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Abstract: The most common imaging technique for dental diagnoses and treatment monitoring is 

X-ray imaging, which evolved from the first intraoral radiographs to high-quality three-dimensional 

(3D) Cone Beam Computed Tomography (CBCT). Other imaging techniques have shown potential, 

such as Optical Coherence Tomography (OCT). We have recently reported on the boundaries of 

these two types of techniques, regarding. the dental fields where each one is more appropriate or 

where they should be both used. The aim of the present study is to explore the unique capabilities 

of the OCT technique to optimize X-ray units imaging (i.e., in terms of image resolution, radiation 

dose, or contrast). Two types of commercially available and widely used X-ray units are considered. 

To adjust their parameters, a protocol is developed to employ OCT images of dental conditions that 

are documented on high (i.e., less than 10 μm) resolution OCT images (both B-scans/cross sections 

and 3D reconstructions) but are hardly identified on the 200 to 75 μm resolution panoramic or CBCT 

radiographs. The optimized calibration of the X-ray unit includes choosing appropriate values for 

the anode voltage and current intensity of the X-ray tube, as well as the patient’s positioning, in 

order to reach the highest possible X-rays resolution at a radiation dose that is safe for the patient. 

The optimization protocol is developed in vitro on OCT images of extracted teeth and is further 

applied in vivo for each type of dental investigation. Optimized radiographic results are compared 

with un-optimized previously performed radiographs. Also, we show that OCT can permit a rigor-

ous comparison between two (types of) X-ray units. In conclusion, high-quality dental images are 

possible using low radiation doses if an optimized protocol, developed using OCT, is applied for 

each type of dental investigation. Also, there are situations when the X-ray technology has draw-

backs for dental diagnosis or treatment assessment. In such situations, OCT proves capable to pro-

vide qualitative images. 

Keywords: dental imaging; radiography; Optical Coherence Tomography (OCT); three-dimen-

sional (3D) Cone Beam Computed Tomography (CBCT); image characteristics; radiation dose 

 

1. Introduction 

The discovery of X-rays in 1895 by Wilhelm Conrad Roentgen is considered to mark 

the beginning of medical imaging [1]. Since then, the techniques have improved continu-

ously in the last two decades. One may consider in this respect, for example, the quality 

between the first radiographs and today’s 3D CBCTs [2]. Numerous other imaging 
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techniques have been developed for dental medicine, but radiography has remained its 

most common investigation tool. Therefore, improving X-rays techniques is potentially of 

high impact due to their wide usage. The question is: how much room is there left for such 

improvements? Also, how could they be achieved? 

To respond to such questions, we must first observe that all X-ray units have the same 

structure. They consist of an X-ray tube, a sensor, and a PC that processes data. Today 

most possible improvements in X-rays-based medical imaging techniques rely on increas-

ing the sensitivity of the sensors. 

Thus, the first evolutionary step for X-ray detectors for dental imaging has been from 

photographic films to photo-stimulable-phosphor-plates (PSPs) [3]. This came along de-

velopment of additional equipment for converting data from PSP into digital. In a second 

evolutionary step digital sensors fully replaced films, providing several benefits such as 

time saving, post-processing tools, and better image quality. 

Today, cutting-edge X-ray dental units have digital sensors capable of providing 

high-quality images [4-8]. The difference between units available on the market is made 

by the characteristics of the sensors, such as spatial resolution or contrast. The most uti-

lized types of digital detectors in dental imaging are charge-coupled devices (CCDs), com-

plementary metal oxide-semiconductors (CMOS), and flat panel sensors [9]. 

Because X-rays consist of high-energy electromagnetic radiation, they can ionize at-

oms and disrupt molecular bonds [10]. In this respect, regulations have been set, based on 

the As Low As Reasonably Achievable (ALARA) protocol. In consequence, all X-ray units 

must be properly utilized, with an optimized workflow to achieve the best possible image 

quality with the smallest radiation dose [11,12]. This means that one cannot increase res-

olution, for example, by improving functional parameters of the X-ray tube, because the 

radiation dose must be kept to a minimum. Therefore, a trade-off must be reached be-

tween contradictory requirements. The question is: how to optimally achieve such a trade-

off? 

To respond to this question, the aim of this work is to explore innovative ways of 

optimizing the operation of (already high-performance) commercially available X-ray 

units. Two types of such high-end units are used for this purpose. The ALARA protocol 

is considered along with the sensor performance. Characteristics of X-ray images such as 

resolution, contrast, sharpness, or artefacts are adjusted via a calibration protocol involv-

ing an alternative imaging technique, Optical Coherence Tomography (OCT) [13-15]. OCT 

is based on low coherence interferometry that uses near infrared laser radiation. While X-

ray images show the spatial distributions of X-ray absorption, OCT images show the spa-

tial distribution of differences in refractive indices. OCT is non-invasive and has the ad-

vantage of better than 10 μm axial resolution in tissue [15,16], at least 10 times better than 

resolution achievable using X-rays imaging. In the last decade handheld OCT scanning 

probes have been developed, for in-vivo investigation of eye [16], skin [17], other body 

parts [18], as well as dedicated to the oral cavity [19-21]. Another promising direction of 

research refers to the study of dental materials, as OCT can provide optical cross-section 

capability for their non-destructive testing [22-27]. However, despite its advantages, OCT 

cannot fully replace radiography, due to its limited penetration depth, of up to 2 mm in 

tissue. 

In a recent study we explored the boundaries between OCT and the common radiog-

raphy when applied to maxillo-facial medical imaging [28]. The study concluded that den-

tal radiography and OCT can be complementing each other in assessing the oral cavity, 

with certain areas where only one of the above techniques would be applicable in diag-

nosing and monitoring clinical aspects, but also with areas where the two techniques may 

validate each other. The aim of the present study is to use the much higher resolution 

technique, OCT, in improving the imaging performance of the most common technique, 

radiography.    

Such an approach can impact the practice of the X-ray imaging, widely used by med-

ical doctors to provide suitable treatments and monitor the evolution and outcomes of 
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patients. We also hope that this study will contribute to more acceptance of OCT in com-

mon dental practice [29-33], particularly as OCT is a technology already used on a daily 

basis in ophthalmology [34], dermatology [35], and endoscopy [36].     

2. Materials and Methods 

The X-ray imaging in this study is performed in the Dental Experts Clinic, Timisoara, 

Romania, using a Planmeca ProMax 3D X-ray unit (Planmeca, Helsinki, Finland), as well 

as in other dental imaging clinics in Romania, that are using Soredex Cranex 3D X-ray 

units (KaVo Kerr, Brea, CA, USA). The OCT investigations are performed in the Labora-

tory of Optomechatronics and Biomedical Photonics of the “Aurel Vlaicu” University of 

Arad. The study is approved by The Ethical Commission of the Clinic, following the Eth-

ical protocol, with the Approval 178/31.08.2020, and it is carried out according to the Dec-

laration of Helsinki. An informed consent is submitted to all enrolled patients. 

2.1. Planmeca ProMax 3D 

The first X-ray unit used in this study is a Planmeca ProMax 3D system (Planmeca, 

Helsinki, Finland), equipped with a Toshiba X-ray tube (Toshiba Electron Tubes & De-

vices Co., Ltd., Otawara, Japan) and a Flat Panel Detector (Planmeca, Helsinki, Finland) 

based on CMOS sensors. Alongside the X-ray unit there is also a workstation and a PC for 

image reconstruction. The PC is gathering, transforming, and transmitting data from the 

X-ray unit sensor to the workstation equipped with the Romexis software (Planmeca, Hel-

sinki, Finland). This dedicated software has specialized tools to help clinicians to enhance 

the raw images processed by the reconstruction PC, as well as to measure or analyze dif-

ferent aspects observed on the obtained images. 

Alongside the standard image reconstruction algorithm, the X-ray system is 

equipped with additional specialized algorithms for removing artefacts produced by the 

patient’s movements. 

 There are several possible dental images that can be obtained with this X-ray unit: 

panoramic, cephalometric, sinus, or 3D CBCT. Three such examples are presented in 

Figure 1. For each of them there is a standard protocol to operate the X-ray unit. Users are 

allowed to change parameters of the X-ray tube and sensor sensitivity alongside the 

exposure time. The X-ray tube characteristics are: focal spot size, X-ray filtration, current 

intensity (mA), anode voltage (kV), and exposure time (s). The focal spot size in this case 

is 0.5 × 0.5 mm2, the total filtration is performed with a 2.5 mm Al layer for two-

dimensional (2D) images, and with a 2.5 mm Al layer plus a 0.5 mm Cu layer for 3D 

images. The anode voltage of the X-ray tube is in the range of 60 to 90 kV, while the current 

intensity is in the range of 1 to 16 mA. 

Sensor characteristics of this X-ray unit that are important for the final image are: 

sensor dimensions (110 mm width and 80 mm high), sensitivity (low dose, normal, high 

definition, high resolution, and endo), and segmental possibilities, i.e., 3D CBCT 

(cylindrical) volumes have a base diameter (mm) × height (mm) equal to: 80 × 80; 50 × 50; 

110 × 50. 

 
(a1) 

 

(a2) 
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Figure 1. Example of the Planmeca setup for (a1) panoramic, (b1) 3D CBCT, and (c1) cephalometric 

investigations (of a healthy member of the staff). Obtained images: (a2) panoramic; (b2) 3D CBCT 

images, with axial, sagittal, and panoramic views, as well as a 3D reconstruction; (c2) cephalometric. 

2.2. Soredex Cranex 3D 

The second type of X-ray unit used in this study is a Soredex Cranex 3D (Danaher 

Corporation, Washington DC, USA), equipped with an X-ray generator with a focal spot 

of 0.5 mm, a minimum total filtration of radiation beam with a 3.2 mm Al layer, anode 

voltage of 57 to 90 kV, and anode current of 4 to 16 mA. The X-ray detector, similar to the 

Planmeca X-ray unit, is a Flat Panel Detector based on CMOS sensors. Two examples of 

images obtained with this system in the clinic are presented in Figure 2. 

There are differences between the Planmeca and Soredex system in terms of the vol-

ume that can be chosen for 3D CBCTs, and also in voxel and pixel dimensions. The cylin-

drical volumes for 3D CBCT available with the Soredex X-ray unit are with a base 

diameter (mm) × height (mm) equal to: 50 × 50, 61 × 78, 78 × 78, 78 × 150, and 130 × 150. 

The scanning time is 10 to 40 s. The exposure time is only 1 to 9 s, because the radiation 

beam is pulsed towards the patient, while the X-ray tube is not working during the entire 

scanning process. 

(b1) 

 (b2) 

  

axial 

sagittal Panoramic 3D rendering 

(c1) 

 

(c2) 
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Figure 2. Examples of images obtained with Soredex setups (for a healthy member of the clinic’s 

staff): (a) panoramic and (b) 3D CBCT, the latter showing coronal, sagittal, axial views, as well as a 

3D volumetric reconstruction.  

2.3. OCT system 

An in-house developed Swept Source (SS)-OCT system, Master Slave (MS) enhanced 

is used [37]. The scope is to investigate several dental samples in order to provide higher-

than-radiography resolution images to allow for a proper calibration of the X-ray imaging 

systems. 

The OCT system is presented in detail in [28]. It is centered at a wavelength of 1310 

nm and uses a 2D dual axis galvanometer scanner (GS) for the lateral scanning of samples 

[38,39]. The maximum area of investigation with this system is 5 × 5 mm on the probe 

surface. The axial resolution provided by this OCT system is 10 µm in air, and the pene-

tration depth in hard tissue is around 1.5 mm. During a complete scan, 500 B-scans/trans-

versal cross-sections are obtained. Each one can be further analyzed, and measurements 

can be performed on it. Also, these 500 B-scans can be rendered into a 3D/volumetric re-

construction, as shown in the example in Figure 3. 

  

 

Figure 3. Example of a single OCT B-scan/optical cross section (a) and the corresponding 3D OCT 

image reconstruction (b), showing a crack in a tooth - example of OCT imaging showing the higher 

resolution capability compared to radiography, as approached in detail in the exploratory study in 

[28]. Scale: 1 mm. 

(b) 

  

axial 

sagital coronal 

3D rendering 

(a) 

 

(b) 

  

crack 

(a) 
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2.4. The concept of X-ray imaging optimization using OCT 

Theoretically, one could increase the resolution of X-ray images by simply increasing 

the anode voltage and current intensity of the X-ray tube, but this would imply an increase 

in radiation dose. This would be against the ALARA protocol. On the other hand, one 

cannot simply choose low settings of the X-ray tube, as this would mean a low image 

resolution, therefore the scope of the technique (i.e., diagnosis or treatment monitoring) 

would not be reached. 

Therefore, a trade-off (i.e., an optimization process) is necessary but the question is 

where (and how) to set the limits for X-ray tube settings that can provide enough resolu-

tion for the medical scope but is able to keep the radiation dose as low as possible to pro-

tect the patient. Several aspects have to be clarified to design such an optimization process 

of an X-ray unit: 

(i) An adjustment of X-ray tube and unit parameters cannot be done on patients (i.e., 

experimenting on them); it has to be carried out in vitro. Optimal settings thus determined 

could be then applied on patients. This logical sequence is used in the protocol to be de-

veloped in this work. 

(ii) An essential question is: what method to employ for an X-ray system calibration? 

It must provide better and, ideally, higher-order (from a metrological point of view) res-

olution images than radiography but related to the same targets/samples. Then, the X-ray 

tube settings could be adjusted to match the radiographic results with those of the “cali-

bration” method, following an appropriate metrological approach. 

(iii) Finally, what type of higher-resolution system would be able to serve for such a 

calibration process? It has to be an imaging system, as devices used clinically for visual 

observation cannot allow for this planned calibration. Regarding imaging systems, all 

types of Computed Tomography (CT), including micro-CT are expensive and therefore 

out of reach of common dental practices, even of dental clinics, that would not invest in 

such equipment. The same cost limitation refers to high-resolution systems such as Scan-

ning Electron Microscopy (SEM). On the other hand, dedicated devices for the oral cavity, 

such as the Diagnocam (KaVo Kerr, Brea, CA, USA) or the VistaCam (Dürr Dental SE, 

Bietigheim-Bissingen, Germany) may provide resolutions similar to those of radiographs 

(but only for certain areas that they are capable to investigate), therefore they are not a 

higher-order resolution method (on the metrological chain). 

In conclusion, the only technique that satisfies the criteria of higher resolution, rea-

sonable cost of the equipment, but also ease-of-operation and in-depth imaging (unlike 

confocal microscopy, for example) is OCT. It also has the advantages of non-invasive in-

vestigation and of the possibility to perform in vivo imaging, when necessary using dedi-

cated handheld scanning probes [16-20]. As a plus, it benefits from mobile units [18] and, 

as studied in detail in [28], it proves to be complementary to radiography for diagnosis,  

treatment monitoring and assessment. Therefore, there is a clear motivation for dental 

clinics to utilize such systems: using OCT for the calibration of X-ray units just adds to 

their range of dental applications. 

One may also remark that X-ray imaging is not able to resolve the features that OCT 

can do even if fully optimized. While this is correct for a range of investigations, as we 

studied for example in [40], based on the quantitative assessments performed in [28] we 

demonstrated that radiography can spot relevant details such as small cavities, but cannot 

correctly measure them like OCT can (i.e., errors around 50% are possible even with 

CBCT). This shows that OCT can serve as a calibration tool for X-ray images that resolve 

such relevant dental conditions. 

2.5. OCT versus radiography 

Because OCT employs IR laser radiation, it cannot provide images beneath metal 

surfaces (e.g., of metal crowns as those shown in Figure 4), but it can provide clear images 

in their vicinity (Figure 4a,b,c,e). In contrast, 3D CBCT cannot achieve such images, 
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because of artifacts produced due to metal, as shown in the example in Figure 4d,f. In 

time, if secondary cavities appear, for example, these cavities can be observed on CBCT 

images only when they become large enough and surpass the dimensions of artifacts. 

 

Figure 4. An example where OCT spots dental details near metal crowns. (a, b, c) OCT B-scans; (d) 

3D rendering of CBCT; (e) OCT 3D reconstruction; (f) 3D CBCT sagittal view of the tooth. Scale: 1 

mm. 

Also, there are cases where dental radiographs cannot be used for diagnoses or 

treatment because of limitations such as: missing details in small cavities (Figure 5), 

abnormalities (i.e., cracks or deformations) of dentine or enamel (Figure 6), or dental 

issues near metal crowns (Figure 4). As discussed in detail in our previous study [28], to 

cover all such cases of dental imaging, OCT proves to be the appropriate solution. A 

classification of dental medicine conditions with regard to the applicability of one medical 

imaging technique or the other (i.e., X-ray imaging or OCT) highlighted that each of them 

have certain domains of aplicability, while these domains overlap for certain medical 

conditions [28]. Roughly, OCT wins when resolution is required, while radiography wins 

where penetration depth is paramount. 

In the case presented in Figure 5, the tooth marked with red must be extracted be-

cause an orthodontic treatment is mandatory, i.e., the extracted tooth has been blocking 

(a) (b) (c) 

(d) (e) 

tooth 

(f) 

Metal crown 

Same area 
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the tooth marked with blue in Figure 5d. On the radiographs it can be observed that the 

extracted tooth looks healthy, as no cavities are visible. After the extraction, the tooth is 

investigated with OCT, and a small cavity is observed on the enamel level. OCT resolution 

made possible even the assessment (i.e., exact measurement) of the cavity. Although this 

example refers to an extracted tooth, the capability of OCT to correctly assess and diag-

nose small cavities for in vivo investigations has been approached, as well [19-22]. 

 

 

Figure 5. Example of a case where OCT spots a small cavity on the enamel level of the tooth: (a) 

OCT B-scan; (b) OCT 3D reconstruction; (c) 3D CBCT axial view of the tooth; (d) 3D rendering of 

CBCT; (e) 3D CBCT sagittal view of the tooth (the latter taken at different, successive depths into 

the hard tissue). Scale: 1 mm. 

The patient with the case presented in Figure 6 has an infection near the third molar, 

as shown in Figure 6c. Due to the massive infection visible behind it, the tooth has to be 

extracted. In addition, the doctor suspected that the dentine and enamel of this tooth was 

already damaged by the infection and the poor accessibility for cleaning. These abnormal-

ities consist of dentine and enamel deformation, as well as superposed layers of dentine 

and enamel with random empty spaces between them. Thus, although the tooth looks 

healthy on the radiographs (Figure 6c,d, and e), on the OCT images obtained after extract-

ing the tooth for medical reasons abnormalities are visible both on the dentine and at the 

(a) (b) 

(d) 

cavity 

(c) 

(e) 
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enamel level (Figure 6a and b). This can be best seen by comparing the images in Figure 

6b and d, which are 3D reconstruction for OCT and CBCT, respectively. On 3D CBCT, the 

image resolution does not allow spotting small details of dental issues. This shows both 

the complementarity of the two techniques [28], as well as OCT capability to serve as a 

possible calibration technique for radiography, due to its higher axial resolution (10 µm 

compared to 150 µm for 3D CBCT resolution in these images. 

 

Figure 6. Example where OCT spots abnormalities on the enamel and dentine level of the tooth. (a) 

OCT B-scan; (b) OCT 3D reconstruction; (c) 3D CBCT axial view of the tooth; (d) 3D rendering of 

CBCT; (e) 3D CBCT sagittal view of the tooth (the latter taken at different, successive depths into 

the hard tissue). Scale: 1 mm. 

3. Results and Discussion 

The several necessary steps to develop the optimization imaging protocol are pre-

sented in this section. The scope is to obtain the highest possible quality of X-rays images 

with the smallest amount of radiation for the two considered commercially-available (and 

worldwide used) X-ray units. The possibility of using the higher resolution OCT as their 

calibration and validation technique (but also suitable for daily basis dentistry) is ex-

plored.  

(a) (b) 

(c) (d) 

(e) 

abnormalities 

infection 

Area scanned 

with OCT 
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3.1. Optimized protocol with OCT for X-ray imaging calibration. Panoramic radiography 

 The OCT system has an axial resolution of 10 µm and both panoramic and 3D CBCT 

X-rays images have a resolution of 150 to 200 µm (both axial and radial) for daily basis 

usage. The highest resolution reached with a Planmeca X-ray unit is 75 µm for segmental 

3D CBCT. Because OCT resolution is clearly superior to the one of any type of X-ray im-

age, we compare OCT images to different X-ray images during the proposed optimization 

process. In other words, teeth are analyzed with both techniques and a dental issue that is spotted 

on both images is furthermore assessed with OCT. Thus, this identified dental clinical condition 

(for example a small cavity) is properly diagnosed using OCT. The same condition is then followed 

on X-rays images. The parameters of the X-rays unit (i.e. current intensity and anode voltage of 

the X-ray tube) are adjusted until the images of the dental details correspond as well as possible to 

the images retrieved with OCT. An assessment of the parameters of these images is then carried 

out, to confirm and quantify their improvement. 

The ionizing nature of X-ray radiation means that it can be harmful for living tissue. 

Therefore, as discussed in section 2.4, we cannot test the different settings of the unit di-

rectly on patients. Thus, a didactic human head (Figure 7a) and several extracted teeth 

placed on this head are used in this study to develop the protocol, instead of living pa-

tients. This follows the procedure we first employed in [7], to comply with the ALARA 

protocol. However, in a clinical setting, a certain number of teeth, as used in [28] can be 

employed to develop the proposed protocol for another type of X-ray unit. 

 

 

 

Small cavity 

  

Dental filling 

  

(a) 
  

(b) 
  

(c1) 

 

(c2) 

  
(c3) 

  

(c2) 

  

(c3) 

  

(d1) 
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(d3) 
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Figure 7. (a) The didactic human head used in the calibration process. (b) Panoramic radiograph illustrating the teeth that were 

further investigated with OCT. (c1) OCT volumetric reconstruction of the tooth with a small dental filling, marked in (b); (c2) 

B-scan/cross section corresponding to the position of the red line placed on the 3D view of the tooth in (c1); (c3) B-scan related 

to the blue line position in (c1). (d1) OCT volumetric reconstruction of a tooth that has a small cavity barely visible on the 

panoramic radiograph in (b); (d2) B-scan showing the cavity in (b); (d3) B-scan showing an additional condition of the tooth, 

i.e., demineralization (observed from the small cracks in the dentine). Scale: 1 mm. 

Figure 7c and d shows examples of two considered dental details, a dental filling and 

a cavity (while the demineralization visible in Figure 7d3, although perfectly visible with 

OCT cannot be assessed with X-rays). The detailed OCT images assist with the 

optimization process of the X-ray unit. Thus, the dental details are followed on the X-ray 

image, such as the panoramic one in Figure 7b. One can observe that on both the OCT 

volumetric reconstruction and on its B-scans (Figure 7c and d) the dental filling and the 

small cavity, respectively, can be easily seen, while on the X-ray image in Figure 7b, they 

are barely visible. 

For each type of radiograph (i.e., panoramic, cephalometric, and 3D CBCT), the pro-

posed protocol starts with the smallest settings available for the values of anode voltage 

(kV) and current intensity (mA) of the X-ray tube. The energy and penetrability of the 

generated X-ray beam are proportional with the anode voltage, and the amount of radia-

tion in the beam is proportional with the current intensity that is passing through the an-

ode filament. A higher value of the anode voltage is providing a lower contrast of the 

image, while a higher value of the current intensity means a higher level of radiation, 

which is better to avoid. 

The results in Figure 8 are presented as a comparison between images obtained with 

the same X-ray unit before and while passing through the optimization process. The 

settings of the panoramic imaging before and during every step of the optimization process are 

provided, for each image in Figure 8, in Table 1. Thus, after a step-by-step increase of the 

values of the anode voltage and current intensity, it can be observed that the image quality 

increased, but the same happens to the radiation dose. 
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Figure 8. Panoramic radiographs obtained during the optimization process. The settings of the X-

ray unit to perform each image are provided in Table 1. The quality parameters of the images are 

compared in Table 2. 

Therefore, to comply with the ALARA protocol, one has to choose the settings for 

which the image just passes a compromised threshold between a good and a high-quality 

image for both diagnosis and treatment. 

Being guided by the precise OCT image, one can work on the parameters of the X-ray unit 

until fine details become visible as much as possible. This is the principle of the proposed (and 

performed) imaging optimization. This procedure is presented further on in the next section 

using both X-ray units. 

One can observe the progress made regarding the quality of the panoramic radio-

graphs from Figure 8a to h, for the different values of voltage and current presented in 

Table 1. The contrast, resolution, artifacts, as well as the level of overexposed and under-

exposed areas are improved from one panoramic radiograph to another, as it can be seen, 

but also quantified (Table 2).  

Thus, the radiograph in Figure 8a is obtained with the smallest amount of radiation 

and the smallest possible values of the tube parameters, 60 kV and 1 mA, while the radi-

ograph in Figure 8h is obtained with the values for 72 kV and 11 mA that (just) passed the 

threshold between a good and a high-quality panoramic radiograph. Planmeca X-ray 

units allow for the change in settings for anode voltage and current intensity (from the 

default setting of the machine). Even if only a few parameters are adjustable, they are 

sufficient to improve the quality of X-ray images: 

(i) A higher value of anode voltage means higher energy of the X-ray beam, hence X-

ray photons of shorter wavelengths. Therefore, the higher the voltage, the larger the dif-

ferences in absorption of the radiation that passes through tissue (according to Lambert-

Beer’s law), therefore more shades of gray appear in the images. At first sight this may 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 
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seem a drawback but the increase in the number of shades of gray with sharp edges means 

more details on the image, which is advantageous for medical imaging. However, this 

voltage increase is limited, as explained, to keep the radiation dose at safe levels for the 

patient.  

(ii) The number of X-ray photons emitted in time depends on the current intensity 

that is heating the filament of the X-ray tube. This quantity is also known as the intensity 

of the X-ray beam or radiation exposure. 

The step-by-step increase of voltage and of current intensity shown in Table 1 is 

coupled with an almost constant exposure time, but with a significant increase in radiation 

dose. Analyzing Table 2, it can be observed thatthe best levels of Contrast (C) and 

Contrast-to-Noise-Ratio (CNR) in the final radiograph in Figure 8h are obtained by a 

cumulated effect of the above adjustments.Even though there are small differences 

between the values of C (0.998 highest and 0.961 lowest) and CNR (3.069 lowest and 3.263 

highest), clear differences between the highest quality image (Figure 8h) and the lowest 

one (Figure 8a) can be noticed. 

Table 1. Panoramic setting before and during every step of the optimization process. 

Panoramic 

radiographs 

(Figure 8)  

Anode voltage 

(kV) 

Current intensity 

(mA) 

Exposure 

time (s) 

Radiation 

dose (µSv) 

a 60 1 13.7 0.65 

b 61 2 15 1.74 

c 62 3.2 15 2.89 

d 64 4 15 3.88 

e 66 6.3 15 6.54 

f 68 8 15 8.84 

g 70 10 15 11.68 

h 72 11 15 13.72 

Table 2. Contrast (C), Contrast-to-Noise-Ratio (CNR), standard deviation of pixel intensity (𝜎0), 

highest, lowest, and average values of pixel intensity I, all related to the optimization process shown 

in Figure 8. 

Panoramic 

radiographs 

(Figure 8) 

𝑰𝒎𝒊𝒏 𝑰𝒎𝒂𝒙 
𝑰𝒂𝒗𝒆𝒓𝒂𝒈𝒆 

=
𝑰𝒎𝒊𝒏 + 𝑰𝒎𝒂𝒙

𝟐
 

𝝈𝟎 
(%) 

𝑪 

=
|𝑰𝒎𝒊𝒏 − 𝑰𝒎𝒂𝒙|

𝑰𝒎𝒊𝒏 + 𝑰𝒎𝒂𝒙
 

𝑪𝑵𝑹 

=
|𝑰𝒎𝒊𝒏 − 𝑰𝒎𝒂𝒙|

𝝈𝟎
 

a 3 3479 2104.47 1122.57 0.998 3.096 

b 17 3377 2031.94 1094.54 0.989 3.069 

c 20 3485 2012.62 1102.82 0.988 3.141 

d 32 3317 1975.26 1060.52 0.980 3.097 

e 31 3489 2106.08 1078.73 0.982 3.205 

f 22 3456 2081.59 1056.53 0.987 3.250 

g 70 3576 2172.58 1083.91 0.961 3.234 

h 18 3593 2117.34 1095.44 0.990 3.263 

 

From Tables 1 and 2 one can see that in this optimization we do not have the contrast 

C as a function of intensity and voltage with a minimum or a maximum, such an 

extremum being the optimum. Instead, C (but the same discussion can also be carried out 

for CNR) increases continuously with the two X-ray tube parameters. Therefore, one does 

not come from a distal point, go through optimum and continue beyond towards lower 

level of the parameter to be optimized. As this is actually an optimization with constraints, 

we do not reach a maximum and then go down in the level of that parameter (i.e., 

resolution, C, or CNR) but we reach an as good as possible level of the image (and, as 
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demonstrated in Table 2, of image parameters) using OCT images as reference, and we do 

not go beyond that because this would mean further increasing the radiation dose. 

A remark that must be done is that when one uses one or several dental conditions, 

observe them with OCT and adjust the X-tube parameters, then image parameters (e.g., C 

and CNR) around that feature are improved, but so does the entire X-ray image. One 

cannot say that the 2D image (or volume, for 3D CBCT) in other parts except around the 

considered features suffer because of parameters adjustment, as the X-ray machine 

provides a homogeneous imaging process. 

3.2. Optimized protocol with OCT. 3D CBCT calibration 

For every type of radiography (i.e., panoramic, cephalometric, and 3D CBCT), suita-

ble (and different) settings must be determined for the optimization. Therefore, after the 

above discussion on panoramic images, the most utilized case of CBCT investigations is 

considered in the following. 

As a necessary remark, all determined settings refer to the didactic human head, 

which does not have soft tissue to influence the results. Therefore, to apply these settings 

on humans, technicians performing radiographs must consider the patient’s anatomical 

characteristics. In practice this means that small adjustments must be applied in certain 

cases, specifically an increase or decrease of 1 to 2 kV, as well as of 1 to 2 mA for the anode 

voltage and current intensity, respectively, with regard to the values in this work. Such 

modifications are necessary in order to achieve optimized radiographies for patients, as 

exemplified in the following subsection. 

Figure 9 presents 3D CBCT images obtained during the optimization process. The 

corresponding 3D CBCT settings before and during every step of this optimization 

process are presented in Table 3. 

The improvement in resolution and quality of images can be seen by comparing Fig-

ures 9a to c. In this case, Figure 9b represents the threshold between a good and a high-

quality 3D CBCT. Considering the fact that the sample does not have soft tissue (the hu-

man skull in Figure 7a is considered for this optimization, as well), the amount of radiation 

(i.e., the settings) used for the 3D CBCT in Figure 9b can be used with success for a child. 

For adults, the settings corresponding to Figure 9c were used further on with success on 

a daily basis activity in the dental clinic. 

3D CBCT imaging followed the same protocol as in the case of panoramic radio-

graphs. Both the images in Figure 9 and the values of the output parameters provided in 

Table 4 prove that the optimization is completed. Thus, the improvement in contrast, res-

olution, sharpness, and the level of detail from Figure 9a to c is confirmed in Table 4 re-

garding contrast: C is better for the final 3D CBCT (Figure 9c) than for the first one con-

sidered (Figure 9a). Thus, there is a difference of 0.15 between them (from the 0.82 highest 

contrast to the 0.67 lowest contrast). In common language, this improvement of contrast 

is pointed out on radiographies as ‘clean margins’. 
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Figure 9. 3D CBCT images obtained through the optimization process. The steps of this process 

include: (a) first 3D CBCT images with the smallest voltage and current values (b) an intermediary 

3D CBCT; (c) the most high-quality 3D CBCT obtained. The four corresponding images in each panel 

represent: (1) coronal view; (2) sagittal view; (3) axial view; (4) 3D rendering. 

(a3) 

(b3) 

(c3) 

(a1) (a2) 

(a4) 

(b1) 

(b4) 

(b2) 

(c4) 

(c1) (c2) 
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sagital coronal 

3D rendering 
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Table 3. 3D CBCT setting before and during every step of the optimization process presented in 

Figure 9. 

3D CBCT 

radiographs 

(Figure 9)  

Anode voltage 

(kV) 

Current intensity 

(mA) 

Exposure 

time (s) 

Radiation 

dose (µSv) 

a 60 1 4.95 1.25 

b 75 8 5.09 25.87 

c 90 14 5.08 86.37 

Table 4. Contrast (C), Contrast-to-Noise-Ratio (CNR), standard deviation of pixel intensity (𝜎0), 

highest, lowest, and average values of pixel intensity I, all related to the optimization process pre-

sented in Figure 9. 

3D CBCT 

(Figure 9) 
𝑰𝒎𝒊𝒏 𝑰𝒎𝒂𝒙 𝑰𝒂𝒗𝒆𝒓𝒂𝒈𝒆 =

𝑰𝒎𝒊𝒏 + 𝑰𝒎𝒂𝒙

𝟐
 𝑪 =

|𝑰𝒎𝒊𝒏 − 𝑰𝒎𝒂𝒙|

𝑰𝒎𝒊𝒏 + 𝑰𝒎𝒂𝒙
 

a 552 2808 1680 0.67 

b 302 2802 1552 0.8 

c 296 3032 1664 0.82 

3.3. Application of the Optimization Protocol on Patients (in vivo)  

The optimization process is considered to be completed once suitable settings for the 

X-ray unit are determined. Afterwards, these new settings can be used to investigate pa-

tients. Regarding ethical aspects, we must highlight that patients do not have to be in-

formed that the X-ray unit will have different settings than the common ones, as the radi-

ation doses do not exceed safety limits after the optimization process. Therefore, the new 

settings of the X-ray unit (i.e., the optimized radiography protocol) can be further on im-

plemented for daily basis procedures. 

The following figures present several examples of similar types of examinations per-

formed on the same patients, with optimized versus non-optimized protocols. In Figure 

10, the flawed areas of a non-optimized panoramic radiograph are highlighted. They are 

not observed anymore on the panoramic radiograph performed after the X-ray unit opti-

mization. Thus, on the panoramic radiograph in Figure 10a one can see overexposed areas 

on the mandible (i.e., white areas-zone 1). Also, the roots of these teeth cannot be accu-

rately examined. The third molar from the third quadrant is overexposed (zone 2) and the 

first molar from the second quadrant appears like it has a mass (such as a cyst or frag-

mented bone) on its roots (zone 3). There is an issue caused by the small distance between 

the tooth and the sinus. If there were a cyst, it would be possible to spread the infection 

into the sinus, which should be avoided.  

Therefore, the patient would be recommended to undergo other investigations (i.e., 

3D CBCT or intraoral radiograph) to clarify issues raised by such an inconclusive pano-

ramic radiography. After the optimization of the X-ray settings and after applying the 

necessary protocol to obtain high-quality radiographs with doses of X-ray radiation as 

low as possible, it can be seen on the panoramic radiograph in Figure 10b that all the bones 

and teeth have clean margins. Thus, the patient can be successfully analyzed, and she/he 

does not have to perform any other radiological investigations. 

Figure 11 shows another example of two panoramic radiographs before and after the 

optimization of the X-ray unit. On the radiographs made before this optimization (Figure 

11a) there are underexposed areas, as well as areas for which the sharpness and contrast 

is so low that features such as roots, root canals, or even clear margins of teeth are not 

visible (zone 1, for example). On the mandible, frontal teeth seem to be shorter than in 

reality(zone 2). On the maxillary, the threshold between teeth and sinus is barely visible 

on both quadrants. These issues are all corrected after optimization (Figure 11b). 

In the case of panoramic radiographs, before and after parameter values are found 

to be close. This is the case of the voxel dimensions; anode voltage before the optimization 
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was 68 kV and after the optimization is 72 kV; current intensity and exposure time are the 

same before and after the optimization. However, even though there are only small ad-

justments for the X-ray unit settings, the results are visible, with better quality of pano-

ramic radiographs after in contrast to before optimization. However, for 3D CBCT the set 

differences are large, as discussed in the following. 

 

Figure 10. Panoramic radiographs performed on the same patient (L.C., female, 42 years old) (a) 

before and (b) after the optimization.  

 

Figure 11. Panoramic radiographs performed on the same patient (F.C., male, 29 years old) (a) 

before and (b) after the optimization. 
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Figure 12 shows an example of a 3D CBCT made before and after optimization. It 

highlights other differences between the images obtained before and after optimization: 

(1) the bone structure is closer to reality on the optimized 3D CBCT; (2,3) the materials 

used for cavity filling having a high radio-opacity are not producing artifacts on the opti-

mized images; (4) the resolution is better after optimization, as the dimension of the voxel 

side decreased from 200 to 150 µm. 

 

Figure 12. 3D CBCT performed on the same patient (F.C., male, 29 years old): images (a) before and 

(b) after the optimization. Notations: (1) axial, (2) sagittal, (3) coronal, and (4) 3D rendering. 

In the example in Figure 13, the root canal treatment of the same patient provides 

more details due to an increased resolution. In Figure 13a, the shape of the root canal 

treatment seems to be a square, while in Figure 13b one can observe its real shape. In 

addition, there are other clear differences between images obtained when investigating 

the same patient. Thus, before the optimization, the image does not have clear margins, 

while after the optimization, it does. Also, the bone density is misleading due to the size 

of the pixels. As in the previous example, in Figure 13a the pixel side is 200 µm, while in 

Figure 13b it is reduced to 150 µm (Table 5). 

 

Figure 13. Example of an axial section (a) before and (b) after the optimization of the 3D CBCT 

imaging. 

Several aspects should be highlighted in relation to the conclusions in Table 5. First, 

the voxel side is 25% smaller after the optimization process, which leads to a higher reso-

lution. Second, even if the investigated volume is larger (i.e., a cylinder with the base di-

ameter of 110 mm instead of 80 mm, with a height of 80 mm in both cases), the radiation 

after 
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dose is smaller: Dose Area Product (DAP) value after optimization is 6.9 mGy×cm2 instead 

of 11.7 mGy×cm2 before optimization. This is possible because the exposure time dropped 

from 12.057 s to 5.072 s when the optimized protocols were chosen. 

Table 5. 3D CBCT setting before and after the optimization process. 

 
Diameter 

of image 

base (mm) 

Image 

height 

(mm) 

Voxel 

side 

(µm) 

Anode 

voltage 
(kV) 

Current 

intensity 

(mA) 

Exposure 

time (s) 

DAP 

(𝒎𝑮𝒚 ×

𝒄𝒎𝟐) 

Before Ø 80 80 200 84 14 12.057 1170 

After Ø 110 80 150 90 14 5.072 691 

3.4. Differences Between the Planmeca and the Soredex System (Table 6) 

Table 6. Characteristic parameters of panoramic radiographs, as well as total, segmental, and max-

illary or mandible 3D CBCT - for the two types of considered X-ray units. 

Radiograph Characteristics Planmeca Soredex 

Panoramic 

Anode voltage (kV) 68 to 73 70 to 75 

Current intensity (mA) 8 to 11 8 to 11 

Exposure time (s) 14.990 16  

DAP (mGy×cm2) 97 to 117 175 to 250 

Effective Dose (µSv) 7.8 to 9.2 14 to 20 

Pixel side (µm) 127 100 

Total 3D 

CBCT 

Anode voltage (kV) 90 85 to 90 

Current intensity (mA) 11 to 14 6 to 10 

Exposure time (s) 5 6 to 9 

DAP (mGy×cm2) 691* 749.5** 

Effective Dose (µSv) 86.4* 93.7** 

Voxel side (µm) 150 200 

Base diameter (mm)  of the investigated 

volume 

110 150 

Height (mm) 80 80 

Segmental 

3D CBCT 

Anode voltage (kV) 90 85 to 90 

Current intensity (mA) 11 to 14 6 to 10 

Exposure time (s) 5 6 to 9 

DAP (mGy×cm2) 329* 140 to 300** 

Effective Dose (µSv) 32.9 to 49.35 20 to 30** 

Voxel side (µm) 150 200 

Base diameter (mm)  of the investigated 

volume 

50 50 

Height (mm) 50 50 

Maxillary/ 

mandible  

3D CBCT 

Anode voltage (kV) 90 85 to 90 

Current intensity (mA) 11 to 14 6 to 10 

Exposure time (s) 5 6 to 9 

DAP (mGy×cm2) 429* 400 ± 50** 

Effective Dose (µSv) 42.9 to 64.35 40 ± to 60 ± 5** 

Voxel side (µm) 150 200 

Base diameter (mm)  of the investigated 

volume 

110 61 

Height (mm) 50 78 

* calculated for the provided level of kV and mA, with the remark that small devia-

tions from these values can appear for different kV and mA levels.  

** as obtained from different sources (for example from dental medical imaging cen-

ters equipped with similar type of units) and within the range of values documented in 

previous reports [41-45].  
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The optimization process must consider the specific X-ray unit. To this goal, Table 6 

lists the most important parameters of both X-rays units used, determined for a daily basis 

investigation. Where a range of values is listed in Table 6, they refer to allowed variations 

depending on patient’s anatomical characteristics. 

In addition, Planmeca and Soredex X-ray units have other settings that provide 

better resolution images, but with the drawback of a higher X-ray dose. Also, there are 

other types of radiographs that can be performed with each X-ray unit. Although for this 

study we focused on panoramic radiographs and (total, segmental and maxillary or 

mandible) 3D CBCT, in Figure 14 a Cephalometric radiography is also shown. 

In general, Figures 14 to 16 present the same type of radiographs obtained with both 

types of X-ray units. They represent the cases of patients who came into the dental clinic 

with a 3D CBCT obtained with a Soredex unit. Unfortunately, these images were older 

than six months, therefore the patients had to be investigated again, and this time a 

Planmeca unit was used. This was the motive for new investigations for all the following 

patients exposed again to X-ray radiation. 

An essential remark regarding all images is that the radiographs obtained with the 

Planmeca unit are performed after the optimization described in this work, while the ra-

diographs obtained with the Soredex unit were performed for each considered patient 

with the specific protocol of other dental imaging clinics, prior to coming to the clinic 

where this work was carried out. The working protocols of the other clinics (i.e., with the 

Soredex unit) used the default settings of this X-ray unit, with non-optimized workflow 

and protocol. 

Figure 14 shows that the optimized Planmeca Cephalometric radiograph is superior 

in terms of resolution, contrast, and quality to the non-optimized Soredex Cephalometric 

radiograph: there are small details such as the root canal that can only be observed on the 

image obtained with the Planmeca unit. 

 

Figure 14. Cephalometric radiographs performed with (a) the Planmeca unit and with (b) the Sore-

dex unit. 

Figure 15 presents an example of two 3D CBCT performed on the same patient with 

the Planmeca and Soredex units. As expected, the advantage of a smaller voxel side (150 

µm) of the optimized Planmeca unit allows to obtain a better radiograph than the non-

optimized Soredex unit (characterized by a 200 µm voxel side). Also, Planmeca 3D CBCT 

images have the advantages of superior contrast compared to Soredex 3D CBCT images, 

as it can be easily observed on sagittal and coronal sections. 

Planmeca Soredex 

  
(a) (b) 
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Figure 15. 3D CBCT performed on the same patient (B.R., female, 53 years old) with (a) the Planmeca 

unit and with (b) the Soredex unit. Notations: (1) axial, (2) sagittal, (3) coronal, and (4) 3D rendering. 

Figure 16 presents another case, with visible differences between two 3D CBCT in all 

images. From the axial sections one can observe that the optimized Planmeca image has 

more shades of gray, which means a better contrast and sharpness of the image. On the 

sagittal and coronal sections one can see that non-optimized 3D CBCT images made with 

Soredex have artifacts induced by the materials used for crowns and cavity filling (please 

see circled areas). 3D CBCT images made with Planmeca have almost no artifacts, while 

the existing ones (i.e., small sparkles on the exterior of the teeth crowns on the sagittal and 

coronal sections) do not influence the diagnosis or treatment. Another important aspect is 

that there are two protocols for positioning the patient, to obtain these 3D CBCT: in the 

case of Planmeca 3D CBCT, a minimum distance is needed between the patient’s maxil-

lary and mandible, while for Soredex the patient needs to stand with mouth closed and 

with teeth in occlusion. 

 

Figure 16. 3D CBCT performed on the same patient (C.C, male, 48 years old) with (a) the Planmeca 

unit and with (b) the Soredex unit. Notations: (1) axial, (2) sagittal, (3) coronal, and (4) 3D rendering. 

3.5. Remarks 

A few other aspects are worth discussing to facilitate the adoption of the optimization 

procedure into a daily dental imaging workflow: 

(i) Different X-ray settings are needed for children, male or female patients (a differ-

ent radiation dose is recommended to each of these three categories). Therefore, when the 

sample is changed, to achieve the optimum in X-ray imaging one must employ OCT again. 

However, a library of parameters can be obtained for different types of patients and for a 

specific machine. 

(ii) Following on from the previous point, human anatomical characteristics that can 

influence the radiography must be considered. For example, an overweight patient with 
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a larger amount of fat tissue on mandible and maxillary must be exposed to a higher X-

ray dose than a patient with normal weight.  

(iii) Radio opacity of dental materials used in previous treatments influence the qual-

ity of the radiographs. A patient with numerous metal crowns, for example, must be ex-

posed to a lower radiation dose because otherwise artifacts may appear due to the high 

quantity of X-ray radiation absorbed by metals. This means that the values determined in 

this study might be different for other X-ray units, although the principle of the procedure 

remains the same. Thus, to achieve the best possible image, every X-ray unit should be 

calibrated and the best settings for anode voltage, current intensity, and exposure time 

should be obtained.  

(iv) Jewelry or any metal around the head or neck must be taken off, otherwise arti-

facts may appear on radiographs (Figure 17a). This is a general requirement, irrespective 

of the calibration procedure using OCT. On the other hand, implants and some materials 

used for dental crowns or dental fillings do not produce artifacts or sparkles around them 

on radiographs, as shown in the example in Figure 17b. This latter aspect must be consid-

ered during calibrations. 

 

  

(a) (b) 

Figure 17. Imaging artefacts on panoramic radiographs: (a) in the case of a woman who cannot remove her earrings and 

(b) for a patient with ten implants and teeth reconstructions.  

(v) The performances of X-ray units evolve continuously, including improvement in 

their radiation dose, to better comply with the ALARA protocol. Thus, radiation doses for 

3D CBCT images made with Planmeca and Soredex units considered in this study are 

smaller than radiation doses found in studies carried out two decades ago, for example. 

Thus, in a study published in 2002 [44], the effective dose for a multi-slice CT was 740 µSv, 

the effective dose for Planmeca’s 3D CBCT was 86.4 µSv and for Soredex, 93.7 µSv. In 

another study, published in 2003 [45], the radiation doses were even higher: for a total 3D 

CBCT the effective dose was 2100 µSv, for maxilary 1400 µSv, for mandible 1320 µSv, for 

panoramic 10 µSv, and for intraoral radiographs 5 µSv. This remark is essential, as it 

points out that in the future, as the level of radiation doses may decrease, higher increases 

in other parameters, such as current intensity and voltage can be made. Therefore, such 

an OCT-based optimization protocol of X-ray imaging may become even more practical. 

(vi) Because it is using IR laser radiation, OCT does not penetrate metals, although 

studies of their roughness can be made [46] and, as shown in Figure 4, OCT can provide 

images near dental crowns, while 3D CBCT for example cannot achive such images. Also, 

we have demonstrated that OCT can replace the gold standard of Scanning Electron 

Microscopy (SEM) in the study of metallic fractures [47,48]. Therefore, a subject of future 

work in our groups refers to OCT studies of metallic parts included in the oral cavity, for 

example dental implants. 

4. Conclusions 

We developed an optimization procedure applicable to the common X-ray radiog-

raphy for dental medicine using OCT, which presents a much higher resolution. Two of 
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the high-end commercially-available (and worldwide-used) X-ray imaging units were uti-

lized, Planmeca ProMax 3D X-ray (Planmeca, Helsinki, Finland) and Soredex Cranex 3D 

X-ray (KaVo Kerr, Brea, CA, USA), both with state-of-the-art CMOS sensors. The principle 

of the optimization method is to obtain 10 μm axial resolution OCT images of dental de-

tails (such as cavities or dental fillings) and then to adjust the X-ray unit functional pa-

rameters (including anode voltage, current intensity, and patient position) until the ob-

served detail becomes clear on the different types of radiographs (especially panoramic 

and CBCT). The increase in the X-ray tube parameters is made up to a threshold for which 

the X-ray image quality increases but the radiation level is kept to a minimum, to comply 

with the ALARA protocol. 

The optimization procedure was developed on a didactic human head with extracted 

teeth and then was demonstrated on real-life patients, with comparisons between opti-

mized and (previously made) not optimized radiographs. The output parameters of the 

imaging process, including contrast and contrast-to-noise ratio were assessed for every 

step of the optimization. Also, the developed procedure allowed for comparing perfor-

mances of different X-rays imaging units. Finally, a comparison between images obtained 

with the two X-rays units and an in-house developed SS-OCT, MS enhanced OCT system 

is presented, as shown in Table 7. 

Table 7. Advantages and disadvantages of Planmeca and Soredex X-ray unit for panoramic radiographs, as well as total, segmental, 

and maxillary or mandible 3D CBCT. Comparison to OCT. 

Method 
Equip-

ment 
Advantages and Disadvantages 

Pano-

ramic 

Planmeca 

and  

Soredex 

Radiation dose is almost 50% smaller for Planmeca. 

Resolution is lower (127 µm) for Planmeca than for Soredex (100 µm). 

Images produced by Soredex have a lower contrast and sharpness even if they have 

better resolutions. 

3D 

CBCT 

Planmeca 

and  

Soredex 

Smaller exposure time (5 versus 9 s), smaller radiation dose (with at least 10 µSv), and 

smaller voxel side (with 25%) for Planmeca, which means better resolution, contrast, and 

image quality.  

The covered volume is larger for Soredex. 

OCT SS-OCT 

Better resolution, usually, around 10 µm axial (i.e., in depth), but it can be as low as 2 µm 

[17]. Lateral resolution (i.e., on the sample surface) is adjustable by galvanometer scanners 

programming; in this study it was set to 6 µm (corresponding to 500 B-scans for a scan 

length of 3 mm) or to 10 µm (for 500 B-scans per 5 mm). In contrast, the smallest achievable 

linear resolution (on each spatial direction) for 3D CBCT is 75 µm.  

Low penetration depth, but no ionizing radiation for OCT. 

The maximum volume scanned with OCT is 5 × 5 × 2 mm, while for radiography the vol-

ume corresponds at least to a cylinder with the base diameter of 50 mm and the height of 50 

mm. 

Furthermore, one can observe that there are no drawbacks on using OCT technique 

in addition to radiography. There are details that cannot be seen on radiographs, but they 

can be furthermore studied and assessed on OCT images. As demonstrated in our previ-

ous study [28], there is no competition between these two medical imaging techniques, 

even if there are medical conditions for which it is better to choose one method over an-

other. However, in the end, it is convenient for a dental clinic to have both techniques 

available, for both purposes: (i) to be able to perform a correct and complete dental diag-

nose, treatments monitoring, and assessment in the complementarity of the two methods; 

(ii) to use OCT not necessary for imaging, but to aid choosing best parameters of X-ray 

units. 

Author Contributions: conceptualization, V.-F.D. and R.-A.E.; methodology, R.-A.E. and V.-F.D.; 

OCT system development, A.P., G.D., and V.-F.D.; OCT software, A.B.; sample preparation and X-



Sensors 2021 24 of 26 
 

 

rays investigations, R.-A.E.; OCT investigations, R.-A.E. and V.-F.D.; data validation and analysis, 

R.-A.E. and V.-F.D.; resources, V.-F.D.; writing—original draft preparation, R.-A.E. and V.-F.D.; 

writing—review and editing, V.-F.D., A.P., G.D., and A.B.; supervision, project administration, and 

funding acquisition, V.-F.D. All authors have read and agreed to the published version of the man-

uscript. 

Funding: This research was supported by the Romanian Ministry of Research, Innovation and Dig-

itization, CNCS/CCCDI–UEFISCDI, project PN-III-P4-ID-PCE-2020-2600, within PNCDI III 

(http://3om-group-optomechatronics.ro/). A.B. and A.P. acknowledge the support of the European 

Research Council (http://erc.europa.eu), Grant 249889 and of the Biotechnology and Biological Sci-

ences Research Council (BBSRC) grant BB/S0166431/1 and Engineering and Physical Sciences Re-

search Council (EPSRC) grant Rebot EP/N019229/1. A.P. is also supported by the NIHR Biomedical 

Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthal-

mology, and by the Royal Society Wolfson Research Merit Award. 

Institutional Review Board Statement: The study was conducted according to the guidelines of the 

Declaration of Helsinki. For this work, several extracted teeth have been gathered from the Dental 

Experts Clinic (Timisoara, Romania) and several in vivo studies have been performed (the latter with 

the written consent of the patients), approved by The Ethical Commission of the Clinic (protocol 

code nr. 178/31.08.2020). 

Informed Consent Statement: Informed consent was obtained from all subjects involved in the 

study. 

Data Availability Statement: Data are available on request from R.-A.E. 

Acknowledgments: This paper is based on a presentation prepared for the ‘1st International Con-

ference – Advances in 3OM: Opto-Mechatronics, Opto-Mechanics, and Optical Metrology’, Decem-

ber 13-16, 2021, Timisoara, Romania. 

Conflicts of Interest: A. Podoleanu and A. Bradu are inventors on patents in the name of the Uni-

versity of Kent, UK. The authors declare no other conflict of interest. The funders had no role in the 

design of the study; in the collection, analyses, or interpretation of data; in the writing of the manu-

script, or in the decision to publish the results. 

References 

1. Pauwels, R. History of dental radiography: Evolution of 2D and 3D imaging modalities. MPI Journal, Special Issue, History of 

Medical Physics 3, 2020. 

2. Ruprecht, A. Oral and maxillofacial radiology. Then and now. JADA 2008, 139, 139, Supplement 3, S5-S6. 

3. Couceiro, C. P.; Vilella, O.V. 2D/3D Cone-Beam CT images or conventional radiography: which is more reliable? Dental Press J. 

of Orthodontics 2010, 15(5), 40-41. 

4. Barone, S.; Paoli, A.; Razionale, A.V. Creation of 3D Multi-Body Orthodontic Models by Using Independent Imaging Sen-

sors. Sensors 2013, 13, 2033-2050. 

5. Dalessandri, D.; Tonni, I.; Laffranchi, L.; Migliorati, M.; Isola, G.; Visconti, L.; Bonetti, S.; Paganelli, C. 2D vs. 3D Radiological 

Methods for Dental Age Determination around 18 Years: A Systematic Review. Appl. Sci. 2020, 10, 3094. 

6. Weiss, R., II; Read-Fuller, A. Cone Beam Computed Tomography in Oral and Maxillofacial Surgery: An Evidence-Based Re-

view. Dent. J. 2019, 7, 52. 

7. Franchina, A.; Stefanelli, L.V.; Maltese, F.; Mandelaris, G.A.; Vantaggiato, A.; Pagliarulo, M.; Pranno, N.; Brauner, E.; Angelis, 

F.D.; Carlo, S.D. Validation of an Intra-Oral Scan Method Versus Cone Beam Computed Tomography Superimposition to Assess 

the Accuracy between Planned and Achieved Dental Implants: A Randomized In Vitro Study. Int. J. Environ. Res. Public 

Health 2020, 17, 9358. 

8. Muruganandhan, J.; Sujatha, G.; Poorni, S.; Srinivasan, M.R.; Boreak, N.; Al-Kahtani, A.; Mashyakhy, M.; Chohan, H.; Bhandi, 

S.; Raj, A.T.; Zanza, A.; Testarelli, L.; Patil, S. Comparison of Four Dental Pulp-Capping Agents by Cone-Beam Computed To-

mography and Histological Techniques—A Split-Mouth Design Ex Vivo Study. Appl. Sci. 2021, 11, 3045. 

9. Mikla, V.I.; Rusin V.I.; Boldizhar, P.A. Advances in imaging from the first X ray images. J. of Optoelectronics and Advanced Mate-

rials, 2012, 14(7-8), 559-570. 

10. Fernandez, J.E. Chapter II. Interaction of X-rays with matter. In Microscopical X-ray Fluorescence Analysis, Janssens, K.; Adams, 

F.; Rindby, A. Publisher: John Wiley & Sons Ltd., 2000; pp. 17-62. 

11. Poppe, B.; Looe, H.K.; Pfaffenberger, A.; Chofor, N.; Eenboom, F.; Sering, M.; Rühmann, A.; Poplawski, A.; Willborn, K. Dose-

area product measurements in panoramic dental radiology. Radiation Protection Dosimetry 2007 123(1), 131-134. 

12. Erdelyi, R.A.; Duma, V.-F. Optimization of radiation doses and patients’ risk in dental radiography. AIP Conference Proceedings 

2019, vol 2071, Issue 1, pp. 040013-1 – 040013-6. 

http://3om-group-optomechatronics.ro/
http://erc.europa.eu/#_blank
http://3om-group-optomechatronics.ro/advances-in-3om-conference-2020/home/


Sensors 2021 25 of 26 
 

 

13. Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A.; 

Fujimoto, J.G. Optical coherence tomography. Science 1991, 254, 1178-1181. 

14. Choma, M.A.; Sarunic, M.V.; Yang, C.; Izatt, J.A. Sensitivity advantage of swept-source and Fourier-domain optical coherence 

tomography. Opt. Express 2003, 11, 2183-2189. 

15. Drexler, W.; Liu, M.; Kumar, A.; Kamali, T.; Unterhuber, A.; Leitgeb, R.A. Optical coherence tomography today: speed, contrast, 

and multimodality. J. Biomed. Opt. 2014, 19, 071412. 

16. Lu, C.D.; Kraus, M.F.; Potsaid, B.; Liu, J.J.; Choi, W.; Jayaraman, V.; Cable, A.E.; Hornegger, J.; Duke, J.S.; Fujimoto, J.G. 

Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror. Biomed. 

Opt. Express 2014, 5, 293-311. 

17. Cogliati, A.; Canavesi, C.; Hayes, A.; Tankam, P.; Duma, V.-F.; Santhanam, A.; Thompson, K.P.; Rolland, J.P. MEMS-based 

handheld scanning probe for distortion-free images in Gabor-Domain Optical Coherence Microscopy. Opt. Express 2016, 24(12), 

13365-13374. 

18. Monroy, G.L.; Won, J.; Spillman, D.R.; Dsouza, R.; Boppart, St.A. Clinical translation of handheld optical coherence tomography: 

practical considerations and recent advancements. J. Biomed. Opt. 2017, 22(12), 121715. 

19. Demian, D.; Duma, V.-F.; Sinescu, C.; Negrutiu, M.L.; Cernat, R.; Topala, F.I.; Hutiu, Gh.; Bradu, A.; Podoleanu, A.Gh. Design 

and testing of prototype handheld scanning probes for optical coherence tomography. J. of Eng. in Medicine 2014, 228(8), 743-

753. 

20. Duma, V.-F.; Dobre, G.; Demian, D.; Cernat, R.; Sinescu, C.; Topala, F.I.; Negrutiu, M.L.; Hutiu, Gh.; Bradu, A.; Podoleanu, A. 

Gh. Handheld scanning probes for optical coherence tomography. Romanian Reports in Physics 2015, 67(4), 1346-1358. 

21. Schneider, H.; Ahrens, M.; Strumpski, M.; Rüger, C.; Häfer, M.; Hüttmann, G.; Theisen-Kunde, D.; Schulz-Hildebrandt, H.; 

Haak, R. An Intraoral OCT Probe to Enhanced Detection of Approximal Carious Lesions and Assessment of Restorations. J. 

Clin. Med. 2020, 9, 3257. 

22. Jones, R.S., Staninec, M.; Fried, D. Imaging artificial caries under composite sealants and restorations. J. Biomed. Opt. 2004, 9, 

1297-1304. 

23. Turki, A.; Bakhsha, B.; Sadrb, A.; Shimadaa, Y.; Junji Tagamia, B.; Yasunori, S. Non-invasive quantification of resin–dentin 

interfacial gaps using optical coherence tomography: Validation against confocal microscopy. Dent. Mat. 2011, 27, 915–925. 

24. Monteiro G Queiroz de Melo, Montesa, M.A.J.R.; Gomes, A.S.L.; Motac, C.B.O.; Sérgio, L.; Freitas, A.Z. Marginal analysis of 

resin composite restorative systems using optical coherence tomography. Dent. Mat. 2011, 27, 213–223.  

25. Isfeld, D.M.; Aparicio, C.; Jones, R.S. Assessing near infrared optical properties of ceramic orthodontic brackets using cross-

polarization optical coherence tomography. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102, 516-523. 

26. Sinescu, C.; Bradu, A.; Duma, V.-F.; Topala, F.; Negrutiu, M.L.; Podoleanu, A. Effects of the temperature variations in the tech-

nology of metal ceramic dental prostheses: Non-destructive detection using optical coherence tomography. Appl. Sci. 2017, 7, 

552. 

27. Duma, V.-F.; Sinescu, C.; Bradu, A.; Podoleanu, A. Optical Coherence Tomography Investigations and Modeling of the Sintering 

of Ceramic Crowns. Materials 2019, 12, 947. 

28. Erdelyi, R.-A.; Duma, V.-F.; Sinescu, C.; Dobre, G.M.; Bradu, A.; Podoleanu, A. Dental Diagnosis and Treatment Assessments: 

Between X-rays Radiography and Optical Coherence Tomography. Materials 2020, 13, 4825. 

29. Hsieh, Y.-S.; Ho, Y.-C.; Lee, S.-Y.; Chuang, C.-C.; Tsai, J.-c.; Lin, K.-F.; Sun, C.-W. Dental Optical Coherence Tomography. Sen-

sors 2013, 13, 8928-8949. 

30. Lai, Y.-C.; Lin, J.-Y.; Yao, C.-Y.; Lyu, D.-Y.; Lee, S.-Y.; Chen, K.-W.; Chen, I-Y. Interactive OCT-Based Tooth Scan and Recon-

struction. Sensors 2019, 19, 4234. 

31. Luong, M.N.; Shimada, Y.; Araki, K.; Yoshiyama, M.; Tagami, J.; Sadr, A. Diagnosis of Occlusal Caries with Dynamic Slicing of 

3D Optical Coherence Tomography Images. Sensors 2020, 20, 1659. 

32. Schneider, H.; Park, K.-J.; Häfer, M.; Rüger, C.; Schmalz, G.; Krause, F.; Schmidt, J.; Ziebolz, D.; Haak, R. Dental Applications of 

Optical Coherence Tomography (OCT) in Cariology. Appl. Sci. 2017, 7, 472. 

33. Carvalho, L.; Roriz, P.; Simões, J.; Frazão, O. New Trends in Dental Biomechanics with Photonics Technologies. Appl. 

Sci. 2015, 5, 1350-1378. 

34. Mehreen, A.; Duker, J.S. Optical coherence tomography – current and future applications, Current Opinion in Ophthalmology 

2013, 24(3), 213-221. 

35. Gambichler, T; Jaedicke, V; Terras, S. Optical coherence tomography in dermatology: technical and clinical aspects. Arch, Der-

matol Res. 2011, 303(7), 457-473. 

36. Kirtane, T.S.; Wagh, M.S. Endoscopic Opicat Coherence Tomography (OCT): Advances in Gastrointestinal Imaging, Gastroen-

terology Research and Practice 2014, Article ID 376367. 

37. Podoleanu, A.; Bradu, A. Master–slave interferometry for parallel spectral domain interferometry sensing and versatile 3D 

optical coherence tomography. Opt. Express 2013, 21, 19324–19338. 

38. Duma, V.-F.; Tankam, P.; Huang, J.; Won, J.J.; Rolland, J.P. Optimization of galvanometer scanning for Optical Coherence To-

mography. Appl. Opt. 2015, 54, 5495-5507. 



Sensors 2021 26 of 26 
 

 

39. Duma, V.-F. Laser scanners with oscillatory elements: Design and optimization of 1D and 2D scanning functions. Applied 

Mathematical Modelling 2019, 67(3), 456-476. 

40. Oancea, R.; Bradu, A.; Sinescu, C.; Negru, R.M.; Negrutiu, M.L.; Antoniac, I.; Duma, V.-F.; Podoleanu, A. Assessment of the 

sealant/tooth interface using optical coherence tomography. J. of Adhesion Science and Technology 2015, 29(1), 49-58. 

41. Shin, H.S.; Nam, K.C.; Park, H.; Choi, H.U.; Kim, H.Y.; Park, C.S. Effective doses from panoramic radiography and CBCT (cone 

beam CT) using dose area product (DAP) in dentistry. Dento maxillo facial radiology 2014, 43(5), 20130439. 

42. Ludlow, J.B.; Timothy, R.; Walker, C.; Hunter, R.; Benavides, E.; Samuelson, D.B.; Scheske, M.J. Effective dose of dental CBCT-

a meta analysis of published data and additional data for nine CBCT units. Dento maxillo facial radiology 2015, 44(1), 20140197. 

43. Lee, J.-S.; Kim, Y.-H.; Yoon, S.-J.; Kang, B.-C. Reference dose levels for dental panoramic radiography in Gwangju, South Korea. 

Radiation Protection Dosimetry 2010, 142(2-4), 184–190. 

44. Cohnen, M.; Kemper, J.; Möbes, O.; et al. Radiation dose in dental radiology. Eur. Radiol. 2002, 12, 634–637. 

45. Ngan, D.C.; Kharbanda, O.P.; Geenty, J.P.; Darendeliler, M. Comparison of radiation levels from computed tomography and 

conventional dental radiographs. Australian Orthodontic J., 2003, 19(2), 67–75. 

46. Feidenhans, N.A.; Hansen, P.E.; Pilný, L.; Madsen, M.H.; Bissacco, J.; Petersen, C.; Taboryski, R. Comparison of optical methods 

for surface roughness characterization. Measurement Science and Technology 2015, 26(8), 085208. 

47. Hutiu, G.; Duma, V.-F.; Demian, D.; Bradu, A.; Podoleanu, A.G. Surface imaging of metallic material fractures using optical 

coherence tomography. Appl. Opt. 2014, 53(26), 5912-5916. 

48. Hutiu, G.; Duma, V.-F.; Demian, D.; Bradu, A.; Podoleanu, A.G. Assessment of Ductile, Brittle, and Fatigue Fractures of Metals 

Using Optical Coherence Tomography. Metals 2018, 8, 117. 


