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Preface

It is well known that linear dynamical systems cannot adequately describe many
phenomena commonly observed in the real world. With the advancement of science
and technology, practical systems are becoming more complex in order to complete
more advanced tasks. With the increasing requirements for system performance,
linear system theory based study cannot satisfy the practical requirements, and the
mathematical equations used to model real physical and engineering systems have
become more and more complex. In reality, there are many factors which will affect
system performance. To describe and explore various natural phenomena, it is nec-
essary to consider these factors and thus to investigate complex systems as a means
to model real systems more accurately. This book systemisesaspects of the authors’
recent achievements in the area of variable structure control alongside with some
fundamental knowledge in the area.

This book focuses on the study of complex control systems in which the com-
plexity mainly stems from nonlinearities, uncertainties,time delay, faults and/or
coupling among subsystems. It provides rigorous theoretical solutions to the prob-
lem of control of complex systems but has potential application in practical systems.
It should be emphasised that many theoretical studies on control systems often as-
sume that all system states are available for control design. This assumption is not
valid for real systems in many cases. To implement such control schemes, a perti-
nent way forward is to construct an appropriate dynamical system which is called
an observer, to estimate the state variables. Unfortunately, the traditional separation
principle for linear control systems usually does not hold for the nonlinear coun-
terpart, which implies that for nonlinear systems, the properties of a state feedback
control law may not be achieved when the control law is implemented with the esti-
mated states. In connection with this, this book focuses on output feedback control
design: both static output feedback and dynamical output feedback strategies, in-
cluding reduced order dynamical output feedback strategies, are proposed to control
complex systems such that the closed-loop systems have the desired performance.

Variable structure control techniques have been extensively studied, and widely
applied to theoretical research and practical engineeringsystems due to their high
robustness. Specifically, as one special case of variable structure controllers, sliding
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mode controllers are completely robust to matched uncertainties. Moreover, the slid-
ing motion is determined by reduced order dynamics, which facilitates the reduction
of the effects of mismatched uncertainties on the whole systems when compared
with other methods. A key development in this book considersvariable structure
control for complex systems based on only output information, using mainly the
Lyapunov direct method and sliding mode techniques, with the objective of enhanc-
ing the robustness against uncertainties, reduction of conservatism and enlargement
of the admissible systems. Rigorous stability analysis anddesign methodologies are
provided from a theoretical perspective for this theme. Nonlinearities appear in all
the considered systems throughout the book. Both the matched and mismatched un-
certainties covered in this book are nonlinear and bounded by nonlinear functions.
Since the considered systems are complex and all the resultsare rigorous, the con-
ditions developed for all the main results in this book are sufficient. As there is
no general way to obtain the design parameters for an output feedback controller,
trying to determine ‘easy’ test conditions with low conservatism, by separating pos-
sible known information from the system and then employing them in the design
to reduce the effects of factors such as uncertainties and time delay on the system,
is one of the main targets throughout this book. The book alsopresents novel con-
tributions to deal with nonlinear uncertainties for time delay systems by combining
the Lyapunov Razumikhin approach and variable structure techniques for different
cases when delay is known and unknown respectively. It is shown that for inter-
connected systems, decentralised control schemes are available to cancel/reduce the
effects of the interconnections on the whole system performance, under certain con-
ditions. One of the characteristics of this monograph is that many examples and
case studies with simulations are given to help readers understand the developed
theoretical results and the proposed approaches.

The first two chapters present fundamental knowledge used inlater develop-
ments. Chapter 1 develops some preliminary ideas regardingvariable structure con-
trol. Specifically, the basic concepts and fundamental methodologies for sliding
mode control and decentralised control are provided. Some of them are clarified
for the first time based on the authors’ understanding as a result of the authors’
many years of research work in the areas. Several practical examples are given to
show the potential application of complex systems. This helps readers understand
the main methods used in the book intuitively from both mathematical and practical
points of view. Chapter 2 presents some preliminary mathematical results and some
results developed by the authors.

Chapter 3 considers static output feedback control design for both nonlinear sys-
tems and interconnected systems. For a class of fully nonlinear systems, a variable
structure control based on Lyapunov methods is designed to drive and maintain the
system in a ‘small’ region of the origin. Then, in the region,the nonlinear system is
linearised and a sliding mode control is designed to stabilise the system asymptoti-
cally. Both controllers combined together stabilise the system globally. For intercon-
nected systems, decentralised control schemes are developed and output variables
embedded in the nonlinearity are separated and used in the control design to reduce
conservatism. Case studies relating to a mass spring system, coupled inverted pen-
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dulums and a flight control system are provided to illustratethe developed control
methodologies.

Chapter 4 considers dynamical output feedback control design for systems with
mismatched uncertainties/disturbances such that the corresponding closed-loop sys-
tems are asymptotically stable. Compared with Chapter 3, all the uncertainties in-
volved in this chapter are bounded by nonlinear functions ofthe system state vari-
ables instead of the output variables. The bounding functions are assumed to be
known and thus it is possible to use them for control design and system analysis
to reduce the effects of uncertainties. In Section 4.2, a sliding surface is designed
which is independent of the designed observer, and then a sliding mode control
is synthesised based on the estimated states from the designed observer and the
system outputs. The controller design and the observer design are separated. The
designed control can be implemented with any appropriate observer but the devel-
oped approach requires that the considered system is minimum phase. In Section
4.3, a dynamical compensator is designed first. A sliding surface is then designed
for the augmented system formed by the considered system anderror dynamics. It is
not required that the nominal system is minimum phase. Applications to control of
the High Incidence Research Model (HIRM) aircraft are givenin Section 4.4. Both
longitudinal and lateral aircraft dynamics based on different trim values of Mach
number and height are employed in the simulation study.

Chapter 5 continues to consider dynamical output feedback controller design. It
focuses on large-scale interconnected systems and uses reduced-order compensators
to form the feedback loop which is particularly important for large scale systems as
it may avoid ‘the curse of dimensionality’. In Section 5.2, sliding mode dynamics
are established and the stability is analysed using an equivalent control approach
and a local coordinate transformation. A robust decentralised output feedback slid-
ing mode control scheme is synthesized such that the interconnected system can
be driven to the pre-designed sliding surface. This approach allows both the nomi-
nal isolated subsystem and the whole nominal system to be nonminimum phase. In
Section 5.3, a similar structure is introduced to identify aclass of nonlinear large-
scale interconnected systems. By exploiting the system structure of similarity, the
proposed nonlinear reduced-order control schemes allow more general forms of un-
certainties. Specifically, based on a constrained Lyapunovequation, the effect of
matched uncertainties is canceled completely. The study shows that a similar struc-
ture can simplify the analysis and reduce the amount of computation. Numerical
simulation examples and a case study on river pollution control are provided to il-
lustrate the results developed.

Chapters 6 and 7 consider complex systems with time delay. A Lyapunov Razu-
mikhin approach is employed to deal with time delay throughout the two chapters.
All the developed results are suitable for time varying delay and there is no limita-
tion to the rate of change of the time varying delay as with theLyapunov Krasovskii
approach. Chapter 6 requires that the time delay is known andthus the time delay
can be used in the design to reduce conservatism. Therefore the controllers are delay
dependent. Chapter 7 removes the assumption that the time delay is known but the
results obtained are usually conservative when compared with Chapter 6. In Chap-
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ter 6, both static and dynamical output feedback control schemes are presented for
complex time delay systems; decentralised static output feedback sliding mode con-
trollers are designed to stabilise complex interconnectedtime delay systems where
delay exists in both the interconnections and the isolated subsystems. In Chapter
7, local stabilisation is considered for affine nonlinear control systems with uncer-
tainties involving time-varying delay. It is not assumed that the nominal system is
either linearisable or partially linearisable. Section 7.4 focuses on the stabilisation
problem for a class of large scale systems with nonlinear interconnections. A decen-
tralised static output feedback variable structure control is synthesised and a set of
conditions is developed to guarantee that the considered large scale interconnected
systems are stabilised uniformly asymptotically. Section7.5 provides some exam-
ples to demonstrate the results developed in Sections 7.2–7.4. Numerical simulation
examples and a case study on a mass-spring system are provided to demonstrate the
theoretical results.

Chapter 8 considers fault detection and isolation (FDI) fornonlinear systems with
uncertainties using particular sliding mode observers forwhich the design parame-
ters can be obtained using LMI techniques. In Section 8.2, a sliding mode observer
based approach is presented to estimate system faults usingbounds on the uncer-
tainties, and as a special case, a fault reconstruction scheme is available where the
reconstructed signal can approximate the fault signal to any accuracy. Section 8.3
considers sensor FDI for nonlinear systems where a nonlinear diffeomorphism is
introduced to explore the system structure and a simple filter is presented to ‘trans-
form’ the sensor fault into a pseudo-actuator fault scenario. Both fault estimation
and reconstruction are considered. Case studies on a robotic arm system and a mass-
spring system demonstrate the effectiveness of the proposed FDI schemes.

Chapter 9 provides a decentralised strategy for the excitation control problem of
multimachine power systems which are formed from an interconnected set of lower
order subsystems through a network transmission. Both mismatched uncertainties
in the interconnections and parametric uncertainties in the direct axis transient short
circuit time constants, which affect the subsystem input distribution matrix, are con-
sidered. The proposed approach can deal with interconnection terms and parametric
disturbances with large magnitude. The results obtained hold in a large region of
operation if the control gain is high enough. This allows theoperating point of the
multimachine power system to vary to satisfy different loaddemands. Simulations
based on a three-machine power system are presented to illustrate the proposed con-
trol scheme.

Chapter 10 makes some concluding remarks. Several specific examples are pre-
sented to show the complexity of the systems considered in this book. Some com-
ments offer suggestions for future work. Finally, Appendixes A to D provide some
results (with rigorous proofs), which are used in the book, and Appendix E presents
notation and the parameters of the multimachine power system considered in Chap-
ter 8.

The book aims to disseminate recent results in the area of variable structure con-
trol of complex systems. It is suitable for scientists and engineers in academia and
industry who are interested in either variable structure techniques or complex sys-
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tems including nonlinear control, decentralised control,time delay systems, robust
control and fault detection and isolation. It is particularly valuable to have a com-
bined set of references at the end of the book for ease of access to many important
theoretical and practical applications. It contains many case studies and numeri-
cal examples with simulations to help readers understand and apply the developed
theoretical results. The analysis and design methodologies are also useful for both
undergraduate and postgraduate students in the field of nonlinear control systems
design. We believe mathematicians and control engineers will find the book useful.

Last but not least, we would like to point out that this book only attempts to
present part of the authors’ recent achievements in the areaof complex variable
structure control, which is obviously built on many other previous results. Although
we have tried to cover most of the recent important ideas and results in the area,
the exposition is far from a complete overview of the associated subjects. The bib-
liography includes only the literature which has been actually used in the book. We
sincerely apologies for any serious omissions, large or small.

Canterbury, United Kingdom Xing-Gang Yan
Canterbury, United Kingdom Sarah K. Spurgeon
Exeter, United Kingdom Christopher Edwards

April, 2016
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Notation And Symbols

• /0 —— the empty set

• R —— the set of real numbers

• R
+ —— the set of nonnegative real numbers

• R
n —— then dimensional Euclidean space

• R
n×m —— the set ofn×mmatrices with elements inR

• ‖ · ‖—— the Euclidean norm or its induced norm

• In —— the unit matrix with dimensionn

• Im(A) —— the range space of matrixA

• A( j) —— the j-th column vector of the matrixA

• Br or Br —– the ball{x | ‖x‖< r} with radiusr wherer ∈ (0,+∞)

• Br or Br —— the closure ofBr

• ∂Br or ∂Br —— the boundary ofBr

• Aτ or AT —— the transpose of matrixA

• A−τ or A−T —— the transpose of matrixA−1

• A> 0 —— A is a symmetric positive definite matrix

• A< 0 —— A is a symmetric negative definite matrix

• σ(A) —— the maximum singular value of the matrixA

• σ(A) —— the minimum singular value of the matrixA

• λmin(A) —— the minimum eigenvalue of the square matrixA

• λmax(A) —— the maximum eigenvalue of the square matrixA

• diag{A1,A2, · · · ,AN}—— a block-diagonal matrix with diagonal elementsA1,
A2, · · · ,AN
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Chapter 1
Introduction

Control systems widely exist in the real world. Increasing requirements for system
performance and reliability have resulted in increasing complexity in the dynamic
systems used to model reality. Control engineers are faced with increasingly com-
plex control systems. The development of computer science and technology coupled
with developments in mathematical theory has provided the possibility for study of
complex systems from both the theoretical and practical viewpoint.

This book systemises some of the authors’ recent research work along with fun-
damental concepts and methodologies in the area of variablestructure control for
complex systems. The complexity resulting from nonlinearities, uncertainties in-
cluding modelling error, time delay, and interconnectionsbetween subsystems is
considered. For various complex systems, theoretical analysis and control design us-
ing static output feedback, observer-based output feedback, and decentralised con-
trol ideas is presented based on variable structure techniques. The fault detection
and isolation problem is also investigated, using sliding mode observers, where re-
construction and estimation schemes for both system faultsand sensor faults will
be presented. Numerous numerical examples and case studieswith accompanying
simulations are provided to help the reader understand and apply the developed
strategies and approaches.

1.1 System Complexity

Linear dynamical systems cannot describe many commonly observed phenomena
well. In the real world, nearly all systems exhibit nonlinearity. In order to reveal
complex phenomena and study complex systems, it is necessary to investigate non-
linear dynamical systems as a means to model real systems more accurately.

A dynamical control system usually can be expressed by the following differen-
tial equation

ẋ= f (t,x,u) (1.1)

1
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wherex∈ R
n denotes the system state,u∈ R

m represents the system input/control
and t ∈ R

+ is time. If a particular system output is of interest, then analgebraic
equation

y= h(t,x) (1.2)

or
y= h(t,x,u) (1.3)

is used, wherey∈Rp represents the system output. Equation (1.1) is called the state
equation while equation (1.2) or (1.3) is said to be the output equation.

In this book, only the output equation (1.2) is considered which means that the
output equation considered in this book does not involve thecontrol variableu. The
system (1.1)–(1.2) is called asingle-input single-output(SISO) system if bothu and
y are scalars. It is called amulti-input multi output(MIMO) system if the dimensions
of eitheru or y are bigger than one.

The complexity of a control system depends on the controlledplant and the en-
vironment. Higher requirements on the controlled system’ performance usually re-
quire more advanced control techniques, which will introduce additional complex-
ity. There are many factors which may affect control system performance and result
in complex phenomena, such as nonlinearities, uncertainties/modelling errors, time
delay and any interconnections existing in the system.

• Nonlinearity: Compared with linear systems, the study of nonlinear systems
is much more difficult. Analysis and design of nonlinear control systems usually
involve more advanced mathematics. Due to the existence of nonlinearities in dy-
namical systems, phenomena such as finite time escape, multiple isolated equi-
libria, limit cycles, harmonic oscillation, chaos and multiple modes of behaviour
may appear [91]. These rich behaviours which exist in nonlinear dynamical sys-
tems greatly increase the complexity of the problem.

• Uncertainty/modelling error: Real systems unavoidably experience various
uncertainties such as mechanical wear and changes in the external environment.
The former may result in parametric uncertainties while thelater may result in
unstructured uncertainties. Moreover, it may be impossible to model a system ac-
curately. If these modelling errors and uncertainties or disturbances are not con-
sidered, the developed strategies may not work well or may even fail to meet the
design objective. Specifically, for a large-scale interconnected system, a pertur-
bation of one subsystem can affect other subsystems and the overall performance
of the network. This increases the complexity in the problem.

• Time delay: With the increasing expectations for the closed-loop system’s dy-
namical performance, it is required that the established system model behaves
more like the real process. Thus time delay has to be considered as many pro-
cesses include after effect phenomena in their inner dynamics: for example, bi-
ology, population dynamics, economics, viscoelasticity and engineering science
[141, 130]. For a time delay system, the future evolution, usually, not only de-
pends on the present state but also on its history. Even a small delay may greatly
affect the performance of a system; a stable system may become unstable, or
chaotic behavior may appear due to delay in the system [126].
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• Interconnection: In order to complete a complex task, systems have to be com-
bined together to provide the desired performance. For example, in a manufactur-
ing process, in order to produce the same engineering components in sufficiently
large quantities, many machine tools (isolated subsystems) are interconnected to-
gether and monitored to form a large-scale system to complete the task [202]. A
complex system may also be formed by interconnections between a collection of
simple systems. In this case, although each subsystem may exhibit good perfor-
mance in isolation, the whole system may not work well due to the interactions
between the subsystems. To reduce, minimise or even employ the effects of the
interconnections on the whole system is challenging. Moreover, these subsys-
tems are usually distributed geographically in space, which results in problems
such as data transfer, the reliability of the network communication channels and
economic cost etc. [210, 2].

In this book, the factors mentioned above will be considered. In order to deal with
the effects of uncertainties, variable structure control techniques will be employed.
The Lyapunov-Razumikhin approach will be used to deal with time delay. For in-
terconnected systems, decentralised strategies will be developed whenever possible
to avoid the reliability problem caused by network links.

1.2 Variable Structure Control

Consider the control system (1.1) in the domainD ∈ R
n. A correspondingvariable

structure controlcan be expressed as

u=





u1(t,x), (t,x) ∈R
+×D1

u2(t,x), (t,x) ∈R
+×D2

...
...

uq(t,x), (t,x) ∈R
+×Dq

(1.4)

where the functionsfi(t,x) are continuous fori = 1,2, . . . ,q. The structures of the
functionsfi(t,x) and f j (t,x) are different fori 6= j andi, j = 1,2, . . . ,q (q≥ 2). The
domainsDi ∈ R

n for i = 1,2, . . . , q satisfy

i) D1∪D2∪·· ·∪Dq = D;
ii) Di ∩D j = /0 if i 6= j for i, j = 1,2, . . . ,q.

When the variable structure control in (1.4) is applied to the system (1.1), the
corresponding closed-loop system becomes avariable structure system. Literally
speaking, variable structure control is a control whose structure is changed or keeps
changing in order to obtain and maintain the desired system performance during the
control process.

For example, in real control design, when the response error/accuracye(t) is over
the threshold, a proportional control is used to increase the response speed; when the
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response error/accuracye(t) is within the threshold, an integral control is employed
to guarantee that the steady error requirement is satisfied.In this case, the control
law may be described by

u=

{
kpe(t), ‖e(t)‖> k
ki
∫

e(t)dt, ‖e(t)‖< k

Here the positive constantskp andki are called the proportional gain and integral
gain respectively which are tuning parameters, and the positive constantk is called
the threshold.

This example shows that sometimes it is desirable to change the control structure
in order to get the desired system performance. As pointed out in [12], nonholo-
nomic systems cannot be stabilised by continuously differentiable, time invariant
state feedback control laws. However, a discontinuous control law is available to
stabilise nonholonomic systems (see, e.g. [1]). This motivates the need for discon-
tinuous control.

When the variable structure controller (1.4) is applied to the system (1.1), it usu-
ally produces a discontinuous right-hand side in the corresponding closed loop dy-
namical system which consists of a set of ordinary differential equations. This pro-
duces an interesting mathematical problem: the traditional definition and existence
conditions for the solutions of the closed-loop system are not applicable. It is nec-
essary to extend the classical solution. In this case the solution of the equations is
defined in the Filippov sense [46] throughout the book.

In order to reject/reduce the effects of uncertainties and disturbances, different
variable structure approaches have been proposed, for example, the approach based
on the direct Lyaponov method in [202, 214, 210] and a discontinuous control law
for nonholonomic systems in [1]. However, variable structure control which leads to
a sliding motion, has underpinned the development of a systematic research method-
ology, which is the well known sliding mode control paradigm. Sliding mode control
has dominated the literature in the area of variable structure control and thus when
people talk about variable structure control, they usuallymean sliding mode con-
trol. Here, it should be pointed out that not all variable structure control will lead to
a sliding motion.

1.3 Sliding Mode Control

Sliding mode control, as a particular type of variable structure control, evolved from
the pioneering work in Russian of Emel’yanov and Barbashin in the early 1960s.
The ideas did not appear outside of Russia until the mid 1970swhen a book by Itkis
[81] and a survey paper by Utkin were published in English [175]. The ideas un-
derlying the modern analysis and design of sliding mode controllers may be further
dated back to publications in the early 1930s. At that time, concerns on relay sys-
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tems with sliding modes for controlling the course of a ship had been proposed [55]
where the terms phase plane, switching line, and even sliding mode appear [172].

Relay systems have been found in many control engineering systems. Relay con-
trol systems are a simple nonlinear system which is effective and has low cost.
Sometimes they have better dynamical performance than linear systems [171]. Early
rigorous studies on relay systems are found in contributions in the 1960s which were
presented celebrating Filippov’s achievement for differential equations with discon-
tinuous righthand sides [47]. The study of relay systems stimulated the study of
sliding mode control.

In the initial stage (before 1962), nearly all studies focused on second order linear
systems. Later work was extended to higher order systems (i.e. systems with order
greater than 2) but most work was still limited to linear systems with single input
control. The study of nonlinear systems in state space form commenced in 1970 and
muti-input control systems have been widely considered since then. The develop-
ment of this state space description and mutivariable control system theory greatly
promoted the development of sliding mode controllers, which also motivated the
application of sliding mode techniques in practical systems [172].

In recent decades, various control approaches have been proposed and research
on sliding mode control has become very active. Due to its high robustness against
uncertainties/disturbances, sliding mode control has been widely combined with
other approaches to provide better results in both theoretical research and practical
engineering. Many interesting results have been created inadaptive sliding mode
control [18, 176, 4], fuzzy sliding mode control [178, 168],backstepping based
sliding mode control [162] and decentralised sliding mode control [200, 201] with
applications in wide areas such as engineering systems, aircraft control, energy sys-
tems, communication networks and biology [82, 7, 77, 172, 153, 129]

1.3.1 Sliding mode control methodology

Sliding mode control changes the system dynamics by employing a discontinuous
control signal. This approach has been well developed and extensively used in theo-
retical research and practical engineering design. It has been successfully employed
to solve various control problems in combination with othercontrol approaches.

The sliding mode control method consists of two steps:

• the design of a sliding surface such that the system considered possesses the
desired performance when it is restricted to the surface;

• the design of a variable structure control which drives the system trajectory to
the sliding surface in finite time and maintains a sliding motion on it thereafter.

A concise description is available in [38, 173]. In view of these two steps, the sys-
tem motion can be separated into two phases: thereaching phaseand thesliding
phase. The former refers to the motion when the system trajectory moves towards
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the sliding surface and the latter concerns the motion when the system trajectory
moves on the sliding surface.

1.3.1.1 Sliding phase

Consider system (1.1). In order to design a proper switching/sliding function

s= s(x)

such that the resulting sliding motion has the desired performance, one way is to
find the dynamical equations which will govern the sliding motion, and then syn-
thesize the sliding surface based on the characteristics ofthe sliding mode dynamics
or sliding motion. It is assumed that the sliding motion exists. The following two
approaches are usually employed to find the sliding mode dynamics and in this way
the stability of the sliding motion is transformed to the problem of ensuring stability
of an unforced system.

• Equivalent control: When the considered system (1.1) is limited to and moving
on the sliding surface,

s(x) = 0, and ṡ(x) = 0

The time derivative ofs(x) along the system (1.1) is given by

ṡ=
∂s
∂x

ẋ=
∂s
∂x

f (t,x,u)

In the sliding motion,
∂s
∂x

f (t,x,u) = 0 (1.5)

Suppose there is a solution foru to the equation (1.5) denoted by

ueq= ueq(t,x)

which is the so-calledequivalent control(see, page 14 in [174]). Then, the sliding
mode dynamics governing the sliding motion may be obtained by

{
ẋ = f (t,x,ueq(t,x))

s(x) = 0
(1.6)

Now, assume that system (1.1) is in the following affine form,

ẋ= F(t,x)+G(t,x)u (1.7)

Then, for the sliding surfaces(x) = 0, it follows from ṡ(x) = 0 that the corre-
sponding equivalent control is given by
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ueq=−(s(x)G(x, t))−1s(x)F(t,x) (1.8)

wheres(x) should be chosen such thats(x)G(x, t) is nonsingular for allx in the
considered domain andt ∈R

+. Substituteueq from (1.8) into the system (1.1), it
follows that the corresponding sliding motion can be described by

{
ẋ = F(t,x)−G(t,x)(s(x)G(x, t))−1s(x)F(t,x)

s(x) = 0

Remark 1.1.It should be noted that the equivalent control is used only toanalyse
the sliding motion. It is not the control signal which is actually applied to the
system but it may be thought of as the control signal which must be applied “on
average” to maintain the sliding motion [174, 38].

• Regular form: Another approach to find the sliding mode dynamics relating to
the sliding functions= s(x) for system (1.1) is to employ the well known regular
form. Suppose that there exists a coordinate transformation z= T(x) such that in
the new coordinate systemz, the sliding surfaces(x) = 0 can be described in the
form

z2 = σ(z1)

wherez1 ∈ R
n−m, z2 ∈R

m, z := col(z1,z2) and system (1.1) can be described by

ż1 = F1(t,z1,z2) (1.9)

ż2 = F2(t,z1,z2,u) (1.10)

whereu ∈ R
m is the control. The Jacobian matrix∂F2(t,z1,z2,u)

∂u is assumed to be
nonsingular in the considered domain. Note that system (1.9) is independent of
the control signal and the dimension ofz2 is the same as the dimension of the
controlu. System (1.9)–(1.10) is the so-calledregular form.
Based on the regular form in (1.9)–(1.10), it is clear to see that the corresponding
sliding mode dynamics of system (1.1) is described by

ż1 = F1(t,z1,σ(z1)) (1.11)

which is a reduced-order system when compared with system (1.1).
Note, if system (1.1) is in the following affine form as given in (1.7), then, the
corresponding regular form can be described by

ż1 = F1(t,z1,z2) (1.12)

ż2 = F2(t,z1,z2)+G2(t,z1,z2)u (1.13)

where the functionsF1(·) andF2(·), andG2(·) are dependent on the coordinate
transformationz= T(x) and the functionsF(·) andG(·) respectively.
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1.3.1.2 Reaching phase

In order to guarantee that the system trajectory can be driven to the sliding surface
s(x) = 0 in finite time and a sliding motion can be maintained on it thereafter, a
proper discontinuous control

u= u(t,x)

needs to be designed such that the following condition is satisfied [38, 173]

sT(x)ṡ(x)≤−η‖s(x)‖ (1.14)

for some constantη > 0. The inequality (1.14) is the so-calledreachability condition
andη is called thereachability constant.

From equation (1.1), it follows that

ṡ=
∂s
∂x

ẋ=
∂s
∂x

f (t,x,u)

Therefore, inequality (1.14) is equivalent to

sT(x)
∂s
∂x

f (t,x,u)≤−η‖s(x)‖ (1.15)

which explicitly contains the variableu. The sliding mode controller guaranteeing
reachability can usually be synthsised from (1.15).

The following condition
sT(x)ṡ(x)< 0

is also called a reachability condition but it cannot guarantee that a sliding motion
takes place in finite time and thus a sliding motion may not occur in this case.

It should be emphasised that, when the designed sliding/switching function is
time varying, for example,

s= s(t,x)

it is straightforward to see that the condition (1.15) used to synthesise the sliding
mode control law should be updated to

sT(t,x)

(
∂s
∂ t

+
∂s
∂x

f (t,x,u)

)
≤−η‖s(t,x)‖

For this case, a design approach has been provided in [27].

1.3.2 Sliding mode control of a mass spring damper system

In order to illustrate the sliding mode control methodology, consider the simple
mass spring damper mechanical system in Figure 1.1 where themassM slides on
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a smooth surface. In Figure 1.1,X denotes the displacement from the reference

Fig. 1.1 A mass spring damper mechanical system

position,m is the mass of the objectM sliding on a horizontal surface,k is the
coefficient of springK, b is the coefficient of the damperB andF is an external
force which is considered as the control inputu (u= F).

It is assumed that the mass spring damper system experiencesa hardening spring
which produces a restoring force described by (see [91])

k(1+a2X2)X

The simple viscous damper produces a damping force described bybẊ. From New-
ton’s second law, the motion of the objectM can be described by

mẌ =−bẊ− k(1+a2X2)X+u (1.16)

Let x = col(x1,x2) = (X, Ẋ). Then,ẋ1 = x2 and ẋ2 = Ẍ. From equation (1.16), it
follows that

ẋ2 =−
b
m

x2−
k
m

x1−
k
m

a2x3
1+u

which can be rewritten by

ẋ2 =−
( k

m
+

k
m

a2x2
1

)
x1−

b
m

x2+u

Choosem= b= k= a= 1 for simplicity. Then, the system (1.16) can be described
in the form of (1.1) by
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ẋ =

[
x2

−(1+ x2
1)x1− x2+u

]

︸ ︷︷ ︸
f (x,u)

(1.17)

which is a nonlinear system.
The objective is to design a sliding mode control law such that the system (1.17)

is asymptotically stable.

i) Sliding phase:Design a linear switching function

s(x) = γx1+ x2 (1.18)

whereγ is a design parameter. When system (1.17) is limited to the sliding sur-
face,s(x) = 0. It follows from (1.18) that

x2 =−γx1

Considering the structure of system (1.17), it is straightforward to see that the
corresponding sliding mode dynamics are

ẋ1 =−γx1 (1.19)

Therefore, the sliding motion governed by the sliding mode dynamics (1.19) is
asymptotically stable if the parameterγ is chosen to satisfyγ > 0.

ii) Reaching phase:Consider the sliding mode controller

u= (1+ x2
1)x1+ x2− γx2−ηsgn(γx1+ x2) (1.20)

whereη > 0 is a constant. Then the closed-loop system obtained by applying the
control in (1.20) to system (1.17) is given by

ẋ1 = x2 (1.21)

ẋ2 = −γx2−ηsgn(γx1+ x2) (1.22)

By direct computation, it follows from equations (1.21)–(1.22) that

s(x)ṡ(x) = −s(x)(γ ẋ1+ ẋ2)

= −ηs(x)sgn(s(x)) ≤−η |s|

This guarantees that the control (1.20) can drive the trajectories of system (1.17)
to the sliding surfaces(x) = 0 with s(·) defined in (1.18), in finite time and main-
tain a sliding motion on it thereafter.

From sliding mode control theory, i) and ii) above together show that the cor-
responding closed-loop system is asymptotically stable. For simulation purposes,
choose

γ = 0.5, η = 1
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and the initial conditionx0 = col(2,1).
Figure 1.2 shows the phase plane portrait of the displacement x1 and velocityx2.

From Figure 1.2, the system states(x1,x2) are driven to the sliding surface from the

Fig. 1.2 The phase plane portrait

initial point x0 = (2,1), and then move along the sliding surface to converge to the
origin.

The time responses of the displacement and velocity of the object are shown in
Figure 1.3. Figure 1.4 shows the control signal imposed on the system.

It is clear to see thatchatteringappears due to the discontinuity in the control.
Chattering may be undesirable in practice because it may result in unnecessary

wear and tear on the actuator components and result in unnecessary energy con-
sumption. One way of overcoming this drawback is to introduce a boundary layer
about the discontinuous surfaces (see [13]) which may affect the control accuracy.
Another way is to use higher order sliding mode techniques but this requires the
considered system to have a certain structure.

In this book, higher order sliding mode techniques will not be discussed. Detailed
information about higher order sliding mode control can be found in [45, 5, 100,
153]) and the references therein.
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1.3.3 Characteristics of sliding mode control

It is observed that sliding mode control has the following characteristics:

• The sliding mode dynamics are a reduced-order system when compared with the
original system dynamics.
For system (1.1) with sliding surfaces= s(x), the corresponding sliding mode
dynamics can be described by (1.6) or (1.11). It is clear to see that the order of
the system (1.6) or (1.11) isn−m wheren is the dimension of the original sys-
tem andm is the dimension of the control. Therefore, during the sliding motion,
the system exhibits reduced-order dynamics when compared with the original
system.

• The sliding motion is insensitive to matched uncertainty.
Suppose system (1.1) experiences an uncertainty/disturbance. If the uncertainty
or disturbance acts in the input/control channel or the effects are equivalent to an
uncertainty acting in the input channel, it is calledmatched uncertainty. Other-
wise it is calledmismatched uncertainty. For example, assume that the nonlinear
affine control system (1.7) experiences uncertaintiesφ(t,x) andψ(t,x) described
by

ẋ= F(t,x)+G(t,x)(u+φ(t,x))+ψ(t,x) (1.23)

Then, the termφ(t,x) is called matched uncertainty. In addition, if the uncertainty
ψ(t,x) can be modelled as

ψ(t,x) = G(t,x)χ(t,x)

whereχ(·) represents the uncertainty, it is clear to see that the uncertainty of the
termψ(·) is reflected by the uncertaintyχ(·) which is exactly acting in the input
channel. In this caseψ(t,x) is also called matched uncertainty.
From equations (1.6) or (1.11), it is straightforward to seethat the dynamics
governing the sliding motion are completely independent ofthe control and thus
the system is robust to matched uncertainty.

• Uncertainties/disturbances will affect reachability.
In order to guarantee that the trajectory of the considered system is driven to the
pre-designed sliding surface, the reachability conditionmust be satisfied – which
is interpreted as (1.15). It is clear that (1.15) involves all of the right hand side
of equation (1.1). Therefore, uncertainties/disturbances may affect the reaching
phase no matter whether they are matched or mismatched, but the effects of some
uncertainties may be completely rejected by an appropriatecontrol.

• The process of designing the sliding surface and sliding mode control can be
‘separated’.
The main target of sliding surface design is to ensure that the resulting sliding
motion has the required performance. The main objective of the control design
is that the reachability condition is satisfied so that the system can be driven
to the sliding surface. In view of this, sliding surface design and sliding mode
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control design can be completed separately. This property is called the design
‘separation’ property in this book.
The design of a sliding surface is usually not dependent on the process of the
sliding mode control design. Once the sliding surface is specified, the study of
the stability of the sliding motion and the reachability canbe carried out sepa-
rately. This has advantages when compared with other control approaches. For
example, the steady state response is totally dependent on the sliding mode dy-
namics which is independent of the control. Therefore, in order to improve the
steady-state response of the control system, it is only necessary to consider the
sliding mode dynamics instead of the original system. In thereaching phase, by
adjusting the parameters in the sliding mode control law, the reaching time can
be reduced which may produce a fast time response, and will also maximise ro-
bustness.

1.4 Decentralised Control

In the real world, there are a number of important systems which can be mod-
eled as dynamical equations composed of interconnections between a collection
of lower-dimensional subsystems. Such classes of systems are called large-scale in-
terconnected systems, which are often widely distributed in space [111, 117, 145].
A fundamental property of an interconnected system is that aperturbation of one
subsystem can affect the other subsystems as well as the overall performance of the
entire network. Decentralised control has been recognisedas an effective method to
control such systems.

1.4.1 Background

Large scale interconnected systems widely exist in society. A typical large scale in-
terconnected system is the multimachine power system [182,201]. Other examples
of large scale interconnected systems that present a great challenge to both system
analysts and control designers include power networks, ecological systems, biolog-
ical systems and energy systems [117, 158].

For interconnected systems, the presupposition of centrality fails to hold due to
either the lack of centralised information or the lack of centralised computing ca-
pability. When the number of subsystems is large, the computation time increases
significantly if centralised control is employed. In the extreme case when informa-
tion transfer among the subsystems is blocked, centralisedcontrol schemes simply
cannot be applied. Even with engineered systems, issues such as the economic cost
and reliability of communication links, particularly whensystems are characterised
by geographical separation, limit the appetite to develop centralised systems. From
the perspective of economics and reliability, decentralised strategies are pertinent
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for large scale interconnected systems. This has motivatedthe application of decen-
tralised control methodologies to interconnected systems[192, 87, 106]. A survey
paper [2] has covered several decomposition approaches such as disjoint subsys-
tems, overlapping subsystems, symmetric composite systems, multi-time scale sys-
tems and hierarchically structured systems to simplify theanalysis and synthesis
tasks for large-scale systems to reduce the computational complexity.

Decentralised control for large-scale interconnected systems has been studied
extensively. Research on large-scale interconnected systems analysis and synthesis
can be traced back to at least the 1970s, and the survey paper [145] clearly shows
the development of this topic at that time, when almost all ofthe work focused
on linear cases. With the advancement of technology and increasing requirements
for high levels of performance, specifically in recent years, the dynamic systems
used to model reality have become more complex involving nonlinearities, uncer-
tainties, time delay and interconnection. Therefore, the study of complex intercon-
nected systems has become increasingly important. The interest in this subject has
been revived by new developments in nonlinear systems and control. The recent
survey paper [216] has shown the progress made in the area of decentralised control
where some of the work associated with sliding mode control,adaptive control and
backstepping control has been covered.

1.4.2 Fundamental concept

From the mathematical point of view, a nonlinear large scaleinterconnected system
composed ofN ni-th order subsystems can be described by

ẋi = fi(t,xi)+gi(t,xi)
(
ui +∆gi

(
t,xi)

)
+∆ fi(t,xi)+∑N

j=1
j 6=i

ζi j (t,x j) (1.24)

yi = hi(xi), i = 1,2, . . . ,N, (1.25)

wherexi ∈Ωi ⊆R
ni (Ωi is a neighbourhood of the origin),ui ∈Rmi andyi ∈Rpi are

the states, inputs and outputs of thei-th subsystem respectively fori = 1,2, . . . ,N.
All the matrix functionsgi(·) ∈ R

ni×mi and the nonlinear vectorsfi(·) ∈ R
ni and

hi(·) ∈ R
pi with hi(0) = 0 are known. The terms∆gi(·) and∆ fi(·) represent the

matched and the mismatched uncertainties respectively. The term

N

∑
j=1
j 6=i

ζi j (t,x j)

represents the interconnection of thei-th subsystem with the other subsystems. It is
assumed that all the nonlinear functions are smooth enough such that the unforced
systems have unique continuous solutions.

Definition 1.1. Consider system (1.24)–(1.25). The system
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ẋi = fi(t,xi)+gi(t,xi)
(
ui +∆gi

(
t,xi)

)
+∆ fi(t,xi) (1.26)

yi = hi(xi), i = 1,2, . . . ,N, (1.27)

is called thei-th isolated subsystemof system (1.24)–(1.25), and the system

ẋi = fi(t,xi)+gi(t,xi)ui (1.28)

yi = hi(xi), i = 1,2, . . . ,N, (1.29)

is called thei-th nominal isolated subsystemof system (1.24)–(1.25).

It is well known that one of the main problems for interconnected systems is to
establish under what conditions the interconnected system(1.24)–(1.25)exhibits the
desired performance if all the isolated subsystems (1.26)–(1.27) or all the nominal
isolated subsystems (1.28)–(1.29) exhibit the required performance. Therefore, how
to deal with interconnections is a key problem of interest indecentralised control.

Definition 1.2. Consider system (1.24)–(1.25). If the designed controllersui for the
i-th subsystems depend on the timet and statesxi of the i-th subsystem only, i.e.

ui = ui(t,xi), i = 1,2, . . . ,N (1.30)

then (1.30) is calleddecentralised state feedback control. If the controllers in (1.30)
have the form

ui = ui(t,yi), i = 1,2, . . . ,N (1.31)

that is, each local controller depends upon the timet and the outputs of the local
subsystem only, then they are calleddecentralised static output feedback control.
Furthermore, if the designed controllers consist of the dynamical systems

˙̂xi = φi(t, x̂i ,ui,yi), i = 1,2, . . . ,N (1.32)

and controllers
ui = ui(t, x̂i ,yi), i = 1,2, . . . ,N (1.33)

then (1.32)–(1.33) is calleddecentralised dynamical output feedback control. Specif-
ically, if (1.32) is an observer of the system (1.24)–(1.25), then it is calleddecen-
tralised observer-based feedback control.

It is straightforward to see, according to Definition 1.2 above, that it is required
that the dynamical systems (1.32) are decoupled in a decentralised dynamical output
feedback scheme. It should be mentioned that in some of the existing work, see for
example [203, 215], the designed dynamical systems (1.32) are not decoupled (in
fact they are interconnected systems). In this case, the developed controllers are
sometimes still called a decentralised control. However, in precise terms, such a
class of controllers is not decentralised because there exists information transfer
between subsystems of the designed dynamical system (see e.g. [203, 215]).

Several decades ago, most work on decentralised control focused on linear in-
terconnected systems due to the limitation of available control paradigms that were
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able to deal with nonlinearity. However, the dynamics of large scale natural and
engineered interconnected systems are usually highly nonlinear. It is not only the
structure of the system and interconnections which producecomplexity but also the
nonlinearity of the dynamics themselves. It is clear that although linear dynamics
may approximate the orbit of a nonlinear system locally, it does not permit the ex-
istence of the multiple states observed in real networks anddoes not accommodate
global properties of the system. Such global properties canbe crucial because they
may become significant when the system is perturbed or a subsystem enters a fail-
ure state. Increasing requirements on system performance coupled with the ability
to model and simulate reality by means of complex, possibly nonlinear, intercon-
nected systems models has motivated increasing contributions in the study of such
systems. This interest has been further stimulated by the simultaneous development
of nonlinear systems theory and the emergence of powerful mathematical and com-
putational tools which render the formal and constructive study of nonlinear large
scale systems increasingly possible [210].

In order to help readers to understand the ‘decentralised’ concept, the follow-
ing schematic diagram in which the interconnected system has three subsystems, is
produced to show that in static decentralised output feedback control scheme, the
local controllerui of thei-th subsystem only uses the local output informationyi ; no
output informationy j ( j 6= i) is involved in the design ofui . From Figure 1.5, it is

Fig. 1.5 Decentralised static output feedback schematic diagram

clear that there is no local output information transfer between the local controllers
ui andu j (i 6= j) for i, j = 1,2,3.
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1.5 Examples of Complex Systems

In this section, some practical examples will be presented to show that complex
systems widely exist in the real world.

1.5.1 One-machine infinite-bus system

Consider a simple power system where a large-turbine generator set connects with
an infinite bus. The motion equation of the machine’s rotor can be described by (see,
for example, [107])

H
d2δ
dt2

= Mm(t)−
EqVs

Xδ
sinδ (t) (1.34)

whereδ (t) is the generator’s rotor angle,Mm is the mechanical input torque,H is
the moment of inertia of the machine,Eq is the transient potential of theq-axis of
the generator,Vs is the voltage of the infinite bus which is constant,Xδ is the sum of
the transient inductance of the shaft of generator, the inductance of the transformer
and the inductance of the transmission line.

For simplicity, assume thatEq is constant. Let

x1 = δ and x2 = δ̇

wherex2 represents the angular velocity. The letterMm denotes the control inputu.
Then the system (1.34) modelling the one-machine infinite-bus is described by

ẋ=

[
x2

−a1sinx1+a2u

]
(1.35)

wherex := col(x1,x2), and

a1 := EqVs
HXδ

a2 := 1
H

System (1.35) is a nonlinear affine system as it can be described by

ẋ=

[
x2

−a1sinx1

]
+

[
0
a2

]
u

where the input distribution is a constant matrix.
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1.5.2 PVTOL aircraft

The well-known Planar Vertical Take-Off and Landing (PVTOL) represents a chal-
lenging nonlinear control problem. It is motivated by the need to stabilise an aircraft
which is able to take-off vertically such as helicopters andsome special aircraft.

The mathematical model describing an aircraft that evolvesin a vertical plane
usually has three degrees of freedom(X,Y,φ) corresponding to its position(X,Y)
and orientation in the planeφ . The PVTOL is composed of two independent
thrusters that produce a force and a moment on the aircraft. The dynamical model
of the PVTOL aircraft can be obtained using the Lagrangian approach or Newtons
laws, which are given in [191], as follows

mẌ = −(sinφ)U1+ ε0(cosφ)U2

mŸ = (cosφ)U1+ ε0(cosφ)U2−mg

Jφ̈ = U2

where(X,Y) is the center of mass of the aircraft,θ is the roll angle,mgis the gravity
force imposed at the aircraft center of mass andJ is the mass moment of inertia
around the axis through the aircraft center of the mass and along the fuselage, the
control U1 is the thrust directed to the bottom of aircraft and the control U2 the
moment around the aircraft center of the mass,ε0 is the quantity of lateral force
induced by the rolling moment which characterizes the coupling between the rolling
moment and the lateral acceleration of the aircraft.

Let
x̄=−X/g, ȳ=−Y/g, u1 =U1/mg

U2 =U2/mg, ε = ε0J/mg

Then the normalised PVTOL aircraft dynamics can be described by [16, 191]

¨̄x = −(sinφ)u1+ ε(cosφ)u2 (1.36)
¨̄y = (cosφ)u1+ ε(cosφ)u2−1 (1.37)

φ̈ = u2 (1.38)

The dynamical equations (1.36)–(1.38) can be described in (1.1) as follows

ẋ =




x2

−(sinx5)u1+ ε(cosx5)u2

x4

(cosx5)u1+ ε(cosx5)u2−1
x6

u2




(1.39)

where
x1 := x̄, x2 := ˙̄x, x3 := ȳ
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x4 := ˙̄y, x5 := φ , x6 := φ̇

System (1.39) can be rewritten by

ẋ=




x2

0
x4

−1
x6

0



+




0 0
−sinx5 ε cosx5

0 0
cosx5 ε cosx5

0 0
0 1




[
u1

u2

]

wherex := col(x1,x2, . . . ,x6), and thus it represents an affine nonlinear control sys-
tem. In general,ε is unknown but it is very small and can be neglected. In this case,
the model can be simplified as

ẋ1 = x2

ẋ2 = −(sinx5)u1

ẋ3 = x4

ẋ4 = (cosx5)u1−1

ẋ5 = x6

ẋ6 = u2

This is a nonlinear system.

1.5.3 Stirred tank reactor

Consider an industrial jacketed continuous stirred tank reactor (JCSTR) with a de-
layed recycle stream [116]. The reactions within the JCSTR are assumed unimolec-
ular and irreversible (exothermic). Perfect mixing is assumed and the heat losses are
neglected. The reactor accepts a feed of reactant which contains a substanceA with
initial concentrationCA0. Cooling of the tank is achieved by a flow of water around
the jacket and the water flow in the jacketFJ is controlled by actuating a valve.

Suppose that a fresh feed of pure substanceA is to be mixed with a recycled
stream of unreacted substanceA with a recycle flow rate

1− c, (0≤ c≤ 1)

wherec is the coefficient of recirculation.
The change of concentration arises from three terms: the amount of substanceA

that is added with feed under recycling, the amount of substanceA that leaves with
the product flow, and the amount of the substanceA that is used up in the reaction.
The change in the temperature of the fluid comes from the following four factors:
the heat that enters with the feed flow under recycling, the heat that leaves with the
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product flow, the heat created by the reaction and the heat that is transferred to the
cooling jacket. There are three terms associated with the changes of the temperature
of the fluid in the jacket: one term representing the heat entering the jacket with the
cooling fluid flow, another term accounting for the heat leaving the jacket with the
outflow of cooling liquid and a third term representing the heat transferred from the
fluid in the reaction tank to the fluid in the jacket.

Under conditions of constant hold-up, constant densities and perfect mixing, the
energy and material balances can be expressed mathematically as [116]:

ĊA = (FV)−1(cCA0− cCA− cCA(t−d)
)
− k1CAe−

k2
T

Ṫ = (FV)−1 (cT0− cT− cT(t−d))− k1k3CAe−
k2
T − k4(T−TJ(t))

ṪJ = (FJVJ)
−1(TJ0−TJ

)
− k5(T−TJ)

whereCA is the concentration of the substanceA, T is the temperature of the fluid
in the tank,TJ is the temperature of the jacket,V is the volume of the tank (gallons),
F is the feed entry rate, the initial temperature isT0, andd represents the transport
delay in the recycled stream.

It is straightforward to see that system (1.40)–(1.40) is a nonlinear time-delay
control system and can be described in the form of (1.1) as

ẋ=




(FV)−1
(
cCA0− cx1− cx1(t−d)

)
− k1x1e

− k2
x2

(FV)−1 (cT0− cx2− cx2(t−d))− k1k3x1e
− k2

x2 − k4(x2− x3(t))

(uVJ)
−1
(
TJ0− x3

)
− k5(x2− x3)


 (1.40)

wherex1 =CA, x2 = T, x3 = TJ, x= col(x1,x2,x3) is the system states andu= FJ is
the system input. The letterd represents the time delay.

1.5.4 Coupled inverted pendula on carts

Consider a coupled inverted pendulum connected by a moving spring mounted on
two carts as shown in Figure 1.6. It is assumed that the pivot position of the moving
spring is a function of time which can change along the full lengthl of the pendula.
The input to each pendulum is the torqueui applied at the pivot which is produced
by the external forcesF1 andF2 applied to the carts.

Let
z1 = col(θ1, θ̇1)

T , and z2 = col(θ2, θ̇2)
T

Then the dynamical model for the two coupled inverted pendulum system is given
by (see [149]):
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Fig. 1.6 Two coupled inverted pendula on carts

ẋ1 =

[
0 1

g
cl
− ka(t)(a(t)− cl)

cml2
0

]
x1+

[
0
1

cml2

]
u1+

[
0 0

ka(t)(a(t)− cl)
cml2

0

]
x2

−
[

0
m
M
(sinθ1)θ̇ 2

1 +
ka(t)(a(t)− cl)

cml2
(s1− s2)

]
(1.41)

ẋ2 =

[
0 1

g
cl
− ka(t)(a(t)− cl)

cml2
0

]
x2+

[
0
1

cml2

]
u2+

[
0 0

ka(t)(a(t)− cl)
cml2

0

]
x1

−
[

0
m
M
(sinθ2)θ̇ 2

2 +
ka(t)(a(t)− cl)

cml2
(s2− s1)

]
(1.42)

wheres1 ands2 are the positions of the two carts,

c= M/(M+m)

andk andg are the spring and gravity constants, respectively. The system (1.41)–
(1.42) is a nonlinear interconnected control system.
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1.5.5 Multimachine power systems

Power systems play an important role in the practical world.The classical model of
power systems was given by Bergen [8], and based on this, a multimachine power
system consisting ofN synchronous generators interconnected through a transmis-
sion network is described by the following equations [67]:

• Mechanical equations

δ̇i = ωi , (1.43)

ω̇i = −
Di

2Hi
ωi +

ω0

2Hi
(Pmi0−Pei) (1.44)

• Generator electrical dynamics:

Ė′qi =
1

T ′doi
(Ef i −Eqi). (1.45)

• Electrical equations

Eqi = E′qi− (xdi− x′di)Idi, (1.46)

Ef i = Kciuf i (1.47)

Pei =
N

∑
j=1

E′qiE
′
q jBi j sin(δi− δ j) (1.48)

Qei = −
N

∑
j=1

E′qiE
′
q jBi j cos(δi− δ j) (1.49)

Iqi =
N

∑
j=1

E′q jBi j sin(δi− δ j) (1.50)

Idi =
N

∑
j=1

E′q jBi j cos(δi− δ j) (1.51)

Eqi = xadiI f i (1.52)

Vti =
√
(E′qi− x′diIdi)2+(x′diIqi)2 (1.53)

whereδi is thei-th generator power angle [rad], andωi is the relative speed [rad/s],
E′qi represents the transient EMF in the quadrature axis [p.u.],anduf i is the input of
the amplifier of thei-th generator fori = 1,2, . . . ,N. The physical meanings of all
the other symbols/notation used above are shown in AppendixE.1.
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This model has been used by many authors to study multimachine power systems
[67, 193, 108, 182]. The multimachine power system shown above can be expressed
in the form of (1.24) (see, for example, Chapter 9).

1.5.6 A biochemical system – peroxidase-oxidase reaction

As a biochemical system, the peroxidase-oxidase (PO) reaction exhibits many com-
plex dynamical behaviors. A great deal of experimental and theoretical work has
been devoted to determining the mechanism by which oscillations and chaos arise
in the PO reaction.

In addition to oscillatory and chaotic behavior, the PO reaction exhibits bistabil-
ity. Due to its suspected kinetic source: the inhibition of the enzyme by molecular
oxygen, both autocatalysis and inhibition, i.e. positive and negative feedback are
needed in the reaction mechanism for this system. A simple model for the PO reac-
tion is described in [30, 181] as follows

Ȧ = −k1ABX− k3ABY+ k7− k9A

Ḃ = −k1ABX− k3ABY+ k8

Ẋ = k1ABX−2k2X
2+2k3ABY− k4X+ k6

Ẏ = −k3ABY+2k2X
2− k5Y

whereA is the concentration of dissolvedO2, B is the concentration of Nicotinamide
adenine dinucleotide, andX andY are concentrations of two critical intermediates,
X andY.

Typically all parameters exceptk1 are constant. The parameterk1 can be con-
sidered as a bifurcation parameter. Chaos is found only within a certain range of
parameter values. Variations ink1 reproduce the experimental behaviour observed
when the enzyme concentration is changed. Thusk1 can be considered as being
related to the enzyme catalyst concentration [30, 181].

This section has provided practical examples of complex systems. Some will be
used to demonstrate the developed results later in the text and additional examples
will be given in the subsequent chapters.

1.6 Outline of this Book

This monograph systematically summarises the authors’ recent results in the area of
variable structure systems. It will focus on the analysis and design of complex sys-
tems where sliding mode techniques and the Lyapunov approach are the two main
methods used throughout the monograph. Simulation examples and/or case studies
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are presented in each chapter to help readers understand theobtained theoretical
results and utilise the proposed design approaches.

The book is organised as follows. Firstly, the fundamental mathematical knowl-
edge and basic control theory employed in the subsequent analysis and design in this
monograph will be presented in Chapter 2. Considering that static output feedback
control design is more convenient for real implementation when compared with
state feedback control, in Chapter 3, robust static output controllers are designed to
globally asymptotically stabilise the system, and then a decentralised static output
feedback sliding mode control scheme follows for a class of nonlinear intercon-
nected systems.

As static output feedback control imposes strong limitations on the considered
system, dynamical feedback control is investigated in Chapter 4 where both mini-
mum phase and non-minimum phase systems are considered. Chapter 4 studies dy-
namical output feedback control for nonlinear interconnected systems. Since large
scale interconnected systems have higher dimension, and dynamical output feed-
back will greatly increase the dimension of the closed-loopsystem, reduced-order
observer based feedback controllers are considered in Chapter 5.

Time delay is a factor which increases system complexity. Chapters 6 and 7
concentrate on the study of nonlinear time delay systems where the Lyapunov-
Razumikhin approach is used to deal with the time delay. Under the assumption that
the time delays are known, control schemes for nonlinear time delay systems, and
a decentralised control strategy for interconnected systems are proposed in Chap-
ter 6. In practice, knowledge of the time delay is not always available for design.
In connection with this, memoryless variable structure controllers are presented in
Chapter 7.

Chapter 8 discusses model based fault detection and isolation for nonlinear sys-
tems with uncertainties. The reconstruction and/or estimation of both system faults
and sensor faults are considered based on a sliding mode observer scheme. LMI
techniques are employed to facilitate the design of the parameters. A coordinate
transformation is employed to explore the system structurewhen the considered
system is fully nonlinear.

Applications of decentralised sliding mode control schemes to multimachine
power systems are presented in Chapter 9. Simulation studies on three machine
power systems confirm the theoretical results.

Finally, Chapter 10 concludes the book by providing some comments on the
developed methods, some specific examples to show the complexity of control sys-
tems, and some suggestions for future developments in the area of variable structure
control.





Chapter 2
Mathematical Background

This chapter presents some fundamental mathematical knowledge and basic results
which facilitate the analysis and design in the subsequent chapters. The motivation
is to help readers understand the theoretical work presented in this book.

2.1 Lipschitz Function

This section will present the well known Lipschitz condition and the generalised
Lipschitz condition.

2.1.1 Lipschitz Condition

Definition 2.1. A function f (x) : R
n 7→ R

m is said to satisfy theLipschitz condi-
tion in the domainΩ ⊂ R

n if there exists a nonnegative constantL such that the
inequality

f (x)− f (x̂)≤ L‖x− x̂‖ (2.1)

holds for anyx∈ Ω andx̂∈ Ω . ThenL is called theLipschitz constantand f (x) is
called aLipschitz functionin Ω . If Ω = R

n, then f (x) is said to satisfy theglobal
Lipschitz condition.

From Definition 2.1, it is clear that a Lipschitz function must be continuous.
However the converse is not true and a typical example is the scalar function

f (x) = x1/3

in a neighbourhood of the originx= 0. A Lipschitz function may not be differen-
tiable and a simple example is the scalar function

f (x) = |x|

27
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at the originx= 0 in x∈R. Moreover, a differentiable function may not be Lipschitz
on a compact set, for example the function

f (x) =

{
xα sin

1
x
, 0< x≤ 1

0, x= 0
(2.2)

is not Lipschitz in the compact setx∈ [0, 1] for any constantα satisfying 1<α < 2.
The reason is that the derivative of the functionf (x) defined in (2.2) is not bounded
in the interval[0, 1].

Lemma 2.1.[91] Consider a function f(x) : R
n 7→ R

m which is differentiable in
the domainΩ . If its Jacobian matrix is bounded inΩ , that is, there exists a constant
L such that

‖Jf ‖ ≤ L

for any x∈ Ω , then f(x) satisfies the Lipshitz condition, and the inequality (2.1)
holds.

2.1.2 Generalised Lipschitz condition

The well known Lipschitz condition in Section 2.1.1 will be extended to a more
general case which will be used later in the analysis.

Definition 2.2. A function f (x1,x2,x3) : Ω1×Ω2×Ω3 7→ R
n is said to satisfy a

generalised Lipschitz condition with respect to (w.r.t.) the variablesx1 ∈ Ω1 ⊂ R
n1

andx2 ∈Ω2 ⊂ R
n2 uniformly for x3 in Ω3 ⊂ R

n3 if there exist nonnegative contin-
uous functionsL f 1(·) andL f 2(·) defined inΩ3 such that for any ˆx1,x1 ∈ Ω1 and
x̂2,x2 ∈Ω2, the inequality

‖ f (x1,x2,x3)− f (x̂1, x̂2,x3)‖ ≤L f 1(x3)‖x1− x̂1‖+L f 2(x3)‖x2− x̂2‖

holds for anyx3 ∈ Ω3. Then, f (·) is called a generalised Lipschitz function, and
L f 1(·) andL f 2(·) are called generalised Lipschitz bounds. Further, ifΩ1 =R

n1 and
Ω2 = R

n2, then, it is said thatf (·) satisfies a global generalised Lipschitz condition
w.r.t. x1 andx2 uniformly for x3 in Ω3.

Remark 2.1.The symbolsL f 1(·) andL f 2(·) introduced above are usually nonneg-
ative functions instead of constants. This is different from the Lipschitz condition.
Thus, the nonnegative continuous functionsL f 1(x3) andL f 2(x3) are called gener-
alised Lipschitz bounds which correspond to the Lipschitz constant for the Lipschitz
condition.

Clearly, the generalised Lipschitz condition is more relaxed than the Lipschitz
condition. For example, the function

f (x1,x2,x3) := x1x2
3+ x2x3
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with x1,x2,x3 ∈ R does not satisfy the global Lipschitz condition. However, from
the inequality that for any col(x1,x2,x3) ∈ R

3 and col(x̂1, x̂2,x3) ∈ R
3

| f (x1,x2,x3)− f (x̂1, x̂2,x3) | ≤ |x1− x̂1|x2
3+ |x2− x̂2| |x3|

it is clear to see thatf (·) satisfies the global generalised Lipschitz condition w.r.t. x1

andx2, uniformly for x3 ∈ R.

2.2 Comparison Functions

This section will present the definitions and properties of the classK function and
related functions.

Definition 2.3. (see [91]) A continuous functionα : [0,a) 7→ R
+ is said to belong

to classK if it is strictly increasing andα(0) = 0. It is said to belong to classK∞
if a= ∞ and limr→∞ α(r) = ∞.

Definition 2.4. (see [91]) A continuous functionβ : [0, a)×R
+ 7→ R

+ is said to
belong to classK L if, for any givens∈ R

+, the mappingβ (r,s) belongs to class
K with respect to the variabler, and for any givenr ∈ [0, a), the mappingβ (r,s)
is decreasing with respect to the variablesand lims→∞ β (r,s) = 0.

Definition 2.5. If a classK function is aC1 function, then it is said to belong to
classK C1. A continuous functionβ : Rn×R

+ 7→ R
+ is said to be a classK I

function if for any givenx∈Rn the functionβ (x,s) is increasing with respect to the
variables in R

+, that is,β (x,s1)≤ β (x,s2) for any 0≤ s1 ≤ s2.

The functions defined in Definitions 2.3 and 2.4 above are directly from [91].
The new concepts of classK C1 functions and classK I functions are introduced
in Definition 2.5 will be used for later analysis.

The following new concept is introduced, which will be termed a classW S

function and will be used in Section 7.3.

Definition 2.6. A continuous functionβ (t,x1,x2) : R+ × R
+ × R

+ 7→ R
+ with

β (t,0,0) = 0 is said to be weak w.r.t the variablex1 and strong w.r.t. the variablex2

if there exist functionsχ1(t,x1,x2) andχ2(t,x1,x2) such that

β (t,x1,x2) = χ1(t,x1,x2)x1+ χ2(t,x1,x2)x2 (2.3)

where bothχ1(·, ·,x2) and χ2(·, ·,x2) are continuous and nondecreasing w.r.t. the
variablex2. Further, the functionβ (t,x1,x2) is said to be a classW S function w.r.t.
the variablesx1 andx2.

Remark 2.2.It should be noted that if a functionβ (t,x1,x2) : R+×R
+ ×R

+ 7→
R
+ with β (t,0,0) = 0 is smooth enough, then it follows from [3] that there exist

continuous functionsβ1(·) andβ2(·) such that the expression
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β (t,x1,x2) = β1(t,x1,x2)x1+β2(t,x1,x2)x2

holds. Moreover, ifβ1(t,x1,x2) and β2(t,x1,x2) are nondecreasing w.r.t.x2, then
β (t,x1,x2) is a classW S function w.r.t.x1 andx2.

Lemma 2.2.(see [91]) Assume thatα1(·) andα2(·) are classK functions in[0, a),
α3(·) andα4(·) are classK∞ functions, andβ (·) is a classK L function defined
in [0, a)×R

+. Then, the following results hold:

• the inverse functionα−1
1 (·) is a classK function defined in[0, α1(a)).

• the inverse functionα−1
3 (·) is a classK∞ function defined in[0, ∞).

• the composite functionα1 ◦α2 is a classK function.
• the composite functionα3 ◦α4 is a classK∞ function.
• the functionσ(r,s) = α1 (β (α2(r),s)) is a classK L function.

Lemma 2.3.The following results hold:

i) If β (x,s) : Rn×R+ 7→ R
+ is a classK I function, thenβ 2(x,s) is a classK I

function.
ii) Suppose that a functionφ1 : [0,a) 7→ R

+ is a C1 function withφ1(0) = 0. Then
there exists a continuous functionφ2(·) in [0,a) such that

φ1(s) = φ2(s)s, s∈ [0,a)

Proof: i) Suppose thatβ (x,s) : Rn×R+ 7→R
+ is a classK I function. Then for any

0≤ s1 ≤ s2 andx∈R
n,

β (x,s1)≤ β (x,s2)

Sinceβ (x,s) ≥ 0 for any(x,s) ∈ R
n×R

+

β 2(x,s1)−β 2(x,s2)

= (β (x,s1)+β (x,s2))(β (x,s1)−β (x,s2))

≤ 0

This shows thatβ 2(x,s) is a classK I function

ii) Since the functionφ1(·) is aC1 function in [0,a), its derivativedφ1(s)
ds is con-

tinuous in[0,a). For anys∈ [0,a), construct a function

φ2(s) :=





φ1(s)
s

, s 6= 0

dφ1(s)
ds

|s=0, s= 0
(2.4)

From the definition ofφ2(·), it is clear to see that

1) if s 6= 0, thenφ1(s) = φ2(s)s;
2) if s= 0, then fromφ1(0) = 0, φ1(s) = φ2(s)s.
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Therefore, the expression
φ1(s) = φ2(s)s

holds fors∈ [0,a). It remains to prove that the functionφ2(·) defined in (2.4) is
continuous in[0,a).

It is clear thatφ2(s) is continuous in(0,a). Sinceφ1 is aC1 function in [0,a),

from the continuity ofdφ1(s)
ds at s= 0,

lim
s→0+

φ2(s) = lim
s→0+

φ1(s)
s

=
dφ1(s)

ds
|s=0= φ2(0)

which implies thatφ2(·) is continuous ats= 0. Thereforeφ2(·) is continuous in
[0,a).

Hence the conclusion follows. ∇

2.3 Lyapunov Stability Theorems

The results given in this section are available in [91].
Consider the nonlinear system

ẋ(t) = f (t,x(t)) (2.5)

where the functionf : R+×D 7→ R
n is continuous andD ⊂ R

n is a domain which
contains the originx= 0. It is assumed that

f (t,0) = 0, t ∈ R
+

which implies that the origin is an equilibrium point of the system.

Definition 2.7. The equilibrium pointx= 0 of system (2.5) is called exponential sta-
ble if there exist positive constantsci for i = 1,2,3 such that for anyx(t0) satisfying
‖x(t0)‖ ≤ c1,

‖x(t)‖ ≤ c2‖x(t0)‖e−c3(t−t0) (2.6)

If inequality (2.6) holds for anyx(t0) ∈ R
n, then, the equilibrium pointx = 0 of

system (2.5) is called globally exponentially stable.

2.3.1 Asymptotic stability

Theorem 2.1.Consider system (2.5). Let V: R+×D 7→ R
+ be a continuously dif-

ferentiable function such that
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W1(x)≤V(t,x)≤W2(x)

∂V
∂ t

+
∂V
∂x

f (t,x)≤−W3(x)

for any t∈R+ and x∈D, where Wi(x) for i = 1,2,3 are continuous positive definite
functions in D. Then x= 0 is uniformly asymptotically stable. Further if D= R

n,
and w(x) is radially unbounded, then x= 0 is globally uniformly asymptotically
stable.

2.3.2 Exponential stability

Theorem 2.2.Consider system (2.5). Let V: R+×D 7→ R
+ be a continuously dif-

ferentiable function such that for t∈R
+ and x∈ D,

k1‖x‖a≤V(t,x)≤ k2‖x‖a
∂V
∂ t

+
∂V
∂x

f (t,x)≤−k3‖x‖a

where ki for i = 1,2,3 and a are positive constants. Then x= 0 is exponentially
stable. Further if D= R

n, then x= 0 is global exponentially stable.

Comparing Theorems 2.1 and 2.2 above, it is straightforwardto see that expo-
nential stability implies uniform asymptotic stability.

2.3.3 Converse Lyapunov theorem

The following result is the well known Converse Lyapunov Theorem.

Theorem 2.3.Consider system (2.5) in domain D:= Br = {x∈ R
n | ‖x‖< r}. Let

β (·) be a classK L function and r0 be a positive constant such that

β (r0,0)< r and Br0 := {x | ‖x‖< r0}

Assume that the Jacobian matrix∂ f
∂x is bounded1 in domain D uniformly for t∈R+,

and that the trajectory of system (2.5) satisfies

‖x(t)‖ ≤ β (‖x(t0)‖, t− t0), x(t0) ∈Br0, t ≥ t0≥ 0

Then, there exists a continuously differentiable functionV : R+×Br0 7→ R
+ such

that

1 If the function f (·) in (2.5) is continuously differentiable in the ballBr , then ∂ f
∂x is bounded in

the domainD = Br .
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α1(‖x‖)≤V(t,x)≤ α2(‖x‖)
∂V
∂ t

+
∂V
∂x

f (t,x) ≤−α3(‖x‖)
∥∥∥∥

∂V
∂x

∥∥∥∥≤ α4(‖x‖)

whereαi for i = 1,2,3,4 are classK functions defined on the interval[0, r0]. The
function V(·) can be chosen independent of time t if f(·) in system (2.5) is indepen-
dent of the time t.

2.4 Uniformly Ultimate Boundedness

For a given system (2.5), if asymptotic stability is not possible, uniform ultimate
bounded stability can be considered. This is very useful in practical cases.

Theorem 2.4.Consider system (2.5). Let V: R+×D 7→ R
+ be a continuously dif-

ferentiable function such that in t∈ R
+ and x∈R

n,

α1(‖x‖)≤V(t,x) ≤ α2(‖x‖)
∂V
∂ t

+
∂V
∂x

f (t,x) ≤ −W3(x), for any ‖x‖ ≥ µ > 0

whereα1(·) and α2(·) are classK functions and W3(·) is a continuous positive
definite function in domain D. Then x= 0 is uniformly ultimately bounded2. Further
if D =R

n, andα1(·) belongs to classK∞, then x= 0 is globally uniformly ultimately
bounded.

Proof: See the reference [91] (Theorem 4.18, p. 172). #

From Theorem 2.4, the following result is ready to be presented:

Lemma 2.4.Consider the nonlinear system

ẋ= ω(x) (2.7)

where x∈ R
n is the system state, and the functionω(·) is continuous inRn. Let

V : Rn 7→ R
+ be a continuously differentiable classK∞ function of‖x‖ such that

the inequality

∂V

∂x
ω(x) ≤ −ϑ(‖x‖), x∈R

n \Bµ (2.8)

2 The ultimate bound depends on the parametersµ , which can be estimated using the result given
in Theorem 4.18 in [91].
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holds for some domainBµ , whereϑ is a classK function, andµ is a positive
constant. Then, the trajectory of system (2.7) enters into the domainBµ in finite
time.

Proof: From the condition of Lemma 2.4, there exists a classK∞ function ϑ1(·)
such that

V (x) = ϑ1(‖x‖). (2.9)

Then, from (2.8), (2.9) and using Theorem 2.4, the trajectory of system (2.7) is
driven to the domainBµ in a finite time, and remains there. That means there exists
t1 such thatx∈Bµ for t ≥ t1.

The aim now is to prove that the trajectory of system (2.7) enters intoBµ in a
finite time. Suppose for a contradiction that this is not the case, then there exists
some timet2 such that the solutionx(x0, t) of system (2.7) starting from some point
x0 satisfiesx(x0, t) ∈ ∂Bµ aftert2. This is equivalent to

‖x(x0, t)‖= µ , t ≥ t2. (2.10)

By (2.9) and (2.10), it follows that

V (x(x0, t)) = ϑ1(‖x(x0, t)‖) = ϑ1(µ), t ≥ t2. (2.11)

whereµ is a positive constant. This shows thatV̇ |(2.7)≡ 0 aftert2, and it contradicts
(2.8). Hence, the conclusion follows. #

Remark 2.3.Lemma 2.4 demonstrates that the solution enters the open setBµ in
finite time and remains onBµ . It does not claim that the solution subsequently
remains inBµ .

2.5 Razumikhin Theorem

Consider a time-delay system

ẋ(t) = f (t,x(t−d(t)) (2.12)

with an initial condition

x(t) = φ(t), t ∈ [−d,0]

where the function vectorf :R+×C[−d,0] 7→R
n takesR×(bounded sets ofC[−d,0])

into bounded sets inRn; d(t)> 0 is the time delay and

d := sup
t∈R+
{d(t)}< ∞

which implies that the time delayd(t) has a finite upper bound int ∈ R
+.
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Theorem 2.5.(Razumikhin Theorem) If there exist classK∞ functionsζ1(·) and
ζ2(·), a classK functionζ3(·) and a continuous functionV1(·) : [−d,∞]×R

n 7→R
+

satisfying
ζ1(‖x‖)≤V1(t,x)≤ ζ2(‖x‖), t ∈ R

+, x∈ R
n

such that the time derivative of V1 along the solution of system (2.12) satisfies

V̇1(t,x)≤−ζ3(‖x‖) if V1(t−d,x(t−d))≤V1(t,x(t)) (2.13)

for any d∈ [0, d], then the system (2.12) is uniformly stable. If in addition,ζ3(τ)> 0
for τ > 0 and there exists a continuous non-decreasing functionξ (τ)> τ for τ > 0
such that (2.13) is strengthened to

V̇1(t,x)≤−ζ3(‖x‖) if V1(t−d,x(t−d))≤ ξ (V1(t,x(t))) (2.14)

for d ∈ [0, d] , then the system (2.12) is uniformly asymptotic stable.

Proof: See pages 14-15 in [65]. ∇

From the Razumikhin Theorem 2.5. the following conclusion can be obtained
directly:

Lemma 2.5.Consider the time delay system (2.12). If there exist constants γ > 0
andζ > 1 and a function

V2(x(t)) = xT P̃x

with P̃> 0 such that the time derivative of V2(·) along the solution of system (2.12)
satisfies

V̇2 |(2.12)≤−γ
∥∥∥P̃

1
2 x(t)

∥∥∥
2

(2.15)

whenever
‖P̃1

2 x(t +θ )‖ ≤ ζ‖P̃1
2 x(t)‖

for anyθ ∈ [−d,0], then, system (2.12) is uniformly asymptotic stable.

Proof: From the definition ofV2(·) it follows that

λmin(P̃)‖x‖2≤V2(t,x(t))≤ λmax(P̃)‖x‖2

and from (2.15)

V̇2 |(2.12)≤−γx(t)T P̃x(t)≤−γλmax(P̃)‖x‖2.

It is clear that the inequality

V2(x(t +θ ))≤ ζ 2V2(x(t))

is equivalent to the inequality

‖P̃1
2 x(t +θ )‖ ≤ ζ‖P̃1

2 x(t)‖
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Then, from Razumikhin Theorem 2.5 andP̃> 0, the conclusion follows by letting

γ1(τ) = λmin(P̃)τ2, γ2(τ) = λmax(P̃)τ2

γ3(τ) = γλmin(P̃)τ2, γ4(τ) = ζ 2τ

in Theorem 2.5. #

2.6 Output Sliding Surface Design

In order to form an output feedback sliding mode control scheme, it is usually re-
quired that the designed switching function is a function ofthe system outputs. The
corresponding sliding surface is calledan output sliding surfacein this book. The
output sliding surface algorithm proposed in [37, 38] is outlined here, and this will
be frequently used in the sequel.

Consider initially a linear system

ẋ = Ax+Bu (2.16)

y = Cx, (2.17)

wherex ∈ R
n, u ∈ R

m, y ∈ R
p are the states, inputs and outputs respectively and

assumem≤ p< n. The triple (A,B,C) comprises constant matrices of appropriate
dimensions withB andC both being of full rank.

For system (2.16)-(2.17), it is assumed that

rank(CB) = m

Then, from [37] it can be shown that a coordinate transformation x̃= T̃xexists such
that the system triple(A,B,C) with respect to the new coordinatex̃ has the following
structure [

Ã11 Ã12

Ã21 Ã22

]
,

[
0
B2

]
,
[

0 T̆
]

(2.18)

whereÃ11 ∈ R
(n−m)×(n−m), B2 ∈ R

m×m andT̆ ∈ R
p×p is orthogonal. Further, it is

assumed that the system(Ã11, Ã12,C̃1) with C̃1 defined by

C̃1 =
[

0(p−m)×(n−m) Ip−m
]

(2.19)

is output feedback stabilisable i.e. there exists a matrixK ∈ R
m×(p−m) such that

Ã11− Ã12KC̃1

is stable. It is shown in [37, 38] that a necessary condition for (Ã11, Ã12,C̃1) to be
stabilisable is that the invariant zeros of(A,B,C) lie in the open left half-plane. In
[37, 38] a sliding surface of the form
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FCx= 0 (2.20)

is proposed where
F = F2

[
K Im

]
T̆τ (2.21)

andF2 ∈ R
m×m is any nonsingular matrix.

If a further coordinate change is introduced based on the nonsingular transfor-
mationz= T̂x̃ with T̂ defined by

T̂ =

[
In−m 0
KC̃1 Im

]

then in the new coordinatesz, system (2.16)–(2.17) has the following form

[
A11 A12

A21 A22

]
,

[
0
B2

]
, Ĉ

whereA11= Ã11− Ã12KC̃1 is stable and̂C satisfies

FĈ=
[

0 F2
]

with F2 nonsingular. From the analysis above, the following conclusion is obtained
directly:

Lemma 2.6.Consider system (2.16)-(2.17). Suppose that

i) rank(CB) = m;
ii) the invariant zeros of(A,B,C) lie in the open left half-plane;
iii)the matrix triple (Ã11, Ã12,C̃1) is output feedback stabilisable where(Ã11, Ã12)

andC̃1 are defined respectively by (2.18) and (2.19).

Then,

i) there exists a transformation z= Tx such that in the new coordinate z system
(2.16)–(2.17) has the following form

ż=

[
A11 A12

A21 A22

]
z+

[
0
B2

]
u (2.22)

y =
[

0 C2
]
z, (2.23)

where A11 ∈ R
(n−m)×(n−m) is stable. Both matrices B2 ∈ R

m×m and C2 ∈ R
p×p

are nonsingular;
ii) there exists a matrix F such that FCx= 0 provides a stable sliding motion for

system (2.16)-(2.17) and F
[

0 C2
]
=
[

0 F2
]

where F2 ∈Rm×m is nonsingular.

Proof: All that remains to be shown is that the output distribution matrix has the
form given in (2.23) and thatC2 is nonsingular. The output distribution matrix in the
new coordinates is given by
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[
0 T̆

]
T̂−1 =

[
0 T̆

]
[

In−m 0
−KC̃1 Im

]

=
[

0 T̆
]



In−p 0 0
0 Ip−m 0
0 −K Im




=
[

0 T̆
]



In−m 0

0

[
Ip−m 0
−K Im

]



=

[
0 T̆

[
Ip−m 0
−K Im

]]
.

and so by inspection,

C2 = T̆

[
Ip−m 0
−K Im

]

which is nonsingular. Hence the result follows. #
From the analysis above, it is clear to see that the coordinate transformation

z= Tx

whereT := T̂T̃, transfers the system (2.16)-(2.17) to the regular form (2.22)–(2.23).
Choose the sliding surface

S = {x | FCx= 0, x∈ R
n} (2.24)

Then, the analysis above shows that the sliding motion of system (2.16)-(2.17) cor-
responding to the sliding surface (2.24) is asymptoticallystable. The sliding surface
(2.24) can be described by

S = {y | Fy= 0, y∈ R
p} (2.25)

which is a subspace of theoutput space. ThereforeS in (2.24) or (2.25) denote
output sliding surfaces.

Remark 2.4.Lemma 2.6 gives a condition for the existence of the output switching
surface (2.20) on which system (2.16) is stable. It should beemphasized that the
sliding surface given by Lemma 2.6 can be obtained from a systematic algorithm
together with any output feedback pole placement algorithmof choice. Details of
appropriate algorithms and how to determine the switching surface (2.20) is de-
scribed in [37, 38] where the necessary and sufficient condition to guarantee the
existence of the matrixF is available in Proposition 5.2 of [38]. Ifp= m then there
is no design freedom and the sliding motion is governed by theinvariant zeros of
(A,B,C).



2.7 Geometric Structure of Nonlinear System 39

2.7 Geometric Structure of Nonlinear System

Consider the nonlinear system

ẋ(t) = F(x(t),u(t)) (2.26)

y(t) = h(x(t)), x0 = x(0) (2.27)

wherex ∈ Ω ⊂ Rn (and Ω is a neighbourhood ofx0), u = col(u1,u2, . . . ,um) ∈
U ∈Rm, andy= col(y1,y2, . . . ,yp)∈R p are the state variables, inputs and outputs
respectively whereU is an admissible control set.F(x,u) is a known smooth vector
field in Ω ×U and the known functionh : Ω 7→ R p is smooth. For convenience,
the system (2.26)–(2.27) is also denoted by the pair(F(x,u),h(x)).

Definition 2.8. (See, e.g. [58]) System (2.26)–(2.27) is said to beobservableat
(x0,u0) ∈ Ω ×U if there exists a neighbourhoodN of (x0,u0) in Ω ×U and a
set of nonnegative integer numbers{r1, r2, · · · , rp} with ∑p

i=1 r i = n such that

1) for all (x,u) ∈N

∂
∂u j

Lk
F(x,u)hi(x) = 0 (2.28)

for indicesi = 1,2, . . . , p, k= 0,1,2, . . . , r i−1 and j = 1,2, . . . ,m;
2) thep×mmatrixM(x,u) := { ∂

∂u j
Lr i

F(x,u)hi(x)} has rankp in (x0,u0)

Then,{r1, r2, · · · , rp} is called theobservability indexof system (2.26)–(2.27) at
(x0,u0). Further, system (2.26)–(2.27) is said to beuniformly observablein Ω ×U

if for any (x0,u0) ∈ Ω ×U , the system is observable and the observability indices
are fixed.

Assume the pair(F(x,u),h(x)) has uniform observability index{r1, r2, · · · , rp}
with ∑p

i=1 r i = n in the domainΩ ×U . Construct a nonlinear transformationT :
x 7→ zas follows:

zi1 = hi(x) (2.29)

zi2 = LF(x,u)hi(x) (2.30)

...

zir i = Lr i−1
F(x,u)hi(x) (2.31)

wherezi := col(zi1,zi2, · · · ,zir i ) for i = 1,2, . . . , p andz := col(z1,z2, · · · ,zp).
It follows from Definition 2.8 thatM(x,u) has rankp in Ω×U , implying that all

zi are independent of the controlu, which combined with the restriction∑p
i=1 r i = n

means that the corresponding Jacobian matrix ofT(x), ∂T
∂x , is nonsingular. There-

fore, (2.29)–(2.31) is a diffeomorphism in the domainΩ , andz= col(z1,z2, . . . ,zp)
forms a new coordinate system which can be obtained by directcomputation from
(2.29)–(2.31).
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SinceL j
F(x,u)hi(x) is independent ofu for all i = 1,2, . . . , p and j = 1,2, . . . , r i−1,

it follows by direct computation that fori = 1,2, . . . , p

żi1 = ∂hi
∂x F(x,u) = LF(x,u)hi(x) = zi2

żi2 =
∂(LF(x,u)hi(x))

∂x F(x,u) = L2
F(x,u)hi(x) = zi3

...

żir i−1 = Lr i−1
F(x,u)hi(x) = zir i

żir i = Lr i
F(x,u)hi(x)

Therefore, in the new coordinatesz defined by (2.29)–(2.31), system (2.26)–(2.27)
has the following form

ż= Az+BΦ(z,u)

y = Cz

where

A= diag{A1, . . . ,Ap}, B= diag{B1, . . . ,Bp} and C= diag{C1, . . . ,Cp}

whereAi ∈Rr i×r i , Bi ∈Rr i×1 andCi ∈R1×r i for i = 1,2, . . . , p are defined by

Ai =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
0 0 0 · · · 0



, Bi =




0
0
...
0
1



, Ci =

[
1 0 · · · 0

]
(2.32)

and

Φ(z,u) :=




φ1(z,u)
φ2(z,u)

...
φp(z,u)


 :=




Lr1
F(x,u)h1(x)

Lr2
F(x,u)h2(x)

...

L
rp

F(x,u)hp(x)




x=T−1(z)

(2.33)

whereφi : T(Ω)×U 7→R for i = 1,2, . . . , p.
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2.8 Summary

This chapter has presented the fundamental concepts and results which underpin
the theoretical analysis in this book. Some of the results are taken from the existing
literature and others are developed by the authors, but withrigorous proofs pro-
vided. The content covers Lipschitz conditions, comparison functions, stability of
nonlinear systems, the converse Lyapunov theorem and uniform ultimate bounded-
ness. The well known Razumikhin Theorem has been presented,for the readers’
convenience, and will be employed to deal with time delay systems throughout the
book. Section 2.5 summarises the output sliding surface design approach proposed
in [38] which will be frequently used in the sequel. Finally the geometric structure
of nonlinear systems with uniform observability index has been provided.




