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Abstract: In this paper, a novel decentralised robust state feedback sliding mode control is
presented to stabilise a class of nonlinear interconnected systems with matched uncertainty and
unknown interconnections. A composite sliding surface is designed, and a set of conditions are
developed to guarantee that the corresponding sliding motion is uniformly asymptotically stable.
Then, a decentralised state feedback sliding mode control is proposed to drive interconnected
systems to the designed sliding surface in finite time, and sliding motion occurs thereafter.
The bounds on the uncertainties and interconnections are known nonlinear functions, which are
employed in the control design to reject the effects of uncertainties and unknown interconnections
to enhance the robustness. Finally, a numerical simulation example is given to demonstrate the
effectiveness of the proposed control strategy.

Keywords: Nonlinear interconnected systems, decentralised control, sliding mode control, state
feedback, uniform asymptotical stability.

1. INTRODUCTION

With the advancement of scientific technology, many in-
dustrial and commercial systems are interconnected sys-
tems with high complexity and large scale, such as mod-
ern power systems, transportation systems, aircraft and
robots. In detailed description, interconnected systems can
be described as a set of composite objects with different
sorts of physical, natural, and artificial dynamics, which
are called as subsystems (Yan et al. (1998)). In reality, the
existence of nonlinearities, uncertainties and interconnec-
tions increases the difficulty of control design and analysis
for interconnected systems. Besides that, practical systems
are affected by internal and external disturbances such as
modelling errors, parameter variation, temperature, pres-
sure and mechanical loss. In terms of the control of inter-
connected systems, centralised control and decentralised
control are two different approaches. Decentralised control
only adopts local information of each subsystem, which
does not need information transfer between subsystems
and can reduce the computation burden. Therefore, decen-
tralised control is convenient for practical implementation.
To be specific, decentralised control law consists of many
local controllers which only use their local information
of the corresponding subsystems. So the structure of de-
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centralised controllers is simpler and more effective than
centralised controllers. In last few decades, decentralised
control has received great attention and many results have
been achieved (Misgeld et al. (2015)).

Sliding mode control (SMC), which has the high robust-
ness against uncertainties, has been recognised as an effec-
tive method for control systems with matched uncertain-
ties. Yan et al. (2005) proposed a modified SMC which was
able to deal with mismatched uncertainties where dynamic
feedback was employed. Khan et al. (2011) proposed a
novel dynamic integral sliding mode controller for state
dependent matched and mismatched uncertainties. A neu-
ral network fuzzy SMC presented by Chiang and Chen
(2017) was applied to pneumatic muscle actuators, where
an adaptive training used neural network was able to
establish a fuzzy SMC controller, and an integrator could
minimize the tracking error. It should be noted that all
of the results mentioned above only considered centralised
systems.

Recently, many researchers have focused on the decen-
tralised SMC to cope with the issue of the interconnect-
ed systems. A kind of novel decentralised state-feedback
adaptive SMC was imposed by Mirkin et al. (2011) to
large-scale interconnected systems with nonlinear inter-
connections and time-delay. The global decentralised dis-
crete SMC for interconnected systems based on output



feedback was employed by Mahmoud et al. (2012). These
two strategies achieved good results for specified intercon-
nected systems where only the interconnections were non-
linear while all the isolated subsystems were linear. A de-
centralised integral SMC combined with PID was proposed
in Thien and Kim (2018) for unmanned aerial vehicles,
where the control sensitivity with respect to the network
topology was analysed, but the mismatched uncertainties
were not considered. Although many researchers have ob-
tained the remarkable achievements of decentralised SMC,
few people concentrated on the nonlinear interconnected
systems with mismatched uncertainties and unknown in-
terconnections at same time. Due to the completeness of
nonlinear systems, the technology of SMC combined with
decentralised control for nonlinear interconnected systems
with unknown interconnections is challenging and signifi-
cant.

In this paper, a decentralised SMC using state feedback
control for nonlinear interconnected systems is presented.
The considered interconnected systems possess both non-
linear interconnections and nonlinear isolated subsystems.
A coordinate transformation is applied to transform all
the isolated subsystems into the regular forms. Then, a
composite sliding surface is designed, and a set of condi-
tions are developed to guarantee that the corresponding
sliding motion is uniformly asymptotically stable based
on the Lyapunov theory. A state feedback SMC law is
established to drive the system to the sliding surface in
finite time and keep the sliding motion after that. The
bounds on all uncertainties and interconnections have gen-
eral nonlinear forms and are nonlinear functions of the
system states, which are employed in decentralised control
design to reduce the effects of uncertainties. It is shown
that under certain conditions, the effect of the unknown
interconnections can be completely cancelled by an ap-
propriate designed decentralised controllers with regard to
the reachability analysis. At last, a numerical simulation
example is provided to demonstrate the effective of the
proposed control strategy.

2. SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

For simply statement in the following, a few concepts are
introduced.

Definition 1 (Khalil (2002)): A continuous function α :
[0, a) −→ [0,∞) is said to belong to class K if it is strictly
increasing and α(0) = 0.

Definition 2 (Yan et al. (2014)): A class K function is
called as class KC1 if it is continuously differentiable.

Take the consideration of nonlinear time-varying intercon-
nected systems with matched disturbances and unknown
interconnections consisted of n interconnected subsystems,

ẋi = fi(t, xi) + gi(t, xi)(ui + φi(t, xi)) + hi(t, x)

i = 1, 2, · · · , n (1)

where xi ∈ Ωi ⊂ Rni (Ωi denotes a neighbourhood of the
origin, x := col(x1, x2, · · · , xn) ∈ Ω = Ω1 × Ω2 × · · · ×
Ωn) and ui ∈ Rmi are, respectively, the state variables
and inputs with mi < ni. It is assumed that the matrix
function gi(·) ∈ Rni×mi is known and has full column

rank; the nonlinear vector fi(·) ∈ Rni is known. The
term φi(·) denotes the matched disturbance, and hi(·)
represents the unknown interconnection. All the nonlinear
functions are assumed to be continuous in their arguments
in the considered domain.

For simply description, the considered domain may not be
pointed out in the subsequent analysis in this paper. The
following basic definitions are introduced.

Definition 3 : Consider the system (1). The system

ẋi = fi(t, xi) + gi(t, xi)(ui + φi(t, xi)), i = 1, 2, · · · , n
(2)

is called the i-th isolated subsystem of system (1). The
system

ẋi = fi(t, xi) + gi(t, xi)ui, i = 1, 2, · · · , n (3)

is called the i-th nominal isolated subsystem of system (1).

It is widely known that one of the major issues for
interconnected systems is to design a controller such that
the interconnected system (1) has the desired performance
if all nominal isolated subsystems (3) exhibit the required
performance. Compared with centralised control, one of
the important issues for interconnected systems is how to
deal with interconnections. And as for decentralised case,
each controller can only be allowed to use its own state
information.

The definition of the decentralised control is given as
follows:

Definition 4 : Consider system (1). If the controller ui for
the i-th subsystem depends on the time t and states xi

only, that is,

ui = ui(t, xi), i = 1, 2, · · · , n (4)

Then, (4) is called as the decentralised state feedback
controller.

Consider a nonlinear transformation

zi = Ti(xi), i = 1, 2, · · · , n (5)

which is a diffeomorphism, i.e. ∂Ti/∂xi ̸= 0 in the consid-
ered domain. Then, it defines a new coordinate zi. In new
coordinates zi, system (1) can be described by

żi =

[
∂Ti

∂xi
ẋi

]
xi=T−1

i
(zi)

=

[
∂Ti

∂xi

(
fi(t, xi) + gi(t, xi)

· (ui + φi(t, xi)) + hi(t, x)
)]

xi=T−1
i

(zi)

i =1, 2, · · · , n

(6)

It is assumed that the system (1) in new coordinate zi can
be described by

żi1 =Fi1(t, zi1, zi2) +Hi1(t, z) (7)

żi2 =Fi2(t, zi1, zi2) +Gi(t, zi1, zi2)

· (ui +Φi(t, zi1, zi2)) +Hi2(t, z) (8)

where zi1 ∈ Rni−mi , zi2 ∈ Rmi , z = col(z1, z2, · · · , zn)
and zi = col(zi1, zi2), i = 1, 2, · · · , n,



[
Fi1(·)
Fi2(·)

]
:=

[
∂Ti

∂xi
fi(t, xi)

]
xi=T−1

i
(zi)

(9)

Hi(·) :=
[
Hi1(·)
Hi2(·)

]
:=

[
∂Ti

∂xi
hi(t, x)

]
xi=T−1

i
(zi)

(10)[
0

Gi(·)

]
:=

[
∂Ti

∂xi
gi(t, xi)

]
xi=T−1

i
(zi)

(11)

Φi(·) := [φi(t, xi)]xi=T−1
i

(zi)
(12)

where Gi(·) ∈ Rmi×mi is nonsingular in the considered
domain ΩTi for i = 1, 2, . . . , n.

In the new coordinate (zi1, zi2), the considered domain ΩTi

is defined as
ΩTi := Ωzi1 × Ωzi2

:= {(zi1, zi2) | (zi1, zi2) = Ti(xi), xi ∈ Ωi}
where zi1 ∈ Ωzi1 and zi2 ∈ Ωzi2 . The system (7)−(8) is in
the usual regular form for sliding mode design, which is
very useful for the constructive application of the sliding
mode paradigm.

Remark 1: It should be pointed out that there is no general
way to find a coordinate transformation (5) to transfer
system (1) to the regular form (7)-(8). But the work in
Marino (1995) and Yan et al. (2014) can be referred to
construct the transformation.

In this paper, nonlinear interconnected systems (7)-(8) are
to be focused. However, it should be emphasised that the
results developed in this paper can be easily extended to all
the interconnected systems (1) which can be transformed
to system (7)−(8) by a nonsingular transfomation.

The objective of this paper is to construct a state feedback
decentralised SMC law, such that the controlled system
(7)−(8) is uniformly asymptotically stable irrespective of
disturbances and unknown interconnections.

3. SLIDING MOTION ANALYSIS AND CONTROL
SYNTHESIS

In this section, the sliding surface is designed and the
corresponding sliding motion is analysed. Then, the novel
decentralised state feedback SMC is proposed.

3.1 Stability of Sliding Motion

Based on the SMC theory, the switching function for the
i-th subsystem can be selected as

si(zi) = zi2, i = 1, 2, · · · , n (13)

Then, the composite sliding function for the interconnect-
ed system (7)−(8) is given as

S(z) = col (s1(z1), s2(z2), · · · , sn(zn))
= col (z12, z22, · · · , zn2)

(14)

So, the composite sliding surface is written as

{col(z1, z2, . . . , zn) | si(zi) = zi2 = 0, i = 1, 2, . . . , n}
(15)

When the system is limited on the sliding surface (15),
zi2 = 0 for i = 1, 2, . . . , n, and thus the sliding mode
dynamics can be described by

żi1 = Fi1s(t, zi1) +Hi1s(t, z11, z21, · · · , zn1) (16)

where zi1 ∈ Ωzi1 ⊂ Rni−mi denotes the state of the sliding
mode dynamics,

Fi1s(·) := Fi1(t, zi1, zi2)|zi2=0 (17)

Hi1s(·) := Hi1(t, z)|z12=0,··· ,zn2=0 (18)

where Fi1(·) and Hi1(·) are defined in (7). From (10), it
is clear to see that the term Hi1s(·) comes from hi(t, x),
which represents the unknown interconnection of the i-th
subsystems in (16) for i = 1, 2, . . . , n.

In order to analyse the sliding motion of system (16)
related to the composite sliding surface (15), the following
assumptions are needed.

Assumption 1: There exists the continuously differentiable
functions Vi(t, zi1) : R+×Rni−mi 7→ R+ for i = 1, 2, . . . , n
and class K functions pil(·) for l = 1, 2, 3, 4, such that for
any zi1 ∈ Ωzi1 the following inequalities hold:

(i) p2i1(∥zi1∥) ≤ Vi(t, zi1) ≤ p2i2(∥zi1∥).

(ii) ∂Vi(·)
∂t +

(
∂Vi(·)
∂zi1

)T
Fi1s(t, zi1) ≤ −p2i3(∥zi1∥).

(iii)

∥∥∥∥(∂Vi(·)
∂zi1

)T∥∥∥∥ ≤ pi4(∥zi1∥).

Remark 2: Assumption 1 implies that the nominal system
of the interconnected system (16), ie. the dynamics żi1 =
Fi1s(t, zi1), is uniformly asymptotically stable. It should be
mentioned that, the fact that żi1 = Fi1s(t, zi1) is uniformly
asymptotically stable does not mean that the nominal
system (7) is uniformly asymptotically stable.

Assumption 2: The interconnection term Hi1s(·) in system
(16) satisfies

∥Hi1s(t, z11, z21, · · · , zn1)∥

≤ βi(t, z11, z21, · · · , zn1)
n∑

j=1

∥zj1∥ (19)

where βi(·) for i = 1, 2, · · · , n are known continuous
functions.

Assumption 2 ensures that the interconnection in (16) is
bounded by a known function of states of the system (16).

It is obvious if the functions pil(·) for l = 1, 2, 3, 4 in
Assumption 1 are strengthened to class KC1 functions,
then from the Definition 2, there are continuous functions
ςil(·) such that for any zi1 ∈ Ωzi1 , pil(·) can be decomposed
as

pil(∥zi1∥) = ςil(∥zi1∥)∥zi1∥, l = 1, 2, 3, 4 (20)

where ςil(·) is a continuous function in R+ for i =
1, 2, . . . , n and l = 1, 2, 3, 4.

The following result is ready to be presented.

Theorem 1. Suppose that the functions pil(·) for l =
1, 2, 3, 4 in Assumption 1 are class KC1 functions. Then,
under Assumptions 1 and 2, the system (7)−(8) has a
uniformly asymptotically stable sliding motion associated
with the sliding surface (15) if the function matrix

MT (·) +M(·) > 0

where M = (mij(·))n×n is a n × n function matrix with
its entries defined by



mij =

{
ς2i3(·)− ςi4(·)βi(·), i = j

− ςi4(·)βi(·), i ̸= j
(21)

where ςi3(·) and ςi4(·) are given in (20), βi(·) is defined in
(19) for i, j = 1, 2, . . . , n.

Proof. From the analysis above, it is clear to see that
system (16) is the sliding mode dynamics related to the
composite sliding surface (15). Under the condition that
pil(·) is class KC1 function, the equations in (20) hold.
Consider the Lyapunov candidate function

V (t, z11, z21, · · · , zn1) =
n∑

i=1

Vi(t, zi1) (22)

where Vi(·) is defined in Assumption 1. The time derivative
of V (·) along the trajectory of system (16) based on
Assumptions 1 and 2 is described as

V̇ (t, z11, z21, · · · , zn1) =
n∑

i=1

V̇i(t, zi1)

=
n∑

i=1

(
∂Vi(·)
∂t

+

(
∂Vi(·)
∂zi1

)T

(Fi1s(·) +Hi1s(·))

)

≤
n∑

i=1

−p2i3(∥zi1∥) + pi4(∥zi1∥) · βi(·)
n∑

j=1

∥zj1∥

 (23)

According to equation (20), it follows that

V̇ (t, z11, z21, · · · , zn1)

≤−
n∑

i=1

(
ς2i3(∥zi1∥)− ςi4(∥zi1∥)βi(·)

)
∥zi1∥2

−
n∑

i=1

n∑
j=1,j ̸=i

ςi4(∥zi1∥) · βi(·)∥zi1∥ · ∥zj1∥

=− 1

2
ZT
(
MT +M

)
Z (24)

where Z := col(∥z11∥, ∥z21∥, · · · , ∥zn1∥), M is the n × n
matrix defined in (21). Hence, MT +M > 0. 2

3.2 Reachability Analysis

The stability conditions have been presented in Theorem
1 above. The objective now is to design a decentralised
state feedback SMC such that the interconnected system
(7)−(8) is driven to the sliding surface (15).

For the interconnected system (7)−(8), the corresponding
reachability condition is described by

ST (z)Ṡ(z) ≤ −η∥S(z)∥ (25)

where S(z) is defined by (14), η is a positive constant.

Consider system (7)−(8). It should be pointed out that
there has not been any limitation imposed on the terms
Φi(t, zi1, zi2) and Hi2(t, z) so far. It is necessary to intro-
duce the following assumption for further control design.

Assumption 3: The uncertainties Φi(t, zi1, zi2) andHi2(t, z)
in (8) satisfy

∥Φi(t, zi1, zi2)∥ ≤ ξi1(t, zi1, zi2) (26)

∥Hi2(t, z)∥ ≤
n∑

j=1

ϵij(t, zj) (27)

where ξi1(t, zi1, zi2) and ϵij(t, zj) are known continuous
functions.

Construct the control law

ui = −G−1
i (t, zi1, zi2)Fi2(t, zi1, zi2)−

G−1
i (t, zi1, zi2)

(
∥Gi(t, zi1, zi2)∥ξi1(t, zi1, zi2)sgn(zi2)

+
n

2
zi2 +

1

2

zi2
∥zi2∥2

n∑
j=1

ϵ2ji(t, zi)
)

−G−1
i (t, zi1, zi2)ki · sgn(zi2)

(28)
where Fi2(·) is given in (9), ξi1(·) and

∑n
j=1 ϵij(t, zj) are

given in (26) and (27), respectively, sgn(·) is the usual
signum function, and ki is the control gain which is a
positive constant.

Theorem 2. Under Assumption 3, the nonlinear intercon-
nected system (7)−(8) can be driven to the sliding surface
(15) in finite time by the designed controller in (28) and
maintains a sliding motion on it thereafter.

Proof. From the definition of S(z) in (14), system equa-
tion (8), and the control ui in (28), it follows that

ST (z)Ṡ(z)

=

n∑
i=1

(
zTi2Gi(·)Φi(·)− ∥Gi(·)∥ξi1(·)zTi2sgn(zi2)

)
+
( n∑

i=1

zTi2Hi2(·)−
n∑

i=1

n

2
zTi2zi2

−
n∑

i=1

n∑
j=1

1

2

zTi2zi2
∥zi2∥2

ϵ2ji(·)
)
−

n∑
i=1

kiz
T
i2sgn(zi2) (29)

Based on (26), (27) and the fact that sT sgn(s) ≥∥ s ∥ for
any vectors s (see Lemma 1 in Yan and Edwards (2008)),
it follows that:

n∑
i=1

(
zTi2Gi(·)Φi(·)− ∥Gi(·)∥ξi1(·)zTi2sgn(zi2)

)
≤

n∑
i=1

(
∥zi2∥ · ∥Gi(·)∥ · ∥Φi(·)∥ − ∥zi2∥ · ∥Gi(·)∥ · ξi1(·)

)
≤0 (30)

By similar reasoning as in (30), and from (27)

n∑
i=1

zTi2Hi2(·)−
n∑

i=1

n

2
zTi2zi2 −

n∑
i=1

n∑
j=1

1

2

zTi2zi2
∥zi2∥2

ϵ2ji(·)

≤
n∑

i=1

∥zi2∥ · ∥Hi2(·)∥ −
n∑

i=1

n∑
j=1

1

2
∥zi2∥2

−
n∑

i=1

n∑
j=1

1

2
ϵ2ij(t, zj) (31)

From the fact that a2+b2

2 ≥| a | | b |, it follows that



n∑
i=1

n∑
j=1

1

2
∥zi2∥2 +

n∑
i=1

n∑
j=1

1

2
ϵ2ij(t, zj)

≥
n∑

i=1

∥zi2∥
n∑

j=1

ϵij(t, zj) ≥
n∑

i=1

∥zi2∥ · ∥Hi2(·)∥ (32)

From (32) and (31),
n∑

i=1

zTi2Hi2(·)−
n∑

i=1

n

2
zTi2zi2 −

n∑
i=1

n∑
j=1

1

2

zTi2zi2
∥zi2∥2

ϵ2ji(·)

≤ 0 (33)

Substituting (30) and (33) into (29) yields

ST (z)Ṡ(z) ≤ −
n∑

i=1

kiz
T
i2sgn(zi2)

≤ −η
n∑

i=1

zTi2sgn(zi2) ≤ −η∥S∥ (34)

where η := max{k1, k2, · · · , kn}.
The inequality (34) shows that the reachability condition
(25) is satisfied, and thus the interconnected systems
(7)−(8) can be driven to the sliding surface (15) in finite
time and maintain a sliding motion on it thereafter. Hence,
the result follows. 2

According to sliding mode control theory, Theorem 1 and
Theorem 2 show that the closed-loop system formed by
applying control law (28) into system (7)-(8) is uniformly
asymptotically stable.

4. SIMULATION RESULTS

Consider the interconnected system which is composed of
two third-order subsystems

ẋ1 =


−6x2

12x
2
13 − 4x2

12 − 2x11

−3x12x
2
13 − 3x12 +

1

16
(x2

12 − x11)
2

3x2
12x13 − 3x13 −

1

4
(x2

12 − x11) exp{−t} cos(x13t)


+

−4(x2
13 sin

2 t+ 1)
0
0

 (u1 + φ1(t, x1)) + h1(t, x)

(35)

ẋ2 =

[−8x21 + x23

−7x22 + x23

x21

]
+

[
0
0
1

]
(u2 + φ2(t, x2)) + h2(t, x)

(36)

where xi = col(xi1, xi2, xi3) ∈ R3 and ui ∈ R are, respec-
tively, the state variables and inputs of the i-th subsystem
for i = 1, 2. The terms φi(·) and hi(·) for i = 1, 2 are
matched disturbances and unknown interconnections.

Consider the transformation T1 and T2 defined by

T1 :


za11 = x12

zb11 = x13

z12 =
1

4
(x2

12 − x11)

and T2 :


za21 = x21

zb21 = x21 + x22

z22 = x23

It is easy to find that the Jacobian matrices of T1 and T2

are

JT1 =

[
0 1 0
0 0 1

−(1/4) (1/2)x12 0

]
and JT2 =

[
1 0 0
1 1 0
0 0 1

]
which are nonsingular in whole state space. By direct
calculation, system (35)-(36) in the new coordinates is
given by

ż11 =

[
−3za11

(
zb11
)2 − 3za11 + z212

3 (za11)
2
zb11 − 3zb11 − z12 exp{−t} cos

(
zb11t

)]
+H11(·) (37)

ż12 = −2z12 +
1

2
za11z

2
12

+ (1 +
(
zb11
)2

sin2 t)(u1 +Φ1(·)) +H12(·) (38)

ż21 =

[
−8za21 + z22

−7zb21 − za21 + 2z22

]
+H21(·) (39)

ż22 = za21 + (u2 +Φ2(·)) +H22(·) (40)

where Hi1(·) ∈ R2 and Hi2(·) ∈ R1, i = 1, 2. In order to
demonstrate the theoretical results obtained in this paper,
it is assumed that the uncertainties in (37)-(40) satisfy
that

|Φ1(·)| ≤ (∥zb11∥+ 1) exp{−t} (41)

∥H11∥ ≤ ∥za11∥ sin2 t+ ∥z12∥+ ∥z22∥ (42)

∥H12∥ ≤ 0.25(∥za11∥ sin2 t+ ∥z12∥+ ∥z22∥) (43)

|Φ2(·)| ≤ ∥zb21∥ sin2 z22 (44)

∥H21∥ ≤ 1.618(za11 + (za11)
2 − 4z12)

2 sin2 z22 (45)

∥H22∥ ≤ 0.40(za11 + (za11)
2 − 4z12)

2 sin2 z22 (46)

Select the switching function S(z) := col (z12, z22). When
in the sliding surface, z12 = z22 = 0. It can be obtained
that the sliding mode dynamics are written as follows

ż11 =

[
−3za11

(
zb11
)2 − 3za11

3 (za11)
2
zb11 − 3zb11

]
+H11s(·) (47)

ż21 =

[
−8za21

−7zb21 − za21

]
+H21s(·) (48)

It is clear to see from (42) and (45) that

∥H11s(·)∥ ≤ ∥za11∥ sin2 t ≤ ∥z∥ (49)

∥H21s(·)∥ = 0 (50)

and thus β1 = 1 and β2 = 0.
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Fig. 1. Time response of subsystem (35) (Upper); time
response of subsystem (36) (Bottom).
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Fig. 2. The switching function s1 and the control signal
u1 (Upper); the switching function s2 and the control
signal u2 (Bottom).

For system (37)-(40), consider the candidate Lyapunov

function as V = V1 + V2 where V1 = (za11)
2
+
(
zb11
)2

and

V2 = (za21)
2
+
(
zb21
)2
. By direct calculation,

pil(∥zi1∥) = τil∥zi1∥, i = 1, 2, l = 1, 2, 3, 4 (51)

where τil for i = 1, 2, l = 1, 2, 3, 4 are the positive
constants. It is easy to find MT + M > 0. According to
Theorem 1, it presents that the designed sliding mode is
asymptotically stable.

Based on (28), the designed control is

u1(·) =
−2z12 + 0.5za11z

2
12

1 +
(
zb11
)2

sin2 t

−
(
(∥zb11∥+ 1) exp{−t}sgn(z12) + z12

+
0.03z12(∥za11∥ sin2 t+ ∥z12∥+ ∥z22∥)2

∥z12∥2
(
1 +

(
zb11
)2

sin2 t
) )

− k1sgn(z12)

1 +
(
zb11
)2

sin2 t

(52)

u2(·) = za21 −
(
∥zb21∥ sin2 z22sgn(z22) + z22

+
0.16z22
∥z22∥2

(
za11 + (za11)

2 − 4z12

)4
· sin4 z22

)
− k2sgn(z22)

(53)

where constants k1 and k2 are chosen as k1 = 0.2,
k2 = 1.5. From Theorem 2, it follows that the controller
(52)-(53) can stabilise the interconnected system (37)-(40)
uniformly asymptotically.

For the simulation purposes, the initial states are chosen as
x10 = (−2, 7.5, 5) and x20 = (6, 2, 3.5). The simulation re-
sults in Fig. 1 and Fig. 2 show that the closed-loop system
formed by applying control (52)-(53) to the interconnected
system (37)-(40) is uniformly asymptotically stable which
is in consistence with the theoretical results.

5. CONCLUSION

A class of nonlinear interconnected systems with unknown
nonlinear interconnections has been considered in this pa-

per. A composite sliding surface has been designed, and a
set of conditions has been developed to guarantee that the
corresponding sliding motion is uniformly asymptotically
stable. A novel decentralised state feedback control law
is designed for the nonlinear interconnected systems to
ensure that the reachability condition is satisfied. The
proposed strategy supplies an approach to improve the
robustness for nonlinear interconnected systems in that
effects of all matched uncertainties and mismatched inter-
connections can be rejected by the designed decentralised
control regarding the reaching phase, which can avoid
unnecessary control efforts. Finally, numerical simulation
results have been presented to show the effectiveness of the
proposed methods. In the future, it is expected to extend
the results developed in this paper to time delay nonlinear
interconnected systems.
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