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Abstract. We see the defining properties of constructive mathematics
as being the proof interpretation of the logical connectives and the defi-
nition of function as rule or method.

We sketch the development of intuitionist type theory as an alternative
to set theory. We note that the axiom of choice is constructively valid for
types, but not for sets. We see the theory of types, in which proofs are
directly algorithmic, as a more natural setting for constructive mathe-
matics than set theories like IZF.

Church’s thesis provides an objective definition of effective computability.
It cannot be proved mathematically because it is a conjecture about what
kinds of mechanisms are physically possible, for which we have scientific
evidence but not proof. We consider the idea of free choice sequences and
argue that they do not undermine Church’s Thesis
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Introduction

What makes constructive mathematics constructive? I believe it is two things:
(i) the proof interpretation of the logical connectives, and (ii) restoring the older
meaning of function as rule or method of which it had been stripped by the
development of set theory in late 19C. Both steps are due to Brouwer (1908),
whose point of departure was the paradoxes of set theory.

Brouwer’s intuitionism also drew on his intuitions about free choice sequences
for conclusions about properties of the continuum. Modern constructivism dates
from Bishop (1967) whose treatment of the reals is straightforwardly constructive
and doesn’t make use of free choice sequences. Bridges & Richman (1987) give
a thorough technical comparison of Brouwer’s intuitionism, Bishop-style con-
structivism, and a third strand, Russian constructivism, due to Markov, which
identifies function with recursive function, thus incorporating Church’s Thesis.

Bishop & Bridges (1985) develop constructive analysis within the (informal)
framework of set theory using intuitionistic logic and without the axiom of choice.
A formal system of constructive set theory (CST) along these lines appears in
Myhill (1975). The intuitionist set theory (IZF) of Friedman (1973) is similar,
for a full discussion of these theories see Beeson (1985), ch VIII.



An alternative to CST or IZF as a framework for the formal development of
constructive mathematics, is the intuitionist theory of types of Per Martin-Löf
(1973), and its descendants such as Homotopy Type Theory (Univalent Founda-
tions, 2013). These type theories are based on propositions-as-types and differ
radically from set theories, whose essential ingredient is some version of the
axiom of comprehension.

In the following sections I will cover:

1. Sketch the emergence of propositions-as-types as an alternative to set theory,
with a note on the conflicted status of AC (axiom of choice).

2. Church’s thesis and constructivity
3. Remarks on free choice sequences.

1 From Frege to Martin-Löf

Propositional Functions

The Begriffsschrift of Frege (1879) broke from the analysis, current since Aris-
totle, of the proposition as comprising subject and predicate. Instead we have
an n-ary propositional function applied to n terms

P (a1, . . . , an)

one of the ai might be the grammatical subject, others direct and indirect ob-
jects, but in Frege’s analysis the terms are all treated in the same way. Each term
is a referring (or denoting) expression which has a reference (or denotation). In
the case of a mathematical proposition this will be a mathematical entity like a
number, a function, etc.

But what is the reference of a complete proposition, that is of a propositional
function supplied with its arguments? For Frege it was a truthvalue, either True
or False. If P is a complete (or saturated) proposition for which we have a proof
we can write the judgement

` P

asserting that P has the value True. This is the sole form of judgement in Frege’s
system. Note that the judgement is not manifest, that is valid on its face. To be
justified in writing it we must have a sequence of valid steps in Frege’s system
whose last step is ` P .

Frege’s analysis of meaning in terms of reference led to various difficulties
leading him (Frege, 1892) to introduce a second notion of meaning, sense. So for
example

√
16 and 4 have the same reference but different senses. But the exact

nature of sense remained elusive.
Jumping ahead by 90 years, to Howard (1969), we can see in propositions-

as-types, an elegant solution to Frege’s difficulties. The reference, or denotation,
of a proposition is not a truthvalue, but a type, namely the type of its proofs.
But what is a type?



Types

Russell (1903) in Appendix B “The Doctrine of Types”, defines a type as the
range of significance of a propositional function, that is what we would now call
its domain. This is different from a set, which is the extension of a propositional
function, that is the collection of values for which it is true. Types were intro-
duced in an attempt to block self-reference which appear to be at the root of
the paradoxes which had been found in set theory, such as the Russell paradox.

Applying the doctrine of types to Frege’s analysis of propositions introduces
another form of judgement, which we will write

ai :: Ti

saying that term ai has type Ti. Note that this is a manifest judgement, it should
be verifiable on its face as a condition of well-formation of the formula in which it
stands. To make this judgement we may need context, because in mathematical
reasoning we introduce variables, always with their types e.g.

Let n be a natural number . . .
let f be a function in R→ R . . .

So the general form of a typing judgement is

Γ ` a :: T

where Γ is a sequence of hypotheses introducing variables with their types. This
is a manifest judgement, whose validity can be mechanically checked, as in the
type systems of functional programming languages such as Haskell or Agda.

Types versus Sets

Types and sets are quite different in behaviour

– set membership e ∈ S is not in general decidable but requires proof; that is
e ∈ S is a proposition not a judgement.

– basic operations on sets include union S ∪ T and intersection S ∩ T , which
usually make no sense on types; the natural operations on types are cartesian
product A ⊗ B, disjoint sum A ⊕ B, the function type A → B and the
dependent versions of product and function types.

– sets are equal iff they have the same elements — this is the axiom of exten-
sionality ; the situation with types is more complicated — including that in
constructive type theories we must distinguish propositional equality from
definitional equality. In Homotopy Type Theory, types are propositionally
equal when they are isomorphic.

– set theory has the axiom1of separation, or restricted comprehension: if T
is a set and P a property we can form the set S = {x ∈ T | P (x)}. This
effectively erases the distinction between type and set implicit in Russell’s
doctrine of types. ZF set theory is typeless, or to put it another way there
is only one type — everything is a set.

– the axiom of choice of set theory is constructively problematic, as we discuss
later, while a choice principle is provable in the main versions of type theory.

1 technically an axiom schema



Propositions as Types

The standard account of intuitionistic logic is the BHK (for “Brouwer, Heyting,
Kolmogorov”) or proof interpretation, see for example (Troelstra & van Dalen,
1988). Paraphrasing slightly2 we have

1. A proof of A ∧B is given by presenting a proof of A and a proof of B.
2. A proof of A ∨ B is given by presenting a proof of A or a proof of B and

saying which has been given.
3. A proof of A ⊃ B is a rule or method for constructing from any proof of A,

a proof of B.
4. Absurdity ⊥ (contradiction) has no proof; a proof of ¬A is a rule or method

for constructing from any proof of A, a proof of contradiction.
5. A proof of (∀x : D)A(x) is a rule or method which for any d : D constructs

a proof of A(d).
6. A proof of (∃x : D)A(x) is given by providing a d : D, and a proof of A(d).

From 2 we see why the law of the excluded middle is rejected. To assert
P ∨ ¬P in the general case would require a universal decision procedure for
mathematical propositions.

Given the above definitions, propositions–as–types (aka the Curry-Howard
isomorphism) jumps out, once we are given the idea. We see that a proof of
A ∧ B is a pair (a, b) of A ⊗ B; that a proof of A ∨ B is a left or right element
of the disjoint union A⊕B; that a proof of A ⊃ B is a function in A→ B; that
Absurdity is the empty type. The relation of proof to proposition proved is seen
to be the same “::” judgement already met, of a term to its type.

The interpretations of rules 5 & 6 for the quantifiers require, respectively,
dependent function and product types. In stating these rules I have the range of
quantification, D, a type. Universal quantification over a set, (∀x ∈ S)A(x), can
be translated as (∀x : T )P (x) ⊃ A(x) where P is the defining property of set S
in type T . Similarly (∃x ∈ S)A(x) can be translated (∃x : T )P (x) ∧A(x).

The coincidence of the types of closed terms in typed λ-calculus with the
tautologies of intuitionistic implication, and of the terms themselves with natural
deduction proofs of these formulae, was first noted in Curry & Feys (1958).
Howard (1969) extends this to a lambda calculus with sums and products and
full intuitionistic first order logic.

The Intuitionist Theory of Types of Martin-Löf (1973) adds equality types,
natural numbers and induction, and a hierarchy of universes so that types have
types. This is both a functional programming language and a formal system
for constructive mathematics in the sense of Bishop (1967) — with fully formal
proofs. It is strongly normalising and has decidable typing judgement (which is
the relation between element and type aka that between proof and theorem).

This has given rise to a number of descendant constructive type theories,
including Homotopy Type Theory, and computer systems for developing proofs

2 I have used “rule or method for constructing” where Troelstra & van Dalen say
“construction for transforming”.



in constructive mathematics alias functional programs, including Robert Con-
stable’s Nuprl at Cornell, Agda (Norell, 2007) designed at Chalmers by Caterina
Coquand and Ulf Norell, and COQ, developed at INRIA and based on the Cal-
culus of Inductive Constructions, a development from Coquand & Huet (1988).

Mathematicians have a century of highly successful work based on set theory
and it is unsurprising that constructive mathematics has to date, from Bishop
(1967) on, often been done using constructive versions of set theory. I believe
this will change as systems based on type theories like those above continue to
develop and become more convenient to use.

It is in any case likely that the publication standard in mathematics (whether
classical or constructive) will come to require the submission of fully formal
machine checked versions of proofs.

A note on the Axiom of Choice

The principle of dependent choice

(∀x : A)(∃y : B)C(x, y) ⊃ (∃f : A→ B)(∀x : A)C(x, f(x))

is easily provable in Martin-Löf type theory and its descendents.
The same principle in set theory is an axiom, the axiom of choice (AC),

whose constructive status is widely regarded as problematic.
Bishop (1967) remarks in his introduction that “choice is implied by the con-

structive meaning of existence”. But in the development of constructive analysis
Bishop is working within an (informal) set theory close to Myhill’s CST, which
does not include AC.

Goodman & Myhill (1978) give a proof that in ZF set theory AC implies the
law of the excluded middle, P ∨¬P . So AC is omitted from constructive versions
of ZF for good reason.

Goodman & Myhill’s proof uses two other axioms of set theory besides AC:
the axiom of pairing, that the set {a, b} exists for any (not necessarily different)
a, b and the axiom of extensionality. Pairing is a special case of the axiom of
separation.

The axiom of separation is not part of Martin-Löf type theory — by conflating
types and sets it would destroy the decidability of the typing judgement. That
the choice principle for types is constructively valid while AC (for sets) is not,
is telling us that the latter is a stronger claim.

There have been proposals to add a subtyping construct, analogous to the
axiom of separation, to constructive type theory. In the light of Goodman &
Myhill’s result, this looks suspect — and Thompson (1992) gives arguments
why a subtype construction is not needed in type theory.

2 Church’s Thesis and constructivity

In or around 1936, an objective definition of effective computability emerged:
the general recursive functions of Herbrand, Gödel and Kleene, the λ-definable



functions of Church, and those computable by Turing’s “logical computing ma-
chines” were found to be one and the same class of number theoretic functions,
of which further definitions have since been found.

These are the partial recursive functions, whose types are Nk → N , with N
the type of the natural numbers and N = N ∪{⊥} where ⊥ stands for undefined
or non-terminating. Without loss of generality we can restrict ourselves to the
type N → N ; by the use of Gödel numbering, elements of N can be used to
represent any finite input or output data. The recursive functions are the total
partial recursive functions, whose type can be written N → N .

Church’s Thesis (jointly due to Church and Turing) is the conjecture that this
class identifies what is computable by any realisable mechanism3 By mechanism
we here mean one that takes a symbolic input and produces a symbolic output; a
device with analog components is not excluded provided it meets that condition.

The thesis provides an objective basis to computability results that underly
computing science. It is shown that such and such is not recursive (aka not
computable by a Turing machine etc.), and Church’s Thesis allows us to say
that the proposed function is not effectively computable. The earliest example
of this mode of reasoning is Church (1936b) where he argues from the results in
Church (1936a) that the decision problem for predicate calculus is unsolvable.
It is striking that in stating his conclusion Church uses the word “unsolvable”
without any qualifying adverb.

What is equally important and emerged together with Church’s thesis is the
undecidability of termination. Given a computation of type N there is no gener-
ally effective procedure for determining if it is ⊥. From this other undecidability
results are derived, including that for first order predicate logic.

Church’s thesis is empirical

Gandy (1980) shows that assuming a small number of rather general physical
principles — finite (although possibly changing) number of parts, no infinitesimal
parts, no instantaneous action at a distance etc. — what can be computed by
any machine is recursive.

Quantum computers lie outside Gandy’s assumptions by the use of quantum
entanglement. They make feasible certain computations that would be expo-
nential on a conventional computer, for example factorizing an integer in linear
time. But they do not allow the computation of anything that is not recursive.
See Rieffel and Polak (2000) for a survey.

3 In his analysis of Church’s Thesis, Gandy (1980) distinguishes between two claims,
which he calls T and M. Theorem T says anything that can be computed by an
idealised human being following rules, with an unlimited supply of paper and a pen-
cil, is recursive (alias computable by a Turing machine). Gandy calls it a theorem
because, although not formally provable, it is intuitively clear that a Turing machine
models an idealised human computer. Thesis M says anything that can be mechan-
ically computed is recursive. This implies T but is stronger. Hodges (2006) offers
evidence that Church and Turing held the stronger claim, and this is what I take as
Church’s Thesis in this paper.



Church’s thesis reflects the fact that, according to our current understanding,
our universe (or at least the part of it which can have causal effects on us)
contains no infinities and no infinitesmals, the latter because space, time and
matter are all quantised.

It is thus a conjecture of physics, rather like the second law of thermodynam-
ics, for which we have strong scientific evidence but no proof. Deutsch (1997)
takes exactly this view.

It should therefore not be built into constructive mathematics. Mathematics
should have the ability to describe universes other than our own.

Are there non-computable functions?

In classical mathematics non-computable functions flow from the law of the
excluded middle and its friend the law of double negation. It is enough to write
a specification for a function, prove that it is not absurd, and then, as if by magic,
we have the function without having provided a method of computing it. In his
“Constructivist Manifesto” Bishop4 sees these as an obscuring fog that must be
blown away to reveal a leaner, algorithmic structure.

If we accept the constructive definition of function as rule or method then
non-computable function is an oxymoron, like a round square or a four cornered
triangle. See Greenleaf (1992) “Bringing Mathematics Education into the Algo-
rithmic Age”.

A non-recursive function is logically possible—because Church’s Thesis might
be false—but to demonstrate the existence of one you would have to produce a
method for computing it that others can understand and use. Since CT is almost
certainly true this is not expected to happen. So constructive mathematics is
destined to remain in the position that it can neither produce an example of a
non-recursive function nor a proof that none exist. I don’t see this as a problem,
it seems entirely reasonable.

A fallacious argument from cardinality is sometimes advanced to “prove” that
non-recursive functions both exist and greatly outnumber the recursive ones:

1. N → N is uncountable, by diagonalisation (Cantor).
2. The partial recursive functions N → N are recursively enumerable
3. The total recursive functions, as a subset of (2), are countable
4. Therefore “almost all” members of N → N are non-recursive

Classically this is unproblematic. Viewed constructively, the argument fails at
step 3. An effective enumeration of a set yields an effective enumeration of a
subset only if the subset is decidable. The proof of (3) from (2) requires a totality
test and totality for partial recursive functions is not recursively decidable. The
argument is circular; it assumes a non-recursive function to prove that non-
recursive functions exist.

The underlying issue is that the classical theory of transfinite cardinals is
almost entirely non-constructive. Constructively, a set that is not countable has

4 Bishop & Bridges (1985) Ch 1.



a more complex internal structure than a countable one but that does not nec-
essarily make it “bigger” nor prevent it from being a subset of the latter. The
ordering of transfinite sets by cardinality (trichotomy) is equivalent to the axiom
of choice, which is not constructively valid.

Note that the total recursive functions constitute a set whose countability we
cannot prove from the given facts. This is different from a set whose countability
is absurd (leads to contradiction) meaning it is provably uncountable. It is the
absence of the law of the excluded middle that separates these two situations.

In constructive mathematics the set N → N is uncountable, by Cantor’s
diagonalisation proof5. This does not imply the existence of non-recursive func-
tions, which is logically independent.

To show this we use the result, established by Bridges & Richman (1987),
that Bishop’s constructive mathematics, BISH in their terminology, sits in the
logical intersection of classical mathematics (CLASS), the recursive mathematics
of Markov (RUSS), and Brouwer’s intuitionism (INT), although the last is not
relevant here. Anything provable in BISH is provable in the other three systems.

Conversely, any proposition that would lead to a contradiction in CLASS,
RUSS, or INT, cannot be provable in BISH.

We see straight away that there cannot be a constructive proof that there
are non-recursive functions because that would lead to a contradiction in RUSS,
which incorporates Church’s Thesis as an axiom6. Nor can there be a constructive
proof that all functions are recursive — that is impossible in CLASS by the
cardinality argument.

From which we conclude that the existence of non-recursive functions can be
neither proved, nor disproved constructively.

Even in recursive mathematics N → N is internally (that is recursively) un-
countable by the usual diagonalisation proof, despite being externally countable
from a classical viewpoint. There are no objective grounds for regarding the
classical view as the “correct” one.

In summary: there is no constructive proof that non-recursive functions exist
and constructive N → N is uncountable, regardless of their presence or absence.

Similar results apply concerning the status of non-recursive real numbers,
which have been latched onto by some as a possible analog route for evading
Church’s Thesis (ignoring quantum mechanics).

In a survey of schemes for “Hypercomputation” by Stannett (2004), we find
this statement7: “As is well known, a randomly selected real number has a 100%
chance of being non-recursive.”. An appeal to the, constructively invalid, cardi-
nality argument, it raises another interesting question—how can a point in say,
the interval [0, 1] be “randomly selected”? Presumably by an infinite free choice
sequence, to which topic we now turn.

5 This is a proof by contradiction of non-existence, which is uncontroversial—what is
not allowed, intuitionistically, is a proof by contradiction of existence.

6 See Bridges & Richman (1987) Ch 3.
7 Teuscher (2004) p152.



3 Free Choice Sequences

Do free choice sequences contradict Church’s Thesis?

Bishop is dismissive of Brouwer’s use of free choice sequences for analysis,
and develops constructive analysis without them. He writes

In Brouwer’s case there seems to have been a nagging suspicion that
unless he personally intervened to prevent it, the continuum would turn
out to be discrete. He therefore introduced the method of free-choice
sequences for constructing the continuum, as a consequence of which the
continuum cannot be discrete because it is not well enough defined.8

However, this doesn’t settle the question of whether free choice sequences
exist, and if so, do they give us access to something non-recursive? Concerning
existence, we do not need to get entangled in discussions about whether humans
have free will and in what sense.

A genuinely random, i.e. not rule-governed, sequence of bits can be generated
from quantum uncertainty. It is possible to design a practical piece of equipment
that detects atomic transitions or some other event subject to quantum uncer-
tainty to produce a random sequence of numbers in some finite range [0, k], of
any desired length. An apparatus of this kind, ERNIE (for Electronic Random
Number Indicator Equipment), first employed in 1956, is used to pick monthly
winning numbers for UK government premium bonds.

So does ERNIE, by its randomness, give us access to a non-recursive function?
Of course not9. The free choice sequences generated by ERNIE and his friends
are not rule-generated but they are always finite. To get something that might
be non-recursive we would have to run ERNIE forever — and forever is too long
to wait. We are mortal as indivduals and as a society; any apparatus we build
will eventually stop working, our civilisation will eventually come to an end.

A finite sequence of natural numbers, however long, is always computable.
Computable means generable by a rule or method. A rule or method is something
that can be used in another time or place to get the same results. For a finite
sequence you can record it, and replay it when needed or transmit it to another
place to be replayed. Also for any finite sequence, there are an infinite number
of algorithms that will generate it and that will remain true as it is extended.

Suppose someone resists this argument and insists that we consider a free
choice sequence that runs forever and tries to argue that this has probability 1 of
being a non-recursive function in N → k (appealing to the fallacious cardinality
argument). My response is that what we are being asked to consider is not a
function. To be given a function, in the general case, we have to be given the
function in its entirety . Some questions can be answered by looking at points, say
f(0), f(17), etc, but to prove something about a function in the general case you

8 Bishop & Bridges (1985), p9.
9 It was shown in (De Leeuw et al., 1956) that adding a random number generator to

a Turing machine does not enlarge the class of functions it can compute.



need the whole function, and a function on N can only be given, constructively,
by a rule or method expressed in finite form.

The proper framework for understanding an indefinitely proceeding free choice
sequence is as codata rather than as a function on N (see e.g. Turner, 2004).
What we have is a colist of digits which we can interrogate to get the next digit
and another colist. In the case under consideration we are not given any rule
governing the sequence of digits.

To conclude, I do not see free choice sequences as having any impact on the
plausibility of Church’s Thesis (that every computable function is recursive),
because if finite they are recursive and if considered as running indefinitely they
are not functions within the constructive meaning of the term.
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