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Simple Summary: Search for genomic regions of putative selective signaling is instrumental in 22 

obtaining information about selection history in various species and populations. Domestic animals 23 

are subject to long-term artificial selection that leaves certain footprints in their genomes one can 24 

explore using genome-wide SNP screen. We examined here genomes of two contrasting chicken 25 

breeds, the native egg-type Russian White and meat-type White Cornish. Using three statistics, we 26 

identified genomic regions under putative selection, both breed-specific and shared between two 27 

breeds, that harbor key candidate genes for economically important traits. Our findings will be 28 

useful in further understanding selection history and genomic diversity in domestic chickens that 29 

would be pivotal in their productive breeding. 30 

Abstract: Comparison of genomic footprints in chicken breeds with different selection history is a 31 

powerful tool in elucidating genomic regions that have been targeted by recent and more ancient 32 

selection. In the present work, we aimed at examining and comparing the trajectories of artificial 33 

selection in the genomes of the native egg-type Russian White (RW) and meat-type White Cornish 34 

(WC) breeds. Combining three different statistics (top 0.1% SNP by FST value at pairwise breed 35 

comparison, hapFLK analysis, and identification of ROH island shared by more than 50% of 36 

individuals), we detected 45 genomic regions under putative selection including 11 selective sweep 37 

regions, which were detected by at least two different methods. Four of such regions were breed- 38 

specific for each of RW breed (on GGA1, GGA5, GGA8, and GGA9) and WC breed (on GGA1, 39 

GGA5, GGA8, and GGA28), while three remaining regions on GGA2 (two sweeps) and GGA3 were 40 

common for both breeds. Most of identified genomic regions overlapped with known QTLs and/or 41 

candidate genes including those for body temperatures, egg productivity, and feed intake in RW 42 

chickens and those for growth, meat and carcass traits, and feed efficiency in WC chickens. These 43 

findings were concordant with the breed origin and history of their artificial selection. We 44 

determined a set of 188 prioritized candidate genes retrieved from the 11 overlapped regions of 45 

putative selection and reviewed their functions relative to phenotypic traits of interest in the two 46 

breeds. One of the RW-specific sweep regions harbored the known domestication gene, TSHR. Gene 47 
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ontology and functional annotation analysis provided additional insight into a functional coherence 48 

of genes in the sweep regions. We also showed a greater candidate gene richness on 49 

microchromosomes relative to macrochromosomes in these genomic areas. Our results on the 50 

selection history of RW and WC chickens and their key candidate genes under selection serve as a 51 

profound information for further conservation of their genomic diversity and efficient breeding. 52 

Keywords: selection signatures; genomic regions; candidate genes; gene ontology; gene richness; 53 

chicken; SNPs; Russian White breed; White Cornish breed 54 
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1. Introduction 57 

Since the middle of the last century, poultry industry has focused on the exploitation 58 

of a few highly specialized, productive lines selected for egg or meat (broiler) production 59 

traits. In the chicken (Gallus gallus; GGA), this has led to a drastic decline in the number 60 

and population size of native breeds that were extensively used for agricultural 61 

production in the past. Many native breeds are now at the risk of being lost, while 62 

potentially harboring significant historical footprints of selection for economically 63 

important phenotypes in their genomes. Conservation and molecular genetic 64 

characterization of biodiversity among domestic animal and poultry species used for food 65 

production are one of the key objectives to ensure the sustainability of local and regional 66 

agricultural production systems [1–7]. Genomic tools and resources for poultry-related 67 

research have advanced and been immensely enriched since the time of the first chicken 68 

reference genome sequence publication [8]. 69 

Two main evolutionary lineages of domestic chickens are represented by egg-type 70 

and meat-type breeds [9]. One of the distinctive native egg-type chicken breeds is the 71 

Russian White (RW) developed for egg production in the former USSR in 1929–1953 by 72 

crossing local low-productive hens with White Leghorn roosters of Danish, British and 73 

American origins [10]. Before 1965, the RW was a major chicken breed employed for egg 74 

production in the USSR. In 1975, the number of RW chickens was 29.73 million heads, 75 

however there was a dramatic drop by 1980 leading to 4.4 million [10], with a further 76 

essential population reduction in later years. 77 

Historically, RW chickens were brought to the Russian Research Institute of Farm 78 

Animal Genetics and Breeding (RRIFAGB), Pushkin from the Leningradskaya egg 79 

production plant in 1952. Along with the selective breeding for high egg performance in 80 

1952–1999, the RW chickens were selected for tolerance to low temperatures. This gave 81 

rise to establishing in 1957 and developing an inbred RS subpopulation selected for cold 82 

tolerance of chicks [11,12]. The breeding RS stock was kept at 15–22 °C during the first five 83 

days after hatch, with a gradual temperature lowering to 14 and 11 °C by 21–30 days. 84 

Adult individuals were kept in winter at a temperature below 0 °C, while safeguarding 85 

the laying performance at a high level [13]. As a result of the long-term selection for 86 

critically low temperatures, the RS phenotypes were characterized by exceptional cold 87 

tolerance of neonatal chicks, their snowy-white down at day-old, presumably caused by 88 

a recessive mutant gene, sw, for snow-white down [14,15], and elevated resistance to a few 89 

neoplastic diseases, such as Marek's disease, leukemia, and carcinomas [11]. The current 90 

RG population was more recently derived from the RS as a result of a one-time telic 91 

crossing with White Leghorns in 2006, not selected further for cold tolerance, and 92 

subjected to random mating in 2000–2013 [12,16–18]. 93 

Presently, the small RG population of cold tolerant RW chickens (25 males and 234 94 

females) is kept in the Genetic Collection of Rare and Endangered Chicken Breeds of the 95 

RRIFAGB. In the last two decades, the RW breeding program has been aimed at improved 96 

egg production and egg weight, and increased yield of vaccine raw material, i.e., 97 

extraembryonic (allanto-amniotic) fluid and titers of vaccine viruses in it, while 98 

maintaining cold tolerance of neonatal chickens [15,19,20]. There is also one more RW 99 

population maintained at the All-Russian Poultry Research and Technological Institute 100 

(ARPRTI) collection farm, Sergiev Posad. 101 

Because of importance of the yield of extraembryonic fluid (YEF) to produce 102 

vaccines, in-depth molecular genetic studies were undertaken to pinpoint markers for 103 

YEF in the RW population at RRIFAGB. Its examination for the effects of indels in the PRL 104 

(prolactin) and DRD2 (dopamine receptor D2) genes on YEF showed significant 105 

associations of the PRL insertion variant with greater YEF and egg weight (EW) [16]. In a 106 

genome-wide association study (GWAS) using the Illumina Chicken 60K SNP iSelect 107 

BeadChip, several suggestive SNP loci and candidate genes were detected for YEF as well 108 

as EW, egg number, age at first egg, body weight and day-old chick down color [15]. The 109 

RW demographic history was explored at the genomic level using the same Illumina 110 
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BeadChip. Within the current RG population, a heterogeneity of SNP genotypes was 111 

revealed suggesting its subdivision into four subgroups: two relatively homogenous, one 112 

heterogenous, and one phylogenetically closer to the historical RS subpopulation. The 113 

latter, in turn, was distinguished by more numerous monomorphic markers and longer 114 

linkage disequilibrium (LD) regions as well a greater number of runs of homozygosity 115 

(ROHs), their greater mean length, and a higher ROH-based inbreeding coefficient. The 116 

RG population had the smallest LD values and the largest effective population size 117 

[12,17,18]. In an additional GWAS using the Illumina Chicken 60K SNP iSelect BeadChip, 118 

nine SNPs were reported in the RG population that demonstrated significant associations 119 

with egg production traits and coincided with ROHs [21]. A sampling of RW chickens 120 

was also tested for copy number variation (duplication) at the AvBD7 (avian beta-defensin 121 

7) gene relevant to the innate immune system, with a ratio of 3 duplication carriers to 4 122 

non-duplication individuals [22]. 123 

An old meat-type breed of White Cornish (WC) chickens was created by crossing the 124 

English Game breed with Aseel or Malay fowls. It was recognized as a breed in England 125 

in 1886 under the name of Indian Game. Unlike RW chickens, the WC breed has been 126 

specifically selected for growth performance, feed efficiency and carcass traits [23]. Such 127 

intensive selection for the limited number of traits in meat-type (broiler) chicken has led 128 

to the occurrence of increased frequencies of undesirable traits such as low fertility, 129 

reduced fitness, increased disease susceptibility, skeletal weakness, etc. [23–26]. In Russia, 130 

a few WC crossbred strains are maintained in the RRIFAGB gene pool collection and have 131 

been explored in the genome-wide scanning studies using the Illumina BeadChip [17,18]. 132 

They demonstrated a reduced genetic diversity because of small population size, and 133 

lower ROH metrics due to crossbreeding effects [17]. A small population of purebred WC 134 

chicken is also kept in the ARPRTI gene pool collection. 135 

Comparison of genomic footprints in two chicken breeds with different selection 136 

history, i.e., native egg-type RW and meat-type WC, may be helpful in elucidating 137 

genomic regions that have been targeted by recent and more ancient selection. Detecting 138 

regions of the genome that have undergone artificial selection will expand our 139 

understanding of the domestication history and selective breeding in chickens. 140 

Identification of genes within such genomic regions will aid in development of effective 141 

breeding programs based on marker-assisted and genomic selection. 142 

Different methodologies have been utilized for defining regions of the genome that 143 

exhibit evidence of having been under selection. One of the most used methods is based 144 

on estimating the fixation index (FST), which quantifies the differences in allele frequencies 145 

between populations [27,28]. The fixation index is a single SNP test, which is routinely 146 

used for identifying highly differentiated alleles [29]. Genetic differentiation between 147 

populations is expected to be low in neutral regions of the genome or in regions under 148 

balancing selection, whereas high genetic differentiation indicates regions that have 149 

undergone divergent selection among populations. Another metric used for determining 150 

genomic regions that have been subjected to selection is the hapFLK analysis. This is a 151 

haplotype-based statistic for detecting positive selection using multiple population data 152 

[30]. For the calculation of hapFLK, both population structure and haplotype information 153 

are taken into consideration. The identification of ROH islands was proposed as one more 154 

useful indicator of selection signals in livestock populations [31,32]. ROH islands are 155 

genomic regions with high homozygosity around a selected locus that might harbor 156 

targets of positive selection [33]. Combining different statistics for defining selection 157 

signatures can improve the reliability of identified genomic regions [34,35]. 158 

Several genome-wide studies have been undertaken to detect the genomic footprints 159 

of artificial selection in large numbers of chicken breeds (e.g., [36–40]). Despite the initial 160 

chicken genome research efforts undertaken so far at the RRIFAGB [17,18], a comparative 161 

in-depth search for selection sweeps in chicken breeds of Russian origin at the genome- 162 

wide level have not been carried out and would be much anticipated. 163 
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In the present study, we aimed to examine and compare the trajectories of artificial 164 

selection in the genomes of two chicken breeds with different selection history and 165 

breeding objectives, i.e., the native egg-type RW and meat-type WC breeds. We performed 166 

the structural annotation of discovered genomic regions, suggesting multiple key 167 

candidate genes associated with egg/meat production and other economically important 168 

traits. Our results elucidate the breeding history of RW and WC chickens and provide a 169 

useful information for further conservation of their genomic diversity and sustainable 170 

breeding. 171 

2. Materials and Methods 172 

2.1. Experimental birds and ethics statement 173 

Young chickens of the RW and CW breeds (Figure 1) were purchased and housed in 174 

the Gene Pool Collection of Farm and Wild Animals and Birds of the L.K. Ernst Federal 175 

Research Center for Animal Husbandry (LKEFRCAH) with the aim of establishing an F2 176 

resource population to be used for subsequent GWAS experiments. RW chickens of the 177 

cold-tolerant line were provided by the RRIFAGB. Non-pedigreed crossbred CW chickens 178 

were provided by the Breeding Genetic Center “Smena”, a subsidiary of the Federal 179 

Science Center for Poultry Science, of the Russian Academy of Sciences. Individuals of 180 

both breeds were grown to the age of 6 months and used to produce F1 generation. No 181 

chickens used in the present studies were subject to further pure breeding. Feather 182 

samples were collected by trained lab personnel following the LKEFRCAH ethical 183 

guidelines for minimizing any possible bird discomfort or distress. 184 

  

(a) (b) 

Figure 1. Two studied chicken breeds: Russian White (a), and White Cornish (b). 185 

2.2. Sampling and DNA extraction 186 

Feather samples were obtained from 54 individuals including 31 samples of the RW 187 

chickens and 23 samples of the WC breed. DNA extraction was performed using Nexttec 188 

columns (Nexttec Biotechnology GmbH, Germany) according to manufacturer’s 189 

instructions. Concentration of dsDNA solutions was determined using a Qubit 3.0 190 

fluorometer (Thermo Fisher Scientific, Wilmington, DE, USA). To check the purity of 191 

extracted DNA, OD260/280 ratio was tested using NanoDrop-2000 (Thermo Fisher 192 

Scientific, Wilmington, DE, USA). 193 

2.3. SNP genotyping and quality control 194 

Individual sample genotyping was carried out using Chicken 50K_CobbCons chip 195 

(Illumina, San Diego, CA, USA). Input files were created using R software [41]. To 196 

determine valid genotypes for each SNP, we set a cut-off for the GenCall (GC) and 197 
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GenTrain (GT) scores of 0.5 [42]. Using PLINK 1.9 software [43], SNP quality control was 198 

performed. All chicken genotypes passed the filtering for genotyping efficiency (--mind 199 

0.2). Only SNPs located on autosomes from GGA1 to GGA28 were used for analysis, and 200 

SNPs genotyped in less than 90% of the samples (--geno 0.1) were excluded from the 201 

analysis. The final data set used for analyzing signatures of selection included 44,728 202 

autosomal SNPs. Additional filters for LD values were used for performing calculation of 203 

genetic diversity, principal component analysis (PCA), Neighbor-Net tree construction, 204 

and admixture clustering that resulted in 25,768 SNPs. One SNP from each pair of 205 

neighbored SNPs where LD (r2) value exceeded 0.5 within 50 SNP windows was removed 206 

using --indep-pairwise 50 5 0.5 flag, where 50 is size of the sliding window, 5 is the number 207 

of SNPs shifted in each step, and 0.5 is the r2 threshold. Positions of SNPs were assigned 208 

according to the GGA reference genome assembly GRCg6a [44]. 209 

2.4. Genetic diversity 210 

PLINK 1.9 [43] was used to evaluated within-population genetic diversity. We 211 

calculated the observed heterozygosity (HO), unbiased expected heterozygosity (UHE) [45], 212 

rarefied allelic richness (AR) [46], and inbreeding coefficient (UFIS) based on the unbiased 213 

expected heterozygosity by using R package diveRsity [47]. 214 

2.5. PCA, Neighbor-Net and admixture 215 

Procedures of PCA, Neighbor-Net clustering, and model-based clustering 216 

(Admixture) were exploited to select the individuals for the analysis of selection sweeps. 217 

PCA was performed using PLINK v1.9 software. An R package ggplot2 was used to 218 

visualize the results [48]. Pairwise identical-by-state (IBS) distances calculated in 219 

SplitsTree4 [49] were used to construct a Neighbor-Net tree. Admixture v1.3 software [50] 220 

was employed for genetic admixture analysis and an R package pophelper [51] for 221 

plotting the results. A standard admixture cross-validation procedure [52] was used to 222 

calculate the number of ancestral populations (K). The assumed number of K 223 

corresponded to the lowest value of cross-validation (CV) error as compared to other K 224 

values. 225 

2.6. Selection signature analysis 226 

Three different statistics were used for detecting the signatures of selection in the 227 

genome of chicken: calculation of FST values for each SNP when comparing pairs of breeds, 228 

hapFLK analysis, and estimation of the ROH islands, which were overlapped among 229 

different animals within each breed. 230 

2.6.1. FST analysis 231 

Pairwise FST-based genetic differentiation [52] was estimated between all SNPs using 232 

PLINK 1.9. We applied a low threshold for minor allele frequency (MAF) of less than 5% 233 

(--maf 0.05), because the filtering of SNPs based on MAF may affect the probability of 234 

identifying alleles related to selection [53]. The dataset used for FST analysis included 235 

44,728 autosomal SNPs. The top 0.1% FST values were used to represent a selection 236 

signature, as was previously proposed by Kijas et al. [54] and Zhao et al. [55]. 237 

2.6.2. Runs of homozygosity 238 

A window-free method for consecutive SNP-based detection, i.e., consecutive runs 239 

method [56] implemented in an R package detectRUNS [57], was used for the estimation 240 

of ROHs. We allowed one SNP with missing genotype and up to one possible 241 

heterozygous genotype in one run to avoid the underestimation of the number of ROHs 242 

that were longer than 8 Mb [58]. Because of strong linkage disequilibrium (LD), typically 243 

extending up to about 100 kb [59], and for excluding short and very common ROHs, we 244 

set the minimum length for an ROH at 500 kb. For minimizing false-positive results, we 245 

calculated the minimum number of SNPs (l) as was initially evaluated by Lencz et al. [60] 246 

and later modified by Purfield et al. [61]: 247 
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𝑙 =
𝑙𝑜𝑔𝑒

𝛼
𝑛𝑠 ∙ 𝑛𝑖

𝑙𝑜𝑔𝑒(1 − ℎ𝑒𝑡̅̅̅̅̅)
, 248 

where ns is number of genotyped SNPs per individual, ni is number of genotyped 249 

individuals, 𝛼 is percentage of false-positive ROHs (set to 0.05 in our study), and ℎ𝑒𝑡̅̅̅̅̅ is 250 

mean heterozygosity across all SNPs. In our case, the minimum number of SNPs was 23. 251 

We estimated the number and length of ROHs for each individual and then 252 

averaged these per individual within each breed. Additionally, we computed the genomic 253 

inbreeding coefficient based on ROH (FROH) as the ratio of the sum of the length of all 254 

ROHs per animal to the total autosomal SNP coverage (0.94 Gb). 255 

Number of ROHs in the genomes of two studied breeds was examined using the 256 

following ROH length classes: 0.5–1, 1–2, 2–4, 4–8, 8–16, and >16 Mb. To define the 257 

proportion of genome covered by different ROH segments, we calculated the sum of 258 

ROHs for the following different minimum lengths: >0.5, >1, >2, >4, >8, and >16 Mb. 259 

Putative ROH islands were defined as overlapping homozygous regions that shared 260 

by more than 50% of analyzed individuals within each breed as this was suggested in 261 

other studies [62,63]. We applied the threshold of 0.3 Mb for the minimal overlapping 262 

length size because it was previously shown that shorter segments of 0.3–1 Mb are 263 

predominant in genome of white layers [40]. 264 

2.6.3. HapFLK analysis 265 

To detect the signatures of selection through haplotype differentiation among the 266 

studied breeds, we also employed hapFLK 1.4 program [64]. The number of haplotype 267 

clusters per chromosome was determined in fastPHASE by using cross-validation-based 268 

estimation and was set at 35 [65]. For detailed analyses, we selected the hapFLK regions 269 

containing at least one SNP with p-value threshold of 0.01 (-log10(p) > 2). 270 

2.7. Search for genes and QTLs localized within identified genomic regions 271 

For candidate gene mining in the genomic regions under putative selection, we used 272 

the genomic localization of the regions as detected by three different statistics, i.e., FST, 273 

ROH, and hapFLK methods. We prioritized those regions that were overlapped and 274 

revealed at least by two different techniques. Borders of these regions as localized in the 275 

GRCg6a reference assembly chromosomes were used as a query list for retrieving chicken 276 

genes and their human orthologs using the web based Ensembl Genes release 103 277 

database and Ensembl BioMart data mining tool [66]. Results retrieved from the Ensembl 278 

BioMart browser for each genomic region of selection signatures were manually sieved 279 

and compared to relevant published investigations to identify main candidate genes and 280 

other genes of interest. 281 

Additionally, a broader gene mining was carried out that also included the regions 282 

found by one method to expand the candidate list with more previously discovered and 283 

important genes. Where needed for comparisons with other studies, we used the UCSC 284 

liftOver tool [67] to convert genome coordinates between earlier chicken genome builds 285 

and the reference assembly GRCg6a. If an older build cannot be directly compared to 286 

GRCg6a, a sequential lift of coordinates between assemblies was applied. 287 

For specifying the presence of quantitative trait loci (QTLs) and associated genes 288 

overlapped with the identified genomic regions, we also analyzed a publicly available 289 

chicken database, QTLdb [68]. 290 

2.8. Gene ontology mining 291 

To perform functional annotation and gene ontology (GO) term enrichment analysis 292 

within the determined selective sweep regions, we exploited the Database for Annotation, 293 

Visualization and Integrated Discovery (DAVID) v6.8 [69,70]. Using our in-house GO 294 

mining pipeline consisted of the BioMart and DAVID tools, the gene and background lists 295 

were generated following the procedure described in detail elsewhere [71]. Briefly, 296 

chicken-human orthologs of the maximum orthology confidence served as entries for the 297 

gene and background lists, applying the 70% gene identity threshold to the gene list and 298 
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reducing the background list to chromosomes containing the selection footprints. 299 

Significant annotation clusters were selected using an enrichment score of more than 1.3 300 

and a p-value < 0.05. 301 

3. Results 302 

3.1. Genetic diversity 303 

The RW chickens were characterized by significantly lower level of genetic diversity 304 

assessed by the level of unbiased expected heterozygosity (UHE = 0.339 vs 0.383, p < 0.001) 305 

and allelic richness (AR = 1.937 vs 1.982, p < 0.001) as compared to the WC breed. We 306 

observed significant deviation in the number of heterozygotes from the Hardy–Weinberg 307 

equilibrium in both studied populations. The negative value of the inbreeding coefficient 308 

UFIS indicates a slight excess of heterozygotes in the RW population (UFIS = –0.016), while 309 

the WC breed showed a slight deficiency of heterozygotes (UFIS = 0.009) than it would be 310 

expected under Hardy–Weinberg equilibrium (Table 1). 311 

Table 1. Summary of genetic/genomic diversity statistics1 calculated in the studied Russian White 312 
(RW) and White Cornish (WC) breeds based on SNP genotypes. 313 

Breed n1 HO (M ± SE) UHE (M ± SE) UFIS [CI 95%] AR (M ± SE) 

RW 31 0.345 ± 0.001 0.339 ± 0.001 –0.016 [–0.018; –0.014] 1.937 ± 0.001 

WC 23 0.380 ± 0.001 0.383 ± 0.001 0.009 [0.006; 0.012] 1.982 ± 0.001 
1 n, number of individuals; HO, observed heterozygosity; M, mean value; SE, standard error; UHE, 314 
unbiased expected heterozygosity; UFIS, unbiased inbreeding coefficient [CI 95%, range variation of 315 
UFIS coefficient at a confidence interval of 95%]; AR, rarefied allelic richness [46].  316 

3.2. Breed relationship and admixture 317 

As assessed by PCA, the first component, which is responsible for 9.34% of the 318 

genetic variability, clearly differentiated the RW chickens from the WC breed (Figure 2a). 319 

The neighbor-joining tree constructed based on pairwise IBS distances showed the breed- 320 

specific distribution of individuals between the two groups (Figure 2b). The calculations 321 

of CV error for the different number of clusters (from 1 to 5) showed the probable number 322 

of clusters (k) equal 2 (Figure S1). The admixture clustering at K = 2 clearly distinguished 323 

the RW and WC populations at K = 2 (Figure 2c) indicating a very low level of admixture 324 

among the studied populations. 325 
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 326 

 327 

Figure 2. Genetic relationships between the Russian White (RW) and White Cornish (WC) chicken 328 
populations: (a) a principal component analysis (PCA) plot showing the distribution of RW and WC 329 
individuals in the dimensions of two coordinates, i.e., the first (PC1; X-axis) and second (PC2; Y- 330 
axis) principal components, with percentage of total genetic variability, which can be explained by 331 
each of the two components, being indicated within the parentheses; (b) a Neighbor-Net tree 332 
constructed based on the FST genetic distances among the studied populations; and (c) an admixture 333 
plot representing cluster structure of the studied populations if the number of clusters, K = 2. 334 

3.3. ROH distribution in the genomes of studied chicken breeds 335 

We revealed a lower mean number of ROH segments in the RW breed genome as 336 

compared to the WC breed (109.10 vs. 119.09). On the other hand, RW chickens had a 337 

greater coverage of genome by ROHs (183.41 vs. 161.97 Mb), which resulted in a higher 338 

value of inbreeding coefficient calculated based on ROHs (FROH = 0.195 vs 0.172) (Table 339 

2). 340 

Table 2. Summary of the runs of homozygosity (ROH) descriptive statistics1 calculated in the 341 
studied Russian White (RW) and White Cornish (WC) breeds based on SNP genotypes. 342 

Breed n 
ROH No. ROH Length, Mb FROH 

(M ± SE) (M ± SE) min max (M ± SE) min max 

RW 31 109.10 ± 3.08 62 149 183.41 ± 10.63 50.92 325.96 0.195 ± 0.011 

WC 23 119.09 ± 2.44 100 144 161.97 ± 5.09 91.49 190.61 0.172 ± 0.005 

1 n, number of individuals; ROH No., the number of ROHs in a genome; ROH Length, the overall 343 
length of ROHs in a genome; FROH, inbreeding coefficient calculated based on ROHs; M, mean value; 344 
SE, standard error; min, minimal value; and max, maximal value. 345 

Short ROH segments (0,5–1 Mb) were the most distributed throughout the genome and 346 

accounted for 49.26% and 54.73% of all ROHs identified in the WC and RW breeds, 347 

respectively. The proportion of ROH segments of the greater length (4–8, 8–16, and >16 348 

Mb), typically caused by inbreeding to a more recent ancestors, was higher in RW as 349 

compared to WC (5.56 vs. 3.50% for 4–8 Mb; 1.51 vs. 0.44 for 8–16 Mb; and 0.33 vs. 0.07 for 350 



Biology 2021, 10, x FOR PEER REVIEW 10 of 33 
 

 

ROH > 16 Mb). The genome coverage by the longer ROH segments was greater in RW 351 

than that in WC (18.9 vs. 9.69%; 0.66 vs. 0.13%; and 18.49 vs. 10.87%, respectively) (Figure 352 

3, Table S1). 353 

 354 

Figure 3. Descriptive statistics of the runs of homozygosity (ROH) by ROH length class in the breeds 355 
of Russian White (RW) and White Cornish (WC) chickens: (a) mean number of ROHs (Y-axis) by 356 
ROH length class (X-axis; 0.5–1, 1–2, 2–4, 4–8, 8–16, and >16 Mb); (b) overall mean length of ROHs 357 
(Y-axis) by ROH length class (X-axis; >0.5 Mb, >1 Mb, >2 Mb, >4 Mb, >8 Mb, and >16 Mb). 358 

3.4. Analysis of the signatures of selection 359 

To detect the signatures of selection in the genome of the studied chicken 360 

populations, we calculated FST values for each SNP, performed hapFLK analysis, and 361 

estimated ROH islands, which were overlapped among different individuals within each 362 

population. 363 

Average pairwise FST value between the studied populations equaled to 0.152. We 364 

identified 45 SNPs with FST beyond the cut-off value (top 0.1%, FST > 0.92), which were 365 

distributed among twelve autosomes (GGA1, GGA2, GGA3, GGA4, GGA5, GGA6, GGA8, 366 

GGA9, GGA15, GGA18, GGA26, and GGA28). The greatest number of SNPs was found 367 

on GGA5 (16 SNPs) and GGA8 (10 SNPs). Fourteen SNPs localized on GGA5 and all of 368 

SNPs on GGA8 were presented by blocks of neighboring SNPs (Figure 4, Table S2). 369 

 370 

Figure 4. Genomic distribution of FST values estimated between the Russian White and White 371 
Cornish populations. Values for the X-axis are chicken autosomes (breadth of autosomes 372 
corresponds to their length); and those for the Y-axis are FST values. SNPs were plotted relative to 373 
their positions within each autosome. The threshold, which was estimated as the top 0.1% for FST 374 
values, is indicated by a horizontal line. 375 

We found the overlapping ROH islands observed in more than 50% of samples 376 

within each population (Table S3, Figure S2). We detected 23 ROH islands in the WC 377 

breed, which covered 25.987 Mb of genome and were distributed among nine 378 

chromosomes (GGA1, GGA2, GGA3, GGA4, GGA5, GGA7, GGA8, GGA18, and GGA28). 379 

Average length of ROH islands was 1.130 Mb, with their size ranging from 0.405 to 3.240 380 

Mb. Eighteen ROH islands covering 14.530 Mb of the genome and distributed among 381 

seven chromosomes (GGA1, GGA2, GGA3, GGA4, GGA5, GGA8, and GGA9) were found 382 

in the RW population. Length of ROH islands varied between 0.301 and 2.472 Mb and 383 
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averaged to 0.807 Mb. Most of the identified ROH islands were population specific, except 384 

for two ROH islands on GGA1 and GGA2, which partly overlapped in the two studied 385 

populations. The ROH islands on GGA1 covered a region between 143,268,071 and 386 

144,065,046 in the genome of the WC breed and between 143,047,114 and 143,929,272 in 387 

the genome of the RW breed. The positions of ROH islands on GGA2 were 78,935,731 to 388 

79,963,158 for the WC breed and 79,022,396 to 79,487,897 for the RW chickens. 389 

The hapFLK analysis resulted in identification of 15 putative regions affected by 390 

selection, which were distributed among 10 autosomes and covered 20.095 Mb of the 391 

chicken genome. Length of the putative regions under selection pressure ranged between 392 

0.022 and 3.764 Mb and averaged to 1.340. Twelve regions were breed-specific including 393 

four regions on GGA1, GGA7, GGA13, and GGA14 in the WC breed (coverage of 2.412 394 

Mb) and eight regions on GGA1, GGA3, GGA4, GGA5, GGA8, GGA9, and GGA13 395 

(coverage of 10.572 Mb) in RW chickens. Three genomic regions identified by hapFLK 396 

analysis on GGA2 (positions from 69,808,276 to 72,600,534 and from 76,552,199 to 397 

80,316,420) and GGA3 (positions from 29,203,776 to 29,759,199) were common for both 398 

populations (Figures 5, S3, Table S4). Three genomic regions with the significance level p 399 

< 0.001, which were detected on GGA1 (positions from 41,095,175 to 44,484,517) and GGA8 400 

(positions from 28,777,070 to 30,174,896) in RW chickens as well as one common region 401 

on GGA2 (positions from 76,552,199 to 80,316,420) were defined as strongest hapFLK 402 

regions. 403 

 404 

 405 
Figure 5. Signatures of selection in the genomes of the studied Russian White (RW) and White 406 
Cornish (WC) chicken populations based on the hapFLK statistics. Values for the X-axis are chicken 407 
autosomes, and those for the Y-axis are values of statistical significance (−log10 p-values). Blue line 408 
indicates threshold of significance at p < 0.01 (i.e., −log10(p) > 2). Magnified plots of few most 409 
representative chromosome areas containing the hapFLK regions are presented above the plot. 410 
Values for the X-axis are the genomic positions on corresponding autosome. Each color band 411 
corresponds to one haplotype cluster, and the height of a band shows the cluster frequency. 412 
Magnified plots for all 15 putative regions identified by hapFLK analysis are presented in Figure S3. 413 

Comparing genomic localization of the regions under putative selection detected by 414 

three different statistics (FST, ROHs, and hapFLK) revealed the presence of 11 overlapped 415 

regions, which were identified at least by two different methods (Table 3). The 416 

identification of these regions by at least two detection methods implies that such regions 417 

are likely to bear true signatures of selection. 418 
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Table 3. Overlapped genomic regions under putative selection identified at least by two different 419 
statistics in the Russian White (RW) and White Cornish (WC) breeds. 420 

GGA1 
Genomic regions (bp)2 under selection identified by different methods 

FST3,6 hapFLK4 ROH505 

1  41,095,175…44,484,5177 41,095,175…41,733,0947 

41,955,503…43,335,9207 

2  69,808,276…72,600,5347,8 69,624,561…70,806,7568 

71,053,537…73,559,3548 

2 79,243,261; 79,256,813 76,552,199…80,316,4207,8 78,172,432…78,579,3368 

78,935,731…79,963,1588 

79,022,396…79,487,8977 

3 29,676,636 29,203,776…29,759,1997,8 28,963,634…29,993,3897 

4 70,173,798; 71,530,773  70,850,437…71,917,4218 

5 18,592,354  17,793,200…18,750,3967 

5 30,348,807, 

31,277,206…32,275,187 

31,103,041…32,810,3428 29,655,633…32,895,6238 

8 7,120,493…7,373,397  7,120,493…7,750,5078 

8  28,777,070…30,174,8967 28,633,681…29,051,7097 

9 17,770,251; 17,880,381  17,985,436…18,286,8787 

28 4,011,131; 4,419,938  4,240,969…5,038,3968 
1 GGA, Gallus gallus autosomes. 2 Genomic regions: start and end positions (bp) according to the 421 
GGA reference genome assembly GRCg6a [44]. Methods used for defining signatures of selection: 3 422 
FST, top 0.1% SNPs by FST value at pairwise population comparison; 4 hapFLK, regions identified by 423 
hapFLK analysis at p < 0.01; and 5 ROH50, ROH segments distributed in more than 50% of animals 424 
within each breed. Studied populations: 6 RW / WC comparison, 7 RW, and 8 WC. 425 

Thirty-one genomic regions identified in our study by either one or more metrics 426 

were overlapped with regions, which were previously detected in other investigations in 427 

different chicken breeds (e.g., [15,37–40,72–75]). These selection sweeps were localized on 428 

GGA1 (three regions), GGA2 (seven regions), GG3 (three regions), GGA4 (five regions), 429 

GGA5 (three regions), GGA7 (two regions), GGA13 (two regions), and one region on each 430 

of GGA8, GGA9, GGA15, GGA18 and GGA28 (Tables 4 and S5). 431 

Table 4. Overlapped genomic regions identified in the present and previous studies. 432 

# GGA1 

Present study Previous studies 

Method2 
Region/SNP 

position3 
Breed/population4 Method2 

Region/SNP 

position3 
Breed/population4 Citation 

1 1 ROH 53.44…55.59 WC 

wFST 49.37…54.56 VAL [73] 

XP-EHH, 

XP-CLR 
54.77…55.06 WC-ML3, WR-FL2 [72] 

HP 55.28…55.33 BL [37] 

wFST 55.33…55.37 RJF/Coms [39] 

2 1 ROH 

143.05…143.93 RW 

wFST 

142.51…144.83 VAL [73] 

143.46…143.50 RJF/Coms [39] 

143.27…144.07 WC 
142.51…144.83 VAL [73] 

143.46…143.50 RJF/Coms [39] 

3 1 hapFLK 160.61…161.56 WC wFST 157.11…162.35 VAL [73] 

4 2 ROH 24.86…26.03 WC 
wFST 25.75…25.79 RJF/Coms [39] 

QTL 24.54…25.09 broilers [40] 

5 2 FST 39.62 RW/WC wFST 34.34…42.94 VAL [73] 

6 2 FST 67.57 RW/WC wFST 66.93…67.93 VAL [73] 

7 2 

ROH 69.62…70.81 WC 
ROH 68.23…73.46 RW [21] 

hapFLK 69.81…72.60 RW, WC 
wFST 72.49…73.27 VAL [73] 
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ROH 71.05…73.56 WC 
ROH 68.23…73.46 RW [21] 

wFST 73.06…73.10 RJF/Coms [39] 

8 2 ROH 75.48…76.22 WC HP 75.73…79.65 BL [37] 

9 2 

hapFLK 76.55…80.32 RW, WC 

HP 75.73…79.65 BL [37] 

FST 78.19 

VAL [73] 
wFST 

78.76…78.81 

79.95…80.13 

ROH 

76.55…77.20 

77.64…78.58 

78.94…79.96 

WC 

HP 75.73…79.65 BL [37] 

FST 78.19 
VAL [73] 

wFST 79.95…80.13 

79.02…79.49 RW 

HP 75.73…79.65 BL [37] 
FST 

79.24 

79.26 
RW/WC 

10 2 ROH 123.02…123.74 RW 
HP 122.25…124.67 BL [37] 

GWAS 123.45 RW [15] 

11 3 ROH 12.80…13.45 WC FST 11.56…13.00 VAL [73] 

12 3 
ROH 28.96…29.99 RW 

wFST 29.44…29.48 RJF/Coms [39] 
hapFLK 29.20…29.76 RW, WC 

13 3 ROH 83.31…84.12 RW QTL 83.74…84.06 broilers [40] 

14 4 ROH 17.87…20.34 RW 
wFST 16.90…21.86 VAL [73] 

QTL 18.33…18.70 RJF [39] 

15 4 ROH 24.23…24.99 RW 
ROH 22.62…28.37 RW [21] 

wFST 24.26…26.54 VAL [73] 

16 4 hapFLK 33.48…34.34 RW wFST 32.61…33.48 VAL [73] 

17 4 ROH 57.73…58.38 WC HP 57.93…58.96 BL [37] 

18 4 

FST 70.17 RW/WC 

wFST 
68.02…73.21 VAL [73] 

ROH 70.85…72.00 WC 
71.29…71.31 RJF/Coms [39] 

FST 71.53 RW/WC 
wFST 68.02…73.21 VAL [73] 

ZHp 71.37…71.60 broiler, BRS [38] 

19 5 

ROH 17.79…18.75 RW 

HP 17.31…19.10 BL [37] 

wFST 17.45…18.39 VAL [73] 

QTL 18.31…19.00 broilers [75] 

FST 18.59 RW/WC 
HP 17.31…19.10 BL [37] 

QTL 18.31…19.00 broilers [75] 

20 5 

ROH 29.66…32.90 WC 

wFST 30.12…30.16 RJF/Coms [39] 

QTL 30.26…32.06 broilers [40] 

wFST 
30.46…31.39 VAL [73] 

31.30…31.34 RJF/Coms [39] 

XP-

EHH, 

XP-CLR 

31.99…32.75 
WC-ML1, 

WC-ML3 
[72] 

wFST 32.50…32.54 RJF/Coms [39] 

FST 30.35 RW/WC 
QTL 30.26…32.06 broilers [40] 

hapFLK 31.10…32.81 RW 

wFST 
30.46…31.39 VAL [73] 

31.30…31.34 RJF/Coms [39] 

XP-

EHH, 

XP-CLR 

31.99…32.75 
WC-ML1, 

WC-ML3 
[72] 

wFST 32.50…32.54 RJF/Coms [39] 

FST 31.28…32.28 RW/WC 

QTL 30.26…32.06 broilers [40] 

wFST 
30.46…31.39 VAL [73] 

31.30…31.34 RJF/Coms [39] 

XP-EHH, 

XP-CLR 
31.99…32.75 

WC-ML1, 

WC-ML3 
[72] 
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21 5 ROH 40.50…41.21 RW 

FST, 

REHH 
40.29…40.67 Silky fowls [74] 

HP 40.97…41.02 BL [37] 

22 7 hapFLK 24.18…24.20 WC wFST 22.84…24.25 VAL [73] 

23 7 ROH 30.27…30.84 WC wFST 28.46…30.33 VAL [73] 

24 8 

ROH 7.12…7.75 WC 
XP-

EHH, 

XP-CLR 

7.31…7.44 
WC-ML1, WC-

ML2, WR-FL1 
[72] 

FST 

7.32 

7.34 

7.37 

RW/WC 

25 8 

ROH 28.63…29.05 RW 
HP 28.69…28.72 BL [37] 

ΔAF 28.72 RJF, Coms [39] 

hapFLK 28.78…30.17 RW 
HP 28.69…28.72 BL [37] 

ΔAF 28.72 RJF, Coms [39] 

26 9 hapFLK 23.11…24.12 RW ΔAF 23.64 RJF, Coms [39] 

27 13 hapFLK 15.70…15.98 RW wFST 15.92…17.14 VAL [73] 

28 13 hapFLK 18.25…18.88 WC 
FST, 

REHH 
18.38…18.60 

dwarf brown-egg 

layers 
[74] 

29 15 FST 5.63 RW/WC wFST 3.08…5.90 VAL [73] 

30 18 ROH 0.02…0.83 WC 

wFST 0.03…3.34 VAL [73] 

XP-EHH, 

XP-CLR 
0.25…0.43 WC-ML1, WR-FL1 [72] 

31 28 

FST 
4.01 

4.42 
RW/WC 

wFST 3.29…4.60 VAL [73] 

ROH 4.24…5.04 WC 
HP 4.22…4.26 BL [37] 

1 GGA, Gallus gallus autosomes. 2 Methods used for defining signatures of selection: ROH, runs of 433 
homozygosity islands shared in more than 50% of individuals; hapFLK, regions identified by 434 
hapFLK analysis at p < 0.01; FST, top 0.1% of SNPs by FST value at pairwise population comparison; 435 
HP, pooled heterozygosity; XP-EHH, cross-population extended haplotype homozygosity; XP-CLR, 436 
cross-population composite likelihood ratio; wFST, window-based FST at pairwise population 437 
comparison; QTL, quantitative trait locus; ZHp, z-transformed pooled heterozygosity statistic; 438 
GWAS, genome-wide association studies; REHH, relative extended haplotype homozygosity; ΔAF, 439 
absolute value of allele frequency difference. 3 Region/SNP position: start and end positions (in 440 
Mbp) of genomic region or SNP position according to the GGA reference genome assembly GRCg6a 441 
[44]. 4 Breed/population: WC, White Cornish; RW, Russian White; BL, brown layer; WC-ML1, WC- 442 
ML2 and WC-ML3, White Cornish male (broiler sire) lines 1, 2 and 3; WR-FL1 and WR-FL2, White 443 
Rock female (broiler dam) lines 1 and 2; VAL, Virginia Antibody lines; RJF, red junglefowls; Coms, 444 
four commercial lines. 445 

3.5. Identification of key candidate genes affected by selection 446 

As a result of sieving and examining the genomic regions of selective sweeps 447 

determined by at least one method, we structurally annotated these regions and revealed 448 

the presence of 881 candidate genes in the two studied chicken populations (Tables 5 and 449 

S6). Those involved 548 annotated genes including 524 protein coding genes and 24 micro 450 

RNAs, with many of them being previously described in other relevant studies (e.g., 451 

ALX1, DIO2, GJD2, KITLG, TSHR, etc.). The rest of them were 316 novel Ensembl genes, 452 

10 uncharacterized NCBI loci, and 7 uncharacterized chicken homologs to human genes. 453 

In all, there were 516 chicken–human orthologs used later for the GO analysis. 454 

Among the discovered 881 candidate genes, 762 genes were found on nine 455 

macrochromosomes (GGA1–9) and 119 ones on six microchromosomes (GGA13, GGA14, 456 

GGA15, GGA18, GGA26 and GGA28). Total length of presumptive selection footprints 457 

identified on macro- and microchromosomes was respectively 46.46 and 3.32 Mb. This 458 

candidate gene mining survey resulted in an estimate of ~16.4 genes on an average every 459 

1 Mb of macrochromosomal DNA and ~35.9 genes per 1 Mb on microchromosomes, or a 460 

~2.2-fold difference. 461 

In Table 5, a shorter list is presented for 188 prioritized candidate genes that were 462 

annotated in either chicken or human genomes and retrieved from the 11 overlapped 463 
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regions of putative selection as identified at least by two techniques. These included the 464 

following 50 previously known candidate genes (Table 5, shown in bold; see also their 465 

details in Table S6): ALX1, ANKRD13C, BTG1, FGF3, FGF4, KITLG, LEPR, MGAT4C, 466 

NAT10, RPE65, SHANK2, and TYW3 (identified in the RW breed); AP1M1, AVEN, CALR3, 467 

ELL, FMN1, GREM1, INSR, KLF2, LOC420160, MIR6666, MIR6693, MYDGF, MYO9B, 468 

PLIN3, PTPRS, PCDH7, RAB8A, RABGAP1L, RYR3, SMIM7, SPRED1, TICAM1, 469 

TMEM38A, USE1 (in the WC breed); and ACTC1, BTBD9, CCT5, CMBL, CTNND2, DAP, 470 

FASTKD3, GLP1R, GJD2, MEIS2, MTRR, ROPN1L, SEMA5A, and SRD5A1 (in both the 471 

RW and WC breeds). 472 

Table 5. Prioritized annotated genes within the overlapped genomic regions affected by putative 473 
selection in the Russian White (RW) and White Cornish (WC) chicken breeds and localized by two 474 
or three methods. 475 

GGA1 
Region 

(Mb) 

Populatio

n 
Methods2 Genes3 

1 41.1…44.5 RW 
ROH, 

hapFLK 

ALX1, ATP2B1, BTG1, CEP290, DCN, DUSP6, 

EPYC, KERA, KITLG, LUM, MGAT4C, NTS, 

POC1B, RASSF9, SLC6A15, TMTC2, TMTC3, 

TSPAN19 

2 69.6…73.6 
WC, 

RW 

ROH, 

hapFLK 

CDH10, CDH9, ERV3-1, MIR6545, PODXL2, RNU6-

530P 

2 76.6…80.3 
WC, 

RW 

FST, ROH, 

hapFLK 

ABCA13, ADCY2, ANKRD33B, ATPSCKMT, CCT5, 

CMBL, CTNND2, DAP, DNAH5, FASTKD3, 

MARCHF6, MED10, MIR1613, MIR6562, MTRR, 

NSUN2, PAPD7, RNU6-383P, ROPN1L, SBK2, 

SEMA5A, SNORD123, SNRNP48, SRD5A1, SUN5, 

TRIO, UBE2QL1, UPP1 

3 28.9…30.0 
WC, 

RW 

FST, ROH, 

hapFLK 

BTBD9, DAAM2, DNAH8, GLO1, GLP1R, 

KCNK16, KCNK17, KCNK5, KIF6, SAYSD1, 

ZFAND3 

4 70.1…72.0 WC FST, ROH DTHD1, PCDH7 

5 17.8…18.8 RW FST, ROH 

ACTBL2, ANO1, CAPRIN1, CCND1, CD59, CTTN, 

FADD, FBXO3, FGF19, FGF3, FGF4, LMO2, NAT10, 

ORAOV1, PPFIA1, SHANK2 

5 29.7…32.9 
WC, 

RW 

FST, ROH, 

hapFLK 

ACTC1, AQR, ARHGAP11B, AVEN, CDIN1, 

CHRM5, DPH6, EIF2AK4, EMC7, FAM98B, FMN1, 

FSIP1, GJD2, GPR176, GREM1, KATNBL1, MEIS2, 

MIR1718, MIR6683, RASGRP1, RYR3, SCG5, 

SPRED1, SRP14, STXBP6, THBS1, ZNF770 

8 7.1…7.8 WC FST, ROH 
ASTN1, CACYBP, LOC112532958, MRPS14, 

PAPPA2, RABGAP1L, RC3H1, RFWD2, TNN, TNR 

8 28.6…30.1 RW 
ROH, 

hapFLK 

ANKRD13C, CRYZ, CTH, DEPDC1, DNAJC6, 

ERICH3, FPGT, GADD45A, GNG12, IL12RB2, 

LEPR, LEPROT, LHX8, LOC112532951, 

LOC112532953, LRRC7, LRRC40, MCCC2L, MIER1, 

MIR6653, MSH4, NEGR1, PDE4B, PTGER3, 

RABGGTB, RPE65, SERBP1, SGIP1, SLC35D1, 

SLC44A5, SRSF11, TNNI3K, TYW3, WLS, ZRANB2 

9 17.8…18.3 RW FST, ROH KCNMB2, TBL1XR1 

28 4.0…5.0 WC FST, ROH 

AP1M1, CALR3, CHERP, CIB3, CPAMD8, DPP9, 

ELL, EPS15L1, F2RL3, FAM32A, FEM1A, HAUS8, 

INSR, KDM4B, KLF2, LOC420160, MED26, 

MIR6666, MIR6693, MIR7-3, MYDGF, MYO9B, 

PLIN3, PTPRS, RAB8A, SIN3B, SLC35E1, SMIM7, 

TICAM1, TMEM38A, TPM4, UHRF1, USE1 
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1 GGA, Gallus gallus autosomes. 2 Methods used for defining signatures of selection: ROH, runs of 476 
homozygosity islands shared in more than 50% of individuals; hapFLK, regions identified by 477 
hapFLK analysis at p < 0.01; and FST, top 0.1% of SNPs by FST value at pairwise population 478 
comparison. 3 Candidate genes found in other studies are designated in bold (see Table S6 for 479 
details). 480 

Many other key candidate genes, including those suggested in relevant studies (e.g., 481 

ANKH, ANXA10, BMPR1B, CASP6, CD36, CHST11, COL6A1, COL6A2, CRY1, DHX36, 482 

DIO2, FGA, FGB, FGG, GTF2A1, IGF1, IGSF10, MMP16, MYF5, MYF6, NUAK1, OVST, 483 

PLRG1, PMCH, SFRP2, SH3RF2, SLC2A14, SPOCK3, TSHR, TMEM263, WWP1, etc.), were 484 

determined in other genomic regions with selective sweeps in the RW and/or WC chickens 485 

using either one method (Tables S5 and S6). 486 

3.6. QTLs overlapped with the identified genomic regions 487 

Using Chicken QTLdb [68], we completed a search that showed the presence of 198 488 

known QTLs overlapped with 45 identified genomic regions localized on GGA1 (six 489 

regions), GGA2 (five regions), GGA3 (five regions), GGA4 (seven regions), GGA5 (three 490 

regions), GGA6 (one region), GGA7 (five regions), GGA8 (two regions), GGA9 (three 491 

regions), GGA13 (one region), GGA14 (one region), GGA15 (one region), GGA18 (two 492 

regions), GGA26 (one region), and GGA28 (two regions) (Tables 6 and S7). 493 

Table 6. Selective sweeps identified in genomes of the Russian White (RW) and White Cornish (WC) 494 
chicken breeds, which are overlapped with known QTLs and associated genes 495 

Trait GGA Regions1 Breed QTL ID2 
Associated 

genes2 

Abdominal fat 

percentage 

3 109.5…110.8 RW 14481  

7 8.3…8.8 WC 14504, 14505  

Abdominal fat 

weight 

1 53.4…55.6 WC 193625, 193624  

4 17.9…20.3 RW 213534  

28 4.2…5.0 WC 193631  

Aggressive 

behavior 
1 53.4…55.6 WC 

119901, 119903, 119902, 

119893 

CRY1, 

CHST11, 

TMEM263 

Albumen height 

7 24.1…24.2 WC 24818, 24820, 24821, 24953  

15 6.2 
RW / 

WC 
24953  

Antibody response 

to SRBC antigen3 

2 69.8…72.6 
RW, 

WC 
14397  

5 29.6…32.9 WC 14402  

Average daily 

gain 
4 70.8…72.0 WC 15318  

Body 

temperature 
2 123.0…123.7 RW 30853  

Body weight, 28 

days 

7 6.7…8.0 WC 160884  

26 3.8 
RW / 

WC 
95418  
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Body weight, 35–

49 days 
3 29.2…29.8 

RW, 

WC 
24377, 24378, 24379, 30854  

Body weight, 56 

days 
5 

29.6…32.9 WC 153752  

31.1…32.8 RW 153753  

31.3…32.3 
RW / 

WC 
153754  

Breast muscle 

percentage 

1 41.1…44.5 RW 95427  

18 0.02…0.8 WC 166767, 166768, 166766  

Breast muscle pH 

1 
10.7…11.3 RW 157157  

18.1…18.7 WC 157158  

2 
24.8…26.0 WC 157164  

69.6…70.8 WC 157165  

4 88.8…89.2 RW 157246  

5 17.8…18.8 RW 157176  

8 7.1…7.8 WC 157180  

9 
17.8 

RW / 

WC 
157184  

18.0…18.3 RW 157185  

26 3.8 
RW / 

WC 
157206  

Carcass fat 

content 

1 53.4…55.6 WC 193637  

28 4.2…5.0 WC 193647, 193655  

Egg production 

rate 

3 12.8…13.5 WC 214374  

13 15.7…16.0 RW 
172762, 172763, 172764, 

172765 
 

Feather 

pigmentation 
1 53.4…55.6 WC 137117, 137118 NUAK1 

Feed conversion 

ratio 

1 53.4…55.6 WC 139668  

1 75.5…76.4 WC 139747  

3 12.8…13.5 WC 139401  

3 29.2…29.8 
RW, 

WC 
139333  

5 17.8…18.8 RW 139665, 139577  

6 9.7 
RW / 

WC 

139402, 139404, 139406, 139432–

139434, 139504, 139531, 139537, 

139543, 139589, 139661, 139709, 

139712, 139733, 139743, 139760, 

139761, 139781, 139786 

 

7 6.7…8.0 WC 
139435, 139472, 139597, 

139598, 139741 
 

8 7.1…7.8 WC 139410  
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13 15.7…16.0 RW 64562  

Feed intake 
4 38.0…38.6 RW 

195036, 195037, 195038, 195039, 

195040, 195041, 195042, 195043, 

195044, 195045, 195046, 195047, 

195048, 195049, 195085, 195087, 

195096 

 

4 57.7…58.4 WC 194985 BMPR1B 

Shank circumference 8 7.1…7.8 WC 213550  

Yolk weight 1 41.1…44.5 RW 24938, 24939, 24940  

1 Genomic region (in Mb) or SNP (in base pair), identified in present study. 2 As shown in QTLdb 496 
[68]. 3 SRBC antigen, sheep red blood cell antigen. 497 

The retrieved QTL regions also overlapped with the following five associated genes: 498 

CRY1, CHST11, TMEM263 and NUAK1 on GGA1, and BMPR1B on GGA4 (Tables 6 and S7). 499 

3.7. Functional annotation and GO term enrichment 500 

Using the DAVID web tool and a list of 516 chicken–human orthologous genes found 501 

in the genomic regions with selection signatures (Table S6), we performed the analysis of 502 

functional annotation and enrichment of GO terms. A number of key candidate genes 503 

underlying the selective sweeps were determined as summarized in Table 7. 504 

Table 7. Functional annotation and enrichment of gene ontology (GO) terms among the identified 505 
genes within the sweep regions as ascertained by DAVID. 506 

Category GO term Count p-value FE1 FDR2 Genes3 

Annotation cluster 1: Enrichment Score: 2.15 

INTERPRO IPR001202:WW domain 6 0.003 5.98 1.000 
GAS7, HECW2, 

MAGI2, TCERG1, 

WWP1, WWTR1 

SMART SM00456:WW 6 0.003 5.85 0.477 

UP_SEQ_FEATURE domain:WW 1 4 0.017 7.20 1.000 

UP_SEQ_FEATURE domain:WW 2 4 0.017 7.20 1.000 

Annotation cluster 2: Enrichment Score: 1.91 

GOTERM_BP_DIRECT 
GO:0000187~activation of 

MAPK activity 
8 0.002 4.64 1.000 CPNE3, CXCR4, 

DUSP6, HGF, IGF1, 

INSR, NTF3, 

PIK3CB, SEMA3C, 

SEMA5A, THBS1 

GOTERM_BP_DIRECT 
GO:0030335~positive 

regulation of cell migration 
8 0.022 2.83 1.000 

GOTERM_BP_DIRECT 
GO:0032148~activation of 

protein kinase B activity 
3 0.055 7.77 1.000 

Annotation cluster 3: Enrichment Score: 1.57 

UP_KEYWORDS Chromophore 3 0.016 14.80 0.971 

CLRN1, CRY1, 

OPN5, RPE65, 

RRH, TGFBI 

UP_KEYWORDS Photoreceptor protein 3 0.016 14.80 0.971 

GOTERM_BP_DIRECT 
GO:0018298~protein-

chromophore linkage 
3 0.017 14.42 1.000 

UP_KEYWORDS Sensory transduction 6 0.126 2.25 1.000 

Annotation cluster 4: Enrichment Score: 1.32 



Biology 2021, 10, x FOR PEER REVIEW 19 of 33 
 

 

GOTERM_BP_DIRECT 
GO:0000187~activation of 

MAPK activity 
8 0.002 4.64 1.000 

CCND1, COL6A2, 

CXCR4, DUSP6, 

HGF, IGF1, INSR, 

NTF3, PIK3CB, 

THBS1 

GOTERM_BP_DIRECT 
GO:0031093~platelet 

alpha granule lumen 
3 0.266 2.98 1.000 

KEGG_PATHWAY hsa04510:Focal adhesion 7 0.268 1.59 1.000 

1 FE, fold enrichment. 2 FDR, false discovery rate. 3 Candidate genes found in other studies are shown 507 
in bold (see Table S5 for details). 508 

4. Discussion 509 

4.1. Genetic diversity and evolutionary relationships 510 

In the current study, we have taken advantage of examining and comparing two 511 

breeds that are typical representatives of two major, different and, in a certain sense, 512 

opposite evolutionary lineages occurred in the process of chicken domestication and 513 

breeding [9]. That is, one was selected for egg-type traits (RW) and the other one for meat- 514 

type traits (WC). We found that 15.2% of variability was caused by genetic differences 515 

between these two studied breeds (FST = 0.152), and the remaining 84.8% was due to allelic 516 

variation within the breeds. We observed a significantly lower level of genetic diversity 517 

in RW chickens as compared to WC (UHE = 0.339 vs 0.383) (Table 1). A possible reason for 518 

this can be the genetic drift occurred in the population of RW chickens, which has very 519 

small size (~260 heads) and has been subjected to a long-term breeding as a closed 520 

population. At the same time, a higher level of genetic diversity in WC chickens may also 521 

reflect a crossbred origin of the individuals used in the present study. A higher value of 522 

FROH inbreeding coefficient, which was observed in RW chickens (0.195 vs 0.172) (Table 2), 523 

may reflect the origin of the studied RW population from a small number of founders [11]. 524 

A slight excess of heterozygotes observed in the RW population may be a consequence of 525 

a lower selection pressure and selection for a variety of breeding traits [15,18] as compared 526 

to WC [23]. Genetic drift can be considered as another possible reason led to a significant 527 

deviation in the number of heterozygotes among RW chickens as compared to that 528 

expected under Hardy–Weinberg equilibrium. 529 

The results of the PCA plotting, Neighbor-Net analysis, and admixture clustering 530 

(Figure 2a–c) clearly distinguished the RW and WC breeds confirming their different 531 

genetic origin. 532 

As the egg-type breed, the RW chickens, exposed also in the past to crossing with a 533 

typical egg layer breed of White Leghorns, were selected for fecundity, egg number and 534 

other egg performance traits. In contrast, the WC breed was derived from crosses between 535 

meat and game breeds, and selected for growth, muscle development and other meet 536 

production traits. Both breeds manifesting different phenotypic traits were previously 537 

included by Moiseyeva et al. [9] in a detailed comparative phylogenetic survey of various 538 

chicken breeds using two sets of morphological discrete characters, body measurements, 539 

biochemical markers, and the activity of serum esterase-1 (currently, CES1L1, 540 

carboxylesterase 1 like 1). In the generated dendrograms for evolutionary relationships in 541 

chickens, RW clustered with the White Leghorn and other egg-type breeds, whereas WC 542 

formed common clusters with game and meat-type breeds. Lately, using the Illumina 543 

Chicken 60K SNP iSelect BeadChip, Dementieva et al. [17] localized RW and WC on the 544 

opposite branches of an FST-based Neighbor Joining tree. Our data based on Chicken 545 

50K_CobbCons chip-assisted SNP genotypes strongly supported these previous 546 

phylogenetic relationship assessments for the RW and WC breeds that exemplify typical 547 

egg- and meat-type chickens. 548 

4.2. Genomic trajectories of selection 549 

To the best of our knowledge, this is the first study of putative signatures of selection 550 

in the genomes of the native egg-type RW breed (Figure 1a). We performed it based on 551 

the analysis of genome-wide SNP genotypes using 44,728 autosomal SNPs. In the Soviet 552 
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Union time, RW was the major layer breed used for egg production [10]. Currently, only 553 

a small number of cold-tolerant and disease-resistant RW chickens are kept in the gene 554 

pool collection [19,20]. Identifying genomic regions affected by natural and artificial 555 

selection in breeds with different genetic backgrounds may give an insight into the history 556 

of domestication and selection for economically important traits [76–79]. Therefore, we 557 

chose for comparison the meat-type WC breed, which is characterized by high growth 558 

rate and outstanding meat productivity [23]. We believe that the breed-specific genomic 559 

regions found as being under selection pressure are most likely related to recent artificial 560 

selection and harbor genes and their variants associated with breeding traits. On the 561 

contrary, the regions, which overlap in the two breeds that manifest contrasting 562 

phenotypic traits, may reflect more ancient evolution events prior to domestication or 563 

breed specialization. 564 

Three different statistics (selecting top 0.1% SNPs by FST value, hapFLK analysis, and 565 

detection of ROH islands shared by more than 50% of individuals) were applied to detect 566 

the genomic regions and genes that are affected by selection in RW and WC chickens 567 

(Tables 3–5, S5 and S6). Using multiple methods based on different approaches may 568 

complement each other and therefore have higher informative power [34,80]. Among 45 569 

SNPs that were selected by FST value (Table S2), 33 were localized within the regions 570 

identified by hapFLK or ROH analysis (Table S5). Among 15 genomic regions identified 571 

by hapFLK analysis, five were overlapped with ROH islands (Table 3). In total, we 572 

identified 11 true genomic regions under selection pressure (so were identified by at least 573 

two different methods), including four RW-specific selection sweeps on GGA1, GGA5, 574 

GGA8, and GGA9, four WC-specific signatures of selection on GGA1, GGA5, GGA8 and 575 

GGA28 and three regions on GGA2 (two sweeps) and GGA3, which were common for 576 

both breeds (Table 3). Comparing selection signatures identified in the present study with 577 

the results of previous investigations performed in the RW, WC and other chicken breeds 578 

that support our findings [15,21,37–40,72–75], we showed the presence of 31 overlapped 579 

genomic regions distributed among twelve chromosomes (Tables 4 and S5). 580 

4.3. Key candidate genes and overlapping QTLs within sweep regions 581 

The present study provided a rich estimation of coding genes that underlie certain 582 

regions subject to selection in the chicken genome. Of especial interest are those that 583 

formed a set of 188 prioritized candidate genes as detected by more than two approaches 584 

to hunting for selection signatures in the genomes of the two studied breeds with 585 

contrasting phenotypes (Table 5). Of particular note are the genes ascertained in other 586 

genome-wide or more focused investigations targeting selection footprints, ROHs, QTLs, 587 

and candidate genes associated with important phenotypes and functions (shown in Table 588 

5 in bold). Among them, we emphasized ten genes specific to the egg-type RW breed 589 

sweep regions. For the meat-type WC breed regions, there were 24 specific genes. In both 590 

breeds, we observed the following 14 candidates: ACTC1, BTBD9, CCT5, CMBL, CTNND2, 591 

DAP, FASTKD3, GLP1R, GJD2, MEIS2, MTRR, ROPN1L, SEMA5A, and SRD5A1. We 592 

outline these genes below in a more detail-oriented manner, along with characterizing the 593 

appropriate QTLs known within the same regions. 594 

4.3.1. GGA1 region candidate genes and QTLs 595 

The ALX1 gene (41,898,277…41,919,541 bp), a member of the aristaless-like 596 

homeobox (ALX) family, is associated with craniofacial and limb development [81]. In 597 

chickens, the gene is involved in beak morphology and was shown to have been under 598 

selection prior to domestication, being co-localized with a selective sweep on GGA1 [39], 599 

i.e., similarly to our finding. Within the same genomic region, there are three other genes, 600 

BTG1 (44,429,339…44,433,309 bp), KITLG (43,015,486…43,066,975 bp) and MGAT4C 601 

(42,251,047…42,358,204 bp). BTG anti-proliferation factor 1 (BTG1) is a candidate gene 602 

expressed during early chick development [82], being related to muscle structure growth 603 

and development at early stages [83]. The KITLG (ligand of tyrosine-kinase receptor) gene 604 

was cytogenetically mapped to GGA1 [84] and more recently ascertained as a gene related 605 



Biology 2021, 10, x FOR PEER REVIEW 21 of 33 
 

 

to pigmentation traits, having been under selection before chicken domestication and 606 

overlapping a selective sweep [39]. MGAT4C (MGAT4 family member C) was recognized 607 

as a differentially expressed gene associated with nonsynonymous SNPs and putative 608 

selective signaling, suggesting its relation to chicken adaptation to high-altitude 609 

conditions [85]. 610 

Six selective sweeps (two RW-specific and four WC-specific ones) identified on 611 

GGA1 were overlapped with 28 known QTLs (Table S7). The region of 42.2…44.5 Mb 612 

under selection in RW chickens was associated with multiple QTLs for egg yolk weight 613 

(QTL:24938, QTL:24939, and QTL:24940; within 42,044,310…42,991,116 bp) that might be 614 

a result of recent selection for increased egg weight. Selective sweeps found in WC 615 

chickens mainly covered QTLs for growth, carcass traits and feed efficiency including 616 

body weight at 9 days (QTL:96626, 45,501,491…54,773,135 bp), feed conversion ratio 617 

(QTL:139668, 54,874,224…54,874,264 bp; and QTL:139747, 76,365,781…76,365,821 bp), 618 

abdominal fat weight (QTL:19362553, 914,126…55,103,802 bp; and QTL:193624, 619 

52,797,908…53,910,398 bp), and carcass fat content (QTL:193637, 52,797,908…53,910,398 620 

bp) (Tables 6 and S7). 621 

4.3.2. GGA2 region candidate genes and QTLs 622 

Previously, Qanbari et al. [37] detected signals of selective sweeps in this region 623 

embracing candidate genes in laying hens that might be under selection pressure. In our 624 

study, we identified a number of these genes including CCT5 (chaperonin containing 625 

TCP1 subunit 5; 78,405,510…78,413,636 bp), CMBL (carboxymethylenebutenolidase 626 

homolog; 78,327,060…78,338,570 bp), DAP (death associated protein; 627 

78,125,211…78,169,242 bp), FASTKD3 (FAST kinase domains 3; 79,210,863…79,217,888 628 

bp), and ROPN1L (rhophilin associated tail protein 1 like; 78,263,682…78,272,601 bp). 629 

Additionally, we established that this region contains some other important genes such as 630 

CTNND2 (77,868,375…77,907,969 bp), MTRR (79,184,684…79,211,008 bp), SEMA5A 631 

(78,655,148…78,914,889 bp), and SRD5A1. In another study [86], the CTNND2 (catenin 632 

delta 2; 79,772,665…79,786,504 bp) gene was shown to have an extremely strong sweeping 633 

signal, with highest zFst score in chromosome 2, though with no relationship to muscle 634 

development, growth, or other economic traits. This gene was suggested to be responsible 635 

for the evolutionary changes of domestic chickens associated with vision deterioration 636 

[86]. MTRR (5-methyltetrahydrofolate-homocysteine methyltransferase reductase) is a 637 

SNP containing candidate gene for dermatological diseases/conditions, being also 638 

associated with amino acid changes [87]. The gene was also found to be expressed in liver 639 

of growing broilers after in ovo injection of folic acid [88]. SEMA5A (semaphorin 5A) is a 640 

strong candidate gene with selective sweep that is responsible for response to selection on 641 

antibody response to sheep red blood cells [73]. In the SRD5A1 (steroid-5-alpha-reductase, 642 

alpha polypeptide 1) gene, a differentially methylated region was found as the most likely 643 

biomarker of inbreeding depression of reproduction in Langshan chickens [89,90]. 644 

In total, we identified five selective sweeps on GGA2 overlapped with nine known 645 

QTLs. Among them two were specific for RW, one for WC, and two were found in both 646 

studied breeds (Tables 6 and S7). Interestingly, the genomic region within 123.0…123.7 647 

Mb identified in RW chickens was overlapped with a previously detected QTL for body 648 

temperature (QTL:30853, 121,250,696…123,202,074 bp), which could reflect the long-term 649 

selection of RW chickens for cold tolerance at the earlier stage of breed development [11– 650 

13]. Besides, this region contains a causal SNP associated with day-old chick down color 651 

in RW chickens [15]. 652 

4.3.3. GGA3 region candidate genes and QTLs 653 

Of a particular interest within this region are two candidates for the development 654 

and weight of the comb, BTBD9 (BTB domain containing 9; 13,189,289…13,199,549 bp) 655 

and GLP1R (glucagon like peptide 1 receptor; 29,410,438…29,492,850 bp) [91]. For the 656 

latter gene, a signal of selective sweeps was also determined by Qanbari et al. [39]. 657 
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Among five selective sweeps overlapped with 16 known QTLs, three were specific 658 

for the RW breed, one for WC, and two were common for both studied breeds (Tables 6 659 

and S7). Identification of additional regions in WC chickens (12.8…13.5 and 29.2…29.8 660 

Mb) associated with QTLs for feed conversion ratio (QTL:139401, 13,278,977…13,279,017 661 

bp; and QTL:139333, 29,681,999…29,682,039 bp, respectively) suggested that genes 662 

associated with feed efficiency could be involved in the artificial selection. 663 

4.3.4. GGA4 region candidate genes and QTLs 664 

The region contains the PCDH7 (protocadherin 7; 71,575,850…71,827,560 bp) gene, a 665 

notable positional candidate associated with internal organ traits in chickens and located 666 

within a QTL for intestine length and gizzard weight [92] (Table S7). 667 

We also found seven selective sweeps in the genomes of RW and WC chickens (five 668 

RW-specific and two WC-specific ones), which covered 31 previously described QTLs 669 

(Tables 6 and S7). A selective sweep within 38.0…38.6 Mb identified in the genome of RW 670 

chickens was overlapped with multiple QTLs for feed intake (QTL:195036 to QTL:195049, 671 

QTL:195085, QTL:195087, and QTL:195096). This observation could reflect a selective 672 

advantage of RW chickens with high eating capacity that would be able to accumulate 673 

more energy necessary to survive at low temperature environment and maintain a high 674 

egg productivity. 675 

4.3.5. GGA5 region I candidate genes and QTLs 676 

A genomic region on GGA5 within 17.8…18.8 Mb, which was found to be under 677 

selection pressure in RW chickens (Table S5), contains two closely located genes, FGF3 678 

and FGF4 (fibroblast growth factors 3 and 4; 17,872,481…17,877,619 and 679 

17,843,044…17,845,980 bp, respectively), suggested as candidates for the feathered-leg 680 

trait [93]. NAT10 (N-acetyltransferase 10; 18,749,501…18,771,124 bp), an additional known 681 

candidate gene in laying hens, displays a signal of selective sweeps [37] and contributes 682 

to feed conversion ratio [94]. One more gene, SHANK2 (SH3 and multiple ankyrin repeat 683 

domains 2; 18,179,810…18,393,764 bp), was localized within a QTL associated with 684 

metabolizable efficiency traits in broilers [75]. 685 

4.3.6. GGA5 region II candidate genes and QTLs 686 

This region covers 29.6…32.9 Mb and comprises a series of vital genes we identified 687 

in both the RW and WC chickens. In particular, ACTC1 (actin alpha cardiac muscle 1; 688 

32,480,478…32,485,436 bp) expressed in heart and skeletal muscle was identified as a 689 

candidate gene in laying hens that possesses a signal of selective sweeps [37] and is 690 

differentially expressed in breast muscle of growing chickens [95]. The GJD2 (gap junction 691 

protein delta 2; 32,502,596…32,505,180 bp) gene also has a signal of sweeps, being 692 

expressed in brain and retina, and potentially involved in adaptation process during 693 

chicken domestication [40,96]. An overlapping with a signal of selective sweeps was also 694 

found at RYR3 (ryanodine receptor 3; 30,373,917…30,541,375 bp), a supposedly candidate 695 

gene for pigment synthesis [97] that is expressed in broiler breast meat in response to heat 696 

stress and methionine dipeptide-deficient diet [98]. 697 

Interestingly, the region we described here overlaps with ROH islands that were 698 

shared between commercial lines and red junglefowls [40], and contain, among other 699 

genes, AVEN (apoptosis and caspase activation inhibitor; 30,287,850…30,373,018 bp), 700 

FMN1 (formin 1; 30,598,320…30,751,690 bp), GREM1 (gremlin 1, DAN family BMP 701 

antagonist; 30,776,671…30,777,369 bp), MEIS2 (Meis homeobox 2; 31,437,974…31,606,534 702 

bp) and SPRED1 (sprouty related EVH1 domain containing 1; 30,948,808…31,002,826 bp). 703 

Both AVEN expressed in adult brain, heart, intestine, kidney, lung, stomach, and spleen, 704 

as well as in whole embryos [99], and GREM1 negatively regulate apoptosis [40]. GREM1 705 

and FMN1 play an important role in mouse and chick limb development [100], with the 706 

former being located within a chicken QTL related to limb development [40]. MEIS2 is 707 

related to angiogenesis at tibial lesions in broiler chickens [101] and overlapped with a 708 

QTL for body weight [40] (Table S7). 709 
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4.3.7. GGA8 region I candidate genes and QTLs 710 

Amongst the genes we localized within this region (7.1…7.8 Mb) in the WC genome, 711 

RABGAP1L (RAB GTPase activating protein 1 like) was lately suggested as a chicken 712 

candidate gene for plasma very low-density lipoprotein concentration in a respective 713 

GWAS carried out by Zhang et al. [102]. This blood characteristics is thought to be useful 714 

for selecting lean meat-type lines [102]. 715 

The region found as affected by selection in WC chickens also overlaps with several 716 

QTLs associated with feed conversion ratio (QTL:139410; 7,689,799…7,689,839 bp), breast 717 

muscle pH (QTL:157180; 7,219,671…7,569,140 bp), shank circumference (QTL:213550; 718 

7,521,372…7,569,140 bp), VLDL cholesterol level (QTL:170802; 7,550,094…7,550,134 bp), 719 

and antibody titer to IBV (QTL: 24340; 7,500,998…7,501,038 bp) (Table S7). 720 

4.3.8. GGA8 region II candidate genes 721 

This region within 28.6…30.1 Mb that we determined in the RW genome includes 722 

few genes of interest, e.g., LEPR (leptin receptor; 28,687,054…28,717,255 bp), a candidate 723 

gene in laying hens harboring a signal of selective sweeps [37]. As a candidate gene 724 

suggestive of production-oriented selection [39], it is also associated with growth and feed 725 

efficiency in meat-type chickens [103]. Another selection sweep in this candidate region 726 

was defined at the TYW3 (tRNA-yW synthesizing protein 3 homolog; 727 

29,988,144…29,991,956 bp) gene [104]. ANKRD13C (ankyrin repeat domain 13C; 728 

29,389,240…29,401,259 bp) was suggested to be a candidate gene for feed conversion ratio 729 

[94]. The RPE65 (retinoid isomerohydrolase; 29,124,295…29,130,623 bp) gene is related to 730 

retinol metabolism, its expression being down-regulated in rose-comb chickens [105]. 731 

4.3.9. GGA28 region candidate genes and QTLs 732 

We identified within this region (4.0…5.0 Mb) several other recently suggested 733 

candidate genes for plasma very low-density lipoprotein concentration as determined by 734 

Zhang et al. [102], including AP1M1 (adaptor related protein complex 1 mu 1 subunit; 735 

4,510,264…4,518,819 bp), CALR3 (calreticulin 3; 4,437,755…4,441,529 bp), ELL (elongation 736 

factor for RNA polymerase II; 3,997,087…4,031,848 bp), KLF2 (Kruppel like factor 2; 737 

4,484,819…4,487,194 bp), MIR6666 (microRNA 6666; 4,808,669…4,808,772 bp), MIR6693 738 

(microRNA 6693; 4,387,579…4,387,688 bp), MYO9B (myosin IXB; 4,263,083…4,303,548 739 

bp), PTPRS (protein tyrosine phosphatase, receptor type S; 4,727,381…4,835,713 bp), 740 

RAB8A (RAB8A, member RAS oncogene family; 4,524,693…4,537,499 bp), SMIM7 (small 741 

integral membrane protein 7; 4,391,143…4,393,274 bp), TICAM1 (toll like receptor adaptor 742 

molecule 1; 4,961,810…4,965,486 bp), TMEM38A (transmembrane protein 38A; 743 

4,384,819…4,391,056 bp), and USE1 (unconventional SNARE in the ER 1; 744 

4,258,017…4,262,921 bp). AP1M1 involved in endosome to melanosome transport [106] 745 

and USE1 [37] overlapped with signals of selective sweeps. ELL is also a positional 746 

candidate gene for egg number in broiler breeders [107] and candidate gene associated 747 

with egg quality (yolk weight) [108]. The KLF2 gene is related to angiogenesis at tibial 748 

lesions in broiler chickens [101]. Our findings extend knowledge about genes under 749 

selection within this region on GGA28 in meat-type chickens. 750 

In addition, this region embraced few other important genes as demonstrated in our 751 

and other investigations. INSR (insulin receptor; 4,218,437…4,253,117 bp) is known as a 752 

candidate gene in laying hens that contains a signal of selective sweeps [37]. LOC420160 753 

(cathepsin L1-like; 5,030,693…5,034,171 bp) is a chicken ortholog to human CTSV 754 

(cathepsin V) and CTSL (cathepsin L), cysteine cathepsins being attributed to extracellular 755 

matrix degradation and tissue remodeling [109]. Initially, the chicken CTSL (now CTSV) 756 

gene that has an increased expression during oviduct regression [110] was mapped to the 757 

Z chromosome [111], while LOC420160 is considered as its paralog on GGA28. MYDGF 758 

(myeloid derived growth factor; 5,034,853…5,039,077 bp) is a candidate gene related to 759 

growth and development at early stages [83]. The PLIN3 (perilipin 3; 4,952,051…4,961,161 760 

bp) gene is associated with immunity and enhances growth performance in broilers [112]. 761 
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The region selected in WC chickens overlapped with several previously described 762 

QTLs associated with fat content (QTL:193631 for abdominal fat content; QTL:193655 and 763 

QTL:193647 for carcass fat content; within 3,753,016…4,712,620 bp) and blood parameters 764 

including blood pH (QTL:71128; 3,856,132…4,097,788 bp), CO2 partial pressure 765 

(QTL:71133 and QTL:71137; 3,835,952…4,167,579 bp), mean blood cell volume 766 

(QTL:71178; 3,944,019…4,197,143 bp), and blood hemoglobin level (QTL:71183; 767 

3,944,019…4,197,143 bp) (Table S7). 768 

4.3.10. Other important candidate genes 769 

Our genome-wide screening resulted in establishing multiple candidate genes 770 

underlying the sweep regions and potentially affected by selection for egg and meat 771 

production traits in the genomes of the egg-type RW and meat-type WC chickens as 772 

identified by either technique (Tables S5 and S6). Many of them were supported by other 773 

previous studies and deserve a further attention. For instance, Qanbari et al. [37,39] 774 

reported signals of selective sweeps for the following candidate genes in laying hens (with 775 

respective chromosome of their location indicated in the parentheses): ANKH (ANKH 776 

inorganic pyrophosphate transport regulator; GGA1), IGF1 (insulin like growth factor 1; 777 

GGA1), BMPR1B (bone morphogenetic protein receptor type 1B; GGA4), TSHR (thyroid 778 

stimulating hormone receptor; GGA5), and IGSF10 (immunoglobulin superfamily 779 

member 10; GGA9). Among these, IGF1 is also an important growth factor [39] associated 780 

with abdominal fat weight/deposition, body weight and other traits in chickens [113,114], 781 

and BMPR1B is a candidate gene for low methylation related to hypoxic adaptation in 782 

Tibetan chickens [115]. The BMPR1B gene was also found within a feed intake-associated 783 

QTL [68] (Table 6). 784 

On GGA1, we defined few more candidates under selection in the egg-type breed. In 785 

particular, signals of selective sweeps were observed at the CD36 (CD36 molecule) gene 786 

[116], and at the closely located MYF5 and MYF6 (myogenic factors 5 and 6) genes [106]. 787 

CD36 is a candidate gene for pendulous comb [116] and related to adipogenesis and 788 

lipogenesis in pectoralis muscle tissue [117]. In the meat-type breed, signals of selective 789 

sweeps overlapped with OVST (ovostatin) [118], PMCH (pro-melanin concentrating 790 

hormone) [36,119], and SLC2A14 (solute carrier family 2 member 14) [120]. The OVST gene 791 

is involved in oviduct development and eggshell formation [118]. PMCH is a candidate 792 

gene involved in chicken growth control and overexpressed in low growth rate broiler 793 

cockerels [119] that also contributes to appetite and food intake [36,118]. SLC2A14 is 794 

supposedly a candidate gene for pigment synthesis [120]. 795 

Among other candidates, we also discovered on GGA2, there is the WWP1 (WW 796 

domain containing E3 ubiquitin protein ligase 1) gene, a selection candidate for 797 

muscularity in broilers detected as signal of parallel divergence [96]. Quite close to this 798 

gene, Kudinov et al. [15] found a SNP rs15151359 that was one of eight markers 799 

suggestively associated in RW chickens with the snow-white down color at day-old. This 800 

SNP is flanked by the MMP16 (matrix metallopeptidase 16) gene [15], although the latter 801 

overlaps with a novel gene ENSGALG00000053033 (Table S6) that is homologous to RNA- 802 

directed DNA polymerase from mobile element jockey-like. We identified MMP16 and 803 

ENSGALG00000053033 in the RW-specific selective sweep region. Because we have no 804 

other relevant information about these two genes in chickens, a further speculation about 805 

their contribution to phenotypic traits in the RW breed would require, however, an 806 

additional investigation. 807 

Within a GGA4-specific ROH, we identified ANXA10 (annexin A10), a candidate 808 

gene for abdominal fat in a copy number variation (CNV) region overlapping with a QTL 809 

and a selective sweep [121]. Among other genes in RW-specific regions under putative 810 

selection on GGA4, there was a trio of the linked fibrinogen alpha, beta and gamma chain 811 

genes (FGA, FGB, FGG) that are involved in cell differentiation and had signals of selective 812 

sweeps [106]. FGA is also related to response to Marek’s disease [122], while FGB is a 813 

candidate gene overexpressed in low growth rate broiler cockerels [119]. Two more 814 
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closely located genes, PLRG1 (pleiotropic regulator 1) and SFRP2 (secreted frizzled related 815 

protein 2), also overlap with signals of selective sweeps and contribute to cell 816 

differentiation. SFRP2 is involved in inbreeding depression of reproduction [90] and 817 

embryogenesis (development of the neural system, eyes, muscles, and limbs) [123], and 818 

was described as a candidate gene for adaptation to solar radiation in North- and East- 819 

African chickens [106]. SPOCK3 (SPARC/osteonectin, cwcv and kazal like domains 820 

proteoglycan 3) is a candidate gene for abdominal fat within a CNV region overlapped 821 

with a QTL and a selective sweep [121]. An ROH island on GGA4 found in the WC 822 

genome harbored the CASP6 (caspase 6) gene that is involved in regulation of apoptosis 823 

and was reported to be upregulated in broiler chickens in response to Salmonella and 824 

phytobiotic intake [124]. 825 

Most intriguingly, we identified a ROH on GGA5 in the egg-type RW breed that 826 

involves the TSHR gene related to reproductive machinery and most prominent for being 827 

coined as a domestication gene in chickens [36,39,118,125]. Moreover, we also confirmed 828 

the known candidate genes located within the same LD block as TSHR, such as CEP128 829 

(centrosomal protein 128), DIO2 (deiodinase, iodothyronine type II), GTF2A1 (general 830 

transcription factor IIA subunit 1), SEL1L (SEL1L adaptor subunit of ERAD E3 ubiquitin 831 

ligase), and STON2 (stonin 2) [126]. DIO2 is a candidate gene, overexpressed in low 832 

growth rate broiler cockerels [120], involved in regulation of hormone levels, and possibly 833 

affected by the domesticated mutation at TSHR [126]. GTF2A1 is a candidate gene for egg 834 

production traits [127] co-localized with a signal of selective sweeps [104]. The SEL1L and 835 

STON2 genes are candidates associated with egg number in laying hens [127], whereas 836 

STON2 is also a candidate gene related to yolk weight [108]. 837 

Next, we detected a ROH on GGA7 in the meat-type WC breed that contains two 838 

notable genes, COL6A1 and COL6A2 (collagen type VI alpha 1 chain and collagen type VI 839 

alpha 2 chain). These are candidate genes involved in skeletal system development and 840 

overexpressed in low growth rate broiler cockerels [120]. They also contribute to meat 841 

quality and bear strong selection signals in Chinese indigenous chicken genomes [97]. 842 

Through the DNA methylation mechanism, the COL6A1 gene modification affects 843 

intramuscular fat deposition in chicken [128] and relates to meat quality of breast muscle 844 

[129]. The COL6A2 gene was also listed amongst candidates for feed conversion ratio [94]. 845 

Two more genes are noteworthy to discuss here, DHX36 (DEAH-box helicase 36) and 846 

SH3RF2 (SH3 domain containing ring finger 2). The DHX36 gene is located on GGA9 847 

within breakpoint of evolutionary conservation between human and chicken 848 

chromosomes [130] and serves as an RNA sensor in innate immunity for recognizing viral 849 

RNA [131]. Within a WC-specific genomic region on GGA13, we also determined SH3RF2, 850 

a strong candidate gene in broilers that has a signal of selective sweeps and gene deletion 851 

associated with increased growth, while lying within a QTL region for body weight [36]. 852 

4.4. GO term annotation clustering of candidate genes 853 

As a result of GO analysis, we found four significant annotation clusters enriched 854 

with GO terms that underlay key candidate genes of interest derived from the regions of 855 

selection footprints in the RW and WC breeds. Remarkably, these GO term clusters 856 

involved certain important genes most of which we have outlined above, e.g., WWP1, 857 

IGF1, INSR, SEMA5A, RPE65, and COL6A2. A couple of noteworthy candidates can also 858 

be mentioned here, including PIK3CB (phosphatidylinositol-4,5-bisphosphate 3-kinase 859 

catalytic subunit beta) and TGFBI (transforming growth factor beta induced). The PIK3CB 860 

gene is associated with white/red earlobe color formation in chicken [132]. The TGFBI gene 861 

is related to angiogenesis at tibial lesions in broiler chickens [102] and was reported to be 862 

a candidate gene for Müllerian duct development and its disorders [133]. 863 

4.5. Gene richness 864 

In terms of comparing gene density on chicken macro- and microchromosomes, we 865 

found that microchromosomes contained 2.2 times more genes in the genomic regions 866 

harboring selection signatures. This observation is highly concordant with the previous 867 
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general estimates of two- to three-fold gene richness on microchromosomes as compared 868 

to that on macrochromosomes (e.g., [134]), demonstrating a clear-cut negative correlation 869 

between gene density and chromosome length in the chicken genome [8]. 870 

5. Conclusions 871 

Using three complementary statistical methods (FST at pairwise breed comparison, 872 

hapFLK analysis and identification of ROH islands), we performed the search for genomic 873 

footprints in two contrasting chicken breeds, the native egg-type RW and meat-type WC. 874 

Eleven true genomic regions under selection pressure were identified by at least two 875 

different methods as distributed on seven G. gallus autosomes. Four of such selective 876 

sweep regions were breed-specific for each of RW and WC chickens, while three 877 

remaining regions were common for both breeds. Several identified genomic regions were 878 

overlapped with known QTLs. In RW chickens, these regions included known QTLs for 879 

body temperature, egg production rate, egg yolk weight and feed intake that are in 880 

accordance with the breed origin and the history of its artificial selection for cold tolerance 881 

and egg laying. Selective sweeps identified in the genome of WC chickens were mainly 882 

overlapped with QTLs responsible for growth, meat and carcass traits, and feed 883 

conversion ratio that can reflect the long-term selection of this breed for increased growth 884 

rate, meat productivity and feed efficiency. We determined a set of 188 prioritized 885 

candidate genes localized within selected genomic regions and reviewed their functional 886 

relevance in both breeds. One of RW-specific sweep regions contained the TSHR gene 887 

known for being associated with domestication and reproduction in chickens. 888 

Examination of gene ontology in the sweep regions added more information for their 889 

functional annotation in two breeds. We also suggested a reasonable estimate of greater 890 

candidate gene richness within sweep regions on microchromosomes vs. 891 

macrochromosomes. These findings extend our knowledge about genomic diversity and 892 

genes under selection in the genomes of two chicken breeds with different selection 893 

history and contrasting phenotypic traits. The research results will be useful for 894 

conservation, sustainable breeding, and efficient selection of the Russian White chicken 895 

breed. 896 
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