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Abstract 

To reduce human losses and minimize social and economic disruption caused by large-scale 

earthquakes, effective planning and operational decisions need to be made by responsible agencies and 

institutions across all pre- and post-disaster stages. Operations Research (OR), which encompasses a 

broad array of quantitative and analytical methods for systematic decision making, has garnered a 

considerable amount of attention in the disaster operations management literature over the past few 

decades. The purpose of this review is to highlight and discuss main lines of research involving the use 

of OR techniques applied specifically to earthquakes disasters. As part of our review, we identify 

existing research gaps and propose a roadmap to guide future work and enhance the real-world 

applicability of OR to earthquake operations management. We emphasize the need for (i) developing 

models that are specifically tailored to earthquake operation management, including the need to contend 

with cascading effects and secondary disasters caused by aftershocks; (ii) greater stakeholder 

involvement in problem identification and methodological approach to enhance realism and adoption 

of OR models by practitioners; (iii) more holistic planning frameworks that combine decision making 

across multiple disaster stages; (iv) integration of OR methods with real- and near real-time information 

systems, while confronting the problem of dealing with missing and incomplete data; (v) greater use of 

use of multi-methodology and interdisciplinary approaches, including behavioral OR and Soft OR 

techniques as well as seismology and earthquake engineering expertise; and (vi) improved data 

generation defined at appropriate scales and better probability estimation of earthquake scenarios. 

 

Keywords: disaster management; earthquakes; earthquake operations management; operations 

research; review
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1. Introduction 

Globally, geophysical disasters – primarily earthquakes – lead annually to the death of thousands of 
people, dislocate millions, and cause significant damage to buildings, roads, and other infrastructure. 
Between 2009 and 2020 (the timeframe of this review), there have been approximately 1800 large 
earthquakes (magnitude 6 or greater on the Richter scale) and nearly 366,000 fatalities caused by 
earthquakes across the globe (see Figure 1), more than all other natural disasters put together [1]. 
Information about the most devastating earthquakes during this period is presented in Table 1.  

 

Figure 1. High magnitude earthquake occurrence and human fatalities 2009 to 2020 based on data from the 

Centre for Research on the Epidemiology of Disasters [1]. 

Recent earthquake disasters have affected many parts of the world from Asia to the Americas. Although 
a number of regions and countries are particularly prone to earthquakes, fatalities and other impacts can 
be highly variable depending on a range of factors such as geological conditions (e.g., presence of active 
faults and seismic vulnerability), earthquake characteristics (e.g., magnitude, focal depth, and epicentre 
location), area affected (e.g., city or region), level of development (e.g., physical conditions of building 
and transportation networks), and preparedness level (e.g., early warning system and risk management 
measures) [2–5]. 

Table 1. Most devastating earthquakes 2009-2020. 

Event Fatalities Magnitude Location 

2010 Haiti earthquake 316,000 7.0 Haiti 

2011 Tōhoku earthquake and tsunami 20,896 9.1 Japan 

2015 Nepal earthquake 8,964 7.8 Nepal 

2018 Sulawesi earthquake and tsunami 4,340 7.5 Indonesia 

Strategic and systematic mitigation actions can significantly reduce vulnerabilities to earthquake 
damage. For example, two major earthquakes – the 2004 Indian Ocean tsunami and the 2010 Haiti 
earthquake – both lead to hundreds of thousands of deaths, while a similar scale earthquake in New 
Zealand in 2010 affected 300,000 people but killed no one due strict building codes and high level of 
preparedness [6]. Another example is the most recent disaster in September 2018, the 7.5 magnitude 
earthquake and subsequent tsunami that hit Palu and Donggala in central Sulawesi, Indonesia. While 
the number of deaths was comparatively small (4,340), the earthquake ended up displacing over 
200,000 people and destroyed or damaged over 40,000 homes [7] as a result of power and 
communications lines being cut, which led to many residents not receiving tsunami warning messages. 
This disaster highlights the costs of not implementing a more sophisticated early warning system. 
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Along with pre-earthquake preparedness, an effective response strategy can also drastically reduce 
human end economic losses. Ineffectual management of the Haitian government enormously 
compounded the impact of the 2010 Haiti earthquake (magnitude 7). After 48-72 hours, chances of 
finding survivors rapidly decreases. The Haitian government, however, failed to take any decisive 
action during this crucial phase of the emergency. International organizations quickly mobilized in 
response, but even this was hampered by the availability of a single-runway airport with a limited 
capacity and sever damage to the maritime port. As a result, it took several days for the population to 
start receiving vital supplies [8]. By comparison, in the case of the much larger 2010 Chile earthquake 
(magnitude 8.8), the Chilean government had in place detailed plans for responding quickly to such an 
event. Because of the government’s effective control over the situation, the impact of the disaster was 
greatly reduced (525 victims) and there was almost no need for international assistance [8]. 

In order to minimize loss of life and social/economic disruption caused by earthquakes, effective 
planning at all stages of disaster management (i.e., mitigation, preparedness, response, recovery) is 
required. One analytical approach is the use of operations research (OR) techniques, which can help 
government agencies and nongovernmental organizations (NGOs) to develop sound and effective 
procedures and optimize the use of limited resources. The Institute for Operations Research and the 
Management Sciences (INFORMS) defines OR as: 

“proven scientific, mathematical processes that enable organizations to turn complex 
challenges into substantial opportunities by transforming data into information, and information 
into insights that save lives, money and solve problems.” [9] 

OR encompasses a variety of quantitative and analytical methods for systematic decision making such 
as mathematical programing, simulation, and decision analysis. OR techniques have been successfully 
applied in various real-world application areas like supply chain management, logistics, transportation, 
healthcare, telecommunication, energy production and distribution, and disaster management. In the 
context of disaster management, a number of different OR based approaches have been proposed in the 
literature to find solutions to complex problems arising in different disaster management stages. 

It is widely agreed that in order to enhance the realism OR methods for disaster operations management 
(DOM) and increase their uptake of by practitioners, models should be tailored to the key features of a 
given disaster type [10–14]. For instance, evacuation operations for disasters that strike with little or no 
warning, such as earthquakes and nuclear accidents, require different approaches to short-notice 
disasters, like hurricanes and floods, that typically provide lead times of 24-72 hours for evacuation to 
occur [15]. In earthquake evacuation, which begins immediately after, not before the disaster, one must 
typically contend with uncertainty both about the location and number of evacuees and route 
unavailability due to road damage and the presence of debris. Speaking more broadly, earthquakes 
typically stand apart from other types of disasters in terms of affecting a much a wider area, involving 
much larger numbers of causalities with more severe injuries (e.g., people with crushed limbs and spinal 
cord injuries requiring both emergency care and longer-term rehabilitation) and their potential to cause 
cascading effects and secondary disasters due to aftershocks. In this paper, we focus on how earthquake 
operations management (EOM) problems have been tackled using OR methodologies, exclusively 
reviewing papers that address EOM or those that rely on an earthquake case study to demonstrate the 
potential benefits of OR to disaster management. 

The contribution of this paper is multi-fold. First, we present a general overview of the OR literature 
dealing with DOM. Second, we provide an in depth discussion the ways in which OR has been applied 
to enhance EOM and the common types of methodologies used. Third, we highlight some important 
research gaps of existing OR models and approaches in the context of EOM and a roadmap for future 
research. To this last point, it is our hope that this review will provide OR researcher working in EOM 
important insights on enhancing the realism and applicability of their models by moving away from 
generic problem definitions, imbedding wider use of coordinated decision making across multiple DOM 
stages when suitable, understanding the importance of involving stakeholders in model 
conceptualization and development, and adopting a more multi-methodology and interdisciplinary 
approach to EOM, including integration of other earthquake related disciplines, like seismology and 
earthquake engineering. 
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The remainder of this paper is organized as follows. Section 2 gives a general overview the role of OR 
in DOM by carrying out a meta-analysis of recent survey papers. In Section 3, we review how EOM is 
addressed in the OR literature. Section 4 provides a classification and analysis of reviewed papers. A 
roadmap for future research directions and some concluding remarks are outlined in Section 5 and 6, 
respectively. 

2. Operations Research for Disaster Operations Management 

‘Disaster Management’ is defined by The International Federation of Red Cross and Red Crescent 
Societies (IFRC) as: 

“the organization and management of resources and responsibilities for dealing with all 
humanitarian aspects of emergency situations under four stages: mitigation and preparedness 
for pre-disaster operations to decrease the negative influences as far as possible, and response 
and recovery for post-disaster activities in order to lessen the impact of disasters” [16]. 

In this section, we give a brief overview of the application areas and main operations of the disaster 
management stages. 

 

Figure 2. Earthquake operations management stages and typical problems addressed in the OR literature. 

DOM involves four distinct stages. The first two focus on pre-disaster issues, the latter two deal with 
post-disaster measures [13]. Mitigation or prevention (stage 1) involves understanding what 
vulnerability to hazards exist along with protection measures to reduce risk and increase resilience. 
Preparedness (stage 2) assesses plans to save lives and organize response operations prior to a disaster 
occurring. The main aim is to reach a satisfactory level of readiness to respond to an emergency through 
development of programs that strengthen the technical and managerial capacity of governments, 
organizations, and communities (e.g., early warning systems and pre-position of supplies). Response 
operations (stage 3) aim to provide timely assistance to victims, relief, and evacuation of the affected 
population to a safe zone. Recovery (stage 4) takes place after an emergency and is primarily concerned 
with activities to remove debris, rebuild damaged buildings, and repair essential infrastructure. Figure 
2 displays the four DOM stages and typical problems addressed in each stage. 

OR techniques have been applied to deal with DOM problems since the early 1980s [13]. The OR 
literature on disaster operations and humanitarian supply chain management is considerable, as 
evidenced by the number of recent review papers published between 2015 and 2020 [10–12,14,15,17–
28]. Published survey papers that we examined are summarized in Table 2. 
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A couple of survey papers consider the full breadth of OR and management science (MS) techniques 
applied to all disaster stage [25,28]. More commonly, reviews have focused on specific disaster stages, 
like recovery [27], response [11,17], or preparedness and response [22,23], and or specific features of 
DOM, like integration of information systems with OR methods [26], stochastic elements [12], 
humanitarian supply chain management [19,24], and shelter site location [17]. In a few cases, reviews 
have focused on particular methodologies, such as optimization [15,20,23] evolutionary algorithms 
[18]. Of note, none of the reviews listed in Table 2 look at a specific disaster type, like earthquakes, nor 
do they consider the ways OR methods have or should be tailored to a particular disaster type despite 
the observation in various studies [10–14] that this is critical to enhancing the realism and applicability 
of OR methods to DOM. 

Table 2. Summary of reviewed disaster operations management papers published in 2009-2020. 

Survey Article Stage* Focus† Review Period 
Galindo and Batta [25] All OR/MS literature related to DOM 2005-2010 

Hoyos et al. [12] All OR techniques with stochastic components 2006-2012 

Gupta et al. [28] All OR/MS literature related to DOM 1957-2014 

Özdamar and Ertem [26] Rs + Rc Integration of OR with information systems and 

enabling technologies 

1993-2014 

Zheng et al. [18] All  Evolutionary algorithms applied to disaster relief 

operations 

1996–2014 

Habib et al. [19] All Humanitarian supply chain management 2005-2015 

Gutjahr and Nolz [20] All Multi-criteria optimization for disaster aid operations 2007-2015 

Zhou et al. [21] All Emergency decision support systems 2000-2016 

Çelik [27] Rc Network restoration and recovery operations 2000-2016 

Balcik et al. [22] P + Rs Humanitarian inventory planning and management 2006–2016 

Bayram [15] Rs Optimization models for evacuation planning  1952-2016 

Boonmee et al. [23] P + Rs Optimization models for  facility location planning 1964-2016 

Behl and Dutta [24] M + P + Rs Humanitarian supply chain management 2011-2017 

Sabbaghtorkan et al. [10] P Prepositioning of assets and supplies 2000-2018 

Kovacs and Mosthtari [14] All Applied methodologies in humanitarian operations 2006-2018 

Amideo et al. [17] Rs Shelter location and evacuation routing 2013-2018 

Farahani et al. [11] Rs Casualty management 1977-2019 

* M: Mitigation, P: Preparedness, Rs: Response, Rc: Recovery. 
† OR: Operations Research, MS: Management Science. 

3. Literature Review Methodology and Summary 

In the remainder of this study, we review studies that apply OR methods to address problems in EOM. 
We use a broad definition of OR, which includes mathematical programing, heuristics and 
metaheuristics, decision analysis, machine learning and artificial intelligence (AI), Soft OR, and expert 
systems. “Mathematical programing” or optimization aims at finding the most efficient (i.e., guaranteed 
best) allocation of limited resources in order to maximize or minimize some objective (e.g., total cost) 
subject to a set of constrains that limit which actions can be taken [29]. “Heuristics and metaheuristics” 
(hereafter heuristics) are algorithms which apply a series of rules (typically iterative) to quickly find 
approximate solutions to large and/or complex optimization problems [30]. Heuristics are called for 
when an exact approach cannot be used or would require an excessive amount of time to solve. 
“Decision analysis” includes a number of quantitative and graphical methods for identifying the best 
option among a defined (usually small) set of alternatives for complex or risky decision problems based 
on one or more evaluation criteria [31]. “Simulation” involves representing a real-world system 
(normally over time) using logic, mathematics, and computers for the purposes of predicting system 
behavior (possibly stochastic) or evaluating performance of different plans for improving the system 
[9]. The main types of simulation include Monte Carlo simulation, discrete event simulation, system 
dynamics, and agent based modeling. “Stochastic modeling” is the application of probability theory to 
represent and predict the outcomes of stochastic processes [9]. “AI”, in relation to OR, includes a broad 
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class of approaches designed to enable computer systems to automatically perform tasks that would 
normally require human intelligence, such as information processing, pattern recognition, and decision 
making [32]. “Machine learning,” a subclass of AI, include a wide range of  mathematical 
models/algorithms which are trained to find patterns in data in order to make predictions or decisions 
[33]. “Soft OR” includes a variety of problem structuring and stakeholder facilitation methods to help 
frame messy, ill-defined, and complex problems in rigorous but non-mathematical way [34]. Soft OR 
primarily aims at promoting learning and shared understanding of a systems as opposed to specific 
‘solution.’ Game theory studies situations involving conflict and cooperation “Game theory” is a branch 
of mathematics concerned with the analysis of strategies to competitive situations in which the payoff 
a participant receives depends on both his/her actions and the actions of other players [35]. Finally, 
“expert systems” are computer system that emulate the decision making ability of a human expert [36]. 
They are usually designed to solve complex problems by reasoning about facts and assertions, mainly 
with if-then rules rather than through procedural code. 

We systematically reviewed the literature that included one or more of the following sets of keywords: 
1) “earthquake’’, ‘‘disaster*’’, “catastroph*, “humanitarian logistic*”, or “emergency” and 2) 
“*modeling”, “*programing”, “optimization”, “decision theory”, “multi-criteria decision”, “multi-
criteria analysis”, “problem structuring method”, “system thinking”, “Soft OR”, “agent based 
simulation”, “Monte Carlo simulation”, “discrete event simulation”, “system dynamics”, “expert 
systems”, “artificial intelligence”, “neural network”, “stochastic modeling”, “stochastic model”, 
“probabilistic model”, “game theory”, “heuristic” or “metaheuristic” and spelling variations (e.g., 
British English spellings). We limited the time interval for the review to 2009-20 and used Scopus 
databases covering various large publishers such as Elsevier, Springer, Taylor & Francis, and IEEE. 
Selection of articles was based on two main criteria; (i) whether a paper applied one or more OR 
techniques to DOM decision making and (ii) whether it specifically addressed EOM or did not 
necessarily focus on earthquakes but did have a case study involving earthquakes. After further manual 
processing, 211 papers, which satisfied these criteria, were finally selected. 

 

 
Figure 3. Number of OR papers applied to EOM by year (a) and by journal with five or more such papers (b). 

Figure 3 shows the number of articles published between 2009 and 2020 on OR applied to EOM and 
the journals that published five or more such papers. The top two journals in terms of number of 
publications are European Journal of Operational Research (EJOR), which publishes both theoretical 
and applied research in OR, and International Journal of Disaster Risk Reduction, which covers a broad 
set of disciplines aimed at reducing the impact of natural, technological, and social disasters. A general 
observation is that many of the published EOM studies appear in OR focused journals (not unsurprising) 
and have bias towards transportation and other infrastructure related problems. Interestingly, more 
specialized journals in fields like seismology, engineering, and geography, which were included in our 
literature search, rarely publish OR based studies on EOM, hence why they do not appear in Figure 3b. 
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Table 3. Summary statistics of EOM disaster stages addressed in the literature. 

Disaster Stage(s) No. of papers Proportion (%) 

Mitigation 41 19.4 

Preparedness 62 29.4 

Response 66 31.3 

Recovery 20 9.5 

Integrated Stages 22 10.4 

Mitigation & Preparedness 1 4.5 

Mitigation & Response 2 9.1 

Mitigation & Recovery 1 4.5 

Mitigation, Preparedness & Response 1 4.5 

Preparedness & Response 9 40.9 

Preparedness, Response & Recovery 1 4.5 

Response & Recovery 7 31.8 

Statistics for reviewed papers are given in Tables 3 and 4. Of the 211 papers reviewed, the preparedness 
and response stages have received similar amounts of attention (29-31%), while mitigation has received 
comparatively less attention (19%), and recovery the least attention (9%). The vast majority of research 
(90%) has focused on a single disaster stage as opposed to the integration of operations from multiple 
stages (10%), which has generally appeared only more recently. Integration of either preparedness and 
response (41%) or response and recovery (32%) has received considerably more attention than any of 
the other combinations. In addition, not a single study addresses decision making in all four stages; 
usually only two stages are considered and only two studies consider three stages. As evident from 
Table 4, heuristics are the most frequently utilized OR method (33%), followed by mathematical 
programing (29%), simulation (11%), machine learning (10%), and decision analysis (3%). Few studies 
have involved the use of multiple methods (9%). 

Table 4. Summary statistics of OR methodologies used in EOM. 

Methodology No. of papers Proportion (%) 

Heuristic 70 33.2 

Mathematical programing 62 29.4 

Simulation 24 11.4 

Machine learning 21 10.0 

Decision analysis 7 3.3 

Soft OR 2 0.9 

Expert system 2 0.9 

AI 2 0.9 

Game theory 1 0.5 

Stochastic modeling 1 0.5 

Multiple methods 19 9.0 

4. Literature Review Classification and Analysis 

In the following subsections, we provide an in-depth analysis of the literature using the categorization 
shown in Figure 2. Within each category, we discuss each disaster stage in turn and the methodologies 
used to address them. Studies that address the integration of two DOM stages are reviewed and 
categorized in the final subsection. For the most used OR methods in each category, tables and figures 
are provided to gather additional insights. 

4.1. Mitigation Stage 

The mitigation stage involves strategic decision making to enhance the condition of buildings and 
critical infrastructure networks (e.g., electricity generation and distribution, transportation, water 
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supply, telecommunication, hospitals, and fire stations). Primary mitigation measures include 
earthquake-resistant construction, building retrofit, and upgrading components of critical infrastructure 
systems to make them resistant to seismic activity or/and ground motion. In comparison to other types 
of natural disasters, features specific to earthquake mitigation include the enormity of the challenge due 
to the extent of human habitation concentrated in seismically active areas, the relatively high cost to  
implement mitigation measures (to a large number structures spread over large areas), the typically long 
recurrence time (decades or more) between sizable quakes and, as a result, the greater amount of lead 
time to plan and take pre-emptive action. 

 
Figure 4. Methodologies used in mitigation problems. 

Mitigation problems can be divided into two main categories: 1) reliability and vulnerability analysis, 
which involves, for instance, estimating damage levels of infrastructure components (e.g., whether a 
road segment is operational or not) and 2) protection planning to reduce vulnerabilities and risks to 
critical infrastructure. A summary of OR methodologies applied to solve mitigation problems is shown 
in Figure 4. Three methodologies – simulation, decision analysis, and machine learning – have been 
used the most (36 papers) among the 41 reviewed papers. Expert systems, mathematical programing, 
and heuristics, in contrast, have been applied far less (11 papers). Other methodologies, such as Soft 
OR, game theory, and stochastic modeling, appear not to have been used at all to address mitigation 
problems. As is clear from Figure 4, reliability and vulnerability analysis has drawn the most attention, 
while comparatively little has focused on protection planning. Table 5 provides a detailed breakdown 
of studies in each category by problem type and methodologies used. 

Table 5. Details of the types of problems addressed and methodologies used in the mitigation stage. 

Problem Method References* 

Vulnerability and reliability analysis   

Seismic reliability analysis Simulation [37–48]  

 Machine learning [49] 

Seismic hazard mapping Decision analysis [50–55] 

 Machine learning [55] 

Building vulnerability analysis Simulation [56,57] 

 Machine learning  [58–63] 

 Decision analysis [61,62,64,65] 

Fatality estimation Simulation [57] 

 Machine learning [66,67] 

Earthquake characteristics prediction Expert system [68]  

 Machine learning [69] 

Protection planning   

Fortification of infrastructure networks and buildings Mathematical programing [43,46,70–74] 

 Heuristic [75–77] 

* References highlighted in bold incorporate more than one methodology and/or address multiple problem types. 

0 2 4 6 8 10 12 14 16

Expert system

Heuristics

Mathematical programing

Decision analysis

Machine learning

Simulation

Vulnerability & reliability analysis Protection planning



8 
 

4.1.1. Vulnerability and Reliability Analysis 

Vulnerability and reliability are especially important when examining the operability of buildings and 
critical infrastructure. Murray and Grubesic [78] state: “While reliability focuses on the possibility of 
maintaining the performance of critical infrastructure elements, vulnerability focuses on the potential 
for disrupting critical infrastructure elements or degrading them to a point when performance is 
diminished.” Both vulnerability and reliability and are important for the continuity of critical 
infrastructure operations. 

Seismic reliability analysis of critical infrastructure plays an essential role in the mitigation stage. The 
primary aim is to compute a measure of reliability given failure probabilities for an individual 
component of a system or for the system as a whole. Simulation is the most used OR method in this 
category. Details of simulation models reviewed are provided in Table 6. Simulation models have been 
used to estimate earthquake induced failure probabilities of system components, damage levels caused 
by interruptions to system operations, and reliability/vulnerability measures. Examples include 
reservoir storage of hydropower systems [48], substations in electric power grids [39], energy pipelines 
[47], water supply systems [37,45], and transportation networks [41,43,44,46]. In addition to specific 
types of infrastructure, simulation has been used to evaluate the susceptibility to landslides caused by 
earthquakes and heavy rainfall for regions of a large urban area [38,42]. Monte Carlo simulation appears 
to be the main simulation paradigm used for seismic reliability analysis, though there are a couple 
examples of system dynamics [37,48] and a very recent one using agent based modeling [40]. Besides 
simulation, Nabian and Meidani [49] investigate the use of deep neural networks, a machine learning 
method, for seismic reliability analysis. They use a case study of the California transportation network 
to demonstrate the effectiveness of the proposed method for accelerating earthquake reliability analysis. 

Table 6. Details of simulation models for reliability and vulnerability analysis. 

Reference Model Type* Outputs/Findings 

Bagheri et al. [37] SD Failure probability for water supply systems 

Sun and Chen [38], Sun et al. [42] MCS Failure probability of earthquake-induced landslides 

Li et al. [39] MCS Failure probability of power systems 

Feng et al. [40] ABM Traffic flow characteristics 

Günneç & Salman [41] MCS Reliability measures for networks 

Chang et al. [43]  MCS Earthquake intensity at each bridge location 

Gertsbakh & Shpungin [44] MCS Failure probabilities for links in a network 

Jin & Wang [45] MCS Seismic risk of water supply systems 

Mohaymany et al. [46] MCS Connectivity and reliability measures for networks 

Dadfar et al. [47]  MCS Vulnerability functions for energy pipelines 

King et al. [48] SD System disturbances and failure states for hydropower systems 

Ahmad et al. [56] MCS Damage levels of structures 

Akpabot et al. [57] MCS Damage levels for buildings and casualty levels 

* MCS: Monte Carlo simulation, SD: system dynamics, ABM: agent based model. 

For studies on seismic hazard mapping the preferred approach is multi-criteria decision making 
(MCDM), a class of decision analysis techniques, implemented in a geographical information system 
(GIS). Examples of GIS-based MCDM include the generation of seismic physical vulnerability maps 
[38,39,45] and tsunami risk maps [52]. 

For building vulnerability analysis (i.e., analysis of individual buildings as opposed to infrastructure 
networks or urban/residential areas), machine learning is the most frequently used method for 
estimating risk/damage levels based on various independent variables like structure type, construction 
quality, built area, and occupancy level [58,66]. Neural networks have been developed to inform post-
earthquake activity planning by evaluating building collapse ratios using optical and satellite data [60] 
and to construct a composite social, economic, environmental, and physical vulnerability index for 
seismically prone regions [61]. Simulation has also been used to estimate damage levels for bridges and 
buildings [56,57]. 
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Another key strand of reliability and vulnerability analysis is estimating human fatalities and 
determining the distribution of casualties. One such study is Akpabot et al. [57], who address how to 
predict the post-earthquake status of buildings (collapsed or not) and casualty levels using Monte Carlo 
simulation. Another is Gul and Guneri [67], who apply a neural network to estimate casualty proportions 
based on earthquake occurrence time, earthquake magnitude, and population density. Aghamohammadi 
et al. [66] assume that damage levels for buildings are known in advance and apply a neural network to 
estimate casualty levels considering the same inputs as Gul and Guneri [67] along with damage levels. 

Finally, earthquake characteristics prediction (e.g., magnitude, depth, location, probability of 
occurrence, seismic energy release) has been carried out using both machine learning techniques [69] 
and expert systems [68]. The study by Ikram and Qamar [68] is interesting for trying to predict 
subsequent earthquakes based on most recent earthquake attributes, such as a defined range, depth, and 
location, and for validating their approach using real-life earthquake data. 

4.1.2. Protection Planning 

This subsection covers studies on protection planning for strategic pre-earthquake mitigation. Note that 
all of the studies reviewed employ either mathematical programing or heuristics to decide which 
infrastructure to fortify or upgrade in order to minimize system vulnerability or maximize 
reliability/resilience. Details are provided in Table 7. The majority of work has focused on protection 
of links in transportation networks in order to optimize one or more objectives such as maximizing post-
earthquake connectivity [70,75], minimizing travel cost [70,71,76], minimizing investment/retrofitting 
cost [46,71,72,76], minimizing unsatisfied demand [71,76], and maximizing evacuation capacity [43]. 
Only a few studies have additionally or exclusively looked at retrofitting buildings [72,73,76]. 
Liberatore et al. [73], for example, decide which hospitals to fortify in order to minimize maximum 
reduction in medical service capacity (i.e., unmet demand) and patient assignment costs in the presence 
of propagating failures. 

Table 7. Summary of protection planning studies. 

Reference Decisions Objective(s) Case Study 

Chang et al. [43] Bridge retrofit standards  Maximize post-disaster evacuation 

capacity given a limited budget 
Memphis, 

Tennessee, USA 
Mohaymany et al. [46] Transport links to invest 

in 
Minimize investment cost to satisfy 
connectivity reliability and travel time 

reliability requirements 

Sioux Falls, South 

Dakota, USA  

Peeta et al. [70] Road links to retrofit Maximize post-disaster connectivity 

and minimize traversal cost between 

origin and destination nodes given a 

limited budget 

Istanbul, Turkey 

Lu et al. [71] Bridge retrofit standards Minimize retrofitting cost, expected 

transport cost, transport cost risk, and 

unsatisfied demand 

Sioux Falls, South 

Dakota, USA 

Zolfaghari & Peyghaleh [72] Building retrofit 

standards 
Minimize mitigation expenditures and 

future reconstruction expenditures 
Tehran, Iran 

Liberatore et al. [73] Hospitals to retrofit Minimize cost of assigning patients to 

hospitals and unmet demand 

L’Aquila, Italy 

Aydin [74] Location of recycling 

and landfill areas for 
processing debris from 

end-of-life buildings 

Minimize recycling and landfill area 

set-up cost, cost of debris transport 
and processing and maximize revenue 

of recovered materials 

Istanbul, Turkey 

Chu & Chen [75] Road links to retrofit Maximize connectivity reliability for 

highway networks 
- 

Döyen & Aras [76] Building retrofit 
standards and road links 

to retrofit 

Minimize building and road link 
retrofit costs, expected transport costs 

and unsatisfied demand for relief 

Istanbul, Turkey 

Edrisi & Askari [77] Road links to expand 

and stabilize 

Minimize travel time and expected 

fatalities 

Sioux Falls, South 

Dakota, USA 
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As is typical with these studies, the authors first analyze the computational performance of their 
proposed model or solution approach and then apply it to a case study based on real-world data. The 
aim here is to show how the model is capable of capturing all crucial network information and how the 
solution methodology generates robust solutions in acceptable computation time. As seen in Table 7, 
some use case studies of transportation networks located in seismically active areas. In addition, there 
are multi-methodology approaches combining two methodologies, such as simulation for estimating 
parameters related to vulnerability and reliability (e.g., damage state scenarios based on structural 
characteristics) and a mathematical programing model for optimizing protection decisions [43,46]. 

4.2. Preparedness Stage 

The preparedness stage, the most studied of the four disaster stages in EOM, includes plans and 
preparations made in advance of an earthquake, such as logistical readiness to deal with adverse impacts 
of earthquakes, the development of response mechanisms and procedures, rehearsals, the development 
of long-term and short-term strategies, public education, and the implementation of early warning 
systems. The problems associated with the preparedness stage can be categorized as: 1) relief pre-
positioning and resource planning (i.e., locating distribution centers, stocking relief supplies, emergency 
medical care staffing); 2) shelter site location; 3) emergency response and relief chain coordination; and 
4) early warning systems. While preparedness is crucial for any type of natural disaster, the severity of 
damage caused by earthquakes and, crucially, the often complete lack of advanced warning about when 
and where an earthquake will strike (i.e., essentially instantaneous for earthquakes and minutes for 
tsunamis versus days for hurricanes, wildfires, and volcanic activity), underscore the importance and 
benefits of preparedness. 

 

Figure 5. Methodologies used in preparedness problems. 

A summary of problem types and the OR methodologies used is preparedness planning is shown in 
Figure 5. Relief pre-positioning and resource planning is the most addressed problem type, accounting 
for 40 of the 62 studies. The other three categories, shelter site location, relief chain coordination, and 
early warning systems, have received significantly less attention, with 11, 1, and 12 studies, 
respectively. In terms of methodologies, unlike with the mitigation stage, nearly all methodologies, 
apart from expert systems, have been used to analyze and solve problems in this stage. However, 
mathematical programing and heuristics are by far the dominate techniques, having been applied in 46 
(74%) of the 62 studies. Table 8 gives a detailed breakdown of preparedness related studies based on 
problem type and methodology used. 
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Table 8. Details of the types of problems addressed and methodologies used in the preparedness stage. 

Problem Method References* 

Relief pre-positioning and resource planning   

Pre-positioning distribution centers Mathematical programing [79–95] 

 Heuristic [96–108]  

 Decision analysis [85,102] 

 Game theory [109] 

 AI [86] 

Pre-positioning medical centers Mathematical programing [110] 

Relief inventory management Mathematical programing [81–87,91–95,111–113] 

 Heuristic [98–100,104–108]  

 AI [86] 

 Simulation [111] 

 Stochastic modeling [114] 

Staff planning Simulation [115–117] 

 Machine learning [117] 

 Heuristic [118] 

Shelter site location   

 Mathematical programing [89,119–124] 

 Heuristic [125–127] 

 Decision analysis [122] 

Emergency response & relief chain coordination   

 Soft OR [128] 

Early warning system   

Earthquake/tsunami prediction and notification Machine learning [129–136] 

Simulation [137,138] 

Sensor location Mathematical programing [139] 

 Heuristic [140] 

* References highlighted in bold incorporate more than one methodology and/or address multiple problem types. 

4.2.1. Relief Pre-Positioning and Resource Planning 

This category includes problems related to pre-positioning relief distribution centers (RDCs), medical 
centers, relief inventory management, and staff planning. RDCs play an indispensable role in relief 
logistics by receiving and consolidating relief supplies (e.g., food, water, clothing, temporary shelters, 
and medication) and then distributing them to affected populations. Strategic pre-positioning of RDCs 
prior to an earthquake can significantly affect the performance of the subsequent disaster response (e.g., 
in terms of response time, accessibility, and equity) [90]. Resource planning, meanwhile, plays a crucial 
role in the preparedness stage through effective stockpiling of supplies and determining staff 
requirements in order to avoid shortages, which could pose severe risks to human life if they were to 
occur. For clarity, most of the studies included here typically model aspects of the response stage (i.e., 
relief distribution), but do so only in a very simplified way for the purposes of determining where best 
to locate RDCs in order to satisfy anticipated demand for relief. Only if more complex decisions 
involving, for example, scheduling of rescue teams or loading and routing of relief, are the models 
considered integrated (i.e., preparedness and response, see Section 4.5). 

Mathematical programing and heuristics are far and away the most commonly used approaches, 
comprising 35 (85%) of the 41 studies addressing relief pre-positioning and resource planning (see 
Table 8). Table 9 presents details of these studies, including the types of decisions and objectives 
considered. As can be seen, the most common objectives in pre-positioning RDCs and resource 
planning include the minimization of cost, transportation time, and demand shortages. In terms of cost 
components, some studies focus on fixed and variable operating costs (e.g., construction of facilities 
and the procurement and holding of  supplies) and or transportation costs (e.g., [91,92,94,104]), while 
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others separately or additionally consider social costs (e.g., fatalities and deprivation cost) [82,105]. 
Minimization of transport time usually refers to distances/travel time between RDCs and local 
distribution points (e.g., [79,95,101]). Most of the studies reviewed consider distribution of multiple 
commodities but do not give specifics. One study looks specifically at medical supply distribution to 
hospitals [81] and a couple at blood distribution [86,87]. 

Table 9. Details of mathematical programing and heuristic approaches for relief pre-positioning and resource 

planning problems. 

Problem Decisions Objective(s) References* 

Pre-positioning 

distribution 

centers 

Locations of 

distribution centers  

Minimize cost [86,87,89,94] 

Minimize distance [96] 

Minimize transport time [101–103] 

Maximize coverage  [97] 

Minimize cost and transport time [79,104] 

Minimize cost and shortages [80,85,91,93] 

Minimize transport time and shortages  [81,95] 

Minimize cost and shortages and maximize equity [107] 

Minimize cost and maximize equity and reliability [98] 

Locations and 

capacities of 

distribution centers 

Maximize accessibility [90] 

Minimize cost and shortages [92,100] 

Minimize cost and victim travel time [106] 

Minimize cost and fatalities [82,105] 

Minimize cost and maximize equity [84,99] 

Minimize cost, transport time and shortages [108] 

Minimize cost, victim travel time and shortages [88] 

Minimize cost, transport time and shortages and 

maximize equity 

[83] 

Pre-positioning 

medical centers 

Location and capacity 

of medical centers 

Minimize travel time, underachievement of target waiting 

time, unused capacity and set-up time 
[110] 

Relief inventory 

management  

Inventory levels of 

relief supplies 

Minimize cost [86,87,94] 

Minimize cost and shortages [85,91–93,100] 

Minimize cost and transport time [104] 

Minimize cost and victim travel time [106] 

Minimize cost and fatalities [82,105] 

Minimize transport time and shortages  [81,95] 

Minimize cost and maximize equity [84,99] 

Minimize cost and shortages and maximize equity [107] 

Minimize cost, transport time and shortages [108] 

Minimize cost and maximize equity and reliability [98] 

Minimize cost, transport time and shortages and 

maximize equity 

[83] 

Maximize probability of satisfied demand [111] 

Maximize min. covered demand [112] 

Minimize cost and shortages and maximize lives saved [113] 

Staff planning Staffing levels Maximize expected number of functional operating 

rooms and minimize expected travel distance 

[118] 

* References highlighted in bold address multiple problem types. 

As highlighted by the Sphere Standards [141], RDCs should be established where they are safe and 
most convenient for affected populations. In addition, principles of equity should be considered to 
ensure every affected person receives equal opportunity to obtain relief. This highlights the importance 
of including accessibility and fairness as problem objectives. Some studies consider ease of access from 
affected areas to relief distribution points and accordingly maximize equitable access [90]. More recent 
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studies consider equitable allocation of relief to affected areas and local distribution points, in other 
words, fair relief distribution [83,84,98]. 

It is worth noting that a majority of studies adopt a multi-faceted approach that considers multiple 
objectives and multiple types of decisions, including locating RDCs and determining their inventory 
levels. For example, Tofighi et al. [108] optimize four objectives: (i) minimization of fixed and variable 
costs associated with setting up central warehouses and RDCs and holding relief, (ii) minimization of 
total and (iii) minimization of maximum time to ship relief from central warehouses to affected areas 
via RDCs, and (iv) minimization of a weighted combination of relief shortages and unused relief. Paul 
and Wang [82], meanwhile, not only consider decisions about the locations, capacities, and inventory 
levels of RDCs but also the risk of damage to RDCs and how potential loss of supplies may impact 
relief allocation decisions. 

In additional to mathematical programing and heuristic approaches, a few other methodologies have 
been applied to relief pre-positioning and resource planning. For instance, system dynamics was used 
by Wu et al. [111] to inform relief inventory planning, including stock holding and replenishment 
decisions, and by Xu et al. [115] to find best ratio of medical staff to rescue workers. Discrete event 
simulation has also been applied to assess the benefits of having an emergency plan in place as well as 
increasing staff and/or emergency room capacity [116]. A game theoretic approach is employed by Bell 
et al. [109] for locating RDCs in degradable road networks. Stochastic modeling has been used to find 
optimal reordering policies for relief goods given uncertainty about demand and lead-time [114]. Lastly, 
Bayesian belief networks (AI) was used by Chen and Wang [86] to model uncertainty about earthquake 
locations/intensity and number of injuries in need of blood when deciding about blood stocking levels. 

4.2.2. Shelter Site Location 

After a large earthquake, buildings may be damaged or destroyed and a large number (possibly hundreds 
of thousands) of people may become homeless. Affected residents will need to move to designated 
emergency housing termed shelters until the disaster recovery process is completed. Accordingly, pre-
determined shelter areas should be strategically located, taking into account site suitability and access 
to relief supplies. Shelter areas must also be located within a reasonable distance from earthquake 
affected areas, accessible by safe travel routes, and provisioned with or close to essential services (e.g., 
medical care). It should be clear that identifying optimal locations for shelters is a complex problem. In 
all, we found ten studies on shelter site location specifically looking at earthquakes. All employ 
mathematical programing or heuristics. 

A variety of factors have been considered when locating shelters. Bayram et al. [120], for example, 
focus on minimizing total evacuation time assuming evacuees travel to their nearest shelters via shortest 
or near shortest paths. Kınay et al. [124] instead locate shelters to maximize minimum site suitability 
based on criteria proposed by the Turkish Red Crescent, including distance to healthcare institutions, 
electrical infrastructure, and sanitary systems and terrain characteristics. Bayram and Yaman [121] 
apply a two-stage stochastic programing approach to incorporate uncertainty about evacuation demand 
and disruption to road and shelter site capacities. Hu et al. [126] employ particle swarm optimization, a 
metaheuristic approach, to locate shelters at minimum cost subject to capacity and distance constraints. 
Trivedi and Singh [122] propose a model for optimizing shelter sites based on victim travel distance, 
distance to relief and health centers, unmet demand, number of shelters, site risk (vulnerability to 
earthquakes, floods, landslides), and degree of public ownership. Other interesting aspects addressed in 
shelter location include risks associated with travelling to and remaining at shelters [119] and changes 
in both population size and spatial distribution [125] of those needing shelter. 

4.2.3. Emergency Response and Relief Chain Coordination 

Coordination and cooperation between emergency response and relief organizations (e.g., government 
agencies, emergency services, humanitarian organizations) is essential for responding in a timely and 
appropriate manner to earthquake disasters. Emergency response and relief chain coordination problems 
focus on the importance of effective and flexible structures that enhance interoperability, 
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communication, and synchronized response of multiple EOM stakeholders to minimize human and 
economic losses in the aftermath of an earthquake. 

Despite the importance of multi-agency coordination, we found only one study dealing with the topic. 
Specifically, Preece et al. [128] model the complex interactions involved with stakeholder 
communication. The authors examine how application of the viable system model (VSM), a Soft OR 
method, can help identify key shortcomings and opportunities in communication systems. Using a case 
study of the Great Hanshin-Awaji Earthquake in 1995, they demonstrate the utility of VSM structures 
to facilitate communication and coordination during a disaster. 

4.2.4. Early Warning Systems 

Earthquake early warning systems (EEWSs) form an essential part of the preparedness stage by 
providing timely and relevant information immediately following an earthquake. Effective EEWSs can 
help significantly to save lives and reduce damage. Two main problem types are discussed here:  
earthquake/tsunami prediction and notification and earthquake/tsunami sensor location. 

Table 10. Details of studies addressing early warning systems. 

Topic Method References 

Earthquake location/magnitude prediction Machine learning [129,131] 

Tsunami wave height prediction Machine learning [130,132] 

Reduction of false alarm rates Machine learning  [133–135] 

Earthquake detection Machine learning [136] 

Early warning lead time and reliability estimation Simulation [137] 

Ground motion prediction Simulation [138] 

Seismometer/tsunameter location Mathematical programing [139] 

 Heuristic [140] 

As seen in Table 10, machine learning is the most commonly used approach in EEWS prediction and 
performance, comprising 8 (67%) of the 12 studies reviewed here. An example application of machine 

learning is to reduce false alarms by rapidly and reliably discriminating real earthquake signals from 

other signals [133–135]. This is critical to improving the performance of EEWSs, as excessive false 
alarm rates cant impose a heavy cost in terms of service loss, undue panic, and diminishing confidence 
in EEWSs [102]. Machine learning has also been used for initial detection of earthquakes from siesmic 
sensor data [133–135], advanced prediction of the location and magnitude of earthquakes [129,131], 
real-time classifcation of near- versus far-source earthquakes, and tsunami wave height estimation 
[130,132]. 

Somewhat surprisingly, only a couple examples of simulation being applied in EEWS were found in 

the literature. Wang et al. [138], for example, propose a Monte Carlo simulation approach to predict 
peak ground motion quickly and precisely given limited seismic data. Information about ground motion 
is crucial in early warning systems because a region’s peak ground motion provides an indication of the 
scale of the potential disaster in terms of building damage and threat to life. Meanwhile, Oliveria et al. 
[137] use Monte Carlo simulation to estimate amount “lead time” between when an early warning is 
received and the earthquake arrives and the potential costs of false alarms from an end-user standpoint. 

Similarly, mathematical programing and heuristics have found only limited used in EEWS design. Oth 
et al. [140] propose the use of a genetic algorithm to optimize the location and calibration (trigger 
thresholds) of seismic sensors for a regional EEWS. Mulia et al. [139] investigate the use of 
dimensionality reduction techniques to identify an initial set of sensor locations for detecting multiple 
large-magnitude tsunami sources and then apply optimization to minimize forecasting error by 
removing redundant measurement locations. 
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4.3. Response Stage 

In the aftermath of an earthquake, the primary concerns in the response stage are providing first-aid and 
rescuing trapped survivals, determining temporary shelter site locations, evacuating the affected 
population to safe zones, shelters, and medical centers, and providing emergency relief to victims. What 
often makes response so critical in the case of earthquakes versus other natural disasters is the scale of 
the problem. Whereas other types of natural disasters tend to be more localized and affect a smaller 
population, earthquakes can cause damage over wide areas (hundreds of thousands of square miles), 
resulting in enormous damage to properties and infrastructure (tens of billions of dollars), and lead to 
enormous casualties both in terms of number (hundreds of thousands of dead and injured) and severity. 
With this in mind, we focus on three main problem types within the earthquake response stage: 1) search 
and rescue; 2) evacuation; and 3) relief distribution. A summary of the problem types and the OR 
methodologies used to solve response stage problems is provided in Figure 7 and Table 11. 

 

Figure 7. Methodologies used in response problems. 

As can be seen, relief distribution problems have received the most interest among the three problem 
types. A handful of studies address the integration of relief distribution and evacuation. Two 
methodologies – mathematical programing and heuristics – dominate (used 56 times) among the 66 
response stage studies. Interestingly, simulation, which is used frequently in pre-earthquake stages 
(mitigation and preparedness), has rarely been used in post-earthquake response problems. 

Table 11. Details of the types of problems addressed and methodologies used in the response stage. 

Problem Method References* 

Search and rescue   

Rapid damage assessment Machine learning [142,143] 

 Expert system [144] 

 Heuristic [145] 

Rescue operations Mathematical programing [146,147] 

 Machine learning [148] 

 Expert system [144] 

 AI [149,150] 

Evacuation   

Routing and allocation Mathematical programing [151–160] 

 Heuristic [156,161–168] 

 Simulation [156] 

 Decision analysis [164] 

Human behavior Simulation [169] 
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Relief distribution   

Relief logistics Mathematical programing [151–155,170–182]  

 Heuristic [167,168,183–204]  

 Simulation [171,205] 

 Machine learning [153] 

 Decision analysis [171] 

 Soft OR [206] 

Road damage assessment Machine learning [207]  

* References highlighted in bold incorporate more than one methodology and/or address multiple problem types. 

4.3.1. Search and Rescue 

Search and rescue, the response stage category least examined in the literature, includes problems 
related to rapid damage assessment and rescue operations. Rapid damage assessment aims to inform 
first responders and other operations personnel about the damage status of buildings and infrastructure 
following an earthquake. Rescue operations involve the deployment of specially trained rescue teams 
to provide first-aid and free survivors from rubble. Table 12 provides details of studies in this category, 
including the systems/tools developed, their aims, OR methods used, and case study applications. 

Table 12. Details of studies addressing search and rescue problems. 

Reference System/tool Aim Method Case Study 

Bai et al. [142] Remote sensing Building damage mapping Machine learning - 

Kim et al. [143] Seismic loss 

assessment 

Sensor location for near real-time 

assessment of building damage 

Machine learning - 

Schweier & 

Markus [144] 

Information system Support onsite search and rescue 

teams and building inspectors 

Expert system - 

Chu et al. [145] Participant selection Selection of volunteers for 

collection of crowdsourcing data 

Heuristic 2010 Haiti 

earthquake 

Chu & Zhong 

[146] 

Medical rescue 

team assignment 

Maximize number of saved 

casualties 

Mathematical 

programing 

2008 Sichuan 

earthquake 

Ahmadi et al. 

[147] 

Scheduling/routing 

of rescue teams 
Maximize min. demand coverage Mathematical 

programing 
Tehran, Iran 

Chaudhuri & 

Bose [148] 

Smart infrastructure 

image classifier 

Identification of survivors in 

debris  

Machine learning 2011 Tōhoku 

and 2012 Emilia 

earthquakes 

Zheng et al. [149] Rescue wings Monitor and analyze the status of 

identified victims 
AI 2013 Ya'an 

earthquake 

Liu et al. [150] Rescue team task 

assignment  

Plan search and rescue operations 

given uncertain road damage 

AI 2014 Ludian 

earthquake 

Detecting the damage status of buildings quickly and accurately is vital to improving response times of 
rescue operations. Bai et al. [142] use a machine learning framework to compare the performance of 
using post-event remote sensing data versus multi-temporal images for estimating building damage 
ratios. Building damage ratio information is particularly useful for determining where damage is 
concentrated across a city or area and to efficiently concentrate response efforts. Schweier and Markus 
[144] develop two different integrated information systems involving the use of expert systems to 
inform both rescue operations and building damage assessment. The first generates advice for onsite 
search rescue teams about suitable procedures and equipment to use at a particular building collapse, 
while the second aids inspectors in determining whether a building is safe to use after an earthquake 
Accurate identification and classification of victims after an earthquake is crucial for improving rescue 
and evacuation efficiency. Chu and Zhong [146], meanwhile, propose a mathematical programing 
model for assigning medical rescue teams to affected areas in the very early stage after an earthquake 
to maximize the expected number of casualties that can be saved. Zheng et al. [149] describe a web-
based system to classify potential earthquake victims according to priority of need based on profile data, 
vital signs, location, and environmental conditions. Finally, Chu et al. [145] propose a model and 
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solution approach for making effective use of crowd sourcing information by selecting volunteers to 
explore earthquake affected areas given the benefits and cost of deploying them. 

4.3.2. Evacuation 

Evacuation normally takes place during initial phase of the response stage to transfer the injured to 
medical centers and those in immediate danger or made homeless due to an earthquake to safe zones 
and temporary shelters [15]. Evacuation is the second most addressed problem in the response stage, 
comprising 19 of the 67 studies. The main decision making issues include the allocation of evacuees to 
medical facilities, integration of evacuee planning and location of temporary shelters following an 
earthquake, and investigation of the role of human behavior on evacuation operations. 

Among studies using mathematical programing and heuristics, two basic decision frameworks have 
been considered: routing and allocation of affected people to safe zones by minimizing travel distance 
or evacuation time [125,161,165], sometimes in combination post-disaster shelter site location 
[154,159,166], and recovery of injured and transfer to medical centers to minimize loss of life 
[152,153,156,158,164]. Forcael et al. [161], for example, find that optimized evacuation routes result 
in shorter evacuation times from tsunami prone areas based on validation from live evacuation drills. 
Chen et al. [162] investigate how GIS and global positioning system (GPS) technologies can be 
combined with heuristic methods to support evacuation decisions by identifying in real-time the 
location of people in need of evacuation and optimal paths (based on length and reliability) for 
emergency recuse teams to reach them. Rakes et al. [165] propose a model and solution approach for 
allocating individual families to temporary housing units. Unlike most other studies, they consider each 
family’s educational and healthcare support needs when making assignments.  Kilci et al. [159] consider 
jointly where to locate shelters and allocate victims to shelters taking into account accessibility to 
critical infrastructure, terrain characteristics, and public ownership of shelter sites. Ozbay et al. [166] 
present a multi-stage approach for (i) locating shelter sites after an earthquake but before demand is 
known; (ii) allocating evacuees to their nearest shelters once demand is known; (iii) the need to open 
additional shelters due aftershocks creating more demand for shelters. Meanwhile , Mills et al. [156] 
consider patient survival rates and service times for different types of traumatic injuries when making 
ambulance and medical facility allocation decisions in order to maximize the expected number of 
survivors. Both Oksuz and Satoglu [158] and Liu [164] look at where to locate temporary medical 
centers (aka field hospitals) to deal with the evacuation and treatment of mass casualties. 

Among the few studies using simulation is Liu et al. [169], who develop an agent based model to 
examine how building damage and human behavior interact when people attempt to evacuate a building. 
A key aim of theirs is to understand how exit flow rates from buildings can be increased through better 
building design and the development of improved evacuation strategies. Mills et al. [156] also use a 
discrete event simulation approach but primarily as a way of assessing the performance of proposed 
heuristics that use limited up-to-date information when making dynamic ambulance assignments. 

4.3.3. Relief Distribution 

In the immediate aftermath of an earthquake, supply chains and logistics operations need to be rapidly 
organized to transport and distribute significant quantities of relief to affected areas taking into account 
an initial assessment of demand and post-disaster conditions (e.g., functionality of the transportation 
network). Logistics steps typically involve receiving and consolidating relief supplies from external 
suppliers (ESs) at large central warehouses (CWs) located outside the affected zone (aka “hot” zone”), 
distributing relief from CWs to RDCs located in the hot zone, and then redistributing relief from RDCs 
to local relief distribution points within affected areas (AAs), which may include shelters, spot recue 
areas, hospitals, and individual residential areas. Sometimes CWs do not constitute a distinct element 
of the logistics network (either because CWs are not required or CWs also serve as RDCs), in which 
case it is assumed that relief supplies move directly from ESs to RDCs. 

As seen from Table 11, mathematical programing and heuristics stand out as the dominate methods for 
addressing relief distribution problems, making up 42 of the 45 studies in this category. An overview 
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of these studies, including logistics activities, number of relief goods, and mode of transportation, is 
provided in Table 13 with further details provided in an Appendix A. A majority (27 out of 42) focus 
exclusively on distribution between RDCs and AAs; only a handful consider supply side logistics by 
including distribution from ESs (e.g., [152,167,179,196]) or CWs (e.g., [174,185,190,191]) to RDCs. 
A few recent papers have looked at even more complex multi-echelon relief supply chains involving (i) 
distribution among ESs, CWs, RDCs, and AAs [172] and (ii) blood donation at local collection centers 
(LCCs), transfer to testing laboratories or regional blood centers (~CWs), and on to local blood centers 
(~RDCs) and regional/local hospitals (~AAs) [153,177]. In addition, a majority of papers consider (i) 
multiple commodities (25 out of 42), as opposed to distribution of a single generic commodity, and (ii) 
multi-modal transport (27 out of 42) using a heterogeneous set of vehicles with different capacities and 
travel speeds, rather than with a fleet of identical vehicles. Vehicle types considered range from 
maritime ships [179] to road vehicles (e.g., [178,182,189,190]) and trains [199] through to helicopters 
[167,181,191]. In a few cases, submodels capture variants of vehicle routing problems in which 
capacitated vehicles complete tours to one or more AAs from a designated RDC (e.g., 
[186,190,191,204]) or travel to AAs while resupplying at different RDCs (e.g., [151,189]). Note that 
less than half (17 out of 42) simultaneously consider multiple commodities and multi-modal transport. 

Table 13. Summary of mathematical programing and heuristic approaches for relief distribution problems.  

Logistics activities No. of Goods Mode of transport References 

RDC-RDC Multi Multi [175] 

RDC-AA Single Single [168,184,188,189,193,195,197] 

  Multi [178,182,192,198,200,201] 

 Multi Single [183,186,187,203] 

  Multi [151,154,170,173,180,181,194,199,202,204] 
CW-RDC-AA Multi Single [174,185] 

  Multi [171,190] 

ES-RDC-AA Single Multi [152] 

 Multi Single [155] 

  Multi [167,176,179,196] 
ES-CW-RDC-AA Multi Single [172] 

LCC-CW-RDC-AA Single Multi [153,177] 

Further analysis reveals that nearly all mathematical programing and heuristic studies for relief 
distribution adopt a multi-objective framework to capture different, possibly conflicting logistics 
performance indicators. Typical objectives and variations thereof include: minimizing the cost of 
transporting relief (e.g., [167,181,198,201]), minimizing response time (e.g., [179,182,185,189]), 
minimizing unmet demand (e.g., [151,170,186,199]), and maximizing route reliability (e.g., 
[178,190,200,204]). Additionally, most of the studies, except five, apply their modeling framework to 
a case study, usually involving an historical earthquake. For example, Wang et al. [204] consider a 
multi-model transport fleet for distributing multiple commodities between RDCs and AAs to minimize 
both total cost and maximum time to distribute relief and maximize the minimum reliability of routes 
used by vehicles and then apply their approach to the 2008 Wenchuan earthquake. Vitoriano et al. [178], 
meanwhile, only consider a single commodity but optimize no less than six different objectives 
(minimization of transport cost, maximum time to deliver relief, unmet demand, and maximize unmet 
demand and maximization of route link reliability and security), using a case study of the 2010 Haiti 
earthquake as a demonstration. More recent work has combined relief distribution with evacuation to 
shelters and or transport of injured to medical facilities [152–154,168]. 

Four other methods besides mathematical programing and heuristics have been applied to relief 
distribution. This includes: (i) a system dynamic model to analyze a relief distribution system built for 
the Longmen Shan fault, China, where many destructive earthquakes have occurred [205]; (ii) Soft OR 
for developing a conceptual model of post-disaster survivor perception-attitude-resilience relationships 
to inform emergency logistics operations in a way that takes into account perspectives of both 
government planners and the psychology of affected populations; (iii) machine learning (neural 
networks) for designing an efficient blood supply chain [153] and predict the structural status of road 
links when deploying relief [207]; and (iv) decision analysis to assess performance of relief distribution 
based on demand coverage, logistics costs, and response time [171]. 
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4.4. Recovery Stage 

During recovery, the fourth stage of EOM, the overall aim is to return an affected community to normal 
after a major quake. Recovery begins right after the emergency. In the short-term, recovery is an 
extension of the response stage that deals with the restoration of basic services in the days and weeks 
after a disaster. In the long-term, recovery focuses on restoring economic activity and community 
wellbeing by rebuilding damaged facilities and housing, which can take years. 

 

Figure 8. Methodologies used in recovery problems. 

In view of this, we consider two basic types of recovery operations: 1) debris management and 2) facility 
and infrastructure restoration. Debris management is initially concerned with quickly clearing debris 
from impacted urban areas and roads, thereby allowing rescue, evacuation, and relief distribution 
operations to proceed more efficiently [208]. Later on, debris needs to be collected and processed. 
Debris removal management after large-scale earthquakes can be one of the most complicated and time 
consuming activities of post-disaster operations. Facility and infrastructure restoration focuses on 
planning operations involved with repair and rebuilding of damaged buildings and critical infrastructure 
networks like water, electricity, and road transportation. This includes prioritization of buildings and 
infrastructure components and scheduling of restoration work teams based on criticality and the need 
to provide maximum network functionality. Like with response stage problems, the sheer scale of both 
debris management and facility and infrastructure restoration operations involved with earthquakes sets 
them apart from other types of natural disasters. 

Table 14. Details of the types of problems addressed and methodologies used in  the recovery stage. 

Problem Method References* 

Debris management   

Debris clearance, collection and processing Mathematical programing [208–210] 

 Heuristic [208,211–213] 

 Simulation [214] 

Facility and infrastructure restoration   

Planning repair work Mathematical programing [215–217] 

 Heuristic [218–224] 

 Simulation [214,215,225–227] 

 Game theory [217] 

* References highlighted in bold incorporate more than one methodology and/or address multiple problem types. 

Recovery problems have received significantly less attention than the other stages with only 20 studies 
reviewed. A summary of OR methodologies used for both problem types is shown in Figure 8. As can 
be seen, only four OR methods have been applied in recovery stage problems. Similar to the 
preparedness and response stages, mathematical programing and heuristics are the most frequently used 
OR methods. A limited number use simulation alone or in combination with mathematical programing 
and heuristics, while one study combines mathematical programing with game theory. Additional 
details about recovery problems are given in Table 14. 
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4.4.1. Debris Management 

Given limited resources, efficient and effective planning of debris clearance to improve connectivity 
between relief demand and supply is vital during disaster response. There are a few studies addressing 
debris clearance and relief distribution problems in an integrated manner, but details of these studies 
are given in Section 4.5. In this section, we only discuss studies that deal exclusively with debris 
clearance, collection, and processing operations. 

Mathematical programing and heuristic methods for debris management have considered a number of 
different objectives, such as maximizing road network accessibility by minimizing the time to reopen a 
predefined set of travel paths [209], minimizing the time to clear debris from a road network and restore 
full connectivity [208], minimizing the time to clear debris from a road network while maximizing 
connectivity between all origin and destination pairs over time [211], and minimizing a combination of 
logistics costs involved with processing debris (i.e., transporting, sorting, storage, and disposal of 
debris), environmental and operational risks from exposure to contaminated debris, and the 
psychological costs imposed on victims and residents from the waiting time to remove debris [210]. 
Apart from these, a system dynamics model was used by Hwang et al. [214] to adopt a more holistic 
perspective to recovery operations, including debris removal. A key finding is that consideration of the 
interdependencies among multiple recovery operations can lead to better understanding of the overall 
recover process and development of more effective recovery strategies. 

4.4.2. Facility and Infrastructure Restoration 

Problems dealing with the repair and rebuilding of facilities and critical infrastructure networks (e.g., 
road transportation, water, gas, and electricity networks) damaged by earthquakes mainly focus on 
resource allocation and scheduling/routing of emergency repair crews. Here, typical aims are to restore 
full functionality of infrastructure networks as quickly as possible following an earthquake, minimizing 
the number of people without service during repair, and minimizing reconstruction costs. A variety of 
different aspects of this basic problem have been considered, mostly involving the use of mathematical 
programing and heuristics (10 out of 13). 

For example, González et al. [215] consider a set of interdependent water, gas, and power networks and 
apply both mathematical programing and simulation to minimize repair and supply shortage costs by 
coordinating repair of multiple, different network elements collocated in the same area. Meanwhile, 
Nozhati et al. [218] employ approximate dynamic programing (a hybrid mathematical programing and 
heuristic approach) to minimize the time to restore electricity to a specified fraction of the population, 
while maximizing the number of people with electricity service over time. In a series of papers, Yan, 
Shih, and colleagues explore the application of time-space network flow models and heuristic solution 
methodologies for scheduling the deployment of road repair crews in order to minimize the time of road 
repair operations [219,220] and distribution of essential supplies (e.g., fuel, machines, food) to repair 
crews at least cost  [221,222]. Different problem variants include the need to adjust original schedules 
following demand and supply perturbations (e.g., aftershocks causing additional damage and additional 
repair crews being mobilized) and consideration of multiple vehicle types combined with stochastic 
travel times. Luna et al. [226] examine the use discrete event simulation to model the restoration time 
of a water distribution network under different seismic scenarios and help inform resource allocation 
planning. Besides repair of critical infrastructure networks, Gosavi et al. [227] address damage 
containment and restoration of urban areas using discrete even simulation. Longman and Miles [225] 
also use discrete event simulation to predict timelines for rebuilding damaged housing and inform 
resource requirements (e.g., inspectors and construction workers) following the 2015 Nepal earthquake. 

4.5. Integrated Stages 

Given interdependencies among EOM stages, greater effectiveness and efficiencies can often be 
achieved through integrated planning of various pre- and post-disaster activities. The majority of 
research, however, has focused on a single EOM stage. Relatively few studies (22 out of 211) have 
combined problems from different EOM stages in an integrative fashion. Integrated disaster 
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management is clearly recognized as a key gap in the literature that needs be addressed moving forward. 
Figure 9 shows the different methods used in the integration of different EOM stages. As with most 
single stage studies, mathematical programing and heuristics are the most frequently used OR methods, 
accounting for no less than 19 (86%) of the 22 studies. 

 

Figure 9. Methodologies used in integrated stages of EOM. 

Table 15 provides a breakdown of the problems addressed and methodologies used in the integration 
of EOM stages. The two most frequent combination of stages are preparedness and response (9 out of 
22) and response and recovery (7 out of 23). Only two studies combine three stages, namely (i) 
mitigation, preparedness, and response and (ii) preparedness, response, and recovery. As can be seen 
from Table 15, studies combining preparedness and response have looked at relief pre-positioning and 
resource planning problems together with either evacuation of  victims or the distribution of relief to 
affected areas. Integrated response and recovery planning, meanwhile, has focused mainly on how 
facility and infrastructure restoration (e.g., road networks) can more effectively support relief 
distribution operations. Table 16 present further details of integrated EOM studies involving the 
application of mathematical programing and heuristic methods, including the types of decisions and 
objectives considered. 

A total of 11 studies have looked specifically at how preparedness positively impacts on response.  A 
general observation is that many of the papers reviewed investigate inherent trade-offs between greater 
investment in locating RDCs and or stockpiling relief and lower penalties as measured by demand 
shortages, response time, number of people evacuated, etc. Typically, multi-objective frameworks are 
adopted to capture the multitude of planning goals that often at play. Salman and Gül [228], for instance, 
propose a model for locating field hospitals and determining the number of ambulances needed to 
minimize travel and waiting times of casualties. Regarding relief distribution, Mete and Zabinsky [229] 
optimize the location, capacity, and inventory levels of RDCs at minimum cost in order to reduce the 
transport time of and unmet demand for medical supplies. Of note, they incorporate operational level 
decisions about vehicle loading and routing when devising an optimal relief distribution plan. Sitting 
of RDCs and relief distribution combined with vehicle routing has been considered by other authors as 
well [230–232]. In a few cases, studies RDC location has also been combined with evacuation 
[99,233,234]. Apart from mathematical programing and heuristic methods, Sahebjamnia et al. [235] 
develop a sophisticated hybrid simulation and AI decision support system for prepositioning RDCs and 
managing the allocation and distribution of relief by a humanitarian relief chain. Three main 
performance indicators – set-up/transport cost, relief shortages/excess, and response time – are used to 
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evaluate tradeoffs of alternative relief chain configurations under different disaster scenarios, make 
iterative improvements, and finally make recommendations about the best configuration for any given 
post-disaster state. 

Table 15. Details of the types of problems addressed and methodologies used in integrated stages of EOM. 

Stages Problems* Method(s) References 

Mitigation & Preparedness PP & P/RP Mathematical programing [236] 

Mitigation & Response PP & RD Heuristic [237] 

 RVA & SR Simulation [238] 

Mitigation & Recovery RVA & FIR Simulation [239] 

Mitigation, Preparedness & Response PP, P/RP & RD Heuristic [240] 

Preparedness & Response P/RP & E Mathematical programing  [228,234] 

 P/RP & RD Mathematical programing  [229,230,241] 

  Heuristic [231,232] 

  Simulation & AI [235] 

 P/RP, E & RD Mathematical programing  [233] 

Preparedness, Response & Recovery P/RP, RD & FIR Mathematical programming & simulation [242]  

Response & Recovery RD & DM Heuristic [243] 

 RD & FIR Mathematical programing [244] 

  Heuristic [245–249] 

* PP: Protection Planning, P/RP: Pre-positioning and/or Resource Planning, RD: Relief Distribution, RVA: Reliability and 

Vulnerability Analysis, SR: Search and Rescue, FIR: Facility and Infrastructure Restoration, E: Evacuation, DM: Debris 

Management. 

Relatively fewer studies have looked at combining both pre-disaster stages (1 study) or both post-
disaster stages (8 studies). All have employed mathematical programing or heuristic methods. Hu et al. 
[236] examine the problem of reinforcing RDCs and roads (mitigation) as well as setting relief inventory 
levels (preparedness) in order to minimize total cost (protection plus relief procurement, holding, and 
transport), deaths, and demand shortages. Integration of response and recovery has been considered by 
a number of authors. For example, Çelik et al. [243] develop a heuristic for optimizing the clearance of 
road debris (recovery) and the distribution of relief from RDCs to AAs (response)  over time. 
Meanwhile, various studies, including Liberatore et al. [244], Yan and  Shih [246], and Li and Teo 
[248], have looked at variations of how repair of damaged road links (recovery) can better support relief 
distribution (response) by reducing response time and increasing demand satisfaction, among other 
goals. 

Table 16. Details of mathematical programing and heuristic approaches for integrated stages of EOM. 

Stages* Decision(s) Objective(s) References 

M+P Reinforcement of buildings, reinforcement of 

the road network and relief inventory levels 

Minimize building reinforcement, road 

network reinforcement, procurement, and 

expected transport/holding costs, transport 

time, shortages and deaths 

[236] 

M+Rs Road link protection and distribution of relief 

items 

Minimize expected weighted average 

distances between supply and demand 

points 

[237] 

M+P+Rs Building retrofits, road link protection, 

capacity of emergency aid and distribution of 

relief items 

Minimize lives at risk and maximize 

number of people saved 

[240] 

P+Rs Location of field hospitals, number and 

allocation of ambulances and transport of 

casualties by ambulances 

Minimize casualty travel and waiting times [228] 

Location of medical supply centers and 

transfer points, allocation of medical supplies 

and transport of injured to hospitals via 

transfer points 

Minimize transportation time of injured and 

supplies and minimize set-up, transport and 

response time violation costs 

[234] 



23 
 

Location and inventory levels of distribution 

centers and distribution of relief through a 

network 

Minimize set-up, procurement and transport 

costs, unused inventory and unmet demand 
[241] 

Location, capacity and inventory levels of 
distribution centers and distribution of relief 

by vehicle routing 

Minimize set-up costs, transport time and 

unmet demand 

[229] 

Location, capacity and inventory levels of 
distribution centers and distribution of relief 

by vehicle routing 

Minimize max. weighted unmet demand, 
transport time and set-up, procurement, 

transportation, inventory holding shortage 

costs 

[230] 

Location of distribution centers and 

distribution of relief by vehicle routing 

Minimize transport time, unmet demand 

and set-up costs 
[231] 

Location of distribution centers and 

distribution of relief by UAV trip 

assignments 

Minimize transport time of UAVs and 

travel time of people 

[232] 

Location and inventory levels of distribution 

centers, allocation of rescue vehicles and 
relief and transport of injured to medical 

facilities by vehicle trip assignment 

Minimized set-up, operational, transport 

and holding costs, cost variability, unmet 

demand and unrecovered injuries 

[233] 

P+Rs+Rc Location and capacity of distribution centers, 
restoration equipment inventory levels, 

distribution of relief through a network and 

repair of damaged road links 

Minimize set-up, restoration equipment 
procurement and expected transport costs 

and unmet demand 

[242] 

Rs+Rc Debris clearance from roads and distribution 

of relief 

Maximize satisfied demand for relief 

 

[243] 

Repair of damaged road links and distribution 

of relief through a network 

Maximize satisfied demand, security and 

reliability and minimize max. delivery time 

[244] 

Minimize delivery time [245] 

Minimize delivery time and time to repair [246] 

Repair of damaged road links and 

accessibility of affected areas from 

distribution centers 

Minimize time to reach affected areas [247] 

Repair of damaged road points and 

distribution of relief through a network  

Maximize cumulative accessibility and min. 

satisfied demand 

[248] 

Repair of damaged road links and distribution 

of relief by vehicle routing 

Minimize set-up, transport and road repair 

costs and response time and maximize route 

reliability 

[249] 

* M: Mitigation, P: Preparedness, Rs: Response, Rc: Recovery. 

5. Roadmap for Future Research 

As should be clear from our review, OR provides a powerful array of tools for effective and efficient 
decision making in EOM. However, despite the volume and variety of EOM studies employing OR 
methods, the development of widely applicable modeling frameworks emerges as a key shortcoming in 
need of greater attention. As noted in previous surveys, applicability is critical in the field EOM owing 
to how any real world decisions ultimately translate into direct impacts on communities and individuals. 
Below we examine some important considerations relating to realism, comprehensiveness, practicality, 
and user-friendliness that have been taken from the various problem definitions and solution 
methodologies described in the literature. Figure 10 summarizes these features as they relate to the 
development of applicable EOM planning frameworks. Our hope is that this will prove useful to 
informing future lines of research and continued advancement of the field. 
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Figure 10. Key features for developing more applicable EOM methods. 

5.1. More Realistic EOM Problem Descriptions 

As evident from our literature review and previous reviews [12,15,17,25], a vast amount of research 
has been carried out in the past decades on the use of OR methods for EOM. We point out, however, 
that most studies have analyzed problem from a methodological and or theoretical perspective as 
opposed to real-world applicability and use. Frequently, studies fail to develop problem representations 
that are familiar to practitioners, instead opting to define novel problem formulations that differ greatly 
from practical and realistic ways of doings things. For OR methods to achieve greater applicability in 
EOM, it is essential that problem definitions be well-grounded in reality and context. To this end, we 
provide some recommendations that may serve to enhance the realism and, therefore, applicability of 
OR methods in EOM through better problem identification and specification, greater stakeholder 
involvement, further integration of different disaster stages, and enhancement of multi-agency 
coordination and cooperation. 

5.1.1. Disaster Type Specification 

DOM reviews thus far have not really touched on which specific disaster types may be more or less 
favorable to real-world application of OR methodologies. This is somewhat surprising, since in practice, 
disaster risk assessment and planning is usually performed separately (e.g., using software like Hazus 
[250]) for tsunamis, earthquakes, floods, hurricanes, and other disaster types. Contrary to this, we 
observed that only 138 of 211 studies in our review present a problem definition expressly focused on 
earthquakes and EOM decision making (see Appendix B). In only a few studies were emergency 
operations and stakeholder roles defined by field experts [122,205]. Interestingly, studies addressing 
reliability and vulnerability analysis and integrated disaster management have gone the furthest in terms 
of using earthquake-oriented problem specifications. Other EOM problem areas, however, tend to be 
more generic and theory-oriented and potentially less useful in real-world planning. We would argue 
that specifying which disaster type is being addressed would translate into greater transparency and 
precision in terms the problem that is being addressed and, in turn, lead to the development of more 
realistic and applicable models. 

With regard to EOM, the frequent neglect to identify a specific disaster type is perhaps one reason why 
problem descriptions usually ignore two key features of large earthquakes, namely the potential for and 
need to contend with 1) cascading or secondary effects [251] and 2) subsequent disasters caused by 
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aftershocks [152,181]. Cascading events can occur as an indirect result of a major quake. For instance, 
an earthquake that ruptures gas supply pipelines can result in fires and explosions that dramatically 
increase urban damage and risk to life [252]. Other examples of secondary effects from earthquakes 
include landslides that occur long after the event following heavy rainfall, flooding caused by breached 
dams and levees, and even the triggering of volcanic eruptions. In the case of earthquakes, which 
normally strike with no warning and affect a large area, the potential for cascading effects is often 
magnified in comparison other types of disasters. Aftershocks, meanwhile, are common following a 
large quake and not only can cause significant damage days or even weeks later, but can seriously 
hamper response and recovery operations. The 2011 Tōhoku (aka Great East Japan Earthquake), for 
example, caused extensive damage and left over 20,000 people dead. This was in large part because it 
was a compound disaster involving earthquakes, a tsunami, and a nuclear accident that widely impacted 
the whole nation [253]. As noted by Marano et al. [254], over 20% of deaths attributed to earthquakes 
over the past 40 years were a result of secondary causes (e.g., landslide, liquefaction, tsunami, and fire). 

In spite of their importance, only a small handful of papers we reviewed explicitly consider cascading 
effects and or the potential of subsequent aftershock damage. Liberatore et al. [73] for one develop an 
multi-level optimization model for deciding which hospitals to reinforce given the presence of 
propagating damage across a network. Work by Ozbay et al. [166] on shelter site location, Liu et al. 
[181] on evacuation planning, and Yan et al. [220] on road infrastructure restoration is notable for 
incorporating uncertain damage from aftershocks to improve the robustness of proposed solutions. 
Clearly, there is need for future EOM research to treat and analyze earthquakes more holistically, both 
in the mitigation and preparedness stages by hedging against cascading and secondary effects and in 
the response and recovery stages by recognizing the importance of aftershocks the need for adaptive 
planning. 

5.1.2. Integrated Stages 

Besides a lack of disaster type specification, realism of EOM studies is often constrained by proper 
consideration of how different DOM stages interact with one another. Like other reviews, we found that 
the vast majority of OR based EOM studies (189 out of 211) published in the previous 11 years focus 
on only one disaster stage as opposed to the integration of multiple stages. The latter group has mostly 
appeared in the literature fairly recently. In this subsection, we identify a number of aspects of EOM 
that could be aptly addressed through integration of different DOM stages. 

Tasks associated with recovery and mitigation partially overlap. Better understanding of the 
connections between protection strategies and damage states that result in lower recovery costs of a 
system is a key research theme that warrants greater consideration in decision modeling frameworks. 
Conversely, recovery can also be catalyst for mitigation. The motto ‘Build Back Better’, often heard in 
recent years, advocates the adoption of integrated disaster risk reduction measures into physical 
infrastructure restoration work following a disaster in order to enhance resilience of and minimize future 
risks to people, livelihoods, and the environment [253]. Despite the clear links between mitigation and 
recovery, we found only one study by Cho and Park [239] addressing this combination of DOM stages. 
Analysis of the trade-offs between investing in infrastructure protection and the associated economic 
and social costs of disruption and recovery is a clear gap in the literature. 

Notably, recent work has examined problems that intersect with the mitigation and response stages. 
This includes the use of heuristics to optimize building/road link protection and post-disaster relief 
distribution [237,240] and simulation to assess vulnerabilities to urban infrastructure and search and 
rescue effectiveness [238]. Invariably, simplifications need to be made with any model. Nonetheless, 
identified drawbacks with existing mitigation and response studies include lack of consideration 
regarding post-earthquake resource availability (e.g., personnel, vehicles, relief supplies) and potential 
reduction of resources due to earthquake damage, as well as overly simplistic assumptions about 
infrastructure damage (e.g., facilities and road links can be in one of two states: either f ully operational 
or not) and the effectiveness of protection (e.g., protection entirely prevents all damage to facilities/road 
links). From a modeling perspective, incorporating protection-damage functions, in particular, is no 
easy task. However, future work on this aspect might take inspiration from Chang et al. [43], among 
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others, who looked at using Monte Carlo simulation to better understand how for various bridge retrofit 
standards, uncertainty about earthquake intensity and bridge structural damage affected bridge traffic-
carrying capacity based on established bridge fragility and damage-functionality relationships. 

Although relief pre-positioning and resource planning (preparedness) combined with relief distribution 
(response) has received relatively more attention than other types of integrated planning (see Table 15), 
additional lines of research within this area remain. Most researchers have concentrated on the impact 
of locating RDCs, while sometimes also considering decisions about capacity and inventory levels, on 
relief distribution effectiveness. However, to our knowledge, no studies have looked at simultaneously 
positioning RDCs, setting relief inventory levels, and locating shelter sites with relief distribution. 
Further research might address this gap as well as factor in the interplay between shelter site location 
and evacuation time/distance. 

Blocked roads and paths to affected areas are frequent in the aftermath of an earthquake. While some 
research has dealt with debris clearance to reestablish relief supply lines (see Table 15), there is an 
evident lack of research focused on how debris removal allows for evacuation from affected areas. 
Additionally, none have incorporated stochastic elements related to debris amount or resource 
requirements for clearance/repair. Finally, no research that we are aware of has combined preparedness 
and recovery, for example RDC location and resource planning considering likely road infrastructure 
damage and speed of debris clearance on relief distribution performance. 

We acknowledge that from a modeling standpoint, development of integrated models often involves 
much a higher degree of complexity that can pose a serious challenge in terms of substantially increased 
computational time requirements. Nevertheless, greater use of integrated modeling can provide clear 
benefits (i.e., greater realism, enhanced coordination, more efficient use of limited resources) and issues 
related to solution time can at least partially be addressed by developing multiple inter-linked models 
and solving them in stages or using heuristics and approximation methods to solve realistically sized 
problem instances in reasonable computational time. 

5.1.3. Stakeholder Engagement 

There is broad recognition that in order to achieve buy-in and a measurable improvement in EOM 
performance, all key stakeholders need to be involved both in implementation and problem 
identification and modeling (not necessarily fine-grain details but at least general structure) 
[144,157,176,205]. Lack of stakeholder involvement in model conceptualization and development often 
leads to more theoretical and less realistic problem definitions, case studies that provide limited insights, 
and ultimately low likelihood of proposed methods ever being implemented [17]. 

To help understand the prevalence of stakeholder involvement in academic studies, the articles we 
reviewed were assigned one of three categories: 1) no involvement; 2) partial involvement (e.g., 
providing data and or general advice for case studies, including review and verification of model 
inputs); and 3) significant involvement (e.g., direct participation of an agency, NGO, or institution in 
the conceptualization and development of the modeling approach). Findings are detailed in Appendix 
B. Regrettably, despite the large body of EOM research reviewed, we found that only 19 (8%) of the 
211 studies had significant stakeholder involvement and just 64 (25%) had even partial stakeholder 
involvement. 

Focusing on studies that had “significant” stakeholder involvement, these can be further subdivided into 
various distinct groups. One group worked in close collaboration and co-design of the study through 
use of participatory approaches (e.g., interviews and workshops) to inform model conceptualization 
from the very beginning [79,201]. A second group engaged with stakeholders, mainly through 
interviews with emergency department personnel and EOM planners, to seek advice about specific 
issues relating to emergency response operations [116] or as part of defining qualitative or quantitative 
evaluation criteria (a.k.a. key performance indicators) of their decision support models [61,64,65,122]. 
Finally, a third group mainly looked at post-disaster psychological metrics of local residents directly 
impacted by large-scale earthquakes based on interviews and questionnaires [205,206]. Only one study 
addressed a problem proposed by EOM practitioners themselves [107]. Although the level of 
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stakeholder involvement does vary somewhat, a general observation about the afore mentioned studies 
(in comparison to those with no or partial stakeholder involvement) is that their assumptions and model 
features tend to show a greater degree of realism aimed at meeting the specific needs of EOM 
practitioners. 

To sum up, our analysis reveals that stakeholder involvement is for the most part an important but 
neglected aspect of OR studies applied to EOM, especially in the initial problem identification stage. 
Failure to identify earthquakes as the key focus of DOM research and involve EOM stakeholders from 
the start has resulted in modeling approaches that lack realism and real-world application by 
practitioners. Greater use of problem structuring (e.g., hierarchical process modelling) and other Soft 
OR methods as part of facilitated workshops involving one or more stakeholders, we would suggest, 
would go a long way toward addressing this shortcoming. Such approaches are commonly used in 
healthcare settings [255,256] when dealing with complex and unstructured problems and or where they 
may be multiple groups of stakeholders with potentially conflicting views about a problem. EOM shares 
much in common with healthcare and would likely benefit by adopting Soft OR conceptual frameworks. 
This is not to say that Soft OR should be the preferred or only approach to EOM, but simply that it 
should be used much more frequently as the starting point for subsequent Hard OR approaches (e.g., 
mathematical programming and heuristics) to ensure that they are well-grounded within a stakeholder 
perspective. 

5.1.4. Multi-Agency Coordination and Cooperation 

As noted by various authors, cooperation and coordination among multiple outside relief agencies and 
local and national government agencies is crucial to efficient EOM [12,257]. For example, in the case 
of the Indonesia Tsunami in 2018, foreign and local humanitarian organizations, including the Red 
Cross, other NGOs, and the United Nations (UN), were all in close communication with the Indonesian 
government to provide rapid support to the affected area of Sulawesi [258]. Foreign militaries actively 
participated in relief aid distribution with an average of 15-20 flights per day to the city of Palu. 
Supporting this effort was the UN Office for the Coordination of Humanitarian Affairs (OCHA), which 
assisted with information sharing and coordination of relief aid shipments. Similar to OCHA, the EU’s 
Emergency Response Coordination Centre is responsible for collecting and analyses real-time 
information, devising response plans, and coordinating the EU’s disaster response efforts by matching 
offers of assistance to the needs of the disaster-stricken country [259]. 

In spite of the importance of multi-agency coordination and cooperation in real-world planning, 
surprisingly little research involving OR methods has been devoted to this subject. We found only one 
study focused specifically on emergency response and relief chain coordination [128] (preparedness) 
and a second that applies a sophisticated bi-level optimization framework to the problem of coordinating 
multiple, independent countries and aid agencies in relief distribution (response) [179]. Clearly, future 
research needs redress this gap in the literature. 

5.2. Further Refinement of OR Methods 

After defining a realistic and holistic problem description, ideally supported by stakeholder 
involvement, the next step should be the development of modeling frameworks and solution 
methodologies based on clearly defined model inputs (i.e., data, decision variables, and objectives or 
performance criteria). Depending on the specific problem and needs of decision makers, multi-
methodology and interdisciplinary approaches may be called for. Below, we elaborate on these points. 

5.2.1. Definition of Clear and Realistic Inputs 

Lack of a clear problem description and assumptions has been highlighted by other DOM reviews 
[12,17]. Here we delve into this topic for the specific case of earthquake disasters, emphasizing the need 
to define clear and realistic inputs for various EOM problems. 

While reliability and vulnerability analysis has been successfully applied to a wide range of different 
types of infrastructure (see Table 6), including electricity grids [39], energy pipelines [47], water supply 
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systems [37,45], and transportation networks [41,43], protection planning models have mainly focused 
on transportation networks (e.g., road links and bridges) [70,71] and occasionally buildings [72,73] (see 
Table 7). Often times, in the case of road network protection, rather abstract representations of the 
transport infrastructure have been applied without going into detail regarding the individual components 
of the network that can suffer damage (e.g., nodes, links, and pathways), the possibility some component 
are composed of multiple elements, the type of damage that can be sustained by different components, 
the degree of susceptibility to damage of each component, and what specific options are available to 
mitigate against damage. For instance, the literature is rather vague about what constitutes a road link. 
If a particular section of road has an intervening bridge or tunnel, then by any normal standard it should 
be decomposed into three links even if there are no road junctions along the way. Further, little or no 
consideration is given to the causes and likelihood of link failures; is it due to say landslide blockage 
versus fracture, buckling, or subsidence? Finally, in most models there is no explicit consideration of 
what a protection action constitutes or its effectiveness in preventing damage [76,237]. 

Based on the above assessment, we offer two recommendations. The first is that there is a clear need to 
address protection of critical infrastructure networks besides just transport. Different infrastructure 
networks face unique risks from earthquakes and have very different types of protection strategies that 
can be practically implemented. It would be worthwhile to elucidate these differences and develop 
bespoke models for different infrastructure types. The second recommendation, regardless of the type 
of infrastructure network being considered, is that protection models should be combined more 
frequently with a preliminary reliability and vulnerability analysis, especially when it comes to case 
studies. We envision that reliability and vulnerability assessment models could form the basis for 
producing inputs to a protection model, including a detailed assessment of failure modes and 
probabilities and development of concrete protection strategies that are properly costed out and 
understood in terms of their physical/operational effects of damage prevention. 

Turning now to the preparedness stage, while there is a fair amount of research on relief pre-positioning 
and resource planning, various limitations are evident based on our review of existing models. For one, 
a fair number of studies considered stocking of multiple commodities but do not give any specifics. It 
is not at all clear if non-perishable or perishable goods are involved or some combination thereof. For 
perishable goods, holding time (which is not usually considered) as well as transport time (which often 
is considered) becomes a key factor. Only a few studies on relief pre-positioning and resource planning 
have looked at inventory holding and stock replenishment policies [94,111,114], which directly 
influence holding time. Additionally, with few exceptions (e.g., [83,91]), RDC location and inventory 
planning problems focus exclusively on relief distribution between RDCs and AAs, without considering 
supply from external suppliers or central warehouses. What is more, little or no mention of transport 
mode and vehicle availability is made in the literature on relief pre-positioning and resource planning. 

A similar set of critiques apply to relief distribution models (response stage), except that multi-modal 
transport and vehicle resources are often considered. Looking specifically at provision of emergency 
medical services, only limited work has dealt with duty allocation and scheduling [146,188], even 
though this is crucial factor in determining the number of earthquake victims that can be saved. Further 
research could also look at medical team composition (e.g., number of nurses, doctors, and first aid 
workers) depending on estimated casualty amounts. 

Evacuation planning, another response stage problem, has usually been based on defining routes to 
predetermined safe zones [119,161]. In practice, however, safe areas may need to be designated after 
an earthquake occurs, depending on the location of the epicenter, its magnitude, and damage to roads 
and buildings. Future work in this area needs to address the stochastic nature of earthquakes and the 
imperative of having contingent evacuation plans based on a range of different scenarios. Amideo et al. 
[17] emphasize paying greater attention to mass-transit-based evacuation and multi-modal evacuation 
approaches in DOM, which also applies to EOM. 
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5.2.2. Multi-Methodology and Interdisciplinary Approaches 

A number of authors have pointed out the need for using interdisciplinary approaches in DOM. Amideo 
et al. [17], for example, suggest that use of techniques and concepts from different relevant disciplines 
would provide a more realistic frameworks for shelter location and evacuation routing. Hoyos et al. [12] 
provide some general recommendations about combining optimization with probabilistic or stochastic 
methods. Here, we aim to highlight how a multi-methodology approach, in particular handling of 
information using multiple techniques and different disciplines, would help facilitate a more open and 
systematic decision making process. 

In the wider mitigation planning literature, the survival and damage levels of road networks and other 
infrastructure is typically determined by distance from epicenters or fault lines. In OR studies, however, 
few attempts have been made to accurately estimate post-disaster network failures as part of protection 
planning. Based on our review, Monte Carlo simulation is the most frequently used method to estimate 
infrastructure failure probabilities [43,46], though other techniques like Bayesian networks have also 
been applied [237]. In many cases, however, it not clear how these probabilities relate to the geophysical 
properties of quakes (including epicenter distance, magnitude, and wave type) and infrastructure 
vulnerabilities. Further research on infrastructure fortification would benefit from a multi-methodology 
approach combining optimization with seismic risk assessment and engineering in addition to 
simulation. Here, various techniques used in the field of seismology, including machine learning, might 
prove particularly useful in estimating damage levels [58,66] and human losses [67] based on key 
variables like structure type, construction quality, built area, and occupancy level.  Subsequent 
application of simulation to assess key uncertainties combined with earthquake engineering to specify 
feasible fortification/retrofit alternatives [260,261] could form the basis for developing more holistic 
and realistic mathematical programing or heuristic methods to efficiently allocate limited protection 
resources. Similar to protection planning type studies, greater use of forecasting methods from the 
seismology (e.g., for estimating the intensity and frequency of quakes) would significantly enhance the 
rigor of relief pre-positioning and resource planning models. A good example is a study by Battarra et 
al. [112]. While the mathematical programing model they present is fairly simplistic, their work is 
notable for adopting a multi-disciplinary approach to disaster preparedness, specifically the allocation 
of relief supplies among RDCs. 

Finally, better understanding of human behavioral responses would also greatly improve the realism of 
OR models, especially as part of response operations. Amideo et al. [17], for example, categorize 
evacuee behavior based on five different dimensions that have an impact on evacuation effectiveness 
during an emergency: time of day, route diversions, demographics, route preference , and warning 
signals. One of their key findings is that time of day and demographics play a critical role in route 
diversion choice and, in turn, potential delays during an evacuation. In the case of EOM, however, only 
one study by Liu et al. [169] explicitly address aspects of human behavior during evacuation. Similar 
to Amideo et al. [17], they find that mean evacuation time from buildings can be underestimated by at 
least 20% if social behaviors are not accounted for. We highlight this gap in EOM and suggest that 
future research should incorporate behavioral OR [262] and Soft OR [34] techniques to analyze 
individual and group responses as part of multi-methodology response planning. 

5.3. Implementation of Proposed Methods 

In the final stage of developing EOM methods applicable to real-world problems, it is important to 
consider: 1) validation via the use of case studies and 2) the frequently need to integrate information 
systems to support real-time data acquisition and multi-agency coordination. Below we discuss these 
two key point in further detail. 

5.3.1. Case Studies 

Most studies we looked applied their modeling and solution framework to a real or semi-realistic case 
study (see Appendix C) to demonstrate the utility of their proposed approach and derive new insights 
to support policy making and planning. This was typically carried out in two steps – first the generation 
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of inputs to highlight data requirements and show how the proposed framework can be applied in 
practice and second a set of computational experiments to generate baseline results and carry out further 
what-if or sensitivity analysis. Here, we focus on the data generation phase and the common limitations 
of earthquake scenario development.  

The generation of problem data can sometimes be laborious and require the use of specialized GIS 
software, like ArcGIS and GoogleMaps. For other types of data, discussions and interviews with expert 
stakeholders (discussed in Section 5.1.2) are sometimes required. More often than not, simplified 
versions of infrastructure systems (e.g., transport networks and water supply systems) are developed 
from secondary data sources or based on randomly generated data (see Appendix C). Consequently, 
even when GIS tools are used to develop a network representation, they may not involve a high degree 
of detail (e.g., individual road segments and buildings). In addition, demand nodes are typically 
represented by whole cities or even provinces with level of demand proportional to population size (e.g., 
[103,181,237]). Resources, however, are sometimes defined in aggregate terms (e.g., total supply), 
instead of being distributed among individual locations with defined distances to demand nodes (e.g., 
[209,247]). Based on this we make a few seemingly obvious recommendations. These are particularly 
pertinent to protection planning, relief pre-positioning, shelter site location, evacuation, relief 
distribution, and recovery stage problems. Where possible, real network data of sufficient detail for 
planning purposed should be used. Linked to this, demand should generally be defined a t district or 
neighborhood level for large cities and by towns/communities when working at the scale of provinces. 
Finally, supply nodes and supply amounts should nearly always be included, ideally based on 
information provided by local authorities, to give a more realistic picture of how resources can be most 
effectively allocated. 

Besides basic network configuration and resource availability data, case studies must also invariably 
incorporate information about the anticipated impacts of an earthquake (e.g., casualties, infrastructure 
damage, traffic conditions). Our analysis shows that disaster scenario development is mainly informed 
by two sources: 1) government and NGO technical reports and 2) software platforms (see Appendix B). 
Reports from agencies like the Japan International Cooperation Agency [263,264] often provide 
detailed analysis of likely earthquake occurrences and post-earthquake conditions, including predicted 
magnitudes, rupture locations and lengths [97,237], classification of at risk highway components [208], 
and casualty rates and associated evacuation demand [121]. Software like Hazus [250] are also useful 
in forecasting the number of displaced households [186], the number of critically injured [156,186], 
and infrastructure damage levels [243]. Depending on the disaster stage and type of model, either the 
most probable scenario is examined [64,120,212] or multiple scenarios (that vary in terms of earthquake 
position/magnitude, time of occurrence, etc.) are considered in an effort to find sufficiently robust 
solutions [79,121,232]. We do not have any major critiques about how disaster scenarios are developed 
in the case studies we reviewed except to say that greater attention should be paid to properly assigning 
probabilities to each scenario when multiple scenarios are included. This mainly applies to mitigation 
and preparedness stage problems. Not infrequently, scenarios are given equal chance of occurrence. 
Clearly, more scientific approaches are needed, perhaps involving interdisciplinary methods. 

5.3.2. Integration with Information Systems 

In the context of EOM, information systems are invaluable for providing accurate data to all relevant 
actors and area experts involved in both pre-disaster mitigation and preparedness planning and post-
disaster response and recovery activities. Usually, information systems are implemented using a 
combination of GIS software, remote sensing data, government databases, and other modern 
information technology systems. Such systems greatly enhance the decision making-process of EOM, 
including but not limited to relief chain coordination, search and rescue, evacuation, relief distribution, 
and debris clearance through better knowledge of where damage to buildings and infrastructure and 
location and needs of affected people. As with other reviews [12,17,26], we affirm the critical need for 
the development and deployment of user-friendly information systems in EOM, as well as the potential 
of OR methods to enhance the capabilities of such systems. 
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Especially important to enhancing the efficiency of humanitarian relief operations and guiding 
investment in preemptive measures to reduce earthquake risks is the availability of accurate real- and 
near real-time data. In more developed areas of the world, national- or regional-level earthquake 
information systems have been created, which provide access to real- and near real-time data for various 
types of analyses. An example of a near real-time system is Hazus, developed and maintained by the 
US Federal Emergency Management Agency (FEMA). Hazus integrates geographic and other types of 
data into a GIS-based software platform to estimate direct and indirect losses from hazards, including 
earthquakes [265]. A notable real-time data information system is Turkey’s Rapid Earthquake Response 
System, which can estimate damage to facilities and the highway network across Istanbul following an 
earthquake through collection of data from pre-installed seismic sensors [208]. In the absence of 
centrally managed earthquake information systems, as is common in many least economically 
developed countries, open-source, online platforms that make use of Volunteered Geographic 
Information (VGI) have sometimes been relied up by government agencies and NGOs. Following the 
2010 Haiti earthquake, for example, OpenStreetMap volunteers from around the world used satellite 
images to map the outlines of streets and buildings in the Port-au-Prince area. This effort was further 
supported by on-the-ground volunteers in Haiti who upload additional information using portable GPS 
devices [266]. We note that decentralized online and VGI systems like one used in Haiti are, in 
comparison to a centralized information system, less prone to being knocked out as a result of a large 
quake. 

We observe that a number of OR studies in the EOM literature have made use of outputs from near real-
time information systems as part of case studies, typically when defining earthquake scenarios and 
estimating damage and casualty levels (e.g., [156,186,243]). A key difficulty potentially inhibiting 
wider integration of real- and near real-time data into OR based decision support tools may be the 
considerable amount of data processing required to translate data contained in an information system 
into a format that can be readily inputted into an OR model.  More importantly, vital pieces of 
information needed by OR models are often missing or incomplete (e.g., due to inability to assess on-
the-ground conditions), which invariably impacts the quality and usefulness of OR model outputs. In 
the worst case, data gaps can render solutions infeasible (e.g., when a bridge is shown to be intact from 
satellite images but no longer capable of bearing vehicles above a critical weight). This is especially 
concerning when deriving solutions for early stage response. There have been some attempts to address 
this. Yagci Sokat et al. [207], for example, propose a framework to estimate incomplete information on 
the status of a network following a disaster. Although promising, a significant amount of time for 
manual collection and data transformation is still needed. Future studies could consider automating 
these processes to quickly provide essential data in an appropriate format that can be used by OR 
planning tools. Additionally, future research might look at new approaches for incorporating real-time 
data provided by UAVs, as well as social media or other user-generated data. Great use of UAVs in 
EOM would help to eliminate uncertainties about post-earthquake states by providing information to 
first responders and relief organization about which structures have been affected, the extent of damage, 
estimated numbers of people affected, the passability of roads, and so on, thus improving damage 
assessment, search and rescue, evacuation, relief distribution, and restoration activities. Similarly, social 
media data may be useful for quickly identifying the needs of victims and improving situational 
awareness of emergency response and relief efforts. However, given obvious concerns about the 
accuracy of such data, there is a clear need for formal frameworks to determine the best way of 
integrating social-media with more conventional data sources [197]. Finally, future research might look 
to move beyond the traditional paradigm of having a separate information system that subsequently 
feeds into standalone OR models for carrying out analyses. We believe there is enormous potential for 
greater integration of OR methods into real- and near real-time earthquake data information systems, 
either directly through collaboration with government agencies and NGOs or possibly by developing 
add-on modules for more widely used systems (e.g., OpenStreetMap). 

6. Conclusions 

To the best of our knowledge, this review is the first attempt at investigating the use of OR techniques 
specifically for EOM. Given that we limited our review to studies dealing with earthquake-oriented 
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problem definitions or those involving the use of  earthquake disaster case studies, our review stands 
apart from past and recent DOM review papers. Throughout, we have taken care to precisely categorize 
studies based on the disaster stage(s) being dealt with, methodology(ies) applied, and specific 
planning/operational problem type. We also provide details about the extent of stakeholder involvement 
and information relating to case studies (i.e., type of infrastructure network examined, if any, and 
whether real or randomly generated data were used). Basic findings are that most research has focused 
on a single EOM disaster stage, with preparedness and response problems receiving by far the most 
attention. More recent work has begun to look at the integration of two or more disaster stages. In terms 
of modeling and solution methodology, mathematical programing and heuristics are by far the most 
widely used for most problem types, though there are exceptions. Finally, most studies have little or no 
stakeholder involvement. 

Based on our extensive analysis, we have identified current gaps in the field and outlined a roadmap for 
future research to enhance the real-world applicability of OR methods applied to EOM in particular and 
potentially to DOM more generally. Some of these reaffirm findings and recommendations derived in 
previous surveys on OR applied to DOM, like the need for (i) more integrated planning that involves 
decision making across multiple disaster stages, such as shelter site location and RDC pre-positioning 
and inventory management (preparedness) combined with evacuation and relief distribution (response) 
or infrastructure protection planning (mitigation) combined with infrastructure restoration (recovery); 
(ii) more emphasis on and enabling of stakeholder and multi-agency coordination; (iii) integration of 
OR methods with information systems that provide real- and near real-time data, including the use of 
data provided by UAVs and social media; (iv) defining clear and realistic model inputs/assumptions; 
and (v) greater use of multi-methodology and interdisciplinary approaches, including behavioral OR to 
more accurately represent human behavioral responses. 

Other recommendations we provide, however, are new or much less emphasized in previous reviews. 
Speaking broadly, we observe that in many studies, problem specifications are framed in terms of 
generic disasters as opposed to being specifically focused on earthquakes. This has resulted in a general 
failure to address the importance of cascading effects and secondary disasters caused by aftershocks. 
We also highlight the frequent lack of stakeholder involvement in problem identification and 
methodological approach, leading to less realistic problem definitions and uptake by practitioners. We 
argue that stakeholder involvement from the beginning and the use of Soft OR for problem structuring 
and conceptual modeling would help ensure that any Hard OR methods being developed are well-
grounded within a stakeholder perspective. While the value of integrating OR methods with real- and 
near real-time information systems has been highlighted previously, we point out the challenges of this 
vis-à-vis the significant amount of data processing involved and, more critically, the problem of dealing 
with missing and incomplete data. We also observe that case studies could be improved by better data 
generation and earthquake scenario development, for example defining data inputs appropriate to the 
spatial scale being analyzed and more precisely assigning probabilities to earthquake scenarios. 

Finally, looking at a few specific EOM problems, additional observations and recommendations 
include: (i) the overly narrow focus on transport systems in the context of critical infrastructure 
protection and the need for better integration with reliability and vulnerability assessment as well as 
adopting a more multi-methodological approach involving the use of seismic risk assessment and 
earthquake engineering; (ii) the need for further investigation of inventory holding and stock 
replenishment policies as part of relief pre-positioning, including the importance of distinguishing 
between perishable and non-perishable goods; (iii) the general lack of consideration regarding external 
suppliers as part of RDC location and inventory planning,  and (iv) the very limited amount of research 
looking at medical services allocation and scheduling as part of the response phase to minimize 
fatalities. 
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APPENDICES 

Appendix A. Details of mathematical programing and heuristic approaches for relief distribution 
problems. 

Reference 

Decision(s) 

Objective(s) Case Study 

Logistics 

activities Goods 

Mode of 

transport 

Najafi et al. 

[151] 

RDC-AA Multi Multi Minimize unserved injured people, unmet 

demand, and number of vehicles required 

- 

Mohammadi et 

al. [152] 

ES-RDC-AA Single Multi Minimize set-up and transport costs of 

relief, transport cost of injured, variability 
in transport cost (both) and transport time 

(both) 

2017 Iran-Iraq 

earthquake 

Khalilpourazari 

et al. [153] 

LCC-CW-

RDC-AA 

Single Multi Minimize set-up, procurement, transport 

and holding costs and transport time of 

blood and transport cost and time of injured 

2017 Iran-Iraq 

earthquake 

Mansoori et al. 

[154] 
RDC-AA Multi Multi Minimize unmet demand for relief and 

number of people not evacuated to shelters 

or hospitals 

Tehran, Iran 

Fereiduni et al. 

[155] 

ES-RDC-AA Multi Single Minimize transport, operation, holding and 

evacuation costs 

Tehran, Iran 

Liu & Guo 

[167] 

ES-RDC-AA Multi Multi Maximize min. fill rate, fill rate difference 

and set-up, procurement and transport costs 

2008 Wenchuan 

earthquake 

Sabouhi et al. 

[168] 
RDC-AA Single Single Minimize transport time of relief and 

evacuees to shelters 
Tehran, Iran 

Liu et al. [170] RDC-AA Multi Multi Minimize total weighted unmet demand 2008 Wenchuan 

earthquake 

Baharmand et 

al. [171] 

CW-RDC-AA Multi Multi Minimize operating, staff and transport 

costs, response time and unmet demand 

2015 Nepal 

earthquake 

Safaei et al. 

[172] 

ES-CW-RDC-

AA 

Multi Single Minimize set-up, procurement, holding and 

transport costs, unmet demand and supply 

risk 

Mazandaran, 

Iran 

Khare et al. 

[173] 
RDC-AA Multi Multi Minimize transport cost and unmet demand 2015 Nepal 

earthquake 

Hosseini-

Motlagh et al. 

[174] 

CW-RDC-AA Multi Single Minimize procurement, holding and 

wastage costs of blood, set-up cost of 

emergency shelters and expected unmet 

demand for blood 

Kermanshah, 

Iran 

Gao [175] RDC-RDC Multi Multi Minimize supply shortages and transport 

time 

2008 Sichuan 

earthquake  

Baharmand et 

al. [176] 

ES-RDC-AA Multi Multi Minimize transport and staff/non-staff 

operating costs 

2015 Nepal 

earthquake 

Fazli-Khalaf et 

al. [177] 

LCC-CW-

RDC-AA 
Single Multi Minimize set-up, blood collection/testing 

and fixed/variable transport costs and 

transport time and maximize reliability of 

testing 

2003 Bam 

earthquake 

Vitoriano et al. 

[178] 

RDC-AA Single Multi Minimize transport cost, max. response 
time, unmet demand and max. unmet 

demand and maximize route link reliability 

& security 

2010 Haiti 

earthquake 

Camacho-

Vallejo et al. 

[179] 

ES-RDC-AA Multi Multi Minimize response time and transport cost 2010 Chile 

earthquake  

Cao et al. [180] RDC-AA Multi Multi Minimize set-up and processing costs, task 

completion time and carbon emissions  

- 

Zhang et al. 

[181] 

RDC-AA Multi Multi Minimize expected response time, transport 

cost and unmet demand 

2008 Wenchuan 

earthquake 
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Ferrer et al. 

[182] 

RDC-AA Single Multi Minimize transport cost, max. response 

time, unmet demand and max. unmet 
demand and maximize route link reliability 

& security 

2010 Haiti 

earthquake 

Hu et al. [183] RDC-AA Multi Single Maximize overall utility of relief and min. 

utility satisfaction rate 

2008 Wenchuan 

earthquake 

Balcik [184] RDC-AA Single Single Maximize min. coverage ratio 2011 Van 

earthquakes 

Cao et al. [185] CW-RDC-AA Multi Single Maximize min. satisfaction at each 

response substage and minimize max. 

deviation in satisfaction at each substage 

and across substages 

2008 Wenchuan 

earthquake 

Lin et al. [186] RDC-AA Multi Single Minimize unmet demand, response time, 

transport cost and maximize equity 

1994 Northridge 

earthquake 

Wang & Sun 

[187] 

RDC-AA Multi Single Minimize fixed/variable transport costs and 

unmet demand 

2013 Ya'an 

earthquake 

Lei et al. [188] RDC-AA Single Single Minimize tardiness of medical operations 2011 Tōhoku 

earthquake 

Nedjati et al. 

[189] 

RDC-AA Single Single Minimize unmet demand and response time - 

Vahdani et al. 

[190] 

CW-RDC-AA Multi Multi Minimize set-up, holding, unused inventory 

and transport costs, vehicle travel time and 

route reliability 

- 

Xiong et al. 

[191] 

CW-RDC-AA Single Multi Minimize response time and max. response 

time 

- 

Rezaei et al. 

[192] 

RDC-AA Single Multi Minimize unmet demand and variability in 

unmet demand 

Yazd City, Iran 

Nolz et al. [193] RDC-AA Single Single Minimize victim travel distance, unmet 

demand, transport cost and max. response 

time 

Manabí, 

Ecuador 

Zahedi et al. 

[194] 

RDC-AA Multi Multi Minimize procurement and transport costs 

and unmet demand 

2017 Iran-Iraq 

earthquake 

Bruni et al. 

[195] 
RDC-AA Single Single Minimize waiting time and variability in 

waiting time 

2010 Haiti 

earthquake 

Hu et al. [196] ES-RDC-AA Multi Multi Minimize vehicle rental, transport and 

handling costs and unmet demand 

2013 Ya'an 

earthquake 

Kirac & Bennett 

[197] 

RDC-AA Single Single Maximize accurate satisfied demand 2010 Haiti 

earthquake 

Chang et al. 

[198] 

RDC-AA Single Multi Minimize unmet demand, response time 

and transport cost 

1999 Chi-Chi 

earthquake 

Zheng et al. 

[199] 

RDC-AA Multi Multi Minimize response time and unmet demand 2013 Dingxi 
earthquake 

Ferrer et al. 

[200] 
RDC-AA Single Multi Minimize fixed/variable transport costs, 

response time and unmet demand and 

maximize equity and route link reliability & 

security 

2010 Haiti 

earthquake 

Penna et al. 

[201] 

RDC-AA Single Multi Minimize transport cost 2010 Haiti 

earthquake 

Liu et al. [202] RDC-AA Multi Multi Maximize expected fill rate and minimize 

set-up, procurement and transport costs 

2008 Wenchuan 

earthquake 

Ma et al. [203] RDC-AA Multi Single Minimize unmet demand for blood products 2008 Wenchuan 

earthquake 

Wang et al. 

[204] 
RDC-AA Multi Multi Minimize set-up and transport costs and 

max. response time and maximize min. 

route reliability 

2008 Wenchuan 

earthquake 
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Appendix B: List of studies which are either focus on earthquakes in their problem description or have 
partial or significant stakeholder involvement. 

Study 
Focus on 

Earthquakes 

Stakeholder Involvement 

No 
involvement 

Partial 
involvement 

Significant 
involvement 

Mitigation Stage 

Bagheri et al. [37] ✓ ✓   

Sun & Chen [38] ✓ ✓   

Li et al. [39] ✓ ✓   

Feng et al. [40] ✓ ✓   

Sun et al. [42] ✓ ✓   

Chang et al. [43] ✓  ✓  

Gertsbakh & Shpungin [44] ✓ ✓   

Jin & Wang [45] ✓ ✓   

Dadfar et al. [47] ✓ ✓   

King et al. [48] ✓  ✓  

Nabian & Meidani [49] ✓ ✓   

Sinaga et al. [50] ✓ ✓   

Akin et al. [51] ✓ ✓   

Cankaya et al. [52] ✓  ✓  
Moradi et al. [53] ✓  ✓  
Kumlu & Tudes [54] ✓  ✓  
Yariyan et al. [55] ✓   ✓ 

Ahmad et al. [56] ✓ ✓   

Akpabot et al. [57] ✓ ✓   

Carreño et al. [58] ✓  ✓  

Tayfur & Bektas [59] ✓ ✓   

Piscini et al. [60] ✓ ✓   

Alizadeh et al. [61] ✓   ✓ 

Janalipour & Taleai [62] ✓ ✓   

Mangalathu et al. [63] ✓ ✓   

Sadrykia et al. [64] ✓   ✓ 

Ranjbar & Nekooie [65] ✓   ✓ 

Aghamohammadi et al. [66] ✓ ✓   

Gul & Guneri [67] ✓  ✓  

Ikram & Qamar [68] ✓ ✓   

Asim et al. [69] ✓ ✓   

Zolfaghari & Peyghaleh [72] ✓ ✓   

Aydin [74] ✓  ✓  

Chu & Chen [75] ✓  ✓  

Döyen & Aras [76] ✓ ✓   

Edrissi et al. [77] ✓ ✓   
Preparedness Stage 

Görmez et al. [79] ✓   ✓ 

Khojasteh & Macit [81] ✓ ✓   

Paul & Wang [82] ✓ ✓   

Boostani et al. [84] ✓  ✓  

Rezaei et al. [85] ✓  ✓  

Chen & Wang [86] ✓ ✓   

Salehi et al. [87] ✓  ✓  

Cavdur et al. [88] ✓  ✓  

Noyan et al. [90] ✓ ✓   

Charles & Lauras [91]   ✓  

Bozorgi-Amiri et al. [92]   ✓  

Mahootchi & Golmohammadi [93] ✓  ✓  

Lejeune [94]   ✓  
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Saeidian et al. [96] ✓  ✓  

Salman & Yucel [97]   ✓  

Molladavoodi et al. [98] ✓  ✓  

Haghi et al. [99] ✓ ✓   

Ghasemi et al. [100] ✓ ✓   

Saeidian et al. [102] ✓  ✓  

Verma and Gaukler [103] ✓ ✓   

Xing [104] ✓   ✓ 

Paul & MacDonald [105] ✓ ✓   

Javadian  et al. [106]   ✓  

Mohammadi et al. [107] ✓   ✓ 

Tofighi et al. [108] ✓ ✓   

Bell et al. [109] ✓ ✓   

Acar et al. [110] ✓ ✓   

Battarra et al. [112] ✓   ✓ 

Yang et al. [113] ✓  ✓  

Das & Hanoka [114] ✓ ✓   

Xu et al. [115]   ✓  

Cimellaro et al. [116] ✓   ✓ 

Gul et al. [117] ✓  ✓  

Shavarani et al. [118] ✓ ✓   

Bayram et al. [120]   ✓  

Bayram & Yaman [121]   ✓  

Trivedi & Singh [122] ✓   ✓ 

Zhao et al. [125] ✓  ✓  

Hu et al. [126] ✓ ✓   

Xu et al. [127] ✓  ✓  

Preece et al. [128] ✓   ✓ 

Rafiei et al. [129] ✓ ✓   

Srivichai et al. [130] ✓ ✓   

Kuyuk et al. [131] ✓ ✓   

Mase et al. [132] ✓ ✓   
Li et al. [133] ✓ ✓   
Mousavi et al. [134] ✓ ✓   
Chin et al. [135] ✓  ✓  

Lee at al. [136] ✓ ✓   

Oliveira et al. [137] ✓  ✓  

Wang et al. [138] ✓ ✓   

Mulia et al. [139] ✓  ✓  

Oth et al. [140] ✓ ✓   

Response Stage 

Bai et al. [142] ✓ ✓   

Kim et al. [143] ✓ ✓   

Schweier & Markus [144] ✓   ✓ 

Chu & Zhong [146] ✓ ✓   

Ahmadi et al. [147] ✓ ✓   

Chaudhuri & Bose [148] ✓  ✓  

Zheng et al. [149] ✓ ✓   

Najafi et al. [151] ✓ ✓   

Mohammadi et al. [152] ✓ ✓   

Khalilpourazari et al. [153] ✓  ✓  

Mansoori et al. [154] ✓  ✓  

Mills et al. [156]   ✓  

Caunhye & Xie [157] ✓   ✓ 

Oksuz & Satoglu [158]   ✓  
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Kilci et al. [159] ✓  ✓  

Pérez-Galarce et al. [160] ✓ ✓   

Forcael et al. [161] ✓ ✓   

Chen et al. [162] ✓ ✓   

Liu [164] ✓ ✓   

Ozbay et al. [166] ✓ ✓   

Liu & Guo [167] ✓ ✓   

Liu et al. [169] ✓   ✓ 

Liu et al. [170] ✓  ✓  

Baharmand et al. [171] ✓   ✓ 

Safaei et al. [172] ✓  ✓  

Hosseini-Motlagh et al. [174] ✓  ✓  

Baharmand et al. [176] ✓   ✓ 

Fazli Khalaf et al. [177] ✓  ✓  

Camacho -Vallejo et al. [179]   ✓  

Zhang et al. [181]   ✓  

Ferrer et al. [182]   ✓  

Balcik [184]   ✓  

Lin et al. [186] ✓  ✓  

Nedjati et al. [189] ✓ ✓   

Vahdani et al. [190] ✓ ✓   

Xiong et al. [191] ✓ ✓   

Rezaei et al. [192] ✓ ✓   

Zahedi et al. [194] ✓  ✓  

Penna et al. [201] ✓   ✓ 

Liu et al. [202] ✓ ✓   

Wang et al. [204] ✓ ✓   

Xu et al. [205] ✓   ✓ 

Sheu [206] ✓ ✓   

Yagci et al. [207] ✓   ✓ 

Recovery Stage 

Kasaei & Salman [208] ✓ ✓   

Hu & Sheu [210] ✓  ✓  

Onan et al. [212]   ✓  

Hwang et al. [214]   ✓  

González et al. [215] ✓ ✓   

Caunhye et al. [216] ✓ ✓   

Nozhati et al. [218] ✓ ✓   

Yan et al. [220] ✓ ✓   

Yan et al. [221]   ✓  

Yan et al. [222]   ✓  

Longman & Miles [225]   ✓  

Luna et al. [226] ✓  ✓  

Gosavi et al. [227] ✓  ✓  

Integrated Stages 

Hu et al. [236] ✓ ✓   

Yucel et al. [237]   ✓  

Edrissi et al. [240] ✓ ✓   

Salman & Gul [228]   ✓  

Mohamadi & Yaghoubi [234] ✓  ✓  

Ni et al. [241] ✓ ✓   

Mete & Zabinsky [229] ✓  ✓  

Bozorgi et al. [230]   ✓  

Ahmadi et al. [231] ✓ ✓   
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Golabi et al. [232]   ✓  

Sahebjamnia et al. [235]   ✓  

Fereiduni et al. [233] ✓ ✓   

Xu et al. [245] ✓  ✓  

Yan & Shih [246] ✓ ✓   

Sakuraba et al. [247] ✓ ✓   

Li & Teo [248] ✓ ✓   
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Appendix C. Details of applied case studies involving the use of infrastructure network data. 

Study 
Earthquake 

Scenario 
Infrastructure Type 

Transportation Electricity Water 

Mitigation Stage 
Bagheri et al. [37] W/ERS     Real 

Li et al. [39] Random   Real   
Günneç & Salman  [41] W/ERS Real     

Jin & Wang [45] W/ERS   Real 

Mohaymany et al. [46] Random Random     

Dadfar et al. [47] W/ERS   Real 

King et al. [48] W/ERS     Real 
Nabian & Meidani [49] W/ERS Real   

Peeta et al. [70] W/ERS Real     

Lu et al. [71] Random Random   

Liberatore et al. [73] W/ERS Real   

Aydin [74] W/ERS Real   
Chu & Chen [75] W/ERS Real     

Döyen & Aras [76] Random Random   

Edrissi et al. [77] W/ERS Random   

Preparedness Stage 

Görmez et al. [79] W/ERS Real   

Zokaee et al. [80] Random Real   
Khojasteh & Macit [81] W/ERS Real   

Paul & Wang [82] W/ERS Real   

Rahafrooz & Alinaghian [83] Random Random   

Boostani et al. [84] Random Real   

Rezai et al. [85] W/ERS Real   
Chen & Wang [86] Random Real   

Salehi et al. [87] W/ERS Real   

Cavdur et al. [88] W/ERS Real   

Yahyaei & Bozorgi-Amiri [89] W/ERS Real   

Noyan et al. [90] W/ERS Real   
Bozorgi-Amiri et al. [92] W/ERS Real   

Mahootchi & Golmohammadi [93] W/ERS Real   

Renkli & Duran [95] W/ERS Real   

Salman & Yucel [97] W/ERS Real   

Molladavoodi et al. [98] W/ERS Real   
Ghasemi et al. [100] W/ERS Real   

Lu [101] Random Random   

Saeidian et al. [102] W/ERS Real   

Verma & Gaukler [103] Random Real   

Paul & MacDonald  [105] W/ERS Real   
Mohammadi et al. [107] W/ERS Real   

Tofighi et al. [108] W/ERS Real   

Bell et al. [109] Random Real   

Acar et al. [110] W/ERS Real   

Yang et al. [113] W/ERS Real   
Xu et al. [115] W/ERS Real   

Shavarani et al. [118] W/ERS Real   

Coutinho-Rodrigues  et al. [119] Random Real   

Bayram et al. [120] W/ERS Real   

Bayram & Yaman [121] W/ERS Real   
Trivedi & Singh [122] W/ERS Real   

Kınay et al. [123] W/ERS Real   

Kınay et al. [124] W/ERS Real   

Xu et al. [127] W/ERS Real   

Response Stage 

Ahmadi et al. [147] W/ERS Real   

Najafi et al. [151] Random Random   
Mohammadi et al. [152] W/ERS Real   

Khalilpourazari et al. [153] W/ERS Real   

Mansoori et al. [154] Random Real   

Caunhye & Nie [157] W/ERS Real   

Oksuz & Satoglu [158] W/ERS Real   
Kilci et al. [159] Random Real   
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Pérez-Galarce et al. [160] Random Real    

Forcael et al. [161] Random Real   
Liu [164] W/ERS Real   

Liu & Guo [167] Random Real   

Sabouhi et al. [168] Random Real   
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