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Abstract

Describing the properties of table eggs requiresdétvelopment of methods enabling to look
inside the egg without destroying it, suggestirigaough theoretical study including the
formulation of theoretical aspects of this advanegd-related research area. For this purpose,
we developed a mathematical assay for computingdhanes of shell and interior of a chicken
egg using, as input data, its main external geacn@itmensions (length, maximum breadth, and
the value of its shift from the centre of the horital axis) as well as the thickness of the shell.
The shell volume can be determined as the produbeaverage thickness by the surface area
estimated along the midline of shell section. Weawmied theoretical dependences of the
midline-based estimate of surface area on the saltithe average shell thickness and the outer
surface area of the egg. Since the volume of eggiam, in addition to the volumes of the entire
egg and shell, is also affected by air cell volume derived theoretical formulae for computing
this indicator. To calculate it, in addition to th@&ues of the basic geometric dimensions of the
egg, data on the diameter of the air cell or iiglteshould be used, which is quite simple to

measure with conventional measuring instrumengsdik ovoscope.

Keywords. Eggshell volume; volume of egg interior; air cadlvme; non-destructive

measurement; chicken egg
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Nomenclature (as expanded from Narushin et al., 2021b)

ay, ag, by, | Coefficients used for simplifying the solution ajuations for calculating the surfa
by, C2 area and volume of the air cell

B Egg maximum breadth

Bm Egg maximum breadth corrected for the midlinehef $hell

d Diameter of the air cell

h Height of the air cell

Kac Coefficient used for deducing the equation to daleuthe air cell volume

L Egg length

Lim Egg length corrected for the midline of the shell

S Egg surface area

Sh Egg surface area corrected for the midline ofstiall

g Egg shape index, i.eB,to L ratio

T Average shell thickness

\ Egg volume

Vac Air cell volume

Vi Volume of the egg interior

Vs Shell volume

w Parameter that corresponds to a distance betweewnetical axes, one of which

coincides withB and the other one is crossing the egg at the pdio®

1. Introduction

Table eggs are generally recognized as very muistfood items containing protein, lipids,

vitamins, and micronutrients (e.g., Chambatral., 2017; Réhault-Godbeet al., 2019; Tamiru

et al., 2019), while certain egg components may be eugmanted to optimize human nutrition
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and boost health (e.g., Sughial., 2000; Surai, 2001). Taking this into account,weght of the

egg interior is much more substantial and valuédri¢ghe consumer than the whole egg. As a
whole structure, a chicken egg can be conditior@giihded into two main components: the shell
and the interior. Despite the fact that the shieyg a crucial role in keeping the egg safe, the
size of the internal component is more importantdble eggs. Currently, the volume of interior
can be estimated: (1) indirectly using the weigid/ar linear dimensions of a whole egg
(Narushin, 1994; Khurshid al., 2003), which can be easily measured by convealtion
measurements; or (2) through direct measuremetatistakaking the egg. Nevertheless,
development of new approaches to research methdts field of poultry genetics and
breeding, assessment of food quality and the eagmgeof novel high throughput egg sorting
technologies poses the challenge of creating nstrut#ive methods for determining the

volumetric characteristics of the morphologicailstural egg components (Narushin, 1997).

Because any bird's egg can conventionally be repted as the sum of two main components,
the shell and the interior, the volume of integan be judged by the difference in the volume of
egg and its shell. The only thing is that the ailt mtroduces a certain bias, and its volume
should also be taken into account in these compugatAir cell measurement is part of the
standard egg quality determination procedure pitesdin many countries (e.g., USDA, 2000).
indicates the age of the egg, the shelf life andoalingly, the nutritional propertiésmepenus
BCIIMYHNHBI BOSI[ymHOfI KaMCpPbI BXOAUT B COCTAB CTAHAAPTHBIX NPOUCAYP ONPCACICHUA

Ka4ecTBa siifia Bo MHOTUX cTpanax (k mpumepy, USDA, 2000)1.k. CBHAECTENBECTBYET O BO3PACTE
siTa, CPOKax ero XpaHeHUs ¥, COOTBETCTBEHHO, MUIICBBIX CBoMcTBaX. There is sufficiently
proven procedure for determining the air cell pagtars, i.e., its height and diameter, by
assessing the egg under an ovoscope using convaintn@asuring devices, for example, a
micrometre (Samigt al., 2005) or an air cell gauge (USDA, 2000) as welirore sophisticated

methods, like ultrasound beams (Aboonagtral., 2010), dielectric techniques (Raghal .,
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5
2007), and machine imaging (Braetchl., 2013). However, a method of evaluating the dir ce

volume based on these measurements has not beleednrt yet. The only calculation model
proposed by Phillipst al. (1992) was based on linear measurements of tloelhdiameter as

well as egg length and breadth. Nevertheless, smsenethod depended on a constant obtained
by the authors experimentally and taken as an gedrased on the results of daily

measurements of eggs during incubation, it canlhaelaccepted for solving this problem.

The shell volume is also of great importance ingtuely and assessment of the quality of table
eggs. Atanasov (2019) defined the ratio of the mawf a whole egg to its shell volume as a
universal index for predicting the optimal shelélof table eggs. Concerning the methods for
estimating the volume of eggshell or, rather, iesghit, by volume of which one can indirectly
judge the shell volume due to sufficiently stabémsity of the shell material (Carter, 1968a;
Harmset al., 1990; Harms, 1991), a number of studies wereethaut that can be conditionally

grouped as follows:

1. The shell weight can be figured out via the weigfthe whole egg (Rahn and Paganelli,
1989; Narushin, 1994; Seker, 2004).

2. The shell weight is calculated using more thanmarameter, for example, egg weight
and basic linear dimensions (Khursketdl., 2003; Shafegt al., 2014) or egg weight and

egg density (Nordstrom and Ousterhout, 1982; Haatrak, 1990; Harms, 1991).

In those works, the authors used data obtainedesutt of direct measurements of a certain

sample of eggs, often not exceeding 200 pieces.

Thus, we can summarize that the studies carriedmfdr in this research area have been

empirical and resulted in obtaining dependencasikee adequate only to a definite sample of
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eggs the authors worked with. On the other haratethave not been deeper theoretical
investigations to identify proper mathematical solus. In this regard, our study was aimed at
generating substantiated mathematical dependeewadsing to identify the volumes of the shell

and interior of poultry eggs without destroying it.

2. Methodology

A hen’s egg can be accurately described with a KBagéffer's model that relies on three linear
egg parameters: length, maximum breadtB, and a parameter equals to OQ(Fig. 1), i.e., a
difference between a distanitem the egg pointy end to a vertical axis, whichresponds to

the egg maximum diametds,and the half length of the edg?2 (Petrové and Obradow, 2010;

Petrovt et al., 2011; Narushimet al., 2020b).
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Fig. 1. Schematic image of the eggshell.

To undertake the simulation, we decided to be éthivith the data of hen’s eggs only, so the
following ranges of the linear parameters mostpidgl for such eggs were considered in
accordance with Romanoff and Romanoff (1949) arrcpoevious studies (Narushin, 1994;
Narushin, 2001; Narushigt al., 2020a): (1) egg length,=5.2...6.4 cm; (2) shape indesd, =
B/L = 0.70...0.78, with a corresponding recalculatiothefvalues oB = S-L; and (3w =
0.01...0.50. All possible combinationslofB andw were substituted into the formula for
calculatingS using the Hugelschaffer's egg model (Narusdtial., 2020b) that enabled

generating the data of surface areas for 837 stedilegg profiles.

For further calculations, we will use such a par@mnas surface area of the shell measured along
its midline, Sy, as shown in Fig. 1 dash-dotted curve. Midlinsimsilar to the term the neutral

line, borrowed from industrial engineering, exachget bending process, where it is used as an
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imaginary line that has the same length after bends it had before bending. The neutral line
does not always pass directly in the very centex loént beam, and its location is largely due to
many parameters; nevertheless, according to a nuohlaeithors (Diegel, 2002; Betts, 2010;
Stewart, 2016), it can be safely assumed to bedesgaint from the outer and inner layers,
especially for thin-walled vessels. According te@el (2002), these include those in which the
radius of the wall exceeds its threefold thicknegsgch is quite consistent with the shell of
chicken eggs. This condition can be verified bycpcal calculations using the formulas we

derived earlier (Narushin et al., 2021a).

To define the values &, the egg linear parametdrandB were reduced by the value of the

average shell thicknesg,(Fig. 1):
L,=L-T andB,=B-T

wherelL, andBy, are corresponding to the length and maximum bheaidthe egg being

measured according to the midline of the shell.

To check if the parametar changes when the egg profile would be uniformiytcacted, the

following estimations were undertaken using theesoh in Fig. 1:

W= olc—; Q)

L

N T L-T L
7=010—§— =0C-_=w (2)

w, =0A -
2 2

The above calculations suggest that the valuesoptametew remains unchangeable if the

egg profile is contracted.
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To run the simulation for determinirgy, the values ok, B, andw were added using a dataset
of the variablel = 0.025...0.050 cm. This range excessively covéngomisible variations for the
hen’s eggs. Th&, values were obtained using the respective fordauléhe egg surface area

from Narushiret al. (2021b):

S= nBL(( 0043% + ozgzj'f - 0061VLV + o.704j , 3)
resulting in
S, = m(B-T)(L —T)(( 0043LlT ; ozgzj B-T _ 0061 WT " o.704j @)

3. Theory

3.1. Eggshell volume

If we consider an egg representation (Fig. 1) withshell conditionally shown with evenly
allocated thickness, by analogy with calculating ¥olume of cylindrical shells (Stewart, 2016)
it is possible to state that the shell volug,equals to a product of its area measured over a

middle shell surfaces, (shown in Fig. 1 with a dash-dot line), and therage thicknesq::

V.=S [T 5)

The methodological approach we have chosen (Eag.&lculatingVs, in our opinion, is simpler
and more convenient than use of integral calcuwdu$ifiding this parameter, since it can cause
certain difficulties and, as a consequence, inawes in the result obtained, which was

demonstrated by us earlier (Narushin et al., 202081a; 2021b).
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In our case, to estimate tigvalue indirectly, we would need to meastirand recalculate the

shell surface are8, over the midline of its shell.

Currently, accurate measurement of the shell tlaskwithout breaking the egg can be
performed using, for example, a commercial ultr&sdevice produced by ORKA (2020) or a

non-destructive deformation device by Stable MiSystems (2020).

Thus, the idea of our investigations on the egdstodime was to focus on a comparison of the
values ofS, andS and an estimation of a possible dependence bettheenS,, = f(S), in order

to provide the appropriate mathematical recalooietiofV..

3.2. Air cell volume
Conventionally, the air cell of any egg can be espnted in the form of a rotation figure, with

the heighth, and base diameteat, as shown in Fig. 2 by the straight line AB.
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N|To

Fig. 2. Geometrical interpretation of the air cell insttie egg.

A volume,V, of any figure of revolution can be estimated ggime following formula of integral

geometry:
V= rr_[ y?dx (6)
X

wherex; andx; are the limits of a function

The coordinate of point C is determined from theditbion: -L/2 +h. Then, the limits of the

integral (6) will correspond to:
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L L
=-—andx,=h-_,
%77 2 2

with y matching the egg shape profile that was previodsBcribed by us with the

Hugelschaffer's model (Narushehal., 2020b):

y=+B J L*—ax (7)
T2\ L +8wx + 4w

Hence, in our case, the volume of the air d&ll, can be presented as

L

h-—

22 12 — 4x2

\Y; :ﬂBE dx 8

& 4 i L? +8wx + 4w? ®)
2

The deduction of the integral (8) was demonstratetktail in Narushiret al. (2020b) when
estimating the volume of the whole egg. Thus, angtthe basic part of the mathematical

transformation, we were able to proceed with thi@fong computations:

2y 2
Vv _7B°L

ac

Eﬁln\l_2 +8wx+4w2\
8w

bl

2
L
2

[N

9)

2 w)
X+ — +— )
7B? sw 2 (Lz ]( L2 WJ (Lz W]
- e T I e +—+—2 (n

8w 2 4w 8w 2 8w

> w
X+ — +—
8w 2

NI

that resulted in the final formula:
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2 . SWdl -3
Vac:]B L (Wj D]nl-l-LLZ_l[éWj 0
32 L W 8 \ L
2]
L
w w)Y o w w w)) 1 w2’ 8V*VED
4 [E(l—Zj +4ET1J—8ED(1+4() ]+[E1+4(j] oni+——L-L 1l (10)
L L L L L L (1_2\,\,)
L

The detailed transformations of Eq. (9) are prodigeAppendix A.

Eventually, we can consider Eq. (10) as follows:

2
v, ="l (11)
32
wherek, is a coefficient expressed with a following eqaati
w)™ Sﬂdj 1 (wY*
K. =[j Oni+—L L —8[€Lj
-2
L
w
2 2)\? 8—El1
4" (1—2‘”) s W | gWeh 1+4(Wj +1i 4() oni+—L-L 1| (12)
L L L L L L 2 w

3.3. Volume of egg interior
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With the resulting formulas to determine the stuugk constituents of an egg, namely the shell
volume (Eq. 5) and air cell (Eq. 11), it is easg#ébculate the egg interior volumé, by simply

subtracting the data Egs. 5 and 11 from whole ejignve measurements.

4. Results

4.1. Eggshell volume
We computed the values 8fandS;, and presented them in a form of graphic dependefiig.
3) reflecting changes d@fin increment of 0.005 cm, each of which being agpnated with

linear dependencies.

T=0.025cm T=0.03cm
92.00 92.00
87.00 87.00
82.00 S, = 0.9952S - 0.2784 82.00
2
77.00 R'=1 77.00 S, =0.9943S - 0.3338
£ e R'=1
v 72.00 O 72.00
67.00 67.00
62.00 62.00
57.00 57.00
52.00 ; ; ; ; ; ; i i 52.00 : : . . . . . .
5200 57.00 6200 67.00 7200 77.00 8200 87.00 92.00 5200 5700 6200 6700 7200 7700 8200  87.00  92.00
s s
T=0.035cm T=0.04cm
92.00 - 92.00 A
87.00 1 87.00 A
82.00 1 S, = 0.9933S - 0.3891 82.00 - Sy =0.9924S - 0.4443
R?=1 RP=1
77.00 A 77.00 A
13 E
v 72.00 v 72.00
67.00 67.00 -
62.00 62.00
57.00 1 57.00 A
52.00 T T T T T T T T 52.00 T T T T T T T T
52.00 57.00 62.00 67.00 72.00 77.00 82.00 87.00 92.00 52.00 57.00 62.00 67.00 72.00 77.00 82.00 87.00 92.00
s s
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T=0.045cm

T=0.05cm

Fig. 3. Graphic dependences &f = f(S) whenT equals to: (a) 0.025 cm, (b) 0.03 cm, (c) 0.035 @n0.04 cm, (e)

0.045 cm, and (f) 0.05 cm.

All the obtained equations (Fig. 3) have the follogvform:

S, =aS-b

wherea; andb; are coefficients.

The values of both coefficienéssandb in Eq. (13) were approximated by the dependeaces

f(T) andb, = g(T) that are presented in Fig. 4.

92.00 92.00 7
87.00 1 87.00
82.00 1 82.00 +
S, =0.9914S - 0.4994 S, =0.9905S - 0.5544
77.00 R’z 1 77.00 1 R’=1
E 3
o) 72.00 o 72.00 4
67.00 - 67.00
62.00 62.00
57.00 4 57.00
52.00 T T T T T T T T 52.00 T T T - - - - -
5200 57.00 6200 67.00 7200 7700 82.00 87.00  92.00 5200 5700 6200 67.00 7200 77.00 8200 87.00  92.00
S S

(13)

ai

a; =f(T)

0.996
0.995 !
0.994
0.993 1
0.992 1

0.991

a; =-0.1891T + 0.9999
R? = 0.9998

0.99
0.025

T T T
0.03 0.035 0.04

T
0.045

0.05

b1

b,=9(T)

0.528

0.478 +

0.428 +

0.378 -

0.328 1

b, = 11.04T + 0.0026
R*=1

0.278
0.025

T T T T
0.03 0.035 0.04 0.045

0.05
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a b

Fig. 4. The results of approximating the values of theffatients a; andb; by the function$(T) andg(T).

Substituting these data in Eq. (13) and roundingpugvo decimals, we finally obtain:

S, = (1- 019T)S—-1104T (14)

Eventually, considering Eq. (5), the shell volunaa be determined as follows:

V, = ((1- 019T)S~- 1104T)T (15)

4.2. Air cell volume

We tried to simplify Eq. (12) to make it more sbigfor both the computations and possible
mathematical transformations. For that, we considiéine possible variations wfL from O to
0.25, as it was shown by Narusleiral. (2021a) to be adequate for any avian egg;hhdrom

0 to 0.15. These data were supported by the stodlies et al. (2017), Aboonajmet al. (2010),
Ragniet al. (2007), Samlet al. (2005) and others who showed that even the long-starage of
table eggs (in some investigations even more thawrith) did not tend to increase the air cell
height by more than 15% of the egg length. Sulistigithe values ofv/L in increment of 0.05
and those off/L in increment of 0.03 into Eq. (11), we producedgiaphic dependences (Fig.

5), each of which approximated with polynomials.
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Kac=f (/L) K acozs = 22.502(h /L)? + 1.7118h /L - 0.0091
R?=0.9987
0.8 :
07 4 Kacoz = 21.71(h/L)? + 1.0479h/L - 0.006
R%=0.9992
0.6 1
05 | K aco15 = 19.925(h/L ) + 0.6303h/L - 0.0038
R R?=0.9995
& 044
03 4 K acos = 17.767(h/L)? + 0.3756h/L - 0.0024
R%=0.9997
0.2 1
01 K acoos = 15.6(h/L )2 + 0.2227h/L - 0.0014
' R2=0.9999
0.0 - T T 1
0 0.05 0.1 0.15 K aco = 13.638(h/L )? + 0.1329h/L - 0.0009
h/L R?%=0.9999
(@ w/L=0 ® w/L=0.05 ® w/L=0.1 ® w/L=0.15 ® w/L=0.2 ® w/L=0.25 |

Fig. 5. Graphic dependencesiaf = f(h/L) whenw/L equals to: 0; 0.05; 0.1; 0.15; 0.2 and 0.25, respsyg.

All these approximating regressions were of theestype that can be generally expressed as

follows:

kac =8, (j + bZ TG (16)

whereay, b, andc; are coefficients of the corresponding equatiorsign 5.

Due to minor values of the coefficiegitthat did not have any influence on the resultyy tre
coefficientsa, andb, were considered for further evaluation of thejpeledences on the varied

values ofw/L. The respective graphic functions and approxinggiimmulae are shown in Fig. 6.
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a, = f(w/L) b,=g(wiL)

24.000

18

22.000 -

1.4
124 b, = 28.131(w/L)’ - 0.9648w/L + 0.163
1.0 R?=0.9963
0.8 7
0.6 1
047
0.2

20.000 -

b2

18.000 -

az

16.000 1 ap = -54.702(w/L )? + 50.858w/L + 13.412

R?=0.9956

12.000 . . . . 0.0 T T
0 0.05 01 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25

w/L wiL

a b

Fig. 6. The results of approximating the values of theffaments a, andb, by the functiond(w/L) andg(w/L).

Substituting these data into Eq. (16), we obtained:

2 2
k. =1341"] M| 14 370" - 4.05("") + 0017 1- 592" +17255(WJ (17)
L|L L L L L

Comparison of the results of evaluatigusing Egs. (12) and (17) showed their practically
complete agreement: the correlation coefficient agsal to 0.9996. We also applied the

approximation coefficient found by the followingrfoula of Makridakiset al. (1982):

é.:}qn:vl_vz

n<| v

[100% (18)

wheren is a number of samples in the calculations,\arahdv; are the values & defined
correspondingly by Egs. (12) and (17). The compafgatoximation coefficient was equal to

6.1%, meaning that almost 94% of the results cpaeds to each other.

Transforming Eq. (17) into a more convenient fomd gubstituting it into Eq. (11), we finally

obtained the&/,. estimation formula:
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2
V. = 132B°h

ac
L3

(h(L? + 379Lw— 408wW?) + 0012L(L? - 592Lw+17258W%)) (19)

In some cases, it is practically easier to meath@&iameterd, of the air cell than its height,
Therefore, we decided to define a way of recalcude¢ach parameter from the other one. In
Fig. 2,d corresponds to the distance AB, which can be ddfifrom the Hlugelschaffer's model

(Eqg. (6)), considering in the point C equals to—L/2.

Then, accounting = AC+BC = 2BC:

2
B LZ_A(h_;j
d _25 L
L2 +8w{h—2j+4w2

To figure out the functioh =f(d), we considered Eqg. (20) as the two following fatae:

= ZB\/ h(L=h) (20)
(L —2w)? +8hw

h(l_hj
d=28 L (21)
(1—2"") PUL
L) LL

BZ

2 20 _ 2
h2+{2|22W—L]Eﬂ1+d(L2W):0 (22)

wherefrom

LB? - 2d°w— | (2d°w~- LB?)? - d?B?(L - 2w)?

h=
2B?

(23)
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340
The detailed solution of Eq22 is provided in Appiarisl.
341
342  4.3.Volume of egg interior
343 Considering the basic formula for identifying th@wme of the egg interio¥;:
344
345 V =V-V.-V_, (24)
346
347 we can infer the following resultant equation foe tomputation of this parameter:
348

349 V=V - ((1- 019T)S- 1104T)T -

_ 132B%h

350 =~ 1 (h(L + 379Lw~ 408w?) + 00121 (L2 - 592Lw+1725807)) (25)
L

351

352 Inthe case when the cell diameter is measuredgettaculation oh is performed using Eq.

353 (23).

354

355

356 5. Discussion

357

358 Both in practice and research work involving taddgs, there may be situations when it would
359 be much more relevant to determine not only charestics of the whole egg but also parameters
360 of the egg interior. At the same time, it is impmttto leave the egg intact, without causing any

361 damage. Such a non-invasive technique would beyhdgsired, for example, in the food
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362 industry, when predicting nutritional value, or whdeveloping a technology for saturating eggs
363 with nutritious and/or health-promoting ingredie(gsy., Surai & Sparks, 2001; Surai &

364 MacPherson, 2002). In poultry industry, it wouldibe&lemand for research related to

365 incubation, poultry farmingn ovo vaccination, etc. In this regard, the method of-destructive
366 estimation of the volume of interior is of consialele importance. We have made an attempt to
367 create a theoretical basis for such a methodokading into account that it is the theoretical

368 premises that lay the basis on which any scierdifictrine is subsequently built.

369

370 To solve the problem of determining the volumené&rior of any poultry egg, it is necessary to
371 first measure a number of parameters. Linear dimeass well as the estimation of egg volume
372 and surface area are quite straightforward as vsasissed by Narushgt al. (2020b). The

373 height and diameter of air cell can also be deteeohi since these measurements are widely used
374 in the standard assessment of the quality of edittehatching eggs. Considering that the

375 membrane bordering the rear wall of the air ceth@st often curved, it is advisable to take

376 several measurements of its height and / or dianredfter which the average result is used in the
377 calculations.

378

379 The possible complexity of non-destructive measer@noan be represented by the shell

380 thickness parameter. Commercially available appaest for testing shell thickness, like the

381 ultrasonic device by ORKA (2020) or the non-dediugcdeformation device by Stable Micro
382 Systems (2020), cannot guarantee an accurate de&tion of this parameter due to the rather
383 small measurement value. Therefore, this issueldhmmuaddressed further, and the solution to
384 this problem can be the use of a whole complex@dsurements. For example, Narusdtial.

385 (2004) proposed to use a combination of basic eggsnrements including egg weight, volume
386 and surface area that in some cases can be suppézhiey infrared spectroscopy data.

387
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In earlier studies, Carter (1968b) suggested aitzlon formula for the shell thickness based on
measurements of its elastic deformation carriecabseveral points and a series of linear
measurements of the whole egg. Thus, selectindiadal parameters of non-destructive
measurements, in addition to commercially availaidérumentation for indirect testing the shell

thickness, it is feasible to raise the accuracaysodetermination up to the required level.

6. Conclusions

Since any scientific idea requiral ovo its thorough theoretical study, in this article we
attempted to deliver precisely the theoretical etpef a new research area aimed at solving an
engineering problem of "how to look inside an egthout destroying it." At the current stage of
this research project, we have suggested a nopebagh for estimating the volumes of shell
and interior of a chicken egg. As a result, we camclude that such a unique and enigmatic
natural object as a bird's egg has fewer and felwstacles that prevent us from looking into
what is inside. A symbiosis of measuring technolaggl mathematical calculations, as we
demonstrated here, can facilitate a fairly accueatduation of the egg interior characteristics,
while leaving the outer shell intact. The proposethematical solutions supplement a toolbox
for non-destructive assessment of table and hajaggs that can be used further in egg-related

research, food engineering and poultry industry.

Appendices A and B. Supplementary data

Supplementary data to this article can be fountherdt
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Figure captions

Fig. 1. Schematic image of the eggshell.

Fig. 2. Geometrical interpretation of the air cell insttie egg.

Fig. 3. Graphic dependences &f = f(S) whenT equals to: (a) 0.025 cm, (b) 0.03 cm, (c) 0.035 @n0.04 cm, (e)
0.045 cm, and (f) 0.05 cm.

Fig. 4. The results of approximating the values of theffaments a; andb; by the functiond(T).

Fig. 5. Graphic dependencesiqf = f(h/L) whenw/L equals to: 0; 0.05; 0.1; 0.15; 0.2 and 0.25, resgsy.

Fig. 6. The results of approximating the values of theffaments a, andb, by the functiong(wi/L).



Highlights
A formulafor eggshell volume was defined using shell surface area and thickness.
Geometrical parameters of egg and air cell were good predictors of air cell volume.

A formulafor recalculation of the volume of egg interior was deduced.
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