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Abstract

There is a growing demand for robust data-driven control methods particularly for indus-
trial process control. This paper presents a new model-free adaptive sliding mode control
approach for a class of discrete-time, multiple input and multiple output non-linear sys-
tems. The proposed methodology seeks to address issues with the computation of inverse
matrices and problems with singularity in existing methods while at the same time seek-
ing to enhance robustness. A Majorization–Minimization technique and the L1 norm are
used within the proposed optimization and an online iterative approach is described for
update of the control law. The closed-loop system response is proved to be stable. The
effectiveness of the proposed control is validated by extensive simulation and also experi-
mental results, with the performance obtained by the proposed approach being compared
throughout with a well-known approach from the established literature.

1 INTRODUCTION

In modern control theory, the design of the controller is fre-
quently carried out using a mathematical model. Such methods
have been widely used and have achieved remarkable results in
many industrial processes. However, in some cases, it may be
difficult or unduly time-consuming to construct accurate mod-
els. At the same time, a considerable number of process indus-
tries generate and store large amounts of data every day, which
may be very valuable to underpin a data-based control approach.
For this reason, increasing attention is being paid to the
development and application of data-driven control methods
[1].

Data-driven control can be divided into two categories:
offline data-driven control [2–4] and online data-driven control
[5–7]. Offline data-driven control is suitable for offline large-
scale data processing and is not amenable to complex itera-
tive calculations. Online data-driven control can estimate system
models in real time. Among these methods, iterative learning
control has been found to provide high precision with repet-
itive tasks although the same initial point and desired trajec-
tory may be required in each phase of operation [8]. Model-free
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adaptive control (MFAC) can estimate a system model online
without the limitations required by iterative learning control
[9, 10]. However, the pseudo-partial derivative (PPD) matrix in
MFAC is slowly time-varying, which makes it difficult to accom-
modate sudden disturbances while maintaining high levels of
performance.

Due to its established advantages which include robust-
ness to parameter uncertainties and external disturbances, rapid
response and straightforward implementation, sliding mode
control (SMC) has received extensive attention in the literature
and has been successfully applied to various complex systems
[11–13]. The study of discrete-time SMC has facilitated the inte-
gration of sliding mode techniques with industrial computer
systems [14, 15]. However, these studies mainly focus on the
development of adaptive model-based controllers. The design
of a model-free approach to adaptive sliding mode control has
to date received less attention in the literature. A discrete-time
control approach makes it easier to integrate the SMC paradigm
with data-driven approaches. Hence, the combination of MFAC
with SMC has become an attractive proposition to deal with
non-linear discrete-time systems where the model is unknown
and external disturbances are present [16].
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There have been some results obtained by combining MFAC
with SMC [16–18]. Model-free adaptive sliding mode control
(MFASMC) is proposed in [16] for single input and single out-
put non-linear discrete systems. MFASMC for the specific case
of robot dynamics is proposed in [17]; this extends the control
approach from single input single output to multiple input mul-
tiple output (MIMO). An extended state observer is incorpo-
rated into the controller design to construct a model-free adap-
tive sliding surface which enables decoupling control of the sys-
tem in [18]. However, the effect of a reset algorithm which is
required in practical control implementation to prevent singu-
larity of the control has not been considered by the mentioned
methods. Meanwhile, the L2 norm is typically used in the con-
trol input criterion function and a parameter matrix inversion
appears in the control algorithm. In order to avoid a matrix
inverse in the applied control, the norm of the matrix has been
used to replace the original matrix in the implemented control.
This overcomes potential problems with singularity but may,
however, degrade the control performance [16–18]. It should be
noted that the same matrix inversion exists in the computation
of the sliding mode reaching law, which adds to the controller
online computation time.

The purpose of this study is to design a novel MFASMC
for a class of MIMO nonlinear discrete-time systems where
the model is unknown based on linear Bregman iteration [19].
The key point of this study is to use linear Bregman itera-
tion and Majorization–Minimization theory [20] to facilitate
controller design. Unlike the conventional MFAC-based SMC
strategies [16–18], the proposed MFASMC has strong robust-
ness while negating the need for matrix inverse calculations.
The main contributions of this study are summarized as follows:
(i) the Majorization–Minimization (MM) principle is used in
optimizing the objective function, which avoids the computa-
tional time increase caused by matrix inversion; (ii) an L1 norm
term is used in the control input criterion function and the lin-
ear Bregman algorithm is employed for the solution, which can
enhance the system robustness.

The paper is organized as follows: Section 2 formulates the
control problem and some assumptions are provided; Section 3
designs the novel MFASMC; the corresponding stability analysis
is given in Section 4; Section 5 gives simulation and experimental
results; Some conclusions are given in Section 6.

2 PROBLEM FORMULATION

Consider a MIMO non-linear discrete-time system described
by

y(k + 1) = F (y(k),… , y(k − ny ), u(k),… , u(k − nu )), (1)

where u(k) = [u1(k), u2(k),… , un(k)]T ∈ Rn and y(k) =
[y1(k), y2(k),… , yn(k)]T ∈ Rn are input and output vectors,
respectively. F (y(k),… , y(k − ny ), u(k),… , u(k − nu ))∈ Rn is
an unknown non-linear function. ny, nu > 0 are unknown
system orders.

For system (1), the following assumptions are given [9]:

Assumption 1. The partial derivatives of F (y(k),… , y

(k − ny ), u(k),… , u(k − nu )) with respect to control inputs u(k)
are continuous and non-zero.

Assumption 2. System (1) satisfies generalized Lipschitz condition,

that is, ‖Δy(k + 1)‖ < b‖Δu(k)‖ for any k and ‖Δu(k)‖ ≠ 0, where

b > 0, Δy(k + 1) = y(k + 1) − y(k), Δu(k) = u(k) − u(k − 1).

Assumption 3. The function F (y(k),… , y(k − ny ), u(k),… , u

(k − nu )) in (1) is locally continuous and bounded.

Remark 1. From a practical point of view, these assumptions
are reasonable. Assumption 1 is a typical condition for many
control designs and is satisfied by many non-linear systems.
Assumption 2 poses a limitation on the rate of change of the
system output in response to an applied control input. Assump-
tion 3 is appropriate for many non-linear systems.

Two Lemmas from [9] are now presented.

Lemma 1. For the MIMO non-linear discrete-time system (1) satisfying

Assumptions 1 and 2, there exists a Φ(k) , which is called the PPD

matrix, such that system (1) can be written as

Δy(k + 1) = ΦT (k)Δu(k) (2)

for bounded Φ(k) = [Φ(ki j )]n×n.

Remark 2. This type of data-driven control does not need
explicit use of a mathematical model for the controller analysis
and design. The design procedure does not require the model
uncertainty to be directly characterized.

Lemma 2. Consider system (2). If Assumptions 1 and 2 are satisfied,

the unknown matrix Φ(k) can be determined from the following data-

driven adaptive law:

Φ̂(k) = Φ̂(k − 1) +
𝜒(Δy(k − 1) − Φ̂(k − 1)Δu(k − 1))

𝜏 + ‖Δu(k − 1)‖2

ΔuT (k − 1), (3)

where 𝜏 > 0, and 𝜒 > 0 are weighting factors and Φ̂(k) = [Φ̂(ki j )]n×n

is an estimate of the unknown Φ(k).

Remark 3. It is assumed that Φ(k) is a diagonally dominant
matrix in the following sense: |Φi j (k)| ≤ b1, b2 ≤ |Φii (k)| ≤
ab2, a ≥ 1, b2 > b1(2a + 1)(m − 1), i = 1,… , n, j = 1,… , n, i ≠

j . The signs of the elements of Φ(k) are fixed as in [10, 17, 18].
To guarantee Φ̂ is non-singular, (3) is modified to include the
following reset algorithm [10]:

Φ̂ii (k) = Φ̂ii (0), i f |Φ̂ii (k)| > b2 or |Φ̂ii (k)|>ab2

or sign(Φ̂ii (k)) ≠ sign(Φ̂ii (0)),

Φ̂i j (k) = Φ̂i j (0), i f |Φ̂i j (k)|>b1

or sign(Φ̂i j (k)) ≠ sign(Φ̂i j (0)), i ≠ j,
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TABLE 1 Controller parameters

MFASMC-L1 𝝉 = 0.1, 𝝌 = 0.1, 𝝀̄ = 0.1, 𝜸̄i = 0.1, q = 1, 𝜿 = 1, T = 0.01

MFASMC-L2 𝜏 = 0.1, 𝜒 = 0.1, 𝜆 = 0.1, 𝛾i = 0.1, q = 1, 𝜅 = 1, T = 0.01, 𝜌 = 1, a = 4.5, b1 = 0.01, b2 = 0.1
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FIGURE 1 Tracking performance of y1

where Φ̂i j (0) is the initial value of Φ̂i j (k), i = 1,… , n and j =
1,… , n. Note that the reset algorithm will increase the online
computation time and affect the control performance.

In order to make the system output track the desired tra-
jectory and to achieve a smooth control input, an MAFC is
designed using the following objective function [9]:

J (u(k)) = ‖yd (k + 1) − y(k + 1)‖2
2 + 𝜆̄‖u(k) − u(k − 1)‖2

2,

(4)

where yd (k + 1) is the desired trajectory and 𝜆̄ > 0 is a weight-
ing factor.

According to Lemmas 1 and 2, Equations (2) and (3), the
following MAFC can be designed [9]:

u(k) = u(k − 1) + (𝜆̄I + Φ̂T (k)Φ̂(k))
−1
Φ̂T (k)Δyd (k), (5)

where Δyd (k) = yd (k + 1) − y(k) and Φ̂(k) is the adaptive esti-
mate of Φ(k) given in (3).

TABLE 2 ITSE for the two methods

ITSE y1 y2

MFASMC-L1 0.0496 0.1429

MFASMC-L2 0.3256 0.1430

The matrix inversion (𝜆̄I + Φ̂T (k)Φ̂(k))−1 in Equation (5)
will be computationally intensive when the dimensions of the
system input and output are large. An alternative MAFC is
designed in [10], whereby 𝜆̄I + ΦT (k)Φ(k) is replaced with
𝜆̄ + ‖Φ̂(k)‖2 to yield:

u(k) = u(k − 1) + ΔūMFA(k)

ΔūMFA(k) =
𝜌Φ̂T (k)Δyd (k)

𝜆̄ + ‖Φ̂(k)‖2
, (6)

where 𝜌 > 0 is a weighting factor.

Remark 4. Note that the control (5) includes the matrix inver-
sion (𝜆̄I + Φ̂T (k)Φ̂(k))−1, which will increase the calculation
time. On the other hand, the control (6) uses 𝜆̄ + ‖Φ̂(k)‖2 to
avoid the computation of the matrix inversion but this may be
at the expense of control performance. Furthermore, the term‖u(k) − u(k − 1)‖2

2 is used in the objective function. It is well
known that the L2 norm is sensitive to external disturbances
and system uncertainties, which can also reduce the robustness
of the system [21].

Motivated from the above discussion, a data-driven
MFASMC is developed for system 2 in [17, 18]. A conventional
sliding surface is defined in the following linear form:
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FIGURE 2 Tracking performance of y2
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FIGURE 3 Adaptive term of MFASMC-L2

S (k) = e(k), (7)

where e(k) = yd (k) − y(k) = [e1(k), e2(k),… , en(k)]T ∈ Rn. The
reaching law is designed as follows:

S (k + 1) − S (k) = −qTS (k) − 𝜅̄T sign(S (k)), (8)

where q > 0, 1 − qT > 0, 𝜅̄ > 0 and T is the discrete-time
sample period. The reachability condition for a discrete sliding
mode may be expressed as ‖s(k + 1)‖ < ‖s(k)‖ [22]. This guar-

antees that from any initial state the discrete system will reach
the sliding surface.

Now consider the system (2) where Assumptions 1, 2 and 3
are satisfied. A sliding surface (7) has been designed for system
(2) and the unknown matrix Φ(k) is estimated by the adaptive
law (3). The following data-driven MFASMC is defined in [17]
as follows:

u(k) = u(k − 1) + Δū(k),

Δū(k) = ΔūMFA(k) + Γ̄ΔūSM(k), (9)
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FIGURE 4 Adaptive term of MFASMC-L1
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FIGURE 5 Control input of u1

where ΔūMFA(k) is defined in Equation (6), Γ̄ =
diag([𝛾̄1,… , 𝛾̄n]) ∈ Rn×n with 0 < 𝛾̄i ≤ 1 (i = 0, 1,… , n)
weighting factors and

ΔūSM(k) = Φ̂−1(k)(yd (k+ 1)− yd (k)+ qTS (k)+ 𝜅̄T sign(S (k))).

(10)

Remark 5. Note that the inverse Φ̂−1(k) is still required in the
control computation (9)–(10), which will contribute to the com-
putational load. This paper proposed overcome the disadvan-
tage in [17, 18].

The contribution of this paper can be summarized as follows.
A new MFASMC is proposed for a class of MIMO non-linear

systems. System robustness is enhanced by using the MM prin-
ciple and the L1 norm in the design of the MFASMC. Further-
more, matrix inversion is avoided in the new control, which will
effectively decrease the online computation time.

3 MFASMC DESIGN

Inspired by the fundamental results on Linearized Bregman iter-
ation and MM in [19, 20], respectively, the proposed control
scheme is designed as follows:

u(k) = u(k − 1) + Δu(k),
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Δu(k) = ΔuMFA(k) + ΓΔuSM (k), (11)

where Γ = diag([𝛾1,… , 𝛾n]) ∈ Rn×n, 0 < 𝛾i ≤ 1 (i = 1, 2,… , n)
are weighting factors, ΔuMFA(k) ∈ Rn is the equivalent con-
trol law and ΔuSM (k) ∈ Rn is a discontinuous element of the
control law. The components ΔuMFA(k) and ΔuSM (k) are
obtained by using Algorithms 1 and 2, respectively.

Remark 6. Compared with continuous-time system, the study
on discrete-time system are very difficult. Specifically, the asso-
ciated results of MFASMC for non-linear discrete systems are

very rare. This paper designs a novel MFASMC for a class
of MIMO nonlinear discrete-time systems. When compared
with the control law proposed in [17], the above approach
replaces the matrix inversion in (5) with iterative calculations
and replaces the L2 norm with the L1 norm in the formula-
tion of the objective function. The avoidance of inverse calcu-
lation enhances the efficiency of online calculation of the con-
troller. It is noteworthy that the L2 norm variance is sensitive to
noises with large norms [21, 23]. So substituting the L1 norm
variance for the L2 norm in the objective function is a meliora-
tive strategy. This method can enhance the closed-loop system
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Algorithm 1

Step 1: Establish the objective function relating to the equivalent control law:

GMFA(Δu(k)) = 𝛼
‖‖‖‖‖𝜗(k) +

Φ̂T (k)
𝛼

(Δyd (k) − Φ̂(k)𝜗(k)) − Δu(k)
‖‖‖‖‖

2

2

+𝜆‖Δu(k)‖1,

(12)

where 𝛼 > eigmax, eigmax is the maximum eigenvalue of Φ̂T (k)Φ̂(k),
0 < 𝜆 < 1 is weighting constant and 𝜗(k) ∈ Rn is an instrumental variable.

Step 2: Solve 𝜗(k) by using the following iterative calculation:

𝜗𝜚 (k) = 𝜗𝜚−1(k) +
Φ̂T (k)
𝛼

(
Δyd (k) − Φ̂(k)𝜗𝜚−1(k)

)
, (13)

where 𝜗𝜚 (k) ∈ Rn is an iterative loop variable, 𝜚 = 1, 2,… is the iteration
number and the initial value of 𝜗0(k) is an arbitrary vector.

Step 3: If
‖𝜗𝜚 (k)−𝜗𝜚−1 (k)‖‖𝜗𝜚 (k)‖ < 𝜀 then stop the iteration and let 𝜗(k) = 𝜗𝜚 (k).

Otherwise, let 𝜚 = 𝜚 + 1 and go to Step 2, where 𝜀 represents the precision
of the calculation.

Step 4: Optimize (12) by using the linearized Bregman approach. The
parameter update law for ΔuMFA(k) is given as follows:

⎧⎪⎨⎪⎩
Uj+1(k) = Uj (k) −

2𝛼
𝜆

(
Δu j (k) − Δu j−1(k)

)
−

𝛼

𝜆

(
Δu j−1(k) − v(k)

)
,

Δu j+1(k) = 2𝛼T𝜆
(
Φ̂T (k)Uj+1(k)

)
,

(14)

where Uj (k) ∈ Rn and Δu j (k) ∈ Rn are iterative loop variables, j = 1, 2,… is
an iteration number and the initial values of U0(k) ∈ Rn and Δu0(k) ∈ Rn

are zero vectors, v(k) = 𝜗(k) +
Φ̂T (k)

𝛼
(Δyd (k) − Φ̂(k)𝜗(k)),

T𝜆 (w) = [t𝜆 (w(1)),… , t𝜆 (w(n))]T , and t𝜆 (⋅) ∈ R is given as

t𝜆 (𝜉 ) =

{
0, i f |𝜉| ≤ 𝜆

sign(𝜉 )(|𝜉| − 𝜆), i f |𝜉| > 𝜆
(15)

Step 5: If
‖Δu j (k)−Δu j−1 (k)‖‖Δu j (k)‖ < 𝛿 then stop iteration and let

ΔuMFA(k) = Δu j (k). Otherwise, let j = j + 1 and go to Step 4, where 𝛿
denotes the precision of the iteration.

End of Algorithm 1.

robustness when compared with traditional MFASMC. Further-
more, the proposed approach replaces matrix inversion Φ̂−1(k)
in (10) with iterative calculations, which can further provide
stronger robustness than the approach in [17]. The proposed
strategy uses SMC to deal with the system uncertainty and dis-
turbances. When the system state is in the sliding mode, it can be
expected to have excellent insensitivity to parameter variations
and external disturbances.

4 STABILITY ANALYSIS

Lemma 3. Under Assumptions 1, 2 and 3, the sequences {𝜗𝜚(k)} and

{𝜗∗
l

(k)} are absolutely convergent.

Algorithm 2

Step 1: Establish an objective function for the discontinuous control law:

GSM (Δu(k)) =
‖‖‖‖‖𝜗∗(k) +

Φ̂T (k)
𝛼

(
yd (k + 1) − yd (k) + qTS (k) + 𝜅Tsign(S (k)) − Φ̂(k)𝜗∗ (k)

)
− Δu(k)‖‖‖2

2
,

(16)

where 𝜗∗ (k) ∈ Rn is an instrumental variable, 𝜅 > 0.

Step 2: Solve 𝜗∗(k) by using the following
iterative calculation:

𝜗∗
l

(k) = 𝜗∗
l−1(k) +

Φ̂T (k)
𝛼

(
Δy∗

d
(k) − Φ̂(k)𝜗∗

l−1(k)
)
, (17)

where 𝜗∗
l

(k) ∈ Rn is an iterative loop variable, l = 1, 2,… is an iteration
number and the initial value of 𝜗∗

0 (k) is an arbitrary vector,
Δy∗

d
(k) = yd (k + 1) − yd (k) + qTS (k) + 𝜅Tsign(S (k)).

Step 3: If
‖𝜗∗

l
(k)−𝜗∗

l−1 (k)‖‖𝜗∗
l

(k)‖ < 𝜀∗ then stop iteration and let 𝜗∗(k) = 𝜗∗
l

(k).

Otherwise, let l = l + 1 and go to Step 2, where 𝜀∗ represents the
precision of the iteration.

Step 4: Optimize (16) where the discontinuous control law ΔuSM (k) is
obtained as follows:

ΔuSM (k) = 𝜗∗(k) +
Φ̂T (k)
𝛼

(
Δy∗

d
(k) − Φ̂(k)𝜗∗(k)

)
. (18)

End of Algorithm 2.

Proof. Equation (13) can be written as

𝜗𝜚(k) = 𝜗𝜚−1(k) +
Φ̂T (k)
𝛼

(
Δyd (k) − Φ̂(k)𝜗𝜚−1(k)

)
=

(
I −

Φ̂T (k)Φ̂(k)
𝛼

)𝜚

𝜗0(k)

+

𝜚∑
𝜛=1

(
I −

Φ̂T (k)Φ̂(k)
𝛼

)𝜛−1
Φ̂T (k)
𝛼

Δyd (k).

Since 𝛼 > 𝜆max, 0 < ‖I −
Φ̂T (k)Φ̂(k)

𝛼
‖ < 1, then lim

𝜚→∞
(I −

Φ̂T (k)Φ̂(k)

𝛼
)𝜚 = 0n×n. Because ‖I −

Φ̂T (k)Φ̂(k)

𝛼
‖ < 1,

∑𝜚

𝜛=1(I −

Φ̂T (k)Φ̂(k)

𝛼
)𝜛−1 is absolutely convergent [24]. Hence, {𝜗𝜚(k)} is

absolutely convergent.
In a similar way, {𝜗∗

l
(k)} can be proved to be absolutely

convergent. □

Remark 7. In theory, 𝜚 and l are required to be infinite to guar-
antee {𝜗𝜚(k)} and {𝜗∗

l
(k)} are absolutely convergent. Note that

they appear as a power term and with the availability of modern
hardware, the numbers of iterations can be expected to be large
enough within a sampling time to ensure that the computational
results approach the theoretical values.
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FIGURE 8 Tracking performance of y2

Definition 1. If H is a convex function, then the Bregman distance of

H at two points A, B is defined as

DP
H

(A, B) = H (A) − H (B) − ⟨A − B, P⟩, (19)

where P ∈ 𝜕H is a sub-gradient in the sub-differential of H at A red

and ⟨A, B⟩ is the inner product of A and B[19].

Assumption 4. The convex function J (u) is continuously differentiable

and there exists a positive constant 𝛽 such that

‖‖𝜕J (u) − 𝜕J (v)‖‖2
≤ 𝛽⟨𝜕J (u) − 𝜕J (v), u − v⟩,∀u, v ∈ Rn,

(20)
where 𝜕J (u) is the gradient of J (u) [19].

Lemma 4. Under Definition 1 and Assumption 4, if {Δu j (k)} is

generated by the linearized Bregman iteration (14) with 𝛼 > 𝜆max and

Δu j (k) ≠ Δu j+1(k), then

‖Δu j (k) − v(k)‖ ≤ 𝜂‖Δu j−1(k) − v(k)‖, (21)

where 0 < 𝜂 < 1.

Proof. See the Appendix. □

Theorem 1. If H (Δu(k)) is convex and Assumption 4 is satisfied,

then both of the sequences {Δu j (k)} and {Uj (k)} are convergent and the

convergence rate 𝜂 < 1.

Proof. Suppose that there exists an integer j∗ such that
Δu j∗+1(k) = Δu j∗ (k). From (14), it can be obtained that
Δu j (k) = Δu j+1(k) and Uj (k) = Uj+1(k) for all j > j∗. Thus,
both the sequences {Δu j (k)} and {Uj (k)} converge.

Otherwise, suppose that Δu j+1(k) ≠ Δu j (k) for all j . Tak-
ing the inner product of both sides of (A.8) with respect to
Δu j (k) − Δu j−1(k)

⟨𝜆(Uj+1 −Uj ),Δu j (k)−Δu j−1(k)⟩+ 2𝛼‖Δu j (k)−Δu j−1(k)‖2

= −𝛼⟨(Δu j (k) − v(k)),Δu j (k) − Δu j−1(k)⟩. (22)

From (A.3)

2𝛼‖Δu j+1(k) − Δu j (k)‖2

≤ −𝛼⟨(Δu j (k) − v(k)),Δu j+1(k) − Δu j (k)⟩
≤ 𝛼‖(Δu j (k)) − v(k)‖‖Δu j+1(k) − Δu j (k)‖.

Therefore,

‖Δu j+1(k) − Δu j (k)‖ ≤
1
2
‖Δu j (k) − v(k)‖. (23)

Considering Lemma 4

‖Δu j (k) − v(k)‖ ≤ 𝜂 j‖Δu0(k) − v(k)‖. (24)

Thus, for any j⋆ > j

‖Δu j (k) − Δu j⋆ (k)‖ ≤

j⋆∑
𝜍= j

‖Δu𝜍+1(k) − Δu𝜍 (k)‖
≤

1
2

j⋆∑
𝜍= j

‖v(k) − Δu𝜍 (k)‖
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FIGURE 9 Adaptive term for MFASMC-L2
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FIGURE 10 Adaptive term for MFASMC-L1

≤
1
2

j⋆∑
𝜍= j

𝜂𝜍‖v(k) − Δu0(k)‖
≤

𝜂 j

2(1 − 𝜂)
‖v(k) − Δu0(k)‖.

As j⋆ → ∞, it can be obtained that

‖‖‖Δu j (k) − Δu j⋆ (k)‖‖‖ ≤

‖‖Δu0(k) − v(k)‖‖
2(1 − 𝜂)

𝜂 j . (25)

The sequence {Δu j (k)} is a Cauchy sequence, which is con-
vergent and the convergence rate is 𝜂. The convergence of
{Uj (k)} can be proved similarly. □

Theorem 2. Consider system (1) where Assumptions 1–4 are satisfied

and the control law is designed as (11). Then S (k) and e(k) are bounded.

Proof. When the desired trajectory is constant, then

e(k + 1) = yd − y(k + 1) = yd − y(k + 1) − (y(k) − y(k))

= e(k) − ΦT (k)Δu(k). (26)
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FIGURE 11 Control input u1

Consider Lemmas 3 and 4, and substitute (11) into (26)

e(k + 1) = e(k) −
Φ̂T (k)Φ̂(k)

𝛼
e(k) − ΓqTS (k) − Γ𝜅Tsign(S (k)).

(27)

Since S (k) = e(k), then

S (k + 1) − S (k)

= −
Φ̂T (k)Φ̂(k)

𝛼
S (k) − ΓqTS (k) − Γ𝜅Tsign(S (k)). (28)

It follows that

S (k) = S (k − 1) −
Φ̂T (k − 1)Φ̂(k − 1)

𝛼
S (k − 1)

− ΓqTS (k − 1) − Γ𝜅Tsign(S (k − 1))

=

(
I −

Φ̂T (k − 1)Φ̂(k − 1)
𝛼

− ΓqT

)
S (k − 1)

− Γ𝜅Tsign(S (k − 1))

=

(
I −

Φ̂T (k − 1)Φ̂(k − 1)
𝛼

− ΓqT

)k

S (0)

−

k−1∑
Υ=0

(
I −

Φ̂T (k − 1)Φ̂(k − 1)
𝛼

− ΓqT

)k−1−Υ

× Γ𝜅Tsign(S (Υ )).

Since 𝛼 > 𝜆max , 1 − qT > 0 and 0 < 𝛾i ≤ 1 , it follows that

0 < ‖I −
Φ̂T (k)Φ̂(k)

𝛼
− ΓqT ‖ < 1. Then

lim
k→∞

(
I −

Φ̂T (k − 1)Φ̂(k − 1)
𝛼

− ΓqT

)k

= 0n×n.

Meanwhile
∑k−1

Υ=0 (I −
Φ̂T (k−1)Φ̂(k−1)

𝛼
− ΓqT )

k−1−Υ

is abso-
lutely convergent when k → ∞, so S (k) is bounded. As S (k) =
e(k), then e(k) is bounded.

When the desired trajectory is time-varying, the result can
also be proved by the above method using the following aug-
mented system to replace the system (1):

z (k + 1) = F (y(k),… , y(k − ny ), u(k),… , u(k − nu ))

− yd (k + 1). (29)

In a similar way, S (k) and e(k) can be proved to be
bounded. □

Remark 8. From Lemma 3, it can be seen that the Majorization–
Minimization algorithm is convergent in Algorithms 1 and 2.
The Majorization–Minimization algorithm converts the matrix
inversion into iterative calculation, which increases the compu-
tational efficiency and avoids the impact of any reset of Φ̂(k)
on the controller performance. From Theorem 1, it can be
seen that the objective function with the L1 norm converges.
Because of the disruptive effect of the L2 norm variance at
points with large norms, the L1 norm is expected to be more
robust to noises than the L2 norm. From Theorem 2, it can be
seen that S (k) is bounded, which makes the system satisfy the
existence and reachability conditions, ensuring the stability of
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FIGURE 12 Control input u2

the sliding mode. Therefore, the system state can be guaranteed
to converge to the sliding surface, and it follows that the system
will exhibit strong robustness to uncertainties.

5 SIMULATION AND EXPERIMENTAL
VERIFICATION

5.1 Simulation results

In this section, the performance of the proposed control, which
will be denoted MFASMC-L1, will be compared with that of
the established MFASMC, denoted MFASMC-L2, from [17].
Two cases are analysed: Case 1 shows the influence of substi-
tuting the matrix inversion with the proposed iterative approach
on system performance; Case 2 shows that using the L1 norm
improves system robustness.

The parameters of the two control laws are listed in Table 1.
The iteration accuracy is given as 𝜀∗ = 0.001 and 𝜀 = 0.001. In
MFASMC-L1 𝛿 = 0.001.

A MIMO non-linear system from [25] is used for the
simulation testing, which satisfies the minimal controllability
conditions. The dynamic model is given by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x11(k + 1) =
x2

11(k)

1 + x2
11(k)

+ 0.3x12(k) + d1

x12(k + 1) =
x2

11(k)

1 + x2
12(k) + x2

21(k) + x2
22(k)

+ A(k)u1(k)

x21(k + 1) =
x2

21(k)

1 + x2
21(k)

+ 0.2x22(k) + d2

x22(k + 1) =
x2

21(k)

1 + x2
11(k) + x2

12(k) + x2
22(k)

+ B(k)u2(k),

where A(k) = 1 + 0.1 sin(2𝜋k∕1500), B(k) = 1 + 0.1 cos
(2𝜋k∕1500). y1 = x11, y2 = x21 denote the system outputs.
The initial conditions are given as x11(0) = x21(0) = 0.5,

x12(0) = x22(0) = 0, Φ̂(0) = [
0.4 0
0 0.4

].

Case 1: Investigation of the influence of substituting the
matrix inversion with the proposed iterative approach

The desired trajectory is given by

yd 1(k) = 0.5 + 0.25cos(0.25𝜋∕100) + 0.25sin(0.25𝜋∕100)

yd 2(k) = 0.5 + 1.5cos(0.25𝜋∕100) + 1.5sin(0.25𝜋∕100).

In this case, no disturbance is present so that{
d1 = 0
d2 = 0.

Figures 1 and 2 show the tracking performance. It can be
observed that MFASMC-L1 tracks the desired trajectories well,
while the tracking accuracy with MFASMC-L2 is worse. Figure 3
shows the time evolution of the adaptive law for MFASMC-L2.
When the adaptive law approaches the singular point, there is
a reset in the adaptation. It can be clearly seen from the sim-
ulation results that when the adaptive law starts to reset, the
tracking performance worsens. Figure 4 shows the performance
of the adaptive law for MFASMC-L1. It can be seen that the
response is bounded and smooth. The proposed MFASMC-
L1 method uses MM technology to avoid matrix inversion. So
it can achieve better tracking performance than that obtained
using MFASMC-L2. Figures 5 and 6 show the control input
of the two methods, respectively. Comparing the results shows
that MFASMC-L2 exhibits large oscillations when compared to
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FIGURE 14 Tracking performance of y2

the proposed approach. The Integral of Time Squared Error
(ITSE) for the two control methods is listed in Table 2. It is
clear that the ITSE of MFASMC-L1 is much smaller than that
obtained for MFASMC-L2. The simulation results validate the
effectiveness of the proposed approach. The iterative proce-
dure proposed is able to overcome problems with matrix inver-
sion and singularity that are present in existing methods (see,
e.g. [16, 17]).

Case 2: The control performance in the presence of exter-
nal disturbances

The desired trajectory is given by

yd 1(k) = 0.5 + 0.25cos(0.25𝜋∕100) + 0.25sin(0.25𝜋∕100)

yd 2(k) = 0.5 + 0.25cos(0.25𝜋∕100) + 0.25sin(0.25𝜋∕100).

The disturbance is

TABLE 3 ITSE for the two methods

Disturbance (30) Disturbance (31)

ITSE y1 y2 y1 y2

MFASMC-L1 0.0301 0.0186 0.0277 0.0172

MFASMC-L2 0.0394 0.0210 0.0301 0.0176

{
d1 = 0.05, d2 = 0.05 if 5 < T < 5.1,

d1 = 0, d2 = 0 otherwise.
(30)

Figures 7 and 8 show the tracking control performance. By
comparing the performance of the two methods, the proposed
approach converges to the desired trajectory more quickly in the
presence of a disturbance (30). Due to the use of the L2 norm,
the MFASMC-L2 is more sensitive to external disturbances.
The sparsity of the L1 norm can deal with disturbances more
effectively, which renders the proposed approach more robust.
Figures 9 and 10 show the performance of the adaptive law
for the two methods. It can be seen that the adaptive law
for MFASMC-L2 does not reset and both adaptive laws are
bounded in the absence of singular effects. Figures 11 and 12
show the control inputs for both methods. By comparing Fig-
ures 11 and 12, the proposed method is observed to oscillate
less when the disturbance occurs.

To further test the system robustness, the previous impulsive
disturbance (30) is replaced by the following step disturbance
(31): {

d1 = 0.05, d2 = 0.05 if T > 4
d1 = 0, d2 = 0 otherwise.

(31)

Figures 13 and 14 show the tracking performance. It can be seen
that due to the adopted sliding mode control, the system state
in both cases converges to the desired trajectory in the presence
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FIGURE 15 Experimental equipment

FIGURE 16 Experimental operation interface

of the step disturbance (31). The proposed approach converges
to the desired trajectory more quickly. The ITSE for the two
control methods is listed in Table 3. It is clear that the ITSE
of MFASMC-L1 is generally smaller than that of MFASMC-L2,
which indicates that the proposed method is robust.

5.2 Experiment

The effectiveness of the proposed approach will now be val-
idated using an experimental rig The Process Modelling and

Control Group at the China University of Petroleum (East
China) have installed an experimental rig which is shown in
Figure 15. The operation interface of the rig is shown in
Figure 16. The four reactors, labelled R101, R102, R103 and
R104, can be connected in numerous ways for controller valida-
tion and testing (series, parallel, series and parallel). The process
can implement continuous operation as well as enable measure-
ment and control of the flow, liquid level and temperature. Only
one reactor is used in this experiment. The sampling period is
selected to be T s = 1 s and the sampling length is N = 7000.
For reactor R101, the temperature is used as the system output
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TABLE 4 Definitions for the variables of the process parameters

Variables Definitions

F0 Flow rate of fresh A

Fr Flow rate of recycled A from reactor 2

F3 Flow rate of additional fresh stream feeding pure A

F1, F2 Effluent flow rate from reactors 1, 2

CA1, CA2 Molar concentration of A in reactors 1, 2

T1, T2 Temperatures in reactors 1, 2

T0, T03 Feed stream temperatures to reactor 1, 2

Qr1, Qr2 Heat input rate into reactors 1, 2

CA0, CA3 Inlet reactant concentration of reactors 1, 2

V1, V2 Reactor volume of reactors 1, 2

ΔHj , k j , E j Enthalpies, pre-exponential constants and activation
energies of the reaction

𝜌s , R, cp Heat capacity, gas constant and density of fluid in the
reactor

and the desired set-point is 30◦C. The initial temperature of
R101 is 26◦C. The hot water flow in the jacket is used as the
control input. The definitions of the variables and the values of
the process parameters can be found in Tables 4 and 5, respec-

TABLE 6 Controller parameters

MFASMC-L1 𝜏 = 0.1, 𝜒 = 0.1, 𝜆̄ = 0.1, 𝛾̄i = 0.1, q = 1, 𝜅 = 1,
T = 0.01, 𝛼 = 1.2

MFASMC-L2 𝜏 = 0.1, 𝜒 = 0.1, 𝜆 = 0.1, 𝛾i = 0.1, q = 1, 𝜅 = 1,
T = 0.01, 𝜌 = 0.04, a = 4.5, b1 = 0.01, b2 = 0.1

tively. The MFASMC-L1 algorithm is used for control of the
system.

For comparison purposes, the same experiment is per-
formed using a classical MFASMC scheme (MFASMC-L2) [17].
Figure 17 shows the tracking performance of MFASMC-L2
and MFASMC-L1. It can be seen that the overshoot using
MFASMC-L1 is smaller and the convergence speed is faster
than obtained using MFASMC-L2. The experimental results
further validate the proposed approach.

The parameters of the two control laws are listed in Table 6.
The iteration accuracy is given by 𝜀∗ = 0.001 and 𝜀 = 0.001 and
𝛿 = 0.001 using MFASMC-L1.

6 CONCLUSIONS

This paper proposed a linearized Bregman iteration for model-
free adaptive sliding mode controller design for unknown

TABLE 5 Values of the process parameters

F0 = 5.04 m3/h T0 = 300 K k30 = 3 × 105 h−1 C s
A1 = 1.67 kmol/m3

F1 = 50 m3/h T03 = 300 K E1 = 5 × 104 kJ/kmol T s
2 = 431.91 K

F3 = 30 m3/h ΔH1 = −5 × 104 kJ/kmol E2 = 6.5 × 104 kJ/kmol C s
A2 = 1.73 kmol/m3

Fr = 35 m3/h ΔH2 = −5.2 × 104 kJ/kmol E3 = 5.5 × 104 kJ/kmol Qs
1 = 1.2 × 106 kJ/h

V1 = 1.0 m3 ΔH3 = −5.4 × 104 kJ/kmol cp = 0.88 kJ/kg K C s
A0 = 4 kmol/m3

V2 = 1.0 m3 k10 = 3 × 105 h−1 𝜌s = 1000 kg/m3 Qs
2 = 1.6 × 106 kJ/h

R = 8.314 kJ/kmol K k20 = 3 × 105 h−1 T s
1 = 469.2580 K C s

A01 = 2 kmol/m3
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MIMO non-linear discrete-time systems. Unlike traditional
MFASMC, the proposed approach avoids matrix inversion and
uses the L1 norm in the controller design, which can enhance
both computational efficiency and robustness. The proposed
algorithm is straightforward to implement and improves sys-
tem performance. Extensive simulation and experimental test-
ing demonstrates the advantages of the proposed approach
when compared to existing approaches in the literature. Future
research efforts will aim to further improve the proposed solu-
tion with respect to robustness and consider further indus-
trial applications.
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APPENDIX A:

Proof of Lemma 4 is given as follows:
Proof. Consider Definition 1, the definition of Bregman distance
implies that

H
(
Δu j (k)

)
− H

(
Δu j−1(k)

)
−
⟨
Δu j (k) − Δu j−1(k),Uj (k)

⟩
≥ 0

(A.1)
and

H
(
Δu j−1(k)

)
− H

(
Δu j (k)

)
−
⟨
Δu j−1(k) − Δu j (k),Uj+1(k)

⟩
≥ 0, (A.2)

where H (Δu j (k)) = Δu j (k) − v(k).
By combining Equations (A.1) and (A.2)⟨

Δu j (k) − Δu j−1(k),Uj+1(k) −Uj (k)
⟩
≥ 0. (A.3)

Let 𝜃 ∈ (0,
𝛼

2𝜆
) be a constant, define 𝜓𝜃

j (k) = ⟨Δu j (k)

−Δu j−1(k), 𝜆(Uj+1(k) −Uj (k)) + 𝜃(Δu j (k) − Δu j−1(k))⟩,
then 𝜓𝜃

j (k) ≥ 𝜃‖Δu j (k) − Δu j−1(k)‖2. When Δu j (k) ≠

Δu j−1(k), 𝜓𝜃
j (k) > 0, and hence, a matrix can be defined

as

Q𝜃
j (k) =

1

𝜓𝜃
j

[
𝜆
(
Uj+1(k) −Uj (k)

)
+ 𝜃

(
Δu j (k) − Δu j−1(k)

)]
×
[
𝜆
(
Uj+1(k) −Uj (k)

)
+ 𝜃

(
Δu j (k) − Δu j−1(k)

)]T
.
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(A.4)

It is obvious that Q𝜃
j (k) is symmetric positive semi-definite

and satisfies

𝜆
(
Uj+1(k) −Uj (k)

)
+ 𝜃

(
Δu j (k) − Δu j−1(k)

)
= Q𝜃

j (k)
(
Δu j (k) − Δu j−1(k)

)
. (A.5)

Furthermore,

‖‖‖Q𝜃
j (k)‖‖‖ =

1

𝜓𝜃
j
(k)

⟨𝜆(Uj+1(k) −Uj (k)) + 𝜃(Δu j (k) − Δu j−1(k)),

× 𝜆(Uj+1(k) −Uj (k)) + 𝜃(Δu j (k) − Δu j−1(k))⟩
=

1

𝜓𝜃
j (k)

(⟨𝜆(Uj+1(k)−Uj (k))+𝜃(Δu j (k)−Δu j−1(k)),

× 𝜆(Uj+1(k) −Uj (k))⟩ + 𝜃𝜓𝜃
j (k))

≤
1

𝜓𝜃
j (k)

(𝛽𝜆 + 𝜃)⟨Δu j (k) − Δu j−1(k), 𝜆

× (Uj+1(k) −Uj (k))⟩ + 𝜃

≤
1

𝜓𝜃
j (k)

(𝛽𝜆 + 𝜃)⟨Δu j (k) − Δu j−1(k),

× 𝜆(Uj+1(k) −Uj (k)) + 𝜃(Δu j (k) − Δu j−1(k))⟩ + 𝜃

= 𝛽𝜆 + 2𝜃.

Note that the first equation in (14) yields

𝜆(Uj+1(k) −Uj (k)) + 2𝛼(Δu j (k) − Δu j−1(k))

= −𝛼(Δu j−1(k) − v(k)). (A.6)

By substituting (A.5) into (A.6)

(Q𝜃
j (k) + (2𝛼 − 𝜃)I )(Δu j (k) − Δu j−1(k))

= −𝛼(Δu j−1(k) − v(k)). (A.7)

It follows that

Δu j (k) − Δu j−1(k) = −
1
2

( 1
2𝛼

Q𝜃
j (k) +

(
1 −

1
2𝛼

𝜃
)

I
)−1

× (Δu j−1(k) − v(k)). (A.8)

Therefore,

Δu j (k) − v(k) =

(
I −

1
2

( 1
2𝛼

Q𝜃
j (k) +

(
1 −

1
2𝛼

𝜃
)

I
)−1)

×
(
Δu j−1(k) − v(k)

)
. (A.9)

Since 0 ≤ Q𝜃
j (k) ≤ (𝛽𝜆 + 2𝜃)I , it can be established that

(
1 −

1
2𝛼

𝜃
)

I ≤
1

2𝛼
Q𝜃

j (k) +
(

1 −
1

2𝛼
𝜃
)

I

≤

(
1 +

1
2𝛼

𝛽𝜆 +
1

2𝛼
𝜃
)

I . (A.10)

It follows that

𝛼

2𝛼 − 𝜃
I ≥

1
2

(
1

2𝛼
Q𝜃

j (k) +
2𝛼 − 𝜃

2𝛼
I

)−1

≥
𝛼

2𝛼 + 𝛽𝜆 + 𝜃
I

(A.11)

so that

(
1 −

𝛼

2𝛼 − 𝜃

)
I ≤ I −

1
2

(
1

2𝛼
Q𝜃

j (k) +
2𝛼 − 𝜃

2𝛼
I

)−1

≤

(
1 −

𝛼

2𝛼 + 𝛽𝜆 + 𝜃

)
I (A.12)

and ‖‖‖‖‖‖I −
1
2

(
1

2𝛼
Q𝜃

j (k) +
2𝛼 − 𝜃

2𝛼
I

)−1‖‖‖‖‖‖ ≤ max

×

{‖‖‖‖1 −
𝛼

2𝛼 − 𝜃

‖‖‖‖,
‖‖‖‖1 −

𝛼

2𝛼 + 𝛽𝜆 + 𝜃

‖‖‖‖
}
. (A.13)

Considering Equation (A.9)

‖Δu j (k) − v(k)‖ ≤ max

{‖‖‖‖1 −
𝛼

2𝛼 − 𝜃

‖‖‖‖,

×
‖‖‖‖1 −

𝛼

2𝛼 + 𝛽𝜆 + 𝜃

‖‖‖‖
}‖Δu j−1(k) − v(k)a‖.(A.14)

Let 𝜂 = max{‖1 −
𝛼

2𝛼−𝜃
‖, ‖1 −

𝛼

2𝛼+𝛽𝜆+𝜃
‖}. Since 𝜃 can be

any positive number in (0,
𝛼

2𝜆
), and the norm is a continuous

function of 𝜃, let 𝜃 → 0. From (A.10), it follows that

𝜂 ≤ max

{‖‖‖1 −
𝛼

2𝛼
‖‖‖,
‖‖‖‖1 −

𝛼

2𝛼 + 𝛽𝜆

‖‖‖‖
}
. (A.15)

It follows that

0 <
1
2
< ‖1 −

𝛼

2𝛼 + 𝛽𝜆
‖ < 1. (A.16)

The above inequality also implies ‖Δu j (k) − v(k)‖ ≤

𝜂‖Δu j−1(k) − v(k)‖, where 0 < 𝜂 < 1. □


