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 14 

Abstract 15 

Monoclonal antibodies (mAbs) are high value agents used for disease therapy (‘biologic drugs’) or as 16 

diagnostic tools which are widely used in the health care sector. They are generally manufactured in 17 

mammalian cells, in particular Chinese hamster ovary (CHO) cells cultured in defined media, and are 18 

harvested from the medium. Rheb is a small GTPase which, when bound to GTP, activates mechanistic 19 

target of rapamycin complex 1 (mTORC1), a protein kinase that drives anabolic processes including 20 

protein synthesis and ribosome biogenesis. Here we show that certain constitutively-active mutants 21 

of Rheb drive faster protein synthesis in CHO cells and increase the expression of proteins involved in 22 

the processing of secreted proteins in the endoplasmic reticulum, which expands in response to 23 

expression of Rheb mutants. Active Rheb mutants, in particular Rheb[T23M], drive increased cell 24 

number under serum-free conditions similar to those used in the biotechnology industry. Rheb[T23M] 25 

also enhances the expression of the reporter protein luciferase and, especially strongly, the secreted 26 

Gaussia luciferase. Moreover, Rheb[T23M] markedly (2-3 fold) enhances the amount of this luciferase 27 

and of a model immunoglobulin secreted into the medium. Our data clearly demonstrate that 28 

expressing Rheb[T23M] in CHO cells provides a simple approach to promoting their growth in defined 29 

medium and the production of secreted proteins of high commercial value. 30 

Keywords 31 

Recombinant proteins; biologic drug; mTORC1; defined medium; Rheb 32 

Introduction 33 

Mammalian cell culture, most notably Chinese Hamster Ovary (CHO) cells, are commonly used to 34 

produce recombinant proteins such as monoclonal antibodies (mAbs) by the biopharmaceutical 35 

industry for use in both therapy and diagnosis (Goulet & Atkins, 2020). Such proteins offer enormous 36 

advances in disease therapy (or diagnosis) and are products of high commercial value. Over the last 37 

several decades there have been significant advances in the efficiency of CHO cells to produce these 38 

recombinant proteins (Budge et al., 2020; Kunert & Reinhart, 2016; Sharker & Rahman, 2020; 39 

Srirangan et al., 2020). However, the rate of protein production remains a significant bottleneck, 40 
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particularly for many of the novel format based biotherapeutics now in development,  and therefore 1 

there remains substantial interest in further advancing the productivity of CHO cells (Budge et al., 2 

2020; Sharker & Rahman, 2020). 3 

The rate of protein synthesis (mRNA translation) is a key limiting determinant of recombinant protein 4 

production (Godfrey et al., 2017; Khoo & Al-Rubeai, 2009; O'Callaghan et al., 2010; Roobol et al., 2020; 5 

Smales et al., 2004). The mechanistic target of rapamycin complex 1 (mTORC1) is a key regulator of 6 

protein synthesis (X. Wang & Proud, 2006). mTORC1 is a protein kinase that is activated by a variety 7 

of upstream signals, including amino acids (Kim et al., 2008; Sancak et al., 2008) and growth factors 8 

(Inoki et al., 2002; B. D. Manning et al., 2002), and acts as a master regulator of diverse anabolic 9 

processes including protein synthesis (Proud, 2019) and ribosomal biogenesis (Iadevaia et al., 2014; 10 

Saxton & Sabatini, 2017), both of which are critical for efficient protein production. This is achieved 11 

through phosphorylation of a number of downstream effectors such as ribosomal protein S6 kinase 1 12 

(S6K1) (Chung et al., 1992), eukaryotic elongation factor 2 kinase (eEF2K) (X. Wang et al., 2014), eIF4E-13 

binding protein 1 (4E-BP1) (Beretta et al., 1996), and Maf1 (Michels et al., 2010), a regulator of 14 

ribosomal RNA transcription. mTORC1 signalling is thus potentially a major positive regulator of 15 

efficient, high-level production of recombinant proteins in mammalian cells.  16 

mTORC1 is activated by the small GTPase Rheb (Ras homologue enriched in brain) when it is in its GTP-17 

bound form; its conversion to the inactive GDP-bound state is promoted by the tuberous sclerosis 18 

complex which includes the proteins TSC1 and TSC2, the latter acting as a GTPase-activator protein 19 

(GAP) for Rheb, thereby converting Rheb to its inactive GDP-bound state (Garami et al., 2003; Inoki et 20 

al., 2003; Tee et al., 2003). In turn, the ability of TSC1/2 to impair Rheb function is inhibited by 21 

signalling events activated by hormones, mitogenic stimuli and growth factors (Huang & Manning, 22 

2008; Inoki et al., 2002; B.D. Manning & Cantley, 2003; Zhang et al., 2003). We have recently 23 

discovered that several mutants of Rheb (which occur in certain human cancers) are resistant to the 24 

GAP activity of TSC2 and are thus ‘constitutively active’, promoting high levels of mTORC1 activity in 25 

human cells (Xie et al., 2020). 26 

The folding, assembly and maturation of most secreted proteins occurs, with the assistance of 27 

chaperones, within the endoplasmic reticulum (ER). Homeostatic control of the ER is mediated by the 28 

unfolded protein response (UPR) (Preissler & Ron, 2019). In response to protein disequilibrium in the 29 

ER, two contrasting consequences are achieved which in combination mediate homeostasis of the ER. 30 

Firstly, such stress leads to the global inhibition of protein synthesis. This is due to the phosphorylation 31 

of the -subunit of eIF2, catalysed by the ER-resident kinase, PERK, and in turn P-eIF2 inhibits the 32 

activity of eIF2’s guanine nucleotide-exchange factor, eIF2B. This  decreases the ‘load’ of new proteins 33 

to be folded within the ER (Wek, 2018). However, secondly, by virtue of their upstream open reading 34 

frames (uORFs), certain mRNAs undergo preferentially translation in response to P-eIF2α mediated 35 

inhibition of general protein synthesis (Harding et al., 2000). One such protein is ‘activating 36 

transcription factor 4’ (ATF4). ATF4 drives the expression of genes responsible for ensuring protein 37 

homeostasis, which are collectively called ER quality control (ERQC) genes (Preissler & Ron, 2019). 38 

ERQC genes mainly comprise one encoding chaperones and other proteins involved in folding new 39 

polypeptides. Thus the upregulation of ATF4 attenuates ER stress by increasing the protein folding 40 

capacity of the cell (Shaffer et al., 2004; Sriburi et al., 2004; M. Wang & Kaufman, 2016). 41 

Here we show that two Rheb mutants, T23M and E40K, drive constitutive mTORC1 signalling in human 42 

embryonic kidney (HEK293) and CHO cells boosting levels of proteins involved in ER homeostasis 43 

which enhances the production of recombinant protein including, importantly, its secretion from the 44 
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cells. Manipulation of mTORC1 signalling by these Rheb mutants therefore has the clear potential to 1 

enhance the production of proteins of high commercial value. 2 

Materials and Methods 3 

Cell Culture, Vectors and Transfection 4 

HEK293 cells were cultured in Dulbecco’s modified Eagle medium (DMEM) containing 10% foetal 5 

bovine serum and 1% penicillin/streptomycin at 37°C with 5% (v/v) CO2. Firefly Luciferase (FLuc) and 6 

Gaussia Luciferase (GLuc) expressing Chinese Hamster Ovary (CHO) cells were cultured in Ham’s F12 7 

medium containing 10% foetal bovine serum and 1% penicillin/streptomycin at 37°C with 5% (v/v) 8 

CO2. Expi-CHO cells were acquired from ThermoFisher Scientific (Thebarton SA, Australia; catalogue 9 

number A29127) and cultured in Expi-CHO™ Expression Medium. All cells were regularly tested for 10 

mycoplasma contamination. pRK7-FLAG-Rheb vectors were used as previously described (Xie et al., 11 

2020). peGFP-N1 neomycin selection vector was a kind gift from Dr. Timothy Sargeant. To create stable 12 

transfection vectors, DNA sequence encoding FLAG-Rheb was amplified from pRK7-FLAG-Rheb vectors 13 

via PCR with the addition of 5’ EcoRI and 3’ BamHI restriction sites. Amplicons were cloned into peGFP-14 

N1 neomycin selection vector via the EcoRI and BamHI restriction sites. Transfection into HEK293, 15 

FLuc-CHO and GLuc-CHO was performed using Lipofectamine 3000 (ThermoFisher Scientific, SA, 16 

Australia) according to the manufacturer’s instructions. Transfections into EXPI-CHO™ was performed 17 

via the Expifectamine™ transfection system as per the manufacturer’s instructions. To create cells 18 

stably expressing Rheb mutants, vectors were transfected into EXPI-CHO™ cells which were cultured 19 

in the presence of 1 mg/mL G418 for 6 weeks to select stable transfectants. Rheb expression was 20 

assessed via SDS-PAGE and Western Blot. 21 

Immunofluorescence 22 

HEK293 cells were seeded into 2 cm x 1 cm chamber slides at a density of 50,000 viable cells/slide 24 23 

h prior to transfection. Cells were grown until they had reached 80% confluence. Medium was then 24 

removed, and cells washed 3x in PBS before being fixed in 1 mL of 4% (v/v) paraformaldehyde in PBS 25 

for 15 min. Cells were then washed 3x with PBS before being permeabilized with 1 mL of freshly made 26 

0.05% (v/v) Triton X-100 in PBS for 5 min. Cells were washed 3x with PBS and blocked for 1 h in 10% 27 

(v/v) normal donkey serum. Cells were washed 3x with PBS before 400 µL of PBS containing 2% (v/v) 28 

normal donkey serum and 1/200 dilutions of indicated primary antibodies was added. Cells were left 29 

in primary antibody at 4°C overnight. Primary antibodies were removed, and cells washed 3x in PBS 30 

before secondary antibody solution of 400 µL PBS containing 2% (v/v) normal donkey serum and 1/200 31 

dilutions of donkey anti-rabbit AF488 and donkey anti-mouse AF594 antibodies were added to each 32 

sample. Cells were incubated under foil at room temperature for 1 h before secondary antibodies 33 

were removed and cells washed 3x with PBS. Cells were mounted with 400 µL of VectaShield Hardset 34 

containing DAPI and cover slips were carefully applied. Cells were then incubated overnight in a 5% 35 

(v/v) CO2 incubator before being sealed with nail polish. Images were collected using a Leica TCS 36 

SP8X/MP (Leica Microsystems, NSW, Australia) confocal microscope and processed with ImageJ 37 

software package. Cell volume was calculated relative to the β-actin counterstain. Antibodies used in 38 

this study are described in Supplementary Table 1. 39 

SUnSET Assay 40 

To perform surface sensing of translation (SUnSET) assays, cells were grown to 70-80% confluency for 41 

adherent cells or 4-6x106 cells/mL for suspension cells. in fully supplemented medium. Medium was 42 

then replaced for Earle’s Balanced Salts Solution (EBSS). For one well, medium was replaced with EBSS 43 

containing 1 µM cycloheximide (CHX) as a positive control. After 30 min, puromycin was added to the 44 
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cells to a final concentration of 1 µM and allowed to incorporate for 30 min. Cell lysates were then 1 

harvested for SDS-PAGE immunoblot analysis as described below, with detection of incorporated 2 

puromycin via an anti-puromycin antibody. 3 

SDS-PAGE and Immunoblot Analysis 4 

SDS-PAGE/Western blot analysis was carried out as previously described (Xie et al., 2020). Briefly, cells 5 

were lysed in ice-cold lysis buffer containing 1% Triton X-100, 150 mM NaCl, 20 mM Tris-HCl pH 7.5, 6 

2.5 mM sodium pyrophosphate, 1 mM EDTA, 1 mM EGTA, 1 mM sodium orthovanadate, 1 mM 7 

dithiothreitol (DTT) and 1 mM β-glycerophosphate supplemented with protease inhibitor cocktail. 8 

Protein concentrations were determined via Bradford assay and normalized. Equal aliquots of protein 9 

(20 g) were denatured in Laemmli loading buffer, heated at 95°C for 3 min and separated by SDS-10 

PAGE using gels containing 7-13% acrylamide and 0.1%-0.36% bis-acrylamide as required. Proteins 11 

were transferred to nitrocellulose membranes, which were blocked and incubated with primary 12 

antibody as indicated (Supplementary Table S1). The relevant fluorescently-conjugated secondary 13 

antibody was applied and signals were imaged using a LiCor Odyssey® CLx imager (Millennium Science, 14 

VIC, Australia). 15 

RT-qPCR 16 

Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed by first 17 

extracting RNA via phenol-chloroform extraction using TriReagent (Sigma-Aldrich, NSW, Australia) as 18 

per the manufacturer’s instructions (Xie et al., 2020). Contaminating DNA removal and reverse 19 

transcription were then performed on equal amounts of RNA using QuantiNova™ Reverse 20 

Transcription Kit. cDNA diluted 1:10 in nuclease free water was used as a template for qPCR reactions 21 

with SYBR Green PCR Master Mix (Sigma-Aldrich). For a list of primers used for qPCR reactions, see 22 

Supplementary Table S2. 23 

Bromodeoxyuridine (BrdU) Assay 24 

Was performed as previously described (Xie et al., 2020). BrdU (bromodeoxyuridine) Cell Proliferation 25 

Assay Kit (Cell Signalling Technology, Danvers, MA #6813) was performed as per the manufacturer’s 26 

instructions. Cells were plated at 10,000 cells per well in a 96-well plate 2 h prior to addition of 10 µl 27 

of 10x BrdU solution. Two h after adding BrdU, cells were fixed/denatured for 30 min. BrdU detection 28 

antibody was diluted 1:100 and added to cells for 1 h. Cells were washed 3x in wash buffer before 29 

addition of HRP-linked secondary antibody for 30 min. Cells were washed 3x before addition of 30 

3,3’,5,5’-tetramethylbenzidine. After 30 min, STOP solution was added and absorbance determined at 31 

450 nm. BrdU data are presented as absorbance and not plotted against a standard curve and thus 32 

cell number is not calculated. 33 

Firefly and Gaussia Luciferase Assays 34 

Firefly luciferase assay was performed using Steady-Glo® Luciferase Assay System (Promega, NSW 35 

Sydney) as per the manufacturer’s instructions. To prepare cells, FLuc-CHO cells were seeded in 6-well 36 

plates and transfected with vector encoding Rheb mutants. Cells were grown for 24 h and then seeded 37 

into 96-well plates. Cells were allowed to grow for 24 h before Firefly Luciferase assay was performed. 38 

100 µL of assay reagent was added to each well and 5 min allowed for cell lysis. Luminescence was 39 

then measured using GloMax® Discover microplate reader (Promega Australia, NSW, Australia) 40 

Gaussia luciferase (GLuc) assays were performed using the BioLux® Gaussia Luciferase Assay Kit (New 41 

England Biolabs, Ipswich, MA) as per the manufacturer’s instructions. Cells were prepared as per the 42 

Firefly luciferase assay. GLuc Assay solution was prepared by mixing 1:1000 BioLux® GLuc Substrate 43 
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and BioLux® GLuc Assay buffer. 20 µL of cell growth medium was transferred to a black 96-well plate 1 

and 50 µL GLuc Assay solution added. Luminescence was read using a GloMax® Discover microplate 2 

reader with a 5 second integration. 3 

Cell Growth Curves 4 

Cell growth curves were produced by seeding cells at a density of 1000 cells per well in 6-well plates. 5 

Cells were allowed to grow for 24 h before medium was replaced as indicated. Cells were counted on 6 

a haemocytometer every 24 h for 7 days. For GLuc-CHO cells, cells were counted every 4 h from 24 h 7 

post-seeding to 60 h post seeding. 8 

IgG Production and Secretion Assay 9 

ExpiCHO-S™ cells stably expressing Rheb[WT], [T23M] or [E40K] were seeded at a density of 4 x 106 10 

cells/mL in 125 mL shaker flasks and allowed to grow for 16 h to a density of 10 x 106 cells/mL. Cells 11 

were then diluted to 6 x 106 cells/mL and transfected with pcDNA3.2 vector encoding heavy and light 12 

chains of rabbit IgG1 at 2:1 light:heavy chain ratio via ExpiFectamine™ CHO Transfection Kit according 13 

to the manufacturer’s instructions. ExpiFectamine™ CHO/plasmid complexes were prepared by 14 

diluting 12 µg plasmid in 1 mL OptiPRO™ medium and 80 µL of ExpiFectamine™ CHO Reagent in 920 15 

µL OptiPRO™ medium. Diluted ExpiFectamine™ reagent was added to diluted DNA and incubated at 16 

room temperature for 5 min before ExpiFectamine™ CHO/DNA complex was added to cells. Cells were 17 

incubated at 37°C and 8% CO2 on an orbital shaker at 125 rpm at 19 mm shaking diameter. After 24 h, 18 

150 µL of ExpiCHO™ Enhancer and 6 mL of ExpiCHO™ Feed were added to cells. Twenty µL of medium 19 

were removed each day in order to determine rate of secretion. 10-days post transfection, cells were 20 

pelleted via centrifugation at 1000 rpm for 10 min and supernatant collected. 21 

IgG concentration in growth medium was determined via Easy-Titre™ Rabbit IgG Assay Kit as per the 22 

manufacturer’s instructions. Growth medium containing rabbit IgG1 were diluted 1:1000 in PBS. 20 23 

µL of Anti-IgG Sensitized Beads were transferred to a 96-well plate and 20 µL of diluted cell medium 24 

containing rabbit IgG added. Plates were mixed on a plate mixer for 5 min before 100 µL of blocking 25 

buffer was added to each well. Absorbance was measured at 405 nm and IgG concentration calculated 26 

from a standard curve of know IgG concentration generated from 1:2 serial dilutions starting at 500 27 

ng/mL. 28 

Specific productivity was calculated using the following equation: 29 

𝑄𝑝 (𝑝𝑔/𝑐𝑒𝑙𝑙/𝑑𝑎𝑦) =  
𝑡𝑖𝑡𝑟𝑒2 − 𝑡𝑖𝑡𝑟𝑒2

𝑑𝑒𝑛𝑠𝑖𝑡𝑦2 − 𝑑𝑒𝑛𝑠𝑖𝑡𝑦1
× 𝐷𝐺𝑅 30 

where, 31 

𝐷𝑎𝑖𝑙𝑦 𝐺𝑟𝑜𝑤𝑡ℎ 𝑅𝑎𝑡𝑒 (𝐷𝐺𝑅) =
ln(𝑑𝑒𝑛𝑠𝑖𝑡𝑦2) − ln (𝑑𝑒𝑛𝑠𝑖𝑡𝑦1)

𝑡𝑖𝑚𝑒2 − 𝑡𝑖𝑚𝑒1
/24 32 

 33 

Results 34 

Rheb-T23M and E40K drive mild endoplasmic reticulum stress through increased protein synthesis 35 

In a recent study (Xie et al., 2020), we showed that certain mutations in Rheb (which arise in human 36 

cancers) are able to drive hyperactive mTORC1 signalling in mouse or human cells. As mTORC1 is well 37 

known to promote multiple steps in mRNA translation (protein synthesis), we assessed whether these 38 

Rheb mutants can drive increased protein synthesis. To do this we employed surface sensing of 39 
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translation western blot assay (SUnSET-WB (Schmidt et al., 2009)). In the SUnSET-WB technique, cells 1 

are treated with a low concentration of puromycin that is incorporated into nascent polypeptides. 2 

Incorporated puromycin can then be detected by western blot with puromycin-specific antibodies. 3 

Thus SUnSET-WB is a radioactive-free assay to measure rates of protein synthesis. For our initial 4 

experiments, we elected to utilise HEK293 cells as they are a common cell line used for cell signalling 5 

studies, used for the production of biotherapeutic proteins, and cells in which we have previously 6 

shown Rheb mutations drive constitutive mTORC1 signalling. HEK293 cells transiently transfected with 7 

vectors encoding FLAG-Rheb[WT], [T23M], [Y35N] or [E40K] or an empty vector (EV) were transferred 8 

to Dulbecco’s phosphate buffered saline (D-PBS) for 30 min prior to the addition of 1 µM puromycin 9 

for an additional 30 min. One well of untransfected cells was pre-treated with 50 µg/mL of 10 

cycloheximide, a potent inhibitor of protein synthesis, for 30 minutes prior to the addition of 11 

puromycin to provide a ‘negative control’ for any immunostaining that is not due to ongoing protein 12 

synthesis. Cell lysates were then harvested for western blot analysis. Rheb[T23M] and [E40K] each 13 

stimulated a large increase in puromycin incorporation compared to either Rheb[WT] or EV (Fig. 1a; 14 

quantified in Fig. 1b). Interestingly, despite Rheb[Y35N] being known to drive hyperactive mTORC1 15 

signalling, it did not increase puromycin incorporation, in line with the fact that Rheb mutants differ 16 

in their downstream effects (Xie et al., 2020). 17 

It has been shown that increases in overall protein synthesis can overload the protein folding capacity 18 

of the endoplasmic reticulum (ER) resulting in ER stress and activation of the unfolded protein 19 

response (Sriburi et al., 2004). This process has been observed in response to increased mTORC1 20 

activity (Appenzeller-Herzog & Hall, 2012; Dong et al., 2015) and results in an expansion of the ER and 21 

therefore increased protein folding capacity (Shaffer et al., 2004; Sriburi et al., 2004; M. Wang & 22 

Kaufman, 2016). We hypothesised that Rheb-mutants may drive mild ER stress resulting in increased 23 

ER volume and protein folding capacity. To test this, we first studied several proteins involved in the 24 

ATF4 arm of the UPR or in protein folding. HEK293 cells expressing plasmids encoding Rheb[WT] or 25 

mutants of Rheb showed increased expression of ATF4 compared to the empty vector (Fig. 1c). 26 

Interestingly, there was no significantly greater change in ATF4 protein expression in cells expressing 27 

Rheb mutants compared to WT. However, Rheb[T23M] and [E40K] did promote an increase, or tended 28 

to cause an increase, in classical UPR markers or ER resident proteins including PERK, BiP/Grp78, IRE-29 

1, PDI and ERO1-1 (Fig. 1c; quantified in Supplementary Figure 1). Calnexin did not change. There 30 

was also an increase in the protein folding markers ERO1-Lα (Fig. 1c; quantified in Supplementary Fig. 31 

S1).  32 

To assess whether these changes reflected increased levels of the corresponding mRNAs, we 33 

performed RT-qPCR for the mRNAs encoding BiP (HSPA5; Fig. 1d), PDI (PDI; Fig. 1e), IRE1α (ERN1; Fig. 34 

1f), and ATF4 (ATF4; Fig. 1g) whose levels were increased by mutant Rheb expression. Increases in 35 

mRNAs encoding both UPR and protein folding proteins correlated with protein increases with the 36 

notable exception of ATF4 mRNA which was significantly higher in cells expressing Rheb mutants 37 

compared to both the EV and Rheb[WT] (Fig. 1d-g). To determine if these observed changes are 38 

associated with an increase in ER volume, we performed immunofluorescence on HEK293 cells 39 

transiently expressing Rheb mutants or WT or an empty vector. To image the ER, we chose to probe 40 

with an anti-calnexin antibody as calnexin is an ER surface protein and since there was no significant 41 

change in the level of calnexin protein with the different Rheb mutants (Fig. 1b) (so that any alterations 42 

seen in the extent of the ER assessed in this way would be independent of changes in its overall levels). 43 

Both Rheb[T23M] and [E40K] promoted a significant increase in ER volume compared to Rheb[WT] 44 

and EV. Rheb[Y35N] did not promote an increase in ER volume (Fig. 2a; quantified Fig.2b). These data 45 

suggest the Rheb[T23M] and [E40K] mutants can each promote increased protein synthesis which, in 46 
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turn, drives a mild ER stress resulting in increased ER volume and concomitantly enhanced protein 1 

folding capacity. 2 

The data for HEK293 cells prompted us to extend our studies to CHO cells, the dominant type of cells 3 

used in industry for producing recombinant proteins, particularly as an expanded ER has been 4 

reported to enhance the ability of CHO cells to produce secretory recombinant proteins (Budge et al., 5 

2020). 6 

Rheb mutants drive constitutive mTORC1 signalling in CHO cells 7 

Enabling cells to produce more protein is highly beneficial for the efficient production of therapeutic 8 

proteins such as monoclonal antibodies (mAbs). mAbs are most commonly produced from Chinese 9 

Hamster Ovary (CHO) cells (Kunert & Reinhart, 2016; Sharker & Rahman, 2020). Given that Rheb 10 

mutants increase protein synthesis and enhance ER capacity in HEK293 cells, we hypothesised that 11 

these mutants, when expressed in CHO cells, may also result in increased titres of secreted mAb. For 12 

our initial experiments, we utilised our previously reported CHO cell lines (Mead et al., 2009) that 13 

stably express either the secreted luciferase reporter Gaussia Luciferase (GLuc) or firefly Luciferase 14 

(FLuc), which is not secreted. First of all, it was important to confirm that Rheb mutants can also drive 15 

hyperactive mTORC1 signalling in CHO cells. Phosphorylation of all mTORC1 effectors was slightly 16 

elevated in cells expressing Rheb[WT] compared to cells that received EV and was almost completely 17 

abolished in both GLuc-CHO (Fig. 3a) and FLuc-CHO cells (Fig. 3b) that were co-transfected with FLAG-18 

TSC1/2 (and WT or mutant Rheb). This is an expected result given that over-expression of Rheb[WT] 19 

but not TSC1/2 shifts the stoichiometric balance of Rheb and TSC in favour of Rheb whereas it is 20 

expected that endogenous TSC is not enough to stimulate complete hydrolysis of all GTP-bound Rheb. 21 

Cells expressing Rheb[T23M] or [E40K] showed higher levels of phosphorylation of S6K1 and 4E-BP1 22 

in the absence of TSC1/2 overexpression compared to both EV and Rheb[WT] in GLuc-CHO (Fig. 3a) 23 

cells and compared to EV in FLuc-CHO cells (Fig. 3b). However, in contrast to Rheb[WT], when co-24 

expressed with TSC1/2, P-S6K1 and P-4E-BP1 remained elevated in cells expressing Rheb[T23M] and 25 

[E40K] and were elevated in Rheb[Y35N] suggesting these mutants drive hyperactivation of mTORC1 26 

(i.e., which is insensitive to inhibition by TSC) in GLuc-CHO (Fig. 3a) and FLuc-CHO (Fig. 3b) cells. These 27 

data are consistent with our findings for expression of these mutants of Rheb in human cells (Xie et 28 

al., 2020).  29 

We next sought to determine the effect of Rheb mutations on cell proliferation. None of the Rheb 30 

mutants had any effect on cell proliferation when GLuc-CHO cells were grown in fully supplemented 31 

medium or medium supplemented with 1% FBS (Fig. 3c, Supplementary Fig. S2a). However, when 32 

GLuc-CHO cells were grown in medium supplemented with 0.5% FBS, Rheb[T23M] promoted both an 33 

increased rate of proliferation and, presumably as a consequence, an increased total number of cells 34 

(Supplementary Fig. S2b). This was even more pronounced when cells were grown in the absence of 35 

FBS, with Rheb[T23M] promoting a marked increase in the rate of proliferation (Fig. 3d). To confirm 36 

these results, BrdU incorporation assays were performed in order to quantify more directly the effect 37 

of Rheb[T23M] on cell proliferation. Consistent with our findings for HEK293 cells (Xie et al., 2020), 38 

Rheb[T23M], [Y35N] and [E40K] each drove faster proliferation of both GLuc-CHO and FLuc-CHO cells 39 

compared to Rheb[WT] or EV (Fig. 3e/f). 40 

Rheb[T23M] and [E40K] drive increased protein synthesis and secretion dependent on ER stress 41 

To test whether Rheb mutants drive an increase in recombinant protein production in CHO cells, we 42 

transfected FLuc-CHO cells with vectors encoding Rheb mutants and performed firefly luciferase 43 

assays every 48 h from days 1-7. In order to determine if the protein production capacity of individual 44 
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cells was increased (and to take into account possible differences in cell number due to the effect of 1 

Rheb mutants on cell proliferation), the firefly luciferase assay data were normalised to the number 2 

of cells present as counted on a haemocytometer. Cells expressing Rheb[T23M] showed a small yet 3 

significant increase in Firefly luciferase (Fig. 4a/b) indicating an increase in protein production. 4 

Interestingly, the other Rheb mutants tested did not significantly increase the accumulation of firefly 5 

luciferase suggesting that while they promote constitutive mTORC1 activity, this does not result in the 6 

general upregulation of protein production.  7 

Next, we sought to determine the effect of Rheb mutants on the output of a secreted protein, which 8 

is the key parameter for the production of recombinant proteins of commercial interest, which are 9 

harvested from the culture medium. To do this, we transfected GLuc-CHO cells with vectors encoding 10 

Rheb mutants and performed Gaussia luciferase assays on the growth media. As with the firefly 11 

luciferase assays, results were normalised to cell number to give an indication of accumulated Gaussia 12 

luciferase secretion on a per-cell basis. In contrast to firefly luciferase production, Rheb[T23M], [Y35N] 13 

and [E40K] each promoted a significant increase in GLuc secretion as calculated in this way (Fig. 4c). 14 

Cells expressing these mutants showed an approximately 3-fold increase in GLuc secretion after 7 15 

days; no difference was seen in the amounts of intracellular GLuc (not shown), consistent with Rheb 16 

mutants boosting secretion of the additional GLuc. As expected, treatment with the potent mTOR 17 

inhibitor AZD8055 (Chresta et al., 2010) blocked the effect of mutant Rheb (Fig. 4c/d). These data 18 

suggest that, as well as increasing protein synthesis, Rheb mutants may also increase cells’ secretory 19 

capacity, consistent with the findings for ER expansion in HEK293 cells. As increased ER volume is 20 

known to increase secretory capacity (Budge et al., 2020; M. Wang & Kaufman, 2016), we also 21 

performed the GLuc assay using cells treated with a combination of the ER stress response inhibitors 22 

iPERK (Axten et al., 2012), a compound that inhibits the kinase activity of PERK, and ISRIB (Sidrauski et 23 

al., 2013), a compound that interferes with the ability of phosphorylated eIF2 to inhibit the activity of 24 

eIF2B (Sidrauski et al., 2015). Inhibition of the ER stress response dramatically decreased the secretion 25 

of GLuc from cells expressing Rheb mutants (Fig. 4e) indicating Rheb-mediated ER expansion is crucial 26 

for increased GLuc secretion. Consistent with this, western blot analysis of GLuc-CHO cells transiently 27 

expressing Rheb mutants or transfected with an empty vector show that Rheb[T23M] and [E40K] 28 

significantly drive increased expression of the ATF4 arm of the UPR (Fig. 4f). 29 

Rheb[T23M] and [E40K] drive increased mAb secretion under conditions similar to those used in 30 

industry 31 

While GLuc-CHO cells offer a good reporter system for interrogating the effect of Rheb mutants on 32 

protein secretion, there are several limitations that make these cells unsuitable for use as an industrial 33 

research tool. First, to be useful in an industrial context, CHO cells must be grown in suspension (in 34 

chemically defined, serum-free media, lacking serum). Second, while GLuc is a secreted protein, it is 35 

not a model biotherapeutic protein and, unlike antibodies, does not undergo glycosylation. To address 36 

these issues, we acquired EXPI-CHO™ cells and modified them to stably express Rheb[WT], [T23M], 37 

[Y35N] or [E40K] (Supplementary Fig. S3). Consistent with the data for GLuc-CHO cells, in EXPI-CHO 38 

cells stably expressing Rheb mutants or Rheb[WT], [T23M] and [E40K] drove increased 39 

phosphorylation of rpS6 at Ser240/244as well as increased phosphorylation of 4E-BP1 at Thr37 and 40 

Thr46 suggesting that Rheb[T23M] and [E40K] drive hyperactive mTORC1 signalling in these cells (Fig. 41 

5a).  42 

In addition, Rheb[T23M] and [E40K] each drove increased expression of the ATF4 arm of the UPR as 43 

well as of ER stress markers such as BiP (Fig. 5b). Interestingly, we were unable to detect any 44 

differences in protein synthesis via SUnSET assay (Fig. 5c). This is likely because these cells stably 45 

express Rheb mutants and therefore increased protein synthesis likely results in increased total 46 
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amounts of protein; as the amounts of cell lysate loaded onto the immunoblot gels are adjusted for 1 

total protein, such normalisation will effectively ‘eliminate’ any effect on the overall rate of protein 2 

synthesis. Cells expressing Rheb[T23M] or [E40K] also showed significantly faster cell proliferation as 3 

assessed by counting cells on a haemocytometer every 24 h from days 1-7 (Fig. 5d) as well as by BrdU 4 

assay (for DNA synthesis; Fig. 5e). 5 

To determine the effect of Rheb mutants on mAb production and secretion in the suspension-grown 6 

cells, we transfected EXPI-CHO™ cells with a vector encoding the heavy and light chains of rabbit IgG1 7 

and grew the cells in serum-free, chemically-defined medium for 10 days with the cells being fed on 8 

day 2. This more closely mimics the type of conditions the biopharmaceutical industry would use when 9 

using CHO cells and a transient expression approach to produce a recombinant IgG. We found that 10 

after 10 days of culture, Rheb[T23M] and [E40K] promoted a 2-3 fold increase in IgG1 yield (Fig. 5f). 11 

However, given that cells expressing Rheb[T23M] and [E40K] proliferate more quickly (Fig. 5d/e), it 12 

was possible that this increase was the result of simply having more cells for longer. It was therefore 13 

important to determine the specific productivity (Qp) of each cell line, Qp being a measure of how 14 

much protein is being secreted from each cell per day (pg protein/cell/day). We found that the Qp of 15 

cells expressing Rheb[T23M], [Y35N] or [E40K] at day 3 (the earliest time point where IgG can be 16 

reliably detected) is approximately the same at about 25 pg protein/cell/day and slightly higher than 17 

the approximately 20 pg protein/cell/day produced by cells expressing Rheb[WT]. However, the Qp of 18 

cells expressing Rheb[WT] and [Y35N] decreased much more rapidly over the next 7 days than cells 19 

expressing Rheb[T23M] or [E40K] (Fig.5g). To determine whether the increased and sustained 20 

productivity of cells expressing Rheb[T23M] or [E40K] reflected increased synthesis of IgG or only 21 

increased secretion, we performed western blot analysis on samples taken at days 0, 5 and 10 to 22 

determine whether there was a change in intracellular IgG. At day 0 intracellular IgG could not be 23 

detected, while at days 5 and 10 cells expressing Rheb[T23M] and [E40K] contained more intracellular 24 

IgG than Rheb[WT] or [Y35N] cells (Fig. 5h). This suggests that Rheb[T23M] and [E40K] each promote 25 

both the increased production and, very importantly, secretion of this recombinant antibody. 26 

Discussion 27 

It is clear that any increase in IgG titre in medium, provided the quality of the product is not 28 

compromised, is beneficial to the biopharmaceutical industry in terms of enhancing the production of 29 

the desired product and particularly its levels in the cell medium from which is it harvested. Here we 30 

show that Rheb mutants that we previously identified (Xie et al., 2020) are capable of increasing IgG 31 

titres in CHO cells grown in suspension in chemically-defined, serum-free medium replicating 32 

industrial growth conditions.  33 

Consistent with our previous study (Xie et al., 2020), we found that the exogenous expression of the 34 

Rheb mutants Rheb[T23M], [Y35N] and [E40K] drive constitutive mTORC1 signalling to a greater 35 

extent than overexpression of Rheb[WT] through insensitivity to TSC-GAP activity and thus rendering 36 

mTORC1 insensitive to removal of upstream activators. We show that in HEK293 cells, Rheb[T23M] 37 

and [E40K] drive an increased rate of protein synthesis consistent with previous studies (Xie et al., 38 

2020) as well as the known function of mTORC1 as a key regulator of protein synthesis (Proud, 2019) 39 

and ribosome biogenesis (Iadevaia et al., 2014). mTORC1 also promotes mitochondrial function (de la 40 

Cruz López et al., 2019). A very recent paper has also shown the mTORC1 signalling can stimulate ATF4 41 

expression independently of the UPR and thereby upregulate a subset of ATF4 target genes (Torrence 42 

et al., 2020). As a key activator of mTORC1 signalling, the expression of an active Rheb mutant such as 43 

T23M can drive multiple anabolic pathways, so that this single manipulation can lead to enhanced cell 44 

growth and proliferation and faster protein synthesis. This obviates the need to modify multiple genes 45 

thereby offering a substantial advantage for cell engineering. 46 
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We, found that Rheb[WT] and, unexpectedly, despite promoting constitutive mTORC1 signalling under 1 

specific conditions Rheb[Y35N], did not increase protein synthesis. This is consistent with our finding 2 

that, while Rheb[T23M] and [E40K] increased the levels of ATF4, Rheb[Y35N] did not. Rheb[T23M] and 3 

[E40K] also resulted in an increase in markers of the integrated stress response and expansion of the 4 

endoplasmic reticulum (ER). 5 

These data suggest that the increase in protein synthesis driven by constitutive activation of mTORC1 6 

increases the protein folding load on the ER. As unfolded proteins accumulate in the ER, the integrated 7 

stress response becomes activated; in the short term, this drives increased expression of proteins 8 

required for protein folding and expansion of the ER. If this expansion is enough to accommodate the 9 

increased protein folding requirements, cells can maintain increased protein synthesis without 10 

progressing into apoptosis which can occur during prolonged activation of the UPR (Shaffer et al., 11 

2004; Sriburi et al., 2004; M. Wang & Kaufman, 2016). This mechanism allows cells to produce more 12 

protein without adverse effects. The fact we only observe this phenomenon in cells expressing 13 

Rheb[T23M] and [E40K] but not Rheb[WT] or Rheb[Y35N] is surprising and suggests that mTORC1 14 

activation alone is not sufficient to support a long-term increase in protein synthesis. We previously 15 

showed through proteomic analysis of NIH3T3 cells stably expressing Rheb[T23M] and [E40K] that 16 

additional pathways are activated by these mutations. Cells expressing Rheb[T23M] showed increased 17 

reliance on anerobic glycolysis while cells expressing Rheb[E40K] showed increased autophagic flux 18 

(Xie et al., 2020). It is possible that activation of these pathways does not occur in cells expressing 19 

Rheb[Y35N] so that they cannot sustain the energy or nutrient requirements to sustain prolonged 20 

increases in protein synthesis. This hypothesis also offers an explanation for the observation that the 21 

effects of Rheb[T23M[ and [E40K] are more evident under metabolic stress. The increased availability 22 

of biological precursors due to increased glycolysis or autophagy may grant cells expressing 23 

Rheb[T23M or [E40K] some degree of resistance to metabolic stress. 24 

We show that this mechanism of mTORC1-driven activation of the UPR is required for increased 25 

secretion of the reporter Gaussia luciferase from CHO cells stably expressing GLuc when grown in 26 

monolayer. This hypothesis is supported by the observation that both inhibition of mTOR and 27 

inhibition of the ATF4 arm of the UPR decreased GLuc secretion. We also observed a significant 28 

upregulation of ATF4 in cells expressing Rheb[T23M] or [E40K]. We show that this is also true for CHO 29 

cells grown in suspension in chemically-defined, serum-free medium. We found that stable expression 30 

of Rheb[T23M] or [E40K] resulted in an increase in the specific productivity compared to cells 31 

expressing Rheb[WT] or [Y35N] and a 2-3 fold increase in IgG1 secretion compared to Rheb[WT] 32 

overexpression or cells expressing only their endogenous Rheb. 33 

These results clearly point to a potential approach to significant increasing the efficiency of production 34 

of commercially valuable proteins. A further development of this approach would be to generate cell 35 

lines stably expressing Rheb[T23M] or with the chromosomal copies of the Rheb gene mutated 36 

appropriately. Since every cell in the population would then be expressing mutant Rheb (which is not 37 

the case for transient transfection), an even greater augmentation of protein output would be 38 

expected. The ability to double product output over the same time-frame without increasing nutrient 39 

input promises to make production of valuable recombinant proteins such as expensive therapeutic 40 

agents more efficient and may therefore lead to significant reductions in the cost of treatment, thus 41 

allowing more people being able to benefit from these highly effective treatments and/or at a lower 42 

cost. Our findings may thus be of direct value to the burgeoning ‘biological drug’ sector. 43 
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Figure 1: Overexpression of Rheb promotes protein synthesis and increases ER stress markers. (A) 1 

HEK293 cells were transfected with indicated vectors (EV = empty vector) and grown for 48 h prior 2 

to harvest. Lysates were harvested for SDS-PAGE western blot analysis with the indicated antibodies. 3 

SuNSET assays were then performed; the growth medium was changed for EBSS 90 min prior to 4 

addition of 30 µM puromycin for 30 min. Samples indicated ‘CHX’ were pre-treated with 5 

cycloheximide, to inhibit ongoing protein synthesis. (B) Quantification of data from (A). (C) Lysates of 6 

cells that had been transfected with the indicated vectors were analysed by SDS-PAGE and 7 

immunoblot using the indicated antibodies. (D-G) RT-qPCR analysis for known ER stress markers was 8 

performed on cDNA extracted from HEK293 cells expressing the indicated Rheb mutants or an 9 

empty vector (EV). Figures represent mean ± s.d for 3 independent experiments. All graphs 10 

represent mean ± s.d for 3 independent experiments. The data were analysed via Student’s t-test 11 

compared to EV. *: P < 0.05; ** P < 0.01; *** P < 0.001. 12 

Figure 2: Rheb-T23M and E40K drive increased ER volume. (A) Immunofluorescence of HEK293 cells 13 

transiently expressing the indicated Rheb mutants or EV. Cells were transfected with indicated 14 

vectors 24 h prior to fixation and addition of the indicated primary antibodies. (B) Quantification of 15 

(A) for the ratio of area containing Calnexin : area containing actin. Graph represent mean ± s.d for 3 16 

independent experiments. The data were analysed via Student’s t-test. *: P < 0.05; ** P < 0.01. 17 

Figure 3: Rheb mutants drive constitutive mTORC1 signalling in GLuc-CHO cells. (A) SDS-PAGE and 18 

western blot analysis of lysates harvested from GLuc-CHO cells transiently expressing the indicated 19 

Rheb mutants or transfected with an empty vector (EV); some were co-transfected with FLAG-TSC1/2, 20 

as indicated. The growth medium was replaced with medium lacking FBS for 16 h followed by D-PBS 21 

for 60 min immediately prior to harvesting. (B) As in (A) for FLuc-CHO cells. (C) GLuc-CHO cells 22 

expressing the indicated Rheb mutants or an empty vector (EV) were grown in fully supplemented 23 

media with cell number recorded every 24 h for 7 days. (D) As in (C) with cells grown in media lacking 24 

FBS. Figures are representative of mean ± S.D for 3 independent experiments. (E) BrdU incorporation 25 

assay of FLuc-CHO cells expressing the indicated Rheb mutants or EV. Cells were allowed to grow in 26 

fully supplemented media for 24 h before addition of BrdU for 1 h. (F) As in (E) for GLuc-CHO cells. All 27 

graphs represent mean ± s.d for 3 independent experiments. The data were analysed via Student’s t-28 

test compared to EV. *: P < 0.05; *** P < 0.001. 29 

Figure 4: Rheb mutants promote increased secretion of Gaussia Luciferase. (A) CHO cells stably 30 

expressing Firefly luciferase (FLuc) were transfected with the indicated Rheb mutants or an empty 31 

vector (EV); FLuc assays were then performed every 48 h for 7 days. Results are normalized to cell 32 

number. (B) Quantification of data in (A) for day 7. (C) CHO cells stably expressing Gaussia Luciferase 33 

(GLuc) were transfected with the indicated Rheb mutants or an empty vector (EV) and treated with 34 

either DMSO (solid line) or 1 µM AZD8055 (dashed line) for the duration of the experiment. GLuc 35 

assays performed on growth media every 48 h for 7 days. Results are normalized to cell number. (D) 36 

Quantification of data in (C) for day 7. (E) As in (C), but cells were treated with a cocktail of 1 µM 37 

iPERK and 1 µM ISRIB (dashed line). Experiments (C) and (E) were performed simultaneously but are 38 

presented separately for clarity. (F) SDS-PAGE western blot analysis of cell lysates harvested from 39 

GLuc-CHO cells transiently transfected with the indicated Rheb mutants or an empty vector (EV). All 40 

graphs represent mean ± s.d for 3 independent experiments. The data were analysed via Student’s t-41 

test. *: P < 0.05; ** P < 0.01; *** P < 0.001. 42 

Figure 5: Rheb T23M and E40K drive increased secretion of mAb from CHO-S cells. (A) SDS-PAGE 43 

western blot analysis of lysates harvested from Expi-CHO cells stably over-expressing the indicated 44 

Rheb mutant or transfected with empty vector (EV). (B) SDS-PAGE western blot analysis of lysates 45 

harvested from Expi-CHO cells stably over-expressing the indicated Rheb mutant or transfected with 46 
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empty vector (EV). (C) EXPI-CHO cells stably expressing the indicated Rheb mutant or endogenous 1 

Rheb (Endo) were grown for 48 h prior to treatment with 30 µM puromycin for 30 min. Lysates were 2 

then harvested for SuNSET assays. (D) Expi-CHO cells stably expressing the indicated Rheb mutants 3 

or endogenous Rheb (Endo) were allowed to proliferate with cell number recorded every 24 h for 10 4 

days. (E) BrdU incorporation assay of Expi-CHO cells stably expressing the indicated Rheb mutants or 5 

endogenous Rheb (Endo). Cells were allowed to proliferate for 24 h before addition of BrdU for 1 h. 6 

(F) Transient IgG yield from Expi-CHO cells stably expressing the indicated Rheb mutant or 7 

endogenous Rheb after 10 days of expression. (G) Specific productivity (Qp) of Expi-CHO cells stably 8 

expressing the indicated Rheb mutant. Figure represents n=1. (H) SDS-PAGE western blot analysis of 9 

cell lysates from (G). All figures other than (G) are representative of 3 independent experiments. All 10 

graphs represent mean ± s.d for 3 independent experiments. The data were analysed via Student’s t-11 

test compared to Endo. *: P < 0.05; ** P < 0.01; *** P < 0.001. 12 

Supplementary Figure 1: Mutant Rheb drives an increase in levels of proteins of the ER stress 13 

response. Related to Figure 1 Quantification of SDS-PAGE western blot data for Fig. 1a. All graphs 14 

represent mean ± s.d for 3 independent experiments. The data were analysed via Student’s t-test 15 

compared to Endo. *: P < 0.05. 16 

Supplementary Figure 2: Rheb-T23M displays increased proliferation on media containing reduced 17 

FBS. Related to Figure 3. (A) GLuc-CHO cells expressing the indicated Rheb mutants or an empty 18 

vector (EV) were grown in media supplemented with 1% FBS with cell number recorded every 24 h 19 

for 7 days. (B) f-CHO cells expressing the indicated Rheb mutants or EV were grown in media 20 

supplemented with 0.5% FBS with cell number recorded every 24 h for 7 days. All graphs represent 21 

mean ± s.d for 3 independent experiments. The data were analysed via Student’s t-test compared to 22 

Endo. *** P < 0.001. 23 

Supplementary Figure 3: Characterization of Expi-CHO cells stably over expressing Rheb mutants. 24 

Related to Figure 5. Sanger sequencing results of Expi-CHO monoclonal cell lines transfected with 25 

vector encoding both the indicated Rheb mutant and NeoR to grant resistance to G-418. Cells were 26 

grown for 6 weeks in the presence of 1 µM G-418 before DNA was extracted and sequenced using 27 

primers specific to the inserted plasmid. 28 


