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Abstract

The Assam Haathi Project is run by Chester Zoo and Eco-Systems-India. The

aim of the project is to manage and reduce human-elephant conflict by making

communities aware of harmless methods to stop elephants from destroying their

livelihoods and prevent villagers harming elephants in retaliation. The task force

educate and provide villagers with new and safer deterents to use on the elephants

rather than ones they may currently use, such as guns. The project (based in As-

sam, India) began in 2004 as deforestation has forced elephants to venture into

villages in order to search for other sources of food and shelter. Since the start of

the project, trained community members have recorded crop-raiding incidents. In

this thesis, we derive meaningful biological conclusions related to questions con-

cerning the project by applying various statistical methods to the elepahant data;

these methods include capture-recapture, distance sampling and generalised linear

models. Capture-recapture methods are applied to estimate elephant population

size and distance sampling methods are used to investigate how the probability of

detecting elephants herds varies spatially. Generalised linear models are used to

investigate which of the mitigations used play a positive effect at reducing human-

elephant conflict across the two Assam study sites – Goalpara and Sonitpur. We

go on to discover that based on this data, there is some significant evidence to sug-

gest that spotlights and electric fences are mitigations which are likely to reduce

crop loss caused by elephants.
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Chapter 1

Introduction

The Assam Haathi Project (AHP) began in 2004 and is a collaboration between

Chester Zoo, Eco-Systems-India and the Darwin Initiative; implementing conflict

mitigations to attempt to reduce levels of human-elephant conflict within two

sites in Assam, India. The data and project goals are explained in more detail

in Section 1.1. In Section 1.2 we discuss multiple articles that have been written

on the topic since the start of this project, including: Davies et al. [2011]; Wilson

et al. [2009]; Wilson et al. [2015]; and Zimmermann et al. [2009]. This Chapter

ends with a brief overview of the thesis and how it relates to the AHP in Section

1.3.

1.1 Elephant Data

Chester Zoo states that the forests of Assam in North-East India provide one of

the last strongholds for the endangered Asian elephant (Elephas maximus), but

these forests have some of the highest levels of human-elephant conflict in the

World. Human-elephant conflict occurs because people destroy elephant forest

habitat (such as deforestation), meaning that elephants must travel further to

find shelter and food – often coming to villages [Darwin Initiative]. Elephants
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Figure 1.1.1: (Top left) Map of India, with Assam highlighted in grey. (Center) Assam
with two AHP site locations emphasised with boxes – Goalpara and Sonitpur [Darwin
Initiative].

become a direct and regular threat to a community which can include the safety

of people and houses or their livelihoods such as crops, and as a result people

retaliate by harming or even killing the elephants. These large mammals are at

risk of becoming extinct and this conflict threatens elephant populations outside

protected areas even further [Wilson et al., 2015].

The aim of the study is to manage and reduce human-elephant conflict by

educating local communities to take responsibility for deterring elephants and

encouraging them to implement other humane methods to reduce the effect of the

conflict on their livelihoods. The project is based at two study sites – Goalpara

and Sonitpur which can be seen in Figure 1.1.1. Wilson et al. [2009] was written

with the goal to help educate individuals about the project, see Section 1.2. For

data protection related reasons, monitors were assigned unique identity numbers.

Figures do not contain exact location values such as longitude and latitude.

The AHP’s objectives are:
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1) To model observer effort in recording elephant sightings in two spatially

independent regions of Assam.

2) To validate and apply the model to produce a ‘surface’ of sampling effort

across both study sites (‘surface’ meaning map).

3) To use the validated model to determine relative abundance indices of ele-

phants over the study period in both study sites.

4) To use the validated model to predict population-level responses of elephants

to conflict mitigation strategies, based on levels of conflict and elephant

sightings before and after the implementation of deterrent interventions.

5) To use the outcomes of this research to inform future design of surveys and

monitoring.

Due to data restrictions, we will learn throughout this thesis that some of these

questions cannot be answered precisely and so we attempt to answer related ques-

tions such as ‘what is the probability that Monitors sight an elephant herd given

that it is present at that exact time?’.

Tables 1.1.1, 1.1.2, and 1.1.3 are extracts from the AHP elephant data; ran-

domly selected from a total sample size of 5895 unique identification entries (UID).

To establish a reliable and independent conflict reporting system, a team of com-

munity members were trained as monitors to enumerate crop-raiding incidents

[Davies et al., 2011]. Monitors were stationed to ensure complete coverage of both

study areas, recording sightings from their home area which included observa-

tions from themselves and reportings to them from other villagers. The trained

monitors would each visit all incidents within their assigned area to verify, quan-

tify and record the location using a GPS unit. Sightings were mainly recorded

of herds causing conflict; however, it was also encouraged to record sightings of

elephants in non-conflicting situations, for example a herd passing through the

3
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village peacefully. See Figure 1.1.2 for a visual representation of all observations

from monitors over the length of this project.

For data protection, we have given each of the monitors a unique idenitifica-

tion under the data column ‘MonitorID’. Next in the table is the ‘District’: this

contains information about which study site the observation was made, either

Goalpara or Sonitpur. Year, Season, Month, Day and Time are recordings re-

spectively of what year, season, month, date and time of day observations were

made. ‘Latitude’ and ‘Longitude’ columns represent the recorded locations of the

sighting using the monitors GPS unit – due to data protection reasons values in

this table have been replaced with random numbers for illustrative purposes only.

‘HerdID’ consists of the herd identification that the monitor belives the sighting

of elephants to be a part of, for example using defined features or scars of a par-

ticular elephant. The final column of Table 1.1.1 is ‘Count’ which is the number

4



of elephants sighted at that given time. The continued table on page 8 (Table

1.1.2) first contains ‘CropCost’ and ‘CropLoss’. CropCost is the estimated cost of

crop loss from that particular elephant observation. CropLoss is directly related

to CropCost, stating a 1 if there was any crop cost and a 0 if the crop loss was

zero. The following column is ‘Mitigation’ and declares TRUE or FALSE as to

whether a mitigation was used during this particular elephant sighting. The next

eighteen columns relate to whether that specific mitigation was put into play or

not, with answers being TRUE or FALSE. We will go onto to discuss each of these

mitigations in the next paragraph. ‘OtherMit Info’ tells us which other mitiga-

tion was used if column ‘OtherMit’ reads TRUE, otherwise the entry reads N/A.

Finally, the last column of Table 1.1.3 is ‘Distance’. Distance is the calculated

distance in meters from the monitors location to the elephant sighting (we will

discuss how this is calculated in Chapter 3). Note, due to data protection we have

hidden columns containing the monitors home location.

There are a total of 17 mitigations used plus the addition of an ‘other mit-

igation’ column. The implemented mitigations from both the project and vil-

lagers with generalised descriptions and whether they are reactive (employed in

the presence of elephants) or more permanent (always in place even when ele-

phants haven’t been sighted) mitigiations include:

• Noise – a general noise such as banging or shouting (reactive).

• Fire stick – sticks with a rag, or similar, wrapped around the end and then

soaked in a flammable liquid (reactive).

• Torch light – a normal household torch (reactive).

• Cracker – a small firework similar to a bird scarer (reactive).

• Drum tin – villager endoursed banging of pots and pans (reactive).

• Siren – battery operated siren (reactive).

5



• Watchtower – some watchtowers were built as an early warning system to

allow people to spot elephants coming earlier, they would then be scared off

nore strategically using one of the other methods (more permanent).

• Kunkie – a mahout which is a person riding a semi-domesticated elephant

in an effort to scare others way. This was owned by the Forest department

and not local villagers or a part of the AHP’s mitigation methods (reactive).

• Chillismoke – dried chilli mixed with tobacco or straw and burnt to create

smoke that deterred elephants (reactive).

• Catapult – not a project-endorsed method (reactive).

• Chillifence – dried chilli mixed with used grease and spread on a rope fence

(more permanent).

• AHP spotlight – a large spotlight bought and issued by the project (reac-

tive).

• Other spotlight – a homemade version of the AHP spotlight made by vil-

lagers (reactive).

• Arrows – homemade bow and arrows, not project-endorsed (reactive).

• eFence – an electric fence often errected around people’s homes (more per-

manent).

• Tripwire – a trip wire connected to something that makes a noise, for exam-

ple tin cans (more permanent).

• Other mitigation – includes stones, guns and spears/harpoons; the type used

is stated in the ‘OtherMit Info’ column of the data table (reactive).
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Table 1.1.2: An extract from the Assam Haathi Project (AHP) elephant data, containing
observations of every elephant sighting as a unique identification entry (UID).
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Table 1.1.3: An extract from the Assam Haathi Project (AHP) elephant data, containing
observations of every elephant sighting as a unique identification entry (UID).
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Note, although AHP classes watchtower as a mitigation it infact is a method

which uses multiple deterents. It is stated in relevant analyses, later in this thesis,

whether this mitigation was included or not.

1.2 Related Articles

The papers, Zimmermann et al. [2009]; Wilson et al. [2009, 2015]; Davies et al.

[2011] were written on the project and the data collected from the project. Zim-

mermann et al. [2009] and Wilson et al. [2009] were both written nearer to the

start of the Assam Haathi Project. Zimmermann et al. [2009] disscuses the study

area, project details and challanges of the project formally and in depth, whereas

Wilson et al. [2009] was written with a goal to help educate individuals about the

project, safe vs unsafe deterents and the positive impact elephants could have on

their lives.

Wilson et al. [2015] and Davies et al. [2011] have both investigated the elephant

data for the Assam Haathi Project at an earlier date. Wilson et al. [2015] concludes

that there are seasonal and diurnal (time of day) patterns for each study site as

well as factors which potentially influence the occurrence and scale of human-

elephant conflict at each site. Davies et al. [2011] investigated the efficacy of the

interventions used but did not present results on whether the significant factors

had a negative or positive effect on reducing human-elephant conflict.

1.3 Brief Overview of Thesis

This thesis aims is to model spatial and temporal patterns in human-elephant

conflict of the Assam Haathi Project using statistical methods as discussed in

Chapter 2. These methods consist of capture-recapture (Section 2.1), distance

10



sampling (2.2) and generalised linear models (Section 2.3); which all include illus-

trative examples using the elephant data. We then go on to discuss the probability

of detection of the elephant herds in Section 3 using distance sampling methods.

In particular we consider a selection of individual monitors (Section 3.1) and all

data combined (Section 3.2), as well as assumptions and limitations of our anal-

yses (Section 3.3). Next, we investigate the effect of mitigations of crop loss in

Chapter 4 where we apply generalised linear models (Section 4.1) to the elephant

data, look at a random monitor effect (Section 4.2) and visit limitations and pos-

sible extensions to this particular chapter (Section 4.3). The thesis ends with a

conclusion in Chapter 5.
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Chapter 2

Statistical Methods in Ecology

In this Chapter we talk about various statistical methods which are often im-

plemented in ecological settings. Methods include capture-recapture in Section

2.1; distance sampling in Section 2.2; and generalised linear models in Section

2.3. Each talk about the fundamentals for each statistical method, as well as a

handful of relevant branches, ending with an example that has been applied to

the elephant data.

2.1 Capture-Recapture

Obtaining the exact population size of a given species in a region by counting in-

dividuals is often impractical and unachievable due to imperfect detection. This is

a particular problem if there exists a large area in which these individuals belong.

Taking into account various factors, including continuous changes in population

size, can also make knowing the exact number of inhabitants difficult, e.g. births,

deaths, migration, etc. Instead we can estimate population size using data from a

capture, mark, release and recapture study, by fitting either closed or open models

(see for example, Amstrup et al., 2005). Open models take population dynam-

ics into account, meanwhile, closed models do not take into account change in

12



population abundance. We instead assume that there is an approximate equilib-

rium between numbers of inhabitants increasing and decreasing. Typically, closed

populations have no births/immigration and deaths/emigration as the results are

measured and recorded over a short time period (e.g. one week). In contrast,

open populations are more often recorded over a long time period (for example a

year or more) and therefore births, deaths, immigration and emigration are more

likely to occur.

Capture-recapture is the process of attempting to capture and record informa-

tion on successive capture occasions – it can also be called mark-recapture. A

unique identification for each member of the sample is then recorded. In some

cases, animals may already have a unique identification of their own, for example

Great Crested Newts have unique belly patterns (see Figure 2.1.1) – much like a

human has a unique fingerprint ID. For animals who do not have a recognisable

individual trait, various methods are implemented which can be used to identify

one from another. This includes ear notching for animals such as pigs (see Figure

2.1.2 for example); quick-drying cellulose paint for snails and arthropods; and toe

clipping in frogs or toads. Another common example is a metal ring with a unique

number for a bird.

Figure 2.1.1: Great crested newt with
unique belly pattern ( c©Steven Allain).

Figure 2.1.2: Pig with unique ear notch-
ing ( c©Courtney Verk).
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2.1.1 Methods for Closed Populations

Initially a sample of n1 individuals are caught and marked. The next step is to

release the n1 individuals and after a given time frame a new sample of size n2

should be captured and recorded. We are particularly interested in the number

of individuals that have been captured in both samples, m1. This ‘overlapping’

can be thought of visually by a Venn-Diagram in a universal set, N , which is

equivalent to the total population size that is being estimated. See example in

Figure 2.1.3, where the total population size being estimated is N = 17. On the

first capture occasion n1 = 7. For the second occasion n2 = 8 elephants were

captured. Three of the n2 elephants were also captured in the original n1 capture,

so we have m1 = 3.

Figure 2.1.3: Venn diagram showing visual representation of how notation is related to
a possible two sample capture-recapture study. (Elephant image: c©NiceClipart.com)

Individuals can be captured and recaptured for a maximum number of k ≥ 2

occasions. The total number of elephants captured from the start of the study is
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Occasion, j

Individual, i 1 2 3 · · · k

1 1 0 1 · · · 0
2 1 0 0 · · · 1
...

...
...

...
. . .

...
Rk 0 0 0 · · · 1

Table 2.1.1: Table showing whether inidividual i = 1, .., Rk was captured or not captured
in occasions j = 1, .., k.

denoted by Rk where

Rk =
k∑
j=2

rj =
k∑
j=2

nj−1 + nj −mj−1,

where nj−1 is the capture occassion at time j−1; mj−1 is the number of individuals

recaptured from in ocassion nj from occassion nj−1; and rj is the total number

of individuals captured between occasions nj−1 and nj. We can clearly see that

Rk is the sum of rj, where rj is the total number of distinct inidividuals captured

within the time interval (j − 1, j) for j = 2, ..., k . Note, R1 = n1. Applying this

to Figure 2.1.3:

R2 = r2 = n1 + n2 −m1 = 7 + 8− 3 = 12.

We can record individual capture histories in binary form where a one rep-

resents that the animal was captured at a given time and a zero representing

the individual was not captured. For example, animal i with capture history

x = 010010 has been caught on both the second and fifth occassion but not in the

first, third, fourth or sixth occassion. These capture histories can then be listed

in a table with each row representing an individual i = 1, ..., Rk and each column

representing a time occasion, j = 1, ..., k. An example of this layout can be seen

below in Table 2.1.1.
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Similarly, we can list all individuals of a sample population in matrix form:

A =


X1,1 X1,2 X1,3 . . . X1,k

X2,1 X2,2 X2,3 . . . X2,k

...
...

...
. . .

...

XR,1 XR,2 XR,3 . . . XR,k


,

where the subscript i for Xi,j represents the individual animal and j denotes the

capture event. Applying the data from Table 2.1.1’s example produces

A =


1 0 1 . . . 0

1 0 0 . . . 1

...
...

...
. . .

...

0 0 0 . . . 1


.

Generally, we can use Akaike’s information criterion (AIC) for model selection

which assess relative fit. We can also use AICc which is an adapted version of

AIC, where the formula considers sample size which is especially useful if the

sample size is small. Delta AIC looks at the difference in value compared to the

best ranked model, where the best ranked model will always have a Delta AIC

value of zero. Similarly, this theory also applies for Delta AICc. If we wanted to

assess absolute fit of the model goodness-of-fit tests should be used. For example,

Pearson chi-squared tests of observed versus expected values [McCrea and Morgan,

2014, Section 9.3].

2.1.1.1 Two-Sample Lincoln-Peterson Estimator

The Lincoln-Peterson estimator uses the structure as already discussed with one

recapture, i.e. k = 2. The time interval between these two capture times must

also be relatively small to ensure that we have a closed population and we must

assume that no marks are lost between sampling occasions. Another assumption
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is that all individuals have the same detection probability.

We estimate abundance based on the theory that the proportion of marked in-

dividuals is approximately equal to the proportions of the total population caught,

i.e.

n1

N
≈ m1

n2

,

and so, we can estimate the total population by N̂ , which is expressed by rear-

ranging the above formula:

N̂ =
n1 · n2

m1

,

(see, for example, Williams et al., 2002). We can apply this estimation to our

elephant example in Figure 2.1.3:

N̂ =
7 · 8

3
= 18.67.

We can see that N̂ is approximately equal to the true population value of N = 17.

However, this Lincoln-Pearson estimate has been proven to be biased (see, for

example, Amstrup et al., 2005). This bias is inversely related to sample size and

particularly the value of m1. To overcome this issue, we can use the unbiased

estimator proposed by Chapman [1951] which holds for n1 + n2 ≥ N̂ :

N̂ =
(n1 + 1)(n2 + 1)

(m1 + 1)
− 1.

The Chapman Estimator produces a finite estimate of population size even when

the number of recaptures is zero since the denominator is now m1 + 1 which is

greater than zero. Evaluating the Chapman estimator for our data we have

N̂ =
(7 + 1)(8 + 1)

(3 + 1)
− 1 = 17

which is the true value of our population size (N = 17).
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Both estimates of N have approximately the same variance formula given by:

V̂ ar(N̂) =
(n1 + 1)(n2 + 1)(n1 −m1)(n2 −m1)

(m1 + 1)2(m1 + 2)
,

(see, for example, Amstrup et al., 2005). Hence, the variance can be used to calcu-

late an approximate confidence interval for the data. Alternatively a likelihood-

ratio based confidence region could be obtained for N which would ensure the

region only included permissible values [Morgan, 2008].

The relative abundance of animals at two sampling locations can be calculated

using estimates of population size for each of these locations. Say we have locations

a and b, still with sampling occasions k, then

B =
Nb

Na

,

which is our relative abundance of the two locations. Assuming equal capture

probabilities for all individuals and substituting N for N̂ , the equation simplifies

to

B̂ =
rb
ra
.

For further information, see Williams et al. [2002].

2.1.1.2 K-Sample Models

The closed population capture-recapture model for k > 2 has the same assump-

tions: the population is closed; marks are neither lost nor overlooked; and capture

probabilities are equal for all individuals (equiprobable captures). The simplest

model assumes constant probability of capture, p, this is consistant with the two-

sample Lincoln-Peterson estimator which has no variation from the original model

besides there being a larger number of recaptures. This is called the M0 model

– the subscript 0 referring to no variation. Table 2.1.2 shows the probabilities of
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Table 2.1.2: Table showing M0 probabilities of a capture history, given that k = 3.

each capture history for k = 3.

Amstrup et al. [2005] shows that model M0 can fail by providing poor interval

estimates to examples provided due to its simplistic nature. Relaxing particular

constraints within the model leads to different model types which can improve

these estimates.

Model Mb, allows for the behavioural effect of how likely an individual is to

be recaptured after being caught once already. All individuals have probability

pc of first being captured and then probability pr of being caught once it has

been caught already. Model Mb, caters for animals which may become either trap

happy or trap shy. To explain a little further, an individual may learn that a

tasty treat awaits them – for example – and so become trap happy as they are

more willing to return to the food source; increasing the probability pr, relative

to pc. Conversely, individuals become trap shy possibly due to an unpleasant first

capture say, and they learn not to return, lowering the probability pr. Table 2.1.3

shows each of the capture history probabilities for example capture histories with

j = 3 occasions.

The Mt model accounts for different probabilities of being captured on dif-

ferent occasions, regardless of whether the individual has been previously caught

or not. Individuals have probability pj of being captured on occasion j. This

model is of a great benefit for animals whose behaviour is affected by weather for
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Table 2.1.3: Table showing Mb and Mt probabilities of a capture history, given that
k = 3.

example. An animal may choose to hibernate during a particular season, reducing

the probability of being captured dramatically. Mt may also be relevant if differ-

ent surveyors are used on each occasion or if different survey efforts are applied

across the sampling period. Table 2.1.3 also gives the probabilities corresponding

to example capture histories for j = 3 occasions under the Mt model.

Another model, Mh, caters for individual capture heterogeneity, meaning each

individual has its own probability of being caught. One way of modelling unknown

heterogenity is through the use of a finite mixture model. The two group mixture

model is defined as: p1 the probability that an individual in group 1 is captured;

and p2 the probability an individual in group 2 is captured. We have γ defined

as the probability that the individual belongs to group 1, and conversely 1 − γ

being the probability an individual belongs to group 2. See Equation 2.1.1 for an

example of capture data and probabilities of an individual when k = 4.

Pr(x = 1101) = γ{p1p1(1− p1)p1}+ (1− γ){p2p2(1− p2)p2}

= γ{p31(1− p1)}+ (1− γ){p32(1− p2)}.
(2.1.1)
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All four of these models have a likelihood of the form:

L(n, p;x) ∝ N !

(N −R)!
·
R∏
i=1

Pr(xi) · Pr(x0)N−R (2.1.2)

where xi is the observed history for all individuals i = 1, 2, . . . , R; Pr(xi) denotes

the probability of the capture history of individual i; and Pr(x0) the associated

probability of not being captured, i.e. Pr(x0) = Pr(x = 000). See for example

King and McCrea [2019].

The last single variation model is based on group variation, Mg. For example

groups by gender: those who are female would have capture probability pf and

males would have capture probability pm, with probabilities occurring much like

the original model M0. However, the difference between this model and the four

already listed is how the likelihood is calculated. For this case, likelihoods of

both groups need to be calculated separately using the original likelihood formula

(2.1.2) with Nm and Nf as the population size of males and females respectively.

This would create likelihood values for each group: Lm and Lf . These values are

then used in the following formula to calculate the overall likelihood for Mg:

L ∝ Lm · Lf .

To summarise M0, Mb, Mt, Mh and Mg are the basic k-sample models for

closed Capture-Recapture data. However, all of these models, excluding M0, can

be combined to create more refined models suitable for estimating population size.

For example, Mtb allows for change in temporal and behavioural differences and

Mtbh allows for change in temporal, behavioural and individual capture hetero-

geneity.

But how do we estimate the population size from this information? Generally,

it is not possible to obtain closed form estimates for our parameters N and p and

therefore we use numerical optimisation methods to obtain maximum likelihood
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estimates of N and p that maximise L. Computer software including MARK

[Cooch and White, 2019]; built in function ‘optim’ on R or packages such as

‘maxLik’ on R [Henningsen and Toomet, 2011] can also be used to obtain these

maximum likelihood estimates.

2.1.2 Methods for Open Populations

If we are interested in estimating the abundance of individuals in a given area

where population dynamics occur (i.e. births/immigration and death/emigration)

we need to assume we have an open population. An open population is usually

assumed for longer periods of time (e.g. yearly records) where births and deaths

are more likely to occur. Models in which we will consider include mark-recovery

as discussed in Section 2.1.2.1; Cormack-Jolly-Seber in Section 2.1.2.2; capture-

recapture-recovery in Section 2.1.2.3; and the original Jolly-Seber model in Section

2.1.2.4. We will also go on to discuss an applied example in Section 2.1.3.

Open population models include similar assumptions as closed models. The

models considered in this section have the following assumptions [McCrea and

Morgan, 2014]:

• Every marked, alive animal has the same probability of being recaptured at

a given time.

• Every marked, dead animal has the same probability of being recovered dead

at a given time.

• Every marked, alive animal has the same probability of surviving until the

next sampling occasion.

• All emigration from the sample area is permanent (once an animal leaves

the region, it cannot re-enter)
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• Sampling periods are directly after each other and recaptured animals are

released instantly once recorded.

• Marks are neither lost nor over-looked.

• The fate of each animal is independent to the fate of any other animals in

terms of capture and survival.

2.1.2.1 Mark-Recovery

Mark-Recovery is the process of marking individuals and then recovering those

found deceased which are then recorded. Animals are tagged or marked dur-

ing time jm = 1, ..., k and the number recovered dead are counted and recorded

throughout times jr = 1, ..., t, where k is the final sampling period, t is the fi-

nal recovery period and m ≤ k, usually measured in years. In reality, it is not

necessarily possible to recover all dead individuals due to various reasons such

as corpse decomposition, predator consumption, etc. or just being missed due to

incomplete sampling. The purpose of this model is to be able to estimate ani-

mal survival probabilities, including discovering any factors which may influence

survival for a particular species.

To explain the example from Table 2.1.4, let us say we are observing tufted

ducks. In the first year 1, 000 of the ducks were marked and only two of these

ducks were recovered dead in the first year. 3, 500 tufted ducks were marked in

Table 2.1.4: Example of Mark-Recovery data.
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Table 2.1.5: Mark-Recovery probabilities of the number of individuals marked at time
jm = 1, 2, ..., k and recovered at time jr = 1, 2, ..., t, where k ≤ t.

the second year with four of these recovered dead and one duck from the first year

also recovered.

To calculate the approximate probabilities of these recoveries, we let φ denote

the probability that an individual survives a year, where (1−φ) is the probability

the animal does not survive. The parameter λ denotes the probability that a given

animal dies and the mark is recovered. Again, we have jm = 1, 2, ..., k marking

times and jr = jm, ..., t recovering periods where t is the final recovery period and

k ≤ t. The data given in Table 2.1.4 has corresponding probabilities given in

Table 2.1.5.

Adjustments can be made to the model to allow for survival and/or recovery

probabilities to be dependant on age or time – see Brownie et al. [1985]; Freeman

and Morgan [1992]; Catchpole et al. [1995]; McCrea and Morgan [2014]. An

example of when this alteration can be useful is with young offspring. Young

animals are usually more vulnerable to predators and are more susceptible to an

early death when compared to adults of the same species. Therefore a seperate

survival probability for young and adults may be applicable.

The likelihood for the Mark-Recovery method is

L(n, φ, λ;x) ∝
k∏

jm=1

( t∏
jr=jm

(Pjm,jr)
Fjm,jr

)
·

k∏
jm=1

(
1−

t∑
jr=jm

Pjm,jr

)Mjm−
∑t

jr=jm
Fjm,jr
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where,

Fjm,jr number of animals marked in time jm and recovered in jr.

Pjm,jr probability an animal marked in time jm is recovered in jr.

Mjm number of animals marked in time jm.

[Cole et al., 2012]. The multinomial coefficient has not been presented because it

does not depend on the parameters of the model.

2.1.2.2 Cormack-Jolly-Seber Model

The Cormack-Jolly-Seber (CJS) model [Cormack, 1964; Jolly, 1965; Seber, 1965]

is a capture-recapture model for open populations. It uses the same binary no-

tation as with the k-sample open models, indicating whether an inidividual has

been captured/recaptured at time j = 1, ..., k. We assign the probability that an

individual survives one year as φ, or not surviving as 1−φ. As not all individuals

are caught the model also includes the probability of capture, p. The CJS model

allows us to estimate animal survival probability and to discover what factors

influence survival for the particular species recorded. Below we give examples of

how the probability for specific capture history is formed.

Pr(x = 1111) = φp︸︷︷︸
2

· φp︸︷︷︸
3

· φp︸︷︷︸
4

= φ3p3 (2.1.3)

Equation (2.1.3) shows the probability of a history whhere the individual is

captures at all occasions. The first capture is at time j = 1. So the probability

of the individual surviving to the next year, φ, and being captured again, p, at

time 2 is φp. This applies to times 3 and 4 as the individual is captured at every

occasion.

Pr(x = 1011) = φ(1− p)︸ ︷︷ ︸
2

· φp︸︷︷︸
3

· φp︸︷︷︸
4

= φ2(1− φ)p3 (2.1.4)

However, Equation (2.1.4) shows an example where capture the inidividual but
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then do not recapture it at each further occasion. The animal is first captured

at time j = 1, but we do not capture it again until time j = 3. So, at time 2

we know the animal must have survived the year, φ, but was not caught, (1− p),

producing probability φ(1− p). For times 3 and 4 we captured the individual on

both occasions, so have probabilitiy φp as discussed with (2.1.3).

Pr(x = 0110) = φp︸︷︷︸
3

· [(1− φ) + φ(1− p)]︸ ︷︷ ︸
4

(2.1.5)

In Equation (2.1.5), we have an example of an individual who is not captured

at the first sampling occasion but who is first captured at occassion j = 2 so our

first probability is at time 3. The animal was captured so its combined probability

of surviving the year and being caught is φp. Our last capture time at j = 4 is 0,

meaning the animal was not caught. So, it is unknown to us whether the animal

survived the year but was not caught, φ(1− p), or if it in fact died, 1− φ. So we

allow for all these possible outcomes to produce probability (1− φ) + φ(1− p) for

time 4. See Lebreton et al. [1992] for further details and applications.

The likelihood for the model is

L(n, φ, p;x) ∝
R∏
i=1

Pr(xi) (2.1.6)

where once again, optimisation methods can be applied to estimate the values of

unknown parameters to maximise L and used to calculate an estimate of total

population size. This model can be fitted using software MARK [Cooch and

White, 2019] or the Marked R package [Laake et al., 2013].

2.1.2.3 Capture-Recapture-Recovery

It is also possible to record live recaptures as well as recovery of deceased individu-

als, this is Capture-Recapture-Recovery (CRR). For the CRR model, we record the
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type of encounter with the individual, i.e. dead, alive or not encountered. Each

individual has encounter history x consisting of a string of zeros, ones and twos,

where: 2 means individual encountered dead; 1 is individual encountered alive;

and 0 meaning the individual was not encountered at all. Of course, in the case

of 0 at time k (last encounter time), it is unknown whether the animal is dead or

alive assuming it proceeds an alive sighting. Note, a string of zeros will always

follow a two.

Much like the Cormack-Jolly-Seber model: the probability that an individual

survives one year is φ and p is the probability that assuming the inidiviudal sur-

vives the year it is then caught. However, the Capture-Recapture-Recovery model

in Section 2.1.2.2 contains an additional parameter of λ being the probability that

an individual who dies is recovered (as in the Mark-Recovery method of Section

2.1.2.1).

Again, we do not include the initial capture probability. See the CRR model

applied to some examples below.

Pr(x = 11111) = φp · φp · φp · φp = φ4p4 (2.1.7)

Example 2.1.7 is very similar to equation 2.1.3 from the Cormack-Jolly-Seber

model as the individual is captured at each occassion. Once the animal is cap-

tured at time j = 1, the animal has probability of surviving to the next year, φ,

multiplied by the probability, p, that it is also caught.

Pr(x = 10110) = φ(1− p)︸ ︷︷ ︸
2

· φp︸︷︷︸
3

· φp︸︷︷︸
4

· [(1− φ)(1− λ) + φ(1− p)]︸ ︷︷ ︸
5

= φ3(1− p)p2 · [(1− φ)(1− λ) + φ(1− p)]

(2.1.8)

Equation 2.1.8 is an example of an individual who is captured at the initial

time j = 1 but is not encountered at time 2. However, as they are captured again

at time j = 3, we know that the individual must be alive at this time. So the
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probability at time 2 is φ(1−p). Times 3 and 4 are alive captures with probability

φp as seen above in 2.1.7. At time j = 5 the individual is not encountered and

as this is our last potential capture occasion, it is unknown if the animal is alive

or not. So, time 5 is the summation of both possible outcomes: the individual

is dead but not recovered, (1 − φ)(1 − λ), and the individual survives but is not

captured, φ(1− p).

Pr(x = 01200) = (1− φ)λ︸ ︷︷ ︸
3

(2.1.9)

Finally, looking at Equation 2.1.9 we have an example of an animal who is

first caught at occassion j = 2 but then is recovered dead at time j = 3. The

individual, in this case, is first captured at time j = 2 so we only need to consider

the probability across one year. As the individual does not survive the year and

is recovered, we have probability 3 = (1− φ)λ.

The CRR model has likelihood

L(n, φ, p, λ;x) ∝
R∏
i=1

Pr(xi),

(see, for example, Catchpole et al. [1998]; Hubbard et al. [2014]). Note that

when we combine CRR, we have to assume there is no permanent emigration –

or if required, the model can be adpated to account for it (see Reynolds et al.

[2009]). This is due to the fact that mark-recovery data estimates true survival

where as capture-recapture estimates “apparent” survival which is cofounded with

permanent emigration.

2.1.2.4 Jolly-Seber Model

The original Jolly-Seber model was proposed by Jolly [1965] and Seber [1965]. The

model considers parameters φ and p which represent ‘survival’ rate and capture
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probability respectively. The survival rate is approximated by

φ̂j =
M̂j+1

M̂j +Rj −mj

for j = 1, ..., k − 2 [Amstrup et al., 2005] where Mj is the marked population

size just before period j; Rj is the total number of animals captured at sampling

occassion j that are released (e.g. aren’t recovered as dead) and mj is the number

of animals captured at sampling occassion j that are marked. The approximation

for p is

p̂j =
mj

M̂j

for j = 1, ..., k − 1 [Amstrup et al., 2005]. Further information about the approx-

imations of each variable can be found in Chapter 3 of Amstrup et al. [2005].

However, it is now more common practice to use an alternative approach to the

Jolly-Seber model proposed by Schwarz and Arnason [1996]. It proposes the idea

of a “super-population”, denoted by N, which represents the pool of individuals

which are available for capture at least once in the study area. Each animal may

enter the site at time i = 1, . . . , k and is available for capture until time k or until

their time of exit. However, once an individual leaves the study site it is assumed

that they cannot re-enter.

Upon relaxing the assumptions of a closed population, likelihood 2.1.2 is now

generalised to:

L(n, p, β, φ;x) ∝ N !

(N −R)!
·
R∏
i=1

Pr(xi) · Pr(x0)N−R

[King and McCrea, 2019] where,

βj : The probability that an individual arrives in the study area between

occasions j and j + 1 (with the first availability for capture at time j + 1).

φj : The probability that an individual that is in the study area at time j
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remains in the study area until time j + 1.

To account for unknown arrival and departure times, we alter Pr(xi) from

the likelihood used with closed capture cases. We let fi denote the first-time

individual i is observed and li the last time individual i is observed. Note, due to

temporary migration not being possible, individual i must be present in the study

area for times fi, . . . , li.

Now, supposing that the capture probability is constant, similar to the Mt

model for closed populations, we define:

Pr(xi) =

fi∑
b=1

βb−1︸ ︷︷ ︸
1

k∑
d=li

(1− φd)︸ ︷︷ ︸
2

d−1∏
j=b

φj︸ ︷︷ ︸
3

d∏
j=b

pxijj (1− pj)1−xij︸ ︷︷ ︸
4

.

The first term (1) corresponds to summing over the possible (unknown) arrival

times for individual i; the second (2) relates to summing over the possible (un-

known) departure times of individual i. (3) relates to the individuals remaining

in the study area between arrival and departure times (fi, . . . , li only). Finally,

the last terms (4) relates to the probability that the individual is captured or not

captured when it is in the study area.

From this we can create a formula which allows us to calculate the probability

that an individual is not observed. If we let Pr(x0) = 1 − p∗, where p∗ denotes

the probability than an individual is observed at least once within the study, and

substitute into the above formula. This produces:

1− p∗ =
k∑
b=1

βb−1

k∑
d=b

(1− φd)
d−1∏
j=b

φj

d∏
j=b

(1− pj).

Pledger et al. [2009] shows that this model has been successfully extended to

account for the probability that an animals leaving time from the study area may

be affected by its arrival time. Due to this, the adapted superpopulation Jolly-

Seber model is often referred to as the ‘Stopover model’ – due to its usefulness
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Elephant Apparent Survival by Heard, Monthly
Model AICc Delta AICc AICc Weight Number of Parameters

φL, pL 446.993 0.00 0.77033 4
φ, pL 450.359 3.37 0.14320 3
φL, p 451.588 4.59 0.07745 3
φ, p 455.888 8.89 0.00902 2

Table 2.1.6: AICc values of monthly elephant apparent survival by heard using the
Cormack-Jolly-Seber model produced by software MARK. Note, subscript L represents
location such that L = G,S which relate to elephant herds in locations Goalpara and
Sonitpur respectively. The data is given in Table A.0.0.1 of Appendix A.

of modelling animals stopping over at breeding sites. For some applications see

Matechou et al. [2013, 2014].

2.1.3 Elephant Example

The elephant data was recorded by various monitors based around two locations:

Goalpara and Sonitpur. Monitors identified and recorded sightings of herds by

individually recognisable characteristics of lead elephants, creating unique herd

identifications (Herd ID). Capture histories, and therefore probabilities, for this

data were recorded monthly. These models discussed in Section 2.1 are not appro-

priate for the data, this example purely demonstrates the models with the data

used as an artificial case study. In this example we look at φ being the apparent

survival rate which caters to the open population being observed (see Lebreton

et al. [1992] for more information regarding apparent survival). Data used for this

example can be found in Table A.0.0.1 of Appendix A.

We apply the Cormack-Jolly-Seber model from Section 2.1.2.2 to the elephant

data. We note that the data set is small so only consider the constant model

and whether the parameter is dependent on location, L, where L = G,S for

Goalpara and Sonitpur locations respectively. The AICc values for the found

models considered are given in Table 2.1.6. We can see that all model’s have small

relative values of ‘Delta AICc’ but the best ranked model with AICc = 446.993 fits
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all four parameters to the data (φG, φS, pG, pS). This best fit model has parameter

values as listed in Table 2.1.7.

Parameter Estimate Standard Error 95% Confidence Interval

φG 0.9812 0.0093 (0.951, 0.993)
φS 0.9166 0.0335 (0.823, 0.963)
pG 0.4779 0.0344 (0.411, 0.545)
pS 0.2864 0.0606 (0.183, 0.418)

Table 2.1.7: Parameter estimates for the best fit model: φL, pL. All values calculated
using MARK [Cooch and White, 2019] (MARK calculates confidence intervals using
asymptotic normality properties of the maximum likelihood estimate).

We can see that the apparent survival from one month to the next is relatively

high in both locations with φ ≥ 0.9 in both cases, with higher probability in

Goalpara. However, the probabilitiy of observing a herd each month is low par-

ticulary in Sonitpur with pS = 0.2864, and probability pG = 0.4779 in Goalpara.

The confidence intervals of φL and pL estimators marginally overlap in both cases

and so we do not have a statistically significant difference between the parameter

estimates of Goalpara compared to Sonitpur, however looking at Table 2.1.6 we

can see the model has the lowest AIC value by 3.37 which supports the selection

of this model.

Diagnostic goodness of fit tests are available to assess the appropriateness of

the models – see for example McCrea and Morgan, 2014, Section 9.2. However

due to the small sample size of this data set it would not be possible to have the

power to detect such violations and therefore testing on a larger sample could lead

to a more precise estimates.

2.2 Distance Sampling

Distance sampling is a method used to estimate population size and/or density;

it is a widely used method where presence of individuals – or objects of interest

– are most commonly obtained by surveying lines or points. In order to estimate
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density, ideally the probability of detection is needed. However, if we do not know

the exact probability of detection then we are able to calculate the detection

probability using the data, provided that we know the distance from the observer

to the individual. This produces an estimate of the probability for which the

individual is detected and recorded, given that the individual is present in the

area at that time (denoted by Pa). Therefore, fitting a distance sampling model

allows us to estimate this probability from the detection function (which we will go

onto discuss in Section 2.2.2) as well as estimating population size and/or density.

Some applications of distance sampling include: studying populations of many

species of bird such as gamebirds [Dorgeloh, 2005]; terrestrial mammals including

species of deer [Ward et al., 2004] and primates [Peres, 1999]. There have also

been distance sampling studies on reptiles [Rodda and Campbell, 2002] and beetles

[Didham et al., 1998]. Sampling can be made based on animals which are alive but

can also be based on the discovery of dead animals. Examples of this include plant

observations, inanimate objects (such as ant nests [Baccaro and Ferraz, 2012]) and

even military applications [Buckland et al., 2001].

This section will go onto discuss various distance sampling methods (Section

2.2.1) as well as explaining the data anlysis process (Section 2.2.2) and the as-

sumptions related to these distance sampling methods (Section 2.2.3).

2.2.1 Distance Sampling Methods

In all cases of distance sampling we use the same standard notation, this includes

the total plot area, A, the true population abundance, N , and the true population

density, D. The area covered by sampling is denoted by a, and, the number of

animals observed is denoted by n.

For example, in Figure 2.2.1, we have an area of 10 meters by 10 meters.

Therefore we have a total plot area of A = 10×10 = 100m2. Our true population

abundance can be counted in this example – however, in most real life cases this
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Figure 2.2.1: Example of a 10m by 10m field. Black dots represent individuals that we
wish to estimate.

is not possbile, so usually it would be the value N that we are trying to estimate.

Here, N = 45. Population density is the population size per unit area and so

D = 45/100 = 0.45 per m2.

2.2.1.1 Quadrat Sampling

Quadrat sampling is not quite a distance sampling method, however, various types

of distance methods are extensions of quadrat sampling so we begin by describing

this method [Buckland et al., 2001]. A common example of quadrat sampling

is to approximate the number of buttercups or daisies in a small field which is

illustrated in Figure 2.2.2 which many people first come across in GCSE Science

class textbooks (for example Locke and Hulme [2016]). A study site is chosen with

measured area A. Next, a number of square quadrats are placed at random across

the field, covering an observed area denoted by a. The number of buttercups are

then counted in observed area a of the quadrats and from this, we can calculate

the estimated value of abundance, N̂ .

Assuming that all individuals, in this case buttercups, that are present in our
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Figure 2.2.2: Quadrat sampling of buttercups in a small field ( c©Hermitage Academy,
Science Department).

transect areas are observed (a full detection probability) we estimate abundance

based on the theory that the proportion of counted individuals in an observed

area is approximately equal to the proportion of population abundance in the

total plot area, i.e.

N

A
≈ n

a
.

Now, we let N̂ be the estimated value of the true population abundance, as a

result we can produce the following estimator equation:

N̂

A
=
n

a

⇒ N̂ =
n

a
· A

= D̂ · A

(2.2.1)

where D̂ = n/a, representing the estimated population density.

Let us apply this to the example pictured in Figure 2.2.3. We know that

N = 45 (the true abundance that we are trying to estimate) and that A = 100m2.
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Figure 2.2.3: Example of a 10m by 10m field. Black dots represent unobserved individ-
uals, red dots represent observed individuals and blue squares represent 1m quadrats.

Looking at the diagram we have randomly placed five 1m× 1m quadrats and so

we can calculate the observed area:

a = 5︸︷︷︸
No. of quadrats

· (1× 1)︸ ︷︷ ︸
Area of quadrat

= 5m2

In the quadrats (blue squares) we observe a total of two individuals (red dots) so

n = 2. The estimated population density is

D̂ =
n

a
=

2

5
= 0.4

and therefore using Formula 2.2.1:

N̂ = D̂ · A = 0.4 · 100 = 40.

And so, our estimate of N̂ = 40 is approximately equal to N . There is only

a small discrepency between the true and estimated population abundance. Esti-

mation consistency is guaranteed as the quadrants are chosen at random and all
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quadrants in the sample size are assumed to be representative of the whole area

- as mentioned earlier in this Section.

2.2.1.2 Strip Transect Sampling

In Strip transect sampling transects (straight lines) are used instead of using

quadrats like those discussed in Section 2.2.1.1. A total of k strips can either

be randomly placed, similar to the example in Figure 2.2.4 where there are k = 2

strips, or a systematic random design invoked (a random starting point with fixed,

periodic intervals). Strip transect sampling can also be referred to as plot sampling

[Buckland et al., 2015].

Once the position of survey transects are chosen, a distance where the surveyor

can see everything is chosen as the width, w, observed either side from the transect.

For example, surveyors may walk the strip transects i of length li, where

L =
k∑
i=1

li

is the total length of the transect lines. Surveyors can only see everything within

w = 0.5m of the line to ensure a perfect detection probability in this example. This

is the case in Figure 2.2.4, however, in most real-life cases we do not have a full

detection probability if our observed distance w is large. This is because typically,

the further away an animal is from the observer, the less likely the individual will

be observed. This method can be very inefficient as many individuals beyond the

strip will not be included [Burnham and Anderson, 1984].

To estimate abundance for strip transect sampling we use the same formula

as in quadrat sampling (Formula 2.2.1), with a new formula for a. Previously,

a was the area of each quadrat multiplied by the number of quadrats used. For

strip transect sampling, we must take into account the width observed from the
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Figure 2.2.4: Example of a 10m by 10m field. Black dots represent unobserved in-
dividuals, red dots represent observed individuals and blue solid lines represent sur-
vey transects. Blue dotted lines show the distance observed from the survey transects
(0.5m).

transect on both sides, so we have a = 2wL. This gives us the formula:

N̂ =
n

a
· A

=
n

2wL
· A.

(2.2.2)

Applying this to the method in the example of Figure 2.2.4 we have l1 = l2 =

10cm and so L = 20cm; A = 100m2 and observed individuals n = 8. We calculate

the observed area:

a = 2× 0.5× 20 = 20m2.

Using Formula 2.2.2, produces the estimated population abundance of:

N̂ =
8

20
· 100 = 40.

In this case, N̂ is the same estimate as in the quadrat sampling example from

Section 2.2.1.1 but this may not always be the case. As a result, we can conclude
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that this is another reasonable estimate of the true total population density of

N = 45. Multiplying both sides of Formula 2.2.2 by the total plot area, A, again

gives us D̂ = 0.4 which was also produced in the previous example of Section

2.2.1.1 using quadrat sampling.

2.2.1.3 Line Transect Sampling

Line transect sampling [Williams et al., 2002] is similar to strip transect sampling

(Section 2.2.1.2) in the sense that the observer travels along a line detecting indi-

viduals using survey transects which are placed either at random or using a sys-

tematic random design. However, the difference is that we do not set an observed

distance w from the transect where all individuals must be seen – this allows for

a proportion of individuals present within a distance of w to be missed. Instead,

we record any observed individuals along with their perpendicular distance from

the transect (this could be any reasonable distance within the observed area).

Line transect sampling is typically more efficient than strip transect sampling for

sparsely distributed objects [Buckland et al., 2001]. A visual representation of

this method can be seen in Figure 2.2.5.

We denote the n individual observed distances by x1, x2, ..., xn. If recording

the perpendicular distance at the time of sighting is not possible, then the radial

distance can be recorded along with the angle from the transect to the sighting

and then later the perpendicular distance can be calculated using trigonometry.

The probability of detecting an individual decreases the further from the tran-

sect the observer is. We are able to estimate population abundance and density

by using an effective half-width strip, µ, which is the distance from the observa-

tion line such that the same number of individuals are missed before µ as that

of those detected beyond µ. An example of this can be seen visually in Figure

2.2.6. It is assumed that all individuals on the transect line are observed, i.e.

full detectability at distance zero, and so µ can be thought of as detecting only a
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Figure 2.2.5: Example of a 10m by 10m field. Black dots represent unobserved indi-
viduals, red dots represent observed individuals and blue solid lines represent survey
transects. Red lines represent the perpendicular distance from the survery transect to
the individual observed.

proportion of individuals within a strip length L of width w either side. We call

this the detection probability, Pa, where

µ = w · Pa.

Comparing this theory to that of strip transect sampling in Section 2.2.1.2, we

can see that w from Formula 2.2.2 can now be substituded with wPa – allowing

for a proportion of individuals to be missed. Producing the formulae:

N̂ =
n

2µL
· A

=
n

2wLP̂a
· A

(2.2.3)

and

D̂ =
n

2wLP̂a

which are the estimated population abundance, N̂ , and density, D̂.
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Figure 2.2.6: Diagram illistrating the effective half-width strip, µ (purple dashed), com-
pared to the full area covered width, w (orange dotted) of a probability density function
f(x). Green hashed areas represent the equal number of individuals missed before and
beyond the effective half-width strip. Reproduced and adapted from Thomas et al.
[2002].

2.2.1.4 Point Sampling

Point sampling is similar to line transect sampling (Section 2.2.1.3) except the

observer stands static at a single point for a set length of time – rather than

moving along a transect. Usually, there are k points either randomly located

or using a systematic random design, instantaneous observations are then made

around each of these points and radial distances, ri, are recorded for i = 1, 2, ..., n

observations. Similar to line transect sampling, there is only a full detection

probability at distance zero from the observer and so as a result there is potential

for some individuals to be overlooked. An example of this can be seen in Figure

2.2.7 – we have k = 2 points and a total of n = 6 observations. Point sampling

is also sometimes referred to as ‘point transect sampling’ as it may be considered

as a line transect of length zero, i.e. a point, however we will go onto discuss how

these two sampling theories do differ from one another [Buckland et al., 2001].

We can use the radial distances recorded to estimate an effective radius, ρ,

similar to the use of µ in Section 2.2.1.3. Length ρ represents a border where the

number of individuals missed closer than the border equals the number observed

past the border. Figure 2.2.6 can also be a visual representation for this method
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Figure 2.2.7: Example of a 10m by 10m field. Black dots represent unobserved in-
dividuals, red dots represent observed individuals and blue crosses represent observer
locations. Red lines represent the distance from the observer to the individual observed.

if µ was replaced with ρ. The main difference between these two methods is that

in this case we are looking at radial distances and so the total observed area is

a = kπρ2. Substituting this into Formula 2.2.1 with the estimated value of ρ, ρ̂,

produces:

N̂ =
n

kπρ̂2
· A.

We can also think of ρ as the expected proportion of individuals detected (Pa)

within radius w which we estimate using P̂a. Therefore, we can substitute ρ =√
w2P̂a in the above equation to create an equivalent formula for the estimated

population abundance:

N̂ =
n

kπw2P̂a
· A. (2.2.4)

Both of these equations would produce the same value. The estimated probability

density function for point sampling is

D̂ =
n

kπw2P̂a
.
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In point sampling, we are looking for the radial distance from the observer.

On average, the number of animals available for detection will linearly increase

with larger distances. This is due to the increase in area covered. However, the

further the distance from the monitor, the less likely the monitor is to detect an

individual. This ‘give and take’ idea produces a curve which is typical to point

sampling in shape, starting at zero followed by a sudden incline and then slowly

dropping off as the furthest distance approaches.

2.2.2 Models for Probability of Detection

This Section discusses suitable models for the relationship between the detection

probability, Pa, and the observed distances. The detection function, g(y), rep-

resents the probability of detecting an object, given that it is a distance y from

the random point or line – distance y being either radial (r) or perpendicular (x)

[Buckland et al., 2001]. This can also be written as the following formula:

g(y) = Pr(detection|distance y).

In general, histogram bars are scaled and so the function is generally increasing,

0 ≥ g(y) ≥ 1 and is assumed that g′(0) = 0 and g(0) = 1 where g′(0) is the

gradient at point y = 0, i.e. perfect detectibility at distance 0. It can also be

used to calculate an estimate of the detection probability, Pa, using the following

formula for line transect sampling:

P̂a =
Area under curve

Area of rectangle
=

∫ w
0
ĝ(y)dy

w
. (2.2.5)

Visually, we can see how Formula 2.2.5 is formed in Figure 2.2.6 of Section 2.2.1.3

if we ignore µ annotations. Later in this thesis, we will go on to apply this to

Point Sampling methods.
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(a) Line Transect

(b) Point Transect

Figure 2.2.8: [Miller et al., 2019] Comparison of ‘desirable’ probability density functions,
f(y), for line and point sampling.

In reality, many factors may affect detectibility and so it is possible to include

covariates in the detection function which may include factors such as species or

gender – potentially increasing precision of the detection function estimate. This

is called multiple covariate distance sampling. We assume that covariates affect

the scale of the key function and not its shape, as a result we choose key functions

with a scale parameter σ - which we will go on to discuss later in this Section.

Line transects (Section 2.2.1.3) have a true uniform distribution of individuals

whereas the number of individuals available for detection, on average, will increase

linearly for detection at larger distances for point sampling (Section 2.2.1.4). How-

ever, the percentage of how many individuals we would actually detect would

decrease with distance – this is the detection function, g(y). Multiplying the

true distribution of animals by the detection function produces two very different

looking ‘desirable’ observed distributions – this is called the probability density
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function (pdf), for line and point sampling. Examples of pdf’s can be seen visu-

ally in Figure 2.2.8. The pdf is the probability of observing an individual between

distances y and y + dy, given that it was observed somewhere in (0, w). The

histogram bars are then scaled so that the area under the pdf, f(y), is 1, i.e.

∫ w

0

f(y)dy = 1.

Another useful advantage of the probability density function is that it pro-

vides another way in which we can estimate the detection probability, Pa. This

relationship is discussed in Buckland et al. [2001], however, the software Distance

can calculate this for you.

Distance data can be truncated (discarding of larger distances) prior to data

analysis. Calculating the level of truncation, w, in practice can be difficult when

some information is unknown, however, the importance lies in the smaller observed

distances to the monitor which determine the detection functions shoulder at

g(0) = 1 and therefore the area of the ‘rectangle’ – see Formula 2.2.5. This results

in a near perfect detection close to the line/point and not just at distance 0 as

well as estimators generally tending to perform better [Williams et al., 2002].

Williams et al. [2002] also states that robust modelling of the dection function

leads to robust modelling of the probability density function – which we will go

on to discuss later in this Section. As a ‘rule of thumb’, Buckland et al. [2001]

suggest that typically, line transects should be truncated at around 5% and point

transects at around 10%. So as a result, it is also important that we consider

different levels of truncation, i.e. is truncating 5 or 10 percent reasonable for this

particular data set?

When planning the analysis of data, before model selection can begin, it can

be useful to explore the data that we have and any potential covariates that we

may like to add to the model [Buckland et al., 2001]. This can include visually
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on a map, assessing the shape of data collected in the form of a histogram and by

exploring any potential patterns in covariates using box plots. This could include

looking for outliers or, for example, the differences in particular years which we

will see applied later in Section 3.1.1.1.

[Buckland et al., 2001] states that the modelling process can be thought of in

two steps: choosing a ‘key function’ and then a ‘series expansion’. As discussed

in Burnham et al. [1979, 1980], the final model should fulfill a criteria for robust

estimation which consists of these summarised four main points to ensure a good

fitting model:

• Model robustness – use a model that will fit a wide variety of suitable shapes

for the detection function, g(y).

• Pooling robustness – use a model for the average detection function as not

every individual has the same detection probability, Pa, due to various fac-

tors affecting detectibility (such as weather).

• Shape criterion – use a model with a ‘shoulder’ in the detection function,

i.e. g′(0) = 0 and g(0) = 1.

• Estimator efficiency – use a model that will lead to a precise estimator of

density.

There are four commonly used key functions, which we will breifly discuss,

these include: uniform, half-normal, hazard-rate and negative exponential. These

key functions are all available in the software package Distance [Thomas et al.,

2010]. The uniform distribution,

h(y) =
1

w
for 0 ≤ y ≤ w ,

has 0 parameters and satisfies the shape criterion. However, it is not flexible to

fit different types and shapes of data so is not model robust. The half-normal
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function,

h(y) = exp

(
−y2

2σ2

)
for y ≤ w ,

has one parameter, σ, which effects the scale of the curve. It satisfies the shape

criterion but is not a robust model as it always assumes the same shape regardless

of the scale of the curve. The hazard-rate function,

h(y) = 1− exp

{
−
(y
σ

)−β}
for y ≤ w ,

has two parameters, σ and β, which effect the scale and shape respectively. This

is the only function from these four that satisifies both the shape criterion and

model robustness critera. The final model is the negative exponential,

h(y) = 1− exp

(
−y
σ

)
for y ≤ w ,

which has only the one scale parameter, σ. This model does not fulfill the shape

criterion as it is not flat at g(0) = 1 and is not a robust model as the curve can

only take one shape (the negative exponential does not contain a shape parameter,

β). Note that although the software Distance has the option of the negative

exponential, as this model does not satify the shape criterion, we do not go on to

discuss this model further and is not used in later data applications of Section 3.

The second step is selecting a series expansion – also referred to as adjustments

Key Function Form Adjustment Series Form

Uniform 1/w Cosine
∑m

j=1 ajcos(jπy/w)

Simple polynomial
∑m

j=1 aj(y/w)2j

Half-normal exp(−y
2

2σ2 ) Cosine
∑m

j=2 ajcos(jπy/w)

Hermite polynomial
∑m

j=2 ajH2j(y/σ)

Hazard-rate 1− exp(−( y
σ
)−β) Cosine

∑m
j=2 ajcos(jπy/w)

Simple polynomial
∑m

j=2 aj(y/w)2j

Table 2.2.1: [Miller et al., 2019] Modelling options for key plus adjustment series models
for the detection function with adjustments of order m.
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terms or series adjustments. Adding a series to a model can make it much more

robust. The number of adjustment terms need to be chosen and then the final

model is scaled so that g(0) = 1. Distance allows cosine, Hermite polynomial

and simple polynomial adjustment terms. Possible modelling options for key

and adjustments of order m are given in Table 2.2.1 - parameters are estimated

using maximum likelihood which can be calculated by using the computer package

Thomas et al. [2010]. The key to this second step is selecting just the right number

of parameters to ensure that the model has an improved fit but also to ensure

that it is not too flexible that it also describes the random noise in the data. This

can also be described as a trade-off between bias and variance [Buckland et al.,

2001]. The correct series length is often determined by comparison of AIC for each

degree, followed by another comparison of AIC for each model to determine the

best fitting model from those tested. However, the best selected model may still

not be a good fit to the data and so a goodness-of-fit test should also be carried

out such as the Cramer-von Mises test. See Burnham and Anderson [1998] for

more details on critea that model selection should satify and methods that allow

selection between fitted models. We also note that it is not typical to fit both

adjustment and covariate terms to a model but, when proceeded with caution, is

possible Miller et al. [2019]. Therefore, we will not go onto discuss how the two

can be combined but further information can be found in Buckland et al. [2004].

2.2.3 Assumptions

Below we detail the assumptions for distance sampling.

• All models assume that all individuals that are on the line or point are

detected, i.e. g(0) = 1, however this is may not always be the case. Similar

to how we assume full detectibility in quadrat sampling and strip transect

sampling.
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• We also assume that individuals are detected at or close to their initial

location, prior to any movement in response to the observer.

• Rounding errors in measurements tend to lead to data being grouped to some

degree, but these must be analysed as if the data was recorded accuratley

or grouped further to try to reduce the effects of rounding bias. So we must

assume that distances are measured accuratley for un-grouped distance data

or that individuals are correctly allocated to distance intervals for grouped

data.

• Point sampling must be recorded instantaneously and as a result is more

subject to bias than line transect sampling. The count of individuals and

their distance from the point cannot always be instantaneous particulary

when there are multiple individuals around at one given time.

• When conducting observations, the individuals that are being observed are

spatially distributed according to some stochastic process with rate param-

eter, D (number per unit area). Meanwhile, randomly placed lines or points

are surveyed and a sample of objects are detected, measured and recorded.

It is therefore not necessary that individuals be randomly distributed (i.e.

Poisson), but instead must be placed randomly with respect to the distri-

bution of individuals.

[Buckland et al., 2001]

2.2.4 Elephant Example

Various monitors based around Goalpara and Sonitpur recorded radial sightings

of elephants in relation to their home location and so for this example we will be

using point sampling methods from Section 2.2.1.4. In this example we will look at

just one monitor chosen at random, Monitor32, and so we have k = 1 points. Each
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Figure 2.2.9: Visual representation of Monitor32’s observations on a map. The white
dot is Monitor32’s location, observations by year are on a scale of blue (2007) to red
(2010). Tick intervals: latitude=0.1 and longitude=0.2.

elephant group sighting by this monitor has a location which can be seen in Figure

2.2.9. Figure 2.2.10 shows the distance from the monitor to the sighted group of

elephants (in meters) of all n = 71 observations made by Monitor32. Here, we

will class an elephant ‘group’ as a sighting of elephants greater or equal to one.

In the histogram there are several outliers. Using the Buckland et al. [2015] ‘rule

of thumb’ for truncation, as stated in Section 2.2.2, we choose to truncate the

upper 10% of the data as this is the recommendation for point transect sampling.

The truncated data can be seen in Figure 2.2.11. We make the assumption to

set this distance as the effective radius ρ from the monitor, where the number of

individuals missed closer than the border equals the number observed past the

border (discussed in Section 2.2.1.4). Let ρ = 5779m = 5.779km.

Some assumptions of distance sampling are violated in this data, including the
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Histogram of all observed distances for Monitor32
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Figure 2.2.10: Histogram of Monitor32’s observations.
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Figure 2.2.11: Histogram of Monitor32’s truncated observations at 10% with the esti-
mated probability density function, f̂(x), (line) using the hazard-rate distribution with
Hermite adjustments of order 4.
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assumption that recordings are made instantaneously over a set time period and

potentially the assumption that all elephants at a distance of zero from the mon-

itors house have been detected (see Section 2.2.3). For this illustrative example,

we suppose that they have not been violated and understand that this may mean

that the results are not accurate. We then estimate the density by substituting

the above values into Equation 2.2.4 and rearranging for N̂/A = D̂.

D̂ =
n

kπρ2

=
71

1 · π · 5.7792

= 0.677.

If assumptions were met, we could conclude that there is an approximate density

of 0.677 elephant groups per km2 in the surrounding region of Monitor32.

2.3 Generalised Linear Models in Ecology

Standard linear regression models assume that the dependent variable follows a

normal distribution, however in many ecological settings this is not appropriate

[Zuur et al., 2009]. In this section we discuss how GLMs can be applied to eco-

logical data, considering standard generalised linear models in Section 2.3.1; zero

truncated GLMs in Section 2.3.2; generalised linear mixed models in Section 2.3.3

and look at an applied elephant example in Section 2.3.4.

2.3.1 Standard Generalised Linear Models

Generalised Linear Models (GLM) are an extension of classic linear models – also

known as regression models. In classic linear models we have

yj = β0 + β1x1j + β2x2j + ...+ βpxpj + εj
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where yj is the dependent variable (also called the response variable), xkj are

covariates, βj are unknown parameters, k = 1, ..., p, j = 1, ..., n and εj is the error

term which follows N(0, σ2). This means that yj is normally distributed with

mean E(yj) = µj = β0 + β1x1j + ...+ βpxpj and variance σ2.

In GLMs, the dependent variable is assumed to follow an exponential family

distribution (such as a Poisson or gamma distribution) which has the form

f(yj; θj, φ) = exp

(
yjθj − a(θj)

b(φ)
+ c(yj, φ)

)
,

for j = 1, ..., n. Where θj is the canonical parameter which represents the location,

φ is a scale parameter and a, b and c are known functions. A link function, g(·)

is used to transform the mean response E(y) = µ and a linear combination of the

covariates: η = β0 + β1x1 + ...+ βpxp. This can be written as

g(µ) = η = β0 + β1x1 + ...+ βpxp (2.3.1)

[Faraway, 2006; McCullagh and Nelder FRS, 1999]. The canonical link function

is g(µ) = θ.

Common exponential family models, the type of data they are used for and

the canonical link functions are:

• Normal – continous and symmetric data which can take on any value.

Identity: g(µ) = µ

• Poisson – discrete data (counts) with no fixed upper limit.

Log: g(µ) = log(µ)
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• Binomial – discrete data with a fixed upper limit.

Logit: g(µ) = log

(
µ

(1− µ)

)

• Gamma – continuous data that can take on any value greater than zero.

Inverse: g(µ) =
1

µ

There are two types of covariates: continuous and factors. For example, count

of elephants observed would be a continuous covariate and a true/false mitiga-

tion would be a factor. Note that covariates used cannot be correlated with one

another. For a specific exponential family distribution, we use maximum likeli-

hood to estimate the parameters – in this thesis we use the R function ‘glm’ to

fit generalised linear models.

The best covariates for a data set can be determined by a range of model selec-

tion techniques such as AIC or Bayesian information criterion (BIC). In practice,

the only difference between these two techniques is the extent in which parameters

and therefore model complexity is penalised - where BIC penalises more heavily

for larger, more complex models. More can be read about the assumptions and

performance of AIC and BIC in Kuha [2004]. Alternatively two nested models (a

model that is a subset of another) can be compared using likelihood ratio, Wald

and score tests or by comparing deviance. The R package ‘MASS’ [Venables

and Ripley, 2002] contain functions which perform an automated stepwise model

selection, we will go on to discuss this later in Section 4.1.

Examples of cases when GLMs were applied to ecological data include tu-

berculosis in wild boar [Vicente et al., 2006] (Figure 2.3.1) and parasites in cod

[Hemmingsen et al., 2005].
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Figure 2.3.1: Wild boar ( c©Getty images).

2.3.2 Zero Truncation

When fitting a GLM (Section 2.3.1) it is sometimes the case that the count data

that we are trying to model cannot have a value of zero but is from a distribution

which would usually include values of zero. For example: in medical data, the

duration of patients’ visits to the hospital emergency department [Karaca et al.,

2012] (Figure 2.3.2); in ecological data, dolphin and porpoise group size [Gygax,

2002] (Figure 2.3.3) is an example of data which cannot have the response value

of zero and therefore, a zero truncated Poisson or negative-binomial distribution

would be an appropriate distribution for this type of data. We give an illustrative

example in Section 2.3.4 for our AHP elephant data, the dependent variable is the

count of elephants sighted however, it is not possible to have a sighting of zero

elephants and so the data takes the form of a zero truncated Poisson distribution.

Figure 2.3.2: Hospital emergency depart-
ment ( c©Stuart Harrison).

Figure 2.3.3: Bottlenose dolphin pod
( c©Louise Murray).
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In this Section we will briefly discuss zero truncated Poisson and negative-

binomial distributions, more information regarding how zero truncated distribu-

tions are calculated can be found in Zuur et al. [2009]. We first adjust the prob-

ability functions to exclude the probability of a zero observation for the Poisson:

f(yj;µj|yj > 0) =
µyj · exp(−µj)

(1− exp(−µj)) · yj!

and negative-binomial distribution:

f(yj;µj|yj > 0) =
Γ(yj + k)

Γ(k)Γ(yj + 1)

(
k

µj + k

)k(
1− k

µj + k

)yj/(
1−
(

k

µj + k

yj
))

.

The log-likelihood for the zero truncated Poisson distribution is:

log(L) =
∑
j

log

(
µyj · exp(−µj)

(1− exp(−µj)) · yj!

)

and the zero truncated negative-binomial distribution is:

log(L) = log(LNB)− log

(
1−

(
k

µj + k

)k)

which is a function of the regression parameters.

Various softwares exist in order to fit these models in R. For example, the

package ‘VGAM’ [Yee and Moler, 2020] contains the ‘vglm’ function which, for

example, fits the zero-truncated Poisson model using the family input positive

Poisson where ‘family = pospoisson()’. This is a strictly positive Poisson distri-

bution so will not include any zeros in the Poisson distribution. The function fits

a very flexible class of models called vector generalised linear mondels (VGLMs)

to a wide range of assumed distributions (see Yee [2015] for more details).
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2.3.3 Generalised Linear Mixed Models

Fixed effects are constant across individuals, where as random effects vary. This

allows for correlation of the data in addition to the usual fixed effects, i.e. there

is often more than one source of random variability in the data [Harrison et al.,

2018]. Fixed effects are unknown constants across individuals that we try to

estimate from the data, whereas random effects are random variables. Faraway

[2006] describes randoms effects as not something that we try to estimate, but

instead we try to estimate the parameters that describe the distibution of this

random effect. A generalised linear model (Section 2.3.1) with random effects is

known as a generalised linear mixed model (GLMM).

Let y be a vector of observations and r be a vector of random effects. The

probability density conditional on the random effects, f(y|r), is an exponential

family model. The random effects r have probability function g(r). Similar to

Equation 2.3.1, the linear combination of covariates is

ηij = β0 + β1x1ij + ...+ βpxpij + ri

where k = 0, 1, ..., p is the covariate number, i is the random effect number, j is

the observation for the ith random effect and added random effect – frequently

bi ∼ N(0, σ2). Fixed effect parameters are β0, β1, ..., βp and the random effect

parameter is σ2. Calculating an explicit solution for GLMMs are not possible

(unless we assume a Normal distribution for both dependent variable and for

random effects) and so to estimate the parameters we need to find:

f(y) =

∫
f(y|r)g(r)dr.

R packages exist which calculate these estimated parameters, including ‘lme4’

[Bates et al., 2015] and ‘glmmTMB’ [Brooks et al., 2017]. It also still applies that
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GLMMs cannot have correlated covariates.

Here we use the Likelihood Ratio Test (LRT) to test whether the random effect

parameter is needed or not and then the best model can be determined by using

AIC or BIC to select the best model between GLMs and GLMMs. A suggested

strategy is to fit the best GLM model (Section 2.3.1) and then complete a single

LRT to compare the best model with and without the random effect.

2.3.4 Elephant Example

The Assam Haathi Project recorded counts of elephants alongside mitigations

that were put into place to try to reduce human-elephant conflict, such as electric

fences. In this example, we are interested in how the number of elephants sighted

is effected by which mitigation was used, here the count of elephants is treated

as the dependant variable and the mitigations are the covariates. For ease of

analysis, mitigations were grouped and analysed by type: Sound, Fire, Visual,

Physical and Other. Each of these groups consisted of the following covariates:

• Sound – Cracker, Noise, Drum tin, Siren, Tripwire

• Fire – Fire stick, Chillismoke

• Visual – Torch light, AHP spotlight, Other spotlight

• Physical – Catapult, Chillifence, eFence, Arrows

• Other – Kunkie, Other mitigiation

For descriptions of each mitigation please see Chapter 1, note, ‘Watchtower’ was

not included as this would have been a correlated mitigation (villages would use

the watchtower to sight the elephants and then use another form of mitigation

to attempt to deter them). Distance in meters from the observed elephants to

the monitors location was also included as a covariate, calculated by R package
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Model Name K AIC ∆AIC BIC ∆BIC Log-lik

FDSVOP 7 89853.29 0.00 89900.07 0.00 -44919.65
FDSVO 6 89885.36 32.07 89925.45 25.38 -44936.68
FDSV 5 89918.97 65.67 89952.37 52.30 -44954.48
FDS 4 89956.47 103.17 89983.20 83.13 -44974.23
FD 3 90518.63 665.33 90538.67 638.60 -45256.31
F 2 91282.87 1429.58 91296.24 1396.17 -45639.44
Constant 1 92918.43 3065.13 92925.11 3025.04 -46458.21

Table 2.3.1: Comparison of stepwise GLM regression from each stage, ranked by AIC
and BIC. Best fitting model is ‘FDNVOP’ which includes all covariates: Fire, Distance,
Sound, Visual, Other and Physical. Models were abbreviated to the single first letter
of each type of mitigation, for example Fire is F and Visual is V and so FV would be
the model consisting of Fire and Visual mitigations. Listed for each model: K, number
of parameters (K=p + 1); the AIC; the AIC difference, ∆AIC; the BIC; the BIC
difference, ∆BIC; and the log-likelihood, Log-lik.

‘Geosphere’ [Hijmans et al., 2019] which we will go on to discuss in Chapter 3.

There were no recordings of zero elephants sighted and so this particular data

requires the use of a zero-truncated Poisson where we used the R package VGAM

– as discussed in Section 2.3.2.

To calculate the best fitting Generalised Linear Model for this data we used

AIC (Section 2.3.1), starting with the constant model and comparing this to all

possible single covariate models. The best selected model at this stage was Fire

which can be seen in Table 2.3.1. This process was then repeated, using the best

model and then comparing this to all possible models with unselected covariates

added. As there were only six covariates present, we were able to code each model

and compare AIC values by hand, however later in Section 4.1 we go on to use a

stepwise regression instead – R package [Venables and Ripley, 2002]. Note, this

particular package is not compatible with the R package VGAM.

By AIC and BIC, the best fitting model to the data was the model with

all covariates present, ‘FDSVOP’, with log-likelihood of −44919.65. Table 2.3.2

shows the summary for this model. We can see that when Sound and Physical

mitigations were used there was a reduction in the number of elephants seen,
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whereas when Fire, Visual and Other mitigations were used there was an increase

in the number of elephants sighted. We can also conclude that the more elephants

sighted, the smaller the distance between the observed elephants and the monitors

location.

Coefficients Estimate Std. Error z-value p-value

(Intercept) 2.44 0.0070 347.29 < 0.0001
Fire (TRUE) 0.46 0.013 36.65 < 0.0001

Sound (TRUE) −0.34 0.016 -21.36 < 0.0001
Visual (TRUE) 0.10 0.015 6.49 < 0.0001
Other (TRUE) 0.14 0.021 6.78 < 0.0001

Physical (TRUE) −0.056 0.0096 -5.82 < 0.0001
Distance -0.000008 0.00000039 -20.42 < 0.0001

Table 2.3.2: Results from the best fitting model ‘FDSVOP’ which includes all covariates:
Fire, Distance, Sound, Visual, Other and Physical. Listed for each model: estimate,
standard error, z-value is the test statistic for a hypothesis test of whether the coefficient
value is zero; and p-value is the probability that the z-value is non-zero.
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Chapter 3

Probability of Detection of

Elephant Herds

In this Section, we talk about how distance sampling methods from Section 2.2

were applied to data from the Assam Haathi Project. The aim of this analysis was

to discover the probability that elephants were detected – given that they were

present – by the monitors and nearby villagers, and so we will particularly look at

the estimated probability of detection (P̂a). We note for this section that although

some assumptions were violated, we acknowledge that there are data limitations

and so investigating potential factors (such as observations being skewed towards

water sources) which may have caused a bias was not possible. This could be

investigated in future work if monitors recorded further information relating to

these variables.

The projects data is in the form of longitude and latitude, therefore to apply

distance sampling methods we needed to calculate the distance from the mon-

itor who made the observation to the observed location of elephants. The R

package ‘Geosphere’ [Hijmans et al., 2019] was used to make these calculations

with the default distance value in meters. The Geosphere package describes the

function ‘distVincetyEllipsoid’ as calculating the shortest distance between two
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points along the surface of a sphere i.e. the great-circle-distance, using an ellip-

soid (a quadratic surface) to create very acurate results [Hijmans et al., 2019]. An

example of the code used can be found in B.0.0.2 of Appendix B.

3.1 Individual Monitors

Figure 3.1.1 shows the number of monitor observations for individual monitors.

Some monitors do not have enough data to be considered inidividually, therefore

in this Section we consider and apply distance sampling methods to four mon-

itors – two from each region (Goalpara and Sonitpur) – to obtain probabilities

of detection. Monitor01, Monitor03, Monitor16 and Monitor46 were selected as

they had a large range of observations over most years and therefore were more

likely to have consistent recordings. Analysing these monitors alone allowed for

comparison between the sites, the individual monitors, and then a comparison to

the overall model with all monitors included. The analytical methods carried out

were the same for all monitors – let us first discuss Monitor16 (Section 3.1.1).

Figure 3.1.1: Histogram showing the frequency of sightings for all monitors.
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3.1.1 Probability of Detection for Monitor16

Monitor16 was located in Sonitpur with a total of 512 data entries with year of

sighting ranging from 2005 to 2014. See Figure 3.1.2 for a visual representation

of these observations by year on a map.

Longitude
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tit

ud
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2012.5

Year

Observations of Monitor16 by Year

N↑

Figure 3.1.2: Visual representation of Monitor16’s observations on a map. The white
dot is Monitor16’s location, observations by year are on a scale of blue (2005) to red
(2014). Tick intervals: lat=0.1 and lon=0.3.

3.1.1.1 Exploratory Data Analysis

In Figure 3.1.2 it can be seen that the majority of observations are close to the

monitors location which is what we would expect to see in point sampling (Section

2.2.1.4). We can see an expected scatter of observations with a higher density

closer to the monitors location, however, we note that observations appear to be

skewed towards the right near where there is a water source.

Figure 3.1.3 is a histogram of the whole data set for Monitor16. This shows
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Histogram of all observed distances for Monitor16
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Figure 3.1.3: Histogram showing the frquency of all observed sightings by distance (m)
for Monitor16.

Truncated histogram (10%) of observed distances for Monitor16
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Figure 3.1.4: Histogram showing the frquency of sightings by distance (m) for Monitor16
(10% truncation).
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that there are many outliers, a large distance from the monitors location. In this

example, we are trying to estimate the probability of detection by solving Formula

2.2.4 from Section 2.2.1.4 where

P̂a =
n

kπw2N̂
· A.

An estimate of N̂ would be biased and so as a result we cannot precisely approx-

imate w. However, the importance lies in the smaller observed distances to the

monitor which determine the detection functions shoulder as discussed in Section

2.2.2. Here we use the recommendation from Buckland et al. [2001] and truncate

at 10%, this recommendation is used for all monitors as we consider the radial

observed distances which are associated with point sampling methods. Truncating

at this level results in a new sample size of 461 observations.

Figure 3.1.4 shows that our maximum observed distance has reduced from

approximately 60, 000m in the full data set (Figure 3.1.3) to around 3, 500m.

This has removed any possible outliers and improved the shape of our histogram

dramatically to resemble that of a typical point sampling example. As discussed

in Section 2.2.1.4, this shape is typical of the observed distribution from point

sampling data where the highest frequency of observations do not lie in the closest

bin to the monitor, but instead lie usually in the next region.

The next step is to explore potential patterns in covariates. In a similar study

by Wilson et al. [2015] a diurnal pattern across a 3 year study showed incidents

of crop loss or property damage caused by elephants was observed in Goalpara

and Sonitpur with peak times ranging between 18:01-22:00. The same study also

discovered a seasonal pattern, mentioning how the pattern differed in 2006 due

to severe flooding in Assam – this impeded the movement of elephants into both

study areas and also disrupted the usual agricultural calendar. For individual

Monitors we looked into three covariates: time of day (TOD), year (Year) and
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season (Szn), all of which were treated as discrete data. The year covariate allowed

for variations year by year for cases such as 2006 when Assam had severe flooding.

Each data entry relates to an observation made in a village at a specific time. As

a result of data limitations we have TOD categories that include dawn, morning,

noon, afternoon, evening, night, whole day and unknown. Seasons were classed

by pre-monsoon (April-June), monsoon (July-Sept), post-monsoon (Oct-Dec) and

winter (Jan-March).

Boxplots were used to explore potential patterns of covariates TOD, Year and

Szn as seen in Figure 3.1.5a, Figure 3.1.6a and Figure 3.1.7a respectively. 10%

truncated versions of the box plot were also produced for ease of interpretation

(Figure 3.1.5b, Figure 3.1.6b and Figure 3.1.7b).

Looking at the truncated data in Figure 3.1.5b for time of day, we can see

that there is some evidence to suggest that during day-light hours (morning, noon

and afternoon) elephants were observed with a shorter range of distances – in

particular around noon where Monitor16 made no observations of elephants. In

all observed categories except dawn, we observe a similar lower limit of the box

(first quartile), however the first quartile of observations at the time of dawn are

around twice the distance of the rest. Comparing the full data set to the truncated

version, it is clear to see that the evening observations seem to be most effected.

Monitor16 only made one observation in the year 2014 which can be seen in

Figure 3.1.6b – the reason for this is unknown, for example the monitor may have

stopped working for the project. The monitor has conistently observed elephants

at a similar range of distances for most years 2005-2013, however we note 2010,

2011 and 2013 have a smaller range. The project as a whole has a noticeably

large number of entries for the year 2005, it was suggested that this was due to

an increased effort from the Monitors for this first year in which the project was

launced. As a result, we have also chosen to include a covariate for observations

made in the year ‘2005’ vs ‘not 2005’.
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Figure 3.1.5: Comparison of truncated boxplot showing the radial distance of observed
sightings by covariates for all monitors.
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Figure 3.1.6: Comparison of truncated boxplot showing the radial distance of observed
sightings by covariates for all monitors.
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Figure 3.1.7: Comparison of truncated boxplot showing the radial distance of observed
sightings by covariates for all monitors.
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Seasons appears to have a more consistent spread of observation distances

across each part of the year.

3.1.1.2 Best Model with Adjustments

As explained in Section 2.2.2, the detection function, g(x), describes the relation-

ship between probability of detection and distance. First, we start off by fitting

a model to the data and then choose the best model by AIC. We fit a variety of

models without covariates to the data, which are summarised in Table 3.1.1. We

used the ‘Distance’ R package [Thomas et al., 2010] to fit these models. The mod-

els are then compared using AIC. The ∆AIC is given in Table 3.1.1. Note that

for each key-function and adjustment type the Distance R package determines the

best order of adjustments using AIC. It is also important to check that the best

model is also a good fit to the data by using a goodness of fit test, in this case,

Cramer-von Mises was used. Table 3.1.1 gives the p-value for this test. Taking

into account the criteria for a robust model estimation from Section 2.2.2, models

were fitted using hazard-rate, half-normal and uniform distributions with adjust-

ments that included: cosine, simple polynomial and Hermite as shown in Table

3.1.1. Note, the model with key function half-normal and Hermite adjustment

failed to fit.

In Table 3.1.1, the best fitting model according to AIC was ‘Mon.unif.cos’.

The model is composed of the Uniform distribution with cosine adjustment terms

of order 3 however although this is the best fitting model from those tested, it

is not a good fit to the data by the Cramer-von Mises goodness of fit test. As

the model has a p-value = 0.0425 < 0.05 we would reject the hypothesis that

the model is a good fit to the data. Both the detection function and probability

density function estimates can be seen in Figures 3.1.8 and 3.1.9 respectively.

Observe that estimates of P̂a – even across the better fitting models tested

– are not approximately equal, suggesting that adjustment terms alone do not
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Model Name
Key Function
& Adjustment

C-vM
p-value

P̂a se(P̂a) AIC ∆AIC

Mon.unif.cos Uniform with
cosine adjust-
ment terms
(order 3)

0.0425 0.1224 0.0063 7454.21 0.00

Mon.unif.poly Uniform with
simple polyno-
mial adjustment
terms (order 8)

0.0000 0.1935 0.0128 7493.77 39.56

Mon.hr.poly Hazard-rate* 0.1389 0.1573 0.0114 7560.44 106.23
Mon.hr.cos Hazard-rate* 0.1389 0.1573 0.0114 7560.44 106.23
Mon.hr.herm Hazard-rate* 0.1389 0.1573 0.0114 7560.44 106.23
Mon.hn.cos Half-normal

with cosine ad-
justment terms
(order 4)

0.0858 0.1523 0.0263 7567.67 113.46

Mon.hn.poly Half-normal* 0.0003 0.1606 0.0066 7596.93 142.72
Mon.unif.herm Uniform with

Hermite poly-
nomial ad-
justment term
(order 4)

0.0407 0.4187 0.0019 7729.04 274.83

Table 3.1.1: Monitor16 Adjustment Model Comparison. Key functions denoted with an
asterix (*) denote best models with adjustments of order 0, i.e. no adjustment terms
were added to the model, resulting in three identical hazard-rate models. Listed for each
model: Cramer-von Mises, C-vM p-value; average detectability estimate, P̂a; standard
error of the estimated detectibility, se(P̂a); AIC; and the AIC difference, ∆AIC.
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Figure 3.1.8: Histogram of true data with the detection function, ĝ(x), (line) for Moni-
tor16 of the best fitting model with adjustment terms – Mon.unif.cos.
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Figure 3.1.9: Histogram of true data with the probability density function, f̂(x), (line)
for Monitor16 of the best fitting model with adjustment terms – Mon.unif.cos.
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appear to produce a good or consist fit to the data.

3.1.1.3 Best Model with Covariates

For covariate models we do not consider adjustments, only different combinations

of relevant covariates added to key functions of hazard-rate, half-normal and uni-

form distributions. Both adjustments and covariates can be added to a model

but this is not typical (see Section 2.2.2). Further information can be found in

Buckland et al. [2004]. Models are ranked by AIC and the best model is tested

as a good fit to the data or not by the Cramer-von Mises goodness of fit test.

All top four models have approximately the same probability of detection

(P̂a = 16%), which can be seen in Table 3.1.2 – this gives us confidence that this

is likely to be a well-estimated value for this monitor. The best covariate model

fitted to the data is ‘hr.SznY earTOD’. This model consists of the hazard-rate

distribution as the key function with Season, Year and TOD as covariates, it has

a Cramer-von Mises p-value of 0.4275 which is much greater than 0.05 meaning

that we can accept this model as a good fit to our data. The Q-Q Plot in Figure

3.1.10 shows the goodness of fit for this best model.

As a result, we can say that the probability of Monitor16 detecting elephants,

given that they are present at that time is 16%. Both the detection function and

probability density function estimates from the best fitting covariate model can

be seen in Figures 3.1.11 and 3.1.12 respectively. Note that dotted lines in both

of these figures represent the individual covariates included in the model. We can

also now observe a much flatter, wider and therefore more desirable shoulder in

Figure 3.1.11 than that of the best model with adjustments from the previous

section in Figure 3.1.8.

In point sampling, we are looking for the radial distance from the observer, we

expect to see that the further the distance from the monitor, the less likely the

monitor is to detect an individual (Section 2.2.1.4). See Figure 3.1.13a for contour
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Model Name
Key

Fnct.
Covariates

C-vM
p-value

P̂a se(P̂a) AIC ∆AIC

hr.SznYearTOD H-R Szn+Year
+TOD

0.4274 0.1603 0.1514 7523.79 0.00

hr.SznYear H-R Szn+Year 0.5115 0.1599 0.1552 7533.86 10.07
hr.YearTOD H-R Year+

TOD
0.3702 0.1580 0.1405 7546.87 13.01

hr.Year H-R Year 0.3397 0.1561 0.1311 7541.95 18.16
hn.SznYearTOD H-N Szn+Year

+TOD
0.0287 0.1338 0.4499 7546.69 22.90

hr.Szn05TOD H-R Szn+2005
+TOD

0.5358 0.1635 0.0115 7550.18 26.39

hr.SznTOD H-R Szn+TOD 0.4925 0.1631 0.0116 7550.19 26.39
hr.Szn H-R Szn 0.3039 0.1593 0.0115 7553.17 29.38
hn.SznYear H-N Szn+Year 0.0412 0.1381 0.3805 7553.81 30.02
hr.Szn05 H-R Szn+2005 0.2807 0.1592 0.0115 7554.90 31.11
hr.model0 H-R 1 0.1388 0.1573 0.0114 7560.44 36.65
hr.TOD H-R TOD 0.1829 0.0117 0.0263 7560.95 37.16
hn.YearTOD H-N Year+

TOD
0.0182 0.1397 0.3481 7561.50 37.71

hr.05TOD H-R 2005+
TOD

0.2061 0.1603 0.0116 7561.93 38.14

hr.05 H-R 2005 0.1376 0.1573 0.0115 7561.93 38.14
hn.Year H-N Year 0.0088 0.1447 0.3034 7568.85 45.06
hn.Szn05TOD H-N Szn+2005

+TOD
0.0195 0.1456 0.0072 7570.66 46.87

hn.SznTOD H-N Szn+TOD 0.0137 0.1469 0.0068 7571.83 48.04
hn.Szn H-N Szn 0.0034 0.1534 0.0066 7582.69 58.90
hn.Szn05 H-N Szn+2005 0.0049 0.1529 0.0066 7583.05 59.26
hn.05TOD H-N 2005+

TOD
0.0022 0.1550 0.0074 7592.88 69.09

hn.TOD H-N TOD 0.0017 0.1562 0.0068 7593.49 69.70
hn.model0 H-N 1 0.0003 0.1606 0.0066 7596.93 73.14
hn.05 H-N 2005 0.0003 0.1606 0.0067 7598.90 75.11

Table 3.1.2: Mon16 Covariate Model Comparison. Key functions include: hazard-rate
(H-R) and half-normal (H-N). Covariates making up the formula include: Year, time of
day (TOD), year 2005 only (2005) and no covariate included (1). Listed for each model:
Cramer-von Mises, C-vM p-value; average detectability estimate, P̂a; standard error of
the estimated detectibility, se(P̂a); AIC; and the AIC difference, ∆AIC.
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Figure 3.1.10: Q-Q plot for the best fitting model with covariate terms.

plot of Monitor16’s truncated observations based on the results and detection

probability found in this section against all of Monitor16’s sightings and a close

up visual in Figure 3.1.13b. The colour red represents the estimated full detection

probability, P̂a = 1, found closest to the monitor’s location. This is a gradient

colour scale which progresses to the colour blue which represents the detection

probability of zero, P̂a = 0 (not detectable). As we would expect, the further we

move from Monitor16’s location, the less likely they were able to detect elephants.

This ‘give and take’ idea produces our curve which is typical to point sampling,

starting at zero followed by a sudden incline and then slowly dropping off as the

furthest distance approaches, much like our histogram in Figure 3.1.4. As a result,

we can confirm that our truncated data follows this shape reassuring us that 10%

truncation was a sufficient choice.
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Figure 3.1.11: Histogram of true data with the detection function, ĝ(x), (line) for
Monitor16 of the best fitting model with covariate terms – hr.SznY earTOD. Faint
dotted lines represent individual covariates.
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Figure 3.1.12: Histogram of true data with the probability density function, f̂(x), (line)
for Monitor16 of the best fitting model with covariate terms – hr.SznY earTOD. Faint
dotted lines represent individual covariates.
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(a) Contour plot with all observations made by Monitor16. Tick intervals: lat=0.1 and lon=0.3.
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(b) Homed in view of Monitor16’s contour plot without truncated observations. Tick intervals:
lat=0.01 and lon=0.025.

Figure 3.1.13: Contour plots of Monitor16 with observations (white), colour scale relates
to the detection probability – probability given by the legend to the right of the diagram.
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3.1.2 Probability of Detection for Monitor01

Monitor01 was located in Sonitpur with a total of 154 data entries with year of

sighting ranging from 2005 to 2014. See Figure 3.1.14 for a visual representation

of these observations by year on a map.

Longitude

La
tit

ud
e

2005.0

2007.5

2010.0

2012.5

Year

Observations of Monitor01 by Year

N↑

Figure 3.1.14: Visual representation of Monitor01’s observations on a map. The white
dot is Monitor01’s location, observations by year are on a scale of blue (2005) to red
(2014). Tick intervals: lat=0. and lon=0..

After exploratory analysis, data was truncated by 10%. We considered the

covariates: year, time of day (TOD), the year ‘2005’ vs ‘not 2005’ (Year05) and

season (Szn). All covariates as described in Section 3.1.1.1.

The Distance R package was used to fit a variety of models as in 3.1.1.2 and

determines the best order of adjustment models using AIC. The top three models

are summarised in 3.1.3 with ‘Mon.hr.cos’ as the best model where P̂a = 9.5% –

composed of the hazard-rate function with cosine adjustments of order two. Table

3.1.3 gives the p-value for the Cramer-von Mises test, p = 0.2642. As the model
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Model Name
Key Function
& Adjustment

C-vM
p-value

P̂a se(P̂a) AIC ∆AIC

Mon.hr.cos Hazard-rate
with cosine ad-
justment term
(order 2)

0.2642 0.0948 0.0098 2551.18 0.00

Mon.hn.cos Half-normal
with cosine ad-
justment term
(order 2)

0.1602 0.0867 0.0085 2556.36 5.18

Mon.unif.cos Uniform with
cosine adjust-
ment terms
(order 4)

0.1714 0.0906 0.0105 2556.51 5.33

Table 3.1.3: Monitor01 Adjustment Model Comparison of top three models. Listed
for each model: Cramer-von Mises, C-vM p-value; average detectability estimate, P̂a;
standard error of the estimated detectibility, se(P̂a); AIC; and the AIC difference, ∆AIC.

Model Name
Key

Fnct.
Covariates

C-vM
p-value

P̂a se(P̂a) ∆AIC AIC

hr.SznTOD05 H-R Szn+TOD
+2005

0.1236 0.0824 2.5873 2501.77 0.00

hn.SznTOD05 H-N Szn+TOD
+2005

0.3457 0.0562 7.7730 2507.11 5.34

hn.Szn05 H-N Szn+
Year05

0.1294 0.0611 8.9796 2507.35 5.58

Table 3.1.4: Mon01 Covariate Model Comparison of the top three models. Key functions
include: hazard-rate (H-R) and half-normal (H-N). Covariates making up the formula
include: season (Szn), time of day (TOD) and year 2005 only (2005). Listed for each
model: Cramer-von Mises, C-vM p-value; average detectability estimate, P̂a; standard
error of the estimated detectibility, se(P̂a); AIC; and the AIC difference, ∆AIC.
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has p > 0.05 we can accept the hypothesis that the model is a good fit to the

data.

The same method was used with the Distance R package for covariate models

as with adjustment models (explained in Section 3.1.1.3), the top three models can

be seen in Table 3.1.4. The best ranked covariate model by AIC is ‘hr.SznTOD05’

with P̂a = 8.2%. This model consists of the hazard-rate function with season, time

of day and year 2005 covariates; it also has a Cramer-von Mises p-value of 0.1236

which is much greater than 0.05 meaning that we can accept this model as a good

fit to our data. The Q-Q Plot in Figure 3.1.17 shows the goodness of fit for this

best model.

As a result, we can say that the probability of Monitor01 detecting elephants,

given that they are present at that given time is 8%. Both the detection function

and probability density function estimates from the best fitting covariate model

can be seen in Figures 3.1.15 and 3.1.16 respectively. Note that the dotted lines

in both of these figures represent the individual covariates included in the model.

See Figure 3.1.18 for a contour plot of Monitor01’s truncated observations

based on the results and detection probability found in this section against all of

Monitor01’s sightings. The colour red represents a full detection probability, P̂a =

1, with a gradient progressing to the colour blue which represents the detection

probability of zero (not detectable).

3.1.3 Probability of Detection for Monitor03

Monitor03 was located in Goalpara with a total of 428 data entries with year of

sighting ranging from 2005 to 2012. See Figure 3.1.19 for a visual representation

of these observations by year on a map.

After exploratory analysis, data was truncated by 10% and the covariates

chosen to be included in the model selection process were: year, time of day

(TOD), the year ‘2005’ vs ‘not 2005’ (Year05) and season (Szn). All covariates as
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Figure 3.1.15: Histogram of true data with the detection function, ĝ(x), (line) for
Monitor01 of the best fitting model with covariate terms – hr.SznTOD05. Faint dotted
lines represent individual covariates.
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Figure 3.1.16: Histogram of true data with the probability density function, f̂(x), (line)
for Monitor01 of the best fitting model with covariate terms – hr.SznTOD05. Faint
dotted lines represent individual covariates.
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Figure 3.1.17: Q-Q plot for the best fitting model with covariate terms.
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Figure 3.1.18: Homed in view of contour plot of Monitor01’s observations (white), colour
scale relates to the detection probability – probability given by the legend to the right
of the diagram. (Tick intervals: lat=0.5 and lon=0.1)
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described in Section 3.1.1.1.

The Distance R package was used to fit a variety of models as in 3.1.1.2 and

determines the best order of adjustment models using AIC. The top three models

are summarised in 3.1.5 with ‘Mon.hr.cos’ as the best model where P̂a = 19.8% –

composed of the hazard-rate function with cosine adjustments of order two. Table

3.1.5 gives the p-value for the Cramer-von Mises test, p = 0.0327. However, as

the model has p < 0.05 we reject the hypothesis that the model is a good fit to

the data.
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Figure 3.1.19: Visual representation of Monitor03’s observations on a map. The white
dot is Monitor03’s location, observations by year are on a scale of blue (2005) to red
(2012). Tick intervals: lat=0.05 and lon=0.1.

The same method was used with the Distance R package for covariate models as

with adjustment models (explained in Section 3.1.1.3), the top three models can be

seen in Table 3.1.6. The best ranked covariate model by AIC is ‘hr.SznY earTOD’

with P̂a = 20.1%. This model consists of the hazard-rate function with season,
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Model Name
Key Function
& Adjustment

C-vM
p-value

P̂a se(P̂a) AIC ∆AIC

Mon.hr.cos Hazard-rate
with cosine ad-
justment terms
(order 3)

0.0327 0.1975 0.0335 6088.84 0.00

Mon.hn.cos Half-normal
with cosine ad-
justment terms
(order 3)

0.0266 0.2041 0.0303 6094.33 5.49

Mon.hr.poly Hazard-rate* 0.1356 0.2040 0.0221 6104.31 15.47

Table 3.1.5: Monitor03 Adjustment Model Comparison of top three models. Key func-
tions denoted with an asterix (*) denote best models had adjustments of order 0, i.e. no
adjustment terms were added to the model. Listed for each model: Cramer-von Mises,
C-vM p-value; average detectability estimate, P̂a; standard error of the estimated de-
tectibility, se(P̂a); AIC; and the AIC difference, ∆AIC.

Model Name
Key

Fnct.
Covariates

C-vM
p-value

P̂a se(P̂a) ∆AIC AIC

hr.SznYearTOD H-R Szn+Year
+TOD

0.0236 0.2013 0.0934 6008.61 0.00

hr.YearTOD H-R Year+
TOD

0.0065 0.2010 0.0958 6016.37 7.76

hr.SznYear H-R Szn+Year 0.0040 0.1987 0.1022 6024.56 15.95

Table 3.1.6: Mon03 Covariate Model Comparison of the top three models. Key functions
include: hazard-rate (H-R) and half-normal (H-N). Covariates making up the formula
include: year, time of day (TOD) and season (Szn). Listed for each model: Cramer-von
Mises, C-vM p-value; average detectability estimate, P̂a; standard error of the estimated
detectibility, se(P̂a); AIC; and the AIC difference, ∆AIC.
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year and time of day covariates; it also has a Cramer-von Mises p-value of 0.0236

which is less than 0.05 meaning that we can reject this model as a good fit to our

data. The Q-Q Plot in Figure 3.1.22 shows the goodness of fit for this best model.

Both the detection function and probability density function estimates from

the best fitting covariate model can be seen in Figures 3.1.20 and 3.1.21 respec-

tively. Note that the dotted lines in both of these figures represent the individual

covariates included in the model.

See Figure 3.1.23 for a contour plot of Monitor03’s truncated observations

based on the results and detection probability found in this section against all of

Monitor03’s sightings. The colour red represents a full detection probability, P̂a =

1, with a gradient progressing to the colour blue which represents the detection

probability of zero (not detectable).

3.1.4 Probability of Detection for Monitor46

Monitor46 was located in Goalpara with a total of 225 data entries with year of

sighting ranging from 2006 to 2014. See Figure 3.1.24 for a visual representation

of these observations by year on a map.

After exploratory analysis, data was truncated by 10% and the covariates

chosen to be included in the model selection process were: year, time of day

(TOD) and season (Szn). All covariates as described in Section 3.1.1.1.

The Distance R package was used to fit a variety of models as in 3.1.1.2 and

determines the best order of adjustment models using AIC. The top four models

are summarised in 3.1.7. It appears that there are three best models however,

as these top three models are hazard-rate with adjustments of order zero, they

are all the same models as each other. Therefore, we will call the best model

‘Mon.hr’ with P̂a = 65.4% – composed of the hazard-rate function with cosine

adjustments of order two. Table 3.1.7 gives the p-value for the Cramer-von Mises

test, p = 0.0678. As the model has p > 0.05 we can accept the hypothesis that
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Figure 3.1.20: Histogram of true data with the detection function, ĝ(x), (line) for
Monitor03 of the best fitting model with covariate terms – hr.SznY earTOD. Faint
dotted lines represent individual covariates.
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Figure 3.1.21: Histogram of true data with the probability density function, f̂(x), (line)
for Monitor03 of the best fitting model with covariate terms – hr.SznY earTOD. Faint
dotted lines represent individual covariates.
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Figure 3.1.22: Q-Q plot for the best fitting model with covariate terms.
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Figure 3.1.23: Homed in view of contour plot of Monitor03’s observations (white), colour
scale relates to the detection probability – probability given by the legend to the right
of the diagram. (Tick intervals: lat=0.01 and lon=0.025)
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Figure 3.1.24: Visual representation of Monitor46’s observations on a map. The white
dot is Monitor46’s location, observations by year are on a scale of blue (2006) to red
(2014). Tick intervals: lat=0. and lon=0..

the model is a good fit to the data.

The same method was used with the Distance R package for covariate models

as with adjustment models (explained in Section 3.1.1.3), the top three models

can be seen in Table 3.1.8. The best ranked covariate model by AIC is ‘hr.Y ear’

with P̂a = 58.2%. This model consists of the hazard-rate function with year as the

only covariate – note that both top models agree on the probability of detection to

3 significant figures. The model has a Cramer-von Mises p-value of 0.0275 which

is less than 0.05 meaning that we reject this model as a good fit to our data. The

Q-Q Plot in Figure 3.1.27 shows the goodness of fit for this best model.

As a result, we can say that the probability of Monitor46 detecting elephants,

given that they are present at that given time is 58.2%. Both the detection

function and probability density function estimates from the best fitting covariate
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Model Name
Key Function
& Adjustment

C-vM
p-value

P̂a se(P̂a) AIC ∆AIC

Mon.hr.poly Hazard-rate* 0.0678 0.6540 0.0661 3298.51 0.00
Mon.hr.cos Hazard-rate* 0.0678 0.6540 0.0661 3298.51 0.00
Mon.hr.herm Hazard-rate* 0.0678 0.6540 0.0661 3298.51 0.00
Mon.unif.cos Uniform with

cosine adjust-
ment terms
(order 2)

0.0399 0.5915 0.1394 3300.55 2.04

Table 3.1.7: Monitor46 Adjustment Model Comparison of top three models. Key func-
tions denoted with an asterix (*) denote best models had adjustments of order 0, i.e.
no adjustment terms were added to the model, resulting in three identical hazard-rate
models. Listed for each model: Cramer-von Mises, C-vM p-value; average detectability
estimate, P̂a; standard error of the estimated detectibility, se(P̂a); AIC; and the AIC
difference, ∆AIC.

Model Name
Key

Fnct.
Covariates

C-vM
p-value

P̂a se(P̂a) ∆AIC AIC

hr.Year H-R Year 0.0275 0.5817 0.9191 3285.59 0.00
hr.SznYear H-R Szn+Year 0.0301 0.5816 0.0710 3288.87 3.28
hr.YearTOD H-R Year+

TOD
0.0203 0.5583 0.0862 3288.93 3.34

Table 3.1.8: Mon46 Covariate Model Comparison of the top three models. Key functions
include: hazard-rate (H-R) and half-normal (H-N). Covariates making up the formula
include: year, season (Szn), time of day (TOD). Listed for each model: Cramer-von
Mises, C-vM p-value; average detectability estimate, P̂a; standard error of the estimated
detectibility, se(P̂a); AIC; and the AIC difference, ∆AIC.
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Figure 3.1.25: Histogram of true data with the detection function, ĝ(x), (line) for
Monitor46 of the best fitting model with covariate terms – hr.Y ear. Faint dotted lines
represent individual covariates.
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Figure 3.1.26: Histogram of true data with the probability density function, f̂(x), (line)
for Monitor46 of the best fitting model with covariate terms – hr.Y ear. Faint dotted
lines represent individual covariates.
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Figure 3.1.27: Q-Q plot for the best fitting model with covariate terms.
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Figure 3.1.28: Homed in view of contour plot of Monitor46’s observations (white), colour
scale relates to the detection probability – probability given by the legend to the right
of the diagram. (Tick intervals: lat=0.02 and lon=0.05)
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model can be seen in Figures 3.1.25 and 3.1.26 respectively. Note that the dotted

lines in both of these figures represent the individual covariates included in the

model.

See Figure 3.1.28 for a contour plot of Monitor46’s truncated observations

based on the results and detection probability found in this section against all of

Monitor46’s sightings. The colour red represents a full detection probability, P̂a =

1, with a gradient progressing to the colour blue which represents the detection

probability of zero (not detectable).

3.1.5 Comparison of Individual Studies

Only two of the four models tested for individual monitors had covariate models

which were accepted as a good fit to the data collected using the Cramer-von Mises

goodness of fit test (Monitor01, Section 3.1.2 and Monitor16, Section 3.1.1) – both

best models were ‘hr.SznY earTOD’. There were only two accepted adjustment

models from Monitor01, Section 3.1.2 and Monitor46, Section 3.1.4. Monitor03

(Section 3.1.3) had no models accepted as a good fit to the data.

See Figure 3.1.29 for contour plots of each individual monitor tested based

on the results and detection probabilities found in each analysis of the monitor

observations.

3.2 All Data Combined

For this section we are going to discuss models fitted to the data set as a whole with

all monitors included. All methods discussed in the individual studies (Section

3.1.1) are applied to this section on combined study. All models, adjuments

and covariates previously fitted are the same in this case for models fitted with

adjustments and for models with covariates, however, we have the addition of a

‘Site’ covariate which is the area that the monitor is located: Goalpara or Sonitpur.
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First, exploratory data analysis was undertaken. Looking at Figure 1.1.2 of

monitor locations and observations on a map, we can see that observations tend to

be spread reasonably close to monitor locations. We can see this spread of obser-

vations by distance in the histogram of Figure 3.2.1a, truncating this produces the

histogram shown in Figure 3.2.1b which follows the point sampling shape that we

desire. Finally, we look at histograms of covariates – these are displayed (pre and

post truncation) in Figures 3.2.3, 3.2.4, 3.2.5 and 3.2.6. See Figure 3.2.3b for the

truncated version of the ‘Year’ boxplot, we can see that 2018 has a much smaller

range of distances – both before and after truncation – when compared to other

years, however this is likely because we have less observations for this year. We

also note a considerably large range of distances in the year 2005 (pre-truncation)

in Figure 3.2.3a, likely because there are considerably more observations for this

year than any others, possibly due to an increased effort from monitors as this

was the first year that the project was fully launched. Based on this observation,

it was decided that the covariate ‘2005’ vs. ‘not 2005’ should be included in the

model fitting process – also used as a covariate with individual monitors in Section

3.1. As for the rest of the covariates, there appears to be no significant differences

in the range of observation distances.

A covariate for ‘Monitor’ was attempted, but due to the complexity of having

57 monitors, this was not possible due to limitations of the data. Figures 3.2.2a

and 3.2.2b show the huge range in distances of observations for each monitor

before and after truncation. As a result, (taking care to not use Year and 2005 in

conjunction with one another) covariates carried forward into the analysis were:

Year, TOD, Season and 2005.

Models with adjustments were investigated but all lead to very poor fits to

the data. The best model was the Uniform distribution with cosine adjustment

terms of order 3, with an estimated detection probability of 12.8%. The Cramer-

von Mises p-value was 0.02926. As a result this model and all other models with
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Figure 3.2.1: Histograms showing the frequency sightings by distance (m) for all data.
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Figure 3.2.2: Boxplot showing the radial distance of all observed sightings by Monitor.
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Figure 3.2.3: Comparison of truncated boxplot showing the radial distance of observed
sightings by covariates for all monitors.
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Figure 3.2.4: Comparison of truncated boxplot showing the radial distance of observed
sightings by covariates for all monitors.
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Figure 3.2.5: Comparison of truncated boxplot showing the radial distance of observed
sightings by covariates for all monitors.
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Figure 3.2.6: Comparison of truncated boxplot showing the radial distance of observed
sightings by covariates for all monitors.
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adjustments were rejected as a good fit to the data.

Table 3.2.1 shows a comparison of all covariate models which managed to fit

to the data. Not all models were able to fit, there were some variance-covariance

matrix elements which were ‘NA’ with possible numerical problems. As a result,

only the detection function was estimated and we were unable to compare these

with other models which accuratley fitted to the data.

The best covariate model was ‘hr.SznTOD’ according to AIC. This model

consists of the hazard-rate distribution as the key functions with Season and

TOD as covariates. It had a Cramer-von Mises p-value of 4.71 × 10−7 which

meant that this model, although the best fitting of all the models, was not a good

fit to the data. A possible explanation for lack of fit could include some possible

data entries being rounded to distance zero (as we can see a line of horizontal

dots on the bottom left-hand side in Figure 3.2.9); an inadequate estimated level

of truncation; the large sample size; or potentially the difference between the

individual monitors which has not been captured in the model. See the Q-Q

plot in Figure 3.2.9 for this model – the plot visually appears to be a good fit

to the data but due to large number of data entries, this created a small p-value

and resulted in the model being rejected. The detection function and probability

density function estimates for this model can be seen in Figures 3.2.7 and 3.2.8

respectively.

Note: although all of these covariate models were rejected as a good fit the

data, all top eight models ranked by AIC, agree that P̂a ≈ 0.05. Suggesting that

although there appears to be something missing from the data to fit a good model,

monitors appear to have a detection probability of approximately 5% based on

the information that we currently have.
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Model Name

Key
Fnct.

Covariates
C-vM

p-value
P̂a se(P̂a) ∆AIC

hr.SznTOD H-R Szn+TOD 0.0000 0.0495 0.0020 0.00
hr.SznTOD05 H-R Szn+TOD+2005 0.0000 0.0495 0.0020 1.92
hr.TOD H-R TOD 0.0000 0.0518 0.0020 62.35
hr.TOD05 H-R 2005+TOD 0.0000 0.0520 0.0020 63.92
hr.Szn H-R Szn 0.0000 0.0466 0.0020 122.33
hr.Szn05 H-R Szn+2005 0.0000 0.0469 0.0020 123.84
hr.05 H-R 2005 0.0000 0.0530 0.0020 239.88
hr.model0 H-R 1 0.0000 0.0523 0.0020 240.45
hn.YearTODSite H-N Year+TOD+Site 0.0911 0.1541 0.0019 1086.99
hn.SznYearTOD H-N Szn+Year+TOD 0.0888 0.1559 0.0019 1149.01
hn.YearSite H-N Year+Site 0.0933 0.1567 0.0019 1152.54
hn.YearTOD H-N Year+TOD 0.0900 0.1578 0.0019 1197.67
hn.SznYear H-N Szn+Year 0.0910 0.1579 0.0019 1202.52
hn.Year H-N Year 0.0920 0.1594 0.0019 1240.84
hn.TODSite05 H-N 2005+TOD+Site 0.0931 0.1618 0.0018 1303.11
hn.SznTOD05 H-N Szn+TOD+2005 0.0925 0.1625 0.0018 1327.07
hn.TODSite H-N Site+TOD 0.0940 0.1626 0.0018 1327.71
hn.SznTOD H-N Szn+TOD 0.0930 0.1628 0.0018 1337.76
hn.TOD05 H-N 2005+TOD 0.0925 0.1641 0.0018 1375.19
hn.Site05 H-N Site+2005 0.0979 0.1645 0.0018 1383.57
hn.TOD H-N TOD 0.0932 0.1644 0.0018 1386.08
hn.Site H-N Site 0.0983 0.1650 0.0018 1400.36
hn.Szn05 H-N Szn+2005 0.0966 0.1649 0.0018 1401.53
hn.Szn H-N Szn 0.0970 0.1651 0.0018 1408.57
hn.05 H-N 2005 0.0964 0.1661 0.0018 1438.83
hn.model0 H-N 1 0.0968 0.1664 0.0018 1446.81

Table 3.2.1: All Monitors Covariate Model Comparison. Key functions include: hazard-
rate (H-R) and half-normal (H-N). Covariates making up the formula include: Year,
time of day (TOD), year 2005 only (2005) and no covariate included (1). Monitor16
Adjustment Model Comparison. Listed for each model: Cramer-von Mises, C-vM p-
value; average detectability estimate, P̂a; standard error of the estimated detectibility,
se(P̂a); and the AIC difference, ∆AIC.
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Figure 3.2.7: Histogram of true data with the detection function, ĝ(x), (line) of the
best fitting model with covariate terms only for all monitors. Dotted lines represent
individual covariates.
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Figure 3.2.8: Histogram of true data with the probability density function, f̂(x), (line) of
the best fitting model with covariate terms only for all monitors. Dotted lines represent
individual covariates.
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Figure 3.2.9: Q-Q plot for the best fitting model with covariate terms.

3.3 Assumptions and Limitiations

The assumptions for this chapter overlap with those previously outlined in Sec-

tion 2.2.3 for general model assumptions. As well as these, we do have other

assumptions and limitations of our data set which have allowed us to fit distance

sampling models, these include:

• Cases of poor data entry, e.g. wrong digits entered for longitude or latitude.

• Point sampling is in the form of circular contours only. In the Monitor16

example (discussed in Section 3.1.1) – and other individual monitor cases

- the observations appear to be skewed towards natural resources such as

water and forest areas. These could be added as covariates if we had more

local information on these locations or could be caused by a non-uniform

herd distribution which could not be resolved by adding further covariates.
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• Monitors recorded sightings from their home area which included observa-

tions from themselves and reporting’s to them from other villages so preci-

sion of accuracy of recordings is unkown.

• Inconsistent number of recording per monitor is noticeably different, sug-

gesting some monitors may put in more effort than others or that elephant

density varies substantially over space.

• Some violation of standard distance sampling protocols (Section 2.2.1.4)

such as monitors who would not stand at one location for a set period of

time and the uncertainty of perfect detectibility at distance 0.

The main goal of this study was to calculate the expected detection probability

of monitors recording elephant sightings given the elephant was present at that

time. To explore this further and improve the study there is potential to remove

the assumption of P̂a = 1 at distance zero [Langrock et al., 2013] which cannot be

guaranteed in this case. Monitors are not set a time frame to record individuals as

typical surveyors would in distance sampling, so as a result we have uncertainty

that sightings may be missed (for example when the monitor is asleep). There

is also the possibility to use ‘ecological distance’ methods [Royle et al., 2013a;

Sutherland et al., 2015] which takes into account the animals perspective of the

‘distance’ that they travel. For example, uneven terrain and other different loca-

tions would require much more effort and energy to travel across for an individual

and so to them, they would feel they are travelling a further distance and use

much more energy to do so. The method uses Spatial Capture-Recapture meth-

ods which includes some spatial point process. Connectivity could be considered

along with usage of space to estimate density, using a joint modelling approach.

This model could then be improved by taking connectivity into account by using

a joint modelling approach. These models could then possibility be analysed over

time [Royle et al., 2013b] which our elephant data would allow for.
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Chapter 4

Effect of Mitigations on Crop

Loss

In this Section, we talk about how the various implemented mitigations had an

effect on crop loss using methods from Section 2.3. The aim of this analysis was

to discover which, if any, mitigations played a positive effect on reducing human-

elephant conflict in the form of crop loss impact on farmers.

Extensive cleaning for data application was necessary as some data entries had

no record of whether there was crop loss or not, and so just over 25% of entries

had to be removed from this analysis. We assume that these observations were

unbiased in regards to whether there was crop loss or not, regardless of the amount

of crop loss that had occured. Remaining entries that were non-zero were changed

from cost of crop loss into binary form, entries therefore consisted of 1 if there was

crop loss and 0 if there was no crop loss. Once rows of data were removed, ‘Siren’

and ‘Tripwire’ mitigations had only FALSE entries and so could not be included

in the analysis. All other individual mitigations as discussed in Chapter 1 were

included with the addition of Distance (from observation to monitor in meters)

and Count (number of elephants sighted).
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4.1 Generalised Linear Model

First GLM methods were applied from Section 2.3.1 using the function ‘glm’

in R. As mentioned in Sections 2.3.1 and 2.3.4, there exists the package ‘MASS’

[Venables and Ripley, 2002] with function ‘stepAIC’ which performs an automated

stepwise model selection by AIC. The option to stepwise search in both directions

(the default mode) was used in these analyses which performs both forwards and

backward selection on the chosen full model. The default model selection method

is AIC with code ‘k = 2’, however, this can be altered to use BIC model selection

where more parameters used results in a higher penalty. For the BIC, we use

k = log(n) where n is the number of observations. In this Section we will first

discuss results from the AIC stepwise selection.

Iteration ± Covariate Deviance Res. Df Res. Dev AIC

1 4212 4662.69 4696.69
2 - factor(Catapult) 0.4411 4213 4663.14 4695.14
3 - factor(Chillismoke) 0.6965 4214 4663.83 4693.83
4 - Distance 1.4577 4215 4665.29 4693.29
5 - factor(Arrows) 0.8457 4216 4666.14 4692.14
6 - factor(Chillifence) 1.4632 4217 4667.60 4691.60

Table 4.1.1: AIC table of models added/removed at each iteration of the stepwise re-
gression. Listed for each model: iteration; whether the covariate added or removed,
±; the covariate that has been added/removed; deviance; residual degrees of freedom;
residual deviance and the AIC value.

Table 4.1.1 shows a summary of the output of the AIC stepwise selection at

each iteration. Iteration 1 is the starting full model and so no covariates were

added or removed from the model, it had an AIC value of 4696.69. The second

iteration considers removing each covariate one at a time, compared with the orig-

inal model. The best model at the second iteration removes the factor Catapult.

The third iteration considers either removing each covariate in turn or adding

the factor catapult back into the model; the resulting best model involves also

removing the factor Chillismoke. This continues for the fourth to sixth iteration
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Coefficients Estimate Std. Error z-value p-value

Intercept -2.33 0.10 -23.22 < 0.0001
Fire stick (TRUE) 0.65 0.094 6.94 < 0.0001

Torch light (TRUE) 0.38 0.084 4.56 < 0.0001
AHP spotlight (TRUE) 0.51 0.082 6.18 < 0.0001
Other spotlight (TRUE) -0.69 0.086 -8.04 < 0.0001

Cracker (TRUE) 0.38 0.083 4.57 < 0.0001
Noise (TRUE) 0.91 0.14 6.61 < 0.0001

Drum tin (TRUE) 0.41 0.081 5.02 < 0.0001
eFence (TRUE) -1.01 0.29 -3.53 0.0004
Kunkie (TRUE) -0.66 0.39 -1.71 0.0877*

Other mitigation (TRUE) 1.22 0.37 3.31 0.0009
Count 0.055 0.0036 15.27 < 0.0001

Table 4.1.2: Table of covariates from the best fitting stepwise AIC model. For all
covariates there is no evidence to suggest that the parameter is not zero apart from
Kunkie (marked with atrix, *) which we can accept as a non-zero parameter at a 10%
significance only. Listed for each model: estimate, standard error, z-value is the test
statistic for a hypothesis test of whether the coefficient value is zero; and p-value is the
probability that the z-value is non-zero.

Iteration ± Covariate Deviance Res. Df Res. Dev BIC

1 4212 4662.69 4804.64
2 - Catapult (TRUE) 0.4411 4213 4663.14 4796.73
3 - Chillismoke (TRUE) 0.6965 4214 4663.83 4789.08
4 - Distance 1.4577 4215 4665.29 4782.19
5 - Arrows (TRUE) 0.8457 4216 4666.14 4774.68
6 - Chillifence (TRUE) 1.4632 4217 4667.60 4767.80
7 - Kunkie (TRUE) 2.9724 4218 4670.57 4762.42

Table 4.1.3: BIC table of models added/removed at each iteration of the stepwise re-
gression. Listed for each model: iteration; was the covariate added or removed, ±; the
covariate that has been added/removed; deviance; residual degrees of freedom; residual
deviance and the BIC.
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removing Distance, Arrows and Chillifence. The final best model according the

AIC stepwise selection (as seen in Table 4.1.2) is therefore one which includes:

Fire stick, Torch light, AHP spotlight, Other spotlight, Cracker, Noise, Drum

tin, eFence, Kunkie, Other mitigation and Count. The hypothesis test in Table

4.1.2 tests whether a parameter is significantly different from zero. All covariates

except Kunkie have p-values smaller than 0.05, meaning that there is no evidence

to suggest that the parameters are not zero. We can see that eFence, Kunkie and

Other spotlight all have negative estimates; this suggests that only these param-

eters have a negative effect on crop cost i.e. these mitigations appear to reduce

the probability of whether there is crop damage.

Table 4.1.3 shows a summary of the output of the BIC stepwise selection at

each iteration, again we can see that the first iteration is the full model with

BIC value 4804.64 with no covariates added/removed. We can see in Table 4.1.3

compared to Table 4.1.1 that there is an extra iteration where Kunkie has been

removed from the model. It is not always the case that both AIC and BIC stepwise

selection will choose to add/remove covariates in the same order as each other but

here this is the case with the addition of the seventh iteration. The best model

according to the BIC stepwise selection (as seen in Table 4.1.4) is therefore one

which includes: Fire stick, Torch light, AHP spotlight, Other spotlight, Cracker,

Noise, Drum tin, eFence, Other mitigation and Count. In this model, we accept

that all parameters have no evidence that they are not zero.

As a result, using GLMs we can conclude that only eFence and Other spotlight

mitigations appear to have a negative effect on the probability of whether there is

crop loss. In more general terms, it appears to be less likely that human-elephant

conflict occurs in the form of destroyed crops when eFence and Other spotlight

mitigations are put into place.
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Coefficients Estimate Std. Error z-value p-value

Intercept -2.33 0.10 -23.24 < 0.0001
Fire stick (TRUE) 0.67 0.093 7.15 < 0.0001

Torch light (TRUE) 0.38 0.084 4.56 < 0.0001
AHP spotlight (TRUE) 0.51 0.082 6.26 < 0.0001
Other spotlight (TRUE) -0.69 0.086 -7.97 < 0.0001

Cracker (TRUE) 0.37 0.083 4.51 < 0.0001
Noise (TRUE) 0.90 0.14 6.52 < 0.0001

Drum tin (TRUE) 0.41 0.081 5.03 < 0.0001
eFence (TRUE) -1.00 0.29 -3.52 0.0004

Other mitigation (TRUE) 1.22 0.37 3.32 0.0009
Count 0.055 0.0036 15.18 < 0.0001

Table 4.1.4: Table covariates from the best fitting stepwise BIC model. For all covariates
there is no evidence to suggest that the parameter is not zero. Listed for each model:
estimate, standard error, z-value is the test statistic for a hypothesis test of whether
the coefficient value is zero; and p-value is the probability that the z-value is non-zero.

4.2 Random Monitor Effect

In the generalised linear model we did not take account of the fact that the

observations were made by several different monitors. Here, we assume that all

of the data collected has been from a range of people and so include the monitor

as a random effect (RME) using MonitorID from the data and methods discussed

in Section 2.3.3. We note that although the random effect is at the monitor level,

the monitor only makes observations across a specific location. The random effect

is therefore accounting for both monitor variability as well as spatial variability -

we cannot distinguish between the two in this case.

Adding this RME to the best model outcome in the previous section and

using the BIC stepwise selection (Section 4.1) produces the model as seen in

Table 4.2.1 with the standard deviation of random effects being 1.237. For ease of

interpretation we now call the best model with random effects RMEmodel. Using

the likelihood ratio test between the original best model and the RMEmodel, we

can reject the null hypothesis and therefore include the random effect in the new

best model (LRT=435.02 and p-value< 0.0001). Both AIC and BIC values also
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Fixed effects Estimate Std. Error z-value p-value

Intercept -2.2309 0.2128 -10.49 < 0.0001
Fire stick (TRUE) 0.5630 0.1069 5.27 < 0.0001

Torch light (TRUE) 0.3684 0.0940 3.92 < 0.0001
AHP spotlight (TRUE) 0.4021 0.0943 4.26 < 0.0001
Other spotlight (TRUE) -0.5734 0.1017 -5.64 < 0.0001

Cracker (TRUE) 0.3954 0.0926 4.27 < 0.0001
Noise (TRUE) 0.8488 0.1524 5.57 < 0.0001

Drum.tin (TRUE) 0.3015 0.0950 3.17 0.0015
eFence (TRUE) -0.3648 0.2914 -1.25 0.2106**

Other mitigation (TRUE) 0.4559 0.3810 1.20 0.2315**
Count 0.0530 0.0044 12.08 < 0.0001

Table 4.2.1: Table of fixed effect covariates from the best fitting stepwise BIC model
with added random monitor effect. For all covariates there is no evidence to suggest
that the parameter is not zero with exception of eFence and Other mitigation (marked
with a double astrix, **) where there is evidence to suggest that the parameter is not
zero. Listed for each model: estimate, standard error, z-value is the test statistic for a
hypothesis test of whether the coefficient value is zero; and p-value is the probability
that the z-value is non-zero.

Model with RME K AIC ∆AIC BIC ∆BIC LogLik

eFence&OtherMit removed 10 4258.70 0.00 4322.19 0.00 -2119.35
OtherMit removed 11 4259.10 0.40 4328.94 6.75 -2118.55

eFence removed 11 4259.15 0.46 4329.00 6.81 -2118.58
RMEmodel 12 4259.55 0.85 4335.74 13.55 -2117.77

Best GLM (Section 4.1) 11 4692.57 433.87 4762.42 440.23 -2335.29

Table 4.2.2: AIC and BIC comparison table containing variations of the best model from
Section 4.1 with the addition of a random monitor effect. Model description from top
to bottom: RMEmodel with both eFence and Other mitigation removed; RMEmodel
with Other mitigation covariate removed; RMEmodel with eFence covariate removed;
RMEmodel (the original best model with RME); and the original best GLM from
Section 4.1.
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agree that the model with random monitor effect is better. However, we can see

in Table 4.2.1 that two of the fixed effect covariates are now no longer significant

(eFence and Other mitigation), we also consider re-testing the RMEmodel against

models with either or both of these covariates removed. Results for this test can

be seen in Table 4.2.2. Looking at this table, we can see that all four models have

almost identical AIC values and reasonably similar BIC values suggesting that the

addition of the eFence and/or the Other mitigation in the random effects model

does not effect the best model an enormous amount, however the best ranked

model has both eFence and Other mitigation removed. All models according to

AIC and BIC are ranked better than the original best model from Section 4.1

without the random monitor effect.

Fixed effects Estimate Std. Error z-value p-value

Intercept -2.24 0.21 -10.42 < 0.0001
Fire stick (TRUE) 0.56 0.11 5.25 < 0.0001

Torch light (TRUE) 0.38 0.094 4.03 < 0.0001
AHP spotlight (TRUE) 0.39 0.094 4.22 < 0.0001
Other spotlight (TRUE) -0.55 0.10 -5.48 < 0.0001

Cracker (TRUE) 0.41 0.092 4.43 < 0.0001
Noise (TRUE) 0.83 0.15 5.44 < 0.0001

Drum tin (TRUE) 0.31 0.095 3.32 0.0009
Count 0.053 0.0044 12.05 < 0.0001

Table 4.2.3: Table of fixed effect covariates from the best fitting stepwise BIC model
with added random monitor effect. For all covariates there is no evidence to suggest
that the parameter is not zero. Listed for each model: estimate, standard error, z-value
is the test statistic for a hypothesis test of whether the coefficient value is zero; and
p-value is the probability that the z-value is non-zero.

To conclude, the best GLMM model for this data is the model which includes:

Fire stick, Torch light, AHP spotlight, Cracker, Noise, Drum tin, Other mitigation

and Count; with the random effect following a normal distribution with mean

zero and standard deviation 1.253 (Table 4.2.3). In this model, we accept the

hypothesis that the estimated value of all parameters are non-zero at a 0.01%

significance level, i.e. p-value< 0.001. In comparison to the best GLM model
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from Section 4.1, we now only have only one mitigation with a negative estimate:

Other spotlight. The best GLM model had three mitigations which were more

likely to cause less crop damage and therefore cost, and now with the addition of

a random monitor effect we have a better fitting model which suggests that only

‘Other spotlight’ plays this positive role. Note, a potential reason for eFence no

longer being a significant mitigation may be due to the reason that the installation

of eFences were inconsistent between locations and therefore not available to every

monitor – with many locations having no eFence.

4.3 Limitations and Possible Extensions

Firstly, we note the extensive data cleaning and that we converted the crop loss

variable to binary which throws away a lot of information including how much the

crop loss actually cost the farmer. Approximately, 25% of data entries did not

contain information as to whether there was crop loss or not. We assumed that

these removed observations were unbiased, however, building a model to explore

this using simulation could be executed in future work. Estimated cost of crop

loss ranged from 100 to 240, 000 which displays the extent to which elephants

would destroy crops in relation to if a mitigation was used and which one. Poten-

tially, an extension such as a zero-altered Gamma distribution would allow us to

incorporate this information into our analyses; but other distributions such as a

mixture distribution would be applicable too.

Dénes et al. [2015] compared estimating the abundance of animal populations

by comparing GLMs, distance sampling and other methods. They found there was

bias if imperfect detection was not taken into account. From Chapter 3 we know

that there is imperfect detection and so we could use simulation to investigate

whether this adds bias in this case. Potentially, an individual monitor detection

probability in co-operation with the random monitor effect by use of a two-way

113



interaction could be used. Another possibility is to look at various emerging

models like in Dénes et al. [2015].

Another question that we could ask is whether these mitigations have the same

effect when used alone as they do when used in conjunction with one another, for

example, would the use of Drum tin with Other spotlight at the same time result

in a positive effect of reducing cost of crop loss? Davies et al. [2011] found that

the use of mitigations alone had some different responses to when mitigations

were used in pairs. Due to the length of time taken to run the code, we were

unable to carry out this additional analysis but this may explain why so many

single mitigations used appear to increase crop loss. More can be read about GLM

covariate interactions in Tsai and Gill [2013].
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Chapter 5

Conclusion

Let us revisit the five Assam Haathi Project objectives from Section 1.1:

1) To model observer effort in recording elephant sightings in two spatially

independent regions of Assam.

2) To validate and apply the model to produce a ‘surface’ of sampling effort

across both study sites.

3) To use the validated model to determine relative abundance indices of ele-

phants over the study period in both study sites.

4) To use the validated model to predict population-level responses of elephants

to conflict mitigation strategies, based on levels of conflict and elephant

sightings before and after the implementation of deterrent interventions.

5) To use the outcomes of this research to inform future design of surveys and

monitoring.

We start by looking at objective 1).

To model the observer effort in recording elephant sightings in two spatially

independent regions of Assam (Goalpara and Sonitpur), we looked at applying

distance sampling methods to estimate the probability of detecting elephant herds
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in Chapter 3. Due to some monitors not having enough data to be considered

individually, we first looked at the probability of detection, P̂a, for two individual

monitors from each site. Both monitors from Sonitpur – Monitor01 (P̂a = 16%)

and Monitor16 (P̂a = 8.2%) – had detection probabilities which were derived from

covariate models that were both deemed to be a good fit to the data by the Cramer-

von Mises (C-vM) goodness of fit test. However, although both monitors covariate

models from Goalpara – Monitor03 (P̂a = 20.1%) and Monitor46 (P̂a = 58.2%)

– were not deemed to be a good fit to the data by C-vM, both of the top two

models did agree on the estimate for the probability of detection. We can observe

from this small number of monitor analyses, monitor probability of detection for

elephant herds appear to be lower in Sonitpur than in Goalpara. Note, year was

a covariate in each of the monitors best models with the exception of Monitor01

which included the covariate ‘year 2005’ vs. ‘not year 2005’. This suggests that

probability of detection by monitors varies over time.

Next, we looked at distance sampling methods to estimate the probability of

detection for all data combined. The comparison of boxplots showing the radial

distance of observed sightings by site can be seen in Figure 3.2.5. We can see

that both boxplots are relatively similar to each other suggesting there is no ob-

vious difference in distances observed between each site. This is reflected in the

covariate results table (Table 3.2.1), concluding that there is no significant differ-

ence in observer effort in recording elephant sightings between the two spatially

independent regions of Assam in the best fitting model – hr.SznTOD.

Objective 2) was achieved by presenting results from Objective 1) on a map

(Figure 3.1.29). We produced a ‘surface’ of sampling effort across both study sites

in the form of the probability of detecting elephant herds for each of the individual

monitors previously mentioned. Using the best model according to AIC, we have

P̂a = 5% for all monitors combined.

For objective 3) we first looked at applying capture-recapture methods to the
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data, in particular the Cormack-Jolly-Seber model from Section 2.1.2.2 to the

elephant example in Section 2.1.3. Due to a small data set, we were only able

to consider the constant model and whether parameters were dependant on site

location, and so estimating population size accuratley using this data set was not

possible. The AHP data violated multiple distance sampling assumptions from

Section 2.2.3 and so we were not able to estimate the population size of elephants

by using this method. Numerous limitations have meant we are unable to answer

objective 3) accurately.

We have a lack of data in relation to when all permanent mitigations were first

implemented and also do not have data of mitigations in place when zero elephants

were sighted. As a result, we were restricted in answering objective 4). We looked

at applying generalised linear modelling methods from Section 2.3 to model the

effect of mitigations on human-elephant conflict in the form of crop loss in Chapter

4. Looking at the best fitting GLM using BIC (Table 4.1.4), ‘Other spotlight’ and

‘eFence’ were the only significant mitigations fitted to the model that had negative

estimates – meaning that when implemented, they reduced crop loss. However,

upon fitting a GLMM with random monitor effect we discovered that the best

fitting model according to BIC (Table 4.2.3) only included ‘Other spotlight’ as a

significant mitigation with a negative estimate. We discussed in Section 4.2 that

the model containing both these mitigations with the random monitor effect was

not the best model, but it was proved to be a good fit to the data if both or either

of these were added to the model (Table 4.2.2). Therefore, we can conclude that

there is significant evidence to suggest that there is an association between crop

loss and both ‘Other spotlight’ and ‘eFence’. The association suggests that when

these mitigations are present, we see a reduction in crop loss which biologically

fits with the ecological expectation.

In light of this research, to inform future design of surveys and monitoring –

Objective 5) – we suggest that the mitigiations ‘Other spotlight’ and ‘eFence’ in
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particular are implemented to more villages across the two study sites in the hope

that these will help to reduce elephant-conflict of crop deprivation further. For

more reliable and complex types of analysis to take place in future, more infor-

mation should be recorded when there are sightings of elephants. This includes,

but is not limited to: a stronger effort for all monitors to record more information

for each data entry column, particularly the amount of crop loss and other forms

of human-elephant conflict (if applicable); train more community members to in-

crease the number of monitors; and creating logs of when mitigations are put into

and taken out of place.
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Appendix A

Data Inputs

A.0.0.1 MARK

(Excel) Monthly capture-recapture elephant data by herd.
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Appendix B

R Code

B.0.0.2 Geosphere

(R) Example of how distance in meters was calculated using Hijmans et al. [2019].

library("Distance")

library(geosphere)

library("readxl")

# Data collected by Monitor01

#Sightings

datael<- read_excel("SitingsAll2.xlsx", sheet=1)

head(datael)

#Monitor Locations

datamon<- read_excel("GoalparaSonitpur2.xlsx", sheet=1)

head(datamon)
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n <- length(datael$Latitude)

n2 <- length(datamon$Latitude)

latM <- c()

lonM <- c()

lonobs <- c()

latobs <-c()

for (i in 1:n){

if (datael$Monitor[i]=="Monitor01") {

for (j in 1:n2){

if (datamon$Name[j]==datael$Monitor[i]) {

latM <- c(latM,datamon$Latitude[j])

lonM <- c(lonM,datamon$Longitude[j])

latobs <- c(latobs,datael$Latitude[i])

lonobs <-c(lonobs,datael$Longitude[i])

}

}

}

}

# Geosphere package calculates distance from Monitor01’s location to the observation location for each observation in the vector. It then calculates the distance in meters in the form of vector ’distance’.

distance <- distVincentyEllipsoid(cbind(lonM,latM), cbind(lonobs, latobs))
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