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Preface

It is well known that linear dynamical systems cannot adéglyalescribe many
phenomena commonly observed in the real world. With the meiment of science
and technology, practical systems are becoming more compteder to complete
more advanced tasks. With the increasing requirementsykies performance,
linear system theory based study cannot satisfy the pedectquirements, and the
mathematical equations used to model real physical ancheagng systems have
become more and more complex. In reality, there are mangr&athich will affect
system performance. To describe and explore various nanemomena, it is nec-
essary to consider these factors and thus to investigatplegrsystems as a means
to model real systems more accurately. This book systeraggects of the authors’
recent achievements in the area of variable structure @oalsngside with some
fundamental knowledge in the area.

This book focuses on the study of complex control systemshithvthe com-
plexity mainly stems from nonlinearities, uncertaintiésje delay, faults and/or
coupling among subsystems. It provides rigorous the@lksiglutions to the prob-
lem of control of complex systems but has potential appticein practical systems.
It should be emphasised that many theoretical studies omat@ystems often as-
sume that all system states are available for control deSigis assumption is not
valid for real systems in many cases. To implement such cbsthemes, a perti-
nent way forward is to construct an appropriate dynamicsiesy which is called
an observer, to estimate the state variables. Unfortunaitel traditional separation
principle for linear control systems usually does not hadthe nonlinear coun-
terpart, which implies that for nonlinear systems, the prtips of a state feedback
control law may not be achieved when the control law is imgetad with the esti-
mated states. In connection with this, this book focusesutput feedback control
design: both static output feedback and dynamical outpedifack strategies, in-
cluding reduced order dynamical output feedback strasegie proposed to control
complex systems such that the closed-loop systems havesired performance.

Variable structure control techniques have been extelysstedied, and widely
applied to theoretical research and practical engineeystems due to their high
robustness. Specifically, as one special case of variailetste controllers, sliding
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Viii Preface

mode controllers are completely robust to matched unceigsi Moreover, the slid-
ing motion is determined by reduced order dynamics, whicliifates the reduction
of the effects of mismatched uncertainties on the wholeesystwhen compared
with other methods. A key development in this book considarsable structure
control for complex systems based on only output infornmgticsing mainly the
Lyapunov direct method and sliding mode techniques, wighothjective of enhanc-
ing the robustness against uncertainties, reduction cfereatism and enlargement
of the admissible systems. Rigorous stability analysisdesign methodologies are
provided from a theoretical perspective for this theme. IMearities appear in all
the considered systems throughout the book. Both the matied mismatched un-
certainties covered in this book are nonlinear and boungetbhlinear functions.
Since the considered systems are complex and all the resaltggorous, the con-
ditions developed for all the main results in this book ar#figant. As there is
no general way to obtain the design parameters for an ougeatback controller,
trying to determine ‘easy’ test conditions with low consaism, by separating pos-
sible known information from the system and then employtmgnt in the design
to reduce the effects of factors such as uncertainties ameldelay on the system,
is one of the main targets throughout this book. The book alesents novel con-
tributions to deal with nonlinear uncertainties for timéagesystems by combining
the Lyapunov Razumikhin approach and variable structwterigues for different
cases when delay is known and unknown respectively. It isvshthat for inter-
connected systems, decentralised control schemes alatd@ad cancel/reduce the
effects of the interconnections on the whole system perdoica, under certain con-
ditions. One of the characteristics of this monograph i¢ thany examples and
case studies with simulations are given to help readersretaohel the developed
theoretical results and the proposed approaches.

The first two chapters present fundamental knowledge usddtén develop-
ments. Chapter 1 develops some preliminary ideas regaveimaple structure con-
trol. Specifically, the basic concepts and fundamental oulogies for sliding
mode control and decentralised control are provided. Sohteemn are clarified
for the first time based on the authors’ understanding as wdtresthe authors’
many years of research work in the areas. Several practieahgles are given to
show the potential application of complex systems. Thipsetaders understand
the main methods used in the book intuitively from both matagcal and practical
points of view. Chapter 2 presents some preliminary mathieaiaesults and some
results developed by the authors.

Chapter 3 considers static output feedback control desigldth nonlinear sys-
tems and interconnected systems. For a class of fully nealisystems, a variable
structure control based on Lyapunov methods is designedve and maintain the
system in a ‘small’ region of the origin. Then, in the regithe nonlinear system is
linearised and a sliding mode control is designed to stabtle system asymptoti-
cally. Both controllers combined together stabilise th&tamn globally. For intercon-
nected systems, decentralised control schemes are dededoyl output variables
embedded in the nonlinearity are separated and used in tititdesign to reduce
conservatism. Case studies relating to a mass spring systemled inverted pen-
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dulums and a flight control system are provided to illustthtedeveloped control
methodologies.

Chapter 4 considers dynamical output feedback controgddsir systems with
mismatched uncertainties/disturbances such that thesmonding closed-loop sys-
tems are asymptotically stable. Compared with Chapterl 3h@luncertainties in-
volved in this chapter are bounded by nonlinear functionthefsystem state vari-
ables instead of the output variables. The bounding funstare assumed to be
known and thus it is possible to use them for control desigh system analysis
to reduce the effects of uncertainties. In Section 4.2,dirgji surface is designed
which is independent of the designed observer, and therdimglmode control
is synthesised based on the estimated states from the ddsijpserver and the
system outputs. The controller design and the observeguese separated. The
designed control can be implemented with any appropriasemier but the devel-
oped approach requires that the considered system is mimipiase. In Section
4.3, a dynamical compensator is designed first. A slidingaseris then designed
for the augmented system formed by the considered systemresrdlynamics. Itis
not required that the nominal system is minimum phase. Apfibns to control of
the High Incidence Research Model (HIRM) aircraft are giieBection 4.4. Both
longitudinal and lateral aircraft dynamics based on dé#fertrim values of Mach
number and height are employed in the simulation study.

Chapter 5 continues to consider dynamical output feedbackaller design. It
focuses on large-scale interconnected systems and usestkdrder compensators
to form the feedback loop which is particularly important iarge scale systems as
it may avoid ‘the curse of dimensionality’. In Section 5.Bdimg mode dynamics
are established and the stability is analysed using an alguitzcontrol approach
and a local coordinate transformation. A robust decesgdlpbutput feedback slid-
ing mode control scheme is synthesized such that the inteemted system can
be driven to the pre-designed sliding surface. This appradlows both the nomi-
nal isolated subsystem and the whole nominal system to b@ingnum phase. In
Section 5.3, a similar structure is introduced to identifglass of nonlinear large-
scale interconnected systems. By exploiting the systenctstre of similarity, the
proposed nonlinear reduced-order control schemes allowe general forms of un-
certainties. Specifically, based on a constrained Lyapwgmation, the effect of
matched uncertainties is canceled completely. The stuolyskthat a similar struc-
ture can simplify the analysis and reduce the amount of ceatipn. Numerical
simulation examples and a case study on river pollutionrobate provided to il-
lustrate the results developed.

Chapters 6 and 7 consider complex systems with time delayaplinov Razu-
mikhin approach is employed to deal with time delay throughbe two chapters.
All the developed results are suitable for time varying gelad there is no limita-
tion to the rate of change of the time varying delay as with.iegpunov Krasovskii
approach. Chapter 6 requires that the time delay is knowrttargithe time delay
can be used in the design to reduce conservatism. Therbfocehtrollers are delay
dependent. Chapter 7 removes the assumption that the tilagidénown but the
results obtained are usually conservative when comparédQtiapter 6. In Chap-
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ter 6, both static and dynamical output feedback controtésts are presented for
complex time delay systems; decentralised static outatfack sliding mode con-
trollers are designed to stabilise complex interconnetitee delay systems where
delay exists in both the interconnections and the isolatigystems. In Chapter
7, local stabilisation is considered for affine nonlineantcol systems with uncer-
tainties involving time-varying delay. It is not assumedttthe nominal system is
either linearisable or partially linearisable. Sectioa fbcuses on the stabilisation
problem for a class of large scale systems with nonlineard@oinnections. A decen-
tralised static output feedback variable structure cddrsynthesised and a set of
conditions is developed to guarantee that the considergd &ale interconnected
systems are stabilised uniformly asymptotically. Secfidnprovides some exam-
ples to demonstrate the results developed in Sections . A2Nidmerical simulation
examples and a case study on a mass-spring system are pravitiemonstrate the
theoretical results.

Chapter 8 considers fault detection and isolation (FDIpfmmlinear systems with
uncertainties using particular sliding mode observersvoich the design parame-
ters can be obtained using LMI techniques. In Section 8.Rdimg mode observer
based approach is presented to estimate system faults usimgls on the uncer-
tainties, and as a special case, a fault reconstructiomeelgeavailable where the
reconstructed signal can approximate the fault signal yoameuracy. Section 8.3
considers sensor FDI for nonlinear systems where a nomlifif@omorphism is
introduced to explore the system structure and a simple iteresented to ‘trans-
form’ the sensor fault into a pseudo-actuator fault scend@oth fault estimation
and reconstruction are considered. Case studies on ac@algtisystem and a mass-
spring system demonstrate the effectiveness of the prdge3keschemes.

Chapter 9 provides a decentralised strategy for the eiaitabntrol problem of
multimachine power systems which are formed from an intemected set of lower
order subsystems through a network transmission. Both atdmd uncertainties
in the interconnections and parametric uncertaintiesardirect axis transient short
circuit time constants, which affect the subsystem inpstriiiution matrix, are con-
sidered. The proposed approach can deal with intercormmgteims and parametric
disturbances with large magnitude. The results obtainéd inca large region of
operation if the control gain is high enough. This allows diperating point of the
multimachine power system to vary to satisfy different lo@nands. Simulations
based on a three-machine power system are presented taibuthe proposed con-
trol scheme.

Chapter 10 makes some concluding remarks. Several spediiicmes are pre-
sented to show the complexity of the systems consideredsrbtiok. Some com-
ments offer suggestions for future work. Finally, ApperediA to D provide some
results (with rigorous proofs), which are used in the bookl Appendix E presents
notation and the parameters of the multimachine powersystmsidered in Chap-
ter 8.

The book aims to disseminate recent results in the area iasfblarstructure con-
trol of complex systems. It is suitable for scientists andieeers in academia and
industry who are interested in either variable structuchnéues or complex sys-
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tems including nonlinear control, decentralised contioie delay systems, robust
control and fault detection and isolation. It is particljaraluable to have a com-
bined set of references at the end of the book for ease of atw@sany important
theoretical and practical applications. It contains maagecstudies and numeri-
cal examples with simulations to help readers understaddpply the developed
theoretical results. The analysis and design methoddagie also useful for both
undergraduate and postgraduate students in the field oineanlcontrol systems
design. We believe mathematicians and control enginedrvd the book useful.

Last but not least, we would like to point out that this bookyoattempts to
present part of the authors’ recent achievements in the gfreamplex variable
structure control, which is obviously built on many otheeyious results. Although
we have tried to cover most of the recent important ideas aesdlts in the area,
the exposition is far from a complete overview of the asdedigubjects. The bib-
liography includes only the literature which has been dbtueed in the book. We
sincerely apologies for any serious omissions, large otlsma

Canterbury, United Kingdom Xing-Gang Yan
Canterbury, United Kingdom Sarah K. Spurgeon
Exeter, United Kingdom Christopher Edwards

April, 2016
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Notation And Symbols

e D ——the empty set

e R ——the set of real numbers

e RT —— the set of nonnegative real numbers

e R"—— then dimensional Euclidean space

e R™M_the set ol x mmatrices with elements iR
e |- || —— the Euclidean norm or its induced norm

o In the unit matrix with dimension

e Im(A) —— the range space of matrix

e Al) — the j-th column vector of the matriA

e B, or 4, — the ball{x| ||x|| < r} with radiusr wherer € (0, )

e B or %, the closure of#,

o 0%, or 0.5, the boundary of%;

e AT or AT —— the transpose of matrik

e A TorA T —— the transpose of matrik—*

e A>0——Ais asymmetric positive definite matrix

e A< 0——Ais a symmetric negative definite matrix

e O0(A) —— the maximum singular value of the mat#x

e J(A) —— the minimum singular value of the matmx

e Amin(A) —— the minimum eigenvalue of the square matkix
e Amax(A) —— the maximum eigenvalue of the square ma#ix

e diag{A1,A2, - ,An} —— a block-diagonal matrix with diagonal eleme#ts
A27 T aAN
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f~1(.) —— the inverse function of the functiof-)
2 —— the Lipschitz constant of the functidi-)
Lth —— derivative of the mapping(x) : R" — RP, along the vector field

f(x,u) : R"x R™— R" defined byl x ,yh(x) := 90 (x,u)
< dA(x), f(x) > ——L¢A(X) wheredA = % is the differential of.
Ji (x) —— the Jacobian matrix of the functidr{x)

[f,g] —— Lie bracket (product) of the vector field$x) andg(x), defined by
[, 9J(%) = Jg(x) £ (%) = Ir (x)9(x)
adtg(x) — [f,ads 1g](x) wheread?g(x) := g(x)
Zuy(x1,%2) —— generalised Lipschitz constants abrue R™ uniformly for x,
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xq — X(t — d) whered (may be time varying) represents time delay

A:=B——Ais defined byB
A= B——AimpliesB
A< B—— Ais equivalent td3



Chapter 1
Introduction

Control systems widely exist in the real world. Increasiaguirements for system
performance and reliability have resulted in increasingpiexity in the dynamic
systems used to model reality. Control engineers are fadtidinereasingly com-
plex control systems. The development of computer sciemdésechnology coupled
with developments in mathematical theory has provided dssipility for study of
complex systems from both the theoretical and practicalp@nt.

This book systemises some of the authors’ recent reseandhalang with fun-
damental concepts and methodologies in the area of varsatleture control for
complex systems. The complexity resulting from nonlingssj uncertainties in-
cluding modelling error, time delay, and interconnectibesveen subsystems is
considered. For various complex systems, theoreticayaisadnd control design us-
ing static output feedback, observer-based output feddlbac decentralised con-
trol ideas is presented based on variable structure tegbsid he fault detection
and isolation problem is also investigated, using slidirggmobservers, where re-
construction and estimation schemes for both system fanlissensor faults will
be presented. Numerous numerical examples and case siitliesccompanying
simulations are provided to help the reader understand pply ¢he developed
strategies and approaches.

1.1 System Complexity

Linear dynamical systems cannot describe many commonlgreed phenomena
well. In the real world, nearly all systems exhibit nonliriga In order to reveal
complex phenomena and study complex systems, it is negdssawestigate non-
linear dynamical systems as a means to model real systenesanourately.
A dynamical control system usually can be expressed by tl@viog differen-
tial equation
x= f(t,x,u) (1.1)
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wherex € R" denotes the system states R™ represents the system input/control
andt € RT is time. If a particular system output is of interest, thenadgebraic
equation

y=h(t,x) 1.2)

or
y = h(t,x,u) (1.3)

is used, wherg € RP represents the system output. Equation (1.1) is called#te s
equation while equation (1.2) or (1.3) is said to be the ouguation.

In this book, only the output equation (1.2) is consideredctvimeans that the
output equation considered in this book does not involvestrrol variableu. The
system (1.1)—(1.2) is calledsingle-input single-outp{SISO) system if botlu and
y are scalars. Itis calledraulti-input multi outpu{fMIMO) system if the dimensions
of eitheru ory are higger than one.

The complexity of a control system depends on the contrgledt and the en-
vironment. Higher requirements on the controlled systeenfgrmance usually re-
quire more advanced control techniques, which will introeladditional complex-
ity. There are many factors which may affect control systemiggmance and result
in complex phenomena, such as nonlinearities, uncertaintiodelling errors, time
delay and any interconnections existing in the system.

e Nonlinearity: Compared with linear systems, the study of nonlinear system
is much more difficult. Analysis and design of nonlinear cohsystems usually
involve more advanced mathematics. Due to the existencerdiitearities in dy-
namical systems, phenomena such as finite time escapeplaigblated equi-
libria, limit cycles, harmonic oscillation, chaos and niplk modes of behaviour
may appear [91]. These rich behaviours which exist in ne@lirdynamical sys-
tems greatly increase the complexity of the problem.

e Uncertainty/modelling error: Real systems unavoidably experience various
uncertainties such as mechanical wear and changes in #mmakénvironment.
The former may result in parametric uncertainties whilelétter may result in
unstructured uncertainties. Moreover, it may be impossibmodel a system ac-
curately. If these modelling errors and uncertainties stuibances are not con-
sidered, the developed strategies may not work well or maw &il to meet the
design objective. Specifically, for a large-scale intermxted system, a pertur-
bation of one subsystem can affect other subsystems angé¢halperformance
of the network. This increases the complexity in the problem

e Time delay: With the increasing expectations for the closed-loop systely-
namical performance, it is required that the establishetesy model behaves
more like the real process. Thus time delay has to be corsides many pro-
cesses include after effect phenomena in their inner dycgrfor example, bi-
ology, population dynamics, economics, viscoelasticitgt angineering science
[141, 130]. For a time delay system, the future evolutiomally, not only de-
pends on the present state but also on its history. Even & det@y may greatly
affect the performance of a system; a stable system may lecostable, or
chaotic behavior may appear due to delay in the system [126].



1.2 Variable Structure Control 3

e Interconnection: In order to complete a complex task, systems have to be com-
bined together to provide the desired performance. For pigiim a manufactur-
ing process, in order to produce the same engineering coemp®im sufficiently
large quantities, many machine tools (isolated subsygtarasnterconnected to-
gether and monitored to form a large-scale system to compiettask [202]. A
complex system may also be formed by interconnections legtaeollection of
simple systems. In this case, although each subsystem rh#lyitegood perfor-
mance in isolation, the whole system may not work well duéd®interactions
between the subsystems. To reduce, minimise or even entmogffects of the
interconnections on the whole system is challenging. Megedhese subsys-
tems are usually distributed geographically in space, whésults in problems
such as data transfer, the reliability of the network comication channels and
economic cost etc. [210, 2].

In this book, the factors mentioned above will be considdredrder to deal with
the effects of uncertainties, variable structure con&ohniques will be employed.
The Lyapunov-Razumikhin approach will be used to deal wittetdelay. For in-
terconnected systems, decentralised strategies will\eafed whenever possible
to avoid the reliability problem caused by network links.

1.2 Variable Structure Control

Consider the control system (1.1) in the domBig R". A correspondingariable
structure controcan be expressed as

ug (t, x), (t,x) e RT x D
UZ(taX)v (t,X) ERT x D2

u= ) ) (1.4)
Ug(t,X), (t,x) € R* x Dq

where the functions;(t,x) are continuous for=1,2,...,q. The structures of the
functionsf;(t,x) andf;(t,x) are differentfoi # j andi, j =1,2,...,q(q> 2). The
domainsD; € R"fori=1,2, ..., g satisfy

I) D1UD2U---UDq=D;
i) DiND; = 0ifi+jfori,j=12,...,q.

When the variable structure control in (1.4) is applied te #ystem (1.1), the
corresponding closed-loop system becomesidable structure systentiiterally
speaking, variable structure control is a control whosacstire is changed or keeps
changing in order to obtain and maintain the desired systopnance during the
control process.

For example, in real control design, when the response/aomiracye(t) is over
the threshold, a proportional control is used to increaseglponse speed; when the
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response error/accuraet) is within the threshold, an integral control is employed
to guarantee that the steady error requirement is satisfigtiis case, the control
law may be described by

. {kpem let)] > k
kfedt,  [et)] <k

Here the positive constanks andk; are called the proportional gain and integral
gain respectively which are tuning parameters, and thdipesionstank is called
the threshold.

This example shows that sometimes it is desirable to chdmegedantrol structure
in order to get the desired system performance. As point¢dndd 2], nonholo-
nomic systems cannot be stabilised by continuously diffesble, time invariant
state feedback control laws. However, a discontinuousrobtaw is available to
stabilise nonholonomic systems (see, e.g. [1]). This rateiv the need for discon-
tinuous control.

When the variable structure controller (1.4) is appliechsystem (1.1), it usu-
ally produces a discontinuous right-hand side in the cpomrding closed loop dy-
namical system which consists of a set of ordinary difféde¢eiquations. This pro-
duces an interesting mathematical problem: the traditidegnition and existence
conditions for the solutions of the closed-loop system artsapplicable. It is nec-
essary to extend the classical solution. In this case thdisolof the equations is
defined in the Filippov sense [46] throughout the book.

In order to reject/reduce the effects of uncertainties astlitbances, different
variable structure approaches have been proposed, forpdatime approach based
on the direct Lyaponov method in [202, 214, 210] and a disnanus control law
for nonholonomic systems in [1]. However, variable struettontrol which leads to
a sliding motion, has underpinned the development of a syatie research method-
ology, which is the well known sliding mode control paradigstiding mode control
has dominated the literature in the area of variable straatantrol and thus when
people talk about variable structure control, they usualgan sliding mode con-
trol. Here, it should be pointed out that not all variableisture control will lead to
a sliding motion.

1.3 Sliding Mode Control

Sliding mode control, as a particular type of variable stntescontrol, evolved from
the pioneering work in Russian of Emel’'yanov and Barbashithe early 1960s.
The ideas did not appear outside of Russia until the mid 1@h@s a book by Itkis
[81] and a survey paper by Utkin were published in Englistb]1The ideas un-
derlying the modern analysis and design of sliding moderotiats may be further
dated back to publications in the early 1930s. At that tinomcerns on relay sys-
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tems with sliding modes for controlling the course of a stag been proposed [55]
where the terms phase plane, switching line, and even glidiode appear [172].

Relay systems have been found in many control engineerstgrsg. Relay con-
trol systems are a simple nonlinear system which is effecind has low cost.
Sometimes they have better dynamical performance thaarlgystems [171]. Early
rigorous studies on relay systems are found in contribatiothe 1960s which were
presented celebrating Filippov’s achievement for dififeiied equations with discon-
tinuous righthand sides [47]. The study of relay systensudited the study of
sliding mode control.

In the initial stage (before 1962), nearly all studies f@misn second order linear
systems. Later work was extended to higher order systemss{istems with order
greater than 2) but most work was still limited to linear sys$ with single input
control. The study of nonlinear systems in state space fommeenced in 1970 and
muti-input control systems have been widely consideredesthen. The develop-
ment of this state space description and mutivariable obsyistem theory greatly
promoted the development of sliding mode controllers, Wlitso motivated the
application of sliding mode techniques in practical syst¢hy?2].

In recent decades, various control approaches have bepoga® and research
on sliding mode control has become very active. Due to ith hidpustness against
uncertainties/disturbances, sliding mode control has beidely combined with
other approaches to provide better results in both thealgtsearch and practical
engineering. Many interesting results have been createdaptive sliding mode
control [18, 176, 4], fuzzy sliding mode control [178, 168hckstepping based
sliding mode control [162] and decentralised sliding modetml [200, 201] with
applications in wide areas such as engineering systerasafiicontrol, energy sys-
tems, communication networks and biology [82, 7, 77, 173, 129]

1.3.1 Sliding mode control methodology

Sliding mode control changes the system dynamics by empdagidiscontinuous

control signal. This approach has been well developed atethsixely used in theo-

retical research and practical engineering design. It bas Buccessfully employed

to solve various control problems in combination with otbentrol approaches.
The sliding mode control method consists of two steps:

e the design of a sliding surface such that the system coresideossesses the
desired performance when it is restricted to the surface;

e the design of a variable structure control which drives ty&eam trajectory to
the sliding surface in finite time and maintains a sliding imobn it thereafter.

A concise description is available in [38, 173]. In view oé#le two steps, the sys-
tem motion can be separated into two phasesreéhehing phasend thesliding
phase The former refers to the motion when the system trajectosyes towards
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the sliding surface and the latter concerns the motion whersystem trajectory
moves on the sliding surface.

1.3.1.1 Sliding phase
Consider system (1.1). In order to design a proper switdhiitgng function
s=5(x)

such that the resulting sliding motion has the desired perdnce, one way is to
find the dynamical equations which will govern the slidingtion, and then syn-
thesize the sliding surface based on the characteristibealiding mode dynamics
or sliding motion. It is assumed that the sliding motion &ig he following two
approaches are usually employed to find the sliding moderdigseand in this way
the stability of the sliding motion is transformed to the lgieam of ensuring stability
of an unforced system.

e Equivalent control: When the considered system (1.1) is limited to and moving
on the sliding surface,

s(x) =0, and s$(x)=0
The time derivative o§(x) along the system (1.1) is given by

Js. 0s

§= 5 X= a—xf(t,x,u)
In the sliding motion,
Js
—f(t =0 15
5 ftxu) (1.5)

Suppose there is a solution foto the equation (1.5) denoted by
UQq — UQq(t, X)

which is the so-calledquivalent contro{see, page 14 in [174]). Then, the sliding
mode dynamics governing the sliding motion may be obtained b

X = f(t,X, Ugq(t, X))
{s(x) o (1.6)

Now, assume that system (1.1) is in the following affine form,
x=F(t,x) 4+ G(t,x)u (1.7)

Then, for the sliding surfacgx) = 0, it follows from s(x) = O that the corre-
sponding equivalent control is given by
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Ueq = —(S(X)G(x,1)) " Ls(X)F (t,x) (1.8)

wheres(x) should be chosen such thek)G(x,t) is nonsingular for alk in the
considered domain artds R". Substitutaueq from (1.8) into the system (1.1), it
follows that the corresponding sliding motion can be désatiby

{ X = F(t.X) — G(t,\)(SX)G(x,1))'SXF (t,x)
s(x) =0

Remark 1.11t should be noted that the equivalent control is used ongntalyse
the sliding motion. It is not the control signal which is aaity applied to the
system but it may be thought of as the control signal whichtroespplied “on
average” to maintain the sliding motion [174, 38].

e Regular form: Another approach to find the sliding mode dynamics relating t
the sliding functiors = s(x) for system (1.1) is to employ the well known regular
form. Suppose that there exists a coordinate transformatioT (x) such that in
the new coordinate systemthe sliding surfacg(x) = 0 can be described in the
form

=0(n)

wherez; e R™™, z, € R™, z:= col(z1,2) and system (1.1) can be described by

7 =kt z,2) (1.9)
2 = R(t,z,2,u) (1.10)

whereu € RM is the control. The Jacobian matrﬁw is assumed to be
nonsingular in the considered domain. Note that systen) {d iddependent of
the control signal and the dimension nfis the same as the dimension of the
controlu. System (1.9)—(1.10) is the so-callesjular form

Based on the regular formin (1.9)—(1.10), it is clear to se the corresponding
sliding mode dynamics of system (1.1) is described by

7 =F(t,z,0(2)) (1.11)

which is a reduced-order system when compared with systeih (1
Note, if system (1.1) is in the following affine form as given(iL.7), then, the
corresponding regular form can be described by

7 =F(t,72,2) (1.12)
2 = R(t,21,2) + Go(t, 21, 2)u (1.13)

where the function§(-) andF;(-), andG,(-) are dependent on the coordinate
transformatiorz = T(x) and the function§ (-) andG(-) respectively.
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1.3.1.2 Reaching phase

In order to guarantee that the system trajectory can berdtoséhe sliding surface
s(x) = 0 in finite time and a sliding motion can be maintained on ir¢ladter, a
proper discontinuous control

u=u(t,x)

needs to be designed such that the following condition isfsad [38, 173]
sT(03(x) < —n||s(¥)| (1.14)

for some constant > 0. The inequality (1.14) is the so-callezhchability condition
andn is called theeachability constant
From equation (1.1), it follows that

. 0s. 0s
§= 5 X= &f(t,x,u)

Therefore, inequality (1.14) is equivalent to
T,.,08
s (95, flt,xu) < —nlisXx)| (1.15)

which explicitly contains the variable. The sliding mode controller guaranteeing
reachability can usually be synthsised from (1.15).
The following condition
sT(x)$(x) < 0

is also called a reachability condition but it cannot guggarihat a sliding motion
takes place in finite time and thus a sliding motion may notioatthis case.
It should be emphasised that, when the designed slidingtsivg function is
time varying, for example,
s=s(t,x)

it is straightforward to see that the condition (1.15) used@ynthesise the sliding
mode control law should be updated to

Js 0s
T
— — < —
s (t,x) <0t +axf(t,x,u)) < —n|s(t,x)]]

For this case, a design approach has been provided in [27].

1.3.2 Sliding mode control of a mass spring damper system

In order to illustrate the sliding mode control methodologgnsider the simple
mass spring damper mechanical system in Figure 1.1 whemaissM slides on
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a smooth surface. In Figure 1.X, denotes the displacement from the reference

| 8
|

T
3 X

NONNONONNSNNN

Fig. 1.1 A mass spring damper mechanical system

position,m is the mass of the obje® sliding on a horizontal surfacd, is the
coefficient of springk, b is the coefficient of the damp& andF is an external
force which is considered as the control inpyt = F).

Itis assumed that the mass spring damper system experi@hegdening spring
which produces a restoring force described by (see [91])

k(14 a?Xx?)X

The simple viscous damper produces a damping force deddsiteX. From New-
ton’s second law, the motion of the objédtcan be described by

mX = —bX —k(1+a?X?)X +u (1.16)
Let x = col(xg,X) = (X,X). Then,x; = o andX, = X. From equation (1.16), it
follows that b K "

. 2

Xp = ——Xp — —X1 — —a + U

2 m 2 m 1 m 1+

which can be rewritten by
)-(2: (k+ka X])Xj bX2+U

Choosen= b = k= a =1 for simplicity. Then, the system (1.16) can be described
in the form of (1.1) by
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. X2
= 1.17
X —(1+X3)%x1 — X2+ U (1.17)

f(x,u)

which is a nonlinear system.
The objective is to design a sliding mode control law suchtti@asystem (1.17)
is asymptotically stable.

i) Sliding phase:Design a linear switching function
S(X) = yx1 + X2 (1.18)

wherey is a design parameter. When system (1.17) is limited to idanglsur-
face,s(x) = 0. It follows from (1.18) that

X=-YX
Considering the structure of system (1.17), it is straigiwhrd to see that the
corresponding sliding mode dynamics are

X1 = —yX (1.19)

Therefore, the sliding motion governed by the sliding mogeashics (1.19) is
asymptotically stable if the parameteis chosen to satisfy > 0.
if) Reaching phaseConsider the sliding mode controller

U= (1+Xx3)X1 + X — yX2 — NSGN{yX1 + X2) (1.20)

wheren > 0is a constant. Then the closed-loop system obtained byiagihe
control in (1.20) to system (1.17) is given by
5(1 = X2 (1.21)
Xp = —YXo — NSYN(yX1 + X2) (1.22)

By direct computation, it follows from equations (1.21)-22) that

S(X)8(X) = —S(X) (VX1 +X2)
= —ns(x)sgn(s(x)) < —nls|

This guarantees that the control (1.20) can drive the ti@ijies of system (1.17)
to the sliding surface(x) = 0 with s(-) defined in (1.18), in finite time and main-
tain a sliding motion on it thereafter.

From sliding mode control theory, i) and ii) above togethkeow that the cor-
responding closed-loop system is asymptotically stabde.sSinulation purposes,
choose

y=0.5, n=1



1.3 Sliding Mode Control 11

and the initial conditioxg = col(2,1).
Figure 1.2 shows the phase plane portrait of the displacexa@md velocityx.
From Figure 1.2, the system states, x») are driven to the sliding surface from the

phase plane plot X =%y

2
1.5 L _
sliding swrface o .
mitial pomt (2,1)
i _
xm O;S "m.,__h_ .
_E._ H“H'"\-\.._
= -
= ~—
g ot o 1
-0.5 1
- .\H"k-x 1
_1 ‘5 1 1 1 1 1 1 1 H.-\""'
- -0.5 0 0.5 1 15 2 2.5 3

displacement X

Fig. 1.2 The phase plane portrait

initial pointxp = (2,1), and then move along the sliding surface to converge to the
origin.

The time responses of the displacement and velocity of tiecbhre shown in
Figure 1.3. Figure 1.4 shows the control signal imposed ersyistem.

It is clear to see thathatteringappears due to the discontinuity in the control.

Chattering may be undesirable in practice because it maytiesunnecessary
wear and tear on the actuator components and result in uss@geenergy con-
sumption. One way of overcoming this drawback is to intradadoundary layer
about the discontinuous surfaces (see [13]) which may ttifeccontrol accuracy.
Another way is to use higher order sliding mode techniquegHhia requires the
considered system to have a certain structure.

In this book, higher order sliding mode techniques will netiscussed. Detailed
information about higher order sliding mode control can ®end in [45, 5, 100,
153]) and the references therein.
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3 T
displacement Xy
— . — . velocity X,
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— . . . .
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Fig. 1.3 The time responses of the displacemenand velocityx,

16 T

control signal u(t) |
14 b
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Fig. 1.4 The control signal
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1.3.3 Characteristics of sliding mode control

It is observed that sliding mode control has the followingrettteristics:

e The sliding mode dynamics are a reduced-order system whepam@d with the
original system dynamics.
For system (1.1) with sliding surface= s(x), the corresponding sliding mode
dynamics can be described by (1.6) or (1.11). It is clear éotkat the order of
the system (1.6) or (1.11) is— mwheren is the dimension of the original sys-
tem andm s the dimension of the control. Therefore, during the slidnotion,
the system exhibits reduced-order dynamics when compaitidthre original
system.

e The sliding motion is insensitive to matched uncertainty.

Suppose system (1.1) experiences an uncertainty/distceb# the uncertainty
or disturbance acts in the input/control channel or thectsfare equivalent to an
uncertainty acting in the input channel, it is call@@tched uncertaintyOther-
wise it is calledmismatched uncertaintifor example, assume that the nonlinear
affine control system (1.7) experiences uncertairgi¢s<) andy(t,x) described
by

x = F(t,x) + G(t,x) (u+ @(t,x)) + Y(t,x) (1.23)

Then, the terng(t, X) is called matched uncertainty. In addition, if the uncetai
Y(t,x) can be modelled as

lJJ(t,X) = G(t,X)X(t,X)

wherex (-) represents the uncertainty, it is clear to see that the taingr of the
termy(-) is reflected by the uncertaingy(-) which is exactly acting in the input
channel. In this casg(t,x) is also called matched uncertainty.

From equations (1.6) or (1.11), it is straightforward to fle@t the dynamics
governing the sliding motion are completely independenihefcontrol and thus
the system is robust to matched uncertainty.

e Uncertainties/disturbances will affect reachability.
In order to guarantee that the trajectory of the consideystkm is driven to the
pre-designed sliding surface, the reachability conditarst be satisfied — which
is interpreted as (1.15). It is clear that (1.15) involvdsakhe right hand side
of equation (1.1). Therefore, uncertainties/disturbarmay affect the reaching
phase no matter whether they are matched or mismatchetieoeffects of some
uncertainties may be completely rejected by an apprope@igol.

e The process of designing the sliding surface and slidingenmzhtrol can be
‘separated’.
The main target of sliding surface design is to ensure thatelsulting sliding
motion has the required performance. The main objectivl®tbntrol design
is that the reachability condition is satisfied so that thetey can be driven
to the sliding surface. In view of this, sliding surface dgsand sliding mode
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control design can be completed separately. This propsertglied the design
‘separation’ property in this book.

The design of a sliding surface is usually not dependent emptbcess of the
sliding mode control design. Once the sliding surface i<i$ieel, the study of

the stability of the sliding motion and the reachability dancarried out sepa-
rately. This has advantages when compared with other dayproaches. For
example, the steady state response is totally dependeheaiiding mode dy-

namics which is independent of the control. Therefore, oheoto improve the

steady-state response of the control system, it is onlyssacg to consider the
sliding mode dynamics instead of the original system. Inrfzehing phase, by
adjusting the parameters in the sliding mode control lag,réaching time can
be reduced which may produce a fast time response, and sadllrahximise ro-

bustness.

1.4 Decentralised Control

In the real world, there are a number of important systemghvican be mod-
eled as dynamical equations composed of interconnectietvgelen a collection
of lower-dimensional subsystems. Such classes of systentabied large-scale in-
terconnected systems, which are often widely distributespace [111, 117, 145].
A fundamental property of an interconnected system is thagréurbation of one
subsystem can affect the other subsystems as well as thalganformance of the
entire network. Decentralised control has been recogriseoh effective method to
control such systems.

1.4.1 Background

Large scale interconnected systems widely exist in sadetypical large scale in-
terconnected system is the multimachine power system P&, Other examples
of large scale interconnected systems that present a dralitege to both system
analysts and control designers include power networkdogimal systems, biolog-
ical systems and energy systems [117, 158].

For interconnected systems, the presupposition of cémtfails to hold due to
either the lack of centralised information or the lack oftcalised computing ca-
pability. When the number of subsystems is large, the coatiout time increases
significantly if centralised control is employed. In therexhe case when informa-
tion transfer among the subsystems is blocked, centratisettol schemes simply
cannot be applied. Even with engineered systems, issubsasitbe economic cost
and reliability of communication links, particularly whegstems are characterised
by geographical separation, limit the appetite to devetagralised systems. From
the perspective of economics and reliability, decentedlistrategies are pertinent
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for large scale interconnected systems. This has motitagedpplication of decen-
tralised control methodologies to interconnected systdi®2, 87, 106]. A survey

paper [2] has covered several decomposition approachésasudisjoint subsys-
tems, overlapping subsystems, symmetric composite sgstaniti-time scale sys-

tems and hierarchically structured systems to simplifyahalysis and synthesis
tasks for large-scale systems to reduce the computationglexity.

Decentralised control for large-scale interconnectedesys has been studied
extensively. Research on large-scale interconnectedragsanalysis and synthesis
can be traced back to at least the 1970s, and the survey dafrdlearly shows
the development of this topic at that time, when almost althef work focused
on linear cases. With the advancement of technology an@asang requirements
for high levels of performance, specifically in recent yedine dynamic systems
used to model reality have become more complex involvindinearities, uncer-
tainties, time delay and interconnection. Therefore, thdysof complex intercon-
nected systems has become increasingly important. Thegtti@ this subject has
been revived by new developments in nonlinear systems antotoThe recent
survey paper [216] has shown the progress made in the arezefttalised control
where some of the work associated with sliding mode coraddptive control and
backstepping control has been covered.

1.4.2 Fundamental concept

From the mathematical point of view, a nonlinear large stakrconnected system
composed oN n-th order subsystems can be described by

% = fi(t, %) +0i(tx) (Ui +Agi(t, %)) + Afi(t,x) + 311 Gi(t,x)  (1.24)
i#

Vi :hi(xi)a i:1727"'7N7 (125)
wherex; € Q; CR" (Q; is a neighbourhood of the origin), € R™ andy; € RP are
the states, inputs and outputs of ikl subsystem respectively foe=1,2,... N.
All the matrix functionsgi(-) € R"*™ and the nonlinear vectorf(-) € R" and
hi(-) € RP with hj(0) = 0 are known. The termAg;(-) andAfi(-) represent the
matched and the mismatched uncertainties respectivedytérim

N
> Gij(tx))
=1
j#i

represents the interconnection of thth subsystem with the other subsystems. It is
assumed that all the nonlinear functions are smooth enaugfhtbat the unforced
systems have unique continuous solutions.

Definition 1.1. Consider system (1.24)—(1.25). The system
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X = fi(t,xi)+gi(t,>q)(ui+Agi(t,xi)) +Af(t, %) (1.26)
yi = hi(%), i=1,2,...,N, (2.27)

is called tha-th isolated subsystewf system (1.24)—(1.25), and the system

X = fi(t,x) +gi(t, )i (1.28)
yi = hi(%), i=1,2...,N, (1.29)

is called tha-th nominal isolated subsysteofi system (1.24)—(1.25).

It is well known that one of the main problems for intercorteelcsystems is to
establish under what conditions the interconnected sy&ted)—(1.25) exhibits the
desired performance if all the isolated subsystems (1(26%) or all the nominal
isolated subsystems (1.28)—(1.29) exhibit the requirebpmance. Therefore, how
to deal with interconnections is a key problem of interestecentralised control.

Definition 1.2. Consider system (1.24)—(1.25). If the designed contr®lefor the
i-th subsystems depend on the tirend states; of thei-th subsystem only, i.e.

Ui = Ui(t, %), i=12....N (1.30)

then (1.30) is calledecentralised state feedback contibthe controllers in (1.30)
have the form
Ui = Ui(t,yi), i=12...,N (1.32)

that is, each local controller depends upon the tinaed the outputs of the local
subsystem only, then they are calléecentralised static output feedback control
Furthermore, if the designed controllers consist of theadiyical systems

);ii:(n(h)?i’ui,yi), i:1727...7N (132)

and controllers
Ui:Ui(ta)A(iaYi)v i:1727"'7N (133)

then (1.32)—(1.33) s calledecentralised dynamical output feedback conBgecif-
ically, if (1.32) is an observer of the system (1.24)—(1,2B¢n it is calleddecen-
tralised observer-based feedback control

It is straightforward to see, according to Definition 1.2 addhat it is required
that the dynamical systems (1.32) are decoupled in a dedisett dynamical output
feedback scheme. It should be mentioned that in some of fkérexwork, see for
example [203, 215], the designed dynamical systems (11&2hat decoupled (in
fact they are interconnected systems). In this case, thelajged controllers are
sometimes still called a decentralised control. Howewepriecise terms, such a
class of controllers is not decentralised because thestsexiformation transfer
between subsystems of the designed dynamical system (2GS, 215]).

Several decades ago, most work on decentralised contre$éalcon linear in-
terconnected systems due to the limitation of availabldrobparadigms that were
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able to deal with nonlinearity. However, the dynamics ofjtascale natural and
engineered interconnected systems are usually highlyimeanl It is not only the
structure of the system and interconnections which prodao®lexity but also the
nonlinearity of the dynamics themselves. It is clear th#taligh linear dynamics
may approximate the orbit of a nonlinear system locallypi¢sinot permit the ex-
istence of the multiple states observed in real networksimed not accommodate
global properties of the system. Such global propertiedeacrucial because they
may become significant when the system is perturbed or a stdmsyenters a fail-
ure state. Increasing requirements on system performangeed with the ability
to model and simulate reality by means of complex, possibiylinear, intercon-
nected systems models has motivated increasing contitauin the study of such
systems. This interest has been further stimulated by theltsineous development
of nonlinear systems theory and the emergence of powerfillenzatical and com-
putational tools which render the formal and constructivelg of nonlinear large
scale systems increasingly possible [210].

In order to help readers to understand the ‘decentraliseadcept, the follow-
ing schematic diagram in which the interconnected systesrihitae subsystems, is
produced to show that in static decentralised output feddbantrol scheme, the
local controlleny; of thei-th subsystem only uses the local output informayigmo
output informatiory; (j # i) is involved in the design ofi. From Figure 1.5, it is

Xy = f1(txy) + g1t 2,) (uy +

Agy(txy)) +Af(txg)

Input u, output yy

X3 = fa(t,xg) + ga(t x3)(us +

iz = falt,xz) + g2(t x2) (uz +

Aga(t,xz)) +Afa(t xz) A gy(t,x3)) + A fa(t x3)

Fig. 1.5 Decentralised static output feedback schematic diagram

clear that there is no local output information transfemisetn the local controllers
ui anduj (i # j) fori,j=1,2,3.
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1.5 Examples of Complex Systems

In this section, some practical examples will be presenteshbw that complex
systems widely exist in the real world.

1.5.1 One-machine infinite-bus system

Consider a simple power system where a large-turbine gemeset connects with
an infinite bus. The motion equation of the machine’s rotarlmadescribed by (see,
for example, [107])
2
g = Mm(t) — EQ—;/ssinc‘S(t) (1.34)
whered(t) is the generator’s rotor angl®y, is the mechanical input torquel, is
the moment of inertia of the machiny is the transient potential of thggaxis of
the generatols is the voltage of the infinite bus which is constaxy,is the sum of
the transient inductance of the shaft of generator, thedtashee of the transformer
and the inductance of the transmission line.
For simplicity, assume th#, is constant. Let

X1 =0 and x2:5

wherex; represents the angular velocity. The letigy denotes the control input
Then the system (1.34) modelling the one-machine infinite# described by

_ X2

x= {—alsinx1+a2u} (1.35)

wherex := col(x,%2), and

EqVs

a .= X

&

ap .=

I~ I

System (1.35) is a nonlinear affine system as it can be desthip

X= * + 01,
| —agsinxg a

where the input distribution is a constant matrix.
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1.5.2 PVTOL aircraft

The well-known Planar Vertical Take-Off and Landing (PVTQEpresents a chal-
lenging nonlinear control problem. It is motivated by thedéo stabilise an aircraft
which is able to take-off vertically such as helicopters aamhe special aircraft.

The mathematical model describing an aircraft that evoines vertical plane
usually has three degrees of freed@qY, @) corresponding to its positiofX,Y)
and orientation in the plane. The PVTOL is composed of two independent
thrusters that produce a force and a moment on the aircttadt.dynamical model
of the PVTOL aircraft can be obtained using the Lagrangigr@gch or Newtons
laws, which are given in [191], as follows

mX = —(sing)U1 + &(cosp)Uz
mY = (cosp)U; + &(cosp)Uz — mg
Jp=U;

where(X,Y) is the center of mass of the aircrdtis the roll anglemgis the gravity
force imposed at the aircraft center of mass drid the mass moment of inertia
around the axis through the aircraft center of the mass amtjahe fuselage, the
controlU; is the thrust directed to the bottom of aircraft and the aurith the
moment around the aircraft center of the magsis the quantity of lateral force
induced by the rolling moment which characterizes the doggietween the rolling
moment and the lateral acceleration of the aircraft.

Let

X=-X/9, y=-Y/g, w=Ui/mg
U, =Uy/mg €=¢gJ/mg
Then the normalised PVTOL aircraft dynamics can be desditlyd16, 191]

X = —(sing@)u; + £(cosp)u, (1.36)
y = (cosp)u; + &(cosp)up — 1 (1.37)
Q=u (1.38)

The dynamical equations (1.36)—(1.38) can be describetd 1) és follows

X2
—(sinxs)u; + £(COSXs) Uy
- X4
X= (cosxs)up + £(Cosxs)up — 1 (1.39)

X6
uz

where
X =X, Xp:=X, Xg:=Y
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Xi=Y, X5:=0, Xe:=0
System (1.39) can be rewritten by

[x2] [ O 0
—SinXs £COSXg

0 0
0 1

0
Xq 0 0 uUq
-1 + COSXs £COSXg [uz}
X6
0

wherex := col(x, X, ...,Xs), and thus it represents an affine nonlinear control sys-
tem. In generale is unknown but it is very small and can be neglected. In thigca
the model can be simplified as

5(1 = X2

Xz = —(sinxs)ul
X3 = X4

%4 = (cose)uy — 1
X5 = X6

X6 = Up

This is a nonlinear system.

1.5.3 Stirred tank reactor

Consider an industrial jacketed continuous stirred tamlcta (JCSTR) with a de-
layed recycle stream [116]. The reactions within the JCSfERaasumed unimolec-
ular and irreversible (exothermic). Perfect mixing is ased and the heat losses are
neglected. The reactor accepts a feed of reactant whichiosrd substano& with
initial concentratiorCy,. Cooling of the tank is achieved by a flow of water around
the jacket and the water flow in the jaclkgtis controlled by actuating a valve.

Suppose that a fresh feed of pure substafdée to be mixed with a recycled
stream of unreacted substamEwith a recycle flow rate

1-—c, (0<c<1)

wherec is the coefficient of recirculation.

The change of concentration arises from three terms: theiahod substancé
that is added with feed under recycling, the amount of sulssta that leaves with
the product flow, and the amount of the substafdtkat is used up in the reaction.
The change in the temperature of the fluid comes from theviatig four factors:
the heat that enters with the feed flow under recycling, tta tiet leaves with the
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product flow, the heat created by the reaction and the hegistiransferred to the
cooling jacket. There are three terms associated with taegds of the temperature
of the fluid in the jacket: one term representing the heatrgrg¢he jacket with the
cooling fluid flow, another term accounting for the heat legvihe jacket with the
outflow of cooling liquid and a third term representing thetteansferred from the
fluid in the reaction tank to the fluid in the jacket.

Under conditions of constant hold-up, constant densitigsperfect mixing, the
energy and material balances can be expressed matheyaicfl 16]:

. k
Ca = (FV) ™! (cCa, — €Ca — CCa(t — d)) — kaCae T

T — (FV) L (cTo—cT— cT(t — d)) — kikaCae * — ka(T — T (t))
TJ = (F‘]V‘])il (TJO — TJ) — k5(T — TJ)

whereCy is the concentration of the substan&erT is the temperature of the fluid
in the tank,T; is the temperature of the jack®t,is the volume of the tank (gallons),
F is the feed entry rate, the initial temperaturdisandd represents the transport
delay in the recycled stream.

It is straightforward to see that system (1.40)—(1.40) ialinear time-delay
control system and can be described in the form of (1.1) as

(FV)~1(cCay—Cx —Cxa(t —d)) — klxle’%
=1 (FV) 1(cTo— oo — cxo(t — d)) — kikaxae % — Ka(x2 — X3(t)) (1.40)
(uVy) 1 (Tay — X3) — Ks(X2 — Xa)

wherex; = Ca, X2 = T, X3 = Ty, X = c0l(Xq, X2, X3) is the system states and= F; is
the system input. The letterrepresents the time delay.

1.5.4 Coupled inverted pendula on carts

Consider a coupled inverted pendulum connected by a moyrnggmounted on
two carts as shown in Figure 1.6. It is assumed that the pivsitipn of the moving
spring is a function of time which can change along the fulblia| of the pendula.
The input to each pendulum is the torquepplied at the pivot which is produced
by the external forceB; andF, applied to the carts.
Let
71 =col(6y,6,)", and 2z =col(6,6)"

Then the dynamical model for the two coupled inverted pemtddystem is given
by (see [149]):
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Fig. 1.6 Two coupled inverted pendula on carts

0 1 0 0 0
X] = [g ka(t)(a(t) —cl) 0 xi+| 1 fu+ | kat)(at) —cl) O] X2
cl cml? cmpP? cml?
0
_ [g(siﬂel)éf . ka(t)(ca:n(tlz— D5 (1.41)
0 1 0 0 0
o = [g ka(t)(@(t)—cl) . [xe+ | 1 |u+ | kat)(al)—ch O] X
cl cmp? cmpP? cmp?
0
g(Sinez)sz + —ka“)(c"in“ll — (2 5’1)] 8

wheres; ands, are the positions of the two carts,
c=M/(M+m)

andk andg are the spring and gravity constants, respectively. Theesy$1.41)—
(1.42) is a nonlinear interconnected control system.
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1.5.5 Multimachine power systems

Power systems play an important role in the practical warte classical model of
power systems was given by Bergen [8], and based on this, tnmaghine power
system consisting dfl synchronous generators interconnected through a transmis
sion network is described by the following equations [67]:

e Mechanical equations

&= a, (1.43)
D;
W= —Z—HIQ + ;: (Prmio — Pei) (1.44)
e Generator electrical dynamics:
, 1
Egi = = (Eti — Eqi)- (1.45)
Td0|
e Electrical equations
Eqi = E/ (Xdi — X{j i, (1.46)
Efi = Keilfi (1.47)
Pai = Z E’ E’ iBij sin(& — &j) (1.48)
N
Qei = — Z E(IJiE(/]jBiJ' cos(d — 5j) (1.49)
=1
N
|qi = Z E(/“-Bij sin(d — 5j) (1.50)
=1
N
lgi = Z E(/“-Bij cos(d - 5j) (1.51)
=1
Eqi = Xadil fi (1.52)
Vi = \/(Eg“ —Xilai)2 + (X1 gi)2 (1.53)

whered is thei-th generator power angle [rad], angis the relative speed [rad/s],
Eéi represents the transient EMF in the quadrature axis [@udl; is the input of
the amplifier of tha-th generator for = 1,2,...,N. The physical meanings of all
the other symbols/notation used above are shown in Appdndix
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This model has been used by many authors to study multimagloiwer systems
[67,193, 108, 182]. The multimachine power system showwaban be expressed
in the form of (1.24) (see, for example, Chapter 9).

1.5.6 A biochemical system — peroxidase-oxidase reaction

As a biochemical system, the peroxidase-oxidase (PO)iogagthibits many com-
plex dynamical behaviors. A great deal of experimental ditetical work has
been devoted to determining the mechanism by which osoitlatand chaos arise
in the PO reaction.

In addition to oscillatory and chaotic behavior, the PO tieacexhibits bistabil-
ity. Due to its suspected kinetic source: the inhibitionted £nzyme by molecular
oxygen, both autocatalysis and inhibition, i.e. positivel megative feedback are
needed in the reaction mechanism for this system. A simpléethfor the PO reac-
tion is described in [30, 181] as follows

A = —kiABX — kzABY + k7 — koA

B = —kiABX— ksABY +kg

X = kiABX — 2kpX? 4- 2kgABY — kzX + kg
Y = —ksABY+ 2koX? — ksY

whereAis the concentration of dissolvédp, B is the concentration of Nicotinamide
adenine dinucleotide, arXlandY are concentrations of two critical intermediates,
X andY.

Typically all parameters excefg are constant. The parametgrcan be con-
sidered as a bifurcation parameter. Chaos is found onlyinvihcertain range of
parameter values. Variations ka reproduce the experimental behaviour observed
when the enzyme concentration is changed. Thusan be considered as being
related to the enzyme catalyst concentration [30, 181].

This section has provided practical examples of completegys. Some will be
used to demonstrate the developed results later in the nexadditional examples
will be given in the subsequent chapters.

1.6 Outline of this Book

This monograph systematically summarises the authorshteesults in the area of
variable structure systems. It will focus on the analysis @esign of complex sys-
tems where sliding mode techniques and the Lyapunov apiprr@cthe two main

methods used throughout the monograph. Simulation exanaplé/or case studies
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are presented in each chapter to help readers understanttdiaed theoretical
results and utilise the proposed design approaches.

The book is organised as follows. Firstly, the fundamentaih@matical knowl-
edge and basic control theory employed in the subsequelys@éand design in this
monograph will be presented in Chapter 2. Considering tiagéicsoutput feedback
control design is more convenient for real implementatidress compared with
state feedback control, in Chapter 3, robust static outputrollers are designed to
globally asymptotically stabilise the system, and then @ed&alised static output
feedback sliding mode control scheme follows for a class@flinear intercon-
nected systems.

As static output feedback control imposes strong limitagion the considered
system, dynamical feedback control is investigated in @rap where both mini-
mum phase and non-minimum phase systems are considerquteChatudies dy-
namical output feedback control for nonlinear interconeésystems. Since large
scale interconnected systems have higher dimension, amahdgal output feed-
back will greatly increase the dimension of the closed-lsggtem, reduced-order
observer based feedback controllers are considered int€tap

Time delay is a factor which increases system complexityapfdrs 6 and 7
concentrate on the study of nonlinear time delay systemgentiee Lyapunov-
Razumikhin approach is used to deal with the time delay. Utideassumption that
the time delays are known, control schemes for nonlineag tielay systems, and
a decentralised control strategy for interconnected sysi@re proposed in Chap-
ter 6. In practice, knowledge of the time delay is not alwayailable for design.
In connection with this, memoryless variable structuretglers are presented in
Chapter 7.

Chapter 8 discusses model based fault detection and tmof@ti nonlinear sys-
tems with uncertainties. The reconstruction and/or estimaf both system faults
and sensor faults are considered based on a sliding modevebseheme. LMI
techniques are employed to facilitate the design of thematers. A coordinate
transformation is employed to explore the system strucilven the considered
system is fully nonlinear.

Applications of decentralised sliding mode control scherte multimachine
power systems are presented in Chapter 9. Simulation stugighree machine
power systems confirm the theoretical results.

Finally, Chapter 10 concludes the book by providing some roemts on the
developed methods, some specific examples to show the cxitgd&control sys-
tems, and some suggestions for future developments in¢aeo@wariable structure
control.






Chapter 2
Mathematical Background

This chapter presents some fundamental mathematical kdgeland basic results
which facilitate the analysis and design in the subsequeagters. The motivation
is to help readers understand the theoretical work predémtlis book.

2.1 Lipschitz Function

This section will present the well known Lipschitz conditiand the generalised
Lipschitz condition.

2.1.1 Lipschitz Condition

Definition 2.1. A function f(x) : R"+— R™ is said to satisfy th&ipschitz condi-
tion in the domainQ c R" if there exists a nonnegative constansuch that the
inequality

f(x) — f(X) < L|Ix—X|| (2.1)
holds for anyx € Q andX'c Q. ThenL is called thelipschitz constanand f (x) is

called aLipschitz functiorin Q. If Q =R", thenf(x) is said to satisfy thglobal
Lipschitz condition.

From Definition 2.1, it is clear that a Lipschitz function nil® continuous.
However the converse is not true and a typical example isdhlausfunction

f(x) = x'/3

in a neighbourhood of the origin= 0. A Lipschitz function may not be differen-
tiable and a simple example is the scalar function

F) = ¥

27
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atthe origirx =0 inx € R. Moreover, a differentiable function may not be Lipschitz
on a compact set, for example the function

1

a oin— <

f(x) = X smx, 0<x<1 2.2)
0, x=0

is not Lipschitz in the compact set [0, 1] for any constantr satisfying 1< o < 2.
The reason is that the derivative of the functidm) defined in (2.2) is not bounded
in the intervall0, 1].

Lemma 2.1.[91] Consider a function fx) : R" — R™ which is differentiable in
the domaimQ. If its Jacobian matrix is bounded 2, that is, there exists a constant
L such that

9] <L

for any xe Q, then f(x) satisfies the Lipshitz condition, and the inequality (2.1)
holds.

2.1.2 Generalised Lipschitz condition

The well known Lipschitz condition in Section 2.1.1 will betended to a more
general case which will be used later in the analysis.

Definition 2.2. A function f(x1,X2,X3) : Q1 X Q2 x Q3 — R" is said to satisfy a
generalised Lipschitz condition with respect to (w.rhg variablesq € Q1 ¢ R™
andx, € Q, C R™ uniformly for x3 in Q3 c R™ if there exist nonnegative contin-
uous functions%i () and.%(-) defined inQ3 such that for any;;x; € Q; and
2,%X2 € Qy, the inequality

|| f (X1, %2,X3) — (X1, %2,X3) || < ZLr1(X3) || X1 — Ka|| + LF2(X3) | %2 — Xo|

holds for anyxs € Q3. Then, f(-) is called a generalised Lipschitz function, and
Z1(-) and%,(+) are called generalised Lipschitz bounds. Furthepsi= R™ and

Q, =R"™, then, it is said thaf(-) satisfies a global generalised Lipschitz condition
w.r.t. x; andxy uniformly for x3 in Qs.

Remark 2.1The symbolsZ;1(-) and.Zs»(-) introduced above are usually nonneg-
ative functions instead of constants. This is differentfriie Lipschitz condition.
Thus, the nonnegative continuous functidfs (x3) and-%s2(x3) are called gener-
alised Lipschitz bounds which correspond to the Lipschotzstant for the Lipschitz
condition.

Clearly, the generalised Lipschitz condition is more rethxhan the Lipschitz
condition. For example, the function

. 2
f (Xl, Xo, X3) ‘= X1X3 + X2oX3
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with x1,X2,x3 € R does not satisfy the global Lipschitz condition. Howeveoji
the inequality that for any cky, X2, x3) € R® and co(Ry, %, x3) € R3

| (xe, %2, %) — T (Re,R2,Xa) | < |1 — Xa|X§ + [x2 — Ro| |Xa]

it is clear to see thatt(-) satisfies the global generalised Lipschitz condition wx1.t
andxy, uniformly forxz € R.

2.2 Comparison Functions

This section will present the definitions and propertiesefdlass’#” function and
related functions.

Definition 2.3. (see [91]) A continuous functioa : [0,a) — R™ is said to belong
to class ¢ if it is strictly increasing andx(0) = 0. It is said to belong to clas#
if a= oo and lim_,e a(r) = 0.

Definition 2.4. (see [91]) A continuous functiofi : [0, a) x R* — R* is said to
belong to class? ¥ if, for any givens € R™, the mapping3(r,s) belongs to class
¢ with respect to the variable and for any givem € [0, a), the mapping3(r,s)
is decreasing with respect to the variabknd lims_,., 3(r,s) = 0.

Definition 2.5. If a class.#” function is aC! function, then it is said to belong to
class.# C. A continuous functiom3 : R" x R* — R* is said to be a class1
function if for any giverx € R" the function§(x, s) is increasing with respect to the
variablesin R™, that is,B(x,s1) < B(x,s) forany 0< s < s,.

The functions defined in Definitions 2.3 and 2.4 above arectlirédrom [91].
The new concepts of clasg C! functions and class#1 functions are introduced
in Definition 2.5 will be used for later analysis.

The following new concept is introduced, which will be tene class? .
function and will be used in Section 7.3.

Definition 2.6. A continuous functionB(t,x;,%z) : RT x RT x R* — R with
B(t,0,0) =0 is said to be weak w.r.t the variabieand strong w.r.t. the variable
if there exist functiong (t, x1,X2) andx2(t, x1,X2) such that

B(t,x1,%2) = X1(t,X1,%2)X1 + X2(t, X1,X2)X2 (2.3)

where bothx1(-,-,x2) and x2(-,-,X2) are continuous and nondecreasing w.r.t. the
variablexy. Further, the functiof (t,x1,X2) is said to be a clasg”.~ function w.r.t.
the variables; andx,.

Remark 2.21t should be noted that if a functioi(t,x3,xz) : RT™ x R* x RT
R* with B(t,0,0) = 0 is smooth enough, then it follows from [3] that there exist
continuous functiong; () andBz(-) such that the expression
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B(t,x1,%2) = Ba(t, X1, X2)X1 + Ba(t, X1, X2) X2

holds. Moreover, ifff1(t,x1,%2) and Ba2(t,x1,X2) are nondecreasing w.rxp, then
B(t,x1,X2) is a class? . function w.r.t.x; andx.

Lemma 2.2.(see [91]) Assume that; (-) anday(-) are class#” functionsin[0, a),
as(+) andaa(-) are class . functions, ang3(-) is a class#".Z function defined
in [0, @) x R™. Then, the following results hold:

the inverse functiom; *(-) is a class#” function defined if0, a;(a)).
the inverse functiom, *(-) is a class %, function defined if0, o).
the composite functioa; o a; is a class’#” function.

the composite functioas o a4 is a class’#, function.

the functiono (r,s) = a1 (B(az(r),s)) is a classz" . function.

Lemma 2.3.The following results hold:

) If B(x,8): R"x R" s R* is a class.#1 function, thenB?(x,s) is a class.#1
function.

ii) Suppose that a functiog : [0,a) — R* is a C function withg (0) = 0. Then
there exists a continuous functign(-) in [0,a) such that

®(s) = @A(S)s, s€0.a)

Proof: i) Suppose thaB(x,s) : R" x Rt — R ™ is a class’#1 function. Then for any
0<s <sandxeR",
B(xs1) < B(x,%2)

SinceB(x,s) > 0 for any(x,s) € R" x R

<0

This shows thaB?(x,s) is a class#1 function
ii) Since the functionpy(-) is aC! function in [0, a), its derivatived4 is con-
tinuous in[0,a). For anys € [0,a), construct a function

Al 0

@(s) = S (2.4)
dq(;lS) ls=0,$=0

From the definition ofp,(+), it is clear to see that

1) if s#£0,thengi(s) = @(s)s,
2) if s=0, then fromg(0) =0, @i.(S) = @,(S)s.
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Therefore, the expression
®(s) = @(s)s
holds fors € [0,a). It remains to prove that the functiop(-) defined in (2.4) is
continuous in0,a).
It is clear thatgy(s) is continuous in(0,a). Sinceq, is aC! function in [0,a),

from the continuity ofd‘%és) ats=0,
- @S _das
Jim @(s) = lim = g5 [s-0=@(0)
which implies thatg,(-) is continuous as = 0. Thereforeg,(-) is continuous in
[0,a).
Hence the conclusion follows. O

2.3 Lyapunov Stability Theorems

The results given in this section are available in [91].
Consider the nonlinear system

X(t) = f(t,x(t)) (2.5)

where the functiorf : R™ x D — R" is continuous an® ¢ R" is a domain which
contains the origix = 0. It is assumed that

f(t,0) =0, teR"
which implies that the origin is an equilibrium point of thesgem.

Definition 2.7. The equilibrium poink = 0 of system (2.5) is called exponential sta-
ble if there exist positive constantsfor i = 1,2, 3 such that for any(tp) satisfying
[IX(to) || < c1,

IX(t)]] < 2| x(to) [l e~ (2.6)

If inequality (2.6) holds for any(tp) € R", then, the equilibrium poink = 0 of
system (2.5) is called globally exponentially stable.
2.3.1 Asymptotic stability

Theorem 2.1.Consider system (2.5). LetAR™ x D — R be a continuously dif-
ferentiable function such that
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Wi (X) < V(t,x) <Wsh(X)

foranyte R* and xe D, where W(x) for i = 1,2, 3 are continuous positive definite
functions in D. Then x 0 is uniformly asymptotically stable. Further if B R",
and w(x) is radially unbounded, then x 0 is globally uniformly asymptotically
stable.

2.3.2 Exponential stability

Theorem 2.2.Consider system (2.5). LetMR" x D — R* be a continuously dif-
ferentiable function such that ford R™ and x€ D,

Ka|x][* <V (t,%) < kol |x]*
ov oV

T < — a
e S0 = ksl

where k for i = 1,2,3 and a are positive constants. Then=0 is exponentially
stable. Further if D= R", then x= 0 is global exponentially stable.

Comparing Theorems 2.1 and 2.2 above, it is straightfoni@ske that expo-
nential stability implies uniform asymptotic stability.

2.3.3 Converse Lyapunov theorem

The following result is the well known Converse Lyapunov diem.

Theorem 2.3.Consider system (2.5) in domain:B %, = {x € R" | ||x]| < r}. Let
B(-) be a class’# ¢ function and g be a positive constant such that

B(ro,0) <r and %, :={x]||x]| <ro}

Assume that the Jacobian mat%fg is boundedin domain D uniformly for t= R+,
and that the trajectory of system (2.5) satisfies

Xl < B(lIx(to)[[,t —to),  X(to) € Brp, t>1t0>0

Then, there exists a continuously differentiable functiorR ™ x %;, — R such
that

L If the function f(-) in (2.5) is continuously differentiable in the bak,, then% is bounded in
the domairD = %;.
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ax([[X]) < V(t,x) < az(|x]])
N oV
E+Wf(t’x) < —as(|Ix])
oV
1% < st

wherea; fori = 1,2,3,4 are class# functions defined on the interv, ro]. The
function V() can be chosen independent of time t(if) fin system (2.5) is indepen-
dent of the time t.

2.4 Uniformly Ultimate Boundedness

For a given system (2.5), if asymptotic stability is not pbkes uniform ultimate
bounded stability can be considered. This is very usefutactical cases.

Theorem 2.4.Consider system (2.5). LetAR™ x D — R be a continuously dif-
ferentiable function such that ing R and xc R",

aw([Ixll) < V(t,x) < az([Ix|])
N oV

- < - >
ot T o [(6X) < -Wa(x), forany x| =u>0

whereai(-) and ay(-) are class.#” functions and \(-) is a continuous positive
definite function in domain D. Then=0is uniformly ultimately boundédFurther
if D =R", anda(-) belongs to class#, then x= 0is globally uniformly ultimately
bounded.

Proof: See the reference [91] (Theorem 4.18, p. 172). #

From Theorem 2.4, the following result is ready to be presgnt
Lemma 2.4.Consider the nonlinear system
X = w(X) (2.7)

where xe R" is the system state, and the functia@x-) is continuous inR". Let
¥ :R"— RT be a continuously differentiable clasé, function of||x|| such that
the inequality

0 < -9(Ixl),  xeR™\ B, (2.8)

2 The ultimate bound depends on the parametenshich can be estimated using the result given
in Theorem 4.18 in [91].
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holds for some domai,, whered is a class.%? function, andu is a positive
constant. Then, the trajectory of system (2.7) enters imodomainZ,, in finite
time.

Proof: From the condition of Lemma 2.4, there exists a cla&s function 91 ()
such that
V(%) = D1([IX]).- (2.9)

Then, from (2.8), (2.9) and using Theorem 2.4, the trajgctdrsystem (2.7) is
driven to the domair2,, in a finite time, and remains there. That means there exists
t1 such thak € %, fort > t;.

The aim now is to prove that the trajectory of system (2.7¢eninto %, in a
finite time. Suppose for a contradiction that this is not thee; then there exists
some timet, such that the solutior(xp,t) of system (2.7) starting from some point
Xo satisfie(xp,t) € 0@u aftert,. This is equivalent to

[X(%0, )[| = H, t>to (2.10)
By (2.9) and (2.10), it follows that
7 (X(Xo,1)) = F1([[x(X0, )[|) = F1(m), t>to. (2.11)
wherep is a positive constant. This shows tﬂéﬂ(ﬂ)z 0 aftert,, and it contradicts
(2.8). Hence, the conclusion follows. #

Remark 2.3Lemma 2.4 demonstrates that the solution enters the ope# st
finite time and remains oM8,,. It does not claim that the solution subsequently
remains in%,,.

2.5 Razumikhin Theorem

Consider a time-delay system
X(t) = f(t,x(t—d(t)) (2.12)
with an initial condition
X(t)=e@(t), te[-d,0

where the function vectdi: R x a0 R" takesR x (bounded sets dﬁfa,oﬂ
into bounded sets iR"; d(t) > 0 is the time delay and

d:= sup{d(t)} <

teR+

which implies that the time delad(t) has a finite upper bound tne R*.
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Theorem 2.5.(Razumikhin Theorem) If there exist class#s functions(i(-) and
{»(-), aclass# functionds(-) and a continuous functiomy:) : [—d, o] x R"— R ™
satisfying

QXD <Mt <&(lIXl),  teR", xeR"

such that the time derivative of @long the solution of system (2.12) satisfies

Vitx) < ~a(lX) if Vatt-dxt—d) <Vatxt))  (213)

for any de [0, d], then the system (2.12) is uniformly stable. If in additigyir) > 0
for T > 0 and there exists a continuous non-decreasing fundiar) > 7 fort > 0
such that (2.13) is strengthened to

Va(t,x) < =Za(lIx]]) if Va(t—d,x(t—d)) < &(Va(t,x(t))) (2.14)
ford € [0, d] , then the system (2.12) is uniformly asymptotic stable.
Proof: See pages 14-15in [65]. O

From the Razumikhin Theorem 2.5. the following conclusian te obtained
directly:

Lemma 2.5.Consider the time delay system (2.12). If there exist cotsia> 0
and{ > 1 and a function N
Va(x(t)) = x"Px

with P > 0 such that the time derivative o$V) along the solution of system (2.12)
satisfies

(2.15)

~1 2
P?x(t)H

Vs l212< —V‘

whenever » »
[P2x(t+ )]l < Z[IP2x(t)||

for any 8 € [—d, 0], then, system (2.12) is uniformly asymptotic stable.

Proof: From the definition o¥;(-) it follows that
Amin(P)[IX]I? < Va(t,x(t)) < Amax(P)[[X]|?
and from (2.15)
V2 |(212< —yX(t) TPX(t) < —yAmax(P)[X]|2.
Itis clear that the inequality
Va(x(t+8)) < {PVa(X(t))
is equivalent to the inequality

IB2x(t+6)| < {||PEx(t)|
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Then, from Razumikhin Theorem 2.5 aRd> 0, the conclusion follows by letting

Vi(T) = Amin(P) T2, ¥o(T) = Amax(P) T2
¥5(T) = YAmin(P) T2, ya(T) = %1

in Theorem 2.5. #

2.6 Output Sliding Surface Design

In order to form an output feedback sliding mode control sohgit is usually re-
quired that the designed switching function is a functiothef system outputs. The
corresponding sliding surface is callad output sliding surface this book. The
output sliding surface algorithm proposed in [37, 38] islioed here, and this will
be frequently used in the sequel.

Consider initially a linear system

X = Ax+Bu (2.16)
y =Cx, (2.17)

wherex € R", u € R™, y € RP are the states, inputs and outputs respectively and
assumen < p < n. The triple @,B,C) comprises constant matrices of appropriate
dimensions wittB andC both being of full rank.

For system (2.16)-(2.17), it is assumed that

rankCB) =m

Then, from [37] it can be shown that a coordinate transfoionat= T x exists such
that the system tripleA, B,C) with respect to the new coordinatéas the following

structure L
A1 A 0 =
A Mzl . [o T 2.18

[A21 Azz} [BZ] [ ) (2.18)

whereA; € R-Mx(-m B, ¢ RM™M andT e RP*P is orthogonal. Further, it is
assumed that the systgiy 1, A12,C1) with C; defined by

Ci= [ Op-myx(n-m lp-m ] (2.19)
is output feedback stabilisable i.e. there exists a m#trixR™ (P~ such that
Ar1—AKCy

is stable. It is shown in [37, 38] that a necessary condit@m(A;1,A12,C;) to be
stabilisable is that the invariant zeros (@, B,C) lie in the open left half-plane. In
[37, 38] a sliding surface of the form
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FCx=0 (2.20)

is proposed where .
F=R[K In|T’ (2.21)

andF, € R™™ is any nonsingular matrix.
If a further coordinate change is introduced based on thsingular transfor-
mationz = TX with T defined by

= [lhm O]
T = ~
[KC]_ Im
then in the new coordinatessystem (2.16)—(2.17) has the following form
[All Alz] { 0] e
Ax1 Ax |’ Bz’

whereA;; = Aj; — A;oKC is stable and satisfies
FC=[0 R]

with F, nonsingular. From the analysis above, the following cosioln is obtained
directly:

Lemma 2.6.Consider system (2.16)-(2.17). Suppose that

i) rankCB) =m;

i) the invariant zeros ofA, B,C) lie in the open left half-plane;

iiiythe matrix triple (A11,A12,C1) is output feedback stabilisable whef@;1, A;2)
andC, are defined respectively by (2.18) and (2.19).

Then,

i) there exists a transformation-z Tx such that in the new coordinate z system
(2.16)—(2.17) has the following form

.| A Ar 0
z= [A21 A22]2+ [BJ u (2.22)
y=1[0 CJz (2.23)

where A; € RM-Mx*(-m jg stable. Both matrices B R™™ and G € RP*P
are nonsingular;

i) there exists a matrix F such that FCx 0 provides a stable sliding motion for
system (2.16)-(2.17)and[® C;| = [0 F, ]| where ;b € R™Mis nonsingular.

Proof: All that remains to be shown is that the output distributioatrix has the
form given in (2.23) and tha&3;, is nonsingular. The output distribution matrix in the
new coordinates is given by
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. [ om O
0 1] =[0 T]| 2 Im]

[lnp O O
=[0T]| 0 Ipm O
0 —K In

ln—m 0
o0V e

Lol

2 [lpm O
CZ_T[_K Im}

and so by inspection,

which is nonsingular. Hence the result follows. #
From the analysis above, it is clear to see that the coominatsformation

z=TX

whereT =TT, transfers the system (2.16)-(2.17) to the regular for@2R-(2.23).
Choose the sliding surface

& ={x|FCx=0, xe R"} (2.24)

Then, the analysis above shows that the sliding motion désy$2.16)-(2.17) cor-
responding to the sliding surface (2.24) is asymptoticgthple. The sliding surface
(2.24) can be described by

< ={y|Fy=0, ye RP} (2.25)

which is a subspace of theutput spaceTherefore” in (2.24) or (2.25) denote
output sliding surfaces

Remark 2.4Lemma 2.6 gives a condition for the existence of the outpitcéing
surface (2.20) on which system (2.16) is stable. It shoul@mehasized that the
sliding surface given by Lemma 2.6 can be obtained from aesyatic algorithm
together with any output feedback pole placement algoritfithoice. Details of
appropriate algorithms and how to determine the switchingase (2.20) is de-
scribed in [37, 38] where the necessary and sufficient cmmdib guarantee the
existence of the matrik is available in Proposition 5.2 of [38]. [f = mthen there
is no design freedom and the sliding motion is governed byirtha&riant zeros of
(A,B,C).
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2.7 Geometric Structure of Nonlinear System

Consider the nonlinear system

X(t) = F(x(t),u(t)) (2.26)
h(x(t)), X0 = x(0) (2.27)

wherex € Q ¢ #" (and Q is a neighbourhood ofp), u = col(ug, Uy, ...,Uy) €

U € #™, andy = col(y1,y2, ...,yp) € ZP are the state variables, inputs and outputs
respectively wheréz is an admissible control sét(x,u) is a known smooth vector
field in Q x % and the known functioh : Q — %P is smooth. For convenience,
the system (2.26)—(2.27) is also denoted by the &k, u), h(x)).

Definition 2.8. (See, e.g. [58]) System (2.26)—(2.27) is said todbservableat
(Xo,Up) € Q x 7 if there exists a neighbourhoad” of (xg,up) in Q x % and a
set of nonnegative integer numbérs,ra,--- ,rp} with zip:lri = nsuch that

1) for all (x,u) € A
9«
0_uJ-LF(X*“) hi (X) - 0 (228)

forindicesi=1,2,...,p,k=0,1,2,....,ri—1andj=1,2,...,m;
9

2) thep x mmatrixM(x,u) := 5—UJL,@(X’U)hi (x)} has rankp in (xg, Up)
Then,{rq,rz,---,rp} is called theobservability indexof system (2.26)—(2.27) at
(X0, Up). Further, system (2.26)—(2.27) is said toureformly observablén Q x %

if for any (Xo,Up) € Q x Z, the system is observable and the observability indices
are fixed.

Assume the pai(F (x,u),h(x)) has uniform observability indefr1,ro, -+, rp}
with 3P ri = nin the domainQ x % . Construct a nonlinear transformatidn:
X+ z as follows:

z1 = hi(x) (2.29)
Zp = LF(x,u) hi (X) (230)
Zr, = Ll ey i) (2.31)

wherez 1= col(z1,z2, -+ ,zr,) fori=1,2,...,pandz:=col(z,2,-- - ,zp).

It follows from Definition 2.8 thaM(x, u) has rankpin Q x %, implying that all
z are independent of the contnalwhich combined with the restrictiogipzlri =n
means that the corresponding Jacobian matriX ©4), ‘;—1, is nonsingular. There-
fore, (2.29)—(2.31) is a diffeomorphism in the dom&nandz = col(z, 2, ..., zp)
forms a new coordinate system which can be obtained by dimoputation from
(2.29)—(2.31).



40 2 Mathematical Background

SinceL,j:(X " hi(x) isindependentafiforalli=1,2,...,pandj=1,2,...,r;—1,
it follows by direct computation that far=1,2,...,p

21 = PF(xu) = Leuhi(X) = 22

. I(Lgxuhi

Zp = GO F<a')2 (X))F(Xa u) = |-|2:(X7u)hi (X) =23
Zri,l = LE&)lu)h (X) = ziri

Zri = I‘Ir:i(x,u)hi (X)

Therefore, in the new coordinateslefined by (2.29)—(2.31), system (2.26)—(2.27)
has the following form

z=Az+B®(zu)
y=Cz
where
A=diag{A,...,Ap}, B=diag{Bs,...,Bp} and C=diag{Cy,...,Cp}

whereA € 2" B; € "1 andG € #1*"i fori = 1,2,...,p are defined by

010---0 0
001---0 0
A Do : Bi 1, G=[10:- (2.32)
0001 0
(000 0] 1
and
(zu) L M)
zu L2 hy(x
D(zu) = | . ) Pl * (2.33)
®(zu) ‘
L LFp(X,U) hp(x) | x=T-1(z)

whereq : T(Q)x % — Zfori=1,2,...,p.
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2.8 Summary

This chapter has presented the fundamental concepts anltsredich underpin

the theoretical analysis in this book. Some of the resuéidacen from the existing
literature and others are developed by the authors, but rigitirous proofs pro-

vided. The content covers Lipschitz conditions, comparigmctions, stability of

nonlinear systems, the converse Lyapunov theorem andromiitiimate bounded-
ness. The well known Razumikhin Theorem has been preseiatethe readers’

convenience, and will be employed to deal with time delayesys throughout the
book. Section 2.5 summarises the output sliding surfacigdegpproach proposed
in [38] which will be frequently used in the sequel. Finalhetgeometric structure
of nonlinear systems with uniform observability index hasib provided.






