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Abstract 8 

Biomass fuels are widely used as a renewable source for heat and power generation. Alkali 9 

metals in a biomass fuel have an significant impact on furnace safety as such metals lead to 10 

fouling and slagging in the furnace and corrosion of water pipes. This paper presents a technique 11 

for dynamic predicting Potassium (K) concentration in a biomass fuel based on spectroscopic 12 

analysis and different recurrent neural networks. A miniature spectrometer is employed to 13 

acquire the spectroscopic signals of K in different biomass fuels, including peanut shell, willow, 14 

corn cob, corn straw and wheat straw, and their blends. The spectroscopic features of K are 15 

extracted. The factors that influence the spectral intensity of K in the biomass fuels are 16 

investigated. A basic recurrent neural network (RNN), and its variants, i.e., long short-term 17 

memory neural network (LSTM-NN) and deep recurrent neural network (DRNN), are 18 

constructed using the spectroscopic signal of K from the spectrometer. The performances of the 19 

neural networks for the dynamic prediction of K concentration are compared and analysed 20 

theoretically and experimentally. It is found that the relative error in the K concentration 21 

prediction through the use of the DRNN model is within 6.34% whilst the LSTM-NN and RNN 22 

models give errors slightly greater than this.  23 
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List of symbols 28 

𝑏𝑐 Bias of the memory unit 𝑉𝑜 Weight of output layer of the output gate 

𝑏𝑓 Bias of the forget gate 𝑊𝑐 Weight of input layer of the memory unit 

𝑏𝑖 Bias of the input gate 𝑊𝑓 Weight of input layer of the forget gate 

𝑏𝑜 Bias of the output gate 𝑊𝑖 Weight of input layer of the input gate 

𝑐𝑡 Memory unit 𝑊𝑜 Weight of input layer of the output gate 

ℎ𝑡 Output of the hidden layer 𝑊(ℎℎ) Weight matrix from ℎ𝑡−1 to ℎ𝑡 

𝐾 Kurtosis 𝑊(ℎ𝑥) Weight matrix from 𝑥𝑡 to ℎ𝑡 

N Number of samples 𝑊(𝑠) Weight matrix from ℎ𝑡 to 𝑦𝑡 

𝑆 Skewness coefficient 𝑥𝑖 Radiation intensity of the i-th sample 

𝑈𝑐 Weight of hidden layer of the memory unit 𝑥𝑡 Input of the input layer 

𝑈𝑓 Weight of hidden layer of the forget gate 𝑦𝑡 Output of the output layer 

𝑈𝑖 Weight of hidden layer of the input gate μ Mean value of the sample 

𝑈𝑜 Weight of hidden layer of the output gate σ Standard deviation of the sample 

𝑉𝑓 Weight of output layer of the forget gate 𝛿( ) Sigmoid function 

𝑉𝑖 Weight of output layer of the input gate   

  29 



 30 

1 Introduction 31 

As one of important renewable energy sources, biomass fuels have the advantage of abundant 32 

varieties and environmental friendliness [1]. It has been widely used either as a single fuel or a 33 

blend of different solid fuels for generating electricity or thermal power. In China, biomass 34 

power generation has grown steadily and accounted for about 2% of the total power field from 35 

2006 to 2017, marking that China is the second largest country in the world in the biomass power 36 

generation, only after the United State [2]. However, biomass combustion systems often suffer 37 

from severe operation problems, including poor combustion stability, low combustion efficiency, 38 

and furnace fouling and slagging with potential safety concerns [3, 4]. It is known that a biomass 39 

fuel contains generally high volatile matter, high fixed carbon concentration, low moisture 40 

content and low ash concentration. It also has high alkali metal (Potassium and Sodium) 41 

concentrations which are main contributor to furnace fouling and slagging. The potassium  42 

concentration is relatively high in the ash and the melting point of the formed compounds is 43 

generally low. So, it is molten at a high temperature and easy to slag on the water-cooled wall, 44 

reducing the heat conduction efficiency of the boiler [5]. It is therefore highly desirable to detect 45 

on-line continuously the fouling and slagging in biomass-fired boilers. 46 

 47 

Current techniques available for detecting fouling and slagging in a biomass-fired boiler are 48 

mostly off-line, where the samples of ash and slagging are taken, and the ash fusion temperature 49 

and alkali metal concentrations are analysed in laboratory. There are some laboratory-based 50 

methods which are commonly used off-line to analyse alkali concentration in biomass fuels. 51 

They include scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-Ray 52 

fluorescence (XRF) [6, 7]. Although potassium (K) and sodium (Na) release characteristics 53 

during biomass combustion can be obtained, these methods require sophisticated and expensive 54 



laboratory equipment and are unsuitable for online operation. As the type of biomass or their 55 

blends may change unexpectedly during combustion, there is a pressing need to measure the K 56 

concentration online continuously for combustion optimisation under flexible operation 57 

conditions.  58 

 59 

A burner flame contains extensive information about the fuel and the combustion process. The 60 

spectroscopic information of the flame is closely related to flame temperature, fuel properties, 61 

operation conditions, and pollutant emissions. Optical diagnostic techniques, such as laser-62 

induced break down spectroscopy (LIBS), have been used for the online measurement of K and 63 

Na concentrations in flames. Hus et al. [8] measured the release concentrations of K and Na 64 

during the combustion of pine wood pellet based on the LIBS technology, and analysed the peak 65 

release concentrations of Na and K during different combustion stages. Liu et al.  [9] conducted 66 

multi-point LIBS measurement on the K release characteristics of poplar wood and corn straw. 67 

Flame emission spectroscopy (FES) was also applied to detect alkali release from combustion. 68 

Lim et al. [10] used optical emission spectroscopy to investigate alkali metal release from 69 

biomass combustion. Sadeckas et al.[11] measured the emission intensities of Na, Ca, and K 70 

from the combustion of single wood and straw pellets doped with known concentrations of Na, 71 

Ca, and K by using the ICCD, and analyzed the alkali emission characteristics in terms of 72 

relative intensity emission and integrated emission intensity at two different temperatures. With 73 

the use of the FES technique and inductively coupled plasma mass spectrometer (ICP-MS), 74 

Paulauskas et al.[12] studied the capability and the accuracy of chemiluminescence-based 75 

sensors to measure the spontaneous emission of K and Na from the combustion of single wood 76 

and straw pellets with different alkali concentrations at 1000°C. The results have shown that the 77 

emission intensity of alkali radicals depends on alkali concentrations in the samples and K and 78 

Na radical emission intensities increase with alkali concentrations in the samples. He et al. [13] 79 



established the functional relationship between K concentration and radiation intensity of K 80 

characteristic spectral lines in Camphorwood and rice husk flames. For the municipal solid waste 81 

incinerators, they developed a portable spectral system to determine temperature and gaseous 82 

phase Na and K concentrations. The experimental results have indicated that the released 83 

gaseous phase Na and K correlated with both temperature and primary air in incinerators [14]. 84 

The functional model between the radiation intensity of Na, temperature, and Na concentration 85 

was established based on the FES technique and calibration experiments. Yan et al. [15, 16] 86 

analyzed the characteristics of the temperature and Na concentration in different combustion 87 

stages. In the above methods, alkali metal concentration was measured and analyzed off-line 88 

under different combustion stages (devolatilization stage, char, and ash stage). At the same time, 89 

in order to obtain the concentration of gaseous phase Na and K in the flame, a calibration 90 

procedure needs to be followed However, continuous variations in alkali metal concentration 91 

during combustion are seldom considered. This paper proposes a method for the online 92 

continuous measurement of K concentration through RNN modelling, aiming to achieve 93 

continuous monitoring and optimization of combustion processes.  94 

 95 

This paper presents the dynamic prediction of K concentration in biomass fuels through flame 96 

spectroscopic analysis and recurrent neural network modelling. The spectroscopic information 97 

of the biomass-fired flame is obtained using a miniature spectrometer on a lab-scale combustion 98 

test rig under different operation conditions. Three recurrent neural networks, i.e., basic 99 

recurrent neural network (RNN), long short-term memory neural network (LSTM-NN) and 100 

deep recurrent neural network (DRNN) are constructed based on the spectroscopic features 101 

extracted from the spectroscopic information obtained. The RNNs are capable of processing 102 

the sequence data of the flame. The nodes between the hidden layers of such networks are 103 

connected. The inputs of a hidden layer include not only the output of the input layer but also 104 



the output of the previous hidden layer. These unique features enable the RNNs to remember 105 

the information of the previous state and apply it to the computation of the current output of the 106 

model, making the RNNs to be a potential soft computing approach to predict the K 107 

concentration in biomass fuels based on the flame spectroscopic information. A series of 108 

experiments were conducted to examine the performance of the RNN models for the dynamic 109 

prediction of K concentrations in five typical biomass fuels. Meanwhile, data driven models 110 

based on the conventional BP neural network (BP-NN) and support vector machine (SVM) are 111 

also established and trained for purpose of a direct comparison with the RNNs. It should be 112 

mentioned that, in this study, Sodium (Na), as another common alkali metal in a biomass fuel, 113 

is also often regarded as a main contributor for fouling and slagging in biomass combustion. 114 

However, the Na concentration in the tested biomass fuels is much lower than the K 115 

concentration, and is thus not included in this study. 116 

 117 

2 Methodology 118 

2.1 Technical strategy  119 

Fig. 1 shows the block diagram of the recurrent neural network models for the dynamic 120 

prediction of the K concentration in biomass fuel. The spectroscopic signal of the flame is 121 

obtained using a spectrometer over the spectral range from 200 nm to 1100 nm. The spectral 122 

intensity of K is also acquired by the spectrometer at the wavelength of 769.89 nm. A set of 123 

characteristic parameters, including oscillation frequency, radiant energy, mean, variance, 124 

peak-to-peak value, skewness and kurtosis coefficient are then extracted from the signal. These 125 

features, together with the flame temperature which is measured by a multi-channel 126 

thermometer, are used as the inputs of the prediction models. The expected K concentration 127 

(ground truth), which is determined through element analysis, is taken as the output  of the 128 

models. Three recurrent neural network (RNN) models, including the basic RNN, LSTM-NN 129 



and DRNN are trained, validated and tested. It should be noted that the LSTM-NN and DRNN 130 

are the variants of the RNN and are also considered for the intended application. 131 
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Fig. 1 Block diagram of recurrent neural network models for K concentration 133 

prediction. 134 

2.2 Recurrent neural network 135 

The RNN is a type of neural network which has a memory function and can be used to process 136 

sequential information [17]. The architecture of the RNN is shown in Fig. 2. The RNN has a 137 

“memory” which captures information about what has been calculated at the present state. All 138 

neurons in the hidden layer are linked in a chain. The output at the current time is not only 139 

related to the current input but also depends on the network status in the past. The RNN is 140 

widely used in text classification, machine translation, language recognition and image analysis 141 

[18, 19].  142 
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Fig. 2 Architecture of the RNN.  144 



In Fig.2, 𝑥𝑡 and ℎ𝑡 are the input and output of the hidden layer, respectively, and 𝑦𝑡 is the output 145 

of the output layer at the time 𝑡. During the training, the input data is forward-propagated for 146 

calculation whilst the error is back-propagated to update weight parameters. The outputs of the 147 

hidden layer and the output layer are expressed, respectively, as follows: 148 

ℎ𝑡 = 𝑓(𝑊(ℎℎ)ℎ𝑡−1 +𝑊(ℎ𝑥)𝑥𝑡)                                                 (1) 149 

𝑦𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊(𝑠)ℎ𝑡)                                                            (2) 150 

where 𝑊(ℎℎ) is the input weight matrix from ℎ𝑡−1 to ℎ𝑡, 𝑊
(ℎ𝑥) is the input weight matrix from 151 

𝑥𝑡 to ℎ𝑡, 𝑊
(𝑆) is the weight matrix from ℎ𝑡 to 𝑦𝑡, and 𝑓 is the activation function [20]. 152 

 153 

2.3 Long short-term memory neural networks 154 

The LSTM-NN is an improved version of the RNN, which was proposed by Hochreiter and 155 

Schmidhuber [21]. The LSTM-NN can effectively process long-distance sequence information 156 

and overcome gradient disappearance, gradient explosion and lack of long-term memory ability 157 

during the training process of an RNN. Fig.3 shows the schematic diagram of the LSTM-NN 158 

architecture, which is composed of an input gate (𝑖𝑡), a forget gate (𝑓𝑡) and an output gate (𝑜𝑡). 159 

The forget gate is a key element, which decides whether to keep the information among neurons 160 

during the information transmission. It takes the output of the previous moment and the input 161 

of the current moment as inputs, and determines the degree of retention or forgetting through 162 

the activation function. The input gate, forget gate and output gate are each connected to a 163 

multiplier which controls the input and output of information and the state of each cell.  164 
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Fig. 3 Architecture of the LSTM-NN. 166 

The 𝑥𝑡  and ℎ𝑡−1, which present the hidden state of the LSTM-NN at the previous time, are sent 167 

to the LSTM-NN through the three gates. For each gate, the input information is calculated 168 

using the logic function. The information at the input gate is processed by a nonlinear function, 169 

and added with the state of the memory unit, which is processed by the forget gate, to form a 170 

new state of the memory unit 𝑐𝑡. Then output ℎ𝑡 of the LSTM-NN cell is formed through the 171 

operation of the nonlinear function and the dynamic control of the output gate by using the 172 

following equations: 173 

𝑓𝑡 = 𝛿(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑉𝑓𝑐𝑡−1 + 𝑏𝑓)                                      (3) 174 

𝑖𝑡 = 𝛿(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑉𝑖𝑐𝑡−1 + 𝑏𝑖)                                       (4) 175 

𝑜𝑡 = 𝛿(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑉𝑜𝑐𝑡 + 𝑏𝑜)                                         (5) 176 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)                             (6) 177 

ℎ𝑡 = 𝑜𝑡𝑡𝑎𝑛ℎ(𝑐𝑡)                                                                       (7) 178 

where 𝑊𝑓 , 𝑊𝑖 , 𝑊𝑜 , 𝑊𝑐 , 𝑈𝑓 , 𝑈𝑖 , 𝑈𝑜 , 𝑈𝑐 , 𝑉𝑓 , 𝑉𝑖  and 𝑉𝑜  are the parameters of the matrices, 𝑏𝑓 , 179 

𝑏𝑖, 𝑏𝑜 and 𝑏𝑐 are the bias values, and 𝛿( ) is the Sigmoid function. 180 

 181 

2.4 Deep recurrent neural network 182 

The DRNN is another improved version of the original RNN. It has more than one hidden layers 183 

and can be directly superimposed with multiple hidden layers or directly added one or more 184 

fully connected layers between the two hidden layers. The dropout method [22] can be used to 185 



prevent overfitting and improve the predictability of the network. For any hidden layer, the 186 

neurons are discarded with a certain probability during training, which makes the neurons 187 

inactivate randomly. In this way, not all the neurons are trained, and thus, it can avoid the 188 

influence of individual neurons on the network. After training, all the neurons will still be used 189 

in the calculation [23].  190 

 191 

In comparison with the RNN, the DRNN has more network layers and parameters and is able 192 

to complete large-scale computing tasks and improve the nonlinear capability of the network. 193 

In general, if there is sufficient data, the performance of the DRNN is better than that of the 194 

single-layer RNN [24]. 195 

 196 

3 Results and Discussion 197 

3.1 Experimental setup 198 

To examine the effectiveness of the proposed recurrent neural network models for the dynamic 199 

prediction of K concentration in biomass fuels, a series of experiments were conducted on a 200 

laboratory-scale biomass-air combustion test rig. The experimental setup along with the 201 

arrangement of the equipment used is shown in Fig. 4. The test rig consists mainly of a burner 202 

resided vertically in an enclosed combustion chamber, a precision screw feeder, and mass 203 

flowmeters. A miniature spectrometer (Ocean Optics, USB2000+) with associated application 204 

software was used to acquire the spectroscopic signal of the flame. The spectrometer has an 205 

optical fibre probe with an angle of view of 25º and a 2048-pixel linear array CCD, offering 206 

good accuracy and repeatability over the considered spectral range (slit: 25 µm, optical 207 

resolution: 1.7-2.1 nm at the full width at half maximum, signal-to-noise ratio: 250:1). The 208 

height of biomass combustion flame is about 10-15 cm. The distance between the tip of the 209 

optical fiber probe and the flame was measured to ensure the tip of the probe optically covers 210 



the whole flame. Five typical biomass fuels, i.e., peanut shell, corn cob, corn straw and wheat 211 

straw were used in the experiments. The pre-pulverised biomass in the hopper, in the form of 212 

powder between 100 and 200 meshes, was fed into the fuel pipe system via the screw feeder 213 

and then pneumatically conveyed to the burner before being injected into the combustion 214 

reaction zone. The amount of fed biomass is controlled by varying the feeding frequency of the 215 

feeder. Methane at a fixed flowrate of 0.5 L/min was used to support the combustion at the 216 

initial stage of the biomass-air combustion. A variety of test conditions were then obtained 217 

through the combination of different biomass and air supplies. The spectrometer acquired the 218 

spectral intensity of the biomass-air flame under different combustion conditions over the 219 

spectral range of 200 nm -1100 nm. The data acquisition and storage are realized using 220 

SpectraSuite software (supplied by the spectrometer supplier). Through this software, the 221 

spectral signal of the specified band is acquired with up to three decimal places at most. If the 222 

decimal place of the specify band exceeds 1, the spectrometer will automatically locate the 223 

signal closest to the specify band. A multi-channel thermometer with 8 k-type thermocouples 224 

was also used to measure the temperature of the flame. Both the signals were transmitted to the 225 

computer system for further computation. 226 

 227 

Fig. 4 Experimental setup. 228 
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3.2 Analysis of biomass fuels  229 

The proximate and ultimate analyses of the five biomass fuels are summarised in Table 1. The 230 

volatile and fixed carbon are combustible components whereas moisture and ash are non-231 

combustibles. As can be seen, the wheat straw and corn straw have the highest ash content 232 

among the five biomass fuels. The K concentration, which has significant influence on slagging, 233 

exists in ash. The higher the ash content, the easier the slagging during combustion. The K 234 

concentrations of biomass fuels and their blends were analysed with the support of a 235 

professional testing agency. Each biomass sample was digested for the element analysis. Each 236 

fuel sample had a total of 0.6 g and was split into three equal proportions to conduct three 237 

repeated measurements. Each test was done by using firstly nitric acid and hydrofluoric acid to 238 

digest the volatile elements of the sample in an enclosed Teflon digestion tank, and then boric 239 

acid solution to remove fluoride. The remained solid sample was further digested by a digester 240 

(SPEED-WAVE, Germany) to obtain clean solution. Finally, the K concentration in the 241 

solution was measured by an inductively coupled plasma atomic emission spectrometer 242 

(Leeman Labs Prodigy, USA). Table 2 summarizes the K concentrations of the tested biomass 243 

fuels and their blends along with their measurement uncertainties. For each fuel, the K 244 

concentration is the mean of the three repeated measurements whilst the measurement 245 

uncertainty is the averaged deviation of the three measurements from the mean.  246 

Table 1. Proximate and ultimate analysis of the tested biomass fuels (as received). 247 

Biomass 
Moisture 

(%) 

Volatile 

(%) 

Ash 

(%) 

Fixed 

Carbon (%) 

C 

(%) 

O 

(%) 

H 

(%) 

S 

(%) 

N 

(%) 

Peanut shell 7.87 70.23 4.21 17.69 43.03 49.52 5.56 0.51 1.37 

Willow 9.70 69.93 3.22 17.14 44.67 49.24 5.33 0.56 0.20 

Corn cob 5.87 74.55 1.34 18.24 39.68 59.62 <0.1 0.51 0.19 

Corn straw 9.50 64.73 9.06 16.70 38.57 44.59 5.17 0.46 1.19 

Wheat straw 10.18 58.66 17.58 13.58 32.17 63.18 3.97 0.43 0.26 

 248 



Table 2. K concentrations of the tested biomass fuels and their blends.  249 

Biomass 
Peanut 

shell 
Willow 

Willow 

& Corn 

cob* 

Corn cob 

Corn cob 

& Corn 

straw* 

Corn 

straw 

Corn cob 

& Wheat 

straw* 

Wheat 

straw 

K 

concentration

（μg/g） 

2600 3400 5695 5845 10943 13265 16147 21495 

Measurement 

uncertainty

（μg/g） 

±4.93 0.00 ±9.93 ±19.88 ±2.49 ±4.99 ±2.49 ±74.88 

Note: * mixed equally (50:50) in mass. 250 

 251 

3.3 Spectroscopic characteristics of K in biomass fuels 252 

Fig.5 shows the spectral intensity distribution of a willow flame, where two peaks at 588.99 nm 253 

and 769.89 nm attribute to Na and K elements, respectively. As can be seen, the spectral 254 

intensities of Na and K are in the order of 104 with a reference to the spectral intensities of the 255 

flame in other wavelength ranges. 256 

 257 

Fig. 5 Spectral intensity distribution of a willow flame. 258 



In order to investigate the spectroscopic characteristics of K in biomass during the combustion 259 

process, willow and wheat straw were fired on the test rig. Different fuel flowrates were 260 

achieved by alternating the speed of the screw feeder whilst the methane and air flow rates 261 

remained constant. The feeding frequency of the screw feeder was set to 3 levels, 2 Hz, 3 Hz 262 

and 4 Hz. The miniature spectrometer collected the spectral intensities of the K for the two 263 

biomass fuels, which the integration time is 10 ms.  264 

 265 

In order to establish the relationship between the amount of fuel and feeding frequency, 266 

calibration experiments were conducted. The range of feeding frequency of screw feeder is 267 

from 0 Hz to 30 Hz. The amount of fuel was measured at a 5 Hz increment. The calibration test 268 

was repeated for 10 times at each speed frequency. The feeding frequency, amount of fuel 269 

supplied under different frequency, are plotted in Fig.6. There exists a linear relationship 270 

between the amount of fuel supplied and the feed frequency. Because the diameter of the burner 271 

is very small, the burner will be blocked if the fuel feed rate is too high during the test. Therefore, 272 

the frequency of the feeder is set to 2 Hz, 3 Hz and 4 Hz in this study. Such feeder rates allow 273 

the fuel to be fully injected to the burner for combustion.  274 



 275 

Fig. 6 Screw feeder calibration results. 276 

The mean spectral intensities and standard deviations (as error bars) of K concentration in 277 

willow / wheat straw flames for three different fuel flowrates are plotted in Fig.7, where each 278 

data point was computed for 12,000 readings. It is evident that the spectral intensity of K in the 279 

wheat straw flame is higher than that in the willow flame. Table 2 shows that the K 280 

concentration in wheat straw is higher than that in willow. This also verified that emission 281 

intensity of alkali depends on alkali concentrations in the samples[12]. It is also clear that the 282 

spectral intensity of K has positive correlation with the fuel flowrate, i.e., the greater the fuel 283 

flowrate, the stronger the spectral intensity of K. The K concentration in the flame increases 284 

with the amount of fuel. For a large amount of fuel, more K concentration is released when the 285 

fuel is completely burnt under the same combustion conditions.   286 



 287 

Fig. 7 Mean spectral intensities of K in willow and wheat straw flames under different 288 

fuel flowrates. 289 

Similarly, Fig. 8 illustrates the means and standard deviations (as error bars) of the 12,000 290 

readings in willow / wheat straw flames for three different air flowrates under the feeder speed 291 

of 3 Hz and the methane flow rate of 0.5 L/min. As can be seen, the spectral intensity of K in 292 

the wheat straw flame is still higher than that in the willow flame. It is related to the K 293 

concentration in the fuel. When the amount of fuel is constant, the complete combustion 294 

depends on the amount of air. The air flowrate has a little impact on the spectral intensity of K 295 

in both the biomass flames. The reason is that it is complete combustion under different air 296 

flowrates. It is also found that the spectral intensities of K in the willow / wheat straw flames 297 

under air flowrates of 6.5 L/min and 8.0 L/min are about 10% higher than that under 5.0 L/min, 298 

which is believed to be due to the increased combustion intensity under higher air flowrates. It 299 

illustrates that the spectral intensity of K is related to the biomass fuel type and combustion 300 

state. 301 



 302 

Fig. 8 Mean spectral intensities of K in willow and wheat straw flames under different 303 

air flowrates.  304 

3.4 Dynamic prediction of K concentration 305 

3.4.1 Data pre-processing and feature extraction  306 

Experimental data for the five biomass fuels and three blends, i.e., willow & corn cob, corn cob 307 

& corn straw, and corn cob & wheat straw, mixed equally (50:50) in mass (Table 2), were used 308 

to construct the RNN model for the dynamic prediction of the K concentration. Data pre-309 

processing was carried out to remove the dark noise, blackbody radiation and outlier data during 310 

the data acquisition. The dark noise was caused by the weak dark current in the CCD sensor of 311 

the spectrometer. It was filtered by applying appropriate thresholding values to the 312 

spectroscopic signals. The continuous spectrum is excluded in the data pre-processing. It is 313 

about 1% of the spectral intensity of K (refer to Fig. 5) in all the cases studied, which is removed 314 

by subtracting it from the original signal in the application software.  315 

 316 

After the data pre-processing, a total of 12000 flame spectroscopic data including flame 317 

temperature and the corresponding K concentration (refer to Table 2), were created, where 318 



every 30 spectroscopic data were grouped, making a total of 400 sets of sample data for each 319 

biomass fuel under each test condition. Five single biomass fuels and three blends (refer to Table 320 

1) were tested at a feeder rate of 3 Hz under the methane flow rate of 0.5 L/min and the air of 321 

5.0 L/min, making a total of 3200 sets of data available for the construction and validation of the 322 

three models. 323 

 324 

The spectroscopic features of K, including mean, variance, peak-to-peak value, skewness and 325 

kurtosis coefficients, were extracted from the spectroscopic signal. The skewness and kurtosis 326 

coefficients reflect the asymmetry and steepness of the probability density function of the signal, 327 

which are the third- and four-order moments of the signal, respectively, i.e., 328 

𝑆𝑘 =
1

𝑁
∑

(𝑥𝑖−𝜇)
3

𝜎3
𝑁
𝑖=1                              (9) 329 

𝐾𝑢 =
1

𝑁
∑

(𝑥𝑖−𝜇)
4

𝜎4
𝑁
𝑖=1                                                         (10) 330 

where 𝑥𝑖 is the radiation intensity of the i-th sample of the signal, μ and σ are the mean and 331 

standard deviation of the sample, respectively, and N is the number of samples and set to be 30 332 

in this paper. 333 

 334 

For each biomass fuel, the mean and standard deviation of flame temperatures, mean oscillation 335 

frequency [25] , mean skewness coefficient and mean kurtosis coefficient are summarized in 336 

Table 3. A multi-channel thermometer with 8 k-type thermocouples was used to measure the 337 

temperatures at different points within the flame region. The thermocouples were arranged in 338 

two levels around the flame. For each tested biomass fuel, the flame temperature is the mean of 339 

the temperatures given by the 8 k-type thermocouples, which is presented in Table 3. The 340 

properties of the biomass, such as moisture, volatile, ash and fixed carbon, all have certain 341 

influence on the characteristics of the flame. For instance, the higher the ash content, the lower 342 

the thermal efficiency, and hence the relatively lower flame temperature. The volatile and ash 343 



content of corn cob is the highest and smallest, respectively, among the five single biomass 344 

fuels (refer to Table 1), so the flame temperature of corn cob is higher than that of other biomass 345 

fuel. For the five biomass fuels and their blends, the oscillation frequency of the wheat straw 346 

flame is slightly higher than that of other fuels and the skewness coefficient of K spectral 347 

intensity of the corn straw flame are the highest among the eight biomass fuels. 348 

Table 3. Flame temperature, oscillation frequency, skewness and kurtosis coefficients of 349 

for biomass fuels and their blends. 350 

Biomass 

Mean 

temperature 

(℃) 

Standard 

deviation of 

temperature 

(℃) 

Oscillation 

frequency 

(Hz) 

Skewness 

 coefficient 

Kurtosis 

coefficient 

Peanut shells 1024.09 57.05 2.885 -0.006 2.536 

Willow 1021.38 43.88 2.912 0.020 2.493 

Willow &  

Corn cob 
1000.56 47.92 2.879 0.003 2.452 

Corn cob 1051.59 49.39 2.870 0.014 2.430 

Corn cob & 

Corn straw 
983.22 55.99 2.953 0.001 2.316 

Corn straw 1039.49 49.57 2.937 -0.033 2.393 

Corn cob & 

Wheat straw 
970.53 44.59 2.979 -0.027 2.423 

Wheat straw 959.43 52.78 3.246 0.019 2.449 

 351 

For each biomass fuel, the flame radiation energy, mean, variance and  peak-to-peak value of 352 

K spectral intensity are shown in Fig. 9. Figs. 9(a) and 9(b) indicate that there is a significant 353 

difference in the flame radiation energy and mean of K spectral intensity between the biomass 354 

fuels. The flame radiation energy and mean of K spectral intensity of wheat straw and corn cob 355 

& wheat straw are significantly higher than those of peanut shells and willow. The flame 356 

radiation energy and mean of K spectral intensity of the biomass fuels are consistent with the 357 

K concentrations. It is noted that small step changes in the radiation energy and mean of K 358 

spectral intensity  (Figs. 9(a) and 9(b)) exist and this is believed to be related to the type of 359 

biomass being fed and the operating characteristics of the screw feeder. The variance and peak-360 

to-peak value of K spectral intensity of the fuels are also very different, as shown in Figs. 9(c) 361 



and 9(d). In addition, the variance and peak-to-peak value of the wheat straw and corn cob & 362 

wheat straw flames fluctuate widely. The flame radiation energy and oscillation characterise 363 

the combustion state of the biomass fuel whilst the flame temperature is related to the K 364 

concentration. The characteristic parameters (e.g., mean, variance, peak-to-peak value, 365 

skewness and kurtosis coefficients) of the K spectroscopic signal are good descriptors of the K 366 

spectroscopic signal and thus can reflect the combustion behaviours of biomass fuels. Therefore, 367 

they are selected for the prediction of K content in the models. 368 

 369 

(a) Flame radiation energy. 370 

 371 

(b) Mean of K spectral intensity. 372 



 373 

(c) Variance of K spectral intensity. 374 

 375 

(d) Peak-to-peak value of K spectral intensity. 376 

Fig. 9 Radiation energy, mean, variance and peak-to-peak of K spectral intensity 377 

 378 

3.4.2 Construction and training of the RNN, LSTM-NN and DRNN models 379 

Table 4 summarized the network parameters of the three models to be constructed. The inputs 380 

to the networks conclude the flame temperature, oscillation frequency, radiation energy and 381 

spectroscopic features of K including mean, variance, peak-to-peak value, skewness and 382 

kurtosis coefficients. The output of each network is the predicted K concentration. The 383 

activation functions of the hidden layer and the fully connected layer are the tanh function and 384 



the Leaky ReLU function, respectively. The Leaky ReLU increases the non-linear capability of 385 

the network, which makes the networks trained easier and prevents possible neuron inactivation. 386 

The key features that are identified to train the models are plotted in Fig.9. However, since 387 

some of the features such as flame temperature, oscillation frequency and skewness and kurtosis 388 

coefficients appear very similar between the biomass fuels, only their mean values are listed in 389 

Table 3. 390 

Table 4. Structural parameters of the models. 391 

Model RNN LSTM-NN DRNN 

Number of hidden layers 1 1 5 

Number of neurons in hidden layer 20 20 20×5 

Number of fully connected layers 6 6 6 

Number of fully connected layer neurons 20×2，30×2，10×2 

Activation function tanh，Leaky ReLU 

 392 

3.4.3. Prediction of K concentration in biomass 393 

The prediction results of the K concentration using the RNN, LSTM-NN and DRNN models 394 

and the corresponding errors are plotted in Figs. 10-13. The k-fold cross-validation method was 395 

used to evaluate the performance of the models. In this method, the sample data were divided 396 

into k sets, one of which was selected randomly to test the model, and the rest to train the model. 397 

The test set was selected randomly for k times, and the accuracy of three prediction models are 398 

the average of the prediction accuracies for k times. The k-fold cross-validation method has an 399 

advantage of non-repeated sampling and is often used to optimise the hyper-parameter so that 400 

the model has the best generalisation performance. In this study, k was selected to be 10, i.e., 401 

the 10-fold cross-validation was implemented. A total of 2880 sets of data were used as the 402 

training set, and 320 as the test set for 10 times. The final results from the three models for each 403 

biomass fuel were the average of 10 readings. The short horizontal bars at each data point in 404 



Figs.10-12 indicate the upper and lower limits of the 10 repeated tests for each biomass fuel.  405 

Fig. 13 shows a quantitative comparison of the relative errors for the three models. 406 

 407 

Fig.10 Predicted K concentration based on RNN with reference to the ground truth. 408 



 409 

Fig.11 Predicted K concentration based on LSTM-NN with reference to the ground 410 

truth. 411 

 412 

Fig.12 Predicted K concentration based on DRNN with reference to the ground truth. 413 



 414 

Fig.13 Relative errors of the three RNN models. 415 

Fig.13 shows that the three RNNs can predict the K concentration in the biomass fuels with a 416 

relative error range of (-7.11%, 7.43%), (-5.47%, 6.67%), (-3.18%, 6.34%), respectively, It is 417 

clear that the DRNN model yields the smallest error among the  three models under all the test 418 

conditions. In addition, the relative error for the biomass with higher K concentration (e.g., 419 

wheat straw and corn straw) is smaller than that for the biomass with low K concentration 420 

(Table 2). This may attribute to a greater signal-to noise ratio of the spectral intensity signal 421 

under that conditions.  422 

  423 

The following metrics are employed to evaluate the prediction performance of the RNN, 424 

LSTM-NN and DRNN models. 425 

𝛿MAE =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖

′|𝑛
𝑖=1      (11) 426 

𝛿MAPE =
1

𝑛
∑ |

𝑦𝑖−𝑦𝑖
′

𝑦𝑖
|𝑛

𝑖=1 × 100%    (12) 427 

𝛿RMSE = √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖

′)2𝑛
𝑖=1      (13) 428 



Where 
MAE

 
is the mean absolute error (MAE), MAPE

 
is the mean absolute percentage error 429 

(MAPE), RMSE
 
is the root mean square error (RMSE), iy  is the ground truth, iy

 
is the K 430 

concentration predicted by the different recurrent neural networks, and n is the total number of 431 

test samples. 432 

 433 

Table 5 shows a comparsion of the evaluation metrics for the RNNs. For the tested biomass 434 

fuels and their blends, the K concentration ranges from 2,600 μg/g to 21,495 μg/g. The ratio 435 

between the maximum and minimum K concentrations is around 8. The difference in the ground 436 

truth of the K concentration between the tested biomass fuels (Table 2) is very large and so is 437 

the RMSE of the three prediction models. The MAPE of the three RNN models are all small, 438 

indicating good performance of the models. The training time and computational time for each 439 

model are also evaluated, as summarised in Table 5. It is found that the DRNN and LSTM-NN 440 

models have a longer computational time than the RNN. It is thought that the architecture of 441 

the DRNN model is more complex than those of the RNN and LSTM-NN models, resulting in 442 

a longer computational time. 443 

Table 5. Performance comparison of three recurrent neural networks.  444 

 RNN LSTM-NN DRNN 

RMSE (μg/g) 574.15 563.01 515.29 

MAE (μg/g) 481.37 490.99 435.92 

MAPE (%) 4.72 4.52 4.04 

Maximum errors (%) 7.42 6.67 6.34 

Training time (s) 101 102 102 

Computational time (s) 10-3 10-2 10-2 

 445 



In comparison with the work presented in references [11-16], the online measurement of K 446 

concentration is realized through the prediction models instead of experimental analysis of fuels. 447 

Other researchers [13,15] established a functional relationship between the spectral intensity of 448 

alkali metal, flame temperature, and alkail metal concentration based on experimental data, 449 

where the emission characteristics of alkali materials at different combustion temperatures and 450 

during different combustion stages were examined. In this paper, however, the models for the 451 

prediction of K concentration in a biomass fuel have been established through feature extraction 452 

of K spectroscopic signals.  453 

 454 

For purpose of a direct comparison with the RNNs, data driven models based on the 455 

conventional BP neural network (BP-NN) and support vector machine (SVM) are also 456 

established and trained to predict the K concentration of biomass fuels. The BP-NN has a 457 

structure of a 7-layer full connection layer with an activation function of Leaky ReLU. In the 458 

SVM algorithm the kernel function used is RBF function with kernel parameter of 0.7017 and 459 

penalty factor of 0.3536. The comparative results and relative error of all models for the 460 

prediction of K concentration are plotted in Fig. 14 and Fig. 15, respectively. The relative error 461 

range in the K concentration prediction using the BP-NN and SVM models are (-7.29%, 7.86%) 462 

and (-8.71%, 8.91%), respectively. The average errors for the BP-NN and SVM models, i.e. 463 

5.87% and 7.31%, respectively, are consistently greater than those of the three RNNs, which 464 

are 5.12%, 3.82% and 3.01%, respectively. It is clear that the RNNs have all outperformed the 465 

BP-NN and SVM.  466 



 467 

Fig.14 Predicted K concentration based on the BP-NN, SVM and RNN models. 468 

 469 

Fig.15 Relative errors of the RNN models in comparison with the BP-NN and SVM 470 



4 Conclusions 471 

The recurrent nerual networks for the dynamic prediction of K concentration in biomass fuels 472 

based on the spectroscopic characteristics of flames have been presented. For willow and wheat 473 

straw, experimental tests were conducted under different feeder speeds and air flowrates. The 474 

results have verified that the emission intensity of alkali depends on alkali concentration in the 475 

fuel and that the spectral intensity of K has positive correlation with the fuel flowrate, i.e., the 476 

greater the fuel flowrate, the stronger the spectral intensity of K. For the five single biomass 477 

fuels and three blends, the spectroscopic distribution of the flame and hence the K concentration 478 

are obtained and analysed. The characteristic parameters are analysed, including the flame 479 

radiation energy, oscillation frequency, flame temperature and other parameters (e.g., mean, 480 

variance, peak-to-peak value, skewness and kurtosis coefficients) of the K spectroscopic signal. 481 

The results have demonstrated that these characteristic parameters are good descriptors of the 482 

K spectroscopic signal and can thus reflect the combustion behaviours of the biomass fuels. 483 

The comparative results in terms of the evaluation metrics have demonstrated that the prediction 484 

models, RNN, LSTM-NN and DRNN, have all performed well in predicting the K 485 

concentration with the DRNN model slightly outperforms the other two with a relative error 486 

within 6.34%. The three RNN models have consistently outperformed the BP-NN and SVM 487 

models. In future work the likelihood of slagging in a biomass furnace will be predicted from 488 

the K concentration in order to minimise unexpected downtime of the combustion process. 489 
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