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6. Abstract 
 

Contraction and force generation in muscle occurs via interactions between thick and thin 

filaments within the subcellular sarcomere structure of fused muscle cells (myofibrils). This 

heavily regulated process involves the coordinated efforts of tropomyosin, the troponin 

complex, myosin binding protein C and other accessory proteins. The regulation of muscle 

contraction is important for both contraction and relaxation, for example in the heart, the 

former leads to pumping and the latter refilling of the cardiac chambers. The focus of this 

thesis is the relaxation of muscle, which is highly relevant to diseases such as HCM. Using 

single molecule microscopy, the dynamics of thin filament activation have been measured 

in a metastable condition, between contraction and relaxation. This provides a molecular 

insight into both processes at the same time. Here I have developed a suite of analysis 

programs to investigate how the muscle regulatory system relaxes. Analysis of events has 

revealed that myosin molecules attached to regulated thin filaments are released in a 

concerted fashion, a process we call catastrophic collapse. With this understanding and 

new analytical tools, we are now in a position to analyse mutations associated with HCM to 

shed light on how these affect the relaxation dynamics of thin filaments in disease.  
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7. Introduction 

7.1. The Muscular System 

7.1.1. Muscle Types 
 

Muscle is found throughout the various motile and non-motile systems in every animal, 

ranging in purpose from enabling digestion, enabling gross movements and pumping blood. 

Its ubiquitous presence in organisms illustrates its physiological importance but also 

provides reasoning for its high conservation (Ng et al., 1985), for example, actin is 

considered as a universal polymerisation machine (Gunning et al., 2015a) and in higher 

vertebrates the proteins share a ≥ 94% sequence identity (Zhu et al., 2013; Vedula and 

Kashina, 2018).  

Depending on role, three types of muscle exist: skeletal, cardiac, and smooth. At a glance, 

the arrangement of each sarcomere seems similar, however, their location within the body 

and the addition of accessory proteins differs between them and ultimately determines 

their contractile function (Sweeney and Hammers, 2018). Skeletal muscle is a voluntary 

muscle that attaches to bones via tendons, it is the muscle group that coordinates the 

movement of your body. Each muscle cell (myocyte) is multinucleated and has a striated 

appearance due to the highly organised pattern of proteins sarcomeres (discussed later). 

The second muscle type, cardiac, is found solely in the heart and each cardiomyocyte must 

work in a synchronised fashion to coordinate continuous contraction. Finally, smooth 

muscle contracts involuntarily, serving many functions involving visceral organs such as 

digestion in your intestines, gastrointestinal (GI) tract (peristalsis) and regulation of blood 

pressure. Within a myocyte there are thousands of sarcomeres working in a synchronised 

fashion to contract and relax due to the presence of Ca2+
 ions and the phosphorylation of 

the regulatory and essential light chains on muscle myosin II (Dillon et al., 1981; Hai and 

Murphy, 1989). 

 

7.1.2. Muscle Contraction 
 

Muscle contraction is dependent on the subtype of muscle within the body. The 

mechanism differs between striated muscle and smooth muscle. 

Striated muscle has contraction due to excitation-contraction coupling (Kuo and Ehrlich, 

2015). This is where neurotransmitters depolarise membranes, influencing receptors to 

increase local calcium concentrations which ultimately leads to contraction of the muscle. 

These neurotransmitters bind to receptors on the motor end plate and causes an influx of 

sodium (Na+) ions which depolarises the membrane across the surface of the muscle tissue 

and depolarises the T-tubule system. The depolarisation of the T-tubules triggers a shift in 

the resting membrane potential of the muscle, and it turns on the voltage gated channels 

causing further depolarisation. This causes a stimulation of L-type calcium channels which 

opens Ryanodine Receptor (RyR) 1 or Ryanodine Receptor (RyR) 2 channels to release of 

calcium (Ca2+) ions from the sarcoplasmic reticulum to activate the skeletal or cardiac 

muscle, respectively (Bootman, 2012). Ultimately this influx of Ca2+
 leads to interactions 

with troponin C allowing conformational change of the tropomyosin and in turn exposing 
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the myosin binding sites on actin for the myosin heads so that activation of thin filament 

can occur. 

Smooth muscle receives its excitation via the autonomous nervous system which leads to 

an intracellular calcium influx which causes contraction of the muscle. This is similar to 

striated muscle where depolarisation causes activation of L-type calcium channels which 

leads to an increase in intracellular calcium and thus contraction of muscle. However, there 

is another pathway that is responsible for muscle contraction, which involves the activation 

of G-coupled (Gq) receptors which leads to the production of inositol 1,4,5-triphosphate 

(IP3) which is made by the protein phospholipase C. IP3 is an ubiquitous secondary 

messenger which can open IP3 receptors on the surface of the sarcoplasmic reticulum. This 

in turn causes an increase in intracellular calcium which is the driving force for muscle 

contraction (Bezprozvanny et al., 1991; Finch et al., 1991). 

 

7.1.3. Sliding Filament Theory 
 

This description of muscle contraction dates back to 1954 where two studies by A. F. 

Huxley and R. Niedergerke and H. E. Huxley and J. Hanson describe the process of muscle 

contraction visualised via high resolution microscopy (Huxley and Niedergerke, 1954; 

Huxley and Hanson, 1954). In the former study, they initially show the striated pattern of 

the muscle tissue is what we now know to be the ultrastructure of thick and thin filaments. 

This allowed measurements of the sarcomere length to be made before and after isotonic 

contractions (Huxley and Niedergerke, 1954). These measurements allow the differences to 

be highlighted in the band sizes e.g. I-bands become narrower during contraction. The 

second study outlines the changes in the cross striations during contraction and stretching 

of the muscle, various conditions were applied, for example, using concentrated vs dilute 

ATP or controlling shortening by holding both ends of the muscle fibre (Huxley and Hanson, 

1954). These studies were done via light microscopy and verified by electron microscopy 

and similar results were also seen via X-ray diffraction studies (Hanson and Huxley, 1953).  

Essentially, this theory suggests a simple model that describes the changes of the cross 

striations during muscle contraction. It states that in the sarcomere there are two bands, 

where the I band contains non-overlapping actin filaments and the A band contain myosin 

and both non and the overlap region. During contraction, the I band shortens, and the A 

band remains constant, so visually the I band slides over the A band, hence the sliding 

filament model. 

7.1.4. Three-state model of thin filament activation 
 

The three-state model of thin filament activation (Maytum et al., 1999) describes the 

propensity of myosin to form an actomyosin complex. These affinities directly correspond 

to the positioning of tropomyosin. The positioning of tropomyosin is influenced by troponin 

sensing an influx in local calcium levels. This model states that the three states of activation 

are the following: blocked, closed and open. Where, the blocked state involves 

tropomyosin completely blocking all the myosin binding sites along thin filament. The 

closed state is where there is an increased level of calcium which is sensed by troponin 

allowing tropomyosin to move more freely. The open state is where myosin has a high 
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affinity. This is where all the components of the muscular system are present and working 

together so that myosin can bind strongly to actin whilst tropomyosin shifts to allow lateral 

activation of thin filament as illustrated in Figure 1.  

 

 

Figure 1 - The three-state model of thin filament activation. 

Illustrating two transitions between the blocked and closed states and the closed and open states. 
The blocked state shows tropomyosin completely covering myosin binding sites located on actin, 
there are no other components of the muscular system that are present such as calcium, myosin and 
ATP. The blocked and closed states are in equilibrium and in the presence of Ca2+ ions, the blocked 
state can transition to the closed state, where calcium can activate the troponin complex allowing 
flexibility of tropomyosin, exposing the myosin binding sites. It is where the addition of ATP and 
myosin can cause the transition from the closed state to the open state where myosin can bind to 
the myosin binding site located on actin and induce thin filament activation. Illustration is not to 
scale as myosin motor domain is 130 kDa and each actin monomer is 42 kDa. 

7.1.5. Force Generation 
 

The interactions between actin and myosin in the presence of calcium and ATP generate 

force and motion. This motion generated is from a process called the crossbridge cycle 

which was derived from the Lymn-Taylor cycle (Lymn and Taylor, 1971). The crossbridge 

cycle consists of four steps. The first step consists of crossbridge formation, whereby the 

activated myosin can bind to actin to form a stable actomyosin complex. Myosin is 

activated by ATP binding to the ATPase site on the myosin head so that ATP can be 

hydrolysed into ADP and inorganic phosphate (Pi). The next step is where the hydrolysis of 

ATP leads to ADP and inorganic phosphate to be released causing a power-stroke to occur 

allowing myosin to create a rowing like movement across the actin (Holmes, 1997; Geeves 

and Holmes, 1999). Now that the ATPase site on myosin is free, local ATP is able to rebind 

to that site and causes the myosin from the crossbridge to detach from the actin. Finally, 

reactivation of the myosin head must occur via the hydrolysis of ATP to complete the 
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crossbridge cycle, this is illustrated in Figure 2. The forces generated from this crossbridge 

cycle have been extensively studied over the years via in vitro motility assays (Homsher et 

al., 1996; Greenberg and Moore, 2010), X-ray diffraction studies (Irving et al., 1992) and 

force-tension experiments (Karatzaferi et al., 2004). 

 

Figure 2 - The crossbridge model of muscular contraction, illustrating the hydrolysis of ATP.   

This schematic (not to scale) illustrates the crossbridge cycle in muscular contraction. Where 1) 
shows ATP binding to the myosin head, whereby in 2) hydrolysis of ATP activates the myosin head 
allowing a crossbridge to form, but as ADP and Pi are released, a power stroke occurs – this is seen in 
3) where the myosin head has a change in angle thus moving actin filament along. Finally, in 4) the 
myosin head is reactivated in the presence of ATP. 

7.2. The Sarcomere 

7.2.1. Structure & Function 
 

The sarcomere is the smallest contractile unit within muscle. This repeating arrangement of 

thick and thin filament allows a length-tension relationship that is responsible for muscular 

contraction (Au, 2004). In its most relaxed state, force tension experiments have shown the 

sarcomere to be a length of 2.4 µm (Johnston et al., 2016). These experiments play on the 

structure of the sarcomere and highlight the function of each component. Initially they 

show that ATP hydrolysis is done by the thick filament, thin filament is activated by Ca2+ 

and other regulatory proteins such as Myosin Binding Protein C, Tropomyosin, and the 

Troponin Complex interact with each other at varying degrees and contribute to the 

regulation of muscular contraction. More recent studies shows that MyBP-C governs 

interactions with both thick and thin filament (Heling et al., 2020) and tropomyosin along 

with the troponin complex has various degrees of interactions with thick and thin filament 

also, this will be described later.  
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7.2.2. Calcium role of regulation of contraction 
 

Every muscle requires calcium for contraction, it is the main signalling molecule which 

controls contraction and relaxation of the different muscle types, in the absence of calcium 

there is no interaction between actin and myosin (Szent-Györgyi, 1975). Calcium is released 

due to a change in stimuli which is caused by neurotransmitter release which in turn 

interacts with receptors to release stores of calcium in the sarcoplasmic reticulum. 

Depending on the tissue type as described earlier, calcium can interact in different ways 

such as directly associating with Troponin C and causing conformational change in 

tropomyosin, or calcium can interact with G-coupled receptors and release IP3 which 

causes even more of an influx of calcium which then can activate myosin light-chain kinase 

to initiate muscle contraction (Berchtold et al., 2000).  

To regulate Ca2+
 homeostasis, calcium is pumped back from the cytosol of the myocyte into 

the sarcoplasmic reticulum via the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) so 

that the muscle can relax (Periasamy et al., 2008) and be ready for another potential 

activation.  

 

7.3. Thin Filament 

7.3.1. Actin  
 

Actin was discovered and successfully isolated by Straub in 1942 from myosin which usually 

is in a complex called actomyosin. The 42-kDa protein monomer forms polar, double 

stranded helical filaments (F-actin). Actin has many purposes in eukaryotic organisms 

(Dominguez and Holmes, 2011) however, more specifically in muscle, its purpose is to allow 

muscle contraction via its interactions with myosin and accessory proteins. The filament 

has two ends, termed barbed and pointed and they represent what side is more active in 

terms of elongation, studies have shown that the pointed end is more active in its rate of 

elongation and leads to actin treadmilling (Wegner and Isenberg, 1983). X-ray 

crystallography and electron microscopy studies have shown the detail in structure of F-

actin, and it does confirm its two chained right-handed helix conformation(Dominguez and 

Holmes, 2011). 

Actin has ATPase activity which is required during filament assembly and allows the cross-

bridge cycle to occur when an interaction between myosin has been made. In the cross-

bridge cycle, as myosin binds to actin in the presence of ATP, ATP is then hydrolysed into 

ADP whilst releasing inorganic phosphate. This causes a conformational change in myosin 

allowing it to generate force for the power stroke and ultimately moves actin along 

towards the M-line (the middle of the sarcomere) during contraction. 
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7.3.2. Tropomyosin 

 
Tropomyosin, discovered in 1946 by Kenneth Bailey is a long 65 kDa protein dimer which 

has two alpha helices (32.5 kDa each) which are wound in a rigid coiled coil orientation 

(Bailey, 1946). It forms head to tail polar filaments alongside the thin filament (Gunning et 

al., 2015b). Tropomyosin has two striated muscle isoforms (α and β) which polymerise in 

low ionic strength solutions (Ooi et al., 1962; Paulucci et al., 2004). It polymerises along the 

major groove of actin filaments and correct spacing of the homodimer αβ complex allows 

for cooperative activation of thin filament (Hitchcock-DeGregori and An, 1996; Schevzov et 

al., 2012). 

The shape and conformation of tropomyosin has the primary roles of stabilising thin 

filament and regulating muscle contraction via steric hinderance. Tropomyosin has a strong 

affinity to the thin filament and it has been confirmed via deletion studies (Hitchcock-

DeGregori et al., 2001), the highly conserved N-terminal half of tropomyosin’s period 5 is 

home to the internal region responsible for this (Brown et al., 2005),(Hitchcock-DeGregori 

and Singh, 2010). 

Studies have shown that tropomyosin has two states, essentially “on” and “off” which is 

influenced by the presence of troponin which leads to the cooperative binding of S1 

(Geeves and Lehrer, 1994). Tropomyosin has interactions with the C-terminal domain of TnI 

which causes displacement of tropomyosin and allows myosin interaction with actin 

(Galińska-Rakoczy et al., 2008; Lehman et al., 2009). 

 

7.3.3. Troponin Complex 
 

Troponin was discovered in 1963 by Setsuro Ebashi which led to the investigation of 

calcium regulation during muscular contraction. The troponin complex is a large multi 

subunit complex with a size of about 80 kDa (Ohtsuki and Morimoto, 2013). Each subunit of 

troponin: Troponin I (TnI), Troponin C (TnC) and Troponin T (TnT), has a different structure 

and function and studies have now shown the structure and function of each component of 

the troponin complex using X-ray crystallography (Takeda, 2005). Each troponin subunit 

alongside tropomyosin allows the inhibition of contraction of thin filament. 

Troponin I is a globular protein around 37 kDa (cardiac molecular weight (Dasgupta and 

Wahed, 2014)) and has been classed as the inhibitory subunit of the complex, as it inhibits 

the actin-myosin interaction (Perry, 1999; Geeves, 2012). TnI has multiple functions such as 

inhibiting myosin binding to actin, inhibiting actomyosin ATPase and reversal of inhibition 

by activation of TnC (Geeves et al., 2000; Ohtsuki and Morimoto, 2013).  

Troponin C is a small globular protein from the calmodulin family that is around 18 kDa in 

size. It has the role of binding to Ca2+ ions and interacting with troponin I to stop its 

inhibitory effects in the presence of Ca2+. Skeletal troponin C has four binding sites from I – 

IV and they have varying affinities to Ca2+, whereby I-II have low affinities so that it can 

respond to larger changes in Ca2+ concentrations during muscle contraction and III-IV have 

higher affinities to Ca2+ which mean they are always active due to physiological ionic 

conditions (Herzberg et al., 1987).  
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Troponin T has the role of binding to tropomyosin and anchoring troponin I and C subunits 

to the thin filament (Marques and de Oliveira, 2016). As the organiser of the complex, 

around 31-36 kDa and 18 nm in diameter (Tobacman, 1996; Perry, 1998) it interacts with 

tropomyosin and orchestrates the inhibitory function of the complex. Troponin T interacts 

physiologically to the I and C subunits and causes an effect on calcium sensitivity of the 

actomyosin MgATPase. Ultimately, the troponin complex hand in hand with tropomyosin 

has the regulatory role of muscle contraction. 

 

7.4. Thick Filament 
 

The myofilament contains the primary motors that drive muscle contraction – these motors 

are thick filament. Thick filament within the sarcomere is also known as muscle myosin II 

with a motor domain (about20 nm long) and an alpha helical coiled myosin rod (150 nm 

long). Alongside the core head, neck, and tail structure of myosin, within the neck region of 

muscle myosin II there are other components such as the essential light chain and 

regulatory light chain, these are the calcium sensing components of thick filament (Fusi et 

al., 2016). Thick filament has a very organised repeating structure whereby every 43 nm 

along the filament there are three pairs of myosin heads around the myosin circumference, 

this is termed a quasi-helical organisation (Irving, 2017). Regulation of thick filament is 

done by the accessory protein – Myosin Binding Protein C (MyBP-C), which packs itself 

alongside the 9 myosins in the 43 nm repeating pattern allowing its C-terminal domain to 

interact with the N-terminal domain of myosin (Ratti et al., 2011; Wang et al., 2016; Heling 

et al., 2020). 

Thick and thin filament in the presence of Ca2+ expose myosin binding sites located on the 

thin filament and in turn cause thick filament to bind and hydrolyse ATP to cause a cross-

bridge cycle. The interactions between these two work under a cooperative fashion and the 

generation of force from these interactions are dependent on many factors. 

 

7.5. Project Outline 
 

The activation of thin filament has been studied extensively over the years and more 

recently, single molecule studies have shown the cooperative activation of thin filament 

(Desai et al., 2015; Longyear et al., 2017; Inchingolo et al., 2019). It is hypothesised that this 

activation is a cooperative process, whereby two myosin heads are required to laterally 

activate thin filament (Desai et al., 2015). This hypothesis falls in line with the current three 

state model (McKillop and Geeves, 1993), ensemble kinetics (Maytum et al., 1999) and 

structural studies (Vibert et al., 1997). However, this is not the only component of the 

muscular system, relaxation is the second and equally necessary part to muscular 

contraction and shouldn’t merely be seen as a passive process (Biesiadecki et al., 2014).  

Previous studies have indicated that there may be a phenomenon termed catastrophic 

collapse (Desai et al., 2015; Inchingolo et al., 2018), whereby relaxation of thin filament is 

not only seen as a stochastic process, but more concerted events of thin filament 

deactivation occur. By using the single molecule tightrope assay we are able to visualise 
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these events and to interpret them, statistical validation has been done via the Reversible 

Jump Markov Chain Monte Carlo (RJMCMC) model (Inchingolo et al., 2018). To simplify the 

data analysis so that it is more applicable to wider data sets, I have developed a new 

analysis protocol to confirm the presence of catastrophic collapse. Using this analysis, we 

are able to hypothesise that the concerted release of myosin is an active, coordinated 

process which provides complete relaxation of muscle. Studies have shown impairment of 

muscular relaxation in diseases such as hypertrophic cardiomyopathy (HCM) (Tardiff, 2005; 

Li et al., 2012), HCM is a common phenotype for these molecular insults and we believe 

this process could provide a molecular explanation for it.  

My project aims are as follows: 

1. To be able to extract and purify actin and muscle myosin II from Chicken Pectoralis 

2. To be able to fluorescently label and purify S1 myosin mNeonGreen 

3. To conduct single molecule fluorescent microscopy of regulated thin filament 

4. Develop a new workflow for data analysis to track the catastrophic collapse of 

myosin clusters on regulated thin filament 

8. Experimental Methods 
 

8.1. Extraction and Purification of Myosin 

8.1.1. Extraction of Muscle Myosin II from Chicken Pectoralis 
 

Myosin was prepared from chicken pectoralis. Pectoralis tissue was sourced from the local 

butchers in the morning, excess tendons, fats and other tissue were removed, and it was 

rinsed with 0.2 M EDTA. The tissue was cut into small pieces and then went through the 

meat grinder. After this was done, 2 ml of buffer A was added per g of tissue and it was 

stirred gently (to avoid air bubbles) with an overhead stirrer for 12 minutes precisely. This 

reaction was stopped by adding cold ddH2O up to 2 L. This 2L solution was filtered through 

four layers of cheesecloth and the solution was retained in a 5 L beaker. Cold ddH2O was 

added to 5 L and gently stirred to solubilise – then the stir bar was removed so that the 

myosin could then precipitate after 3 hours in the cold room. The remaining pulp was used 

for the actin acetone powder preparation. The supernatant was carefully siphoned off 

(Stage 1 in figure 8) and the precipitate was then centrifuged at 7800 rpm (10,750 x g) in a 

Beckman Coulter JA-10 at 4oC for 10 minutes. The supernatant was discarded (Stage 2 in 

figure 8), the pellet from this centrifugation step was then resuspended in 15 ml of buffer B 

(Stage 3 in figure 8) and dialysed overnight against 4 L of buffer C at 4oC.  

Day 2 involved adding equal amounts of ddH2O to the dialysed solution in a tared beaker. 

This was gently stirred for 30 minutes to precipitate the actomyosin (Stage 4 – supernatant 

& Stage 5 – precipitate in figure 8). This solution was put in an ultracentrifuge at 20,000 

rpm (41,171 x g) in a Beckman Coulter JA-25.50 rotor at 4oC for 1 hour (Stage 6 – 

supernatant & Stage 7 – precipitate in figure 8). The pellet from this was discarded and the 

supernatant from this was poured into 1L beakers and diluted 10-fold with ddH2O, it was 

left to set for 3 hours. The supernatant was carefully siphoned off (Stage 8 in figure 8) and 

the precipitate was centrifuged at 7800 rpm (10,750 x g) in a Beckman Coulter JA-10 rotor 

at 4oC for 15 minutes. The supernatant from this centrifugation was discarded and the 
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pellet was homogenised (Stage 9 in figure 8) in the least amount of buffer D as possible 

(≤10 ml). This resuspended solution was dialysed overnight against 2L of buffer E, and it 

was changed the next morning and dialysed again for an additional 2 hours.  

Day 3 involved clarification of myosin, spinning the dialysed solution at 20,000 rpm (41,171 

G) at 4oC for 2 hours in a Beckman Coulter JA-25.50 rotor. The myosin was carefully 

removed from the tubing, avoiding the upper fat layer (Stage 10 – supernatant & Stage 11 

– precipitate in figure 8). To determine the concentration and check the purity of the 

myosin from this extraction, it underwent SDS-PAGE gels and spectrophotometry at 280 

nm and 320 nm (to check for myosin and its purity respectively – see table 1) at several 

dilutions (1:25, 1:50 and 1:100). Finally, the myosin produced is stored in 50% glycerol at 

4oC. 

𝑚𝑔

𝑚𝑙
=  

(𝐴280 − 1.7(𝐴320))

0.55
× 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 

 

𝑀 =  
𝑚𝑔/𝑚𝑙

493,000 𝐷𝑎
 

 

 

 

 

Dilution Abs280 Abs320 mg/ml µM 

1:25 0.341 0.93 8.3 16 

1:50 0.191 0.051 9.5 19 

1:100 0.107 0.026 11.4 23 

Average - - 9.7 19.3 

 

Table 2 - Buffers and compositions for purification of muscle myosin II from chicken pectoralis. 

Buffer Composition 

A 150 mM Potassium Phosphate pH 6.7, 
300 mM KCl, 20 mM EDTA, 5 mM 

MgCl2 , 5 mM DTT, 4 mM ATP 

B 60 mM Potassium Phosphate pH 6.7, 1 
M KCl, 20 mM EDTA, 5 mM DTT 

C 25 mM Potassium Phosphate pH 6.7, 
600 mM KCl, 5 mM DTT 

D 50 mM Potassium Phosphate pH 6.7, 3 
M KCl, 5 mM DTT 

E 50 mM Potassium Phosphate pH 7, 600 
mM KCl, 5 mM DTT 

 

Table 1 - Spectrophotometry values to determine the concentration of myosin.  

Serial dilutions were made, allowing three sets of values to average. The absorbances were measured at 

280 nm and 320 nm, using 0.55 as an extinction coefficient for myosin, this allowed for the 

concentration of myosin in mg/ml and as a molarity. 
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8.1.2. Papain digest of Myosin Head 
 

Papain is a proteolytic enzyme derived from papaya that was used to digest full length 

myosin into S1 myosin, whilst retaining the regulatory light chain (RLC) and essential light 

chain (ELC). First, myosin had to undergo deglycerination, this was done according to this 

protocol (Margossian and Lowey, 1982). Dialysis of 30 mg of glycerinated myosin in 12-14 

kDa dialysis tubing was done overnight against 1L of solution A (200 mM ammonium 

acetate, 2 mM MgCl2, 1 mM DTT, pH 7.2). An extra step of dialysis was done the following 

morning with fresh solution A for 2 hours. The myosin suspension has increased in viscosity 

and now it is brought to room temperature.  Solution B (1 mg/ml papain, 5 mM Cysteine, 3 

mM EDTA, pH 6.0) is added (70 µl/ml) to make a final papain concentration of 0.07 mg/ml 

and it was immediately put on a rotating mixer and timed for 10 minutes whilst samples 

were taken at the start and every 5 minutes to provide a time-course gel (see Figure 9). To 

stop the reaction, solution C (100 mM Iodoacetic Acid) was added (50 µl/ml) to reach a 

final iodoacetic acid concentration of 5 mM. This digested suspension was spun down at 

10,000 x g for 30 minutes at 4oC and the supernatant should solely be S1 myosin at a yield 

of 40% of the theoretical value. The supernatant was then purified further by using a 

HiTrap DEAE FF 5 ml column (GE Healthcare) which allowed purification over a 0 KCl to 250 

mM salt gradient in a 50 mM Tris-HCl buffer at pH 8. SDS-PAGE gels (see Figure 9) were 

done to decide which fractions to pool together, and they were stored in 50% glycerol at -

20oC or used in an exchange reaction. 

8.2. Preparation of Thin filament 

8.2.1. Preparation of Actin 
 

Following the myosin preparation, preparation of acetone powder is done. The pulp from 

the myosin preparation is extracted using 50 mM NaHCO3 for 12 minutes using an 

overhead stirrer on a speed which does not create bubbles. It is then filtered using four 

layers of cheesecloth after the extraction and this is done twice. Extraction is repeated 

again but with ddH2O instead of NaHCO3, but the extraction time is shortened to 5 minutes. 

Moving to a fume hood, the extraction process is done with 100% acetone for 10 minutes 

and this is repeated three times until the pulp has turned into somewhat of a damp 

powder. This powder is left on lightly covered tin foil to air-dry overnight. The following 

morning, the powder is weighed and stored in a conical tube in the freezer at -20oC. 

Isolation of actin is done over a 4-day process. Day 1 consists of extraction of the actin 

using extraction buffer (Tris Base 20 mM, CaCl2 0.2 mM, 0.2 mM ATP, 1 mM DTT) on ice 

using an overhead stirrer for 30 minutes (again, on a speed which does not create bubbles). 

The solution is then spun in a JA-10 rotor at 7500 rpm (10,000 x g) for 20 minutes at 4oC 

and then filtered through four layers of cheesecloth – the supernatant is stored on ice and 

then pellet re-extracted as before but for a further 10 minutes following the same 

centrifuging as described above. The supernatants are combined and addition of the 

following: 50 mM KCl, 2 mM MgCl2 and 1 mM ATP are added to polymerise the actin from 

its G monomer (globular) state to its F – filamentous state. Using a stir rod to gently mix the 

solution together it is then left for 2 hours at 4oC and an increase of viscosity should be 

seen. A high salt wash is done by increasing the KCl concentration from 50 mM to 600 mM 

using solid KCl, using a stir bar to gently mix, the solution is mixed for 30 minutes at 4oC, 
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this is to remove tropomyosin. After this, sedimentation of filamentous actin was done by 

spinning it in a Type 45 Ti rotor at 42,400 rpm (209,000 x g) for 1 hour at 4oC, the 

supernatant is removed and then depolymerisation is started. Depolymerisation is done by 

gently scraping the pellet off the tube and homogenising it with 3 ml of cold buffer A per 

gram of acetone powder originally extracted. Once successfully homogenised, it is dialysed 

against 1 L of cold extraction buffer for 1 hour at 4oC and then it is transferred to some 

fresh cold extraction buffer to be dialysed overnight at 4oC. 

Day 2 consists of solely dialysis, whereby you change the dialysis buffer in the morning and 

repeat this every 8 hours in preparation for Day 3. Day 3 is where you clarify G-actin by 

spinning the dialysed solution in a Type 45 Ti rotor at 42,400 rpm (209,000 x g) for 1 hour at 

4oC. The supernatant is then removed into a small beaker and polymerisation is done by 

adding 1 M imidazole and 25 mM MgCl2, this is gently mixed before dialysing this solution 

in 2 L of storage buffer (4 mM imidazole, 0.1 M KCl, 2 mM MgCl2, 1 mM DTT, pH 7) 

overnight at 4oC. Day 4 consists of quantifying the concentration and purity of the actin by 

running SDS-PAGE gels (see figure 10) and using spectrophotometric measurements at A280 

(protein) and A320 (purity). 

 

8.2.2. Preparation of Accessory Proteins 
 

Plasmids containing rabbit α-Tropomyosin and human cardiac troponin complex were 

kindly donated by Professor Mike Geeves. They were transformed into E.coli BL21(DE3) 

strain, expressed and purified by Dr Alessio Inchingolo, these were stored in 3% sucrose, 

flash frozen and stored in the freezer at -80oC at a concentration of 110 µM and 10 µM, 

respectively. 

 

8.3. In vitro motility assay 

8.3.1. Flow chamber design 
 

The flow chamber consists of glass slides (ThermoSci), double sided sticky tape (3M) and a 

22 mm x 22 mm coverslip (glass coverslip). Firstly, glass coverslips are submerged in ddH2O 

and a thin opalescent film of 50 µl nitrocellulose (Sigma-Aldrich) is formed above that, the 

water beneath the film of nitrocellulose is drained and the glass coverslips are allowed to 

dry for 30 minutes before assembling the flow cell. Meanwhile, two pieces of double-sided 

sticky tape (3M) are placed on either side of the glass slide. Once the nitrocellulose glass 

coverslips are dried the flow chamber is assembled as seen in figure 3. 
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Figure 3 - Projected and assembled schematic views of a flow cell for in vitro motility assays.  

a) shows the projected view of the flow cell, highlighting individual components such as glass slides, 
double-sided tape strips and coverslips. b) is the assembled view which is ready for incubation. 

 

8.3.2. Incubation of flow cell for motility assay 
 

The methods of preparing the flow cell for the motility assay were slightly adapted from 

(Szczesna‐Cordary et al., 2007; Greenberg and Moore, 2010). The following was added to 

the flow cell and incubated at room temperature. Firstly, 30 µl of myosin incubated for 1 

minute (this was done twice), then 30 µl 0.5 mg/ml BSA (Sigma-Aldrich) incubated for 1 

minute (done twice). The unlabelled actin coat was vortexed for 30 seconds to shear the 

actin before adding 30 µl to be incubated for 1 minute (done twice), followed by a 30 µl 

ATP wash (done twice) to release all actin that are attached to active myosin heads. A 30 µl 

1X actin buffer wash was done twice and then TRITC-phalloidin (Sigma-Aldrich) labelled 

actin was very slowly pipetted and incubated for 30 seconds (slow pipetting reduced the 

shearing force on the actin). Another 1X actin buffer wash was done twice to remove any 

free moving actin and to reduce the signal to noise ratio whilst imaging. Finally, three 

washes of 30 µl motility buffer were done because it contains methylcellulose which causes 

a reduction in lateral diffusion of the actin filaments away from the surface as mentioned in 

(Uyeda et al., 1990). 

 

8.3.3. Single molecule fluorescent microscopy 
 

All experiments were conducted on a custom-built oblique angle fluorescence (OAF) 

microscope using an Olympus IX50 inverted microscope frame. The angle of the 

illumination beam allows us to image the surface of the cover slip which is the pinnacle of 

all our surface-based imaging assays. The custom excitation path uses a 488 nm, 561 nm or 

637 nm lasers which passes through an Olympus 1.45NA 100x objective lens. Dependent on 

the Phalloidin based dye used determined what laser would be used for each experiment.  
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Previously described in (Springall et al., 2016), we are able to obtain triple colour images by 

using an Optosplit III (Carin Research, UK). Images were recorded using the Hamamatsu 

Orca Flash4.0 V2 with a 1x1 or 2x2 bin resulting to a 63.2 nm or 162.4 nm camera pixel size, 

respectively. All images and videos were processed using Fiji. 

 

8.4. Regulated Thin Filament tightrope assay 

8.4.1. Flow chamber design 
 

Glass slides (ThermoSci) were drilled to make two 3 mm holes using a Dremel drill with 

diamond drill tips at maximum speed submerged in water and in a 3D printed template 

holder. Drilled slides were washed by soaking them in 100% Acetone (Fisher Chemical) and 

100% Ethanol (Fisher Chemical) overnight on an orbital shaker. Coverslips (ThermoSci) 

were added alongside the drilled slides and they were placed in a plastic beaker, addition 

of 200 ml of 100% acetone and 4 ml (2%) of (3-Aminopropyl) triethoxysilane (APTES) was 

done for the silanization process which allows the subsequent attachment of our silica 

beads to the surface of the flow-cell. Silanization was done for 10 minutes on an orbital 

shaker and it was poured off and rinsed using deionized water. Each slide and coverslip was 

dried with nitrogen gas and placed in a rack to be cured in the oven at 105oC for 1 hour. 

Plastic tubing with a 1.15 mm internal diameter (GE Healthcare) was cut down to an 

appropriate size and by use of a heat gun - one end was flared out. This was done to allow 

the tubing to stay in place whilst adding UV adhesive. UV adhesive was applied to seal the 

tubing to the glass slide. This was placed under a UV lamp for 2 minutes, so the adhesive 

fully dried, the flared-out end of the tubing was cut down using a scalpel to make what will 

be the inside of the flow cell. A double-sided rectangle gasket was placed encompassing 

each hole of the flow-cell and then the coverslip was added to create a flow chamber, this 

is illustrated in Figure 4. 

 

Figure 4 – Projected and assembled schematic views outlining design of a flow-cell and its 
connections to perfusion tubing and the syringe pump.  
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a) shows the projected view of a flow cell, showing individual components such as the coverslip, 
adhesive gasket, drilled glass slide and respective tubing. b) illustrates the assembled product of a 
flow-cell ready for incubation and imaging. 

 

8.4.2. Incubation process for the flow cell 
 

Flow cells are first washed through with 200 µl of deionised water through each port and 

then blocked with 80 µl of methoxypolyethylene glycol 5,000 (mPEG 5000) in proprionic 

acid (Sigma-Aldrich) and left overnight in the fridge at 4oC. Deionised water was then 

pumped through each port again to wash out any excess mPEG and then 80 µl of ABT 

buffer (25 mM KCl, 25 mM Imidazole, 4 mM EGTA, 4 mM MgCl2, 0.1% BSA, 0.1% Tween 20, 

) was pumped through the flow cell and stored overnight in the fridge at 4oC. The flow cell 

is now ready to flow in 100 µl ddH2O washed 5 µm silica beads (Bangs Laboratories) which 

adhere to the silanised coverslip.  

The beads are vortexed for 15 seconds and sonicated for three 1 second pulses at 80% 

amplitude using a before flowing the 100 µl into the flow cell, the flow cell is checked under 

a Nikon light microscope for bead density to ensure there are enough beads close enough 

to suspend the reconstituted thin filament between. The flow cell is then washed with the 

calcium-based buffer (25 mM KCl, 25 mM Imidazole, 4 mM EGTA, 4 mM MgCl2, 100 µM 

CaCl2, 0.1 µM ATP, 100 mM DTT) and subsequently 500 nM of reconstituted filament is 

flowed through in order to suspend the RTFs on a bi-directional loop pumping back and 

forth at a rate of 300 µl/min for 30 minutes before loading the flow cell onto the custom-

built oblique angle fluorescence (OAF) microscope. 

 

8.4.3. Single molecule fluorescence imaging 
 

All experiments were conducted on a custom-built oblique angle fluorescence (OAF) 

microscope using an Olympus IX50 inverted microscope frame. The angle of the 

illumination beam allows us to image the surface of the cover slip which is the pinnacle of 

all our surface-based imaging assays. The custom excitation path uses a 488 nm, 561 nm or 

637 nm lasers which passes through an Olympus 1.45NA 100x objective lens. RTF’s were 

labelled with a combination of Alexa Fluor 633 (Sigma-Aldrich) and Biotin-phalloidin (or 

phalloidin) (Sigma-Aldrich) in a 2:1:0.5 fashion being: actin, biotin-phalloidin (or phalloidin) 

and Alexa Fluor 633 respectively. The reasoning behind dual labelling was due to the 

concentration of the AF633 dye, a low concentration of 3 µM required a high volume to use 

to label in a typical 1:0.5 (actin:dye) fashion which ultimately led to a high amount of 

methanol which distorted the structure of the thin filament and made imaging single 

tightropes difficult.  

Previously described in (Springall et al., 2016), we are able to obtain triple colour images by 

using an Optosplit III (Carin Research, UK). Images were recorded using the Hamamatsu 

Orca Flash4.0 V2 with a 1x1 or 2x2 bin resulting to a 63.2 nm or 162.4 nm camera pixel size, 

respectively. All images and videos were processed using Fiji. 
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8.5. Fluorescent labelling of S1 myosin with mNeonGreen 

8.5.1. Designing RLC-mNeonGreen-6xHis 
 

S1 myosin is inherently a dark protein, to visualise it under the microscope it has to be 

labelled with a fluorophore. In order to do this, S1 has a component termed the regulatory 

light chain (RLC) which can be tagged with a fluorophore and exchanged with wildtype RLC 

allowing us to track its binding, releasing and diffusion under our custom-built OAF 

microscope. Our aim was to design a construct that contains RLC, mNeonGreen as well as a 

His-tag (6xHis) on the end to allow for protein purification. 

PCR was performed twice on previously designed constructs of RLC-mScarlet (pET21a 

vector) and UvrB-mNeonGreen (pET21a vector). For the RLC-mScarlet plasmid, the aim was 

to linearise the plasmid whilst removing the fluorophore mScarlet. For the UvrB-

mNeonGreen plasmid, the aim was to solely isolate and extend mNeonGreen with 

complementary ends to the RLC containing vector so it can act as an insert for the Gibson 

Assembly later on. Once this has been done, it was checked using 1% agarose gels (120 V 

for 30 minutes) and then the rest of the PCR products were run on a full length 0.8% 

agarose gel (120 V for 1 hour) to allow for better separation of any close or unwanted 

bands. The desired bands from the second gel were excised and use of a DNA extraction kit 

(QIAgen) allowed purification of the products for Gibson assembly. The products following 

these processes were ran on a 1% agarose gel (120 V for 30 minutes) (Figures 14 and 15) to 

provide approximate quantification by using a GeneRuler 1 kb DNA ladder (Thermo 

Scientific).  

Gibson Assembly was done using NEBuilder HiFi DNA Assembly Master Mix (NEB), this 

incorporated the extended mNeonGreen insert with the RLC vector. The reaction mixture 

was incubated at 50oC for 15 minutes and following incubation, the assembled product 

(Figure 13) was transformed into AAEC189 competent cells on ampicillin agar plates. 

Colony PCR was done to check whether the insert of the fragment was successful. 

Meanwhile, running a full length 1% agarose gel (Figure 16) and picking a colony to grow 

overnight allows us to check whether the size of RLC-mNeonGreen-6xHis fragment is 

correct and allows us to miniprep the next day to confirm via sequencing. Sequencing was 

provided by Eurofins Genomics and was manually checked using Snapgene. 

 

8.5.2. Expression and purification of RLC-mNeonGreen-6xHis 
 

The plasmid we designed containing RLC-mNeonGreen-6xHis was transformed into BL21 

(DE3) competent cells, streaked against ampicillin agar plates and incubated overnight at 

37oC. The plate was picked for a colony and then the colony was placed in a 1L flask of LB to 

grow to OD600 0.4-0.6 in a shaking incubator at 37oC. Once the desired OD600 was met, the 

1L flask and the incubator was then briefly cooled down to 25oC before the addition of 1 

mM IPTG. The IPTG induction was done at 25oC for 3 hours in a shaking incubator. Samples 

were taken along the way for spectrophotometer measurements and SDS-PAGE gels 

(Figure 18) and after 3 hours the cells were spun down in a JA-10 rotor at 4500 x g for 10 

minutes at 4oC. The supernatant was discarded and visually, the pellet was luminescent 

yellow. 
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The pellet was gently resuspended in lysis buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM 

Imidazole, 5 mM DTT, protease inhibitor, lysozyme, pH 8.0) then the cells are placed in an 

ice bath and are sonicated for 5 minutes on a 30 second on/off cycle with a 55% amplitude. 

The supernatant was then centrifuged in a JA-10 rotor at 4500 x g for 30 minutes and the 

pellet was discarded. The supernatant was then applied to a HisTrap HP 1 ml (GE 

Healthcare) column at a flowrate of 1 ml/min and it was eluted over a gradient of 25 

fractions. SDS-PAGE gels were done to check for purity and to help decide which fractions 

to pool together. The RLC-mNeonGreen-6xHis was finally quantified by spectrophotometry 

at absorbance 506 nm and was stored in 50% glycerol at -20oC, flash frozen in smaller 

aliquots or used to label S1 myosin immediately. 

 

8.5.3. Labelling of S1 with RLC-mNeonGreen-6xHis 
 

Since purified S1 myosin and RLC-mNeonGreen-6xHis were stored in different buffers, 

buffer exchange was done to prepare them for an exchange reaction. Firstly, spin 

concentration using a 50 MWCO Vivaspin 20 (GE Healthcare) column was done to decrease 

the volume of our samples to about 1 ml and it was then loaded onto an equilibrated 

Centripure P5 gel filtration (Generon) column with an exchange buffer (50 mM Potassium 

Phosphate buffer, 600 mM KCl, 10 mM EDTA, 2 mM EGTA). Each step allowed 

quantification of the concentration using a spectrophotometer, using the extinction 

coefficient of mNeonGreen at 506 nm (116000 M-1
 cm-1) and S1 at 280 nm (ɛ280=0.83 ml·mg-

1cm-1) (Barua et al., 2012). 

Exchange reactions were set up in a 1:5 molar ratios, the reaction was stopped by the 

addition of 15 mM MgCl2 and each reaction was pooled together. Again, spin concentration 

was done to decrease the volume of our samples and using the Centripure P5 gel filtration 

column, buffer exchange was done into the low imidazole column buffer (50 mM NaH2PO4, 

300 mM NaCl, 20 mM imidazole, pH 8) for the final purification step. 

8.5.4. Purification of S1-mNeonGreen-6xHis 
 

The use of a HisTrap HP 1 ml (GE Healthcare) column allowed the final purification step of 

S1-mNeonGreen-6xHis. This was done over a gradient of 20 mM imidazole to 250 mM 

imidazole allowing sufficient separation over the fractions. Each fraction was quantified via 

spectrophotometry and SDS-PAGE gels were done to help decide which fractions to pool 

together. Pooled fractions were aliquoted, and flash frozen at -80oC. 

 

8.6. Data Analysis 

8.6.1. Data Analysis Workflow 
 

The RTF tightrope assay allows us to visualise the activation of regulated thin filament (RTF) 

at a single molecule level (Desai et al., 2015). This process is very dynamic because in sub-

maximal activation conditions, fluorescently labelled S1 are allowed to bind, release, and 

diffuse across a single RTF. Previous attempts of analysing this data revolved around using a 



25 
 

Reversible Jump Markov Chain Monte Carlo (RJMCMC) model to understand the concerted 

release of the thin filament (Inchingolo et al., 2018). However, we have now decided to 

take different approach because by simplifying the analysis process we can interpret the 

data much better. The approach we have taken was to develop an analysis suite which 

allows an increased level of automation by running a combination of Fiji macros, Excel 

formulas and MATLAB scripts. The main aim of this suite (Illustrated in Figure 5) is to 

provide a high throughput approach to extract and analyse data we have obtained from 

imaging. 

 

Figure 5 - Flowchart outlining each step of the new method of data analysis.  

Each step of the data analysis is outlined below alongside what software accompanies it, 1) is where 
we convert imaging data into kymographic projections. 2) Is where we use a MATLAB script to super-
resolve fluorescence spots using the ‘Ezyfit’ toolbox. 3) Using Excel, we are able to filter out 
anomalous Gaussians fits and scale up data to be used in Trackmate. 4) By fitting amplitudes to 
several Gaussians, we are able to create fluorescent thresholds that we can assign a number of 
myosin molecules to. 5) Converting the scaled-up data from the Excel spreadsheet we are able to 
create a scaled-up movie using a MATLAB script. 6) Trackmate is used to track the number of myosin 
spots there are using parameters from the Excel spreadsheet. 7) Using a simple LAP tracker, 
Trackmate can thread spots within predetermined displacement values. 8) Using the threaded data, 
we can develop a transition matrix to determine the probabilities of cluster size changes. 

 

8.6.2. Converting Imaged Data to Kymographic Projections 
 

Firstly, we must extract kymograph data from our imaging videos using Fiji. Whilst playing 

back the videos, bright spots appear to be flashing and moving along the tightrope (seen in 

Figure 6a), this is the active region that we are looking for. A Z-projection of the RTF is done 

to highlight the max intensity of the spots on the tightrope for the entire video (seen in 

Figure 6b), thus, allowing us to visualise the active regions. By highlighting this region, we 

can create a straight line through this active region and then copy it over to the original 

video (seen in Figure 6c and 6d). Once done, we can reslice the video and create a 

kymograph whilst avoiding interpolation (seen in Figure 6e). In order to get a more defined 

kymograph, a rolling ball background subtraction is done at 50 pixels to highlight the active 

regions and remove the majority of the background noise (seen in Figure 6f). Finally, this 

kymograph is converted into a 32-bit format preserving the intensity values and it is saved 

in the .tiff file format. 
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Figure 6 - Converting captured videos into kymographic projections.  

a) highlights the original video captured, note on the top left of the window there are 200 frames for 
this video. b) a Z-projection has been done for the max intensity of fluorescent spots within the 
video, this shows the brightest spots and highlights our active region. c) the active region is then 
highlighted using a straight line to capture all the events within that region. d) copying the straight 
line onto the original video (Shift+E shortcut) allows us to capture the events on the video too. e) we 
are able to create a kymograph avoiding interpolation which shows all the binding events across the 
200 frames. f) final kymographic processing consists of background subtraction using a rolling ball of 
50 px and converting the image to 32-bit to conserve all intensity values. 

 

8.6.3. Super-resolving fluorescent myosin spots 
 

Super-resolving myosin spots is done by the second piece of the suite called ‘The ring’, 

which aims to encompass all the fitting and positional tracking of fluorescent spots on the 

kymograph. It is coded in MATLAB by Dr Neil Kad and allows the fitting of multiple 

Gaussians on each slice of the kymograph. It does this in four steps: 

1. Initial Gaussian Fitting 

2. Threshold filtering the Fit 

3. Finding Peaks 

4. Fitting Peaks 

Firstly, the program allows you to choose the file of interest and then it calculates the mean 

positions and the max intensities of spots for each slice. Secondly, by inspecting the 

intensity values of the kymograph beforehand, you can apply a threshold value to ignore 

intensities that are below said value. For our analysis, we have determined that on average 

fluorescent spots have an intensity that is typically brighter than 100 a.u. and anything 

below is considered as background noise. Doing this allows filtering of the background 

noise which could be mistaken as a myosin intensity peak. After this threshold has been 

applied, the script looks for the number of peaks and sorts each value found in 

chronological order. A toolbox named ‘EzyFit v2.45’ is used to fit each peak to a respective 

Gaussian curve, the script allows up to 20 peaks to be fit simultaneously on one slice of the 

kymograph, but this can be increased further if necessary. After fitting the peaks, a 

plethora of variables will become available in the workspace of MATLAB. The variable of 

interest containing our data is termed ‘fitline’ (highlighted in Figure 7c) which we can take 

the values here and input it into ‘The book’.  
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Figure 7 - Super-resolving fluorescent myosin spots using a custom MATLAB routine.  

a) shows the first three steps of ‘The ring’, MATLAB reconstructs the kymograph several times by 
fitting an initial gaussian, using a threshold filter and finding precise peaks. b) is the final stage of 
‘The ring’ whereby these peaks are fit using the ‘Ezyfit’ toolbox in MATLAB. c) shows the final 
workspace with all the parameters, the green arrow highlights our parameter of interest – ‘fitline’. 

 

8.6.4. Noise suppression 
 

The MATLAB script uses the ‘Ezyfit’ toolbox and provides unbiased routine fitting which 

may produce some errors. This is cleaned up in the first (Main Analysis) spreadsheet by 

sorting, filtering and scaling up the data, allowing it to be used in Trackmate. The first 

spreadsheet takes the data from the ‘fitline’ variable and it restructures it in a columnar 

format, this allows correct correlation between corresponding amplitude and mean values. 

The amplitudes are filtered to only include Gaussians that are positively fitted (values 

which are greater than zero) and the means are filtered only to encompass Gaussians that 

are within 0 and the maximum width of the kymograph which is variable between each 

kymograph (for example, one kymograph can be 40 px wide x 200 px long). The initial 

filtering of the amplitude and means are separate, so next we combine these filters which 

means if we have a value in the same amplitude and corresponding mean, this value is 

kept, if it is one or the other, it is removed (for example, if mean 1 is present, and 

amplitude 1 is not, the values are not kept, both need to be present to be kept). 

Meanwhile, the frequency of each amplitude is calculated using COUNTIF statements and a 

frequency table is generated and used in the ‘Amplitude Fitting’ sheet. After this, rounding 

to 1 decimal place is done so that the raw intensity values in this data would be counted as 

individual pixels when imported into Fiji. Therefore, to account for sub-pixels, these 

positions are upscaled accordingly by a factor of 10 due to the 1 decimal place rounding, 

this provides us with integers and will be counted as individual pixels in Trackmate. After 

error removal, the final mean and amplitude values are presented at the rightmost part of 

the ‘Main Analysis’ sheet. The threshold value for Trackmate is calculated, this value is 

essentially the lowest mean from the data, this is calculated by using the SMALL formula in 

Excel. Also, the total number of spots that could be seen by Trackmate is calculated, this 

essentially counts the final mean values present using the COUNTIF function, however, 

Trackmate counts spots that move positionally, so if there is a spot that stays in the same 



28 
 

position over two frames, it will not be counted as a different spot, hence, when tracking in 

Trackmate, the value may seem less than what it actually is – this calculation solely acts as 

a guideline. Finally, on the ‘Main Analysis’ sheet, the number of spots per slice is calculated 

by COUNTIF functions as well, this also acts as an indicator to see if Trackmate is tracking 

the number of spots per slice correctly. 

The next two sheets are termed ‘Positioning’ and ‘Error Removal’ respectively, as they 

position the mean values to the corresponding amplitude using nested IF functions, and 

then using the IFERROR function to remove error values which are replaced with zeros to 

act as blank pixels. The results from the ‘Error Removal’ sheet are copied to a text file 

which is imported into a MATLAB script described later on. 

 

8.6.5. Fitting Fluorescent Thresholds of Individual Myosin Molecules 
 

The next sheet on the spreadsheet is termed ‘Amplitude Fitting’ and this essentially takes 

the results from the Bin-Frequency table and fits up to 8 Gaussian curves to the raw curve 

(where this can be increased if necessary). It does this by calculating the sum of the 

Gaussians and the sum of the square differences to fit the fitted curve to the raw one that 

was generated, in order to get an accurate fit, Excel’s solver is used. By doing this, we are 

able to transpose the amplitude and mean values, these mean values are considered the 

values that are the intensities that correspond to the number of myosins. Ultimately, we 

are able to make a lookup table which revolves around each myosin intensity being 

surrounded by 2 standard deviations to capture 95% of spots from the mean myosin 

intensities.  

 

8.6.6. Converting Raw Data into a Movie 
 

As aforementioned, the ‘Error Removal’ sheet contains the data we use for this stage. We 

copy it into a text file, this text file is imported to a MATLAB script termed 

‘kymograph2mov’. This MATLAB script essentially takes each slice of the data and converts 

into a movie with the .mj2 file format. The .mj2 file format is used to conserve the intensity 

values of the myosin ‘spots’. 

 

8.6.7. Tracking Fluorescent Myosin Spots using Trackmate 
 

Trackmate is an open-source application for single particle tracking available via Fiji 

(version 5.0.2) (Tinevez et al., 2017). Whilst Trackmate has been mainly used to track 

particles in a 3D space (Jaqaman et al., 2008), we have decided to adjust the use of 

Trackmate to fit our method of analysis. We use Trackmate because previously this was a 

heavily manual process of threading and tracking active regions of thin filament, by using 

Trackmate alongside our analysis suite we are able to create a high-throughput method of 

analysis whilst improving the quality of the results. Trackmate offers various detectors to 

find and track ‘spots’, we’ve decided to use the Laplacian of Gaussian (LoG) detector 
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because it has proven the most accurate detector versus the other ones offered such as the 

Differences of Gaussian (DoG) detector. Adjustable parameters were offered by this 

detector, in which, we decided to choose our estimated spot diameter to be 1 pixel and the 

threshold to be the minimum intensity from the array of intensities from the ‘Main 

Analysis’ sheet. Meanwhile, ‘median filter’ and ‘sub-pixel localisation’ are turned off 

because they are not needed. There are other filter menus after the initial setup, but these 

were also left untouched. Using a simple LAP tracker, we are able to set several parameters 

such as max linking distance (pixel), max gap-closing distance (pixel) and max frame gap for 

gap closing which can allow threading of our ‘spots’. These values are determined from the 

final sheet on the first spreadsheet is termed ‘Average Displacement Length’, this sheet 

essentially takes the measurements of the width of active regions on each kymograph and 

averages the myosin displacement and multiplies it by 10 (scaling as mentioned in section 

8.6.4.) , this value is then used in Trackmate to determine what ‘spots’ are in range to be 

considered in the same track. Ultimately, the configuration of Trackmate has allowed 

consistent threading of ‘spots’ and reports all tracks and corresponding data to an Excel 

spreadsheet.  

  

8.6.8. Threading Fluorescent Myosin Spots using Trackmate 
 

Threading is the process in which we determine identity and position of an individual spot 

over several connected frames. Questions being asked are whether or not between these 

frames has this spot moved and if it has moved; has it joined to another local spot or split 

into two or more spots? These questions can allow us to track and follow the movement of 

each spot frame by frame and the decision-making behind this is mostly automated by 

Trackmate. However, we can adjust parameters and filters to increase the accuracy of the 

threading. Previously, threading each myosin was done manually and a different analysis 

approach was taken as mentioned in section 8.6.1. Tracking individual spots movement at a 

high resolution and over hundreds of frames required us to take a different approach in 

how we can utilise Trackmate and to validate our approach we have ran control simulations 

described in section 8.6.10.  

 

8.6.9. Developing a Transition Matrix 
 

In order to develop a transition matrix, another spreadsheet is used for analysing results 

gained from Trackmate. The second spreadsheet takes the results exported from 

Trackmate (.csv file format) and applies them to an ‘Amplitude Assigning and Classification’ 

sheet, which assigns the number of myosins based on the total intensity exhibited from 

each myosin spot. This is done by the lookup table made in the previous spreadsheet. Once 

the number of myosins are assigned, each track is grouped together by using a FILTER 

formula to show a track up to 50 frames in length (this can be increased if necessary). The 

difference between each frame is calculated using the SUM function and this information is 

used to classify between each frame, what is going on within an active region. 

To do this, we have determined that in these conditions there are four states of myosins 

interaction with thin filament. Firstly, there is activation of the thin filament, this is where 
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one or more myosins are binding to thin filament creating an active region. Secondly, there 

is stepwise detachment of myosin off of thin filament, this means 1-2 myosins are leaving 

the active region of thin filament between each frame. Thirdly, there is a concerted release 

of myosin off of thin filament, this is where 2 or more myosins leave the active region 

between each frame. Finally, there is a chance that there is no change in the number of 

myosins present between each frame so we can classify that as just staying the same.  

So, with these criteria set, simple IF statements are used to classify the meaning of the 

differences between each frame and by doing this, we can see where catastrophic collapse 

is taking place. Whilst doing so, we can remove results where there is no difference of 

myosins between each frame because when applying these results to a transition matrix, 

we are looking at solely the transitions between each addition or removal of myosin(s) and 

therefore the probability of no changes is not looked into for our studies. Another 

consideration we had to make was that Trackmate tracks each track until there is no local 

myosins to thread together anymore, therefore, the active region has ended. However, 

when looking at the results the data shows a normal active region and does not show the 

complete end of the active region. To accommodate for that, the ending of each track has 

been supplemented with a zero to show that from the final spot of myosin to the end the 

active region has collapsed completely.  

With all these considerations being made, we have results which we can apply to our 

transition matrix on the next sheet. This sheet takes the final results from each track and by 

using COUNTIF functions, we are able to quantify the number of myosins transitioning 

between each frame. By doing so, we can work out the probability of how likely it is for a 

specific cluster to start at and where it would end at.  

 

 

8.6.10. Analysis Suite Validation 
 

The movement of myosin along RTF’s is a very spontaneous process, in order to determine 

if our method of analysis works both accurately and effectively, controls were done to 

simulate what could potentially happen in our metastable conditions. A track is defined as 

a single spot along several frames that has been followed and threaded by Trackmate. A 

myosin molecule can join another track, split into two or more tracks, multiple tracks can 

move in parallel simultaneously, and all conditions can have a random level of unbiased 

bidirectional displacement (Desai et al., 2015) between each frame. 

Here I will outline 3 scenarios that we can anticipate seeing in actual data. A single track 

can remain static over a period of frames. A single track can split, hence generating two or 

more tracks or the opposite can occur where two tracks spatially close enough can join 

together and merge into a single track. Whilst bidirectional displacement of myosin 

molecules occurs, this is accommodated for in section 8.6.7 

We have generated control scenarios that are 20 frames each – in turn giving us enough 

frames to provide splitting or merging two tracks for example. The aim of these control 

scenarios is to validate the accuracy of our analysis approach by comparing the positional 
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and intensity values we have inputted versus what has ultimately been tracked and 

threaded by Trackmate. This is illustrated in section 9.2.1. 

In every case, our method of analysis gave us 1:1 tracking when using Trackmate. By 

calculating the difference between the inputted data versus the data we gained from 

tracking, the closer the value is to 0, the closer the tracked positional value is to the 

inputted value. In all cases these differences were 0 and the corresponding intensity values 

were also correct.  
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9. Results 

9.1. Extraction and Purification Analysis: 

9.1.1. Extraction of myosin from chicken pectoralis 
 

Myosin was extracted from chicken pectoralis; the process took 3 days starting off with 

335.8 g of tissue and ending with 12.2 g (~ 12 ml) of 19.3 µM myosin, providing a 

percentage yield of 3.6%. A time course of the extraction process was done where samples 

were taken across the process and an SDS-PAGE gel was done at the end (see figure 8). In 

Figure 8, our lane of interest is Stage 10, which is the final step in the clarification of 

myosin, there are several bands present labelled 1-5 which consists of myosin’s heavy 

chains, tropomyosin, actin, ELC, and RLC, respectively. Considering this gel has overloaded 

samples, we can see faint bands of actin and tropomyosin, but we can consider the 

concentration of these to be low enough to not cause any concern.  

 

 

 

 

 

In addition to the SDS-PAGE gel, spectrophotometry was done to determine the 

concentration of myosin. In order to determine the molarity of the myosin, the molecular 

Figure 8 - 15% SDS-PAGE gel showing a chronological compendium of processes to extract myosin from 
chicken pectoralis.  

Banding patterns are related to actomyosin products, throughout the extraction process – each stage is 
further described in section 8.1.1. Although this gel was overloaded, it still highlights the bands of interest 
in Stage 10. Stage 10 shows 5 bands of interest, where 1 is the heavy chain of myosin (220 kDa), band 2 is 
actin (42 kDa), band 3 is tropomyosin (65 kDa),  band 4 is the essential light chain (22.8 kDa), and band 5 
is the regulatory light chain (18.8 kDa). 
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weight of myosin was determined from literature to be 493,000 Da (Holtzer and Lowey, 

1959). 

 

 

 

 

Dilution Abs280 Abs320 mg/ml µM 

1:25 0.341 0.93 8.3 16 

1:50 0.191 0.051 9.5 19 

1:100 0.107 0.026 11.4 23 

Average - - 9.7 19.3 

 

9.1.2. Papain digest of full-length myosin into S1-myosin 
 

Extracted myosin must be digested into S1-myosin to be used in subsequent exchange 

reactions that fluorescently label it for our studies. Papain is the proteolytic enzyme that 

has proven to be consistent and useful for cleavage of full-length myosin into S1-myosin. 

Figure 9 shows a time course of the digestion and although this gel has been overloaded 

and HMM can be seen labelled band 1, however its intensity in comparison to the start of 

the process has dramatically decreased suggesting the concentration of it is negligible. 

Table 2 - Spectrophotometry values to determine the concentration of myosin.  

Serial dilutions were made, allowing three sets of values to be averaged. The absorbances were 

measures at 280 nm and 320 nm to then calculate the concentration of myosin in mg/ml and as a 

molarity. 
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Figure 9 - 10% SDS-PAGE gel showing the time-course of myosin digestion using papain.  

This is where we took samples every 5-minutes, a different composition of components can be seen 
over time. In our final sample, we spun down the S1 after an overnight dialysis step in preparation 
for further column purification. In the final ‘Post spin’ well, we can see four main bands of interest. 
Again, this gel has been overloaded but we can see band 1 being some remnants of heavy chain 
myosin (220 kDa), band 2 is S1-myosin (97 kDa), band 3 being ELC (22. 8 kDa) and 4 being RLC (18.8 
kDa). 
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9.1.3. Purification of actin from acetone powder 
 

Acetone powder is derived from the pulp saved from the myosin preparation. It was 

processed via a series of steps into actin which is seen in ‘Stage 7’. The arrow indicates 

actin which is about 42 kDa in size.  

 

Figure 10 - Time-course of actin preparation from acetone powder.  

This shows the different stages when preparing actin from acetone powder, resulting in the final 
well (Stage 7) being relatively pure despite overloading of wells. The arrow indicates actin with the 
molecular weight of 42 kDa. 
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9.1.4. Creating the RLC-mNeonGreen-6xHis plasmid 
 

We were successfully able to create this RLC-mNeonGreen-6xHis plasmid by using two 

constructs, one being a plasmid with RLC attached to mScarlet (see Figure 11), the other 

being a plasmid with a protein called UvrB attached to mNeonGreen (see Figure 12). The 

aim was to use Polymerase Chain Reaction (PCR) to eliminate the mScarlet in the first 

plasmid and in the other plasmid the plan was to conserve only mNeonGreen whilst adding 

extensions that are complementary to the RLC plasmid. By doing this, we have created a 

vector and an insert, which are the RLC plasmid and extended mNeonGreen, respectively. 

Now, we can use a Gibson Assembly process to connect the two together, use colony PCR 

to detect the size of our new plasmid, to then miniprep and sequence our RLC-

mNeonGreen-6xHis plasmid. Each step is outlined below. 

 

 

Figure 11 - RLC-mScarlet plasmid map.  

This illustrates the vector that we are starting with before linearisation, the aim is to remove the 
mScarlet portion (coloured red). 
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This is the RLC-mScarlet plasmid, which will act as our vector for our final product. The aim 

is to remove the mScarlet via PCR whilst retaining all other features including the GAP 

sequence prior to the mScarlet and the AviTag, 6xHis and TEV site after it. Also, it has the 

ampicillin resistance gene so we can selectively choose for it when conducting expression 

and purification of the protein.  

 

Figure 12 – This is the UvrB-mNeonGreen plasmid map.  

The aim for this plasmid would be to isolate the mNeonGreen portion with primers that extend to 
create a complementary overhang to the linear vector we made previously. 

 

This is the UvrB-mNeonGreen plasmid, which contains the mNeonGreen which we want to 

isolate, using PCR we are able to do so, and we are able to create extensions on the 

mNeonGreen portion allowing complementarity to our RLC plasmid vector.  
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Figure 13 - This is the desired plasmid, RLC-mNeonGreen.  

After several PCR reactions and Gibson Assembly, we aim to have this as a plasmid. This has been 
confirmed via sequencing. 

 

Figure 13 shows the desired plasmid we aim to create from dissecting and combining the 

two plasmids mentioned earlier. This plasmid has successfully been made via Gibson 

Assembly, sequenced by Eurofins Genomics and sequences were verified manually using 

Snapgene. 
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Figure 14 - Using PCR to remove mScarlet from RLC-mScarlet. 

 a) Highlights the initial PCR reaction, the final well shows our desired band, but there seems to be 
smearing at the higher molecular weights are present as well as primer dimers at the end of the gel. 
However, in b) this is cleared up by using a QIAgen DNA extraction and purification kit to solely 
isolate our desired PCR product. 
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Figure 15 - PCR of UvrB-mNeonGreen to isolate mNeonGreen and create complementary 
overhangs to the linearised vector.  

a) Shows the initial PCR reaction, with our desired PCR product highlighted with the arrow, however, 
primer dimers are seen below so it was decided a PCR clean-up was necessary. b) Shows the clean 
isolate of mNeonGreen with complementary overhangs. 

 

Standard PCR reactions were done for both Figures 14 and 15, in both cases we do see 

primer dimers and a varying degree of ‘smearing’, however, this is not an issue due to Gel 

Extraction PCR purification kits provided by QIAgen. The desired band can be cut out using 

a transilluminator and purified as seen in part b) of each Figure 14 and 15. Their 

concentrations have been quantified via spectrophotometry and are the following: Vector 

– 10 ng/µl and Insert – 25 ng/µl. 
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Figure 16 - Colony PCR of RLC-mNeonGreen after Gibson Assembly.  

Three out of four colonies have our desired plasmid, showing a consistent banding pattern and it 
follows a similar size as the control which is RLC-mScarlet. The bands of interest are highlighted by 
the arrow. Colonies 1 and 4 were chosen to miniprep as colony 2 was fainter than the rest and 
colony 3 did not contain our plasmid of interest. 

 

Colony PCR is a convenient procedure to determine whether a Gibson Assembly has been 

successful after transformation. Using primers that can seek out our RLC-mNeonGreen 

enables us to see it amplified on our agarose gels. In addition to visualising it on a gel, each 

colony has been streaked onto an agar plate with complementary antibiotic resistance and 

the streak patterns did verify what was seen in the agarose gel in Figure 16. 
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Figure 17 - Miniprep of Colonies 1 and 4.  

Successful minipreps can be seen where the arrow highlights the band of interest being our RLC-
mNeonGreen.  

 

Considering our colony PCR was successful, the colony was grown in LB broth and plated to 

ultimately be miniprepped using a QIAgen Miniprep Kit. Using a Expedion Versawave 2 

spectrophotometer, we are able to quantify our miniprepped plasmid. We achieved 70 

ng/µl concentrated plasmid which seems plausible due to the intensity of the bands in 

Figure 17. After the successful miniprep, we sent a sample off to be sequenced by Eurofins 

Genomics and results were received and sequences were verified manually using 

Snapgene. 
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9.1.5. Expression of RLC-mNeonGreen-6xHis 
 

Typical expression of a protein would not yield a significant amount of our desired protein 

of interest from our plasmid. Therefore, we use a compound called Isopropyl β-d-1-

thiogalactopyranoside (IPTG) which essentially mimics allolactose from the lac operon and 

induces high levels of protein expression. This in turn allows a significant increase of our 

protein of interest as seen in Figure 18.  

 

Figure 18 - Time-course 12.5% SDS-PAGE gel of expression and induction of RLC-mNeonGreen 
using IPTG.  

A three-hour induction with IPTG was done to induce protein expression, our protein of interest was 
expressed as highlighted by the arrow. Subsequent wells are labelled accordingly and are in 
reference to purification of RLC-mNeonGreen. The intense band appearing from sonication and 
spinning down the cells suggests something from the cellular debris has accumulated. 
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9.1.6. Purification of RLC-mNeonGreen-6xHis 
The final step revolves around purifying our expressed RLC-mNeonGreen-6xHis, this is done 

by immobilised metal affinity chromatography (IMAC). Where a prepacked HisTrap column 

(GE Healthcare) allows immobilised Nickel to bind and release our His-tagged protein over 

an elution gradient.  

 

Figure 19 - 12.5% SDS-PAGE gel showing an elution profile for purification of RLC-mNeonGreen-
6xHis.  

Using a GE Healthcare HisTrap HP protein purification column allowed separation of our RLC-
mNeonGreen-6xHis protein over an elution gradient. Fractions 5-23 were pooled, and 
spectrophotometry was done to determine its final concentration of 1.62 µM. 

 

9.2. Data Analysis: 

9.2.1. Validating the analysis methodology 
 

In order to determine if our method of analysis is accurate, we conducted three sets of 

controls, as describe in section 8.6.10. The controls were upscaled from 30 px width to 300 

px, and Trackmate successfully tracked and threaded each track with correct intensity and 

positional values. For illustrative purposes, an example of a kymograph has been shown in 
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Figure 21, where there are there are plenty of individual spots that are super-resolved by 

our analysis process to be tracked using Trackmate. 

 

 

Figure 20 - Simulated kymographs to act as controls to determine the accuracy of Trackmate 
tracking and threading.  

Where a) is a track of simulated fluorescent myosin as a static straight line, b) is simulated myosin 
departing and splitting into two tracks and c) is the opposite where initially two tracks join together 
and merge into a single track. The kymographs have been upscaled by a factor of 10 to consider sub-
pixels, where the original scale was 30 px wide by 20 px length, it is now 300 px wide and 20 px 
length.  

 

Figure 21 - Example before and after kymographs illustrating the kymographic data in full that 
would be tracked using Trackmate.  

Kymographic data has been processed by our method of analysis (left to right), prior to using 
Trackmate this is something that would be sliced into their respective frames and converted into a 
.mj2 movie. For illustrative purposes, this kymograph is not scaled up by a factor of 10. The left 
kymograph shows the kymographic data in result from initial conversion of imaged data to 
kymographic projections. On the right is after image processing and analysis, an illustration of what 
the data would look like if not scaled up as mentioned previously.  
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9.2.2. Thin filament supplemented with tropomyosin 
To investigate the propensity of catastrophic collapse, videos were analysed from a range 

of S1 myosin concentrations (5-20 nM), at metastable conditions of 5 nM S1, clusters were 

extremely sparse and imaging conditions were subject to high background noise, making it 

difficult for our analysis suite to pick out individual myosin clusters. To overcome this, we 

found a ‘sweet-spot’ of 15 nM S1 to clearly visualise and determine the transitioning of 

cluster sizes.  

 

Figure 22 - Measured transitions between cluster sizes of tropomyosin supplemented RTFs.  

Our new method of analysis allows us to get this set of data. Whereby, this transition matrix shows 
us the probability of starting at 1 myosin and ending at a maximum cluster size of 6 myosins. The 
central diagonal zero shows that the probability of a molecule staying the same size is not 
considered because it is not a transition between cluster sizes. The starting cluster size of zero is 
omitted because we are unable to determine when a track starts. Final cluster sizes show that 
accelerated release of myosin is mediated mostly by tropomyosin. Data obtained here was at 15 nM 
S1-GFP at 0.1 µM ATP (N = 10). 

9.2.3. Thin filament supplemented with tropomyosin and troponin 
 

To investigate the propensity of catastrophic collapse, videos were analysed at metastable 

conditions of 5 nM S1, 0.1 µM ATP and pCa 6. In comparison to Fig 22, catastrophic collapse 

seems to have an elevated final cluster size of two myosins suggesting an intermediate 

state (an energy trap) to catastrophic collapse mediated by the presence of troponin. 

However, further investigations using super-resolution techniques would be required to 

delve deeper to this initial observation. 

 

Figure 23 - Measured transitions between cluster sizes for tropomyosin and troponin 
supplemented RTFs.   

Our new method of analysis allows us to get this set of data. Whereby, this transition matrix shows 
us the probability of starting at 1 myosin and ending as maximum of 6 myosins. The central diagonal 
zero shows that the probability of a molecule staying the same size is not considered because it is 
not a transition between cluster sizes. The starting cluster size of zero is omitted because we are 
unable to determine when a track starts. Data obtained here was at 5 nM S1-GFP at 0.1 µM ATP (N = 
14). 
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2 0.37 0.33 0.00 0.17 0.09 0.02 0.01 0.11

3 0.21 0.18 0.52 0.00 0.07 0.01 0.01 0.22

4 0.16 0.19 0.43 0.17 0.00 0.05 0.01 0.33

5 0.17 0.15 0.41 0.11 0.15 0.00 0.01 0.45

6 0.18 0.11 0.38 0.15 0.13 0.05 0.00 0.56
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9.2.4. Catastrophic collapse at varying cluster sizes 
Catastrophic collapse has been measured by using the values from the first column of the 

transition matrices from Figures 22, 23 and from previous studies.  

 

Figure 24 – A graph illustrating the probability of predicted and measured catastrophic collapse of 
RTFs.  

The first column from Figures 22 and 23 are used to illustrate black dashed line with circle points and 
the solid black line with square points respectively, previous studies results (Inchingolo et al., 2018) 
are shown in the blue dotted line with triangle points.. Essentially, we can see that on average thin 
filament supplemented with tropomyosin only is sufficient for the concerted release of myosin as we 
see higher probabilities of measured catastrophic collapse. 

10. Discussion 
 

The activation and deactivation of thin filament has been studied extensively over the years 

(Geeves and Lehrer, 1994; Maytum et al., 1999; Desai et al., 2015; Inchingolo et al., 2018; 

Inchingolo et al., 2019), advances in structural studies (Galińska-Rakoczy et al., 2008; Ratti 

et al., 2011; Yang et al., 2014; Von Der Ecken et al., 2015) provide ideas on the regulatory 

aspect of muscular contraction. Whilst heart diseases such as HCM are still prevalent, it 

provides an urgency to understand the fundamental mechanism of muscular contraction. 

Our studies aim to provide a mechanistic insight on this whilst investigating a newly 

discovered phenomenon termed catastrophic collapse. Regulated thin filament in our in 

vitro system provides us the ability to visualise the cooperative activation, stepwise 

deactivation, and catastrophic collapse of an active myosin cluster. RTFs consists of the 

regulatory components tropomyosin and troponin which can sense calcium to control the 

activation and deactivation of thin filament. Our method of analysis allows us to observe 

these clusters fluctuating in size and in some cases collapsing entirely. After a closer 

inspection of our results using transition matrices, we see that there is a higher proportion 

of concerted myosin release suggesting that there is another method of deactivation other 
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than traditional stepwise deactivation. This was suggested in previous studies using the 

RJMCMC approach (Inchingolo et al., 2018), and our method of analysis not only confirms 

the previous results but enhances it by looking at not only RTFs with troponin and 

tropomyosin but thin filament with just tropomyosin. The reasoning behind looking at both 

can show us the importance of these regulatory factors during catastrophic collapse and 

can allow us to get a better understanding of heart diseases such as hypertrophic 

cardiomyopathy (HCM). 

Our well-rounded approach to this study involves looking at myosin interactions on all the 

possible thin filament compositions; free thin filament (without tropomyosin and 

troponin), thin filament supplemented with tropomyosin and thin filament with both 

tropomyosin and troponin. However, without the regulatory proteins to control myosin 

binding in free actin, it would not provide the metastable environment needed to 

investigate the cooperative activity of myosin. In previous studies, it has been shown that, 

free actin even in the presence of a low myosin concentration (1 nM) has extremely 

frequent myosin binding (Desai et al., 2015). Therefore, we can deduce that free actin is 

not a state in which provides these conditions to allow us to investigate our hypotheses. 

This further supports our hypotheses that the concerted release of myosin revolves around 

the presence of the regulatory proteins tropomyosin and troponin.  

Tropomyosin accelerates catastrophic collapse: 

Tropomyosin is considered as a rigid gatekeeper (Sousa et al., 2010) meaning it has an 

effect on thin filament activation. Studies have considered tropomyosin to be a semi-rigid 

molecule by conducting various measurements of its persistence length (Swenson and 

Stellwagen, 1989; Phillips and Chacko, 1996; Li et al., 2010b; Sousa et al., 2010), its rigidity 

has been considered enough to act as a  cooperative unit allowing shifting between 

regulatory states (Li et al., 2010a). Thin filament supplemented with tropomyosin only, 

lacks the troponin complex to calcium sense and regulate conformational change along thin 

filament. Therefore, we can hypothesise that tropomyosin alone on thin filament is capable 

of accelerating catastrophic collapse, shifting itself into the blocked state of the three-state 

model. Recent studies illustrate this using molecular dynamics and cryo-EM (Kiani et al., 

2019)and our analysis support this and shows that tropomyosin alone has a high chance to 

orchestrate catastrophic collapse (Figure 24). Beneath the zeroed diagonal in the transition 

matrix, shows a high probability of finishing at a lower cluster size than what the cluster 

size started at, this is highlighted by the varying degrees of red in Figure 22. This suggests 

there is a higher probability of myosin molecules being shifted off an active region. This 

supports our hypothesis, because we can see that tropomyosin alone can cause thin 

filament to shift towards the blocked state causing catastrophic collapse.  Tropomyosin is 

able to oscillate laterally over thin filament (McKillop and Geeves, 1993), it is believed that 

structural studies have underestimated the stiffness of tropomyosin due to their 

measurements of the persistence length as a straight rod instead of its superhelical 

conformation (Lehman et al., 2020). Therefore, we can suggest that now more realistic 

considerations of tropomyosin’s curved superhelical persistence length of 423 nm leads to 

reasoning that tropomyosin is stiffer and causes an increased likelihood of being in a B-

state position. Where the B-state position (Lehman et al., 2009) of tropomyosin is 

comparably the blocked state of the three-state model of thin filament activation. 

The troponin complex has a tighter regulation on catastrophic collapse: 
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Thin filament was also supplemented with both tropomyosin and troponin; this provides us 

all the necessary components for thin filament activation. Whereby RTFs are in equilibrium 

between closed and open state due to the local presence of ATP, calcium and myosin. 

Figure 24 shows that there is a decrease in catastrophic collapse upon the addition of 

troponin, this suggests that troponin can sense calcium in our metastable conditions, 

allowing tropomyosin to be more inclined to move between the closed and open states. On 

a mechanistic level, we can suggest that the presence of activated troponin allows 

tropomyosin to stay in an open conformation allowing myosin to bind and release as 

normal. However, as the thin filament moves into the closed state, there is a chance that 

troponin may deactivate causing tropomyosin to release all remaining myosin attached 

onto thin filament. Structural studies have determined that the tip of the TnI domain 

interacts with tropomyosin and stabilises the blocked state configuration (Galińska-Rakoczy 

et al., 2008), which allows us to suggest that if we are in the closed state and troponin C 

deactivates, TnI will stabilise the blocked state configuration thus enabling catastrophic 

collapse. We can suggest that the troponin complex acts as a regulator for catastrophic 

collapse because of the balancing that is done between all three subunits of troponin. 

Whilst TnC has an increased affinity for Ca2+ ions (Galińska-Rakoczy et al., 2008), TnT 

structurally strengthens tropomyosin to act as a cooperative unit (Sousa et al., 2010), and 

TnI in the closed state enables the shift of tropomyosin into the blocked state (Galińska-

Rakoczy et al., 2008). We have shown that the addition of the troponin complex decreases 

the probability of catastrophic collapse occurring but does not completely abolish it. The 

fact that catastrophic collapse can occur suggests that it is a necessary process to maintain 

the homeostasis of muscular contraction. 

 

11. Conclusion 
 

Our study combines single molecule microscopy and a powerful analysis suite to investigate 

the concerted release of myosin on regulated thin filament. Developing a new method of 

analysis enables us to provide a high throughput and simpler approach to processing our 

imaging data. The new method of analysis has illustrated the prevalence of catastrophic 

collapse in regulated thin filaments. Following the previous studies using the RJMCMC 

approach (Inchingolo et al., 2018), our data falls in line with what was previously stated and 

develops it by looking into individual components of regulation such as tropomyosin. The 

surprising finding from our results is that thin filament only supplemented with 

tropomyosin seem to have a higher probability of catastrophic collapse. This study can act 

as an insight on diseases such as hypertrophic cardiomyopathy (HCM) which has been seen 

to be caused by molecular insults with tropomyosin. The E180G mutation on tropomyosin 

causes a reduced rigidity of tropomyosin (Li et al., 2012) which causes an impairment of 

muscular relaxation. Catastrophic collapse can be considered as an essential process to 

ensure muscular relaxation is not compromised and this phenomenon can provide a 

mechanistic insight to HCM. 
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