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Abstract 13 

Variable selection is an important preprocessing step in the development of effective data-driven 14 

models for CO2 flow measurement in carbon capture and storage systems. In order to effectively 15 

quantify the importance of potential input variables to the desired output, ensemble learning is 16 

proposed and incorporated into variable selection methodology. This paper presents a tree-based 17 

heterogeneous ensemble approach to variable selection and its application to gas-liquid two-phase CO2 18 

flow measurement. The importance of each variable is determined through combining the importance 19 

scores from four tree-based algorithms, including decision tree regression, bootstrap aggregating of 20 

regression trees, gradient boosting decision tree and gradient boosting random forest. Then the 21 

backward elimination algorithm is applied to remove the relatively less important variables and hence 22 

a small set of input variables for data-driven models. The selection results demonstrate that the 23 

significant variables for CO2 mass flow measurement include apparent mass flow rate, time shift, 24 

differential pressure and pressure drop while observed density, density drop, observed flow velocity 25 

and outlet temperature for prediction of gas volume fraction. To assess the validity of the selected 26 

variables, data-driven models based on gradient boosting random forest are developed. Results suggest 27 

that the relative error of the model output is mostly within 1% for CO2 mass flowrate measurement 28 

and 5% for gas volume fraction prediction by taking the selected variables as model inputs.  29 

 30 

Keywords: carbon capture and storage, gas-liquid two-phase CO2, variable selection, heterogeneous 31 

ensemble approach, data-driven models 32 
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1. Introduction 34 

With the rapid development of machine learning technology, variable selection becomes more and 35 

more important in data analysis and data-driven modelling (Wang et al., 2013; Xin et al., 2012; Nan 36 

et al., 2014; Zhang et al., 2018). A variety of variable selection methods have been developed over 37 

the past few years (Tuv et al., 2009; Zhang et al., 2015; Zhang et al., 2017). However, there is no 38 

common rule to determine which method is suitable for a particular application. It is normally 39 

determined by balancing the computational cost and the accuracy of the output from the data-driven 40 

model. Zhu et al. (2006) extended the application of ensemble learning methods (Mendes-Moreira 41 

et al., 2012; AL-Qutami et al., 2018) from the prediction ensemble to the variable selection 42 

ensemble. In general, the ensemble approach for variable selection can be classified into two 43 

categories: homogeneous and heterogeneous approaches. (Zhu et al., 2011; Zhou., 2012; Li et al., 44 

2017). The homogeneous ensemable approach is to use the same selection method on different 45 

datasets while the heterogeneous ensemble approach is to train different selection algorithms on the 46 

same dataset.  47 

 48 

CO2 flow in carbon capture and storage (CCS) systems is of complex nature (Wang et al., 2018; 49 

Zhang et al., 2018; Shao et al., 2020) and it is thus challenging to measure its dynamic 50 

characteristics. To measure mass flowrate and gas volume fraction of multi-phase flow, data-driven 51 

modelling has been considered as an efficient and cost-effective way (Yan et al., 2018). 52 

Applications of Coriolis flowmeters to gas-liquid two-phase flow measurement have been attempted 53 

by using prototype transmitters and investigating into the use of the internal parameters (Green et al., 54 

2008; Kunze et al., 2014; Li et al., 2018; Li et al., 2019). Coriolis flowmeters incorporating 55 

data-driven modelling algorithms have demonstrated a potential for multiphase flow measurement 56 

(Wang et al. 2017). One ket feature of this approach is to minimise the hardware modification and 57 

enable commercial Coriolis flowmeters to work under two-phase flow conditions by simply adding 58 

a software module. In order to develop optimal data-driven models for Coriolis flowmeters under 59 

two-phase flow conditions and quantify the parametric dependency among the input variables and 60 

their significance to the desired outputs, Wang et al. (2017) compared three input variable selection 61 

methods, partial mutual information, genetic algorithm-artificial neural network, and tree-based 62 

iterative input selection. It is found that a single tree-based selection method can generate varying 63 
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results for different datasets in the variable selection process.  64 

 65 

To improve the performance of the tree-based selection method, a heterogeneous ensemble approach 66 

is introduced to the variable selection process in this paper. A total of four different tree-based 67 

selection methods, including decision tree (DT) regression, bootstrap aggregating (Bagging) of 68 

regression trees, gradient boosting decision tree (GBDT) and gradient boosting random forest (GBRF) 69 

are implemented with the same dataset and fused importance score is calculated for each variable. 70 

This paper aims to propose an approach to input variable selection and data-driven modelling 71 

for two-phase flow measurement and test the developed models on the same type of 72 

flowmeters and transmitters. Experimental tests were conducted with gas-liquid two-phase CO2 73 

flow. The validity of the selected variables is verified by assessing the performance of GBRF based 74 

data-driven models.  75 

 76 

2. Methodology 77 

The structure of the ensemble variable selection method is shown in Fig. 1. The dataset is acquired 78 

from multiple sensors including a Coriolis mass flowmeter, a DP transducer, two pressure 79 

transducers and two temperature sensors. The first step is to generate variable selectors with 80 

optimized parameters based on different tree-based algorithms. In this step, the importance scores of 81 

variables are obtained from each selector. The second step is to combine the variable importance 82 

derived from different variable selectors and then remove the less important variables through 83 

backward elimination. Therefore, a set of variables which has significant effect on the mass flow rate 84 

measurement and gas volume fraction (GVF) prediction of two-phase CO2 flow is obtained, 85 

respectively. The third step is to develop data-driven models based on the selected variables to 86 

produce mass flow rate and GVF.  87 

 88 

   89 
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 90 

Fig. 1 Structure of the ensemble variable selection method 91 

 92 

2.1 Variable selectors 93 

Four tree-based models, including DT, Bagging, GBDT and GBRF, are taken as four individual 94 

selectors. These are commonly used tree based algorithms and are effective in the variable selection. 95 

The importance score of each variable can be quantified by all tree-based algorithms, respectively. The 96 

weighted average method is then used to combine the importance scores from different tree based 97 

models. The application of ensemble learning is to improve the reliability of variable selection. As 98 

shown in Fig. 2, the DT algorithm (Zhou., 2012) traverses all the input variables in each iteration and 99 

take the input variable that produces the minimum MSE (Mean Squared Error) value of the prediction 100 

result as the split point of the node. The process continues recursively until the row arrives at a 101 

terminal (leaf) node where a prediction value is assigned to the row. The value assigned to the terminal 102 
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node is the mean of the outcomes of all training observations that wound up in the leaf node. These 103 

observation results are the predicted values corresponding to the predicted target parameters. In this 104 

paper, the observation results are mass flow rate and GVF of gas-liquid two-phase CO2 flow. 105 

 106 
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Fig. 2 Decision tree flowchart  108 

For a single decision tree, the more important the variable is, the earlier it is used. The variable 109 

importance is quantified as (Tuv et al., 2009 ): 110 

              ( , ) ( , )i i

t T

VI X T I X t


                  (1) 111 

where ΔIi (Xi ,t) is the reduction in impurity due to an actual (or potential) split on the variable Xi at the 112 

node t of the optimally pruned tree T. Node impurity I(t) in this paper is MSE with a node t. After 113 

normalizing the VI of each variable, the final importance score will be obtained.  114 

 115 

Bagging algorithm (Zhang et al., 2015; Zhu et al., 2011) uses bootstrap sampling to obtain the data 116 
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subsets for training the base learners (i.e. decision trees). In Fig. 3, φi is the prediction result of the ith  117 

decision tree for the test samples. The output f(x) in regression is the average of the results from all 118 

trees. For tree-based ensembles, the importance score of a variable is the average value derived from 119 

all the trees. 120 
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 121 

Fig. 3 Block diagram of Bagging algorithm 122 

 123 

The GBDT (Zhang et al., 2015; Tuv et al., 2009) algorithm is a decision tree ensemble learning 124 

algorithm based on the gradient boosting framework. It uses the original training samples for learning. 125 

The ith residual in Fig. 4 is the difference between the predicted result of the ith tree and the target value. 126 

It is taken as a new target for the next tree to achieve the concatenation of GBDT algorithm. The 127 

output f(x) of the algorithm is obtained by summing the prediction results of individual trees. f0(x) is 128 

the initial value of the learner. lr is the learning rate, which is used to control the step size and ensure 129 

the convergence of the algorithm during the iteration.  130 

Original  samples

DT1

DT2

DTn

..
.

φ1

φ2

φn
Residualn

Residual1

Residual2

 131 

Fig. 4 Block diagram of GBDT algorithm 132 

 133 
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GBRF algorithm (Tuv et al., 2009) is a mixture of gradient boosting and random forest algorithms. 134 

When dividing the samples at each node of the tree in GBRF algorithm, it only takes max-features 135 

attributes at random rather than all attributes. The GBRF algorithm introduces random selection of 136 

input variables in the splitting process and thus the correlation between the single models is further 137 

reduced. The structure of the GBRF algorithm is the same as that of GBDT. By changing the value of 138 

different coefficients in the model, different ranking results of variables are obtained. 139 

 140 

2.2 Combination strategy  141 

Combination strategy which is used to fuse importance score from individual selectors usually 142 

includes averaging method, voting method and learning method. Stacking (Zhou., 2012; Breiman., 143 

1996), as a typical learning method, is to train the first-level selectors using the original training 144 

dataset. The fused importance FI for a particular variable is the weighted average of importance scores 145 

from individual selectors and defined as:  146 

                         
4

1

i i

i

FI W VI


                               (2) 147 

where VIi is the importance score of the variable from selector i (i=1,2,3,4). Wi is the weighting factor 148 

based on prediction accuracy for each selection algorithm and determined by:  149 

                             max

max min

i
i

MAPE MAPE
W

MAPE MAPE





                       (3) 150 

where MAPEi is the prediction error in terms of mean absolute percentage error based on the ith 151 

selector. MAPEmax and MAPEmin are the maximum and minimum prediction errors from the four 152 

selectors, respectively. The definition of MAPE is shown in equation 4. 153 

 154 

Backward elimination algorithm is applied to remove irrelevant and less important variables. The 155 

resulted variables are regarded as the input variable for training the next-level selectors. Fig. 5 shows 156 

the flow chart of the stacking framework in ensemble variable selection. The selection process repeats 157 

until a stop condition is met, either the prediction accuracy approaches the goal or the maximum 158 

number of epochs is reached. In this case, the optimal input variables for data-driven modelling of 159 

gas-liquid CO2 flow measurement are obtained. 160 

 161 
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Fig.5 Block diagram of combination strategy based on stacking 163 

 164 

3. Experimental results and discussion 165 

3.1 Experimental conditions 166 

The test rig used in this study for gas-liquid two-phase CO2 flow is shown in Fig. 6. The single gas 167 

phase and single liquid phase CO2 flows are mixed through the mixer and form two-phase flow at the 168 

horizontal test section. During the mixing process, the temperature and pressure were kept around the 169 

gas/liquid transition line according to the phase diagram of CO2 in order to achieve gas/liquid 170 

two-phase flow conditions. Meanwhile, the temperature and pressure were maintained at constant 171 

values via the control system to reduce the likelihood of state change during each test run. Meanwhile, 172 

the flowmeter under test was installed at only 1.6 m away from the gas-liquid mixer and the difference 173 

in temperature between the mixer and the test section was less than 1℃, so the state change between 174 

gas CO2 and liquid CO2 was unlikely. Two separate Coriolis flowmeters were installed on the single 175 

liquid phase pipeline and single gas phase pipeline, respectively, to provide reference mass flowrate of 176 

CO2 liquid and gas phases. The uncertainty of the flowmeters for the mass flowrate metering of liquid 177 

phase and gas phase are 0.16% and 0.35%, respectively. The accuracy of these meters is high enough 178 

to be used to obtain reliable reference values. At the test section, a Coriolis flowmeter (KROHNE 179 

OPTIMASS 6400 S15) is used as the target instrument to evaluate the proposed method. Pressure, 180 

temperature and differential-pressure transducers are added to capture additional information about the 181 

flow.  182 

 183 

Experimental tests were conducted under the condition of total mass flowrate from 150～3500 kg/h 184 
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and the GVF from 1.11%～88.44%. A total number of 541 experimental data were obtained. The time 185 

duration under each experimental condition is 100s. The temperature observed at the meter under test 186 

over all experiments ranged between 18℃ and 25℃and the pressure was from 5.4 MPa ～ 6.5 MPa.  187 

 188 
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 189 

Fig. 6 Test rig for gas-liquid two-phase CO2 flow 190 

 191 

All the variables derived directly or indirectly from sensor signals are listed in Table 1. x1- x16 are the 192 

original attributes collected by the sensors. As the data from the Coriolis flowmeter under test were 193 

updated around every 40 ms, x1-x10 were acquired via the General Device Concept (GDC) protocol 194 

with sampling rate of 48 Hz as per the sampling theorem. No filtering or limiting is applied to the data 195 

from the meter. Variables x11-x16 were acquired via an NI (National Instrument) data acquisition card 196 

from transducers with a sampling rate of 30 Hz. x17- x30 are the extended attributes including 197 

temperature difference, relative pressure difference and some statistical values of some original 198 

attributes. The extended attributes are regarded as potential variables, which contain useful 199 

information about the two-phase flow. 200 

 201 

 Table 1 Input variables and their corresponding physical definitions 202 

ID Variable name Physical definition 

x1 Apparent mass flowrate ( q ) 
The mass flowrate reading from the Coriolis flowmeter at the 

test section 

x2 Process temperature (T) 
The temperature reading from the Coriolis flowmeter at the 

test section 

x3 Observed density (ρ1) The density reading from the Coriolis flowmeter at the test 
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section 

x4 Tube frequency (f) 
The oscillation frequency reading from the Coriolis 

measuring tube inside the Coriolis flowmeter 

x5 Two phase indicator An indicator for the detection of a two-phase 

x6 Time shift (td) 
The time delay between the signals reading from the two 

motion sensors 

x7 Observed flow velocity (v) 
The flow velocity reading from the Coriolis flowmeter at the 

test section 

x8 Sensor A level  (VA/VMAX) 
The relative voltage amplitude of signals from the motion 

sensor A 

x9 Sensor B level (VB/VMAX) 
The relative voltage amplitude of signals from the motion 

sensor B  

x10 Drive level (ID/IMAX) The relative current amplitude of the driver output  

x11 Inlet pressure ( P1) 
The pressure of the fluid at the inlet of the Coriolis  

flowmeter 

x12 Inlet temperature (T1) 
The temperature of the fluid at the inlet of the Coriolis 

flowmeter 

x13 Outlet pressure (P2) 
The pressure of the fluid at the outlet of the Coriolis 

flowmeter 

x14 Outlet temperature (T2 ) 
The temperature of the fluid at the outlet of the Coriolis 

flowmeter 

x15 Temperature different(△T ) The temperature difference across the Coriolis flowmeter 

x16 Differential pressure(DP) The differential pressure across the Coriolis flowmeter 

x17 Relative variance of DP Variance/differential pressure 

x18 Sensor level different (△V) The relative amplitude difference 

x19 Pressure drop (DP /P1) Relative ratio of the pressure differential  

x20 Damping (x10/x8) Damping factor of the Coriolis measuring tubes  

x21 Variance of  flow velocity The variance of the flow velocity 

x22 Relative variance of flow velocity Variance/ observed flow velocity 

x23 Skewness of flow velocity Skewness of flow velocity 

x24 Variance of mass flowrate Variance of mass flowrate 

x25 
Relative variance of mass 

flowrate 

Variance/ apparent mass flowrate 

x26 Skewness of mass flowrate Skewness of mass flowrate 

x27 Variance of density Variance of density 

x28 Relative variance of density Variance/observed density 

x29 Skewness of density Skewness of density 

x30 Density drop (ρ0-ρ1)/ρ0 

Relative ratio of measuring section density to liquid density 

( ρ0  is theoretical density of CO2 liquid phase at 

certain temperature and pressure) 

 203 

3.2 Parameter optimization of individual selectors 204 

To improve the performance of selectors there are several parameters need to be optimized. As for the 205 
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DT algorithm, the parameter tree depth is to be optimised. Bagging algorithm requires to determine 206 

the tree depth and the total number of training trees (i.e. model size). Apart from the tree depth and 207 

model size, GBDT and GBRF algorithms need to optimise the parameters of learning rate. As GBRF 208 

algorithm has the characteristics of random forest algorithm, the number of maximum input features is 209 

another parameter to be optimised. All the parameters are optimised through a trial-and-error 210 

approach.  211 

 212 

During the process of parameter optimization, MAPE is used to evaluate the performance of each 213 

selector and defined as 214 

                       
1

ˆ 100%n
i

i

Y Y
MAPE

Y n


            (4) 215 

where Y is the desired value of the target variable; Ŷi is the predicted value obtained by the ith basic 216 

learner, and n is the number of all samples. All the MAPE values in the paper are the average 217 

prediction accuracy from 10-fold cross validation.  218 

 219 

When the target variable is the mass flowrate of gas-liquid two-phase CO2, the desired value Y is 220 

determined by qm, the sum of liquid CO2 mass flow (qml) and gas CO2 mass flow (qmg): 221 

                m ml mgq q q                            (5) 222 

 223 

When the target variable is the GVF of gas-liquid two-phase CO2, the desired value Y is equal to α: 224 

               100%
vg

vl vg

q

q q
 


                       (6) 225 

where qvl and qvg are calculated volume flowrates of the liquid and gas phases, repsectively.  226 

 227 

The reference value of GVF calculated from equation (6) is based on the assumption that there is no 228 

state change between the reference meters and the meter under test. 229 

 230 

1) Parameter optimisation for DT and Bagging models 231 

DT models are developed respectively with the tree depth from 1 to 15. As shown in Fig. 7(a) and 7(b), 232 
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the MAPE decrease for both mass flowrate measurement and GVF prediction as the tree depth 233 

increases. When the depth is greater than 9, the prediction error does not change significantly. In order 234 

to avoid over-fitting, the model training depth is set to 9 in single decision tree models. 235 

Depth=9

    

Depth=9

 236 

       (a) Performance of mass flowrate models   (b) Performance of GVF models 237 

Fig.7 Optimal depth in single tree models 238 

 239 

As shown in Fig. 8, for the tree-based ensemble algorithms (Bagging, GBDT and GBRF), the 240 

prediction error of the target variable reaches a stable value (about 1.64% for mass flowrate) when the 241 

number of training trees is 500. Moreover, prediction error is no longer reduced as the number of 242 

training trees increases. Therefore, the number of training trees is set to 500 in the ensemble 243 

algorithms.  244 
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 245 

Fig.8 Optimal number of trees in the tree-based ensemble algorithms  246 

 247 

Fig. 9 shows the process of determination of optimal depth in bagging algorithms which are used to 248 
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predict mass flowrate and GVF, respectively. In these bagging based models, the number of trees is set 249 

to 500. It is obvious that the MAPEs value of the prediction is approaching to the minimum of 1.64% 250 

for mass flowrate and 8.17% for GVF at a depth of 9. It also verifies the depth selection result in a 251 

single decision tree models. Compared with the prediction error of the single decision tree in Fig. 8, 252 

Bagging model with the same depth performs better as the result of ensemble learning.    253 

Depth=9

   

Depth=9

 254 

      (a) Performance of mass flowrate models     (b) Performance of GVF models 255 

Fig.9 Optimal depth in Bagging algorithm 256 

 257 

2) Parameter optimisation for GBDT and GBRF models 258 

Different from bagging and RF, Gradient boosting (GB) is a serial ensemble and able to reduce bias 259 

and variance. GB often has low error values with stumps (a decision tree with a depth of 1) in deeper 260 

trees. Before determining their depth, it is necessary to determine the learning rate. At this time, the 261 

model is still trained with the depth of 9. The performance of GB models with respect to different 262 

learning rates is depicted in Fig.10. When the learning rate varies from 0.001～0.5, 500 trees are 263 

trained using GB algorithms at each learning rate. The prediction results of mass flowrate and GVF 264 

using GB method with different learning rates are shown in Fig. 11(a) and (b), respectively. When the 265 

learning rate is equal to 0.02, MAPE of mass flowrate models reaches the minimum value of 1.02%. 266 

For GVF models, the optimized learning rate is 0.03 to achieve a minimal MAPE of 5.3%. 267 

 268 
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0.02

  

0.03

 269 

    (a) Performance of mass flowrate models          (b) Performance of GVF models 270 

Fig.10 Optimal learning rate in GB algorithm 271 

 272 

Fig. 11 shows the performance of mass flowrate models and GVF models when the depth of the tree 273 

changes from 1 to 12 with a constant learning rate of 0.02 and 0.03. The MAPE value of models 274 

reaches the minimum of 1.03% for mass flowrate and 5.3% for GVF, when the depth of the tree is 6. 275 

For the serial gradient boosting based models, the model performance can be greatly improved by 276 

slightly increasing the depth of the decision tree due to the interaction among the potential variables. 277 

As there are some important variables with strong correlation in the potential input variables, it is 278 

necessary to apply the gradient lifting algorithm since both GBDT and GBRF algorithms play in a 279 

serial ensemble to the basic learners. They have the same depth parameter of 6. 280 

 281 

 

Depth=6

  

Depth=6

 282 

      (a) Performance of mass flowrate models          (b) Performance of GVF models 283 

Fig.11 Optimal depth in GB algorithm  284 
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Since GBRF is a combination of GB and random forest (RF) algorithms, it also need to select the 285 

maximum number of features (maxFeature) for model training. The maxFeature means the number of 286 

input variables. The learning rate and depth of GBRF are set to the determined values, respectively. As 287 

shown in Fig. 12, for the measurement of mass flowrate, the prediction error of the GBRF model 288 

reaches the minimum 0.98% when the maximum number of input features is 20. For the prediction of 289 

GVF, the GBRF model produce minimum MAPE of 5.3% when the maximum number of input 290 

features is 22. However, the optimal maxFeature for GBDT algorithm is 30 which is the total number 291 

of all possible input variables. 292 

GBRFGBDT

   

GBDT GBRF

 293 

(a) Performance of mass flowrate models     (b) Performance of GVF models 294 

Fig.12 Optimal max features in GBDT and GBRF algorithms 295 

3) Summary of optimal parameters  296 

According to the above analysis, the optimal parameters of the tree-based algorithms are obtained and 297 

summarized in Table 2.  298 

Table 2 Optimal parameter of the basic learners 299 

Parameter DT Bagging GBDT GBRF 

Depth  9 9 6 6 

The number of trees  1 500 500 500 

Max number of 

input variables 

Mass flowrate  30                            30 30 20 

GVF  30           30 30 22 

Learning rate 
Mass flowrate   / / 0.02 0.02 

GVF   / / 0.03 0.03 
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3.3 Implementation of ensemble variable selection 300 

Each of the algorithms is implemented based on the optimal parameters outlined in Table 2. The 301 

corresponding results of variable sorting and variable importance scores are obtained. The relative 302 

importance of the tree model is represented by the reduction in impurities due to the split on a specific 303 

variable set. For ensembles, the metric is averaged over the collection of base learners (Zhang et al., 304 

2017), weighted average is used to derive the combined variable importance. 305 

 306 

Fig.13 shows the order of first 15 variables obtained by each algorithm according to the normalized 307 

variable importance score. It can be seen from each figure, when the number of preselected input 308 

variables is 15, the variable importance of each algorithm varies. It is essential to effectively fuse and 309 

trim the sorting results of different algorithms to obtain the most accurate and concise set of input 310 

variables.  311 

 312 

(a) Variable importance to mass flowrate using DT   (b) Variable importance to GVF using DT 313 

 314 
(c) Variable importance to mass flowrate using Bagging (d) Variable importance to GVF using 315 

Bagging 316 
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 317 

(e) Variable importance to mass flowrate using GBDT  (f) Variable importance to GVF using GBDT 318 

 319 

(g) Variable importance to mass flowrate using GBRF (h) Variable importance to GVF using GBRF 320 

Fig.13 Variable importance to mass flowrate and GVF based on basics selectors  321 

 322 

As shown in Fig. 13(a) and (b), the single algorithm DT can only select the first few most important 323 

variables, but cannot distinguish the importance of other variables. In Fig. 13 (c) and (d), the Bagging 324 

algorithm is an ensemble of 500 trees and the model performance is the average result of 500 trees. 325 

The algorithm can improve the polarization of importance and select more important variables. 326 

Therefore, prediction accuracy based on Bagging models is improved compared to single tree 327 

algorithm. In Fig. 13 (e) and (f), the use of GBDT algorithm is effective to get rid of the polarization 328 

phenomenon. The importance of all variables is smoothly changed. Therefore, the algorithm is 329 

superior to DT and Bagging algorithms, and has higher prediction accuracy. In Fig.13 (g) and (h), 330 

GBRF algorithm is a combination of gradient lifting and random forest algorithm, which further 331 

narrows the gap of the importance score of variables and further improves the prediction accuracy of 332 

target variables. 333 
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 334 

Tables 3 and 4 summarize the results of the combined importance scores of the potential input 335 

variables. The algorithm performs 13 iterations of variable ranking and 12 iterations of variable 336 

selection. Backward elimination algorithm is applied to remove less important variables. For different 337 

prediction target, the results of variable selection are quite different. Finally, the validity of the 338 

selected variables is verified through assessing the performance of data-driven models. 339 

 340 

Table 3 Results of variable selection at all levels for mass flowrate 341 

The order of importance of tree-based feature selection   

Number 

  

Index 

 

30 

 

25 

 

20 

 

15 

 

10 

 

8 

 

7 

 

6 

 

5 

 

4 

 

3 

 

2 

 

1 

x1 x1 x6 x6 x1 x6 x6 x6 x6 x6 x1 x1 x6 x6 

x2 x6 x1 x1 x6 x1 x1 x1 x1 x1 x6 x6 x1  

x3 x16 x16 x16 x16 x16 x16 x16 x16 x16 x16 x16  

x4 x19 x19 x19 x19 x19 x19 x19 x19 x19 x19  

x5 x7 x25 x7 x7 x7 x7 x7 x7 x7  

x6 x25 x9 x25 x13 x25 x13 x25 x25  

x7 x22 x7 x15 x25 x13 x25 x13  

x8 x23 x22 x30 x15 x15 x15  

x9 x26 x23 x3 x23 x22  

x10 x29 x29 x26 x22 x23 

x11 x15 x30 x22 x30  

x12 x21 x24 x23 x26 

x13 x18 x26 x13 x18 

x14 x24 x15 x18 x29 

x15 x8  x18 x29 x3 

x16 x28 x8 x21  

x17 x27 x3 x2 

x18 x17 x13 x24 
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x19 x9 x21 x9 

x20 x30 x2 x8 

x21  x2 x28  

x22 x3 x17 

x23 x13 x20 

x24 x12 x12 

x25 x20 x27 

x26 x4  

x27 x14 

x28 x11 

x29 x10 

x30 x5 

 342 

Table 4 Results of variable selection at all levels for GVF 343 

The order of importance of tree-based feature selection   

Number 

  

Index 

 

30 

 

25 

 

20 

 

15 

 

10 

 

8 

 

7 

 

6 

 

5 

 

4 

 

3 

 

2 

 

1 

x1 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 

x2 x30 x30 x30 x30 x30 x30 x30 x30 x30 x30 x30 x30  

x3 x4 x4 x4 x4 x4 x4 x7 x7 x7 x7 x7  

x4 x29 x23 x29 x7 x7 x7 x4 x4 x14 x14  

x5 x23 x29 x23 x29 x14 x24 x14 x14 x4  

x6 x26 x26 x26 x24 x24 x14 x24 x24  

x7 x24 x15 x15 x26 x23 x23 x23  

x8 x15 x24 x24 x14 x29 x29  

x9 x17 x8 x17 x23 x26  

x10 x21 x17 x13 x15 x15 

x11 x8 x9 x7 x17  

x12 x9 x18 x8 x8 
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x13 x27 x27 x14 x13 

x14 x18 x21 x21 x9 

x15 x7 x7 x9 x21 

x16 x28 x25 x27  

x17 x14 x14 x18 

x18 x25 x28 x25 

x19 x11 x13 x28 

x20 x19 x16 x16 

x21  x12 x22  

x22 x13 x12 

x23 x22 x11 

x24 x2 x19 

x25 x16 x2 

x26 x20  

x27 x5 

x28 x10 

x29 x6 

x30 x1 

 344 

In the process of variable selection, the sooner the feature is removed, the less important it is. As 345 

shown in Fig.10, this paper divides the elimination process of feature selection into three stages. At the 346 

first stage, the range of input features retained after feature selection 7～30. At this stage, unimportant 347 

variables are gradually eliminated until 7 variables are retained. Because the removed variables are 348 

insignificant to the target variable, the prediction accuracy of the model is gradually improved. At the 349 

second stage, the range of input variables retains after feature selection is 3～7. At this stage, it can be 350 

seen that the lack of sub-important variables leads to a small increase in the prediction error, but it 351 

does not have much impact on the overall performance. As shown in Fig.14(a), the prediction 352 

performance of mass flowrate models is to be improved when the number of selected features is 5. 353 

This is because the extended variables of important variables play an important role in predicting mass 354 
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flowrate. Fig. 14(b) shows the performance of GVF models. The MAPE value tends to increase when 355 

the number of selected features is more than 3. At the third stage, the range of input features retained 356 

after feature selection is 1～3. At this stage, one of the important variables required by the model is 357 

removed by fusion method, which leads to a rapid decline in the prediction accuracy of the model. 358 

Therefore, the optimal number of input variables for the prediction model should be determined at the 359 

second stage. 360 

 361 
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 362 

(a) CO2 mass flowrate models               (b)  CO2 GVF models 363 

Fig.14 Performance comparison of variable selection at different levels 364 

 365 

I II III

 366 

Fig.15 Model efficiency comparison of mass flowrate and GVF at different levels 367 

 368 

The model runtime in Fig. 15 is obtained, which represents the average run time of 54 test data (The 369 

processor of the computer used is Intel Xeon E5-2640 V4 CPU @ 2.4 GHz). The total running time of 370 
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each iteration is the sum of the running time of the four selection algorithms and their combination 371 

time. As shown in Fig. 16, as the number of input features is gradually reduced, the complexity of the 372 

model is reduced, and the time efficiency of the model is greatly improved. When the number of input 373 

features of the prediction model is 4, the efficiency of the GBRF algorithm is increased by 3 times 374 

compared with the feature number of 30. When the feature selection process reaches the second stage, 375 

the removal of a large number of variables unrelated to the predicted target value improves the model 376 

efficiency rapidly. This point indicates that the fusion variable selection method in this paper is very 377 

effective for large data measurement systems with a large number of input variables. Under the same 378 

number of input features, the running time of GVF prediction model is slightly longer than that of 379 

mass prediction model. This is because the relationship between the target variable GVF and the 380 

variable candidates is more complex and difficult to find. 381 

 382 

The ensemble tree algorithm can not only select variables, but also derive the predicted results of 383 

target variables. Three indicators are integrated to determine the final variable selection results: 384 

prediction accuracy (MAPE), model efficiency (running time) and model complexity (number of input 385 

variables) in Figs 14 and 15. In Fig.14 (a), the MAPE of the three ensemble algorithms reaches the 386 

minimum value when seven variables are used as model inputs. In Fig. 14 (b), the MAPE of the three 387 

ensemble algorithms reaches the minimum value when four variables are used as model inputs. Based 388 

on the analysis results of the above three evaluation indicators, four input variables are determined as 389 

the final selection results for both mass flowrate and GVF prediction models. The results of variable 390 

selection are shown in table 5. The MAPE value increases slightly for mass flowrate when the number 391 

of model input variables is 4. However, the model efficiency is greatly improved and the model 392 

complexity is reduced.  393 

 394 

The input variable for the mass flowrate prediction model is determined as{x1 x6 x16 x19} while the 395 

input variable for the GVF prediction model is {x3 x30 x7 x14}.The input variables selection results 396 

using the proposed the tree-based heterogeneous ensemble approach is summarized in Table 5.  397 

 398 

Table 5 Result of selection of four input variables 399 

Index Mass flowrate GVF 
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1 x1-Apparent mass flowrate (ṁ) x3-Observed density (ρ1) 

2 x6-Time shift (td) x30-Density drop ((ρ0-ρ1 )/ρ0) 

3 x16-Differential pressure (DP) x7-Observed flow velocity (v) 

4 x19- Pressure drop (DP /P1) x14-Outlet temperature (T2) 

 400 

According to the physical meaning of the input variables and previous theoretical and experimental 401 

study (Henry et al., 2006; Li et al., 2018), the selection results are further analyzed. Apparent mass 402 

flowrate (ṁ) x1 is measured in the horizontal test section, even though the CMF produces large errors 403 

in measuring the mass flowrate of two-phase flow (the original measurement error). It is still related to 404 

the desired CO2 mass flowrate. Time shift (td) x6 and apparent mass flowrate has a functional 405 

relationship, so time shift is also correlated with the desired CO2 mass flowrate. As the liquid CO2 406 

flowing through the meter with various gas CO2 entrainment, the pressure difference x16 across the 407 

Coriolis flowmeter and relative pressure difference x19 can characterise the mixed CO2 flow to some 408 

extent.  409 

 410 

For variable selection of GVF, x3 is the observed density of gas-liquid mixture phase, and density drop 411 

x30 is derived from the observed density and the liquid phase density, which can somehow reflect 412 

GVF. Although x7 observed flow velocity is not accurate two-phase flow velocity, it still can reflect 413 

the variation of mixed flow in the pipe. As the physical properties of CO2 are very sensitive to the 414 

variations in fluid temperature and pressure, so when temperature increases, phase change from liquid 415 

to gas may occur and hence increasing GVF. Therefore, x14 temperature is also an important variable 416 

for GVF prediction.  417 

 418 

In Table 5, x1 (apparent mass flowrate), x6 (time shift), x16 (differential pressure) and x19 (pressure 419 

drop) are selected for mass flowrate measurement. x3 (observed density), x30 (density drop), x7 420 

(observed flow velocity) and x14 (outlet temperature) are selected for GVF prediction. Variables x1 & 421 

x6, x3 & x30, and x16 & x19 look like highly redundant pairs. However, the mathematical relationship 422 

between each pair is complex particularly in the case of gas-liquid two-phase flow. For instance, x1 is 423 

derived from x6, but their exact relationship depends on the fluid temperature and material properties 424 

of the sensing tube (Wang et al 2017). Since x1 includes temperature compenstation and material 425 

property effect, both x1 and x6 are selected in this case. x19 is the ratio of differential pressure (x16) to 426 
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the inlet pressure (x11). x30 is the relative ratio of the observed density (x3) to liquid density ρ0 (ρ0 is 427 

the theoretical density of CO2 liquid phase at certain temperature and pressure). Additional fluid 428 

information is included in x6, x19 and x30 than those in x1, x16 and x3.  429 

 430 

The selection processes produce different importance scores for these variables. In consideration of the 431 

prediction accuracy and model complexity of the data-driven models, the combination of the variables 432 

outlined in table 5 are taken as the ‘optimal’ inputs to the tree-based models. If both variables from 433 

each pair are used as input features, the MAPE values of the tree-based models will be reduced by at 434 

least 0.5% for mass flowrate and 7% for GVF. In this case, these pairs provide complementary 435 

information for the data-driven models.  436 

 437 

3.4 Evaluation of ensemble variable selection 438 

GBRF models were developed based on the selected variables. The model performance was assessed 439 

with 54 test samples (mass flowrate range: 212 kg/h～3449 kg/h and GVF range: 1.82%～77.29%). 440 

As can be seen from Fig.16(a), the method proposed in this paper has improved the measurement 441 

accuracy over the direct mass flow measurements. The prediction accuracy of GVF from the GBRF 442 

model with selected input variables is shown in Fig.16(b). It turns out that the relative error in mass 443 

flowrate measurement is mostly within ±1.0% and GVF prediction mostly within ±5.0%. 444 

 445 

When GVF is low, the gas entrainment has less effect on the vibration of the flowtubes in the Coriolis 446 

mass flowmeter, which makes the apparent mass flowrate still very close to the true mass flowrate. In 447 

this case, it is easier for the data-driven models to correct the errors. As GVF increases, the large 448 

bubbles in the mixed flow lead to larger difference and nonlinear relationship between the apparent 449 

mass flowrate and true mass flowrate. In this case, it is more challenging for the data-driven models to 450 

derive the relationship and hence relative large errors than low GVF conditions.  451 

 452 
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 453 

             (a) Mass flowrate                               (b) GVF 454 

Fig.16 Model performance with the selected variables 455 

 456 

To further verify the selected results, a comparative experiment was conducted. A model is established 457 

with two input variables x1 (apparent mass flowrate) and x30 (density drop), respectively, for mass 458 

flow measurement and GVF prediction. A total of 108 samples for mass flowrate measurement and 459 

GVF prediction are tested. The performance of the models with two inputs and the selected inputs are 460 

summerised in Table 6. The results demonstrate that more test results from the model with selected 461 

inputs lie in the expected error range. 73% of test data produce relative error within ± 1.2% for mass 462 

flow measurement and 80% of test data produce relative error within ± 4% for GVF prediction. 463 

 464 

Table 6 Performance comparison of data-driven models with different inputs 465 

Comparison of mass flow prediction 

 {x1,x30} {x1,x6,x16,x19} 

Relative error within±1.2% 70% 73% 

Comparison of GVF prediction 

 {x1,x30} {x3,x7,x14,x30} 

Relative error within±4% 69% 80% 

 466 

4. Conclusions 467 

A tree based heterogeneous embedded ensemble approach has been proposed for variable selection 468 

and applied to gas-liquid CO2 two-phase flow measurement in this paper. Based on the combination 469 
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strategy of stacking and weighted averaging, the proposed method fuses the variable selection results 470 

from four single selectors. At the same time, mass flowrate measurement and GVF prediction of 471 

gas-liquid two-phase CO2 flow have been carried out using the selected variables as inputs to the 472 

GBRF models. The relative error of mass flowrate from the GBRF model is mostly within 1% with the 473 

selected input variables (apparent mass flow rate, time shift, differential pressure and pressure drop). 474 

The prediction error of GVF is mostly less than 5% using the selected input variables (observed 475 

density, density drop, observed flow velocity, outlet temperature). The outcome from such modelling 476 

research will help to enhance the understanding of two-phase flow measurement. Meanwhile, the 477 

results presented in the paper demonstrate that the proposed heterogeneous ensemble approach is 478 

capable of providing a small number of input variables and developing effective data-driven models 479 

for multiphase flow measurement. In the further, more effort will be made to improve the 480 

transferability of the developed data-driven model. 481 

 482 

Engineering judgement here is still important as we have some knowledge of the two-phase flow and 483 

Coriolis sensing process. Meanwhile, research is ongoing through analytical modelling of the 484 

gas-liquid two-phase flow, which is a related area of research we are working on. The results from 485 

such modelling research will help enhance engineering judgement. However, the variable selection as 486 

reported in this paper will assist the optimisation of the machine learning models significantly. The 487 

results presented in the paper demonstrate that the proposed heterogeneous ensemble approach is 488 

capable of providing a small number of input variables and developing effective data-driven models 489 

for multiphase flow measurement. 490 
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