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Abstract

Functional programming is a good idea, but we haven’t got it quite
right yet. What we have been doing up to now is weak (or partial) func-
tional programming. What we should be doing is strong (or total) func-
tional programming - in which all computations terminate. We propose
an elementary discipline of strong functional programming. A key fea-
ture of the discipline is that we introduce a type distinction between data,
which is known to be finite, and codata, which is (potentially) infinite.

1 What is Functional Programming?

It is widely agreed that functional programming languages make excellent intro-
ductory teaching vehicles for the basic concepts of computing. The wide range
of topics covered in this symposium is evidence for that. But what is functional
programming?

Well, it is programming with functions, that much seems clear. But this
really is not specific enough. The methods of denotational semantics show us
how almost any programming language construction, no matter how opaque and
side-effect ridden, can be construed functionally if we are willing to introduce
complicated enough spaces for the functions to work on.

It is somewhat difficult to pin down with complete precision, but what we
conventionally mean by functional programming involves the idea that the func-
tions are transparent in the notation we actually write, rather than having to be
teased out by some complex process of interpretation. For example if I write, in
Miranda! or Haskell (actually neither language has nat as a distinct type, but
that’s an oversight)

> fac :: nat->nat
> fac 0 = 1
> fac (n+1) = (n+l1) * fac n

then the semantics I intend has that fac really is a function from natural num-
bers to natural numbers, not something else, such as a function from nat x store



to nat X store, as I would have to say in a language with side effects, or a trans-
formation over nat-demanding continuations, which is what I would have to say
in a language with jumps as well as side effects.

Further, the equations which I have written as the definition of fac are ac-
tually true, and are everything I need to know about it. From them I can infer
not only, e.g.

fac 3 =6
but also more general properties of fac, by using induction principles and alge-
braic reasoning.

In a functional language things are what we say they are, not something
much more complicated in disguise. This is particularly apparent in the nota-
tional style represented by such languages as Miranda [9], Haskell [4], and the
functional subset of Standard ML [3]. We have

(i) strong typing: the domain and codomain of each function is either stated
in or inferable from the program text, and there is a syntactic discipline which
prevents a function from being applied to an inappropriate argument.

(ii) functions are defined by equations - typically involving case analysis by
pattern matching - and we can do equational reasoning in a familiar algebraic
way.

(iii) expressions can be evaluated by treating the program equations as
rewrite rules, so computation is a special case of equational reasoning - and
the final result will be independent of the order in which the rewrite rules are
applied.

(iv) there are simple induction rules associated with the various (non-function)
data types - and new types are introduced in a way that enables a corresponding
induction principle to be readily inferred.

We can sum this up by saying that functional programming is program-
ming with functions in a style that supports equational reasoning and proof by
induction.

Those of us who have become converted are convinced that this is an excel-
lent way to teach programming.

THE BAD NEWS. Unfortunately, none of the properties I have ascribed to
functional languages above is actually quite true of any of our present lan-
guages. There is a pathology, connected with the possibility of run-time errors
and non-terminating computations, which runs right through everything, and
messes up all the details.

For a discussion of the complexities that can arise in reasoning about Miranda
programs see Thompson [7]. Similar complications arise for any of the functional
languages in current use, the details depending on such matters as whether the
language is strict or lazy.

The thesis of this paper is as follows. Functional programming is a very
good idea, but we haven’t got it quite right yet. What we have been doing up
to now is weak functional programming. What we should be doing is strong
functional programming.



The remaining sections of the paper are organised as follows. Section 2
introduces the idea of strong functional programming. In section 3 we outline
an elementary language for strong functional programming over finite data. In
section 4 we show how the concept of codata can be added, to bring back the
possibility of programming with infinite streams etc. In section 5 we make some
closing remarks.

2 Strong Functional Programming

Conventional functional programming may be called weak. What is the differ-
ence between weak and strong?
In a weak functional language if we have an expression, say
e :: int
we know that if evaluation of e terminates successfully, the result will be an
integer - but evaluation of e might fail to terminate, or might result in an error
condition.
In a strong functional language, if we have an expression
e :: int
we know that evaluation of e will terminate successfully with an integer result .
In strong functional programming there are no non-terminating computations,
and no run-time errors.
In the semantics of weak functional programming each type T contains an
extra element L7 to denote errors and non-terminations.
In strong functional programming | does not exist. The data types are
those of standard mathematics.

What are the advantages of strong functional programming? There are three
principle ones:

1) The proof theory is much more straightforward.

2) The implementor has greater freedom of action.

3) Language design issues are greatly simplified (no strict versus non-strict).

2.1 Simpler Proof Theory

One of the things we say about functional programming is that it’s easy to prove
things, because there are no side effects. But in Miranda or Haskell - or indeed
SML - the rules are not those of standard mathematics. For example if e is of
type nat, we cannot assume

e-e=0
because e might have for its value L,,4;.

Similarly we cannot rely on usual principle of induction for nats

P(0)

VYn.P(n) = P(n+1)

Vn.P(n)
without taking precautions to deal with the case n = 1.




These problems arise, in different ways, in both strict and lazy languages.
In strong functional programming these problems go away because there is no
L to worry about. We are back in the familiar world of sets.

2.2 Flexibility of Implementation

In strong functional programming reduction is strongly Church-Rosser. Note
the distinction between
(A) Church-Rosser Property:

If E can be reduced in two different ways, then if they both produce normal
forms, these will be the same
(B) Strong Church-Rosser Property:

FEvery reduction sequence leads to a normal form and normal forms are
unique.
The ordinary Church-Rosser property gives a form of confluence, with strong
Church-Rosser we have this plus strong normalisability - so we can evaluate in
any order. This gives much greater freedom for implementor to choose an effi-
cient strategy, perhaps to improve space behaviour, or to get more parallelism.
The choice of eager or lazy evaluation becomes a matter for the implementor,
and cannot affect the semantics.

2.3 Simpler Language Design

In weak functional programming languages we have many extra design deci-
sions to make, because of strict versus non-strict. Consider for example the &
operation on bool, defined by

True & True = True

True & False = False
False & True = False
False & False = False

but there are more cases to consider:
L&y-=
& L

Considering the possible values for these (which are constrained by mono-
tonicity) gives us a total of four different possible kinds of & namely

(i) doubly strict &

(ii) left-strict &

(iii) right-strict &

(iv) doubly non-strict (parallel) &
Should we provide them all? Only one? How shall we decide?

In strong functional programming these semantic choices go away. Only one
& operation exists, and it is defined by its actions on True, False alone.



2.4 Disadvantages

What are the disadvantages of strong functional programming? There are two
obvious ones

1) Programming language is no longer Turing complete!

2) If all programs terminate, how do we write an operating system?
Can we live with 1?7 We will return to this in the closing section, so let us
postpone discussion for now.

The answer to 2 is that we need codata as well as data. (But unlike in weak
functional programming, the two will be kept separate. We will have finite data
and infinite codata, but no partial data.)

There already exists a theory of strong functional programming which has been
extensively studied. This is the constructive type theory of Per Martin-Lof (of
which there are several different versions). This is a very complex theory which
includes:

e Dependent types (types indexed over values)
e Second order types

e An isomorphism between types and propositions, that enables programs
to encode proof information.

This is a powerful and interesting theory, but it not suitable as a vehicle for
first year teaching - it seems unlikely to replace PASCAL as the introductory
programming language.

We need something simpler.

3 Elementary strong functional programming

What I propose is something much more modest than constructive type theory,
namely an elementary discipline of strong functional programming.

Elementary here means

1) Type structure no more complicated than Hindley/Milner, or one of its
simple variants. So we will have types like int — int, and polymorphic types
like @ — «, but nothing worse.

2) Programs and proofs will be kept separate, as in conventional program-
ming. What we are looking for is essentially a strongly terminating subset of
Miranda or Haskell (or for that matter SML, since the difference between strict
and lazy goes away in a strong functional language)

First, we must be able to define data types.

> data day = Mon | Tue | Wed | Thur | Fri | Sat | Sun

> data nat Zero | Suc nat



> data list a = Nil | Cons a (list a)
> data tree = Nilt | Node nat tree tree

> data array a = Array (nat->a)

As is usual some types - nat, list for example - will be built in, with special
syntax, for convenience. So we can write e.g. 3 instead of Suc (Suc(Suc Zero)).

There are three essential restrictions.

RULE 1) All primitive operations must be total. This will involve a
some non-standard decisions - for example we will have
0/0=0

Runciman [6] gives a useful and interesting discussion of how to make natu-
ral arithmetic closed. He argues that the basic arithmetic type in a functional
language should be nat and not int and I am persuaded by his arguments.

Making all basic operations total of course requires some attention at types
other than nat - for example we have to decide what to do about hd[1. There are
various possible solutions - making hd return an element of a disjoint union, or
giving it an extra argument, which is the value to be returned on [], are the two
obvious possibilities. It will require a period of experiment to find the best style.
Notice that because hd is polymorphic we cannot simply assign a conventional
value to hd [1, for with the abolition of 1 we no longer have any values of type «.

RULE 2) Type recursion must be covariant. That is type recursion
through the left hand side of — is not permitted. For example

> data silly = Silly (silly->nat) ||not allowed!

Contravariant types like silly allow L to sneak back in, and are therefore
banned.

Finally, it should be clear that we also need some restriction on recursive func-
tion definitions. Allowing unrestricted general recursion would bring back L.

First note that to define functions we introduce the usual style of equational
definition, using pattern matching over data types. Eg

> size :: tree a -> nat
> size Nilt = 0
> size (Node n x y) = n + size x + size y

To avoid non-termination, we must restrict ourselves to well-founded recursion.
How should we do this? If we were to allow arbitrary well-founded recursion,
we would have to submit a proof that each recursive call descends on some well-
founded ordering, which the compiler would have to check. We might also have



to supply a proof that the ordering in question really is well-founded, if it is not
a standard one.

This contradicts our requirement for an elementary language, in which pro-
grams and proofs can be kept separate. We need a purely syntactic criterion,
by which the compiler can enforce well-foundedness. I propose the following rule

RULE 3) Each recursive function call must be on a syntactic subcom-
ponent of its formal parameter (the exact rule is slightly more elaborate, to
take account of pattern matching over several arguments simultaneously - this
is so as to allow “nested” structural recursion, as in Ackermann’s function - the
extension adds no power, because what it does can be desugared using higher
order functions, but is syntactically convenient).

The classic example of what this allows is recursion of the form

> f :: nat->thing
> f 0 = something
> f (n+t1) = ...f n...

except that we generalise the paradigm to multiple arguments and to syntactic
descent on the constructors of any data type, not just nat.

The rule effectively restricts us to primitive recursion, which is guaranteed
to terminate. But isn’t primitive recursion quite weak? For example is it not
the case that Ackermann’s function fails to be primitive recursive? NO, that’s
a first order result - it does not apply to a language with higher order functions.

IMPORTANT FACT: we are here working in a higher order language, so what
we actually have are the primitive recursive functionals of finite type, as studied
by Godel [2] in his System T.

These are known to include every recursive function whose totality can be
proved in first order logic (starting from the usual axioms for the elementary data
types, eg the Peano axioms for nat). So Ackermann is there, and much, much
else. Indeed, we have more than system T, because we can define data structures
with functional components, giving us infinitarily branching trees. Depending
on the exact rules for typechecking polymorphic functions, it is possible to
enlarge the set of definable functions to all those which can be proved total in
second order arithmetic.

So it seems the restriction to primitive recursion does not deprive us of any
functions that we need, BUT we may have to code things in an unfamiliar way -
and it is an open question whether it gives us all the algorithms we need (this is
a different issue, as it relates to complexity and not just computability). I have
been studying various examples, and find the discipline surprisingly convenient.

An example.

Quicksort is not primitive recursive. However Treesort is primitive recursive (we
descend on the subtrees) and for each version of Quicksort there is a Treesort



which performs exactly the same comparisons and has the same complexity, so
we haven’t lost anything.

Another example - fast exponentiation.

> pow :: nat->nat->nat

> pow xn =1, if n ==
> = x * pow (x * x) (n/2), if odd n
> = pow (x * x) (n/2), otherwise

(An aside - note that the last guard of a guard set must be otherwise.) This
definition is not primitive recursive - it descends from n to n/2. Primitive
recursion on nats descends from (n+1) to n.

However, we can recode by introducing an intermediate data type [bit],
(i.e. list-of-bit), and assuming a built in function that gives us access to the
binary representation of a number.

> data bit = On | Off

> bits :: nat->[bit] ||built in

> pow x n = powl x (bits n)

> powl x Nil =1

> powl x (On : y) = x * powl (x * x) y
> powl x (0ff : y) = powl (x * x) y

Summary of programming situation:

Expressive power - we can write any function which can be proved total in the
first order theory of the (relevant) data types. (FACT, DUE TO GODEL)

Efficiency - I find that around 80% of the algorithms we ordinarily write are
already primitive recursive. Many of the others can be reexpressed as primitive
recursive, with same computational complexity, by introducing an intermediate
data structure. (MY CONJECTURE: with more practice we will find this is
always true.)

I believe it would not be at all difficult to learn to program in this discipline,
but you do have to make some changes to your programming style. More re-
search is needed (for example Euclid’s algorithm for ged is difficult to express
in a natural way).

It is worth remarking that there is a sledge-hammer approach that can be
used to rewrite as primitive recursive any algorithm for which we can compute
an upper bound on its complexity. We add an additional parameter, which is
a natural number initialised to the complexity bound, and count down on that
argument while recursing. This wins no prizes for elegance, but it is an existence
proof that makes more plausible my conjecture above.



3.1 PROOFS

Proving things about programs written in this discipline is very straightforward.
Equational reasoning, starting from the program equations as axioms about the
functions they define.

For each data type we have a principle of structural induction, which can be
read off from the type definition, eg

> data nat = Zero | Suc nat

this gives us, for any property P over nat

P(Zero)
Vn.P(n) = P(Suc n)
Vn.P(n)

We have no | and no domain theory to worry about. We are in standard
(set theoretic) mathematics.

4 CODATA

What we have sketched so far would make a nice teaching language but is not
enough for production programming. Let us return to the issue of writing an
operating system.

An operating system can be considered as a function from a stream of re-
quests to a stream of responses. To program things like this functionally we
need infinite lists - or something equivalent to infinite lists.

In making everything well-founded and terminating we have seemingly re-
moved the possibility of defining infinite data structures. To get them back we
introduce codata type definitions:

> codata colist a = Conil | a <> colist a

Codata definitions are equations over types that produce final algebras, in-
stead of the initial algebras we get for data definitions. So the type colist
contains all the infinite lists as well as finite ones - to get the infinite ones alone
we would omit the Conil alternative. Note that infix <> is the coconstructor
for colists.

The rule for coprimitive corecursion on codata is the dual to that for primi-
tive recursion on data. Instead of descending on the argument, we ascend on
the result. Like this

> f :: something->colist nat | lexample
> f args = RHS (f args’)



where the leading operator of RHS must be a coconstructor. There is no con-
straint on the form of args’.

Notice that corecursion creates (potentially infinite) codata, whereas ordi-
nary recursion analyses (necessarily finite) data. Ordinary recursion is not legal
over codata, because it might not terminate. Conversely corecursion is not legal
if the result type is data, because data must be finite.

Now we can define infinite structures, such as

> ones :: colist nat

> ones = 1 <> ones

> fibs :: colist nat

> fibs = f 0 1

> where

> fab=a<>fb (ath)

and many other examples which every Miranda or Haskell programmer knows
and loves.

NOTE THAT ALL OUR INFINITE STRUCTURES ARE TOTAL

As in the case of primitive recursion over data, the rule for coprimitive core-
cursion over codata requires us to rewrite some of our algorithms, to adhere to
the discipline of strong functional programming. This is sometimes quite hard
- for example rewriting the well known sieve of Eratosthenes program in this
discipline involves coding in some bound on the distance from one prime to the
next.

There is a (very nice) principle of coinduction, which we use to prove infinite
structures equal. It can be read off from the definition of the codata type. We
discuss this in the next subsection.

A question. Does the introduction of codata destroy the strong Church-
Rosser property? No! (But you have to have the right definition of normal
form. Every expression whose principle operator is a coconstructor is in normal
form.)

4.1 Coinduction

First we give the definition of bisimilarity (on colists). We can characterise ~
the bisimilarity relation as follows
rry=>hdz=hdyAtlx=tly

Actually this is itself a corecursive definition! To avoid a meaningless regress
what one actually says is that anything obeying the above is a bisimulation and
by bisimilarity we mean the largest such relation. For a fuller discussion see
Pitts [5]. Taking as read this background understanding of how to avoid logical
regress, we say that in general two pieces of codata are bisimilar if:
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e their finite parts are equal, and
e their infinite parts are bisimilar.

The principle of coinduction may now be stated as follows: Bisimilar objects
are equal.

One way to understand this principle is to take it as the definition of equality
on infinite objects

We can package the definition of bisimilarity and the principle that bisimilar
objects are equal in the following method of proof: When proving the equality
of two infinite structures we may assume the equality of recursive substructures
of the same form.

For colists we get — to prove
gxl ... xn = hxl ... xn
It is sufficient to show

gxl ... xn = e<>gal ... an
hxl ...xn = e<>hal ... an

There is a similar rule for each codata type

A trivial example

> x=1<>x
> y=1<y

How do we prove that x = y?

Theorem x =y
Proof by coinduction

X

= 1< x {x}

= 1<y {ex hypothesi}
=y {y}

QED

Example: reflection on infinite trees

> codata inftree = T nat inftree inftree
> refl :: inftree -> inftree
> refl (Taxy) =T a (refl y)(refl x)

Theorem refl (refl x) = x
Proof by coinduction
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refl (refl (T a y 2)

= refl (T a (refl z) (refl y)) {refl}
=T a (refl (refl y)) (refl (refl z)) {refl}
=Tayz {ex hypothesi}

QED

Example: the (co)map-iterate theorem

The following theorem is from Bird & Wadler (see [1], page 184). We have
changed the name of map to comap because for us they are different functions.

> iterate f x = x <> iterate f (f x)
> comap f (a <> x) = f a <> comap f x

Theorem iterate f (f x) = comap f (iterate f x)
Proof by coinduction

iterate f (f x)

= f x <> iterate £ (f (f x)) {iterate}

= f x <> comap f (iterate f (f x)) {ex hypothesil}
= comap f (x <> iterate f (f x)) {comap}

= comap f (iterate f x) {iterate}

QED

The proof given in [1] uses the take-lemma - it is longer than that given above
and requires an auxiliary construction, involving the application of a take func-
tion to both sides of the equation, and an induction on the length of the take.

Summary

The “strong coinduction” principle illustrated here seems to give shorter proofs
of equations over infinite lists than either of the proof methods for this which
have been developed in the theory of weak functional programming - namely
partial object induction (Turner [8]) and the take-lemma (Bird [1]).

The framework seems simpler than previous accounts of coinduction - see for
example Pitts [5], because we are not working with domain theory and partial
objects, but with the simpler world of total objects.

Moral: Getting rid of partial objects seems to be an unmitigated blessing -
not only when reasoning about finite data, but also, perhaps even more so, in
the case of infinite data.

5 Observations and Concluding Remarks

I have outlined an elementary discipline of strong (or total) functional program-
ming, in which we have both finite data and (potentially) infinite codata, which
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we keep separate from each other by a minor variant of the Hindley Milner type
discipline. There are syntactic restrictions on recursion and corecursion which
ensure well-foundation for the former, and finite progress for the latter, and
simple proof rules for both data and codata.

Although the particular syntactic discipline proposed may be too restrictive
(particularly in the forms of corecursion it permits - further research is required
here) I would like to argue that the distinction between data and codata is very
helpful to a clean discipline of functional programming, and gives us a better
teaching vehicle, and perhaps a better vehicle for production programming also
(because of the greater freedom of choice for the implementor).

A question we postponed from section 2 is whether we ought to be willing
to give up Turing completeness. Anyone who has taken a course in theory of
computation will be familiar with the following result, which is a corollary of
the Halting Theorem.

Theorem: For any language in which all programs terminate, there are always-
terminating programs which cannot be written in it - among these are the in-
terpreter for the language itself.

So if we call our proposed language for strong functional programming, L, an
interpreter for L in L cannot be written. Does this really matter? I can see
two arguments which suggest this might in fact be something to which we could
accommodate ourselves quite easily

1) We will have a hierarchy of languages, of ascending power, each of which
can express the interpreters of those below it. For example if our language L
has a first order type system, we can easily add some second order features
to get a language Lo, in which we can write the interpreter for L, and so on
up. Constructive type theory, with its hierarchy of universes, is like this, for
example.

2) There is no such theoretical obstacle to our writing a compiler for L in
L, which is of far greater practical importance.

Summary

There is a dichotomy in language design, because of the halting problem. For
our programming discipline we are forced to choose between

A) Security - a language in which all programs are known to terminate.
B) Universality - a language in which we can write

(i) all terminating programs

(ii) silly programs which fail to terminate
and, given an arbitrary program we cannot in general say if it is (i) or (ii).

Four decades ago, at the beginning of electronic computing, we chose (B). It
may be time to reconsider this decision.
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