 87 81 84 84 85 84 87

FV DT 9 80 95 87 84 63 72 76 83 79 79

MFE CNN 4 95 94 95 88 89 89 90 90 90 91

CE kNN 1 100 96 98 87 91 89 92 91 92 93

CBCE CNN 8 98 95 96 90 91 90 92 93 93 93

CE-CBCE CNN 6 100 96 98 93 98 96 97 96 96 97

https://doi.org/10.1371/journal.pone.0256665.t005
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samples for each orientation. Table 6 shows the best results obtained from each feature extrac-

tion methods.

In the Table 6, excellent results for the object’s orientation are recorded. The combination

of CE-CBCE method achieved accuracy of 82%, followed by CE, CBCE, MFE, ROI and finally

FV methods. Especially for easily perceived poses for human subjects facing right or left,

CE-CBCE and CE methods both recorded 100% detection rate. The radar chart in Fig 8 shows

the accuracy of CE + CBCE method for each object with varying pose orientation.

Fig 7. Full results of the proposed extraction CE-CBCE method across all optimization techniques.

https://doi.org/10.1371/journal.pone.0256665.g007

Table 6. Object prediction with pose detection.

Feature Extraction Optimization Human (%) Motorcyclist (%) Car (%) Acc (%)

Method Parameter Front Right Left Back Front Right Left Back Front Right Left Back

ROI kNN 1 89 95 90 100 57 65 6 8 71 47 43 54 69 70

FV DT 14 82 68 80 92 43 62 36 50 26 47 62 76 60

MFE CNN 10 88 93 86 96 66 55 61 68 58 81 83 97 77

CE CNN 5 92 100 100 100 81 83 81 76 68 57 67 93 81

CBCE CNN 4 81 89 85 88 81 86 65 76 63 57 78 97 78

CE-CBCE kNN 1 96 100 100 96 75 71 89 70 67 79 74 85 82

https://doi.org/10.1371/journal.pone.0256665.t006
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Conclusions

In this research, we proposed a novel feature extraction for sparse LiDAR point cloud object

recognition. Indoor and outdoor data were collected, with different backgrounds for better

simulation of varying surroundings. We also analysed the performance of our feature extrac-

tion method with different classes of objects in varying pose orientations. The result shows a

promising achievement with a sparse LiDAR point cloud. The flow of the research proposed

can be seen in Fig 9. The process started form hardware development, before moving into gen-

uine data collection, preprocessing, proposed feature extraction method, classification algo-

rithms and finally object classification.

As the proposed method targeted sparse LiDAR point cloud input, its performance on high

density data remains to be explored. High density, compact point clouds such as autonomous

vehicle and airborne LiDAR are often associated with large scale mapping and varying

Fig 8. Accuracy results of CE-CBCE for each orientation.

https://doi.org/10.1371/journal.pone.0256665.g008

Fig 9. Flow of the proposed feature extraction technique for object detection.

https://doi.org/10.1371/journal.pone.0256665.g009
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elevation scanning. A larger number of classes for object detection could also pose a challenge

as they tend to be less distinctive in terms of density and point cloud distribution.

For future research, position tracking can be implemented on top of the object recognition

and classification. Especially for a safety-critical system where accuracy is of utmost impor-

tance, safety features should be a main concerning issue. A fail-safe mechanism in place to

override the controls in case of a malfunction could be implemented, with a warning system

which alerts the user during detection of a faulty device to allow human intervention. Addi-

tional elements or subjects of detection can also be added to further test and improve the reli-

ability of the system.
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