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WHEN IS UTILITARIAN WELFARE HIGHER UNDER INSURANCE
RISK POOLING?

By Indradeb Chatterjee†, Angus S. Macdonald‡, Pradip Tapadar†and R.
Guy Thomas†

abstract

This paper considers the effect of bans on insurance risk classification on utilitarian social wel-

fare. We consider two regimes: full risk classification, where insurers charge the actuarially

fair premium for each risk, and pooling, where risk classification is banned and for institutional

or regulatory reasons, insurers do not attempt to separate risk classes, but charge a common

premium for all risks. For iso-elastic insurance demand, we derive sufficient conditions on higher

and lower risks’ demand elasticities which ensure that utilitarian social welfare is higher under

pooling than under full risk classification. Using the concept of arc elasticity of demand, we

extend the results to a form applicable to more general demand functions. Empirical evidence

suggests that the required elasticity conditions for social welfare to be increased by a ban may

be realistic for some insurance markets.
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1. Introduction

Restrictions on insurance risk classification are common in life insurance and other
personal insurance markets. Examples include the ban on gender classification in the
European Union, and restrictions in many countries on insurers’ use of genetic test re-
sults. Such restrictions are usually perceived by economists as having negative effects on
efficiency. But because restrictions also make high risks better off and low risks worse
off, they also have equity (distributional) effects. Therefore depending on distributional
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preferences expressed in the social welfare function, restrictions might either increase or
decrease social welfare.

The social welfare function used in this paper assumes cardinal and interpersonally
comparable utilities, and assigns equal weights to the utilities of all individuals. This
equal-weights approach is based on the Harsanyi (1955) ‘veil of ignorance’ argument: that
is, behind the (hypothetical) veil of ignorance, where one does not know what position in
society (e.g. higher risk or lower risk) one occupies, the appropriate probability to assign to
being any individual is 1/N , where N is the number of individuals in society. Alternative
risk classification regimes can then be compared by comparing expected utility in each
regime for the (hypothetical) individual utility-maximiser behind the veil of ignorance.

We use this approach to evaluate two risk classification regimes: full risk classification,
where insurers charge the actuarially fair premium for full cover for each risk, and pooling,
where risk classification is banned and so insurers charge a common premium for full cover
for all risks. We assume that insurers compete only on price; for institutional or regulatory
reasons, they do not offer partial cover, nor menus of contracts offering different levels of
cover priced at different rates. In this sense, our approach follows the tradition of Akerlof
(1970) rather than Rothschild and Stiglitz (1976).

Under the pooling regime, it is intuitive that the equilibrium price – the pooled price
at which insurers break even – will depend on demand elasticities of lower and higher
risks. Another intuition is that pooling implies a redistribution from lower risks towards
higher risks. The welfare outcome will depend on how we evaluate the trade-off between
the gains and losses of the two types. This paper connects and builds on these intuitions,
by establishing sufficient conditions on demand elasticities to ensure higher social welfare
under pooling compared with full risk classification. The conditions encompass many
plausible combinations of higher and lower risks’ demand elasticities.

1.1 Literature Review
The closest precedent to the present paper is Hoy (2006), which shows that when

potential losses are fixed and the fraction of high risks in the population is sufficiently
small, then a ban on risk classification will increase utilitarian welfare. Polborn et al.
(2006) obtain a similar result in a dynamic model of life insurance, where the quantum
of insurance which an individual can purchase is not fixed, but is subject to a cap.1 An-
other strand of literature (e.g. Crocker and Snow (1986), Rothschild (2011)) argues that
contract-specific taxes or partial social insurance are a Pareto-superior means to imple-
ment any welfare improvements achieved by a ban. Notwithstanding this argument, bans
remain of interest because for reasons of political feasibility or administrative convenience,
they are invariably the preferred means in practice.

1‘Dynamic model’ here denotes an initial period in which the individual is uninformed about her risk
level and insurance needs, then a second period where she receives information about both, and finally a
third period when she is exposed to risk; she may buy insurance in either the first or second periods.



3

A principal departure of this paper from all those just cited is that rather than as-
suming all individuals have the same utility function, we assume a distribution of utility
functions (not necessarily all risk-averse) across individuals who have the same probabil-
ities of loss. This assumption leads to qualitatively different results from simpler models,
through two mechanisms. First, utility functions determine individuals’ insurance pur-
chasing decisions, which determine the insurance demand curve and hence the equilibrium
price of insurance when all risks are pooled. Second, utility functions determine the ex-
pected utilities which individuals assign to their outcomes given an insurance price. Our
measure of social welfare is expected utility given the distributions of loss probabilities
and preferences in society, but evaluated behind a hypothetical veil of ignorance which
screens off knowledge of the decision maker’s own loss probability and preferences.

This paper is also related to Hao et al. (2018) which proposes ‘loss coverage’, defined
as expected losses compensated by insurance for the whole population, as a criterion for
risk classification schemes, and points out that loss coverage has the advantage that it
depends only on observables (whereas utilitarian social welfare depends on unobservable
utility functions). Subsequently, Hao et al. (2019) showed that for iso-elastic insurance
demand with elasticity the same for higher and lower risks, loss coverage can be used as
a proxy measure for social welfare, because it always gives the same ranking of different
risk classification schemes. But for other demand specifications, the ‘common ranking’
property of loss coverage and social welfare may not hold (e.g. as shown for one specifi-
cation in the PhD thesis of Hao (2017)). The present paper therefore focuses on direct
evaluation of social welfare, and derives sufficient conditions on demand elasticities for
social welfare to be higher under pooling than under full risk classification.

1.2 Preview of Results
Our detailed results (summarised in Section 6.1) must await detailed model set-up.

But we can preview one recurring condition: “demand elasticity less than 1”. For iso-
elastic demand the same for higher and lower risks, this condition is both necessary and
sufficient for pooling to improve social welfare compared with full risk classification. For
more general demand specifications, “demand elasticity less than 1” for at least the lower
risks is one of several (collectively sufficient) conditions, where the other conditions relate
to comparative elasticities of lower and higher risks.

For utilitarian government policymakers, a key message from these results is that the
optimal policy depends critically on detailed information about demand elasticities for
different risks, with a particular focus on whether elasticities are less than 1. We cite
some evidence from previous empirical studies that elasticities may indeed often be less
than 1. But this evidence is limited, and lacking in the detail on comparative elasticities
required by our more general results. For full application of our findings, further empirical
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investigation of demand elasticities is needed.

1.3 Outline of the Paper
The rest of this paper is organised as follows. Section 2 presents our models of insur-

ance demand and market equilibrium. Section 3 establishes demand elasticity conditions
for social welfare to be higher under pooling than under full risk classification, given iso-
elastic demand the same for all risk-groups. Section 4 then considers different iso-elastic
demand elasticities for different risk-groups. Section 5 uses the construct of ‘arc elasticity
of demand’ to extend the results in Section 4 in a form applicable to more general demand
functions. Section 6 summarises the results, and reviews some empirical data and comple-
mentary results from other authors. Section 7 discusses how our main assumptions drive
our results, and outlines an extension for intermediate risk classification regimes between
our two polar cases. Section 8 gives conclusions.

2. Model Set-up

In this section, we develop a framework to evaluate utilitarian social welfare under
different risk classification regimes. In Section 2.1, starting from individual insurance
purchasing decisions, we develop insurance demand for a single risk-group as a function
of premium. In Section 2.2, demand from different risk-groups constitutes an insurance
market, where perfect competition yields different equilibria under different risk classifi-
cation regimes. Finally in Section 2.3, we formulate utilitarian social welfare for a given
market equilibrium.

2.1 Insurance Demand for a Single Risk-Group
Typical theories of insurance demand assume that all individuals know their own

probabilities of loss and have a common utility function. Given an offered premium,
individuals with the same probabilities of loss then all make the same purchasing decision.
This does not correspond well to the observable reality of many insurance markets, where
individuals who appear to have similar probabilities of loss often make different decisions,
and substantial fractions of the population do not purchase insurance at all.2 This section
gives a theory of insurance demand which accommodates the possibility that not all
individuals with the same probabilities of loss make the same decision. Key assumptions
which distinguish our model from other common models are highlighted at the points
where the need for each assumption arises.

2For example, in life insurance, the Life Insurance Market Research Association (LIMRA) states that
57% of US households have some individual life insurance (LIMRA (2019)). The American Council of
Life Insurers states that 138m individual policies were in force in 2018 (American Council of Life Insurers
(2019, p66)); the US adult population (aged 18 years and over) at 1 July 2019 as estimated by the US
Census Bureau was 255m.
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First we consider demand from the perspective of a single individual. Suppose that
an individual has wealth W and risks losing an amount L. The individual is offered
insurance against the potential loss amount L at premium π (per unit of loss), i.e. for a
payment of π L.

Assumption 1 (Non-satiation). The individual’s utility function u(w), is increas-
ing as a function of wealth, w, and differentiable, so that u′(w) > 0. The individual
knows his own utility function.

Note that in Assumption 1, no restriction is placed on the second derivative u′′(w),
which may have either sign; we do not require that all individuals are risk-averse (i.e.
u′′(w) < 0). We will show later that this departure from typical models generates the
partial take-up of insurance in our demand function.

Assumption 2 (Full-cover contracts). Insurance is offered in a full-cover contract
which is standardised across all insurers, who compete only on price. Insurers do not
offer partial cover or other contract menus.

We justify Assumption 2 by noting that separation via contract menus is not possible
in some important markets, such as life insurance, which have non-exclusive contracting.
It is also often not salient to practitioners in other markets where restrictions on risk
classification apply.3

The individual will choose to buy insurance if:

u(W − π L) > (1− µ)u(W ) + µu(W − L) (2.1)

Since certainty-equivalent decisions do not depend on the origin and scale of a utility
function, it is convenient to define a normalised utility function as follows:

us(w) =
u(w)− u(W − L)

u(W )− u(W − L)
, for (W − L) ≤ w ≤ W. (2.2)

This normalisation ensures that us(W−L) = 0 and us(W ) = 1, so that for all individuals,
the nomalised utilities at the ‘end-points’ are the same. It also preserves the curvatures of

3Economists often postulate that insurers use menus of deductibles or other contract features as
screening devices to separate high and low risks (e.g. Rothschild and Stiglitz (1976)). But most actuarial
pricing textbooks make no reference to this concept (e.g. Gray and Pitts (2012), Friedland (2013), Parodi
(2014)), and instead interpret deductibles as a device to limit moral hazard and the administrative costs
of handling small claims.
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utility functions, and hence individual risk preferences and insurance purchasing behaviour
remain unchanged. For now, the normalisation is just a matter of convenience, but we
shall later state it as an assumption in Section 2.3, where it will be needed for our measure
of social welfare.

Applying this normalisation (Equation 2.2) to Equation 2.1, the criterion becomes:

us(W − π L) > (1− µ). (2.3)

From this point onwards, we use ‘utility’ to mean the normalised utility, us(w), unless
the context requires otherwise.

Next we consider demand from the perspective of an insurer. The insurer observes a
group of individuals comprising a risk-group, who all have the same probability of loss.
The insurer knows the common probability of loss µ for all members of the risk-group.
The individuals are, however, heterogeneous in terms of their utility functions, which the
insurer cannot observe.

Assumption 3 (Heterogeneous utility functions). Utility functions are hetero-
geneous across individuals, and unobservable by insurers.

Hence for any risk-group, the insurer observes µ, π and possibly each individual’s
W and L, but not their utility functions. So from the insurer’s perspective, given a
premium π, the utility of insurance of an individual chosen at random from this risk-
group, us(W − π L), is unobservable and we denote it by the random variable: UI (the
subscript I indicates insurance), which depends on W , L and π.

So the insurer can at most observe the proportion of individuals who choose to buy
insurance at a given premium π. We call this a (proportional) demand function and define
it as:

d(π) = P [UI > (1− µ) ] . (2.4)

Clearly, 0 ≤ d(π) ≤ 1 and d(π) is non-increasing in π (for a given value of µ) as increasing
π decreases the utility of insurance for all individuals.

A related concept, the (point price) elasticity of insurance demand, is defined as:

ε(π) = −∂ log d(π)

∂ log π
(2.5)

which implies that demand can also be expressed as

d(π) = τ exp

[
−
∫ π

µ

ε(s) d log s

]
(2.6)

where τ = d(µ) is the fair-premium demand for insurance.
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2.2 Insurance Market Equilibrium with n Risk-Groups
Suppose a population consists of n distinct risk-groups with probabilities of loss given

by µ1, µ2, . . . , µn. For convenience, we assume 0 < µ1 < µ2 < . . . < µn < 1. Let the
proportion of the population belonging to risk-group i be pi, for i = 1, 2, . . . , n.

Now let the occurrence of a loss event for an individual chosen at random from the
whole population be represented by the indicator random variable, X, taking the value
of 1 if a loss event occurs; and 0 otherwise. Then X, conditional on risk-group i, is a
Bernoulli random variable with parameter µi.

Suppose insurers charge premiums (per unit of loss) π1, π2, . . . , πn for the risk-groups
i = 1, 2, . . . , n, respectively. For brevity, we use the notation π = (π1, π2, . . . , πn) to denote
the premium regime under consideration. Define Π to be the premium which would be
chargeable to an individual chosen at random from the population, if that individual
purchased insurance. Then Π, conditional on risk-group i, takes the value πi.

From insurers’ perspective, the insurance purchasing decision of an individual chosen
at random from the whole population can be represented by the indicator random variable
Q, taking the value of 1 if insurance is purchased; and 0 otherwise. Then Q, conditional
on risk-group i, is a Bernoulli random variable with parameter di(πi), where di(πi) is the
demand for insurance within risk-group i at premium πi (based on the model developed in
Section 2.1). Then for an individual chosen at random from the population, the expected
premium income is E [QΠL ] and the expected insurance claim is E [QXL ].

We then need an assumption about the nature of insurance market competition and
equilibrium, which we state as follows.

Assumption 4 (Competitive equilibrium). Risk-neutral insurers have a common
technology to classify diversifiable risks, with zero transaction costs. Competition
between insurers leads to zero expected profits in equilibrium.

Assumption 4 implies the following equilibrium condition under the premium regime
π, where ρ(π) is the expected profit:

ρ(π) = E [QΠL ]− E [QXL ] = 0. (2.7)

2.3 Social Welfare
We define social welfare, S(π), for a particular premium regime π, as the expected

utility of an individual selected at random from the entire population, i.e.:

S(π) = E [QUI + (1−Q) [ (1−X)UW +X UW−L ] ] , (2.8)

where UW and UW−L are random variables denoting the utilities at individuals’ initial
wealth, W , and at their wealth after loss event, (W − L), respectively. In Equation 2.8,
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the ‘Q’ term is the random utility if insurance is purchased, and the ‘(1−Q)’ term is the
random utility if insurance is not purchased.

In Section 2.1 we noted that certainty-equivalent decisions do not depend on the
origins and scales of utility functions, and therefore the insurance decision for all indi-
viduals could be framed using normalised utility functions, irrespective of their different
individual non-normalised utility functions. This was not a model requirement, but just
a convenient normalisation.

However, this argument cannot be directly extended to Equation 2.8, because the
utilitarian concept of social welfare does depend on the actual magnitudes of individuals’
utilities at different levels of wealth. But without any normalisation, Equation 2.8 is
susceptible to being dominated by a ‘utility monster’ who derives more utility from a given
level of wealth than all other individuals combined (see Bailey (1997), Nozick (1974)). This
makes it unsuitable for policy purposes. So in our measure of social welfare, we use the
normalised utilities in Equation 2.2, as stated in the following assumption.

Assumption 5 (Relative utilitarianism). Social welfare is expected normalised
utility for an individual selected at random from the population. The normalisation
uses us(W ) = 1 and us(W − L) = 0, while preserving the shape of individual risk
preferences at intermediate amounts of wealth.

This “expectation of 0–1 normalised utilities” definition of social welfare can also
be justified as the unique solution of (a slightly weakened version of) the Arrow (1963)
axioms for a social welfare function (as shown in Dhillon and Mertens (1999), who call
our approach “relative utilitarianism”).4

Using Assumption 5, Equation 2.8 simplifies to:

S(π) = E [QUI + (1−Q) (1−X) ] . (2.9)

For many insurances, insurance premiums are typically relatively small compared to
an individual’s wealth.5 We assume that the premium π L is ‘small’ in the following
technical sense.

Assumption 6 (Small premiums). All individuals’ utility functions are such that
for small premium amounts πL (compared to initial wealth W), the second and higher-
order terms in the Taylor series of expansion of us(W − πL) can be ignored as negli-
gible.

4There is nothing sacrosanct about this particular normalisation, but it has been used many times in
the economics literature (for some recent examples see Segal (2000), Sobel (2001), Pivato (2008)), and
seems well suited to the insurance context.

5There are some notable exceptions, such as health or life insurance at higher ages, or life insurance
with a savings element, and our analysis will not apply in these cases.
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It is important to highlight here that we are not suggesting that the curvatures of
individuals’ utility functions are unimportant in general. Assumption 6 only requires
that for small premium amounts π L, the utility function us(w) over the short interval
(W − π L,W ) can be approximated by a straight line.

To illustrate the effect of Assumption 6, Figure 1 shows normalised utility functions
over the range (W−L,W ) for four hypothetical individuals with different risk preferences.
The straight diagonal line from us(W − L) to us(W ) through point C represents a risk-
neutral individual. The concave curves through points A and B each represent risk-averse
individuals and the convex curve through pointD represents a risk-loving individual.6 The
role of utility functions’ slopes and curvatures, over the range (W−L,W−π L) to portray
individual risk preferences, is evident in the four distinctive curves and also in the relative
differences in the values of us(W − π L). Assumption 6 says that, for small π L, each
individual’s utility curve over the short interval (W − π L,W ) can be approximated by a
straight line.

Wealth

U
til

ity

A

B

C

D

W−L W − πL W

0

1 − µ

1

Figure 1: Intuition for γ = Lu′s(W ) as an index of risk preferences .

6Although ‘risk-loving’ or ‘risk-seeking’ are the usual stylised descriptions, it might be more appropri-
ate to characterise this phenomenon as ‘risk-neglecting’.
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From Equation 2.3, an individual’s decision rule for purchasing insurance is:

us(W − π L) > (1− µ). (2.10)

Using Assumption 6, the left-hand side of Equation 2.10 can be evaluated as:

us(W − π L) ≈ us(W )− π Lu′s(W ) = 1− π Lu′s(W ), as us(W ) = 1. (2.11)

Using the approximation in Equation 2.11, the individual’s decision rule in Equation 2.10
becomes:

Lu′s(W ) <
µ

π
. (2.12)

Now, if we define γ = Lu′s(W ), then for a given individual, the decision rule can be
written as:

γ <
µ

π
. (2.13)

The quantity γ = Lu′s(W ) can be interpreted as a risk preferences index, in the sense
illustrated in Figure 1. The straight diagonal line, representing a risk-neutral individual,
has a slope of 1/L, giving the index γ = Lu′s(W ) = 1. The concave curves through
points A and B representing risk-averse individuals have lower slopes u′s(W ) than for the
straight diagonal line, and hence the index γ = Lu′s(W ) < 1 for risk-averse individuals.
For the convex curve through point D, representing a risk-loving individual, an analogous
geometric intuition confirms γ = Lu′s(W ) > 1. Provided that Assumption 6 holds, the
index γ = Lu′s(W ) is then sufficient to characterise an individual’s risk preferences at
wealth (W − π L).

As an example, consider the special case of power utility function us(w) = wγ, with
W = L = 1. The parameter γ fully characterises an individual’s risk preferences. For this
particular example, Assumption 6 implies that for small premium π:

us(1− π) = (1− π)γ ≈ 1− π γ, as us(1) = 1 and u′s(1) = γ. (2.14)

And for this specific power utility example, the decision rule then becomes:

us(1− π) > (1− µ)⇔ (1− π γ) > (1− µ)⇔ γ <
µ

π
, (2.15)

reproducing the same general decision rule as obtained in Equation 2.13.
Note that in accordance with the decision rule in Equation 2.10, insurance is pur-

chased if us(W − π L) > (1−µ): so in this illustration, A purchases, B is indifferent, and
C and D do not purchase. The variation across individuals in utility functions drives the
partial take-up of insurance (i.e. d(π) < 1) in our model.

Since insurers cannot observe individuals’ utility functions (Assumption 3), γ is not
observable and appears to be sampled randomly from some underlying random variable
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Γ with distribution function FΓ(γ). Following on from Equation 2.13, the (proportional)
insurance demand function in Equation 2.4 can be expressed as:

d(π) = P [UI > (1− µ) ] = P
[

Γ <
µ

π

]
. (2.16)

By applying Taylor series approximation as in Equation 2.11, the expression for social
welfare in Equation 2.9 can now be approximated by:

S(π) ≈ E [Q (1− Π Γ) + (1−Q) (1−X) ] , (2.17)

= E [Q (X − Π Γ) ] +K, (2.18)

where K = E[1−X] does not depend on the premium regime under consideration.
The development to this point accommodates the possibility that potential loss amounts

L vary across individuals. But to obviate the need to model this variation in this paper,
we make our next assumption:

Assumption 7 (Fixed potential loss amount). For all individuals, the potential
loss amount L is the same constant.

Under this assumption, the equilibrium condition ρ(π) = 0 from Equation 2.7 simplifies
to:

E [QΠ ]− E [QX ] = 0. (2.19)

To progress to a parameterised version of Equation 2.19, we need to assume that
there is no moral hazard. Technically:

Assumption 8 (No moral hazard). Conditional on a given risk-group, Q and X
are independent.

Given this assumption, conditioning over the different risk-groups and then taking condi-
tional expectation, the equilibrium condition in Equation 2.19 yields:

E [QΠ−QX ] = 0

⇔
n∑
i=1

P[Risk-group i] [E [QΠ | Risk-group i]− E [QX | Risk-group i ]] = 0 (2.20)

⇔
n∑
i=1

pi [πiE [Q | Risk-group i]− E [Q | Risk-group i ] E [X | Risk-group i ]] = 0

(2.21)
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(as Π = πi for risk-group i; and Q and X are independent given a risk-group),

⇔
n∑
i=1

pi di(πi) (πi − µi) = 0, (2.22)

as given a risk-group i, Q and X are Bernoulli random variables with parameters di(πi)
and µi respectively. Equation 2.22 is intuitively appealing as it can be interpreted as the
demand-weighted average profits generated by different risk-groups.

By inspection, π = µ = (µ1, µ2, . . . , µn) is a solution to Equation 2.22, and we will
refer to this as the full risk classification regime.

At the other end of the spectrum is the pooling regime where risk-classification is
banned and all risk-groups are charged the same premium πi = π0 for i = 1, 2, . . . , n.
Since the insurance demand in our model is a continuous function of premium, there
exists at least one premium π0 where µ1 ≤ π0 ≤ µn and ρ(π0) = 0.7

Our final assumption is not a strict requirement, but is made for presentational con-
venience:

Assumption 9 (No full demand). No risk-group is fully insured under any risk
classification regimes.

It is possible that an entire risk-group is insured, if the premium charged is sufficiently
small; any further reduction in premium will then have no effect on demand from that
risk-group. This special case can also be analysed using the same framework. However
for ease of exposition, we present our findings based on Assumption 9 in the main text,
and cover the case of full take-up for some risk-groups in Appendix F.

3. Iso-elastic Insurance Demand

In this section, we apply the framework created in Section 2 using the example of
iso-elastic demand.

A tractable insurance demand function for a risk-group i is:

di(πi) = τi

(
µi
πi

)λi
, (subject to a cap of 1), (3.1)

which produces a constant demand elasticity:

ε(πi) = −∂ log(di(πi))

∂ log πi
= λi. (3.2)

7For notational convenience, we specify only one argument for multivariate functions if all arguments
are equal, e.g. we write ρ(π) for ρ(π, π, . . . , π).
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The parameter τi can be interpreted as the fair-premium demand, that is the demand
when an actuarially fair premium is charged.

The above iso-elastic insurance demand can be constructed within our model set-up
as follows. Consider an individual from risk-group i, with initial wealth W , who risks
losing an amount L. Suppose her risk preferences are driven by a power utility function:

us(w) =

[
w − (W − L)

L

]γ
, (3.3)

so that us(W ) = 1 and us(W − L) = 0. This particular form of utility function leads to:

u′s(w) =
γ

L

[
w − (W − L)

L

]γ−1

, and so consequently: (3.4)

Lu′s(W ) = γ. (3.5)

So under the framework of power utility functions, the risk preferences index, Lu′s(W ),
defined in Section 2.3, can be interpreted as the underlying parameter, γ, of the power
utility function.

As outlined in Section 2.3, γ is sampled randomly from some underlying random
variable Γi with distribution function FΓi(γ), and the demand for insurance for risk-group
i at a given premium πi is then:

di(πi) = P

[
Γi <

µi
πi

]
. (3.6)

The demand for insurance for risk-group i takes the form of iso-elastic demand given in
Equation 3.1 if Γi has the following distribution:

FΓi(γ) = P [Γi ≤ γ] =


0 if γ < 0

τi γ
λi if 0 ≤ γ ≤ (1/τi)

1/λi

1 if γ > (1/τi)
1/λi ,

(3.7)

where τi and λi are positive parameters. λi controls the shape of the distribution function
and τi controls the range over which Γi takes its values.8

Using the specific form of iso-elastic demand, the analytical form of social welfare
given in Equation 2.18 for a particular premium regime π, is provided in Lemma 1 (proof
in Appendix A).

8This is a generalised version of the Kumaraswamy distribution, which in its standard form takes
values only over [0,1] (Kumaraswamy (1980)). Note that τi = λi = 1 leads to a uniform distribution.
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Lemma 1. Suppose there are n risk-groups with risks µ1 < µ2 < · · · < µn with
iso-elastic demand elasticities λ1, λ2, . . . , λn respectively, then for a given premium
regime π, the expression for social welfare is given by:

S(π) =
n∑
i=1

pi τi
1

(λi + 1)

(
µi
πi

)λi+1

πi +K, (3.8)

where the premium regime π satisfies the equilibrium condition:

n∑
i=1

piτi

(
µi
πi

)λi
(πi − µi) = 0, (3.9)

and the constant K does not depend on the premium regime under consideration.

Lemma 1 provides the basis for comparing any two premium regimes. Specifically,
we focus on comparing the pooling regime against the full risk classification regime.

Under pooling, it is sometimes notationally convenient to express the equilibrium
condition and social welfare in terms of the risk-premium ratios : vi = µi/π0. A risk-
premium ratio of vi < 1 indicates that the i -th risk-group pay more than their fair
actuarial premium, and conversely for vi > 1. Using this notation, the pooling equilibrium
in Equation 3.9 becomes:

n∑
i=1

αiv
λi+1
i =

n∑
i=1

αiv
λi
i , (3.10)

or, equivalently:
∑
i: vi>1

αi
[
vλi+1
i − vλii

]
=
∑
i: vi≤1

αi
[
vλii − v

λi+1
i

]
, (3.11)

where αi = piτi∑n
j=1 pjτj

and the social welfare condition Equation 3.8 can be expressed as:

S(π0) T S(µ)⇔
n∑
i=1

αi v
λi+1
i

λi + 1
T

n∑
i=1

αi vi
λi + 1

, 9 (3.12)

⇔
∑
i: vi>1

αi
λi + 1

[
vλi+1
i − vi

]
T
∑
i: vi≤1

αi
λi + 1

[
vi − vλi+1

i

]
. (3.13)

Equation 3.11 says that under the pooling equilibrium, losses from the high risk-
groups are exactly offset by the profits from the low risk-groups. And Equation 3.13 can

9We use the notation T in the following sense: A T B ⇒ C T D is shorthand for A > B ⇒ C > D

and A = B ⇒ C = D and A < B ⇒ C < D. A similar interpretation applies for the notation S.
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be interpreted as the comparison between the (aggregate) utility gains by the high risk-
groups (from pooling as compared against full risk classification) against the (aggregate)
utility losses of the low risk-groups.

We can now derive the conditions for which social welfare under pooling is higher than
that under full risk classification. In the first instance, we make the simplest assumption
that all risk-groups have the same positive constant demand elasticity λ. Under this
assumption, we obtain the following result (proof in Appendix B) :

Theorem 1. Suppose there are n risk-groups with risks µ1 < µ2 < · · · < µn with the
same positive constant demand elasticity λ for all risk-groups. Then:

λ S 1⇒ S(π0) T S(µ). (3.14)

λ

0 1 2 3 4 5

0.5

0.75

1

1.25

S(π0) − K

S(µ) − K

Figure 2: Illustration of Theorem 1: Social welfare under pooling is higher than under
full risk classification for λ < 1.

Basis: (µ1, µ2) = (0.01, 0.04) and (α1, α2) = (0.8, 0.2). Similar pattern for any population structure and relative risk.

Figure 2 provides a graphical representation of Theorem 1, showing the ratio of
(S(π0)−K) to

(
S(µ)−K

)
as a function of constant demand elasticity λ for two risk-
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groups with risks (µ1, µ2) = (0.01, 0.04) and (α1, α2) = (0.8, 0.2). Recall from Equation
3.8, in the expression for S(π), K is a constant which does not depend on the premium
regime π. So the ratio of (S(π0)−K) to

(
S(µ)−K

)
focuses solely on the effect of changes

in premium regimes.
It can be clearly seen that λ = 1⇒ S(π0) = S(µ), while λ < 1⇒ S(π0) > S(µ) and

vice versa, as postulated in Theorem 1.

4. Different Iso-elastic Demand Elasticities for Different Risk-Groups

Theorem 1 assumes the same constant iso-elastic demand elasticity for all individu-
als. However, different risk-groups may have different sensitivities to price changes. In
particular, for higher risk consumers, insurance premiums may represent a larger part of
their total budget constraint, and so the effect of a small percentage change in price on
their insurance demand might be larger. In this section, for ease of exposition, we first
consider two risk-groups with iso-elastic demand, but with different demand elasticities.
We then generalise our result to more than two risk-groups.

Typical insurance underwriting processes often classify a majority of insurance risks
as standard (or low risks in the terminology of this paper), with the remaining risks rated
higher based on their individual characteristics. The empirical evidence (cited in Table 1
in Section 6.1) suggests that the more numerous low risk-group’s demand elasticity may
often be less than 1. But, as noted above, the high risk-group’s demand elasticity is likely
to be higher than that the low risk-group, and may often exceed 1. This pattern motivates
Theorem 2 (proof in Appendix C).

Theorem 2.1 states a sufficient condition on λ1 and λ2 for social welfare to be higher
under pooling than under full risk classification, for any population structures and un-
derlying risks. Theorem 2.2 then extends it for some of the ranges of λ2 not covered in
Theorem 2.1, but this involves introduction of additional conditions.
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Theorem 2. Suppose there are two risk-groups with risks µ1 < µ2 with positive
constant demand elasticities λ1 and λ2 respectively.

2.1. For any population structure:

λ1 ≤ 1 and λ1 ≤ λ2 ≤
1

λ1

⇒ S(π0) ≥ S(µ). (4.1)

2.2. For any population structure there exists a threshold premium π∗ such that:

λ1 ≤ 1 and λ2 >
1

λ1

and π0 ≥ π∗ ⇒ S(π0) ≥ S(µ). (4.2)

0.
0

0.
5

1.
0

1.
5

2.
0

0.0 0.5 1.0 1.5 2.0

λ1

λ 2

S(π0) > S(µ)
everywhere to left of boundary curve

S(π0) < S(µ)
everywhere to right of boundary curve

S(π0) > S(µ)
guaranteed in green shaded area
for all population structures

and relative risks

Boundary curve:  S(π0) = S(µ)
α1 = 0.8
α1 = 0.99

Figure 3: Illustration of Theorem 2: Social welfare under pooling is higher than under
full risk classification in green area, for all population structures and relative risks. See
text for interpretation of solid red and dashed blue boundary curves.
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Theorem 2 is illustrated in Figure 3, where (µ1, µ2) = (0.01, 0.04) and the x and y axes
represent the lower and higher demand elasticities λ1 and λ2. The two curves emanating
from the origin show the boundary at which S(π0) = S(µ) for two possible population
structures. The bold red curve demarcates the boundary for a moderate population
structure, (α1, α2) = (0.8, 0.2); the dashed blue curve is the boundary for an extreme
population structure with very few high risks, (α1, α2) = (0.99, 0.01). Social welfare
under pooling is higher than under full risk classification on the left of the boundary
curves, and lower on the right. The sufficient conditions in Theorem 2.1 specify that in
the green shaded region where λ1 ≤ 1 and λ1 ≤ λ2 ≤ 1/λ1, social welfare under pooling
is always higher than that under full risk classification, irrespective of the population
structure (and also the risks µ1 and µ2).

To understand the patterns in Figure 3, first note that moving from full risk classifi-
cation to pooling always leads to (i) a beneficial increase in both the number of high risks
insured, and the per capita utility of insured high risks and (ii) a detrimental decrease in
both the number of low risks insured, and the per capita utility of each insured low risk.
An initial intuition is that pooling will tend to “work well” when lower risks’ elasticity is
low compared with higher risks’ elasticity, i.e. towards the left of Figure 3.

As we move leftwards in the graph with λ2 fixed, λ1 eventually becomes sufficiently
low compared with λ2, so that pooling “works well” and effect (i) dominates. As we move
upwards in the graph with λ1 fixed (where λ1 ≤ 1), λ2 eventually becomes sufficiently
high compared with λ1, so that pooling again “works well” and effect (i) dominates. This
explains the position of the red curve.

However, if the high risk-group is small and has high demand elasticities, it may
not have the required capacity to absorb all the aggregate utility losses of the low risk-
group. This “capacity limit” on effect (ii) for a small high risk-group is illustrated by the
curvature of the dashed blue line for α1 = 0.99 (a very small fraction of high risks) back
towards the vertical axis for λ2 > 1 (high elasticities of the high risks). The green curve
represents a limiting value of this “capacity limit” on effect (ii). To the left of this limit
(i.e. inside the green shaded area specified by Theorem 2.1), effect (i) is guaranteed to
dominate, for any population structure and risks.

Note that the conditions in Theorem 2.1 are sufficient, but not necessary. This non-
necessity is illustrated by the white and dotted regions adjacent to the green shaded
region, but to the left of the red boundary curve, where S(π0) > S(µ) for the population
structure α1 = 0.8 even though the conditions of Theorem 2.1 are not satisfied. Where
the conditions of Theorem 2.1 are not satisfied, social welfare may still be higher under
pooling than under full risk classification, but this might require additional conditions.
For the region λ1 ≤ 1 and λ2 > 1/λ1 (dotted in Figure 3), Theorem 2.2 identifies the
additional condition in the form of the equilibrium premium π0 needing to exceed a
threshold premium π∗ for social welfare under pooling to be higher.

An implication of Theorem 2.2 is that the high risk group needs to be of a large
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enough size to pull the equilibrium premium above the threshold. This can be interpreted
as the need for the high risk-group to be of a reasonably large size to absorb the impact
of aggregate utility losses for the low risk-group. The dashed blue boundary line for
an extreme population structure with very few high risks, α1 = 0.99, curves back into
the dotted region, indicating that the condition π0 ≥ π∗ may not always be satisfied.
In contrast, for a moderate population structure with α1 = 0.8, the bold red boundary
curves back into the dotted region only at much higher values of λ2 (not shown in the
figure).

Theorem 2 can be generalised for more than two risk-groups with iso-elastic demand
for all risk-groups. While generalising our results to more than two risk-groups, under
pooling it will be convenient to classify the different risk-groups into two broad categories:

• ‘lower’ risk-groups, for whom pooled premium is higher than fair premium,
i.e. µi ≤ π0;

• ‘higher’ risk-groups, for whom pooled premium is lower than fair premium,
i.e. µi > π0.

For these two broad categories, we define the following:

• λminlo = min {λi : µi ≤ π0}, i.e. minimum demand elasticity for lower risk-groups;

• λmaxlo = max {λi : µi ≤ π0}, i.e. maximum demand elasticity for lower risk-groups;

• λminhi = min {λi : µi > π0}, i.e. minimum demand elasticity for higher risk-groups;

• λmaxhi = max {λi : µi > π0}, i.e. maximum demand elasticity for higher risk-groups.

For the case of two risk-groups, we simply have: λminlo = λmaxlo = λ1 and λminhi = λmaxhi = λ2.
Using these notations, we present our general result (for proof see Appendix C):
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Theorem 3. Suppose there are n risk-groups with risks µ1 < µ2 < · · · < µn with
iso-elastic demand elasticities λ1, λ2, . . . , λn respectively.

3.1. For any underlying population structures:

λmaxlo ≤ 1 and λmaxhi ≤ 1 and λmaxlo ≤ λminhi ⇒ S(π0) ≥ S(µ). (4.3)

3.2. For any underlying population structures:

λmaxlo ≤ 1 and λminhi ≥ 1 and λmaxhi ≤
1

λmaxlo

⇒ S(π0) ≥ S(µ). (4.4)

3.3. There exists a threshold premium π∗ such that:

λmaxlo ≤ 1 and λminhi >
1

λminlo

and π0 ≥ π∗ ⇒ S(π0) ≥ S(µ). (4.5)

It is easy to see that Theorem 2.1 can be obtained as a special case of Theorems 3.1 and
3.2; while Theorem 2.2 is a special case of Theorem 3.3.

5. General Demand Functions

So far, we have only considered constant demand elasticities, either for all individuals
in the population, or for all individuals belonging to a particular risk-group. Iso-elastic
demand functions are easy to understand and are also analytically convenient. However,
they may also be criticised as being unrealistic. In this section, we use the concept of
arc elasticity of demand to extend the results in Section 4 to a form applicable to more
general demand functions.

The formulation of iso-elastic demand arose from the particular choice of distribution
function in Equation 3.7 for the random variable Γi (denoting the risk preferences index)
for risk-group i. However, the framework developed in Section 2 is general and can be
applied to any distribution for the risk preferences index. In this section, we will just
assume that Γi is a positive continuous random variable10 with a distribution function:

FΓi(γ) = P [ Γi ≤ γ ] . (5.1)

10The derivations in this section can also be suitably adapted for any positive discrete random variable.
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Under this general framework, social welfare for a given premium regime π is given by
Lemma 2 (for proof see Appendix D).

Lemma 2. Suppose there are n risk-groups with risks µ1 < µ2 < · · · < µn and
any general demand functions. Then for a given premium regime π, for which no
risk-group is fully insured, the expression for social welfare is given by:

S(π) =
n∑
i=1

piGi

(
µi
πi

)
πi +K, where Gi(g) =

∫ g

0

P [ Γi < γ ] dγ, (5.2)

where the premium regime π satisfies the equilibrium condition:

n∑
i=1

pi di(πi) (πi − µi) = 0, (5.3)

and the constant K does not depend on the premium regime under consideration.

Comparing social welfare under pooling to that under full risk classification gives:

S(π0)− S(µ) =
n∑
i=1

piGi

(
µi
π0

)
π0 −

n∑
i=1

piGi

(
µi
µi

)
µi, (5.4)

where the equilibrium premium π0 satisfies:

n∑
i=1

pi di(π0) (π0 − µi) = 0. (5.5)

Using the notations involving risk-premium ratios, vi = µi/π0, we get:

S(π0) T S(µ)⇔
n∑
i=1

pi [Gi (vi)− viGi (1) ] T 0. (5.6)

To make analytical progress with the general relationship in Equation 5.6, we need
to establish a connection between general demand elasticity functions, εi(·), and general
distribution functions for the risk preferences index, FΓi(·). The link arises from Equations
2.6 and 2.16, reproduced below with appropriate adaptation for risk-group i:

di(π) = τi exp

[
−
∫ π

µi

εi(s) d log s

]
, (5.7)



22

di(π) = P
[

Γi <
µi
π

]
= P [ Γi ≤ v ] , where v =

µi
π
. (5.8)

Note the distinction between vi (earlier in the paper) and v for risk-group i: vi is the
risk-premium ratio at the equilibrium premium π0, whereas v is the risk-premium ratio
as a function of premium π.

We now need the concept of arc elasticity of demand (Vázquez (1995)), defined as:

λi(v) =

∫ π
µi
εi(s) d log s∫ π
µi
d log s

, for i = 1, 2, . . . , n, (5.9)

which can be interpreted as the weighted average of (point) elasticity for risk-group i, εi(s),
over the arc of the demand curve from premium µi to premium π, where the weights are
the log premiums.

Using the concept of arc elasticity of demand, Equation 5.8 can be written as:

di(π) = P [ Γi ≤ v ] = τi exp

[
−λi(v)

∫ π

µi

d log s

]
= τi

(µi
π

)λi(v)

= τi v
λi(v), (5.10)

and the equilibrium condition in Equation 5.5 as:

n∑
i=1

pi τi v
λi(vi)+1
i =

n∑
i=1

pi τi v
λi(vi)
i , as di(π0) = τi v

λi(vi)
i . (5.11)

Now consider a hypothetical population with the same probabilities of loss, i.e. µ1 <
µ2 < · · · < µn, as in the actual population. But suppose that in the hypothetical popula-
tion, demand for insurance is iso-elastic with constant elasticity parameters set at values
λ1(v1), λ2(v2), . . . , λn(vn) respectively. Then all the results obtained in Section 4 are ap-
plicable for the hypothetical population with iso-elastic demand. This creates an avenue
for extending the results for iso-elastic demand to general demand functions.

Specifically, if the relevant conditions of iso-elastic demand functions given in Theorem
3 of Section 4 apply for the hypothetical population, we know that pooling increases social
welfare as compared to full risk classification. In that case, Equation 3.13 implies that for
the hypothetical population:

n∑
i=1

pi
τi

λi(vi) + 1

[
v
λi(vi)+1
i − vi

]
≥ 0. (5.12)

However, insurance demand of the actual population is not necessarily iso-elastic.
But, interestingly, by construction, the equilibrium condition in Equation 5.11 is the
same for both the hypothetical population and the actual population, i.e. the pooled
equilibrium premium, π0, will be the same under both set-ups.
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Now for the higher risk-groups, i.e. for those risk-groups for which µi > π0, it is
shown in Lemma 4 in Appendix E that if the demand elasticity, εi(π), is either increasing
or iso-elastic as a function of premium π, then:

Gi(vi)− viGi(1) ≥ τi
λi(vi) + 1

[
v
λi(vi)+1
i − vi

]
. (5.13)

In other words: for the higher risk-groups, under the assumption of increasing or iso-
elastic demand elasticities, the increase in social welfare in the actual population when
we move to pooling is higher than that in the hypothetical population.

Conversely, for the lower risk-groups, i.e. for those risk-groups for which µi ≤ π0, it is
shown in Lemma 5 in Appendix E that if the demand elasticity, εi(π), is either decreasing
or iso-elastic as a function of premium π, then:

viGi(1)−Gi(vi) ≤
τi

λi(vi) + 1

[
vi − vλi(vi)+1

i

]
. (5.14)

In other words: for the lower risk-groups, under the assumption of decreasing or iso-elastic
demand elasticities, the fall in social welfare in the actual population when we move to
pooling is lower than that in the hypothetical population.

Putting Equations 5.13 and 5.14 together, we get the following expression for the
increase in social welfare in the actual population when we move to pooling:

n∑
i=1

pi [Gi (vi)− viGi (1)] (5.15)

=
∑
µi>π0

pi [Gi (vi)− viGi (1)]−
∑
µi≤π0

pi [viGi (1)−Gi (vi)] , (5.16)

≥
∑
µi>π0

pi
τi

λi(vi) + 1

[
v
λi(vi)+1
i − vi

]
−
∑
µi≤π0

pi
τi

λi(vi) + 1

[
vi − vλi(vi)+1

i

]
, (5.17)

=
n∑
i=1

pi
τi

λi(vi) + 1

[
v
λi(vi)+1
i − vi

]
. (5.18)

This implies that if the actual population is such that the hypothetical population
satisfies the relevant conditions of iso-elastic demand functions given in Theorem 3.1
of Section 4, then pooling gives higher social welfare than full risk classification in the
actual population. The following theorem outlines the required conditions in the actual
population.
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Theorem 4. Suppose there are n risk-groups with risks µ1 < µ2 < · · ·µn. If the
insurance demand elasticities have the following properties over their respective ranges
from µi to the pooled premium π0:

(i) for each lower risk-group, demand elasticity is either decreasing or iso-elastic
as a function of premium;

(ii) for each higher risk-group, demand elasticity is either increasing or iso-elastic
as a function of premium;

(iii) risk-groups with higher risks have higher arc elasticities of demand; and

(iv) demand elasticities do not exceed 1

then pooling increases social welfare as compared against full risk classification.

Theorem 4 thus partly relaxes the iso-elasticity condition on higher risk-groups in
Theorem 3.1. Specifically, condition (ii) allows higher risk-groups to have either iso-elastic
or increasing demand elasticities (as a function of premium), provided that they also
have higher arc elasticities than all lower risk-groups (condition (iii)) and their demand
elasticities do not exceed 1 (condition (iv)).

Technically, Theorem 4 also partly relaxes the iso-elasticity condition on lower risk-
groups. Specifically, condition (i) allows lower risk-groups to have either iso-elastic or
decreasing demand elasticities (as a function of premium). However, as discussed pre-
viously, demand elasticities are more likely to be increasing as a function of premium.
So, for all practical purposes, condition (i) amounts to a restriction to iso-elastic demand
functions.

We emphasise that the conditions presented in Theorem 4 are sufficient, but not nec-
essary. In fact, experimentation using simple functions reveals that pooling can sometimes
increase social welfare even where lower risk-groups have increasing demand elasticity (as
a function of premium), as long as the marginal increase in their demand elasticities does
not exceed a certain threshold which depends on the high risk-groups’ demand elasticities.
However, we do not include these results here as they are not generic and apply to specific
analytic forms of demand elasticity functions.

6. Discussion

6.1 Summary and Empirical Comparisons
The results obtained in this paper give sufficient conditions for social welfare to be

higher under pooling than under full risk classification. They can be summarised as
follows.
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(a) Theorem 1 for iso-elastic demand (common elasticity for all risk-groups) requires only
that the common demand elasticity is less than 1.

(b) Theorem 2 (2 risk-groups) and Theorem 3 (n risk-groups) for iso-elastic demand
(different elasticities for different risk-groups) require that all higher risk-groups’ de-
mand elasticities are higher than all lower risk-groups’ demand elasticities, and all
demand elasticities are less than 1. They also provide sufficient conditions when
higher risk-groups’ demand elasticities exceed 1, as long as all lower risk-groups’ de-
mand elasticities are less than 1.

(c) Theorem 4 then uses the concept of arc elasticity of demand to extend the results in
a form applicable to more general demand functions.

The conditions above are stringent because they are sufficient for any population
structures and relative risks. But the conditions are not necessary, and where they
are not fully satisfied, social welfare under pooling may still be higher than under risk-
differentiated premiums for some combinations of population structures and demand elas-
ticities.

Given that the conditions all relate to demand elasticities, an obvious question is:
what elasticities do we typically observe? Table 1 shows some relevant empirical estimates.
It can be seen that most estimates are of magnitude significantly less than 1. This is at
least suggestive of the possibility that social welfare in some insurance markets could be
higher under pooling than under full risk classification.

Table 1: Estimates of demand elasticity for various insurance markets.

Market & country Demand elasticities a Authors

Term life insurance, USA 0.66 Viswanathan et al. (2006)
Yearly renewable term life, USA 0.4 to 0.5 Pauly et al. (2003)
Whole life insurance, USA 0.71 to 0.92 Babbel (1985)
Health insurance, USA 0 to 0.2 Chernew et al. (1997),

Blumberg et al. (2001),
Buchmueller and Ohri (2006)

Health insurance, Australia 0.35 to 0.50 Butler (1999)
Farm crop insurance, USA 0.32 to 0.73 Goodwin (1993)

aEstimates in empirical papers are generally given as negative values, but we have presented the
absolute values here for consistency with the definition of demand elasticity used in this paper.

The estimates in Table 1 are made in various contexts, some of which may not cor-
respond closely to the set-up in this paper. However, we wish to emphasise that they all
appear to be product elasticities, not brand elasticities. Product elasticity is the response
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of market demand to a small change in market price. Brand elasticity is response of one
insurer’s demand to a (unilateral) small change in one insurer’s price. Product elasticity
is the relevant parameter for our analysis. Intuitively, in a competitive market, brand
elasticity is likely to be many times higher than product elasticity.

Brand elasticities are of more immediate interest for competitive strategy, and so
more likely to be estimated by insurers, but they are not informative for our analysis.
More detailed empirical work on product elasticities, separately for different markets and
risk-groups, is needed for policymakers to implement our results.

6.2 Comparison with Loss Coverage

Social welfare
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Figure 4: Elasticity conditions for pooling to beat full risk classification are more stringent
for social welfare criterion (green area on left panel) than for loss coverage criterion (green
area on right panel).

The results for social welfare can be compared with the analogous results for loss
coverage in Hao et al. (2018). As a reminder, loss coverage is defined as expected losses
compensated by insurance for the whole population; this has the practical advantage that
it depends only on observables (whereas social welfare depends on unobservable utility
functions).
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The comparison is illustrated in Figure 4. The dotted area where pooling is sure to in-
crease loss coverage (but increases social welfare only subject to further conditions) arises
because the loss coverage criterion focuses on compensation of losses for the population
as a whole, and places no weight on the premium cross-subsidies implied by pooling; on
the other hand, social welfare takes account of the premium cross-subsidies. For mod-
erate dispersion of elasticities (and hence utility functions), taking account of premium
cross-subsidies typically does not change the ranking of pooling versus full risk classifica-
tion. But with large dispersion of elasticities (and hence utility functions) – in particular,
λ2 � λ1, that is where high risks have much higher demand elasticities than low risks
– then pooling may be beneficial in terms of loss coverage, but not in terms of social
welfare. However, λ2 � λ1 is probably an unrealistic parameterisation; for more realistic
parameters (e.g. all elasticities not much more than 1), loss coverage and social welfare
usually give the same ranking of pooling versus full risk classification. This is shown by
the similar positions of the red boundary curve, inside the unit square, in the left and
right panels of Figure 4.

6.3 Comparison with other authors
The results can also be compared with those of Hoy (2006), who finds that utilitarian

welfare is increased by pooling, provided only that the fraction of high risks is sufficiently
small. Hoy (2006) assumes a utility function which is uniformly risk-averse for the whole
population; this leads all individuals to buy insurance under either pooling or full risk
classification, albeit the pooling contract provides only partial insurance.11 When pooling
is mandated, there is (i) a loss in efficiency because the pooling contract offers only
partial insurance, and (ii) a redistribution from low risks (previously better off, because
they paid lower premiums) to high risks. Behind the veil of ignorance, effect (i) reduces
welfare, but effect (ii) increases welfare. For a sufficiently small high-risk fraction, effect
(ii) dominates (i.e. for a risk-averse utility function, expected utility behind the veil of
ignorance is always increased by a sufficiently small redistribution towards the previously
worse off).

In contrast, we allow for a distribution of utility functions in the population, such
that not all individuals will purchase insurance at an actuarially fair price. In our model,
if we pool a very small high-risk population with high elasticity with a large low-risk
population with low elasticity, many of the high risks who now choose to participate at
the (cheap to them) pooled price have low risk aversion, so their gain in utility from
participating is relatively small. On the other hand, the low-elasticity lower risks’ loss in
utility (from either leaving the market or paying the (expensive to them) pooled price) is
relatively large. Therefore overall, pooling might not be advantageous, even with a very
small high-risk fraction. Looking back at Figure 3, this is represented by the curvature

11The partial-cover pooling contract is that predicted by the anticipatory (E2) equilibrium concept in
Wilson (1977).
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of the dashed blue boundary for α1 = 0.99 (i.e. very few high risks) back towards the
vertical axis for λ2 � λ1.

But this feature in our model probably has little practical significance, because λ2 �
λ1 is not a realistic parameterisation. For more typical parameter values (e.g. λ1 < λ2 <
1), the relative position of the dashed blue and solid red curves in Figure 3 suggests that
reducing the size of the high risk-group makes pooling slightly more likely to be beneficial
(in the sense that pooling gives higher social welfare for a slightly wider range of (λ1, λ2)
parameter values). This is more in accordance with (albeit not the same as) Hoy’s result.

7. Limitations and Extensions

7.1 Assumptions
This sub-section discusses how some of our more distinctive assumptions affect our

results.
The assumptions listed in Section 2 may appear numerous, but this is partly because

we have explicitly flagged points which are often left implicit. By way of comparison, Hao
et al. (2018) uses all the same assumptions, except for two differences: (i) the policy metric
is loss coverage, not social welfare, and hence (ii) assumptions about utility functions are
not strictly necessary (they provide a micro-foundation or “back story” for insurance
demand, but are not needed for the policy metric). Hoy (2006) uses the same social
welfare policy metric as the present paper and states fewer explicit assumptions, partly
because some of the set-up (although not the policy analysis) is a restricted version of our
model (e.g. only 2 risk-groups, uniform risk-averse utility, so everyone buys insurance),
and partly because some assumptions (e.g. no moral hazard) are left implicit.

7.1.1 Heterogenous utility functions (Assumption 3)
We assume a distribution of utility functions in the population. Individuals with

lower risk aversion will not buy insurance at an actuarially fair price, but may still buy
if offered a lower price. This assumption means that whatever the risk classification
regime, not everyone buys insurance. This in turn creates the possibility that changing
the risk classification arrangements (from pooling to full risk classification, or vice versa)
can change the take-up of insurance in a way which increases social welfare (i.e. expected
utility behind the veil of ignorance).

The more common assumption of universal and uniform risk aversion means that
whatever the risk classification regime, everyone buys insurance. This in turn means that
changes in risk classification arrangements cannot change the take-up of insurance, but
only the prices charged to different risk-groups, and so limits the scope for increases in
social welfare. It does not correspond well to the observed reality of voluntary insurance
markets, where coverage is invariably less than 100%.
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7.1.2 Competitive Equilibrium (Assumption 4)
We assume risk-neutral insurers who use a common technology to classify diversifiable

risks, with zero transaction costs. Competition then leads to zero expected profits in
equilibrium. Premium loadings (common to all insurers) for risk, transaction costs and
profits would complicate our results, but seem unlikely to change their general character.

Common risk classification technology is a more fundamental point than absence of
loadings, because it means that insurers cannot use risk classification innovations to gain
market share or increase profits (e.g. by identifying low or high risks mis-classified by
other insurers). Much risk classification activity in the real world appears to be of this
insurer v. insurer type, which we call ‘competitive adverse selection’, in contrast to the
more commonly theorised customer v. insurer type, which we call ‘informational adverse
selection’ (Thomas (2017)).12

Competitive adverse selection motivates any single insurer to pursue risk classification
activity for reasons not captured by our model. But this activity is largely zero-sum
between insurers (one risk-neutral insurer’s gain is another risk-neutral insurer’s loss),
and therefore of limited relevance to public policy. This justifies the abstraction from
competitive adverse selection in our model, despite its commercial importance for a single
insurer.

7.1.3 Small Premiums (Assumption 6)
The assumption that premiums are ‘small’ relative to initial wealth allows the certainty-

equivalent decision criterion in Equation 2.10 (reproduced below):

us(W − π L) > (1− µ) (2.10)

to be re-stated in terms of the risk preferences index γ and the risk-premium ratio µ/π
in Equation 2.13 (reproduced below):

γ <
µ

π
. (2.13)

This in turn facilitates a link from a population distribution for the risk preferences index
γ to demand as a function of the risk-premium ratio µ/π, which seems an intuitive form
for demand. The ‘small’ premiums assumption also facilitates simplification of the general
expression for social welfare in Equation 2.9 to the shorter form in Equation 2.18.

Graphically, ‘small’ premiums say that the individual utility functions in Figure 1 can
be approximated as a straight line over the interval (W −πL,W ). Strictly, the issue is the
degree of curvature, rather than the size of the premium: larger premiums could still yield

12To illustrate this distinction, consider innovations such as classification by smoking status, postcodes
or credit status. Innovations like these are driven primarily by insurers seeking to gain advantage over
other insurers, not by customers exploiting information hidden from insurers.
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a good approximation, if the utility functions happen to have little curvature over this
range. If premiums are not ‘small’ in this sense, the link from individual utility functions
to demand will still exist, but not in the tractable form used in this paper. Premiums are
indeed ‘small’ relative to wealth for most types of insurance, but with some exceptions
(e.g. health or life insurance at higher ages, or life insurance with a savings element).

7.2 Partial Risk Classification
We have focused on two extreme premium regimes, pooling and full risk classification.

A more common scenario in practice is partial risk classification, where risk classification
may be banned for some risk categories (e.g. gender), but not for others (e.g. smoking
status). These scenarios can be compared with the polar cases by identifying and com-
paring against all the possible intermediate groupings of the risk-groups permitted by any
regulatory ban. A full analysis of partial risk classification would require some extensions
of our model.

First, we need to systematically enumerate and analyse all possible partial risk clas-
sifications permitted under a given regulatory regime. For two risk-groups, only the polar
risk classification regimes are possible. For three risk-groups, in addition to the two polar
regimes, three partial risk classification regimes are possible, by grouping two of the risk-
groups together while leaving out the third; this gives a total of five possible regimes. The
number of possible regimes grows super-exponentially with the number of risk-groups. In
combinatorial mathematics, this is equivalent to counting all possible partitions of a n-
member set, and is known as the Bell number, Bn (for more details on Bell numbers see
Sándor and Crstici (2004)). For six risk groups, the Bell number is B6 = 203, and for ten
risk groups, B10 = 115, 975, which suggests that analysis of partial risk classification with
a realistic number of risk-groups might require a more numerical approach.

Second, we need additional criteria to identify equilibrium premium regimes which
are politically acceptable, rather than just possible (in the sense of giving zero profits).
For three risk-groups, with say low, medium and high risks, grouping the low and high
risk-groups at one premium, and the medium risks at another premium, is a possible
equilibrium; but if it leads to a situation where low risks are charged a higher premium
than medium risks, this might be politically unacceptable. Other examples of politically
unacceptable equilibria might include those which lack face validity (e.g. combine risk-
groups having no apparent similarities), or which disadvantage socially protected classes
(e.g. combine a low risk-group identified by disability with a high risk-group identified by
participation in dangerous sports).

Third, any possible equilibrium also needs to be robust to permitted unilateral de-
viations. It should not be possible for one insurer, operating within the same regula-
tory framework, to profitably destabilise the equilibrium by offering a different premium
regime.

Preliminary investigations show that for three risk-groups, if iso-elastic demand elas-



31

ticities for all risk-groups are less than 1, and lower risk-groups have lower demand elas-
ticities and premiums than higher risk-groups, then pooling gives higher social welfare
than any partial risk classification regime. This is in the same spirit as the other results
presented in this paper. However, as discussed above, full analysis of partial risk clas-
sification would require significant extensions of our model, so we leave this for future
research.

8. Conclusions

This paper has evaluated the welfare effects of bans on risk classification, in circum-
stances where institutional or regulatory factors lead insurers to pool all risks at a common
price. Such bans have both efficiency and equity effects. Depending on the distribution
of utility functions in the population, utilitarian social welfare can increase or decrease.

The distribution of utility functions in the population influences social welfare through
two mechanisms. First, utility functions determine individuals’ insurance purchasing de-
cisions, which determine the insurance demand curve and hence the equilibrium price of
insurance when all risks are pooled. Second, utility functions determine the utilities which
individuals assign to their outcomes given an equilibrium pooled price.

Because the distribution of utility functions and the insurance demand function are
mutually implicative, the distribution of utility functions across the population is com-
pletely characterised by demand elasticities. Hence in this paper, demand elasticity func-
tions have been used to specify both demand and (implicitly) the distribution of utility
functions in the population.

This paper has stated sufficient conditions on demand elasticities of higher and lower
risks which ensure that social welfare will be higher under pooling than under fully risk-
differentiated premiums. The conditions were stated first for iso-elastic demand with a
single elasticity parameter; then for iso-elastic demand with different elasticity parame-
ters for different risk-groups; and then generalised in a form applicable to other demand
functions using the concept of arc elasticity. The conditions for higher social welfare un-
der pooling encompass many plausible combinations of higher and lower risks’ demand
elasticities, particularly in scenarios where all demand elasticities are less than 1.
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Appendices

A. Expressions for Social Welfare Under Iso-elastic Demand

Lemma 1. Suppose there are n risk-groups with risks µ1 < µ2 < · · · < µn with iso-
elastic demand elasticities λ1, λ2, . . . , λn respectively, then for a given premium regime π,
the expression for social welfare is given by:

S(π) =
n∑
i=1

pi τi
1

(λi + 1)

(
µi
πi

)λi+1

πi +K, (3.8)

where the premium regime π satisfies the equilibrium condition:

n∑
i=1

piτi

(
µi
πi

)λi
(πi − µi) = 0, (3.9)

and the constant K does not depend on the premium regime under consideration.

Proof. The equilibrium condition follows directly by inserting the specific expression for iso-
elastic insurance demand in Equation 2.22.

Now recall that, given a risk-group i, insurance is purchased when Γi < µi/πi (a subscript
i in Γi is used to denote the random variable specific to risk-group i). Hence:

[Q | Risk-group i ] = I

[
Γi <

µi
πi

]
⇒ E [Q | Risk-group i ] = P

[
Γi <

µi
πi

]
= di(πi), (A.1)

where I(·) is the indicator function.
Using the expression for social welfare as given in Equation 2.18 we have:

S(π) = E [Q (X −Π Γ) ] +K = E [QX ]− E [QΠ Γ ] +K. (A.2)

Evaluating each of these terms separately:

E [QX ] =

n∑
i=1

P[Risk-group i] E [QX | Risk-group i ] (A.3)

=

n∑
i=1

pi E [Q | Risk-group i ] E [X | Risk-group i ] , using Assumption 8, (A.4)

=

n∑
i=1

pi di(πi)µi, (A.5)
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=
n∑
i=1

pi τi

(
µi
πi

)λi
µi, (A.6)

=
n∑
i=1

pi τi

(
µi
πi

)λi+1

πi, (A.7)

and:

E [QΠ Γ ] =

n∑
i=1

P[Risk-group i] E [QΠ Γ | Risk-group i ] (A.8)

=

n∑
i=1

pi E

[
I

[
Γi <

µi
πi

]
Γi

]
πi, (A.9)

=

n∑
i=1

pi

[∫ µi
πi

0
γτiλiγ

λi−1dγ

]
πi, using the distribution of Γi in Equation 3.7,

(A.10)

=

n∑
i=1

pi τi
λi

(λi + 1)

(
µi
πi

)λi+1

πi. (A.11)

Putting these together, we have:

S(π) =
n∑
i=1

pi τi
1

(λi + 1)

(
µi
πi

)λi+1

πi +K, (A.12)

where K = E[1−X] does not depend on the premium regime under consideration.
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B. Same Iso-elastic Demand Elasticity and Social Welfare

Theorem 1. Suppose there are n risk-groups with risks µ1 < µ2 < · · · < µn with the same
positive constant demand elasticity λ for all risk-groups. Then:

λ S 1⇒ S(π0) T S(µ). (3.14)

Proof. Using the construction involving risk-premium ratios, vi = µi/π0, we observe that, under
the assumption of the same constant demand elasticity, λ, for all risk-groups, the equilibrium
condition in Equation 3.10 simply becomes:

n∑
i=1

αiv
λ+1
i =

n∑
i=1

αiv
λ
i . (B.1)

And the condition comparing social welfare under pooling against that under the full risk clas-
sification regime in Equation 3.12 simplifies to:

S(π0) T S(µ)⇔
n∑
i=1

αi v
λ+1
i

λ+ 1
T

n∑
i=1

αi vi
λ+ 1

⇔
n∑
i=1

αi v
λ+1
i T

n∑
i=1

αi vi. (B.2)

We will consider the three cases λ = 1, 0 < λ < 1 and λ > 1 separately:

Case: λ = 1: Due to the equilibrium condition in Equation B.1, for λ = 1:

n∑
i=1

αiv
λ+1
i =

n∑
i=1

αiv
λ
i =

n∑
i=1

αivi ⇒ S(π0) = S(µ). (B.3)

Case: 0 < λ < 1: (Weighted) Hölder’s inequality (Hardy et al. (1988); Cvetkovski (2012)) states:

(Weighted) Hölder’s inequality. Let a1, a2, . . . , an; b1, b2 . . . , bn;m1,m2, . . . ,mn be three
sequences of positive reals numbers and If p, q > 1 be such that 1/p+ 1/q = 1, Then:(

n∑
i=1

mi a
p
i

)1/p ( n∑
i=1

mi b
q
i

)1/q

≥
n∑
i=1

mi ai bi. (B.4)

Equality occurs if and only if
ap1
bq1

=
ap2
bq2

= · · · = apn
bqn

.
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Setting 1/p = λ, 1/q = 1 − λ, ai = vλ
2

i , bi = v1−λ2
i and mi = αi; and noting that the

ratios, api /b
q
i = 1/vi, are not constant (unless all vi = 1), (weighted) Hölder’s inequality

gives:[
n∑
i=1

αi

(
vλ

2

i

) 1
λ

]λ [ n∑
i=1

αi

(
v1−λ2
i

) 1
1−λ

]1−λ

>

n∑
i=1

αi v
λ2

i v1−λ2
i , (B.5)

⇒

[
n∑
i=1

αi v
λ
i

]λ [ n∑
i=1

αi v
1+λ
i

]1−λ

>
n∑
i=1

αi vi, (B.6)

⇒
n∑
i=1

αi v
1+λ
i >

n∑
i=1

αi vi, by the equilibrium condition in Equation B.1, (B.7)

⇒ S(π0) > S(µ), by the social welfare condition in Equation B.2. (B.8)

Case: λ > 1: Young’s inequality (Hardy et al. (1988); Cvetkovski (2012)) states that:

Young’s inequality. For a, b > 0 and p, q > 1 such that 1/p+ 1/q = 1:

ab ≤ ap

p
+
bq

q
. (B.9)

Equality occurs if and only if ap = bq.

Setting p = λ, q = λ
λ−1 , a = v

1
λ
i , b = v

λ− 1
λ

i and noting that ap 6= bq unless vi = 1, Young’s
inequality gives:

v
1
λ
i v

λ− 1
λ

i <
1

λ
v

1
λ
λ

i +
λ− 1

λ
v

(λ− 1
λ

) λ
λ−1

i , (B.10)

⇒ vλi <
1

λ
vi +

λ− 1

λ
vλ+1
i , (B.11)

⇒
n∑
i=1

αi v
λ
i <

1

λ

n∑
i=1

αi vi +
λ− 1

λ

n∑
i=1

αi v
λ+1
i , (B.12)

⇒
n∑
i=1

αi v
λ+1
i <

n∑
i=1

αi vi, by the equilibrium condition in Equation B.1, (B.13)

⇒ S(π0) < S(µ), by the social welfare condition in Equation B.2. (B.14)
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C. Different Iso-elastic Demand Elasticities and Social Welfare

In this section, we prove Theorem 3. As discussed in Section 4, Theorem 2 is a special case
of Theorem 3.

Theorem 3. Suppose there are n risk-groups with risks µ1 < µ2 < · · · < µn with iso-elastic
demand elasticities λ1, λ2, . . . , λn respectively.

3.1. For any underlying population structures:

λmaxlo ≤ 1 and λmaxhi ≤ 1 and λmaxlo ≤ λminhi ⇒ S(π0) ≥ S(µ). (4.3)

3.2. For any underlying population structures:

λmaxlo ≤ 1 and λminhi ≥ 1 and λmaxhi ≤ 1

λmaxlo

⇒ S(π0) ≥ S(µ). (4.4)

3.3. There exists a threshold premium π∗ such that:

λmaxlo ≤ 1 and λminhi >
1

λminlo

and π0 ≥ π∗ ⇒ S(π0) ≥ S(µ). (4.5)
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Proof. (of Theorem 3.1) The proof is presented in the following steps:

Step 1: If a > 0 and 0 < b ≤ 1, then since Arithmetic Mean ≥ Geometric Mean:

(1− b)ab+1 + bab ≥ a(b+1)(1−b) × ab2 = a⇒
(
ab+1 − a

b

)
≥
(
ab+1 − ab

)
. (C.1)

Step 2: As vi > 0 and 0 < λi ≤ 1 for all risk-groups, using Step 1, we get:

n∑
i=1

αi
vλi+1
i − vi
λi

≥
n∑
i=1

αi

(
vλi+1
i − vλii

)
=

n∑
i=1

αiv
λi+1
i −

n∑
i=1

αiv
λi
i = 0, (C.2)

by equilibrium condition in Equation 3.10.

Step 3: Using Step 2, and separating out the terms involving vi > 1 from vi ≤ 1 we get:

∑
i: vi>1

αi
vλi+1
i − vi
λi

≥
∑
i: vi≤1

αi
vi − vλi+1

i

λi
≥ 0. (C.3)

Step 4: As 0 < x ≤ y ⇒ x
x+1 ≤

y
y+1 , if 0 < vj ≤ 1 ≤ vk, for some j and k, then

λj ≤ λmaxlo ≤ λminhi ≤ λk ⇒
λj

λj + 1
≤

λmaxlo

λmaxlo + 1
≤

λminhi

λminhi + 1
≤ λk
λk + 1

. (C.4)

Step 5: Using Steps 3 and 4, we get:

∑
i: vi>1

αi
λi + 1

[
vλi+1
i − vi

]
=
∑
i: vi>1

αi
λi

λi + 1

vλi+1
i − vi
λi

, (C.5)

≥
λminhi

λminhi + 1

∑
i: vi>1

αi
vλi+1
i − vi
λi

, (C.6)

≥
λmaxlo

λmiaxlo + 1

∑
i: vi≤1

αi
vi − vλi+1

i

λi
, (C.7)

≥
∑
i: vi≤1

αi
λi

λi + 1

vi − vλi+1
i

λi
, (C.8)

=
∑
i: vi≤1

αi
λi + 1

[
vi − vλi+1

i

]
(C.9)

Hence by Equation 3.13, S(π0) ≥ S(µ).
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Proof. (of Theorem 3.2) The proof is presented in the following steps:

Step 1: Let 0 < a ≤ 1, b ≥ a such that a b ≤ 1 and function g(v) be defined as:

g(v) = (b− a)va + (a+ 1)va−1 − (b+ 1), for v > 0. (C.10)

If a = 1, then b = 1 (as b ≥ a and ab ≤ 1), in which case: g(v) = 0 for v > 0.

If 0 < a < 1 i.e. (a− 1) < 0, limv→0+ g(v) = +∞, g(1) = 0 and:

g′(v) = (b− a) a va−2

[
v − 1− a2

ab− a2

]
< 0, for 0 < v < 1 as ab ≤ 1. (C.11)

So g(v) is a non-negative decreasing function over 0 < v ≤ 1. Hence g(v) ≥ 0 for 0 < v ≤ 1.

Step 2: For vi ≤ 1, set a = λi and b = λmaxhi ⇒ ab = λi λ
max
hi ≤ λmaxlo λmaxhi ≤ 1. By Step 1:

(λmaxhi − λi)v
λi
i + (λi + 1)vλi−1

i − (λmaxhi + 1) ≥ 0. (C.12)

Rearranging and multiplying by αi vi on both sides, we get:

αi
λmaxhi + 1

[
vλii − v

λi+1
i

]
≥ αi
λi + 1

[
vi − vλi+1

i

]
. (C.13)

As this holds for all vi ≤ 1, summing over all such risk-groups leads to:

1

λmaxhi + 1

∑
i: vi≤1

αi

[
vλii − v

λi+1
i

]
≥
∑
i: vi≤1

αi
λi + 1

[
vi − vλi+1

i

]
. (C.14)

Step 3: For all risk-groups with vi > 1, λi ≥ 1 (since λminhi ≥ 1). So:∑
i: vi>1

αi
λi + 1

[
vλi+1
i − vi

]
≥ 1

λmaxhi + 1

∑
i: vi>1

αi

[
vλi+1
i − vi

]
, as λmaxhi ≥ λi (C.15)

≥ 1

λmaxhi + 1

∑
i: vi>1

αi

[
vλi+1
i − vλii

]
, as vi > 1 and λi ≥ 1

(C.16)

=
1

λmaxhi + 1

∑
i: vi≤1

αi

[
vλii − v

λi+1
i

]
, by Equation 3.11. (C.17)

Step 4: Combining Steps 2 and 3, we get:∑
i: vi>1

αi
λi + 1

[
vλi+1
i − vi

]
≥ 1

λmaxhi + 1

∑
i: vi≤1

αi

[
vλii − v

λi+1
i

]
≥
∑
i: vi≤1

αi
λi + 1

[
vi − vλi+1

i

]
,

(C.18)

Hence by Equation 3.13, S(π0) ≥ S(µ).
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Proof. (of Theorem 3.3) The proof is presented in the following steps:

Step 1: Let 0 < a ≤ 1, b > a such that a b > 1 and function h(v) be defined as:

h(v) = (b− a)vb − (b+ 1)vb−1 + (a+ 1), for v > 0. (C.19)

limv→0+ h(v) = a+ 1 > 1, limv→+∞ h(v) = +∞, h(1) = 0 and:

h′(v) = (b− a) b vb−2

[
v − b2 − 1

b2 − ab

]
⇒ h′(vm) = 0⇒ vm =

b2 − 1

b2 − ab
> 1. (C.20)

h′′(vm) > 0⇒ vm is minimum. So there exists a v∗ > 1 such that, h(v) ≤ 0 for 1 < v ≤ v∗.

Step 2: For all vi > 1, there exists a v∗i such that for 1 < vi ≤ v∗i ,∑
i: vi>1

αi
λi + 1

[
vλi+1
i − vi

]
≥ 1

λminlo + 1

∑
i: vi>1

αi

[
vλi+1
i − vλii

]
. (C.21)

To prove this, set a = λminlo and b = λi, so ab = λi λ
min
lo ≥ λminhi λminlo > 1. So, by Step 1:

(λi − λminlo )vλii − (λi + 1)vλi−1
i + (λminlo + 1) ≤ 0. (C.22)

Rearranging and multiplying by αi vi on both sides, we get:

αi
λi + 1

[
vλi+1
i − vi

]
≥ αi
λminlo + 1

[
vλi+1
i − vλii

]
. (C.23)

As this holds for all vi > 1, summing over all such risk-groups leads to Equation C.21.

Step 3: Based on all risk-groups for which vi ≤ 1:

∑
i: vi≤1

αi
λi + 1

[
vi − vλi+1

i

]
≤ 1

λminlo + 1

∑
i: vi≤1

αi

[
vi − vλi+1

i

]
, as λminlo ≤ λi (C.24)

≤ 1

λminlo + 1

∑
i: vi≤1

αi

[
vλii − v

λi+1
i

]
, as vi ≤ 1 and λi ≤ 1

(C.25)

=
1

λminlo + 1

∑
i: vi>1

αi

[
vλi+1
i − vλii

]
, by Equation 3.11. (C.26)

Step 4: Combining Steps 2 and 3, we get∑
i: vi>1

αi
λi + 1

[
vλi+1
i − vi

]
≥ 1

λminlo + 1

∑
i: vi>1

αi

[
vλi+1
i − vλii

]
≥
∑
i: vi≤1

αi
λi + 1

[
vi − vλi+1

i

]
,

(C.27)
for 1 < vi ≤ v∗i for all vi > 1.

As vi = µi/π0, vi ≤ v∗i ⇒ π0 ≥ µi/v
∗
i for all risk-groups for which vi > 1. So if we define

π∗ = maxi: vi>1 (µi/v
∗
i ), then π0 ≥ π∗ ⇒ S(π0) ≥ S(µ) by Equation 3.13.
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D. Expression for Social Welfare Under General Insurance Demand

Lemma 2. Suppose there are n risk-groups with risks µ1 < µ2 < · · · < µn and any general
demand functions. Then for a given premium regime π, for which no risk-group is fully
insured, the expression for social welfare is given by:

S(π) =
n∑
i=1

piGi

(
µi
πi

)
πi +K, where Gi(g) =

∫ g

0
P [ Γi < γ ] dγ, (5.2)

where the premium regime π satisfies the equilibrium condition:

n∑
i=1

pi di(πi) (πi − µi) = 0, (5.3)

and the constant K does not depend on the premium regime under consideration.

Proof. Recall that, given a risk-group i, insurance is purchased when Γi < µi/πi. Hence:

[Q | Risk-group i ] = I

[
Γi <

µi
πi

]
⇒ E [Q | Risk-group i ] = P

[
Γi <

µi
πi

]
= di(πi). (D.1)

Using the expression for social welfare as given in Equation 2.18 we have:

S(π) = E [Q (X −Π Γ) ] +K, (D.2)

= E [QX ]− E [QΠ Γ ] +K, (D.3)

= E [QΠ ]− E [QΠ Γ ] +K, as under equilibrium: E [QX ] = E [QΠ ] (D.4)

= E [ (1− Γ)QΠ ] +K, (D.5)

=

n∑
i=1

pi E

[
(1− Γi) I

[
Γi ≤

µi
πi

] ]
πi +K. (D.6)

Now using Lemma 3:

S(π) =

n∑
i=1

pi

[(
1− µi

πi

)
P

[
Γi ≤

µi
πi

]
+

∫ µi
πi

0
P [ Γi ≤ γ ] dγ

]
πi +K, (D.7)

=

n∑
i=1

pi

(
1− µi

πi

)
P

[
Γi ≤

µi
πi

]
πi +

n∑
i=1

pi

∫ µi
πi

0
P [ Γi ≤ γ ] dγ πi +K, (D.8)

=
n∑
i=1

pi di(πi) (πi − µi) +

n∑
i=1

piGi

(
µi
πi

)
πi +K, as P

[
Γi ≤

µi
πi

]
= di(πi), (D.9)

=
n∑
i=1

piGi

(
µi
πi

)
πi +K, as in equilibrium:

n∑
i=1

pi di(πi) (πi − µi) = 0. (D.10)

as required.
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Lemma 3. For a positive continuous random variable, X:

(i) E [X ] =
∫∞

0 P [X > y ] dy;

(ii) E [X I [X ≤ c ] ] = cP [X ≤ c ]−
∫ c

0 P [X ≤ y ] dy;

(iii) E [ (1−X) I [X ≤ c ] ] = (1− c) P [X ≤ c ] +
∫ c

0 P [X ≤ y ] dy.

Proof. Assuming the density function of X is given by p(x)

(i)

E [X ] =

∫ ∞
0

x p(x) dx =

∫ ∞
0

[∫ x

0
dy

]
p(x) dx =

∫ ∞
0

[∫ ∞
y

p(x) dx

]
dy

=

∫ ∞
0

P [X > y ] dy. (D.11)

(ii)

E [X I [X ≤ c ] ] =

∫ c

0
x p(x) dx, (D.12)

=

∫ c

0

[∫ x

0
dy

]
p(x) dx, (D.13)

=

∫ c

0

[∫ c

y
p(x) dx

]
dy, by interchanging integrals, (D.14)

=

∫ c

0
P [ y < X ≤ c ] dy, (D.15)

=

∫ c

0
[ P [X ≤ c ]− P [X ≤ y ] ] dy, (D.16)

= cP [X ≤ c ]−
∫ c

0
P [X ≤ y ] dy. (D.17)

(iii)

E [ (1−X) I [X ≤ c ] ] = E [ I [X ≤ c ] ]− E [X I [X ≤ c ] ] , (D.18)

= P [X ≤ c ]−
[
cP [X ≤ c ]−

∫ c

0
P [X ≤ y ] dy

]
, (D.19)

= (1− c) P [X ≤ c ] +

∫ c

0
P [X ≤ y ] dy (D.20)
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E. Derivations for General Demand Elasticities

First note that if demand elasticity is an increasing function of premium π, then it is a
decreasing function of v = µi/π; and hence a weighted average such as arc elasticity λi(v) is also
decreasing function of v. The inverse statements (i.e. with increasing replaced by decreasing
and vice versa) also hold.

Lemma 4. If for a risk-group i, µi > π0 (i.e. vi > 1) and the demand elasticity, εi(π), is
an increasing function of premium π, then:

Gi(vi)− viGi(1) ≥ τi
λi(vi) + 1

[
v
λi(vi)+1
i − vi

]
. (E.1)

Proof. Firstly:

Gi(vi)−Gi(1) =

∫ vi

1
P [Γi ≤ v] dv, (E.2)

=

∫ vi

1
τi v

λi(v)dv, by Equation 5.10, (E.3)

≥
∫ vi

1
τi v

λi(vi)dv, as λi(v) is a decreasing function, (E.4)

=
τi

λi(vi) + 1

[
v
λi(vi)+1
i − 1

]
. (E.5)

And,

(vi − 1)Gi(1) = (vi − 1)

∫ 1

0
P [Γi ≤ v] dv, (E.6)

= (vi − 1)

∫ 1

0
τi v

λi(v)dv, by Equation 5.10, (E.7)

≤ (vi − 1)

∫ 1

0
τiv

λi(vi)dv, as v < 1⇒ vλi(v) ≤ vλi(vi), (E.8)

=
(vi − 1)τi
λi(vi) + 1

. (E.9)

Hence:

Gi(vi)− viGi(1) = [Gi(vi)−Gi(1)]− [(vi − 1)Gi(1)] ≥ τi
λi(vi) + 1

[
v
λi(vi)+1
i − vi

]
, (E.10)

as required.
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Lemma 5. If for a risk-group i, µi ≤ π0 (i.e. vi ≤ 1) and the demand elasticity, εi(π), is
a decreasing function of premium π, then:

viGi(1)−Gi(vi) ≤
τi

λi(vi) + 1

[
vi − vλi(vi)+1

i

]
. (E.11)

Proof. Firstly:

vi [Gi(1)−Gi(vi)] = vi

∫ 1

vi

P [Γi ≤ v] dv, (E.12)

= vi

∫ 1

vi

τi v
λi(v)dv, by Equation 5.10, (E.13)

≤ vi
∫ 1

vi

τi v
λi(vi)dv, as v < 1⇒ vλi(v) ≤ vλi(vi), (E.14)

=
viτi

λi(vi) + 1

[
1− vλi(vi)+1

i

]
. (E.15)

And

(1− vi)Gi(vi) = (1− vi)
∫ vi

0
P [Γi ≤ v] dv, (E.16)

= (1− vi)
∫ vi

0
τi v

λi(v)dv, by Equation 5.10, (E.17)

≥ (1− vi)
∫ vi

0
τi v

λi(vi)dv, as λi(v) is an increasing function, (E.18)

=
(1− vi)τi
λi(vi) + 1

[
v
λi(vi)+1
i

]
. (E.19)

Hence, as required:

viGi(1)−Gi(vi) = vi [Gi(1)−Gi(vi)]− (1− vi)Gi(vi) ≤
τi

λi(vi) + 1

[
vi − vλi(vi)+1

i

]
. (E.20)
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F. Social welfare when higher risks are fully insured under pooling

In the main text of the paper, we have explicitly assumed that no risk-groups are fully
insured under any premium regime. However, for sufficiently small pooled equilibrium premium,
it is possible that all individuals purchase insurance, in some higher risk-groups.

If there are more than two risk-groups, the analysis of implications of full insurance would
require consideration of many possible combinations. For ease of exposition, while analysing the
case of full take-up of insurance, we will only consider two risk-groups, where the high risk-group
is fully insured under pooling. We assume that fair-premium demand τi < 1 for all risk-groups,
which is consistent with most empirical evidence. (The special case of τi = 1 can also be analysed
using the same techniques.)

Assuming τi < 1, social welfare under full risk classification follows from Lemma 1:

S(µ) = p1 τ1
1

(λ1 + 1)
µ1 + p2 τ2

1

(λ2 + 1)
µ2 +K. (F.1)

For pooling we obtain the following lower bound for social welfare:

Lemma 6. Suppose there are two risk-groups with risks µ1 < µ2 with positive constant
demand elasticities λ1 and λ2 respectively. If the high risk-group is fully insured under
pooling, then social welfare under pooled premium S(π0) satisfies:

S(π0) ≥ p1 τ1
1

(λ1 + 1)

(
µ1

π0

)λ1+1

π0 + p2
1

(λ2 + 1)
µ2 +K, (F.2)

where the pooled premium π0 satisfies the equilibrium condition:

p1 τ1

(
µ1

π1

)λ1
(π0 − µ1) + p2 (π0 − µ2) = 0, (F.3)

and the constant K does not depend on the premium regime under consideration.

Proof. The equilibrium condition follows from Equation 2.22, by inserting the specific expression
for iso-elastic insurance demand for low risk-group and noting that proportional demand for high
risk-group is 1 under pooling.

Using the general expression for social welfare given in Equation 2.18, we have:

S(π0) = E [QX − QΠ Γ ] +K, (F.4)

=
2∑
i=1

E [QX − QΠ Γ | Risk-group i ] pi +K. (F.5)

As not all low risks will purchase insurance, the same steps in Lemma 1 will give:

E [QX − QΠ Γ | Risk-group 1 ] = p1 τ1
1

(λ1 + 1)

(
µ1

π0

)λ1+1

π0. (F.6)
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But all high risks buy insurance under pooling, i.e. [Q | Risk-group 2] = 1. So:

E [QX − QΠ Γ | Risk-group 2 ] = E [X | Risk-group 2 ]− E [ Π Γ | Risk-group 2 ] , (F.7)

= µ2 − E [ Γ | Risk-group 2 ] π0, (F.8)

= µ2 −
∫ (

1
τ2

) 1
λ2

0
γτ2λ2γ

λ2−1dγ π0, (F.9)

= µ2 −
λ2

(λ2 + 1)

(
1

τ2

) 1
λ2

π0, (F.10)

≥ 1

(λ2 + 1)
µ2, since τ2

(
µ2

π0

)λ2
≥ 1⇒

(
1

τ2

) 1
λ2

π0 ≤ µ2.

(F.11)

Using Equations F.6 and F.11 in Equation F.5 gives the required relationship in Equation
F.2.

Equation F.2 of Lemma 6 implies that, when high risks are fully insured under pooling (but
partially insured under full risk classification), social welfare under pooling exceeds that under
full risk classification, i.e. S(π0) ≥ S(µ) if:

p1 τ1
1

(λ1 + 1)

(
µ1

π0

)λ1+1

π0 + p2
1

(λ2 + 1)
µ2 ≥ p1 τ1

1

(λ1 + 1)
µ1 + p2 τ2

1

(λ2 + 1)
µ2, (F.12)

⇔ p1 τ1
1

(λ1 + 1)
v1
λ1+1 + p2

1

(λ2 + 1)
v2 ≥ p1 τ1

1

(λ1 + 1)
v1 + p2 τ2

1

(λ2 + 1)
v2, (F.13)

using the notations involving risk-premium ratios: v1 and v2. And Equation F.3 becomes:

p1 τ1 v1
λ1 (1− v1) + p2 (1− v2) = 0 (F.14)

We can then state the sufficient condition on λ1 and λ2, for social welfare to be higher
under pooling than under full risk classification for any population structures and underlying
risks, when high risks are fully insured under pooling.

Theorem 5. Suppose there are two risk-groups with risks µ1 < µ2 with positive constant
demand elasticities λ1 and λ2 respectively. If high risks are fully insured under pooling while
low risks are not, and neither risk-group is fully insured under full risk classification, then:

λ1 ≤ 1 and λ2 ≤
(

1 +
1

λ1

)
(1− τ2)− 1⇒ S(π0) ≥ S(µ). (F.15)

Proof. The proof is presented in the following steps:



49

Step 1: The equilibrium condition in Equation F.14 leads to:

p2 v2 = p1 τ1

(
v1
λ1 − v1

λ1+1
)

+ p2. (F.16)

Step 2: Using Equation F.16 in the social welfare condition in Equation F.13 gives:

S(π0) ≥ S(µ) (F.17)

if p1 τ1
1

(λ1 + 1)
v1
λ1+1 + p2

1

(λ2 + 1)
v2 ≥ p1 τ1

1

(λ1 + 1)
v1 + p2 τ2

1

(λ2 + 1)
v2,

(F.18)

i.e. if p1 τ1
1

(λ1 + 1)
v1
λ1+1 + p1 τ1

1

(λ2 + 1)

(
v1
λ1 − v1

λ1+1
)

+ p2
1

(λ2 + 1)

≥ p1 τ1
1

(λ1 + 1)
v1 + p1 τ1

τ2

(λ2 + 1)

(
v1
λ1 − v1

λ1+1
)

+ p2
τ2

(λ2 + 1)
, (F.19)

i.e. if p1 τ1
1

(λ1 + 1)
v1
λ1+1 + p1 τ1

1

(λ2 + 1)

(
v1
λ1 − v1

λ1+1
)

≥ p1 τ1
1

(λ1 + 1)
v1 + p1 τ1

τ2

(λ2 + 1)

(
v1
λ1 − v1

λ1+1
)
, as τ2 < 1, (F.20)

i.e. if
(1− τ2)

(λ2 + 1)
≥ 1

(λ1 + 1)

(
v1 − v1

λ1+1
)

(v1
λ1 − v1

λ1+1)
. (F.21)

Step 3: As 0 < λ1 ≤ 1 and 0 < v1 < 1, using Arithmetic Mean ≥ Geometric Mean:

(1− λ1) vλ1+1
1 + λ1 v

λ1
1 ≥ v1 ⇒

λ1

(λ1 + 1)
≥ 1

(λ1 + 1)

(
v1 − v1

λ1+1
)

(v1
λ1 − v1

λ1+1)
. (F.22)

Step 4: Finally:

λ2 ≤
(

1 +
1

λ1

)
(1− τ2)− 1⇒ (1− τ2)

(λ2 + 1)
≥ λ1

(λ1 + 1)
, (F.23)

⇒ (1− τ2)

(λ2 + 1)
≥ 1

(λ1 + 1)

(
v1 − v1

λ1+1
)

(v1
λ1 − v1

λ1+1)
, by Step 3,

(F.24)

⇒ S(π0) ≥ S(µ), by Step 2. (F.25)

Figure 5 provides a graphical representation of Theorem 5, where the fair-premium demand
is 50% for both low and high risk-groups. Social welfare is guaranteed to be higher under pooling
for all population structures and risks in the shaded region to the left of the bold green curve.

For specific population structures and risk parameters, the region where social welfare is
higher under pooling is a much larger area than the shaded region in Figure 5. For example,
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0.
0

0.
5

1.
0

1.
5

0.0 0.5 1.0 1.5

λ1

λ 2

S(π0) ≥ S(µ)

guaranteed in green shaded area

for all population structures
S(π0) ≥ S(µ)
for p1 = 0.99

S(π0) ≥ S(µ)
forp1 = 0.9

Figure 5: Curve demarcating the regions where social welfare under pooling is greater
than under full risk-differentiation where (µ1, µ2) = (0.01, 0.04), fair-premium demand is
50% for both risk-groups and high risks are fully insured under pooling.

social welfare is guaranteed to be higher under pooling in the region to the left of the blue
dot-dashed line for p1 = 0.99 and (µ1, µ2) = (0.01, 0.04). Similarly, the region to the left of
the red dashed line represents the region where social welfare is guaranteed to be higher under
pooling for p1 = 0.9 and (µ1, µ2) = (0.01, 0.04). The region where social welfare is guaranteed
to be higher under pooling increases with the size of the higher risk-group, because larger high
risk-group’s gain in welfare from pooling has greater capacity to offset the lower risk-group’s
loss in welfare from pooling.


