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ABSTRACT Selective harmonic elimination (SHE) technique is used in power inverters to eliminate specific 

lower-order harmonics by determining optimum switching angles that are used to generate Pulse Width 

Modulation (PWM) signals for multilevel inverter (MLI) switches. Various optimization algorithms have 

been developed to determine the optimum switching angles. However, these techniques are still trapped in 

local optima. This study proposes an opposition-based quantum bat algorithm (OQBA) to determine these 

optimum switching angles. This algorithm is formulated by utilizing habitual characteristics of bats. It has 

advanced learning ability that can effectively remove lower-order harmonics from the output voltage of MLI. 

It can eventually increase the quality of the output voltage along with the efficiency of the MLI. The 

performance of the algorithm is evaluated with three different case studies involving 7, 11, and 17-level three-

phase MLIs. The results are verified using both simulation and experimental studies. The results showed 

substantial improvement and superiority compared to other available algorithms both in terms of the 

harmonics reduction of harmonics and finding the correct solutions.  

INDEX TERMS power electronics, multilevel inverter (MLI), optimization algorithm, pulse width 

modulation (PWM), selective harmonic elimination (SHE), total harmonic distortions (THD). 

I. INTRODUCTION 

The operating principle and effective performance of a 

multilevel inverter (MLI) highly depends on its switching 

operation. Moreover, the switching operation of an MLI is 

precisely controlled using a specific pulse width modulation 

(PWM) technique [1]. The PWM technique makes a power 

inverter suitable for medium and high voltage industrial 

applications. The PWM techniques can be classified into 

sinusoidal PWM (SPWM), space vector PWM (SVPWM), 

and selective harmonic elimination PWM (SHEPWM). The 

SHEPWM can be implemented following two steps. In the 

first step, Fourier analysis will be conducted on the PWM 

waveform to determine a specific number of switching 

angles by solving a set of nonlinear transcendental equations. 

In the second step, these switching angles will be used in 

PWM which will set certain lower-order harmonics to zero 

and will only keep the fundamental at a preset value [2]. The 

SHEPWM provides significant advantages over other 

modulation techniques such as improves performance by 

reducing the ratio between switching frequency and 

fundamental frequency, increases the voltage gains and 

bandwidths of MLIs, reduce the requirements of additional 

filters, prevents the presence of harmonic interference in 

external line filtering networks, and eliminates the triplen 

harmonics which can substantially increase the performance 

and power quality of three-phase systems [1]. 

A. RELATED WORK 

The SHEPWM has been applied in numerous industrial 

applications, in particular, high-voltage high-power inverters 
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where power loss is a major issue. However, finding an 

accurate implementation of the SHEPWM has introduced a 

lot of challenges. One of the major concerns is the analytical 

solution for determining the optimum switching angles [3], 

[4]. In literature, numerous techniques have been proposed 

such as; Newton-Raphson iterative approach [5]–[7], 

resultant theory-based approach [8], current reference-based 

approach [9], Walsh functions [10], gradient method [11], 

and meta heuristic optimization techniques [12]. In the 

Newton-Raphson (NR) approach, initial values need to be 

set. However, there is no established formula to select the 

initial values making the whole process highly unreliable and 

complicated. In addition, the optimization performance of 

NR is very sluggish, and it cannot produce wide range of 

solutions specially for lower-level MLIs [5]. Walsh 

functions for the SHEPWM was proposed in [10] to 

determine the optimum switching angles. It utilizes Walsh 

transformation matrix to convert transcendental equations 

into linear equations. Nevertheless, the formulation of the 

transformation matrix varies for individual problem making 

it mathematically burdensome. In addition, the 

characteristics of the nonlinear equations associated with 

SHEPWM can lead to multiple local-optimum of the 

objective function, resulting the problem of finding global or 

near-global optimum solutions. 

To address the drawbacks, meta heuristic optimization 

techniques also known as particle swarm optimization (PSO) 

are proposed as an evolutionary algorithm for the SHEPWM 

[13].  The main advantages of PSOs are their learning ability 

to determine optimum switching angles with high accuracy 

for a broad range of modulation indices. Therefore, a large 

number of metaheuristic algorithms, such as whale 

optimization algorithm (WOA) [14], differential evolution 

(DE) [15], differential harmony search (DHS) [16],  genetic 

algorithm (GA) [17],  improved immune algorithm (IIA) 

[18], and bacterial foraging (BP) algorithm [19] are utilized 

to enhance the performance of the SHEPWM.  

Although the WOA has a broad range of solutions for a 

specific benchmark, the solutions could not eliminate the 

harmonics satisfactorily. DE and DHS have a similar 

problem whereas, the GA provides a simple mathematical 

burden-free structure. However, it has the inherent 

drawbacks of optimal local and slow convergence which can 

affect the performance of the MLIs. The performance of GAs 

is highly dependent on the possibility of crossover and 

mutation. The erroneous selection of input parameters in the 

GA will reduce its performance and searchability. To 

improve the performance of the conventional GA, other 

variants hybrid genetic algorithms and the adaptive real 

coding GA is proposed to solve the drawbacks of the 

conventional GA-based SHEPWM [17]. Optimized GA 

techniques were proposed by integrating an artificial neural 

network (ANN) [20] [21], where the GA was initially used 

to optimize the switching angles of the SHEPWM, and then 

the ANN was used to select the best set of solutions. 

However, the results were not satisfactory as this technique 

was only applicable to high-frequency modulation 

techniques and they also suffer from the blackbox constraints 

of neural networks [22], [23]. In the case of the IIA,  the final 

results were highly unsatisfactory as reported in [18]. As a 

result, this algorithm could not produce any solution and 

decrease the total harmonic distortions (THD) after the 

modulation index has reached a certain value. A similar type 

of outcome can also be observed for the BP algorithm where 

the intended THDs could not be eliminated using the 

objective functions. 

B. RESEARCH GAP AND MOTIVATIONS 

Although the aforementioned techniques provide faster 

and effective solutions, they suffer from the local optima, 

slow convergence, and require multi-parameter tuning [17], 

[20]. Also, few case studies cannot validate the superiority 

of an algorithm over other algorithms. This is because the 

performance of these algorithms can widely vary depending 

on SHEPWM parameters such as the number of voltage 

levels produced by MLIs, number of targeted harmonics, 

number of switching angles, and sets of nonlinear equations 

[4], [15]–[18]. This also demands an algorithm that can be 

proven superior to other algorithms under various case 

studies taking different sets of SHEPWM parameters. 

A. RESEARCH CONTRIBUTIONS 

Quantum-based optimization technology has been applied 

to a variety of complex engineering applications through 

parallel quantum mechanisms. For multimodal optimization 

applications, quantum algorithms are superior to existing 

metaheuristic algorithms [24]–[27]. The location of each bat 

in quantum bat algorithm (QBA) relies on the best average 

position. Besides, incorporating mean best can make the 

search algorithm jump from the local optima [28], [29]. 

Therefore, QBA can easily avoid local optimal. Similarly, 

opposition-based learning (OBL) is integrated with the basic 

QBA algorithm to improve convergence speed and solution 

quality. The reason for choosing OBL is that it does not 

depends on specific algorithm to accelerate the convergence 

of optimization techniques. To find a better candidate 

solution, the estimated value and the corresponding opposite 

estimated value can be closer to the global optimal than the 

random candidate solutions.  

The main contributions of this study can be summarized 

as below: 

1. This article adopts an effective opposition-based 

quantum bat (OQBA) metaheuristic algorithm to solve 

the nonlinear SHEPWM problem and to explore search 

space more effectively. It can overcome most of the 

problems that exist in other algorithms. 

2. Three different case studies are considered to validate 

the performance of the proposed algorithm.  

3. Selective harmonics are eliminated ensuring that two 

fundamental objectives are satisfied. The first objective 
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is to ensure that optimized switching angles can 

eliminate the harmonics satisfying IEEE 519 standard. 

This standard ensures that the MLI structure along with 

its control are suitable for industrial applications. The 

second objective is to have a broad range of solutions 

that will ensure the flexibility of the MLI or in other 

words, it can be operated at different modulation indices 

seemingly. 

II. PROPOSED ALGORITHM 

The proposed algorithm is the combination of a quantum bat 

algorithm and opposite-based learning theory. This section 

gives an overview of the quantum bat algorithm, opposite-

based learning and opposition-based quantum bat algorithm. 

A. QUANTUM BAT ALGORITHM 

Quantum bat algorithm (QBA) is constructed utilizing three 

habitual characteristics of bats as shown in Fig. 1. The 1st 

characteristic is known as the echolocation technique which 

is to sense the distance and measure the difference between 

their prey (food) as well as background barriers. The 2nd 

characteristic is to search their prey by varying their 

wavelength and intensity of sound. Also, the frequency and 

pace of their emitted pulses can be regulated and scaled to 

the distance of their prey. The final characteristics can be 

built by assuming that the intensity of sound can be varied 

from a minimum constant value (Amin) to a large (A0) value. 

The velocities (vi) and positions (xi) of the bats can be 

reformed using the following equations: 

𝑓𝑖 = 𝑓min + (𝑓max − 𝑓min)𝛼 (1) 

𝑣𝑖
𝑡 = 𝑣𝑖

𝑡−1 + (𝑥𝑖
𝑡 − 𝑔𝑡 )𝑓𝑖 (2) 

𝑥𝑖
𝑡 = 𝑥𝑖

𝑡−1 + 𝑣𝑖
𝑡 (3) 

where fi is the frequency of the pulse, fmin is minimum 

frequency and fmax is maximum frequency. α stands for 

random vector, 𝑣𝑖
𝑡, denote velocity and 𝑥𝑖

𝑡 denotes the 

position, where i is the order of bat and t is the iteration 

number, and 𝑔𝑡   is the global location found by the bats until 

tth iteration. 𝑣𝑖
𝑡−1is the velocity and  𝑥𝑖

𝑡−1 is the position same 

bat at (t-1) iteration.  

The generation of positions for respective bat from a local 

random walk is executed when a solution is picked from the 

present best solutions. The recent position of the bat can be 

formulated as: 

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + 𝜀𝐴𝑡  (4) 

where 𝑥𝑛𝑒𝑤  is the new position 𝑥𝑜𝑙𝑑is the old position of bat, 

ε stands for a random number in the ranges from -1 to 1 and 

At indicates the average intensity of melody of bats while t is 

the iteration number.  A new position of a bat is calculated 

in OQBA, with the help of (5) and (6): 

𝑥𝑖𝑑
𝑡+1 = 𝑔𝑑

𝑡 × [1 + 𝑗(0, 𝜎2)] (5) 

𝜎2 = |𝐴𝑖
𝑡 − 𝐴𝑡| + 𝜀 (6) 

Wavelength

Echo of sound wave 

reflected back to the bat

Sonar waves emitted by 

the bat

 

FIGURE 1. Search technique for bats. 

where, j(0, σ2) symbolizes a Gaussian distribution with mean 

0 as well as standard deviation σ2, xid
t + 1 indicates bat  

position, and the bats at dimension d help to find current best 

global location. The integration of ε ensures that the standard 

deviation always stands positive. 

The loudness of sound and pulse rate are presented by Ai 

and ri that are upgraded in every iteration by these equations:  

𝐴𝑖
𝑡+1 = 𝛿𝐴𝑖

𝑡  (7) 

𝑟𝑖
𝑡+1 = 𝑟𝑖

0[1 − 𝑒𝑥𝑝(−𝛾𝑡)] (8) 

where 𝐴𝑖
𝑡  and 𝐴𝑖

𝑡+1 is the loudness of sound for ith bat in t 

and t+1 iteration, respectively, ri
0 represents the preliminary 

pulse discharge rate and ri
t + 1 represents the next pulse 

discharge rate. Constant δ varies from 0 to 1 and γ is another 

constant which is greater than zero (γ > 0). 

Apart from the three fundamental characteristics or 

idealized rules, two more characteristics also have been 

taken into account in this algorithm. These characteristics 

can be listed as: (i) the bat population will have several 

hunting habitats which can be separated from each other 

rather than depending on one single hunting habitat 

depending on a suspected selection and, (ii) the bats will 

have a noteworthy self-adaptive ability that will help them 

for compensating the complication of doppler effect. The 

Position of virtual bats with quantum behavior can be 

described as: 

𝑥𝑖𝑑
𝑡 = 𝑔𝑑

𝑡 + 𝛽|𝑚𝑏𝑒𝑠𝑡𝑑 − 𝑥𝑖𝑑
𝑡 |𝑙𝑛 (

1

𝑢
) , 𝑢(0,1) < 0.5 (9) 

𝑥𝑖𝑑
𝑡 = 𝑔𝑑

𝑡 + 𝛽|𝑚𝑏𝑒𝑠𝑡𝑑 − 𝑥𝑖𝑑
𝑡 |𝑙𝑛 (

1

𝑢
) , 𝑢(0,1) < 0.5 (10) 

where 𝑥𝑖𝑑
𝑡  presents ith bat’s position in dimension d at t 

iteration, 𝛽 stands for contraction coefficient, u presents a 

random number, mbestd is average of all bats position at d 

dimension. 

In the case of the doppler effect the bats needs to initiate 

its self-adaptive ability and (1), (2) and (3) can be rewritten 

as follows: 

𝑓𝑖𝑑 =
(340 + 𝑣𝑖

𝑡−1)

(340 + 𝑣𝑔
𝑡−1)

× 𝑓𝑖𝑑 × [1 + 𝐶𝑖 ×
(𝑔𝑑

𝑡 − 𝑥𝑖𝑑
𝑡 )

|𝑔𝑑
𝑡 − 𝑥𝑖𝑑

𝑡 | + 𝜀
] (11) 
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𝑣𝑖𝑑
𝑡 = (𝑤 × 𝑣𝑖𝑑

𝑡−1) + (𝑔𝑑
𝑡 − 𝑥𝑖𝑑

𝑡 )𝑓𝑖𝑑 (12) 

𝑥𝑖𝑑
𝑡 = 𝑥𝑖𝑑

𝑡−1 + 𝑣𝑖𝑑
𝑡  (13) 

𝑥𝑖𝑑
𝑡 = 𝑥𝑖𝑑

𝑡−1 + 𝑣𝑖𝑑
𝑡  (13) 

where fid represents the bat’s frequency in order i in 

dimension d, Ci denotes constant that is positive of ith bat in 

the range of [0, 1] and vg
t−1 presents the global best position’s 

velocity at iteration t−1. The implementation procedure of 

QBA is depicted in Fig. 2.  

B. OPPOSITION-BASED LEARNING (OBL) 

Opposite-based learning (OBL) is one of Tizhoosh's 

important methods for optimizing heuristic optimization [30] 

to increase the convergence speed. To enforce OBL 

efficiently, the opposite and existing generations of the same 

age must be compared to find a better solution to a given 

problem. To increase the convergence speed, the OBL idea 

has been used successfully in numerous metaheuristic 

methods [31], [32]. To understand the OBL, the log 

definition can be described. 

Let N(𝑁 ∈ [𝑥, 𝑦]) be real number. The reverse is 𝑁0 

known as: 

𝑁0 = 𝑥 + 𝑦 (14) 

The definition can be generalized as follows for d-

dimensional search spaces: 

Start

Initialize the population

Define pulse frequency fi, pulse rate ri and the loudness Ai

Generate new solutions by adjusting frequency, updating 

velocities and positions

Generate local solution around best solution 

Generate new solution by flying randomly

Accept new solution && increase ri && reduce Ai 

Stop

No

Yes

rand < Ai && new 

solution < best solution?

t = tmax?

No

Gen = Gen + 1

Yes

 

FIGURE 2. The implementation procedure of QBA. 

𝑁𝑖
0 = 𝑥𝑖 + 𝑦𝑖 − 𝑁𝑖 (15) 

where (𝑁1𝑁2, … 𝑁𝑑) is the search space in d-dimensional and 

(𝑁𝑖 ∈ [𝑥𝑖, 𝑦𝑖]); 𝑖 = {1,2.3 … . 𝑑}. 

The OBL definition is used in each iteration of the 

initialization process and the use of the generated jumping 

rate (𝐽𝑟) in Opposite-based learning (OBL). The following 

steps demonstrate the different steps for OBL. 

Step 1: Randomly initialize people within the operational 

range in the population. 

Step 2: Build the crowd opposite. 

for j = 1: size of population 

for i = 1: Number of variables power 

𝑁𝑗,𝑖
0 = 𝑥𝑖 + 𝑦𝑖 − 𝑁𝑗,𝑖 

end for 

end for 

Step 3: Sort from highest to lowest the existing population 

and the relative population 

Step 4: Select from the present and relative populations the 

optimum number of solutions based on the total scale. 

Stage 5: Use the recommended optimization technologies to 

change the control variable for a particular issue. 

Step 6: Use the jumping rate to create the opposite population 

to the current population. 

for j = 1: size of population 

for i = 1: Number of variables  

if jumping rate >rand 

opposition(i,j) = min(j)+max(j)-pop(i,j) 

else 

opposition(i,j)=pop(i,j) 

    end if 

end for 

end for 

Step 7: Filter from the best to worst whole (pop) and opposite 

population (opposition) and select the best solutions from the 

whole and family populations 

Step 8: If the end condition is fulfilled, interrupt the iteration. 

Continue to stage 5 of the next generation otherwise. 

B. OPPOSITION-BASED QUANTUM BAT ALGORITHM 
(OQBA) 

In this study, OBL and QBA is incorporated. The current 

populations update position based on QBA technique and the 

opposite populations are generated from the current 
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population. After that fitness values of the positions are 

calculated. This process will iterate until stopping criteria are 

meet. The pseudocode of the proposed technique is given 

below: 

Pseudocode: Opposition-based Quantum Bat 

Algorithm 

Initialize probability of habitat selection (P), inertia 

weight (w), compensation rates for Doppler Effect in 

echoes (C), contraction/expansion coefficient (β), the 

frequency of updating the loudness and emission pulse 

rate (G), the number of individuals (N) contained by the 

population and, initialize the opposite points, 

while (iteration< tmax)  

if (rand)<0.5) 

generate new solutions using (9) 

else 

generate new solutions using (10) 

end if 

if (rand(0,1)>ri) 

using equation (4) generate a local solution around the 

selected best solution  

end if 

evaluate the objective function \ 

using jumping rate, the opposite population are generated 

from the current population. 

evaluate the objective function value of each opposite 

individual. 

update solutions, the loudness, and emission pulse rate 

using (7) and (8) 

rank the solutions and select the first N number of     

populations 

find gt 

if gt does not improve in G time step. 

re-initialize the loudness Ai and set temporary pulse       

rates ri [0.85-0.9] 

end if 

t=t+1; 

end while 

III. DETERMINATION OF OPTIMUM SWITCHING 
ANGLES 

The schematic diagram of a modular three-phase cascaded 

H-bridge multilevel inverter (CHBMLI) is shown in Fig. 3. 

The mathematical expressions of the CHBMLI for the 

modularity in terms of number of cells (c) can be expressed 

as: 

Number of voltage levels, 𝑁𝐿  =  2𝑐 + 1 (16) 

Number of switches, 𝑁𝑆 =  4𝑐 (17) 

Maximum voltage,  𝑁𝐿_𝑚𝑎𝑥  =  𝑐 (18) 

Using (16)-(18), 3 three-phase CHBMLIs are developed 

in this manuscript which can generate 7-level, 11-level and 

17-level output voltage. These three case studies will 

confirm the accurate implementation of the proposed OQBA 

 

FIGURE 3. A three-phase modular CHB MLI. 

 

As mentioned earlier, the SHEPWM is generally utilized 

to regulate the fundamental and exterminate preset harmonic 

components from the output voltage of a single-phase MLI. 

The voltage waveform of an MLI is usually a 

bipolar/unipolar rectangular signal which closely resembles 

a staircase. The fundamental output voltage of an NLevel MLI 

is depicted in Fig. 4. It can be observed that in each edge of 

each rectangular wave or voltage level, there is one switching 

angle that is predefined. The optimization of these switching 

angles ais the key in eliminating specific harmonics from the 

staircase voltage waveform of the MLI. For a CHBMLI 

having the ability to produce NL voltage levels output 

voltage, the number of switching angles (S) can be verified 

by: 

𝑆 =  𝑐 =
𝑁𝐿 − 1

2
 (19) 

 

Generally, the Fourier series of the output voltage (v) of a 

single-phase MLI is given by: 

𝑣(𝑡) = 𝑥0 + ∑ 𝑥𝑟cos (𝑟𝜔𝑡)

∞

𝑟=1

+ 𝑦𝑟sin (𝑟𝜔𝑡) (20) 

𝑥𝑟 =
2

𝑇
∫ 𝑣(𝑡) cos(𝑟𝜔𝑡) 𝑑𝑡

𝑇

0

 (21) 

𝑦𝑟 =
2

𝑇
∫ 𝑣(𝑡) sin(𝑟𝜔𝑡) 𝑑𝑡

𝑇

0

 (22) 

 
where, r represents the order of the harmonics, xr denotes 

even harmonics, yr denotes odd harmonics, ω depicts angular 

frequency, t is the sample time and T is the period. Since a 

conventional CHBMLI has an odd number of voltage levels 

in a quarter-wave symmetry, only (22) is valid [1]. In other  
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FIGURE 4. Staircase output voltage waveform of NLevel CHB MLI. 

 

words, only the sine components of the odd harmonics (y1, 

y3, y5,......yn) will exist in the output voltage. Mathematically, 

it can be expressed as: 

𝑦𝑟 =
4

𝜋
∫ 𝑣(𝑡) sin(𝑟𝜔𝑡) 𝑑𝜔𝑡

𝜋
2

0

 (23) 

In this study, S is determined to be 3, 5, and 8 for the 7, 

11, and 17-level CHBMLIs, respectively according to (17). 

Therefore, for 7, 11, and 17-level CHBMLIs the number of 

harmonics that can be eliminated is 2, 4, and 7, respectively. 

The information regarding the three case studies that are 

selected for this manuscript is demonstrated in Table I. 

By observing Fig. 4, it can be stated that the voltage 

waveforms have odd quarter cycle symmetry. Thus, the 

output voltage waveforms of the CHBMLIs can be expressed 

for the Fourier coefficient yr, the number of switching angles 

of each voltage waveform S, and the order of the predefined 

harmonics h. 

For 7-level CHBMLI, the set of nonlinear equations can 

be obtained by: 

𝑦1 =
4𝑉𝐷𝐶

𝜋
[cos(𝛼1) + cos(𝛼2) + cos (𝛼3)] = 𝑚 

(24) 

𝑦5 =
4𝑉𝐷𝐶

5𝜋
[cos(5𝛼1) + cos(5𝛼2) + cos (5𝛼3)] = 0 

𝑦7 =
4𝑉𝐷𝐶

7𝜋
[cos(7𝛼1) + cos(7𝛼2) + cos (7𝛼3)] = 0 

Similarly, for 11-level CHBMLI: 

𝑦1 =
4𝑉𝐷𝐶

𝜋
[cos(𝛼1) + cos(𝛼2) +. . . + cos(𝛼5)] = 𝑚  

𝑦5 =
4𝑉𝐷𝐶

5𝜋
[cos(5𝛼1) + cos(5𝛼2) +. . . + cos(5𝛼5)] = 0  

𝑦7 =
4𝑉𝐷𝐶

7𝜋
[cos(7𝛼1) + cos(7𝛼2) +. . . + cos(7𝛼5)] = 0  

𝑦11 =
4𝑉𝐷𝐶

11𝜋
[cos(11𝛼1) + cos(11𝛼2) +. . . + cos(11𝛼5)] = 0  

𝑦13 =
4𝑉𝐷𝐶

13𝜋
[cos(13𝛼1) + cos(13𝛼2) +. . . + cos(13𝛼5)] = 0 (25) 

 

 

TABLE I 

OQBA BASED SHEPWM PARAMETERS FOR THE CASE STUDIES 

Parameters Case 1 Case 2 Case 3 

No. of voltage levels (NL) 7 11 17 

Maximum voltage (NLmax) 3VDC 5VDC 8VDC 

No. of switching angles (S) 3 5 8 

No. of predefined harmonics (h) 2 4 7 

Order of eliminated harmonics (r) 
5,7 5,7,11,13 

5,7,11,13,17,

19, 23 

Maximum iteration (tmax) 500 

Number of swarms (i) 25 

Initial loudness (Ai) 2  

OQBA constant gamma (γ) 0.9 

OQBA constant delta (δ) 0.99 

Contraction coefficient (β) 2 

Initial pulse discharge rate (ri) 0  

Maximum inertia weight (wmax) 0.9 

Minimum inertia weight (wmin) 0.5 

Maximum frequency (fmax) 1.5 

Minimum frequency (fmin) 0 

Global location (g) 10 

Maximum compensation (Cmax) 1 

Minimum compensation (Cmin) 0.9 

 

Finally, for 17-level CHBMLI: 

𝑦1 =
4𝑉𝐷𝐶

𝜋
[cos(𝛼1) + cos(𝛼2) +. . . + cos(𝛼8)] = 𝑚  

 

𝑦5 =
4𝑉𝐷𝐶

5𝜋
[cos(5𝛼1) + cos(5𝛼2) +. . . + cos(5𝛼8)] = 0  

. 

. 

. 

. 

 

𝑦19 =
4𝑉𝐷𝐶

23𝜋
[cos(23𝛼1) + cos(23𝛼2) +. . . + cos(23𝛼8)] = 0 (26) 

where VDC symbolizes each level of CHBMLI’s output 

voltage and m represents the modulation index. It is worth 

noting that the 1st switching angle α1 is used in (24)-(26) to 

control the fundamental component of the voltage output 

while all other switching angles (α2, α3, .........., αS) are used 

to eliminate the predefined harmonic components.  

The switching angles for the case studies are solved by 

utilizing an objective function. OQBA algorithm finds the 

optimal solution using this objective function. In general, the 

function can be defined by: 

𝐹(𝛼1 … 𝛼𝑆) = [(∑ cos (𝛼𝑖)

𝑆

𝑖 =1

− 𝑆 × 𝑚)

2

+ (
4

5𝜋
∑ cos (5𝛼𝑖)

𝑆

𝑖 =1

)

2

…

+ (
4

ℎ𝜋
∑ cos (ℎ𝛼𝑖)

𝑆

𝑖 =1

)

2

] 

(27) 

Here, F represents the fitness value. The objective 

function is subjected to a boundary condition depending on 

which the optimum switching angles are selected. The 

boundary condition is: 

0 ≤ 𝛼1 ≤ 𝛼2 ≤  … ≤ 𝛼𝑆 ≤
𝜋

2
 (28) 

The switching angles determined by (27) using OQBA is 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3098190, IEEE Access

 

VOLUME XX, 2017 3 

checked whether it satisfies (28) or not. If they do not satisfy 

(28), they are considered as garbage values and are not used. 

In each trial for each case study, a specific amount of 

iteration and swarms are selected to conduct OQBA based 

SHEPWM. These values are demonstrated in Table I. In each 

iteration, the switching angle variables are updated using 

OQBA along with the fitness value. The algorithm 

considered the value of m from 0.1 to 1 with 0.001 interval. 

For a certain value of m, the algorithm finds the minimum 

fitness value.  

IV. NUMERICAL SIMULATIONS 

A. CASE STUDY 1: 7-LEVEL CHB MLI 

The solutions of this case study are determined for a 7-

level CHB MLI. The necessary parameters required for the 

optimization are demonstrated in Table I. It is worth noting 

that the OQBA possesses the ability to evade local optima 

and thus for each iteration, it can generate more than one 

result. The computed switching angles are plotted in Fig. 5 

under different modulation indices. The OQBA based 

optimization is carried out using MATLAB Simulink. To 

conduct the simulation, each CHB cell is connected with a 

DC source of 50V. Thus, in this case, the CHB MLI can 

generate a maximum of 150V output voltage. The optimized 

switching angles for each modulation index and the 

generated THD of the output voltage are shown in Table II. 

The voltage THD can be calculated as follows: 

𝑇𝐻𝐷(%) =
√∑ 𝑉𝑟_𝑟𝑚𝑠

2ℎ
𝑟

𝑉1_𝑟𝑚𝑠

 (29) 

where, V2
r_rms is the RMS voltage of the rth harmonic and 

V1_rms is the fundamental RMS voltage. It can be noticed 

from Table II that under all modulation indices the THD has 

reduced because of eliminating 5th and 7th order harmonics 

from the output voltage. Furthermore, because of 

implementing a balanced three-phase system, the triplen 

harmonics (3rd, 9th, 15th....) from the line voltage are also 

removed which has also contributed towards the reduction of  

 

FIGURE 5. Optimum switching angles under different modulation 
indices for 7-level CHB MLI. 

TABLE II 

THD CALCULATION USING OQBA FOR CASE STUDY 1 

Modulation 

index (m) 

Switching Angles (ᵒ) 
THD (%) 

α1 α2 α3 

0.1 60.33 90 90 40.12  

0.2 47.88 86.57 87.29 30.45 

0.3 43.27 79.77 90 17.76 

0.4 39.55 60.57 85.15 13.11 

0.5 38.38 53.94 74.07 9.74 

0.6 25.79 52.26 64.24 7.68 

0.7 13.67 36.91 61.72 6.41 

0.8 11.50 28.89 57.21 5.64 

0.9 12.90 13.05 39.66 5.29 

1 4.46 16.40 34.33 5.08 

 

the THD [5]. It should be mentioned that in a voltage source 

inverter, the dominant low-order harmonic are 3rd, 5th, 7th, 

and 9th
 [2]. Furthermore, for all the case studies the THD is 

calculated by taking 40 lower order harmonics into account. 

Observing Table II, it is noted that only for the value of m 

ranging from 0.6 to 1, the THD has followed IEEE 519 

standard (i.e. THD ≤ 8%) [33]. In addition, for m = 0.1 and 

m = 0.2, the switching angles determined by OQBA could 

not eliminate the targeted harmonics. For the lower 

modulation indices, the OQBA could not generate accurate 

switching angles since it required some initial conditions to 

be met to determine the minimum fitness value and the 

global best solutions. This issue can be resolved by 

increasing the number of iteration or increasing the number 

of switching angles. The first solution is not considered in 

this study since it can be highly time consuming to execute 

the proposed algorithm. The second solution is validated in 

the following case studies which comprises of 5 and 8 

switching angles, respectively. 

The simulated output voltages and harmonic spectrums of 

the line voltages of the 7-level CHB MLI are shown in Fig. 

6 under 2 different modulation indices. It can be observed 

from the output voltages’ harmonic spectrums that in both 

instances, the OQBA based SHEPWM eliminated the 5th and 

7th order harmonics effectively while the peak voltage 

increased from 214.7 V to 306.7 V. In addition, the triplen 

harmonics are also removed from the line voltage. As a 

result, the overall THD has decreased. 

B.  CASE STUDY 2: 11-LEVEL CHB MLI 

In this case study, OQBA based SHEPWM is executed for 

an 11-level CHB MLI. Since, the number of voltage levels is 

increased in this case compared to the previous case, the 

effectiveness of the proposed optimization algorithm can be 

further realized. The switching angles computed using 

OQBA for this case study are plotted in Fig. 7 under different 

modulation indices while generated THD of the output 

voltage are shown in Table III. It can be observed that the 

performance of the OQBA in this case study is more 

effective and improved. The generated THD has followed 

IEEE 519 standard under nearly all modulation indices 

except for 0.1 and 0.2.  
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         (a)           (b) 

  
           (c)             (d) 

FIGURE 6. Simulation results of three-phase 7-level CHB MLI: (a) line voltages at m = 0.6, (b) line voltages at m  = 1, (c) harmonic spectrum of line 
voltage ab at m = 0.6, (d) harmonic spectrum of line voltage ab at m = 1. 

 

FIGURE 7. Optimum switching angles under different modulation 
indices for 11-level CHB MLI. 
 

The output voltages of the 11-level CHB MLI are shown 

in Fig. 8 including the harmonic spectrums of the output 

voltages under 3 different modulation indices. Utilizing 50V 

DC source of each CHB cell, the 11-level MLI can generate 

250V of the output voltage. Observing Fig. 8, it can be 

confirmed that the OQBA based SHEPWM has successfully 

eliminated 5th, 7th, 11th, and 13th order harmonics. Thus, the 

overall THD in this case study has drastically reduced like 

the previous case study. In fact, it can be observed that for 

higher-level output voltage, the performance of the proposed 

optimization algorithm is comparatively more effective and 

efficient. 

TABLE III 

THD CALCULATION USING OQBA FOR CASE STUDY 2 

Modulation 

index (m) 
Switching Angles (ᵒ) 

THD (%) 
α1 α2 α3 α4 α5 

0.1 42.82 86.49 89.86 89.98 90 27.03 

0.2 41.45 62.58 87.64 88.88 89.97 15.37 

0.3 36.26 52.85 71.44 88.72 89.80 7.90 

0.4 36.71 49.22 65.11 83.66 90 6.47 

0.5 35.51 45.55 57.24 69.32 85.04 5.97 

0.6 26.82 44.10 51.45 62.52 72.56 5.35 

0.7 8.24 28.67 41.30 53.45 73.39 4.62 

0.8 6.67 18.96 27.38 45.33 62.33 4.05 

0.9 2.23 9.75 19.65 26.87 42.42 2.86 

1 3.63 9.53 20.07 28.03 43.60 2.70 

 

C.  CASE STUDY 3: 17-LEVEL CHB MLI 

This case study comprises the simulation results of OQBA 

based SHEPWM for a 17-level CHB MLI. A total of 8 

switching angles are optimized using OQBA and 7 lower-

order harmonics are eliminated. The optimized 8 switching 

angles under the modulation index ranging from 0.1 to 1 are 

depicted in Fig. 9. Utilizing the 8 DC sources each generating 

50 V, the 17-level CHB MLI can generate 400 V output 

voltage. The generated THD of the line voltage from the 17-

level MLI is shown in Table IV. It can be observed from 

Table IV that increasing the number of switching variables 

have improved the performance of the OQBA compared to 

the previous two case studies. Since 7 lower-order harmonics 

are removed effectively and the number of voltage levels is 

increased, 9 out of 10 results of this case study have followed 

IEEE 519 standards. The simulation results of this case study 

are shown in Fig. 10
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         (a)          (b)          (c) 

   
         (d)          (e)          (f) 

FIGURE 8. Simulation results of three-phase 11-level CHB MLI: (a) line voltages at m = 0.3, (b) line voltages at m = 0.6, (c) line voltages at m = 1, (d) 
THD of line voltage ab at m = 0.3, (e) THD of line voltage ab at m = 0.6, and (f) THD of line voltage ab at m = 1. 

 

 

FIGURE 9. Optimum switching angles under different modulation 
indices for 17-level CHB MLI. 

V. COMPARATIVE ANALYSIS 

The advantageous and predominant characteristics of the 

proposed optimization algorithms are validated in this 

section by comparing it with other algorithms that have 

already been applied in SHEWPWM. The comparative 

analysis is conducted considering two major targets: the 

calculated THD must follow IEEE 519 standards and 

algorithms must be able to find a wide range of solutions. 

The proposed algorithm is compared with five other recently 

proposed algorithms which are named as PSO [13], WOA  

TABLE IV 

THD CALCULATION USING OQBA FOR CASE STUDY 3 

Modulation 

index (m) 

Switching Angles (ᵒ) THD 

(%) α1 α2 α3 α4 α5 α6 α7 α8 

0.1 38.71 61.97 88.54 89.99 90 90 90 90 14.37 

0.2 36.71 49.65 72.35 88.47 89.91 89.91 89.98 90 7.95 

0.3 35.14 43.74 53.69 65.15 77.50 89.41 89.60 89.78 6.67 

0.4 33.45 40.74 48.30 56.51 64.33 74.34 85.93 90 5.87 

0.5 21 33 44.90 51.25 57.64 64.70 72.10 89.34 4.95 

0.6 10.96 26.01 36.63 42.31 51.87 59.40 64.31 78.01 4.20 

0.7 4.09 14.79 23.38 30.07 41.59 49.12 58.85 70.79 3.60 

0.8 6.54 6.72 15.88 20.09 26.55 34.89 46.66 60.20 2.03 

0.9 3.51 5.11 9.44 16.28 16.56 25.49 29.92 39.68 1.64 

1 2.91 4.91 9.82 14.93 15.76 23.20 26.69 35.22 1.43 

 

[14], DHS [16], GA [17], and IIA [18]. To justify the 

comparison, the same parameters such as number of 

iterations, number of search agents are considered for all the 

algorithms. 

It can be observed from Table V that for the 1st case study, 
most of the algorithms struggled to find global best solutions 

under all modulation indices. PSO and DE could not find 

solutions at m > 0.5 whereas, WOA performed the worst and 

could not find solution when m > 0.3. None of these three 

algorithms could generate a single result that has followed 

IEEE 519 standard. Both PSO and DE requires high number 

of optimizable variables or iterations to execute SHEPWM 

properly as reported in [34] and [35], respectively. WOA 

also performed poorly since this algorithm was developed 

using the fundamentals of the PSO algorithm and they are 

highly similar in nature. The results reported in [14] using 
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        (a)          (b)          (c) 

   
          (a)             (b)            (c) 

FIGURE 10. Simulation results of three-phase 17-level CHB MLI: (a) line voltages at m = 0.4, (b) line voltages at m = 0.7, (c) line voltages at m = 1, (d) 
THD of line voltage ab at m = 0.4, (e) THD of line voltage ab at m = 0.7, and (f) THD of line voltage ab at m = 1. 

 
TABLE V 

THD CALCULATION AND COMPARISON STUDY BETWEEN DIFFERENT OPTIMIZATION ALGORITHMS 

Modulation 

index (m) 

THD calculation using different algorithms (%) 

PSO [13] WOA [14] DHS [16] GA [17] IIA [18] OQBA 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

0.1 40.48 38.88 21.03 40.48 38.08 21.17 41.31 34.38 30.94 57.95 31.71 29.33 40.48 29.07 22.49 40.12 27.03 14.37 

0.2 38.38 32.93 9.64 38.77 18.65 9.64 32.72 34.38 18.99 33.03 21.05 12.42 39.25 18.51 10.25 30.45 15.37 7.95 

0.3 33.37 19.60 7.93 29.47 17.19 8.14 25.74 8.64 7.86 28.88 9.74 7.90 27.30 17.15 8.42 17.76 7.90 6.67 

0.4 33.37 8.49 7.93 29.47 17.19 8.14 25.74 8.64 7.86 24.79 8.64 7.40 16.17 9.93 6.32 13.11 6.47 5.87 

0.5 22.21 8.49 7.93 29.47 7.27 7.66 11.60 7.20 6.45 11.87 7.20 5.68 11.27 7.42 5.67 9.74 5.97 4.95 

0.6 22.21 8.49 7.93 29.47 5.60 6.12 11.60 6.60 5.57 10.85 5.55 5.13 11.27 7.42 4.26 7.68 5.35 4.20 

0.7 22.21 6.65 5.89 29.47 4.90 5.57 10.13 6.47 4.88 9.65 5.04 4.30 11.27 5.23 4.00 6.41 4.62 3.60 

0.8 22.21 6.65 5.89 29.47 4.25 3.37 6.59 5.63 3.73 7.94 4.39 3.83 11.27 4.61 4.00 5.64 4.05 2.03 

0.9 22.21 5.24 5.89 29.47 4.25 3.37 6.59 4.42 3.73 7.55 4.24 3.22 11.27 4.61 4.00 5.29 2.86 1.64 

1 22.21 5,24 5.89 29.47 4.25 3.37 6.59 4.42 3.73 6.17 4.07 2.87 11.27 4.61 4.00 5.08 2.70 1.43 

 

WOA based SHEPWM was done for 11-level inverters and 

it shows comparatively better result than both PSO and DE 

for the case study 2. This indicates that these algorithms only 

perform slightly better when the optimizable variables or 

switching angles are increased. It also signifies that these 

algorithms are inoperative for low-level inverters which is a 

huge disadvantage. DHS performed much better in 1st case 

study compared to PSO, DE, and WOA. However, it also 

could not produce any solution at m > 0.8 and most of its 

generated THD did not follow IEEE 519 standard except at 

m ≥ 0.8. On the contrary, GA performed well and found 

solutions under all modulation indices similar to the 

proposed OQBA. Moreover, it produced THD following 

IEEE 519 only at m ≥ 0.8 which is similar to DHS. Therefore, 

for the 1st case study, it can be easily concluded that OQBA 

outperformed all other algorithms since it was not only able 

to find solutions under all modulation indices but also 

generated output voltages having better harmonic profiles. 

The THDs generated by OQBA algorithm followed IEEE 

519 standard at m ≥ 0.6.  

In the 2nd case study, all algorithms performed 

significantly better. However, in this case study PSO again 

performed poorly compared to other algorithms. This is 

understandable since PSO is a 1st generation algorithm and a  

lot of improvements in swarm optimization have been made 

in recent years to enhance performance [34]. WOA and IIA 

generated similar set of results as reported in [14] and [18] 

respectively. WOA’s performance became much better in 

this case study since this algorithm works better with higher 

optimization variables [14]. However, both WOA and IIA 
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(a) (b) 

FIGURE 11.  Performance of the optimization algorithms for: (a) 1 st objective and, (b) 2nd objective. 

 

could not find any solution at m > 0.8. It can be also validated 

from the results in [14] and [18]. DHS performed better in 

terms of finding solutions compared to both WOA and DE, 

but the harmonic profile was slightly poorer. The results 

shown in [16] was generated for a higher 27-level MLI which 

is why the harmonic profile was better. Nevertheless, for 

higher-level MLIs, the execution of SHEPWM becomes 

unnecessary as reported in [7]. MLIs capable of generating 

higher voltage levels generally produce better harmonic 

profile even with fundamental low-frequency modulation 

techniques such as nearest level control (NLC) and nearest 

space control (NPC). Besides, the results generated in [16] 

applied a very high number of iterations which have been 

avoided in this study due to its shortcomings. In this case 

study, the GA performed better than the other algorithms. 

Still, the proposed OQBA outperformed the other algorithms 

in this case study as it produced a better harmonic profile 

following IEEE 519 standard and global solutions under all 

modulation indices. 

The final case study has demonstrated incremental 

improvements in terms of harmonic profile for all the 

algorithms. In this case, all algorithms have performed better 

and the generated THDs have followed IEEE 519 standard. 

This case study also implies that as the number of levels 

produced by the MLIs increases the performance benchmark 

of all the optimization algorithms become very similar and 

highly enhanced. Therefore, the advantages of a certain 

algorithm become a bit difficult to be justified by 

comparison. Yet, it can be clearly observed from the results 

of the 3rd case study that the proposed algorithm has 

produced better results and significantly reduced the THD at 

m ≥ 0.3.  

The entire comparative study was analyzed for a total of 

30 results applying each optimization algorithm. The 

performance of all the algorithms is justified based on the 

two primary objectives of this study which are shown as 

graphical illustrations in Fig. 11(a) and Fig. 11(b), 

respectively. WOA and PSO performed the poorest in 1st 

objective while only PSO performed the poorest in the 2nd 

objective.  On the contrary, it can be observed that for the 1st 

objective shown in Fig. 11(a), the proposed OQBA 

performed the finest by producing 22 out of 30 results that 

have followed IEEE 519 standards. For the 2nd objective, 

both OQBA and GA have found solutions for all 30 cases 

which is depicted in Fig. 11(b).  

The comparative analysis is extended by comparing the 

proposed algorithm with hybrid-PSO (HPSO) based 

SHEPWM implemented in two switched capacitor based 

MLIs [36], [37]. It should be addressed that the topological 

difference of MLIs will not have any impact on the THD. In 

other words, the 11-level inverter proposed in [36] will 

produce same THD as an 11-level CHB MLI provided that 

the optimization technique used for determining the 

switching angles is same for both MLIs. Besides, conducting 

comparative analysis between different MLI topology is not 

an objective of this manuscript. The switching angles 

provided in [36] for an 11-level CHB MLI has produced 

THD of 6.57% at m =0.8 which is almost close to the THD 

of 6.65% for PSO as shown in Table V. OQBA has produced 

only 4.05% THD at m = 0.8 for an 11-level CHB MLI. The 

proposed algorithm is also compared with 2 other algorithms 

which are Flower Pollination Algorithm (FPA) [38], and 

Teaching Learning Based Optimization (TLBO) [39] for an 

11-level CHB MLI. The results are shown in Table VI and it 

can be noticed that OQBA has produced less THD than these 

3 algorithms for different modulation indices which shows  

TABLE VI 

EXTENSIVE COMPARATIVE STUDY WITH PSO 

Algorithm Voltage Level (NL) Modulation Index (m) THD (%) 

HPSO [36] 11 0.8 6.57 

FPA [38] 11 

0.6 6.10 

0.8 4.70 

1 5.10 

TLBO [39] 11 

0.6 8.20 

0.8 4.60 

1 8.00 

OQBA 11 

0.6 5.35 

0.8 4.05 

1 2.70 

AQPSO [40] 7 

0.3 31.47 

0.6 10.44 

0.8 7.17 

OQBA 7 

0.3 17.76 

0.6 7.68 

0.8 5.64 

40%

40%

57% 65%

43%

73%

PSO WOA DHS GA IIA OQBA

47%

57%

67%
100%

63%

100%

PSO WOA DHS GA IIA OQBA
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its superiority over these algorithms. A combinational 

optimization algorithm between conventional PSO and GA 

is proposed in [40], which is named as Asynchronous 

Particle Swarm Optimization Genetic Algorithm 

(APSOGA). The switching angles determined by APSOGA 

for a 7-level MLI has produced THD of 31.47%, 10.44% and 

7.17% at m = 0.3, m = 0.6 and m = 0.8, respectively. At the 

same modulation indices, OQBA has produced THD of 

17.76%, 7.68% and 5.64%. These results again prove the 

preeminence of the proposed algorithm.  

VI. EXPERIMENTAL RESULTS 

The results obtained through simulation is further verified in 

this section by conducting an experimental analysis. The 

experimental results were obtained by developing a 

hardware prototype as shown in Fig. 12. The proposed 

OQBA based SHEPWM is executed by using 

TMS320F28335 digital signal processor. A three-phase 

resistive-inductive load of (253Ω−0.53H) is connected at the 

output. The CHB MLI’s output voltage and load current are 

measured for all case studies. On the other hand, the THD is 

measured using Fluke 43B power analyser tool. The DC 

source voltages for all CHB MLIs are adjusted to 50 V which 

is similar to the simulation model.  The experimental results 

or the 1st case study (7-level CHB MLI) are shown in Fig. 

13(a). In addition, the harmonic spectrum of the output 

voltage is shown in Fig. 13(d). The results are generated with 

modulation index, m = 1 and fundamental frequency, f = 50 

 

FIGURE 12.  Experimental setup for the three-phase CHB MLI. 

   
(a) (b) (c) 

   
(d) (e) (f) 

FIGURE 13. Experimental results at m = 1 and f = 50Hz for: (a) line voltages and current of 1st case study, (b) line voltages and current of 2nd case 

study, (c) line voltages and current of 3rd case study, (d) harmonic spectrum of 1st case study, (e) harmonic spectrum of 2nd case study, (f) harmonic 

spectrum of 3rd case study. 

 

Hz. The output voltage is illustrated by yellow color while 

the load current is depicted by green color. The harmonic 

spectrum measured by the power quality analyzer is given 

for 50th harmonic order. It can be observed from the 

harmonic spectrum that the targeted 5th and 7th harmonics 

have been eliminated. Furthermore, the overall THD is 5% 

which is almost same as the simulation result and it is 

following IEEE 519 standard. Here, the most significant 

harmonic appeared to be 23rd and 25th. The triplen harmonics 

are also eliminated due to the implementation of a balanced 

three-phase system. Although the frequency was low, the 

quality of the output voltage was maintained because of 

eliminating the lower-order harmonics.  

The performance of the OQBA technique for the 2nd case 

study is shown in Fig. 12(b) and Fig. 12(e). The results, in 

this case, are also obtained for m = 1 and f = 50 Hz. In this 

case, the output voltage is increased to 250.77 V because of 

implementing 11-level CHB MLI. The THD of the output 

voltage has decreased from 5% to 3.07% as shown in Fig. 12 

since four lower-order harmonics are removed. The highest 
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harmonics has emerged 17th and 19th for the 11-level CHB 

MLI. The results also showed high similarity with the 

obtained results in the simulation.  

Finally, the performance of the OQBA based SHEPWM 

is analyzed for the 17-level CHB MLI. The output voltage 

along with the load current and the harmonic spectrum are 

shown in Fig 12(c) and Fig. 12(f), respectively for m = 1 and 

f = 50 Hz. It can be observed that the output voltage has 

increased to the maximum value of 400.87 V. Additionally, 

because of eliminating 7 lower-order harmonics, the overall 

THD in this case study has significantly decreased to only 

1.8% which is well below the required IEEE 519 benchmark. 

VII. PERFORMANCE ANALYSIS UNDER TRANSIENT 

CONDITIONS 

The performance of the proposed algorithm is further 

justified in this section under two types of transient 

conditions: (i) sudden fluctuation of DC voltage and (ii) 

sudden fluctuation of the modulation index.  

A. VOLTAGE FLUCTUATION 

The performance analysis of OQBA under sudden 

fluctuation of DC voltage is conducted using MATLAB 

simulation. 7-level CHB MLI is considered for this analysis. 

The line voltage of the CHB MLI is shown in Fig. 14. It can 

be observed that the DC fluctuation is imposed on 0.5 sec. 

The DC voltage is varied from 50 V to 25 V and therefore, 

the line voltage has decreased from 300 V to 150 V. 

However, no other difference can be observed in the output 

voltage after the fluctuation. Furthermore, the harmonic 

spectrums of the line voltage before and after the fluctuation 

are shown in Fig. 15(a) and Fig. 15(b), respectively. It can be 

noticed that the voltage fluctuation did not alter the THD of 

the line voltage and it remained constant at 5.08%. This also 

verifies the consistent performance of OQBA under 

fluctuation in DC voltage. 

A. FLUCTUATION IN MODULATION INDEX 

To validate the performance of OQBA under variable 

modulation index, the three-phase 11-level CHB inverter of 

case study 2 is connected with a three-phase induction motor 

drive. The experimental analysis is performed by executing 

an open loop speed control technique of motor known as 

constant V/f technique [41]. The analysis is executed by 

running the induction motor at 3 different reference speeds 

regarded as 3 operating modes. The change of speed 

contributed to the change in the frequency and in the 

modulation index. At every operating mode, OQBA based 

SHEPWM is utilized to generate 3 sets of switching angles. 

The switching angles are already calculated and shoed in 

Table IV. The speed of the induction motor is varied from 

450rpm  900rpm  1500rpm and therefore, the 

modulation index is also increased to 0.30.61. This 

range of modulation indices is selected to keep a similarity 

with the simulation results. It facilitated to verify whether the 

experimental results are accurate or not.  

The transient line voltage and current of the 11-level CHB 

MLI is shown in Fig. 16. The harmonic spectrums of the 3 

operating modes are shown in Fig. 17(a), Fig. 17(b) and Fig. 

17(c), respectively. It can be observed that under the variable 

modulation index the THDs produced by the 11-level CHB 

 

FIGURE 14.  Output voltage of 7-level CHB MLI under voltage fluctuation. 

 

  
(a) (b) 

FIGURE 15.  Harmonic spectrums of 7-level CHB MLI: (a) before voltage fluctuation (50 V), (b) after voltage fluctuation (25 V). 

m = 0.8 m = 1 
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FIGURE 16.  Output voltage of 11-level CHB MLI under fluctuation in modulation index. 

 

   
(a) (b) (c) 

FIGURE 17.  Harmonic spectrums of 11-level CHB MLI: (a) at m = 0.3, (b) m = 0.6, (c) m = 1. 

 
MLI in each operation mode are almost reminiscent of the 

THDs produced in the simulation results which validates the 

accuracy of this analysis. Some small noises can be observed 

in the output which is due to the transition of switching 

angles keyed in by OQBA. Thus, it can be concluded that the 

proposed OQBA has performed without any issue under the 

sudden fluctuation in the modulation index.   

VIII. FITNESS VALUE ANALYSIS 

In this particular application of optimization algorithms, 

different modulation indices will create different 

convergence curves. Hence, the objective fitness value 

versus modulation index is plotted in Fig. 18. It can be 

observed that the minimum objective fitness value is 

obtained by the OQBA technique for different modulation 

indices compare to all other optimization algorithms. The 

solutions (switching angels) of (27) that provide minimum 

fitness value have provided minimum THD in the output 

voltage. Fig.18 shows that for almost all modulation indices 

the minimum objective value is achieved by the proposed 

OQBA technique. In each case study, the OQBA technique 

provided better fitness value. Hence, the switching angels 

which provided minimum fitness value in the OQBA 

technique have decreased the THD of the output voltage. The 

convergence curves under different number of iterations are 

 

  

 

(a) (b) (c) 

FIGURE 18.  Fitness value of the optimization algorithms under different modulation indices: (a) 1st case study, (b) 2nd case study, (c) 3rd case study. 

m = 0.3 

450rpm 

1.1 A 

215 V 
m = 0.6 

332 V 

900rpm 

1.6 A 

m = 1 
501 V 

1500rpm 
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(a) (b) (c) 

FIGURE 19.  Convergence curves of the optimization algorithms: (a) 1st case study, (b) 2nd case study, (c) 3rd case study. 

   
(a) (b) (c) 

FIGURE 20.  Convergence distribution function of the optimization algorithms: (a) 1st case study, (b) 2nd case study, (c) 3rd case study. 

 

FIGURE 21. THD generated by OQBA under different modulation 
indices. 

 
plotted in Fig. 19. It can be observed that under all case 

studies the minimum objective value is achieved by the 

proposed OQBA technique compared to all other algorithms. 

 The cumulative distribution function (CDF) of the 

obtained solutions for different algorithms are shown in Fig. 

20. It can be observed from Fig. 20 that the proposed 

algorithm has clearly obtained high probability of 

convergency for the 1st case study. For the 2nd and 3rd case 

studies, although OQBA achieved comparatively better 

convergence probability, the results are very close. This 

proves the previous statement that as the number of 

optimization variables increase, the performance of the 

algorithms become similar.  

Finally, the THD of 3 different case studies generated by 

OQBA under different modulation studies are shown in Fig. 

21. In addition, the 5th and 7th order harmonics for 1st case 

study under different modulation indices are also shown. It 

can be noticed that OQBA has kept these harmonics to 
almost zero in the range of 0.4 ≤ m ≤ 1. It also verifies the 

superior optimization quality and the accuracy of the 

algorithm.  

IX. CONCLUSION 

The opposition-based quantum bat algorithm (OQBA) is 

proposed to optimize switching angles and eliminate 

selective harmonics of multilevel inverters. The performance 

of the proposed algorithm was verified by both simulation 

and DSP-based experimental prototype. This algorithm 

effectively overcomes most of the drawbacks hold by the 

other metaheuristic algorithms as well as mathematical 

strategies applied for SHEPWM. Three separate case studies 

verified that OQBA successfully accomplished two 

predefined objectives and outperformed other recently 
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proposed algorithms. It also verified that the proposed 

strategy is applicable for any multilevel inverter topology. 

Statistical analysis is also conducted to show that the 

performance of the proposed algorithm stays almost same 

even with multiple iterations and run times. The performance 

of the proposed algorithm is also analyzed under transient 

conditions and it performed excellently. The simulation and 

experimental results showed that in 73% of the total data, 

OQBA successfully kept the THD of the output voltage 

below the permissible THD set by IEEE 519 standard. 

Therefore, it can be concluded that OQBA can enhance the 

performance of any multilevel inverter topology and can be 

a real candidate to replace other available modulation 

strategies in industrial applications. The main concluding 

remarks are as follows: 

 Quantum bat algorithm is incorporated with 

oppositional-based learning to avoid local optima and 

premature convergence. 

 Comparative analysis shows that the standalone search 

algorithms cannot perform well.  

 In each case study, the OQBA technique provided better 

fitness value. 
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