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Abstract

Context Agricultural expansion is a leading cause of
deforestation and habitat fragmentation globally.
Policies that support biodiversity and facilitate species
movement across farmland are therefore central to
sustainability efforts and wildlife conservation in
these human-modified landscapes.

Objectives We investigated the conservation impact
of several potential management scenarios on animal
populations and movement in a human-modified
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tropical landscape, focusing on the critically endan-
gered Bornean orangutan, Pongo pygmaeus.
Methods We used an individual-based modelling
platform to simulate population dynamics and move-
ments across four possible landscape management
scenarios for a highly modified oil palm-dominated
landscape in Sabah, Malaysian Borneo.

Results  Scenarios that maximised the retention of
natural forest remnants in agricultural areas through
sustainability  certification standards supported
stable orangutan populations. These populations were
up to 45% larger than those supported under develop-
ment-focused scenarios, where forest retention was
not prioritised. The forest remnants served as corridors
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or stepping-stones, increasing annual emigration rates
across the landscape, and reducing orangutan mortal-
ity by up to 11%. Sensitivity analyses demonstrated
that this outcome was highly contingent on minimis-
ing mortality during dispersal.

Conclusions Management that promotes maximis-
ing natural forest cover through certification, such as
that promoted by the Roundtable on Sustainable Palm
Oil, can maintain viable orangutan populations over
the lifespan of an oil palm plantation and facilitate
movement among otherwise isolated populations.
However, minimising hunting and negative human—
orangutan interactions, while promoting peaceful co-
existence between apes and people, will be imperative
to insure positive conservation outcomes.

Keywords Connectivity - High Carbon Stock
approach - Oil palm certification - RangeShifter -
Wildlife corridors

Introduction

Agricultural expansion is the leading cause of defor-
estation and biodiversity loss across the tropics (Curtis
et al. 2018). The demand for commodities and the need
to sustain an increasing human population means
further agricultural expansion will be unavoidable
(Laurance et al. 2014). Oil palm (Elaeis guineensis) is
a prominent driver of tropical deforestation, with
21.5-23.4 million ha already under production globally
(Descals et al. 2020). Biodiversity is heavily impover-
ished in intensively managed oil palm plantations,
which typically support < 15% of the species found in
native forests (Fitzherbert et al. 2008; Meijaard et al.
2018). However, there is growing evidence that by
retaining forest remnants within plantations and manag-
ing them effectively, some wildlife species can survive
in these human-modified landscapes (Deere et al.
2018, 2019; Mitchell et al. 2018). There is thus an
increasing emphasis on including human-modified
landscapes into the broader agenda of wildlife conser-
vation in tropical countries (Ng et al. 2020).
Agricultural expansion contributes to the partition-
ing of remaining habitats into smaller, more isolated
patches (Haddad et al. 2015). This fragmentation can
limit individual movements over a landscape, thereby
restricting the exchange of genetic information within
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and among populations, and inhibiting range shifts in
response to environmental change (Arevall et al. 2018;
Lino et al. 2019). Enhancing the connectivity value of
human-modified landscapes is therefore a central
theme in conservation by, for example, facilitating
species movement between forest patches, which
increases the population viability. Linear corridors
and ‘stepping-stone’ patches of natural habitat are
key ways by which such connectivity can be achieved
(Keitt et al. 1997; Baum et al. 2004; Saura et al. 2014,
Carroll et al. 2015).

Emerging environmental sustainability standards are
beginning to recognise the importance of maintaining
functional connectivity in agricultural landscapes. The
Roundtable on Sustainable Palm Oil (RSPO), for
example, is an international sustainable certification
standard, which aims to alleviate both environment
degradation and social impacts associated with oil palm
production (https://rspo.org/). Recent uptake of zero-
deforestation commitments by the RSPO seeks to align
environmental sustainability and development goals by
decoupling deforestation and agricultural expansion to
ensure ecologically functional forest mosaics are
retained during the development of new plantations
(Meijaard et al. 2018; Deere et al. 2019). The High
Conservation Value (HCV) concept has emerged as the
principal methodology for palm oil producers to honour
these commitments, and the High Carbon Stock (HCS)
approach is integrated into the RSPO standard to assist in
the quantification of HCV (http://highcarbonstock.org/
leading-palm-oil-certification-system-adopts-no-
deforestation-requirements/). HCS is a transparent land-
use planning tool that aims to direct agricultural devel-
opment towards degraded land of limited conservation
value, while prioritising conservation set-asides based on
ecological conditions, such as forest quality, fragment
size and connectivity. While previous research on certi-
fication standards has emphasised the importance of
forest fragments and riparian margins for biodiversity
(Deere et al. 2018, 2019), the extent to which these
habitat remnants promote functional connectivity at local
scales remains poorly understood (Scriven et al. 2019).

Acquiring sufficient empirical data to assess con-
nectivity is often prohibitively expensive, time con-
suming, and may raise welfare concerns if animals
have to be habituated to the presence of observers or
captured and restrained for individual identification or
for tracking devices to be fitted (Gutema 2015).
Therefore, ecological modelling remains an important
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tool for investigating landscape connectivity and the
potential for animal movements across landscapes
(Kool et al. 2013). Advances in spatially-explicit
population modelling and the incorporation of
stochastic environmental and biological processes
may provide more realistic model outcomes than
correlative approaches, particularly when applied to
highly complex landscapes (Kearney and Porter
2009; Urban et al. 2016). Mechanistic dispersal mod-
els incorporate stochastic movement, whereby simu-
lated individuals make probabilistic decisions
governed by movement rules and, as a result, are
likely to more closely align with reality (Palmer et al.
2011; Aben et al. 2016). If coupled with spatially
explicit demographic models, the long-term effects of
management options on population viability and
species movement can be assessed concurrently
(Bocedi et al. 2014; Cabral et al. 2017). This allows
detailed investigations into management scenarios,
which can provide a powerful tool to inform effective
land-use planning and to direct research.

Here, we apply a spatially explicit individual-based
model to test the conservation impact of several
potential management scenarios for a highly degraded
landscape in Sabah, Malaysian Borneo—a major palm
oil producing region (Meijaard et al. 2018). Retaining
forest fragments in the landscape is particularly
important when new development takes place: i.e.
through informed land-use planning such as the HCV
and HCS approaches. Around 25% of the land in
Sabah is planted with oil palm, with only a small
proportion of the previous forest cover remaining in
these plantations. However, every 25-30 years palms
need to be removed and replanted, providing an
opportunity to incorporate and restore additional
forest fragments within existing farmland. Thus, the
effectiveness of sustainable certification standards will
be critical to ensuring positive conservation outcomes
under future development. Our appraisal focuses on
the Bornean orangutan (Pongo pygmaeus), a large-
bodied flagship species characterised by a slow life-
history and low population densities, attributes that
make the species particularly vulnerable to the effects
of habitat fragmentation (Marshall et al. 2009). On
Borneo, orangutans have already lost substantial
habitat, and research suggests further reduction of up
to 57,000 km?, equal to a 20% decline (Struebig et al.
2015; Voigt et al. 2018) is possible by 2050 under a
business-as-usual scenario. Recent surveys provide

evidence that orangutans can persist at low densities in
fragmented landscapes and oil palm estates where
forest remnants are retained (Ancrenaz et al. 2015;
Spehar and Rayadin 2017; Seaman et al. 2019). Initial
estimates suggest as many as 10,000 orangutans, or
between 10 and 15% of the remaining Bornean
population, may already occur in oil palm plantations
(Meijaard et al. 2017). As most of the remaining
orangutan range is found outside of protected areas in
Indonesia, this number will almost certainly increase
with future forest conversion (Wich et al. 2012). It is
therefore essential to understand how the processes of
habitat modification affect orangutan population
dynamics and connectivity across disturbed land-
scapes to provide some conservation options for the
species. Hence, our study aimed to investigate the
potential of prospective management scenarios to
create agricultural landscapes that can also support
orangutan populations and promote functional con-
nectivity between large protected forests.

Methods
Study system

We modelled orangutan movement across the southern
district of Tawau, an area of ca. 208,000 ha
(51.8 km x 40.3 km) encompassing the Stability of
Altered Forest Ecosystems project (SAFE; www.
safeproject.net) and surrounding oil palm estates. The
landscape is a heterogeneous mosaic of degraded forest
remnants embedded within oil palm plantations, and to
a lesser extent, non-native softwoods (Fig. 1, panel I).
Palms range in age from newly established plantations
to mature stands of > 15 years (Mitchell et al. 2018).
The landscape also harbours several large areas of
intensively logged lowland and hill dipterocarp forest,
including protected forest in Mt. Louisa Forest Reserve
(contiguous with ca. 1 million ha of forest, of which
18,160 ha is situated in the study system), Tawau Hills
(28,000 ha; of which 3890 ha is situated in the study
system), and four smaller Virgin Jungle Reserves
(525-2000 ha). The study area contains multiple set-
tlements and an extensive network of permanent roads
since much of the landscape is actively managed as
plantation. Orangutans have been documented in all
forest types across the landscape (Ancrenaz et al.
2004a; Bernard et al. 2016; Seaman et al. 2019).
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«Fig.1 Model framework and study system. I The study system
is a highly fragmented landscape in the north of Borneo
(location in inset). Il Modelling framework: a model inputs used
by RangeShifter 2.0. b The stage-structured demographic model
of nine stages n;, where © signifies survival probability of each
stage, y denotes the probability of an individual developing to
the next stage, ¢ signifies individual fecundity and d indicates
where density dependence in development is applied (Modified
from Neubert and Caswell 2000). ¢ The dispersal model, both
emigration and settlement probabilities (P) are dependent on the
density relative to the carrying capacity of the habitat patch (K).
The transfer process uses a stochastic movement simulation
implemented in RangeShifter 2.0. d Model outputs are both
temporally and spatially explicit

Landscape scenarios

We modelled four land-use scenarios that could be
reasonably expected given current environmental
policy and conservation approaches in Sabah and
typical to other human-modified tropical landscapes:
‘Land Sparing’, ‘Uncertified’, ‘Certified’, and ‘Con-
servation Enhanced’. ‘Land Sparing’ assumes the
conversion to agriculture of all land except that which
is strictly protected (Class I Forest Reserve and Class
IV Virgin Jungle Reserve), thus representing a worst-
case scenario (Fig. 2). We simulated an ‘Uncertified’
Landscape, by applying the minimum environmental
policies currently in place for Sabah, whereby all areas
were converted except the protected areas, riparian
buffers 20 m each side of permanent rivers and areas
above 25° slope. A ‘Certified’ Landscape was created
by following the High Carbon Stock (HCS) approach
decision tree to prioritise land for conservation
(Rosoman et al. 2017), through which forests were
classified into strata defined by thresholds of carbon
density, and forest patches prioritised based on their
core area after applying a 100 m internal buffer into
High (> 100 ha), Medium (10-100 ha), of Low
priority (< 10 ha). Forest patches were further priori-
tised for conservation or development by patch
proximity, forest quality and risk from anthropogenic
activities. Lastly, we constructed a ‘Conservation
Enhanced’ landscape, using recommendations from
published literature. Here, we increased the riparian
buffer width to 45 m each side of the river, as this is
recently recommended to improve biodiversity out-
comes (Gray et al. 2014; Mitchell et al. 2018), and
increased the core area of the HCS medium priority
patches to 100 ha but removed low priority patches in

the ‘give and take’ process defined by the HCS
protocol.

Modelling framework

We applied a modified version of RangeShifter 2.0
(Bocedi et al. 2020), a freely available individual-
based modelling platform, to model orangutan popu-
lation persistence and connectivity across our study
landscape (Fig. 1, panel II) and landscape scenarios.
RangeShifter simultaneously models population
dynamics and landscape connectivity, by integrating
spatially explicit demographic and dispersal models
(Bocedi et al. 2014).

Patch allocation and orangutan demography

The landscape was defined on a gridded system at a
resolution of 30 m x 30 m. We used a patch-based
approach to model population demography; whereby
adjacent cells of suitable habitat were aggregated into
discrete patches. The equilibrium density of each
patch was based on habitat type, using existing
orangutan density estimates from the same site
(Table 1) (Seaman et al. 2019). In large forest areas
we reduced density estimates by half to represent the
female density. However, for small remnant forest
patches that are likely to be occupied by resident
females (Ancrenaz et al. 2021) we maintained density
estimates to reflect this. Female orangutan home
ranges are difficult to determine, and on Borneo
estimates vary from 40 to 600 ha (Singleton et al.
2009). Although density estimates varied widely
across the landscape, the mean density in remnant
forest in oil palm was 0.82 individuals/km?, equating
to a minimum of 122 ha to support a single orangutan.
We therefore considered 122 ha of suitable habitat to
be the minimum patch size (which would therefore
sustain a single adult female) (Seaman et al. 2019). We
considered suitable habitat to be any area of natural
forest defined following HCS protocols as cells with
35t C ha™', produced using LiDAR data from the
Carnegie Airborne Observatory (Asner et al. 2018).
Mean carbon values extracted from transects in
remnant forest in oil palm estates where orangutan
nests have been observed range from 3.04 to 106.03 t
C ha_l, and therefore, forest delineated by this carbon
threshold is known to be capable of supporting
orangutans. Habitat patches large enough to support
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Landscape scenarios Bl Forest cover
Land Sparing [ Soft wood
The only forest remaining in the B Mangrove
landscapeis within strictly B Shrub
protected areas ]
Oil palm
- Class | Forest Reserve P
- Class VI Virgin Jungle Reserve B Urban
. ~~ Water
(Sabah Forest Policy (2018), Sabah
Forestry Department) Roads

Uncertified

As 'Land Sparing' but with the addtion of minimum
environmental regulations for Sabah at the time of study

- 20 m buffers retained each side of permanent rivers
(Section 40 of Sabah Water Resources Enactment (1998),
Malaysian Department of Irrigation and Drainage)

- Forest retained on areas with 225° of slope
(Conservation of Environment Enactment (1996) and
Conservation of Environment Order (1999),
Environmental Protection Department, Sabah)

Certified

As above, with the inclusion of the Roundtable on Sustainable
Palm Oil (RSPO) certification standards, following High Carbon
Stock (HCS) Toolkit. HCS forest patches identified as forest
235 C t/ha & prioritised by core area >100 ha High,10-100 ha
Medium, <10 ha Low

Patches retained in landscape if:

- High priority or within 200 m of a High priority patch,

- at low risk (>2 km settlement, >1 km from other
anthropogenic activities

- or likely act as corridors/stepping stones between protected
areas < 5km apart

Conservation Enhanced

Includes best practice standards promoted by RSPO+ in
addition to those implemented under the 'Certified' scenario
(https://rspo.org/news-and-events/news/rspo-voluntary-
addendum-to-strengthen-the-standard-on-peat-deforestation
-and-social-requirements), by:

permanent rivers

- Increasing core areas of Medium Priority patches to
100 ha and remove Low Priority patches <200 m of a High
priority patch 'give and take development’

- Increasing riparian buffer width from 20m to 45m each side of *
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«Fig. 2 Landscape scenarios based on plausible management
options in southern Tawau district, Sabah

one or more orangutan (i.e. > 122 ha) were numbered
with a unique numeric identifier (detailed in Supple-
mentary Information SI.2).

We developed an overlapping stage-structured
demographic model limited to females, and

Table 1 Parameter values included within the model

comprising nine age-related stages (Table 1). There
is a slight male-bias sex ratio in orangutans of 55%, so
we set survival probability of 0.45 at the neonate stage.
Subsequent stage survival probabilities were derived
from the 2019 Bornean Orangutan Population and
Habitat Viability Analysis (PHVA; Utami-Atmoko
et al. 2017). We added density dependence in devel-
opment between the young adult and adult stages, so
that females becoming reproductive would be delayed

Model parameter Description

Value Reference

1/b Number of females per km?

Continuous logged forest/
VIR

Salvage logged forest
Remnant forest

Mean fecundity

Yearly probability of a reproductive female giving 0.167

Seaman et al. (2019)

1.18
0.82
Utami-Atmoko et al. (2017)

birth
Survival probabilities Yearly survival probability of each age stage Utami-Atmoko et al. (2017)
First year 0.45*
Infant 1-2 years 0.97
Juvenile 3-9 years 0.99
Adolescent 10-11 years 0.98
Young adult 124 years; subject to density-dependent development 0.99
to adult
Adult 13-41 years 0.99
Mature adult 42-45 years 0.95
Senior adult 46-51 years 0.85
Senescent 52-55 years 0.75
Emigration probability
Do Maximum probability of emigrating at stage ‘young 0.2°
adult’
o Slope of emigration function 10°
B Inflection point of emigration function 1
Settlement probability Estimates based on Nietlisbach et al.
(2012)
o Slope of settlement function —10°
Bs Inflection point of settlement function 1
Movement parameters Expert informed
Directional persistence 2.5°
Perceptual range (cells) 25°
Memory size 10
Per step mortality 0.001°

Cost to movement

Expert informed

0.45 Survival probability accounts for slight male sex bias in births

*Tested for model sensitivity
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if their resident patch was at, or close to, population
equilibrium density. We modelled a yearly reproduc-
tive season. However, as orangutans have a long
interbirth interval ranging from 6 to 9 years (van
Noordwijk et al. 2018), we set the annual fecundity at
0.167 (equating to a 6-year inter-birth period). Density
dependence was also incorporated in fecundity (with a
bespoke function added to match Utami-Atmoko et al.
2017), with the interbirth period increasing as patches
became close to equilibrium density (Supplementary
Information SI.1).

Dispersal

Females are highly philopatric (van Noordwijk et al.
2012); however, little is known about how female
orangutans disperse in oil palm landscapes. Since
females have been observed in forest patches in
human-modified landscapes many years after conver-
sion (Ancrenaz et al. 2015; Spehar and Rayadin 2017;
Seaman et al. 2019), it is likely these animals continue
to display a high level of home range fidelity even
within these highly disturbed habitats. To account for
this, we used a strongly density-dependent emigration
probability, meaning orangutans remained within their
natal patch until the patch reached its equilibrium
density, at which point there was a conservative 0.2
maximum emigration probability (Fig. SI.2a). Settle-
ment probability was also density-dependent. As
female orangutans tend to stay close to their mothers’
home range (Goossens et al. 2006), we set a proba-
bility of 1 of an orangutan immediately settling in a
new patch, unless that patch was near equilibrium, at
which point there was a shallow decline in settlement
probability (Fig. SI.2b). The emigration and settle-
ment values we selected resulted in a pattern where
females only emigrate if absolutely necessary (i.e.
when there is no possibility of reproducing in the natal
patch) and would likely settle at the first available
opportunity, which is supported by our current under-
standing of orangutan behaviour (Ashbury et al. 2020).

We modelled dispersal movement with the stochas-
tic movement simulator (SMS), which simulates
stepwise nearest-neighbour movements informed by
a cost surface (Palmer et al. 2011). Additionally,
individual movements depend on three parameters:
perceptual range (the distance at which the individual
can evaluate its surroundings), directional persistence
(DP, the tendency of an individual to move in a

@ Springer

straight line) and memory size (the number of previous
movement steps used to calculate the directional
persistence).

As orangutans are arboreal, they are likely to have a
large perceptual range. We therefore set the parameter
to 25 cells (750 m). Simulated trajectories resulting
from a range of values were visualised and plausible
combinations were selected by expert judgement (the
approach is consistent with that used for determining
the cost values). We found plausible paths for
intermediate values of directional persistence (be-
tween 2.0 and 3.0 when memory was set to 10: detailed
in Supplementary Information SI.4). We thus used
directional persistence = 2.5 and memory = 10 as our
baseline values but also undertook a sensitivity
analysis to investigate the impact of changing these
parameters.

The study area is characterised by little hunting or
conflict killings of orangutans and has a large number
of small patches that orangutans can potentially utilize
for resources. We therefore assumed mortality rates in
the landscape to be low (per step mortality 0.001) and
set the maximum number of steps per year to 3000
(equating to a path length of approx. 108 km), which
seems reasonable based on daily path length from wild
orangutans multiplied over the same period (Singleton
et al. 2009) and visual inspection of dispersal trajec-
tories. We also set the total maximum number of steps
an individual may make during dispersal to 12,000
(approx. 435 km), and any individual exceeding that
limit would die. Since the area is part of a much larger
multi-use landscape and dispersing animals are not
constrained to the area, we applied a reflective study
boundary as orangutans may also enter the landscape
from outside the study system.

Cost surface

Orangutans are primarily arboreal but will also travel
terrestrially where necessary (Ancrenaz et al. 2014).
However, this form of terrestrial locomotion incorpo-
rates additional energetic costs (Thorpe et al. 2007).
To capture this cost, we produced a composite cost
surface layer informed by both expert-derived land-
scape resistance and a time cost model (Frakes et al.
2015) (detailed in Supplementary Information SI.2).
The resulting cost surface is time travel distance in
seconds, weighted by the resistance of the landcover

type.
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Model initialisation and metrics

We initialised the model on each landscape scenario so
that all suitable patches were occupied at female
carrying capacity (based on habitat type), with the
population distributed with a right-skew towards older
ages classes (20% of the population among Adolescent
or below and 80% among Young adult and above
Ancernaz et al. 2004b). For each scenario, we

returned to their natal patch. Unsuccessful dispersers were
individuals that died during dispersal

modelled population dynamics over 100 years for
100 iterations. To evaluate the effects of each scenario,
we derived several metrics, with respect to population
dynamics and movement, recorded after the popula-
tion had reached equilibrium (see Fig. SI.3). Mean
Population size was calculated for the whole land-
scape and agricultural areas only (i.e. excluding all
protected areas and VJRs) at 100 years. Dispersal
Distance was derived from the centre of the cell from
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«Fig. 5 Dispersal network maps for the four management
scenarios. Lines on maps indicate where successful dispersal
events between suitable habitat patches occurred, scaled in size
and colour for mean number of individuals per year over a
40-year period. Each point denotes the Mean Population size for
individual patches at the end of each simulation (n = 100). The
probability density plots show the distribution of Dispersal
Distances for each management scenario, with dotted red lines
denoting the median distance travelled during dispersal.
Dispersing individuals are characterized into three dispersal
statuses, settled in their natal patch, settled in a non-natal patch,
or died during transfer. The proportion of dispersing individuals
within each dispersal status is represented by stacked bar charts.
Red patches indicate patches which produced no successful
emigrants

which the individual initially dispersed to the centre of
the cell at which it settled in a non-natal patch. We
determined Dispersal Success as the proportion of
dispersing individuals that either settled in a non-natal
patch, returned and settled in their natal patch, or died
during transfer. Relative Dispersal Success was
derived by comparing the annual number of individ-
uals that either returned and settled in their natal patch,
settled in a non-natal patch or died during transfer,
compared to the ‘Uncertified’ scenario. We also
created network maps, by plotting links between
patches where individuals had successfully dispersed
and settled.

Sensitivity analysis

As our movement parameters were largely based on
anecdotal evidence and expert opinion, we undertook
a sensitivity analysis to evaluate the robustness of our
model to permutations in parameter values (detailed in
Supplementary Information SI.5). To assess the model
sensitivity to permutation in parameter values, we
compared Mean Population size at 100 years between
landscape scenarios and percentage change in Disper-
sal Success relative to the baseline scenarios, under the
range of parameter values.

Results
Population size in each landscape configuration

We modelled orangutan population dynamics over
100 years in four different landscape scenarios. At a

mean of 645 individuals in year 100 [+ standard error
(SE) 2.27 individuals], the ‘Conservation Enhanced’
configuration supported the largest simulated orangu-
tan population across the whole landscape. The
‘Certified’” Landscape supported a comparable Mean
Population of 612 individuals (£ 2.12). The smallest
population sizes were predicted for the ‘Uncertified’
Landscape (450 + 1.70 individuals) and the ‘Land
Sparing’ scenario (445 £ 1.62 individuals). When we
excluded protected areas and assessed the population
in the agricultural landscape only, the largest popula-
tion was again predicted for the ‘Conservation
Enhanced’ scenario (214 + 1.23 individuals), with
only a slight reduction estimated for the ‘Certified’
landscape (181 £ 1.18 individuals). The ‘Uncertified’
landscape had a final estimated Mean Population of 20
individuals (4 0.33), and with no suitable habitat
within the production landscape the ‘Land Sparing’
scenario had an estimated Mean Population of < 1
individual (£ 0.04; Fig. 3).

Dispersal Distance and Success

In terms of absolute numbers, when considering all
patches in the landscape the mean number of annual
successful dispersers settling into non-natal patches
averaged 2.83 (&£ 0.02, Fig. 4) in the ‘Certified’
scenario and 3.16 (% 0.03) in the ‘Conservation
Enhanced’ scenario, which was an increase relative
to the ‘Uncertified’ landscape (1.08 and 1.33 individ-
uals respectively). If limited to only individuals
dispersing from one of the eight protected areas,
annually an average of 2.03 (£ 0.02) individuals
settled in non-natal patches in the ‘Certified’ scenario
and 2.16 (£ 0.02) in the ‘Conservation Enhanced’
scenario. The mean number of dispersing orangutans
that went back and settled in natal patches annually
was comparable across the ‘Certified’ (2.07 £ 0.02),
‘Conservation Enhanced’ (2.00 4= 0.02) and ‘Uncer-
tified’ (1.93 & 0.02) landscape scenarios when con-
sidering all patches. When constricted to the protected
areas only, fewer individuals settled in their natal
patches in the ‘Certified’ (1.68 £ 0.02) and ‘Conser-
vation Enhanced’ (1.54 £ 0.01) scenarios, compared
to the ‘Uncertified’” (1.89 £ 0.02) landscape. The
‘Land Sparing’ scenario which only included the eight
protected areas, experienced the lowest annual number
of individuals settling into non-natal patches
(1.05 £ 0.01) and the highest number of individuals
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Fig. 6 Outcomes of sensitivity analyses showing the Mean
Population size at 100 years across 100 iterations of each model
parametrisation. Model parameters on the x axis, including pairs

returning and settling in their natal patches annually
(2.28 £ 0.02).

Dispersal mortality rate was 46% in the ‘Land
Sparing’ scenario, with a similar rate recorded in the
‘Uncertified’ landscape (44%, Fig. 5). Mortality rate
during dispersal was lower in the ‘Certified’ and
‘Conservation Enhanced’ landscapes (36% and 35%
respectively). In the ‘Land Sparing’ scenario, only
13% of dispersing individuals settled in non-natal
patches. This increased slightly in the ‘Uncertified’
landscape to 18%, and again increased further to 30%
in the ‘Certified’ and 32% in the ‘Conservation
Enhanced’ scenarios. In the ‘Land Sparing’ and
‘Uncertified’ scenarios a slightly larger proportion of
dispersing individuals returned and settled in their
natal patches (29% and 25% respectively), compared
to the ‘Certified’ (22%) and ‘Uncertified’ (21%)
landscapes (see Fig. 5). When only considering suc-
cessful dispersers (those that either returned to their
natal patch or settled in a non-natal patch), the
difference between scenarios was greater, with most
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of extreme higher (+) and lower (—) parameter values. Solid
black lines show the Mean Population size for each scenario,
with the shaded area indicating the standard error

individuals in the ‘Land Sparing’ and ‘Uncertified’
scenarios returning to their natal patches (68% and
57% respectively). In the ‘Certified” and ‘Conserva-
tion Enhanced’ scenarios over half the successful
dispersers settled in non-natal patches (58% and 61%
respectively) compared to 41% in the ‘Uncertified’
landscape, and just 32% in the ‘Land Sparing’
scenario.

Across all four scenarios, Dispersal Distance
ranged between 0.03 and 58 km, with the distribution
heavily skewed towards shorter distances (Fig. 5).
Under the ‘Certified’ and ‘Conservation Enhanced’
scenarios median Dispersal Distances were 5.96 km
and 5.82 km respectively. The largest median Disper-
sal Distance was estimated for the ‘Uncertified’
scenario (7.35 km), with the shortest median distance
modelled in the ‘Land Sparing’ landscape (4.15 km).
Across scenarios, there were successful emigration
events from all habitat patches, with the exception of 3
patches embedded in the plantation matrix in the
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Fig. 7 Sensitivity analysis results, showing percentage change Dispersal Success mean number of individuals per year, compared to
baseline models. Model parameters on the x axis, including pairs of extreme higher (4) and lower (—) parameter values

Uncertified landscape, indicating possible population
sinks (Fig. 5).

The higher number of suitable patches in the
‘Certified” and ‘Conservation Enhanced’ landscapes
(Fig. 2) provided many more potential connections,
with multiple linkages between patches (mean number
of connections across all model iterations 37.6 £ 0.42
and 49.2 £ 0.52 respectively), compared to the

‘Uncertified” and ‘Land Sparing’ scenarios
(11.3 £ 0.19 and 1.62 &£ 0.65 respectively). Across
all scenarios the largest number of potential connec-
tions summed over all 100 iterations were for the
‘Conservation Enhanced’ scenario with 348 and the
‘Certified’” Landscape with a total of 248 connections
(Fig. 5). The development focused scenarios again
had substantially fewer connections: 62 for the
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‘Uncertified’ landscape and just 13 in the ‘Land
Sparing’ scenario (Fig. 5). The mean number of
connections per patch also differed between scenarios,
with 1.77 (£ 0.02) for the ‘Conservation Enhanced’
scenario, 2.21 (£ 0.02) in the ‘Certified” Landscape,
1.15 (£ 0.02) in the ‘Uncertified’ landscape and with
the fewest 0.44 (4 0.02) in the ‘Land Sparing’
scenario.

Sensitivity analysis

With the exception of the ‘Land Sparing’ and
‘Uncertified’ scenarios, the model outcomes did not
change the ranking of the scenarios for most parameter
combinations. Variations (& 99 individuals) in pop-
ulation size did change the ranking of ‘Land Sparing’
and ‘Uncertified’ scenarios; however, their baseline
population size did not differ substantially (‘Land
Sparing’ 445 ind. and ‘Uncertified’ 450 ind.: see
Fig. 6). The model was sensitive to Per Step Mortality
(the probability of an individual dying at each step
taken during dispersal) with final population estimates
changing the ranking of several of the scenarios. When
Per Step Mortality was reduced to 0.0001, the Mean
Population estimate for the ‘Uncertified’ landscape
increased by 99 individuals (18%), increasing its
ranking above the ‘Certified’ landscape (Fig. 6).
Similarly, reducing Per Step Mortality increased the
population estimate of the ‘Certified’ landscape by
100 individuals (14%) elevating it above the baseline
estimate for the ‘Conservation Enhanced’ scenario by
67 individuals (Fig. 5). When Per Step Mortality was
increased to 0.01, the final population estimates for the
‘Conservation Enhanced’ landscape reduced by 12%,
which was 37 fewer individuals than the baseline
scenario for the ‘Certified’ scenario (Supplementary
Information Table SI.5.1).

Dispersal Success also appeared sensitive to a
reduction in per step mortality, with > 100% increase
in individuals settling in non-natal patches in all
scenarios with the exception of the ‘Land sparing’
scenario which saw a large increase (186%) in
individuals returning to their natal patches. A similar
pattern was seen when per step mortality was
increased but to the lesser degree of change < 50%
change in the number of individuals (Supplementary
Information Table SI.5.2) (Fig. 7).
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Discussion

Our models pertaining to animal movement and
population ecology in a highly fragmented landscape
demonstrate that management options to maximise
forest cover (‘i.e. the Certified’ and ‘Conservation
Enhanced’ scenarios) can sustain substantial orangu-
tan populations in areas under agricultural production
for a period of at least 40 years. Oil palm plantations
are productive for 25-30 years before replanting (Ng
et al. 2013), and therefore, these landscapes are likely
able to support stable populations of orangutans over
the lifespan of a plantation. This is in line with several
field observations that orangutans have survived in
similar human-modified landscapes for long periods
(> 20 years: Ancrenaz et al. 2021). To date, orangutan
research has focused almost exclusively on intact
landscapes, and no long-term empirical data are
available from human-modified landscapes to inves-
tigate population dynamics (Voigt et al. 2018). Our
models provide longitudinal insights into the increas-
ingly recognised potential of human-modified land-
scapes to support orangutan populations. These results
require validation from field observation and highlight
the need for increased research focus in these highly
modified landscapes.

A striking difference between the outcomes of the
landscape scenarios was the proportion of dispersing
individuals that either settled back in their original
natal patch or transferred to a non-natal patch. Our
simulations demonstrated that in the ‘Land Sparing’
scenario, where there is limited structural connectivity
(e.g. the absence of riparian buffers and other remnant
forest patches), individuals are largely confined to
protected areas, with the majority of successfully
dispersing females settling within their natal patches,
and hence unable to disperse elsewhere. In the ‘Land
Sparing’ scenario there was also a limited number of
connections among patches (a mean of 1.9 connec-
tions over 100 iterations) and dispersing individuals
moved over the shortest distances before settling
(median 4.1 km). This short-distance dispersal is
supported by observations of females from areas of
continuous forest, that are generally philopatric and
will move and settle close to their mothers’ home
range (Goossens et al. 2006; Ashbury et al. 2020). The
inclusion of Malaysia’s current minimum ecological
requirements in the ‘Uncertified’ scenario (retention
of 20 m riparian buffers on permanent rivers and
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forest on slopes above 25°) increased the connected-
ness of the landscape, with an average of 12.7
connections and 30% of successfully dispersing
individuals settling in non-natal patches. However,
this rise in animal movement across the landscape did
not greatly increase the total population size (a
population increase of 0.2% compared to the ‘Land
Sparing’ scenario) and produced the largest median
Dispersal Distance at 7.4 km, compared to just over
6 km in the ‘Certified’ and ‘Conservation Enhanced’
scenarios. The retention of additional natural forest
through conservation set-asides in the ‘Certified” and
‘Conservation Enhanced’ scenarios resulted in higher
proportions of individuals settling in non-natal patches
(58% and 63% of all successful dispersers respec-
tively) and a substantial number of connections
amongst patches (an average of 40.3 connections in
‘Certified’ and 52.4 in ‘Conservation Enhanced’). The
retention of natural forest also led to a considerable
increase in the final population size (by 20% in the
‘Certified’ scenario, and 24% in the ‘Conservation
Enhanced’ compared to the ‘Land Sparing’ scenario).

In fragmented landscapes, facilitating orangutan
movement between isolated populations will be a key
conservation strategy to ensure the long-term genetic
health of populations (Templeton et al. 1990; Bruford
et al. 2010) and to facilitate range shifts in response to
climate change (Struebig et al. 2015; McGuire et al.
2016). Our simulations suggest orangutans are more
likely to move short distances across agricultural
matrixes when connected by smaller fragments or
riparian remnants, rather than undertaking long excur-
sions into plantations (see Fig. SI.4). Similar beha-
viour has been observed with wild female orangutans
in oil palm landscapes, where individuals have been
reported to move between areas of natural forest to
cross plantations (Ancrenaz et al. 2015). Thus, small
patches can function as stepping-stones and are likely
to be of high importance in facilitating orangutan
movement across human-modified landscapes, whilst
not necessarily supporting high levels of biodiversity
on their own (Deere et al. 2019). A phenomenon we
captured in our simulations were female orangutans
occupying and reproducing in remnant forest patches
in oil palm. This is consistent with field observations,
where practitioners have identified female orangutans
residing in remnant forest in oil palm dominated
landscapes for a sufficient amount of time for an

offspring to reach maturity and leave to establish its
own home range (Ancrenaz et al. 2021).

These individuals born in remnant forest patches
will have limited opportunities to establish their own
home range and this will be contingent on the amount
of remaining natural forest. However, the highly
philopatric nature of female orangutans means move-
ments over long distances for this sex are likely to be
extremely rare. Our simulations suggest that orangu-
tans in heavily modified landscapes may have to
change their behaviour, moving over larger distances
to find suitable areas to settle, particularly when there
is minimal remaining natural forest cover. In the
‘Uncertified’ scenario, three of the remnant forest
patches were occupied by dispersing individuals but
failed to produce successful emigrants, representing
potential population sinks. Thus, we highlight the need
for not only providing linear forest corridors (such as
riparian buffers) and/or stepping stones to increase the
permeability of the landscape, but also to increase the
potential for females to establish their own home
ranges, reducing the need for long distance dispersal
and maximising the population size.

Ensuring sufficient habitat remains or is restored in
agricultural landscapes will be vital to promote
functional connectivity, but this is only half the battle.
Connectivity may be overestimated if negative
human-wildlife interactions (such as crop foraging
or hunting) are not considered (Day et al. 2020;
Ghoddousi et al. 2020; Bleyhl et al. 2021). Our
sensitivity analysis suggests changes in mortality risk
during dispersal are likely to have a large effect on the
ability of the agricultural landscape to support
orangutan and allow movement between patches. As
part of the certification process itself, the High Carbon
Stock methodology includes a risk assessment to
prioritise patches for conservation based on proximity
to anthropogenic features (such as roads and settle-
ments), aiming to limit the impact of human-wildlife
interactions. Despite this, human accessibility to forest
patches is high in oil palm estates and hunting can be
common (Azhar et al. 2013; Deere et al. 2019). Here,
we assumed all HCS forest areas to be suitable for
orangutans, however, other factor such as hunting may
limit the ability of these areas to support orangutans. In
Kalimantan, hunting of orangutans for meat and
persecutory killings following negative orangutan—
human interactions is widespread (Meijaard et al.
2011). Although hunting of orangutans in Sabah
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appears to be relatively low (Ancrenaz et al. 2007),
further research is needed to fully establish the extent
to which human—wildlife interactions will inhibit the
ability of oil palm certification to facilitate movement
for orangutans.

A conservation strategy routinely employed in
anthropogenic landscapes is the translocation of
orangutans from forest fragments to areas of contin-
uous forest or rescue centres (Sherman et al. 2020a).
However, most orangutans translocated from agricul-
tural landscapes appear to be in good health (Sherman
et al. 2020b), indicating that these individuals have
been surviving in these landscapes. In addition, our
models demonstrate the potential importance of these
individuals in maintaining movement and connectiv-
ity across the landscape (Ancrenaz et al. 2021).
Although orangutan translocation can be justified
when the life of an individual is threatened, such as
during fire events or direct conflict with people, the
blanket deployment of translocation may in fact be
detrimental to the species (Sherman et al. 2020b).
Indeed, we showed that maintaining orangutan num-
bers within remnant forest in plantations will increase
the overall population size and increase movement
across the landscape, potentially providing vital
transfer of genetic information between isolated
individuals or groups of individuals.

There is mounting evidence that orangutans can
survive and reproduce within plantation-dominated
landscapes (Ancrenaz et al. 2015; Spehar and Rayadin
2017; Seaman et al. 2019) and our models show these
animals are likely to play an important role in
maintaining movement between otherwise isolated
populations. However, there remains little known
regarding orangutan movement behaviour in human-
modified landscapes. Therefore, we used our current
understanding of orangutan dispersal and expert
judgment to parametrise the model and create an
approximation to the same pattern as observed in the
field. Our use of an individual based model allowed
the incorporation of individual variability in both
movement and demography, providing a more realis-
tic process than other modelling approaches. There is
unavoidably a level of subjectivity to this approach,
and to address this we performed an extensive
sensitivity analysis. Encouragingly, the model projec-
tions, especially in how the alternative plausible
scenarios ranked, seem robust to permutations in
almost all emigration, movement, and settlement
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parameter values, giving us confidence in the conclu-
sions we draw here. The orangutan’s slow life history
and low reproductive rate makes the species highly
vulnerable to even small rises in mortality rates above
natural levels (~ 1%: Leighton et al. 1995). This
sensitivity highlights the critical need to ensure
mortality in human-modified landscapes is kept to a
minimum though reducing hunting and conflict kill-
ings, raise the level of acceptance of people sharing the
same habitat for peaceful co-existence via targeted
awareness campaigns and capacity building, as well as
increasing conservation focus towards these areas.

Conclusion

With increasing environmental degradation, protected
areas alone will be insufficient to secure conservation
goals for much of the earth’s biodiversity (Dinerstein
et al. 2020). Maintaining wildlife populations and
ensuring connectivity in agricultural landscapes is
therefore now essential, particularly to sustain viable
populations of large-bodied and wide-roaming terres-
trial mammals (Carroll et al. 2015). The extent to
which this can be achieved will depend on the overall
design of the landscape and how land-use practices
meet the ecological needs of species, as well as the
acceptance of people to coexist in proximity with
wildlife. We need a paradigm shift about how we
conserve wide-ranging species such as orangutans—to
embrace landscape-level management in human-mod-
ified habitats, as well as staunch protection in intact
forest areas (Kremen and Merelender 2018). There is
currently a paucity of research from these landscapes
and additional research will be vital to better inform
land-use policy and focus conservation efforts. As
further agricultural expansion is unavoidable, our
modelling suggests that maximising natural forest
cover in farmland landscapes through conservation
set-asides, will lead to improved long-term conserva-
tion outcomes for critically endangered species such
as orangutan.
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