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MULTI-COMPONENT TODA LATTICE IN CENTRO-AFFINE Rn

XIAOJUAN DUAN, CHUANZHONG LI, AND JING PING WANG

Abstract. In this paper we use the group-based discrete moving frame method

to study invariant evolutions in n-dimensional centro-affine space. We derive

the induced integrable equations for invariants, which can be transformed to
local and nonlocal multi-component Toda lattices under a Miura transforma-

tion, and hence establish their geometric realisations in centro-affine space.
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1. Introduction

Integrable systems are closely linked with classical geometries. Geometric evolu-
tions for curves in homogeneous spaces induce integrable flows for geometric invari-
ants such as curvatures. The space of these invariants can be viewed as coordinates
of the moduli space of curves under the group action. The moving frame approach
leads to a natural description of its associated Hamiltonian structures defined on
the moduli space.

A well-known example was given by Hasimoto [1]. He showed that a curve flow
in Euclidean space, invariant under the Euclidean group, known as the Vortex-
Filament flow, induces the nonlinear Shrödinger equation (NLS) for the curvature
and torsion of the curve flow. The Vortex Filament flow is called an Euclidean
realisation of NLS. Geometric realisations of other integrable systems such as the
Korteweg-de Vries equation (KdV), modified KdV and sine-Gordon equation are
derived in classical geometries. The method of group-based moving frame intro-
duced by Fels and Olver[2, 3] has played a very important role in establishing the
relations. There are many papers devoted to this topic. We refer to [4, 5] and the
references of them.

In 2013, the method of group-based discrete moving frame was introduced by
Mansfield, Maŕı-Beffa and Wang [6], which is essentially a sequence of moving
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frames with overlapping domains. It provides a powerful tool to study the link
between induced completely integrable systems on discrete curvatures (or invari-
ants) and the invariant evolutions of polygons in different geometric settings. As
examples, they derived the projective RP2 and 2-dimensional centro-affine R2 dis-
crete realisations of the modified Volterra and Toda lattices. Such study was soon
extended to projective polygons in RPn in [7], establishing a close relationship be-
tween the projective invariant evolutions and the Hamiltonian evolutions on the
invariants of the flow.

The induced flows for invariants from geometric evolutions for curves in classical
geometries can be viewed as a syzygy between differential and difference invariants
[8, 9], which offers a great advantage in direct computation of the Euler-Lagrange
equations in terms of invariants from given invariant Lagrangians.

This paper is devoted to the study of invariant evolutions in centro-affine Rn
and induced integrable systems. In 3-dimensional centro-affine case, the authors of
[10] studied the geometric realisations of the B-Toda lattice and C-Toda. Recently
Beffa and Calini investigated the evolutions of arc length-parametrised polygons
(corresponding to the case ps = 1 in Section 4) in n-dimensional centro-affine
space, which can be identified with the case of projective RPn−1 [11]. They proved
that the Poisson brackets derived in [7] form a bi-Hamiltonian pair.

In this paper, we are going to derive the induced integrable equations from invari-
ant evolutions in n-dimensional centro-affine space and to establish their geometric
realisations. The paper is organized as follows. In section 2, we review basic facts on
discrete moving frames and invariants evolutions mainly based on [6, 7]. In section
3, we give a brief introduction on multi-component Toda lattice for both local and
nonlocal flows. Our main results are in section 4. We use the approach of discrete
moving frame to derive the flow of invariants for a given invariant time evolution.
In 3-dimensional centro-affine space, we construct a Hamiltonian pair which gen-
erate both local and nonlocal integrable differential-difference systems, which can
be transformed into 3-component local and nonlocal Toda lattices under the same
Miura transformation. In the general n-dimension case, although it is hard to give
the Hamiltonian pair explicitly, we write down the integrable differential-difference
systems, which are multi-component local and nonlocal Toda lattices.

2. Discrete moving frame and invariant evolutions

In this section we will describe basic definitions and theorems on discrete group-
based moving frames and invariant evolutions. We only state results (without
proofs) for the left group action and the right discrete moving frame, which are
taken from [6, 7]. We refer the readers to the original papers for the details.

2.1. Discrete moving frames. Let M be an n−dimensional manifold and G ×
M →M be a left action of an r−dimensional Lie group G on M .

We begin with a discrete analogue of the mth order submanifold jet bundle
introduced in [12]. Assume that x : Z → M is a discrete function. Here we use
the subscript notation xs = x(s) to denote the evaluation of x at the integer point
s ∈ Z. The collection of m+ 1 points

x[m]
s = (xs, xs+1, · · · , xs+m), xs+i ∈M, i = 0 · · ·m
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is the mth order forward discrete jet at s ∈ Z denoted by (s, x
[m]
s ). Then the mth

order forward discrete jet space J [m] is defined as the collection of (s, x
[m]
s ), that is,

J [m] =
⋃
s∈Z

(s, x[m]
s ).

Let πm : J [m] → Z denote the projection onto the discrete index

πm(s, x[m]
s ) = s.

Then for each s ∈ Z, the fiber J [m]|s = (πm)−1(s) ' Mm+1 is a smooth manifold
when m > 0. Naturally we can extend the action of G on M to J [m] as follows:

(1) g · (s, x[m]
s ) = (s, g · xs, g · xs+1, · · · , g · xs+m).

Definition 2.1. (Discrete moving frame) A discrete right (resp. left) moving frame
is a G−equivariant map ρ : J [m] → G satisfying

ρ(s, g · x[m]
s ) = ρ(s, x[m]

s )g−1,

(resp. g · ρ(s, x
[m]
s )) for all g ∈ G.

For simplicity we use the notation ρs to denote the image of the moving frame ρ

at the point (s, x
[m]
s ). If ρs is a left moving frame, then ρ−1s is a right moving frame.

As in the continuous case, the construction of a discrete moving frame is based on
the choice of the cross-section. The cross section is not unique. One adequate cross
section can simplify the computation. We use Ks to denote the cross-sections over
s on J [m]. For a discrete moving frame, its cross-section over s is replicated for all
other base points s+ i, which means the cross-section over s+ i is represented by
Ks+i = T iKs for all i ∈ Z, where T is the shift operator. Consequently we have
that ρs+i = T iρs.

The discrete moving frames provide a powerful approach to construct discrete
invariants. We say a function F : J [m] → R is a discrete invariant if

F (g · x[m]
s ) = F (x[m]

s ), for all g ∈ G and any x
[m]
s ∈ J [m].

For a right moving frame, the quantities

(2) Is,j := ρs · xj ,
are invariants. The induced action on the coordinate functions also produces dis-
crete invariants, that is, for any difference function F : J [m] → R, the induced

action on it F (s, ρs · x[m]
s ) is a discrete invariant. We are able to describe a smaller

set of generating invariants, the Maurer-Cartan invariants.

Definition 2.2. (Discrete Maurer-Cartan invariant). Let ρ : J [m] → G be a right
moving frame. The element of the group

(3) Ks = ρs+1(ρs)
−1

is called the right Maurer-Cartan matrix for ρ.

The equivariance of ρ implies that the Ks are invariant under the group action.
In addition, using (2) and (3) we have

(4) Ks · Is,j = ρs+1ρ
−1
s · ρs · xj = ρs+1 · xj = Is+1,j

and iterating this, we have Ks+1Ks·Is,j = Is+2,j , and so on. Hence, the components
of Ks, together with the set of all diagonal invariants, Ij,j = ρj · xj , generate all
other invariants [6].
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2.2. Invariant evolutions. For an evolution equation

(5) (xs)t = Fs((xr)),

we say it is an invariant time evolution under the action of the group G if the group
action takes solutions to solutions, that is, if (xr) is a solution, so is (g · xr) for any
g ∈ G. Any invariant time evolution can be explicitly expressed in terms of the
invariants and the moving frame.

Here we consider homogeneous manifolds M = G/H with H a closed subgroup
and assume that G acts on M via left multiplication on representatives of the class.
The distinguished class of H is denoted by o ∈ G/H. Let ρs be the discrete right
moving frame satisfying ρs · xs = o for all s. We can describe the general formula
for an invariant evolution (5) in terms of the moving frame [6, 7].

We denote by Γg : G/H → G/H the map defined by the action of g ∈ G, that is,
Γg(x) = g · x, and by dΓg(x) the tangent map of Γg at x ∈ G/H. Any G-invariant
evolution of the form (5) can be written as

(6) (xs)t = dΓρ−1
s

(o)(vs),

where vs is an invariant vector in the tangent space of M at xs.
For an invariant evolution (6) there is a simple process to describe the evolution

induced on the Maurer-Cartan matrices, and hence on a generating set of invariants
as stated in the following theorem. Its proof for the left discrete moving frame can
be found [6].

Theorem 2.1. Let ς : G/H → G be a section of G/H such that ς(o) = e ∈ G,
where e is the identity. Given a right moving frame ρs, assume that ρs ·xs = o and
ρs = ρHs ς(xs)

−1, for some ρHs ∈ H. Then the invariant evolution (6) leads to the
structure equation

(7) (Ks)t = Ns+1Ks −KsNs,

where Ks is the right Maurer-Cartan matrix and Ns = (ρs)tρ
−1
s ∈ g. Furthermore,

assume g = m ⊕ h, where g is the algebra of G, h is the algebra of H and m is
a linear complement (which can be identified with the tangent to the image of the
section ς). Then, if Ns = Nh

s +Nm
s splits accordingly,

(8) Nm
s = −dς(o)vs.

In this paper, we are going to apply the above theorem to the centro-affine space.
In fact, equation (7) and condition (8) completely determine the evolution of Ks

[6, 7, 10]. Note that identity (7) is similar to the zero curvature condition (without
the spectral parameter) for completely integrable systems. This is a key point when
we link integrable systems to invariant evolutions.

3. Multi-component Toda lattices

We are going to link the invariant evolutions in centro-affine space with multi-
component Toda lattices. To be self-contained, we will recall some facts on the
Toda lattices in this section.

The well-known Toda lattice [13] is given by

d2us
dt2

= exp(us−1 − us)− exp(us − us+1).(9)
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Here the dependent variable u is a function of time t and discrete variable s ∈ Z.
It can be viewed as a discretization of the Korteweg-de Vries equation. Using the
Flaschka [14, 15] coordinates

qs =
dus
dt

, ps = exp(us − us+1),

we rewrite the Toda lattice (9) in the form

dps
dt

= ps(qs − qs+1),
dqs
dt

= ps−1 − ps.(10)

Its complete integrability was first established by Flaschka and Manakov [14, 15, 16].
Its Lax representation can be written as

(11)
∂L
∂t

= [B,L] = BL − LB,

where

L = T −1 + qs + psT , B = −L≥1 = −psT .
The above scalar Lax representation has been generalised to higher order difference
operators involving in more dependent variables [17]. From now on, we will drop
the down index s without causing confusion. For instance, we simply write p for ps
and pi for ps+i. Let

L = T −n +

n∑
j=1

wjT −n+j + uT , B = L≥1 = uT ,(12)

where u and wj , j = 1, 2, · · ·n are dependent variables. It follows from the Lax
equation (11) that the n+ 1-component Toda lattice is of the form [17]

w1
t = u− u−n,

wjt = uwj−11 − wj−1u−n+j−1, j = 2, · · · , n,
ut = u(wn1 − wn).

(13)

When n = 1, it leads to the Toda lattice (10) by letting u = ps and w1 = −qs. For
any fixed n, applying an r-matrix formalism, their bi-Hamiltonian structures can
be constructed. In [17], the biHamiltonian structures for two and three fields are
explicitly given.

From Lax operator (12), one can also derive a nonlocal multi-component Toda
equation by taking its n-th root [18]. Here we write out the first two terms of this
Laurent series in T :

L 1
n = T −1 + η + · · · , η = (1 + T −1 + · · ·+ T 1−n)−1w1.

Then the Lax flow is given by

∂tL = [(L 1
n )≥1,L] = −[(L 1

n )≤0,L] = −[T −1 + η,L],

which leads to
ut = u(T − 1)η,

wjt = wj+1 − wj+1
−1 − wj(1− T −n+j)η, j = 1, · · · , n− 1,

wnt = u− u−1, where η = (1 + T −1 + · · ·+ T 1−n)−1w1.

(14)
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In particular, if we take n = 2, it leads to a local 3-component Toda equation[17]
ut = u(w2

1 − w2),

w1
t = u− u−2,

w2
t = uw1

1 − u−1w1,

(15)

and a nonlocal 3-component Toda equation
ut = u(T − 1)T (1 + T )−1w1,

w1
t = w2 − w2

−1 − w1(T − 1)(1 + T )−1w1,

w2
t = u− u−1.

(16)

4. Invariant evolutions in centro-affine Rn

Centro-affine geometry is obtained by deleting translations from the affine ge-
ometry. Let G = SL(n,R) acts linearly on M = Rn as follows:

x→ g · x,

where x is a n-vector, g ∈ G and the product is the matrix multiplication. The
n-dimensional centro-affine space M = Rn can be regarded as the homogeneous
space SL(n,R)/H, where H is the isotropy subgroup of e1 = (1, 0, · · · , 0)T , where
the upper index T denotes the transpose of a matrix. We write

H =

(
1 Y1×(n−1)

0(n−1)×1 A(n−1)×(n−1)

)
and

G/H =

(
x 01×(n−1)

y(n−1)×1 B(n−1)×(n−1)

)
,

where matrix B(n−1)×(n−1) = diag(1/x, 1, · · · , 1) and (x, yT ) can be viewed as the
n-coordinates on M = Rn.

To construct the right frame ρs we take the normalization equation to be

(17) ρs · (xs, xs+1, xs+2, · · · , xs+n−1) = (e1, e2, · · · , (−1)n−1psen),

where xs+k = (x0s+k, x
1
s+k, x

2
s+k, · · · , x

n−1
s+k )T for k = 0, 1, · · · , n− 1 and

ps = (−1)n−1 det(xs, xs+1, xs+2, · · · , xs+n−1).

This leads to the right Maurer-Cartan matrix

(18) Ks = ρs+1ρ
−1
s =



r1s 1 0 · · · 0 0
r2s 0 1 · · · 0 0
...

...
...

rn−2s 0 0 · · · 1 0

rn−1s 0 0 · · · 0 (−1)n−1

ps

ps 0 0 · · · 0 0


,

where rks = −det(xs,··· ,xk−1+s,xs+n,xk+1+s··· ,xs+n−1)
T ps for k = 1, · · · , n− 1.

We will drop the down index s without causing confusion. For example, when
n = 2, the normalization equation (17) becomes

ρ · (x, x1) = (e1,−pe2), p = −det(x, x1) = −(x0x11 − x01x1).
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Solving it, we get the left moving frame

ρ−1 = (x,−x1
p

),

and thus the corresponding right Maurer-Cartan matrix is

(19) K = ρ1ρ
−1 =

(
r1 − 1

p

p 0

)
, r1 = −det(x, x2)

p1
.

In this case, the link between invariant evolutions and integrable systems has been
discussed in [6]. Next we will focus on the invariant evolutions and the related
integrable systems when n = 3.

4.1. The case of centro-affine R3. It follows from (18) that the right Maurer-
Cartan matrix in this case (after dropping the down index s) is

(20) K = ρ1ρ
−1 =

r1 1 0
r2 0 1

p

p 0 0

 ,

where p = det(x, x1, x2), r1 = − 1
p1

det(x, x3, x2), r2 = − 1
p1

det(x, x1, x3) and

(21) ρ−1 = (x, x1,
x2
p

).

From (6), the general invariant evolution is given by

(22) (x)t = ρ−1v, v =
(
v1, v2, v3

)T
,

where v1, v2, v3 are arbitrary functions of the invariants r1, r2 and p and their shifts.
Using (21) and (22), we can easily see that the first column of N is −v. From the
structure equation (7) we obtain

N =

−v
1 −T v3

p
−p1T 2v2+r21T

2v3

p2

−v2 −T v1 + r1

p T v
3 r1

p2 (p1T 2v2 − r21T 2v3)− T
2v3

pp1

−v3 −pT v2 + r2T v3 v1 + T v1 − r1

p T v
3

 ,

and the evolution equation

(23)
d

dt

(
p, r1, r2

)T
= Pv,

where

(24) P =


p(1 + T + T 2) −r2p1T 2 r2r21T 2 − r1T − r11p

p1
T 2

r1(1− T ) 1− pp2
p21
T 3 pr22T

3

p21
− r2T 2

p1

r2(1− T 2)
r11pp2
p21
T 3 − r1T 1

p +
r11r

2

p1
T 2 − pT 3

p1p2
− pr11r

2
2T

3

p21

 .

Remark 4.1. Under the transform p = pk, r
1 = qkpk, r

2 = −rk, we can get the
corresponding evolution equations in [10].

Let us define a matrix

(25) C =

(T 2 − 1)−1p −(T + 1)−1r1 0
0 −T −1r2 −T −2 p

p1

0 −T −1p 0

 .
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Then we compute operator multiplication PC and obtain the following pseudo-
difference anti-symmetric operator

(26)


p(1 + T + T 2)(T 2 − 1)−1p pT (T + 1)−1r1 pr2

−r1(T + 1)−1p
r1(T − 1)(T + 1)−1r1

−T −1r2 + r2T
p
p1
T − T −2 p

p1

−pr2 p
p1
T 2 − T −1 p

p1
r1

p T
−1p− pT r1

p

 .

In fact, this operator is a Hamiltonian operator as stated in the following theorem.

Theorem 4.1. The operator H = PC given by (26) is a Hamiltonian operator and
it forms a Hamiltonian pair with

(27) H0 =

 0 0 p
0 T − T −1 0
−p 0 0

 .

Proof. Let us introduce the transformation

u =
p

p1
, v = −r2, w = r1,(28)

whose Frechet derivative is

(29) D(u,v,w) =

 1
p1
− p

p21
T 0 0

0 0 −1
0 1 0

 =

 1
p1
− u

p1
T 0 0

0 0 −1
0 1 0

 .

Under transformation (28), H0 and H become

(30) D(u,v,w)H0D†(u,v,w) =

 0 −u(1− T ) 0
(1− T −1)u 0 0

0 0 T − T −1


and

D(u,v,w)HD†(u,v,w)

=


u(T −1 − T 2)(T + 1)−1u −u(T − 1)v u(1− T )(T −1 + 1)−1w

v(T −1 − 1)u wT −1u− uT w −uT 2 + T −1u

w(T + 1)−1(T −1 − 1)u T −2u− uT w(T − 1)(T + 1)−1w
+T −1v − vT

 ,

which form a Hamiltonian pair for three component Toda system with Lax operator

L = T −2 + wT −1 + v + uT .

Here we used the same notation as in [17], where the Hamiltonian pair is explicitly
given. Thus we proved the statement. �

Remark 4.2. (1) This theorem can also be proved by verifying operator H
defining a Poisson bivector as used in [7].

(2) Another method to prove this statement is using recent results on preHamil-
tonian operators [19, 20]. We call a difference operator preHamiltonian if
its image is a Lie subalgebra with respect to the Lie bracket of evolution-
ary vector fields. Direct computation shows that operator P is indeed a
preHamiltonian operator.
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Theorem 4.1 induces the following result on the invariant evolutions (22).

Theorem 4.2. The invariant evolution in the centro-affine space R3 described by

(x)t = (x, x1,
x2
p

)

 0
−p−2

p−1

0

(31)

induces the integrable system

(32)

ptr1t
r2t

 =

 pr2
p
p1
− p−2

p−1

r1 p−1

p −
p
p1
r11

 = Hδr2 = H0δ

(
p−1
p
r1 +

(r2)2

2

)
,

where a Hamiltonian pair H and H0 is given in Theorem 4.1, and it becomes 3-
component Toda lattice (15) under the transformation

u =
p

p1
, w1 = r1, w2 = −r2.(33)

Proof. Taking v = C
(
0, 0, 1

)T
=
(

0,−p−2

p−1
, 0
)T

, we get (31) from (22) and (32)

from (23). Moreover, equation (32) is a biHamiltonian systems since H and H0

form a Hamiltonian pair following from Theorem 4.1.
Under the transformation we have ut = pt

p1
− p
p21
p1,t = p

p1
r2− p

p1
r21 = u(w2

1−w2).

After direct calculation for wit, i = 1, 2, we obtain the 3-component Toda lattice as
stated. �

Notice that e2 =
(
0, 1, 0

)T
is in the kernel of H0. if we take

v = −Ce2 =
(
(T + 1)−1r1, T −1r2, T −1p

)T
in (23), we get the following integrable nonlocal equation

pt = −p(1 + T )−1r11,

r1t = r2−1 − r2 − r1(T − 1)(1 + T )−1r1,

r2t = p−1

p −
p
p1
,

(34)

which becomes the nonlocal 3-component Toda lattice (16) under the transforma-
tion (33).

4.2. Towards the general centro-affine case. For n-dimensional centro-affine
space, we can, in principle, carry out the same study as we did for the case of
centro-affine R3. However, the explicit formula of operator P (in (24)) in this case
is rather large and thus we won’t write down here. We simply present the expression
for matrix N and some results.

Assume that the general invariant evolution is given by

(35) (x)t = ρ−1v, v =
(
v1, v2, · · · , vn

)T
,

where v1, v2, · · · , vn are arbitrary functions of the invariants rk, k = 1, · · · , n − 1
and p and their shifts. We know that N = ρtρ

−1. Thus the first column of N is
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−v, the k−th column of N is Mk−1v for k = 2, · · · , n− 1 with

(36) M =



0 0 0 · · · 0 0 1
pT

T 0 0 · · · 0 0 −r1
p T

...
...

...
...

...

0 0 0 · · · T 0 −rn−2

p T
0 0 0 · · · 0 (−1)n−1pT (−1)nrn−1T

 ,

and the last column of N can be obtained from the structure equation (7), namely,

N1,n =
(−1)n−1

p2
T Nn,n−1,

Nj+1,n =
(−1)n−1T Nj,n−1

p
− rjN1,n, j = 1, · · · , n− 2,

Nn,n = −(N1,1 + · · ·+Nn−1,n−1),

reflecting the fact that matrix N is traceless.

Theorem 4.3. The invariant evolution in the centro-affine space Rn+1 given by

(x)t = (x, x1, · · · ,
(−1)n

p
xn)

(
0,− p−n

p1−n
, 0, · · · , 0

)T
(37)

induces the integrable system
pt = (−1)nrnp,

r1t = − p−n

p1−n
+ p

p1
,

rjt = rj−1
pj−1−n

pj−n
− rj−11

p
p1
, j = 2, · · · , n,

(38)

which becomes the n+ 1-component Toda lattice (13) under the transformation

(39) u =
p

p1
, wk = (−1)k+1rk, k = 1, · · · , n.

Proof. From the given invariant evolution (37), we know v =
(

0,− p−n

p1−n
, 0, · · · , 0

)T
.

Thus we get the expression of N using the formula above. Alternatively we deter-
mine N using the structure equation (7): the nonzero entries are

Ni+1,i = T i−1 p−n
p1−n

, i = 1, 2, · · · , n− 1; Nn+1,n = (−1)np−1;

N1,n+1 =
1

p
; Ni+1,n+1 = −r

i

p
, i = 1, 2, · · · , n− 1

and further obtain the corresponding flow of invariants as given by (38). The second
part of the statement can be proved by direct calculation of changing variables. �

Similarly, we can get the result of the invariant evolution linking with nonlocal
multi-component Toda lattices as in the centro-affine R3.

Theorem 4.4. The invariant evolution in the centro-affine space Rn+1 given by

(x)t = (x, x1, · · · , (−1)n
xn
p

)T −1
(∑n−2

k=0 T −kη, r2, r3, · · · , rn, p
)T
,(40)
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where η = (1 + T −1 + · · ·+ T 1−n)−1r1, induces the integrable system
pt = −pη,
rjt = rj+1

−1 − rj+1 − rj(1− T −n+j)η, j = 1, · · · , n− 1,

rnt = (−1)n
(
p−1

p −
p
p1

)(41)

which becomes the nonlocal n + 1-component Toda lattice (14) under the transfor-
mation (39).

Proof. The second part of the statement can be proved by direct calculation of
changing variables. For the proof of the first part of statement, we denote

η = (1 + T −1 + · · ·+ T 2−n)η.(42)

From the given invariant evolution (40), it leads to the first column of matrix N as

−
(
T −1η, T −1r2, T −1r3, · · · , T −1rn, T −1p

)T
. Using the structure equation (7), we

can determine N as follows

N = −



T −1η 1 0 · · · 0 0
T −1r2 η − r1 1 · · · 0 0
T −1r3 0 T (η − r1) · · · 0 0

...
...

...
...

T −1rn−2 0 0 · · · 1 0

T −1rn 0 0 · · · T n−2(η − r1) (−1)n
p

T −1p 0 0 · · · 0 ξ


,

where ξ = (T n−1−T −1)η + (1−T n−1)r1. Moreover, we get the flow for invariants
pt = p(T −1η − r1),

rjt = rj(T −1−T j−1)η + (T −1−1)rj+1−rj(1−T j−1)r1, j = 1, · · · , n− 1,

rnt = rn(T −1 − T n−1)η − rn(1− T n−1)r1 + (−1)n
(
p−1

p −
p
p1

)
.

Note that N is traceless under the given relation between η and r1, that is,

r1 = (1 + T −1 + · · ·+ T 1−n)η.

Substituting it and (42) into the above flow, we obtain the system (41). �
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