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Abstract 

The key external characteristics of chicken eggs are volume (V) and surface area (S) that should 

be accurately estimated for various applications in poultry research, food engineering and 

technology development areas, although many researchers often use approximate calculation 

formulae proposed back in the middle of the last century. These were based on speculative 

constants and prone to computational errors. Using the Hügelschäffer’s model and simulation 

modelling, we generated 1820 various combinations of eggs, according to which V and S were 

computed with more accurate and simplified formulae that we have improved here. As a result, 

dependencies were obtained for a simplified calculation of these parameters using only non-

destructive measurement data on the egg length and maximum breadth, with the average error in 

calculating V being 1.1% and that for S 0.3%. The produced equations for V and S of chicken 

eggs can be used in non-invasive measurement of egg characteristics. Further improvement of 

these formulae does not seem feasible, suggesting closing for now the polemic about more 

cromulent calculation of these egg variables and relevant computation errors and constants. 

 

Keywords: Non-destructive measurement; Egg volume; Egg surface area; Computation error; 

Hügelschäffer’s model; Simulation modelling 
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Nomenclature 

a, b Coefficients used for simplifying the solution of the integral Iw/L 

B Egg maximum breadth 

Iw/L Integral for recalculating the surface area S depending on the w to L ratio  

kS Coefficient that is used for the recalculation of SV 

kV Coefficient for the recalculation of the egg volume, V, using the egg geometrical 

measurements, B and L 

L Egg length 

S Surface area of an ovoid which shape corresponds to the Hügelschäffer’s model that was 

taken as a geometrical prototype of an actual chicken egg 

Sel Surface area of an ellipsoid 

Ss Egg surface area recalculated through the simplified formula under the measurements of 

the egg geometrical measurements, B and L 

SV Egg surface area recalculated through the meaning of the egg volume 

Sw=0 Egg surface area recalculated from Eqn4 after substituting w = 0 

SI Egg shape index, i.e., B to L ratio 

V Volume of an ovoid which shape corresponds to the Hügelschäffer’s model that was 

taken as a geometrical prototype of an actual chicken egg 

Vel Volume of an ellipsoid 

w Parameter that corresponds to a distance between two vertical axes, one of which 

coincides with B and the other one is crossing the egg at the point of L/2 

 

1. Introduction 

The volume and surface area of a hen’s egg, a traditional and valuable food product, are main 

oomorphological parameters characterizing its quantitative and qualitative properties. Therefore, 

both the accuracy and convenience of their calculations are needed to use them further in various 
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applications in poultry research, food engineering and technology design. There is, however, 

considerable controversy and polemic in the published studies on this aspect started back to the 

mid 20th century. The first to raise this issue were Romanoff and Romanoff (1949), who, for 

determining the egg volume, suggested as the initial calculation formula the one for ellipsoids, 

Vel, using the length, L, and maximum breadth, B, of the eggs, while having proposed the surface 

area, SV, to be computed based on the egg volume, V: 
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where kS is a speculative constant, and those authors suggested the value k = 4.831 to ensure the 

smallest error in non-destructive measuring chicken eggs. 

 

Also, Romanoff and Romanoff (1949), revisiting and analysing the previous research conducted 

in this area, presented several versions of the constants, both for Eqns 1 and 2, resulting in 

computation errors up to 15%. This, obviously, depended on the sample size and particular 

properties of eggs with which the authors of those studies had worked. The search for the right 

constants ensuring the accuracy of calculation of these indicators continued after 1949, with 

varied values of the above constants being suggested (as reviewed, for example, in Narushin, 

1997). 

 

In the course of theoretical investigations, Narushin (2005) and Narushin et al. (2020a) 

demonstrated that k is not a constant, but a function of the linear parameters of the egg, i.e., its 

length, L, and maximum breadth, B. Recently, Narushin et al. (2020b) showed that the contours 

of a chicken egg can be ideally described with the Hügelschäffer’s model (Ursinus, 1944; 
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Schmidbauer, 1948), and a parameter w that corresponds to a distance between two vertical axes, 

one of which coincides with B and the other one is crossing the egg at the point of L/2, has an 

additional effect on the coefficient k. Accordingly, the following novel formulae were derived 

for determining the volume, V, and the surface area, S, for the Hügelschäffer’s ovoid (Narushin 

et al., 2020b): 
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Although the above theoretical formulae (Eqns 3 and 4) for calculating V and S would provide a 

high accuracy in determining these indicators, the measurement of the parameter w would create 

a definite difficulty in their use. Moreover, in contrast to the exact theoretical dependence of 

calculating the volume of the Hügelschäffer’s ovoid (Eqn3), the formula for determining its 

surface area, S (Eqn4), was only derived in an approximate way (Narushin et al., 2020b), and this 

was due to the complexity of the integral calculation. 

 

Since in the current non-destructive measurement practice there are no precise direct methods for 

measuring the surface area, we estimated the accuracy of the obtained dependence (Eqn4) by 

substituting the value w = 0. According to Petrović and Obradović (2010), in this case the 

Hügelschäffer’s ovoid is transformed into an ellipsoid. Then, the correspondingly modified 

Eqn4, i.e., after giving zero values to w, will have the following form,  which should 

correspond to the surface area of ellipsoids: 
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in which Sw=0 means the egg surface area being recalculated from Eqn4 after substituting w = 0. 

 

Eqn5 should be similar to the formula for calculating the surface area of ellipsoids, Sel, for which 

the major axis is L and the minor axis is B and, in accordance with Narushin et al. (2020a), 

matches: 
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in which SI is egg shape index that equals to the B to L ratio. 

 

Nevertheless, the results of calculating the surface area of the ellipsoids using Eqn5 clearly differ 

from the data obtained using Eqn6, while the difference reaches 75%, which is unacceptable for 

practical purposes. Obviously, this inconsistency is caused by the use of approximate methods 

for solving the classical integral used to find the surface area of any body of revolution, and in 

our case, this has the following form (Narushin et al., 2020b): 
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In this regard, the objective of this study was to infer simplified computation formulae for 

chicken egg volume, V, and surface area, S, that would be as accurate as possible. We expected 

that the sought equation for V would be only based on two direct linear measurements of the 
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eggs, i.e., their length, L, and maximum breadth, B, and that for S would be deduced using both 

data on L, B and the parameter w, and a simpler calculation option based on measurements of the 

egg volume. In the course of this investigation, we also employed a simulation method to derive 

the desired formulae. 

 

2. Methodology 

The simulation modelling technique was exploited in this study in order to avoid limitation 

caused by any certain sample size of eggs, the corresponding limited measurement results of 

which were previously transferred by the other investigators to all possible variation in eggs, i.e., 

all combinations of their dimensions and shapes that are present in nature. The entirety of such 

combinations can be assured only by going simulatively through all feasible main egg 

parameters. This approach would make it possible to take into account all variants of value 

combinations for three parameters, L, B, and w, applicable to chicken eggs and used in the 

appropriate calculation formulae for determining V and S (Narushin et al., 2020b). On the other 

hand, we also tested if it would be more convenient to use in these formulae the ratios of the 

well-known egg shape index, SI = B/L, instead of using just B, and the ratio w/L, instead of w. 

 

Based on egg measurement data from Romanoff and Romanoff (1949), the following variation 

limits of L and SI were taken for a simulation trial: 

L = 5.2…6.4 cm, 

SI = B/L = 0.66…0.84. 

 

For determining the limits for w/L, we used the theoretical background of Obradović et al. (2013) 

who studied modifications of the geometric contours of Hügelschäffer’s model as well as our 

own results (Narushin et al., 2020c). Accordingly, the minimal value of w is 0 (in this case the 

Hügelschäffer’s ovoid is transformed in the ellipsoid) and the maximum one is not more than 
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wmax = (L – B)/2, wherefrom the maximum possible value of w/L for any avian egg does not 

exceed 0.25. Considering the above, the possible variations of w/L were taken as: 

w/L = 0…0.25. 

 

Thus, the above data served as the basis for modelling a wide variety of eggs. By changing the 

values for L in increments of 0.2 cm, those for SI in increments of 0.02, and those for w/L in 

increments of 0.05, we simulated 1820 combinations typical for the entire feasible variety of 

chicken eggs. These were then tested to calculate the actual egg volume, V, using Eqn3 and 

surface area, S, using Eqn7 for which we also exploited a numerical method in MS Excel as was 

proposed elsewhere (Piessens et al., 1983). 

 

After that, the obtained data for V were compared with those calculated with the formula for 

ellipsoids Vel (Eqn1). The values of V and S were also used to estimate the coefficient kS in Eqn2 

and compare with those deduced for simplified calculations under the measurements of L and B. 

 

3. Results and Discussion 

3.1. Egg volume 

Eqn1 can be presented for ellipsoids as Vel = kVLB2, where we have the constant kV = 0.5236. In 

the sample of simulated 1820 eggs, the results of comparing the calculated data for V (Eqn3) and 

Vel (Eqn1) showed a computation error when using Eqn1 that ranged between 0 and 5.1%, with 

an average value of 1.4%. This would be quite acceptable in performing studies that do not 

require a very high accuracy. Alternatively, after calculating the ratio V/LB2, we obtained the 

average value of the constant in Eqn1 equal to 0.5163 ± 0.0065. Using this new constant, the 

modified formula for representing the volume of chicken eggs, V, can be rewritten as follows: 

 

25163.0 LBV =           (8) 
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that enabled to lower the computation error variation in the range 0–3.7%, with an average value 

being 1.1%. 

 

We made further attempts to increase the calculation accuracy and approximated the data for V 

(Eqn3) and Vel (Eqn1) by a corresponding function (Fig. 1), which approximation gave us the 

following dependence: 

 

4065.09936.0 −= elVV ,         (9) 

with R2 = 0.9974. 

 

As a result, after the respective transformation, we deduced the following formula that can be 

used to calculate the volume of chicken eggs: 

 

4065.05202.0 2 −= LBV          (10) 

 

Using the improved formula (Eqn10), the results of calculations somewhat approached the actual 

value of the volume, although its computation error practically did not change in comparison 

with Eqn8, being in the range 0–3.6% with an average value of 1.1%. 

 

Our next step to better the accuracy was to find an adequate functional dependence of kV on the 

values of L and B taken alone or in combination. We found that the prediction of kV was very low 

in all cases, being the same for the multiple function kV = f(L,B) and when only the parameter L 

is considered. Approximation of the dependence kV = f(L) (Fig. 2) was performed using the 

following dependence: 
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9594.00047.0 += LkV
         (11) 

with R2 = 0.0228, 

 

and its inputting into V = kVLB2 led to the following formula: 

 

2)959.0005.0( LBLV +=          (12) 

 

Applying Eqn12, we obtained a further slight improvement of the egg volume calculation 

accuracy: the respective computation error was in the range 0.06–3.40%, with an average value 

being 1.07%. 

 

Thus, when calculating the egg volume and if the research data do not imply a very high 

measurement accuracy, we propose using Eqn12 that ensures the simplicity of measurement of 

the initial egg parameters and the sufficient accuracy of the obtained results. Alternatively, 

simpler and more conventional Eqns 8 and 10 can also be used. 

 

3.2. Shell surface area 

Eqn7 was modified in such a way as to replace the linear dimensions L, B, and w with their 

ratios, SI = B/L and w/L, and the following alteration of the variable was produced in the integral: 

 

L
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resulting in the following changes: 
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and the limits of integration: 
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Finally, Eqn7 was transformed into the following one: 
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To solve the integral in Eqn14, denoting it for convenience as Iw/L, we substituted the possible 

values of w/L in increments of 0.05, resulting in the undergoing equations. 

 

1. When w/L = 0, the Hügelschäffer’s ovoid equals to the ellipsoid, and in this case the integral 

from Eqn7 is rewritten as follows: 
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2. When w/L = 0.05, 
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3. When w/L = 0.1, 
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4. When w/L = 0.15, 
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5. When w/L = 0.2, 
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6. When w/L = 0.25, 
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Each of the integrals (Eqns 15–20) was determined by numerical methods in MS Excel at 

different values of SI = 0.65...0.85, while each of the obtained dependencies (Fig. 3) was 

approximated by the corresponding equation: 

 

7018.02933.00 += SII          (21) 

with R2 = 0.9996, 

7012.02938.005.0 += SII          (22) 

with R2 = 0.9996, 

6993.02952.01.0 += SII          (23) 

with R2 = 0.9997, 

6963.02974.015.0 += SII          (24) 

with R2 = 0.9997, 

6921.03004.02.0 += SII          (25) 

with R2 = 0.9997, 

6867.0304.025.0 += SII          (26) 

with R2 = 0.9998. 

 

All obtained dependences (Eqns21–26) have a single linear form: 

 

baSII Lw +=/            (27) 
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where a and b are the coefficients, which in turn were investigated for the functional dependence 

on the value of the ratio w/L (Fig. 4). 

 

The result of approximating the coefficients a and b gives the following dependences: 

 

292.0043.0 +=
L

w
a ,          (28) 

L

w
b 061.0704.0 −= ,          (29) 

 

which made it possible to obtain the resulting formula for the value of the integral from Eqn27: 
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As a result, the formula for calculating S (Eqn14) can be presented in its final form: 
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As follows from Fig. 4, the coefficients a and b remain practically unchanged with the average 

values of am = 0.297 and bm = 0.696. Then, the simplified formula for calculating the surface 

area after substituting the values for am and bm in Eqn27 will be rewritten as: 

 

( ) )343.2(933.0696.0297.0 LBBSIBLSs +=+=       (32) 

in which Ss means that the surface area was recalculated according to the simplified function. 
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Considering that there is no a direct accurate method for measuring S, we estimated the accuracy 

of calculating integrals (Eqns 15–20) and, accordingly, the values of S (Eqn31), analysing the 

particular case when the Hügelschäffer’s ovoid transforms into an ellipsoid, i.e. for w = 0. In this 

case, Eqn31 should give identical values calculated by Eqn6 with substitution of any SI variable 

values. For the convenience of substitutions, we presented Eqn6 for calculating the surface area 

of ellipsoids as follows: 
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Comparative analysis showed full agreement of the results using Eqn31 (after the corresponding 

substitution of w = 0), with a computation error being 0.00002%. 

 

Thus, we concluded that Eqn31 can be taken as the base for making accurate calculations of the 

surface area of eggs, the shape of which corresponds to the Hügelschäffer’s model. 

 

The next stage of our research was the analysis of data obtained by means of simulation 

modelling of the whole possible variety of chicken eggs. At the same time, the calculation of the 

egg volume was carried out according to the previously derived formula (Eqn3) for ovoids 

described by the Hügelschäffer’s model (Narushin et al., 2020b). The S values of Eqn31 were the 

criteria for comparative analysis with other derived formulae, i.e., with simplified Ss (Eqn32) and 

Sel (Eqn33). 

 

A comparative analysis of the generated 1820 values of chicken eggs showed the average 

computation error for Ss equals to 1.2%, with variation from 0 to 5.7%. For Sel (according to 

Eqn33), the average error was 0.3%, with variation from 0 to 0.9%. 
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Thus, the use of the formula for calculating the surface area of ellipsoids (Eqn33) is quite 

acceptable in the study of the surface area of chicken eggs. 

 

Using Eqn2 and correspondingly dividing the values of S (according to Eqn31) by V (according 

to Eqn3) in the power 2/3, the respective data were obtained for the coefficient kS, the average 

value of which being 4.944 ± 0.048. The obtained value of kS turned out to be a bit higher than 

those published by Romanoff and Romanoff (1949), 4.831, but very close to the one reported by 

Paganelli et al. (1974), i.e., 4.951. Replacing kS in Eqn2 with its newly found average value of 

4.944, we produced the following formula: 

 

3

2

944.4 VSV =            (34) 

 

The computation error of measurements carried out using the modified Eqn34 in comparison 

with S according to Eqn31 was in the range 0–3.1%, with an average value being 0.8%. 

 

In this study, we have tried to put an end to the issue of simplified formulae for calculating the 

volume of chicken eggs. Previously, due to the approximate calculation of volume and surface 

area, there was a problem in calculating these main egg characteristics quickly and accurately. 

 

As a result of the present investigation, a methodological approach was developed, with the help 

of which it is possible to relatively simply assess the adequacy of existing or newly created 

methods for the simplified calculation of the external parameters of bird eggs. This approach is 

based on the principle of simulation modelling of the parameters that are inherent in eggs of the 

given species, and on advanced mathematical formulae, which can be used to accurately 

calculate the parameter of interest. 
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Importantly, the significance and adequacy of the obtained formulae for calculating the egg 

volume (Eqns 8–10, 12) and surface area (Eqns 31–34) rely on computation advantages provided 

by simulating all possible variations in the geometric parameters characteristic of chicken eggs, 

which covers any experimental sample size in producing non-destructive measurements of actual 

eggs. 

 

4. Conclusions 

In summary, the calculation of egg volume by exploiting only two straightforward linear 

parameters L and B and employing the obtained simplified dependencies (Eqns 8–10,12) can be 

safely taken as a basis for practical usage in poultry research, food engineering and technology 

development areas. At the same time, if it needs a very high accuracy in evaluating this 

parameter, we recommend that in addition to measuring L and B, the parameter w be used 

according to the formula (3) previously deduced by (Narushin et al., 2020b). For the computation 

of the surface, we suggest implementing three formulae, i.e., Eqn31 for using of which the 

measurements of the egg basic linear parameters L, B and w are needed, Eqns32 and 33, which 

are exploiting only two straightforward parameters L and B, and Eqn34 obtained via the egg 

volume. Eqn31 considers all drawbacks of our previous theoretical findings (Narushin et al., 

2020b, 2021) and may be recommended for evaluating S, if it needs a very high accuracy. As 

shown by the results of simulation modelling, the surface area of chicken eggs is practically 

identical to this parameter calculated for ellipsoids having the same dimensions of their main 

axes. Given the new simpler formulae obtained for the egg volume (Eqns 8–10, 12) and surface 

area (Eqns 31–34), we believe that their further improvement is hardly feasible and that further 

polemics on this issue can be closed for now. 
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Figure captions 

 

Fig. 1. The relationship between the volume of a chicken egg, V, and the volume of an ellipsoid, 

Vel, that has similar geometric dimensions of length and maximum breadth, with the dependence 

line being described with the function V = 0.9936 Vel – 0.4065 (R2 = 0.9974). 

Fig. 2. The relationship between the coefficient kV and the egg length, L (kV = 0.0047 L + 0.9594; 

R2 = 0.0228). 

Fig. 3. Values of integrals from Eqn12 depending on possible values of w/L and SI: I0 = 0.2933 

SI + 0.7018 (R2 = 0.9996); I0.05 = 0.2938 SI + 0.7012 (R2 = 0.9996); I0.1 = 0.2952 SI + 0.6993 (R2 

= 0.9997); I0.15 = 0.2974 SI + 0.6963 (R2 = 0.9997); I0.2 = 0.3004 SI + 0.6921 (R2 = 0.9997); I0.25 

= 0.304 SI + 0.6867 (R2 = 0.9998). 

Fig. 4. Functional dependence of the coefficients a and b in Eqn19 on possible values of w/L, 

where a = 0.0431 w/L + 0.292 (R2 = 0.9343) and b = –0.0605 w/L + 0.7038 (R2 = 0.9242). 


