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Abstract

There is a growing demand for robust data driven control methods particularly for industrial process control. This paper
presents a new model-free adaptive sliding mode control approach for a class of discrete-time, multiple input and multiple output
nonlinear systems. The proposed methodology seeks to address issues with the computation of inverse matrices and problems with
singularity in existing methods while at the same time seeking to enhance robustness. A Majorization-Minimization technique
and the L1 norm are used within the proposed optimisation and an online iterative approach is described for update of the control
law. The closed-loop system response is proved to be stable. The effectiveness of the proposed control is validated by extensive
simulation and also experimental results, with the performance obtained by the proposed approach being compared throughout
with a well known approach from the established literature.

Key Words: Data-driven control, Sliding mode control, Model-free adaptive control, Majorization-Minimization, Linearized
Bregman.

I. INTRODUCTION

In modern control theory, the design of the controller is frequently carried out using a mathematical model. Such methods
have been widely used and have achieved remarkable results in many industrial processes. However, in some cases, it may be
difficult or unduly time-consuming to construct accurate models. At the same time, a considerable number of process industries
generate and store large amounts of data every day, which may be very valuable to underpin a data based control approach.
For this reason, increasing attention is being paid to the development and application of data-driven control methods [1].

Data-driven control can be divided into two categories: offline data-driven control [2], [3], [4] and online data-driven control
[5], [6], [7]. Offline data-driven control is suitable for offline large-scale data processing and is not amenable to complex
iterative calculations. Online data-driven control can estimate system models in real time. Among these methods, iterative
learning control has been found to provide high precision with repetitive tasks although the same initial point and desired
trajectory may be required in each phase of operation [8]. Model-free adaptive control (MFAC) can estimate a system model
online without the limitations required by iterative learning control[9], [10]. However, the pseudo-partial derivative matrix in
MFAC is slowly time-varying, which makes it difficult to accommodate sudden disturbances whilst maintaining high levels of
performance.

Due to its established advantages which include robustness to parameter uncertainties and external disturbances, rapid
response and straightforward implementation, sliding mode control has received extensive attention in the literature and has
been successfully applied to various complex systems [11], [12], [13]. The study of discrete-time sliding mode control has
facilitated the integration of sliding mode techniques with industrial computer systems [14], [15]. However, these studies
mainly focus on the development of adaptive model-based controllers. The design of a model-free approach to adaptive sliding
mode control has to date received less attention in the literature. A discrete time control approach makes it easier to integrate
the sliding mode control paradigm with data-driven approaches. Hence the combination of MFAC with sliding mode control
has become an attractive proposition to deal with nonlinear discrete time systems where the model is unknown and external
disturbances are present [16].

There have been some results obtained by combining MFAC with sliding mode control(SMC) [16], [17], [18]. Model free
adaptive sliding mode control (MFASMC) is proposed in [16] for single input and single output nonlinear discrete systems.
Model free adaptive sliding mode control for the specific case of robot dynamics is proposed in [17]; this extends the control
approach from single input single output to multiple input multiple output (MIMO). An extended state observer is incorporated
into the controller design to construct a model free adaptive sliding surface which enables decoupling control of the system



in[18]. However, the effect of a reset algorithm which is required in practical control implementation to prevent singularity
of the control has not been considered by the mentioned methods. Meanwhile, the Lo norm is typically used in the control
input criterion function and a parameter matrix inversion appears in the control algorithm. In order to avoid a matrix inverse
in the applied control, the norm of the matrix has been used to replace the original matrix in the implemented control. This
overcomes potential problems with singularity but may, however, degrade the control performance [16], [17], [18]. It should be
noted that the same matrix inversion exists in the computation of the sliding mode reaching law, which adds to the controller
online computation time.

The purpose of this study is to design a novel MFASMC for a class of multiple input and multiple output nonlinear discrete-
time systems where the model is unknown based on linear Bregman iteration [19]. The key point of this study is to use linear
Bregman iteration and Majorization-Minimization theory [20] to facilitate controller design. Unlike the conventional MFAC
based sliding mode control strategies [16], [17], [18], the proposed MFASMC has strong robustness whilst negating the need for
matrix inverse calculations. The main contributions of this study are summarized as follows: (i) the Majorization-Minimization
principle is used in optimizing the objective function, which avoids the computational time increase caused by matrix inversion;
(i) an L7 norm term is used in the control input criterion function and the linear Bregman algorithm is employed for the
solution, which can enhance the system robustness.

The paper is organized as follows: Section 2 formulates the control problem and some assumptions are provided; Section
3 designs the novel MFASMC; the corresponding stability analysis is given in Section 4; Section 5 gives simulation and
experimental results; Some conclusions are given in Section 6.

II. PROBLEM FORMULATION

Consider a MIMO nonlinear discrete-time system described by

yk+ ) =Fyk),....y(k=ny),uk),...,uk—nu)) (D
where u (k) = [uy (k),uz (k),...,u, (K)]" € R™ and y (k) = [y1 (k),y2(k),...,yn (k)]" € R™ are input and output
vectors, respectively. F (y ( ) y (k ny),u(k),...,u(k —n,)) € R™is an unknown nonlinear function. n,,n, > 0 are

unknown system orders.

For system (1), the following assumptions are given [9].
Assumption 1: The partial derivatives of F' (y (k),...,y (k—ny),u(k),...,u(k —n,)) with respect to control inputs u (k)
are continuous and non-zero.
Assumption 2: System (1) satisfies generalized Lipschitz condition, that is, ||Ay (k+1)|| < b||Au (k)| for any k£ and
[[Awu (k)|| # 0, where b > 0, Ay (k+1) =y (k+1) —y(k), Au(k) =u(k) —u(k—1).
Assumption 3: The function F' (y (k),...,y (k—ny),u(k),...,u(k—n,)) in (1) is locally continuous and bounded.
Remark 1: From a practical point of view, these assumptions are reasonable. Assumption 1 is a typical condition for many
control designs and is satisfied by many nonlinear systems. Assumption 2 poses a limitation on the rate of change of the
system output in response to an applied control input. Assumption 3 is appropriate for many nonlinear systems.

Two Lemmas from [9] are now presented.
Lemma 1: For the MIMO nonlinear discrete-time system (1) satisfying Assumptions 1 and 2, there exists a ® (k) , which is
called the pseudo-partial-derivative (PPD) matrix, such that system (1) can be written as

Ay (k+1) = o7 (k) Au (k) (2)

for bounded @ (k) = [® (kij)]nxn-

Remark 2: This type of data driven control does not need explicit use of a mathematical model for the controller analysis
and design. The design procedure does not require the model uncertainty to be directly characterised.

Lemma 2: Consider system (2). If Assumptions 1 and 2 are satisfied, the unknown matrix ® (k) can be determined from the
following data-driven adaptive law

) X(Ay(k—1)—ci>(k—1mu(k—

d(k)y=d(k—1)+ )>AuT(k—1) (3)
T+ |Au(k—1D)|?

where 7 > 0, and x > 0 are weighting factors and ® (k) = [® (ki;)]nxn is an estimate of the unknown ® (k).

Remark 3: It is assumed that ® (k) is a diagonally dominant matrix in the following sense: |®;; (k)| < b1, by < |®;; (k)| < aba,
a>1,by>b(2a+1)(m—-1),i=1,...,n, j=1,...,n, i # j. The signs of the elements of ® (k) are fixed as in [10],
[17], [18]. To guarantee d is nonsingular, (3) is modified to include the following reset algorithm [10]

&y (k) = by (0), if‘i)ii(k)‘>b2 or ‘Ci)“-(k)‘>ab2 or sz’gn(@ii(k))¢s¢gn(ci>ii(0))

O (k) =05 (0), if ‘(i)ij (k)‘ >by or sign ((i)ij (k’)) # sign (ci)ij (0)) s UF



where CE-]—(O) is the initial value of @ij(k), i=1,...,nand j = 1,...,n. Note that the reset algorithm will increase the
online computation time and affect the control performance.

In order to make the system output track the desired trajectory and to achieve a smooth control input, a MAFC is designed
using the following objective function [9]

T (k) = llya (k+1) =y (k+1)l5 + Mu (k) —u (k= 1] )
where y, (k + 1) is the desired trajectory and A > 0 is a weighting factor.

According to Lemmas 1 and 2, equations (2) and (3), the following MAFC can be designed [9]
-1

w(k) =uk—1)+ (5\1 + 07 (k) & (k)) &7 (k) Ayq (k) )

where Ayy (k) = ya (k+1) — y (k) and ® (k) is the adaptive estimate of ® (k) given in (3).
The matrix inversion (5\1 + o7 (k) ) (k)) in equation (5) will be computationally intensive when the dimensions of the
system input and output are large. An alternative MAFC is designed in [10], whereby A + ®7 (k) ® (k) is replaced with

- . 2
A+ Hfl) (k)H to yield:

w(k) = w(k—1)+ Adgea ()
p®7 (k) Ayq (k)

_ N 2
A+ @(k)”

>
S
5
>
=

I

(6)

where p > 0 is a weighting factor. )
Remark 4: Note that the control (5) includes the matrix inversion (5\1 + &7 (k)& (k)) , which will increase the calculation

_ . 2
time. On the other had the control (6) uses A + th (k) H to avoid the computation of the matrix inversion but this may be at

the expense of control performance. Further, the term ||u (k) — u (k — 1) ||§ is used in the objective function. It is well known
that the Lo-norm is sensitive to external disturbances and system uncertainties, which can also reduce the robustness of the
system [21].

Motivated from the above discussion, a data-driven model-free adaptive sliding mode control is developed for system 2 in
[17], [18]. A conventional sliding surface is defined in the following linear form

S (k) =e(k) (7
where e (k) = yq (k) — y (k) = [e1 (k) ,ea (k) ..., en (k)]" € R™. The reaching law is designed as follows
S(k+1)—S(k)=—qTS (k) — RTsign (S (k)) 8)

where ¢ > 0, 1 —qT > 0, K > 0, and T is the discrete-time sample period. The reachability condition for a discrete sliding
mode may be expressed as ||s(k+1)|| < ||s(k)|| [22]. This guarantees that from any initial state the discrete system will reach
the sliding surface.

Now consider the system (2) where Assumptions 1, 2 and 3 are satisfied. A sliding surface (7) has been designed for system
(2) and the unknown matrix ® (k) is estimated by the adaptive law (3). The following data-driven model-free adaptive sliding
mode control is defined in [17] as follows

u(k) = u(k—1)+Au(k)
Au (k‘) =  Aupmra (k‘) + fAQSM (k’) ©)]

where Atyra (k) is defined in equation (6), I' = diag ([y1,...,9n]) € R™*™ with 0 < %; <1 (i = 0,1,...,n) weighting
factors and R
Atisn (k) = 71 (k) (ya (k + 1) — ya (k) + ¢T'S (k) + RTsign (S (k))) (10)

Remark 5: Note that the inverse & (k) is still required in the control computation (9) - (10), which will contribute to the
computational load. The disadvantage in [17], [18] will be overcome in this paper.

The contribution of this paper can be summarized as follows. A new model-free adaptive sliding mode control is proposed
for a class of MIMO nonlinear systems. System robustness is enhanced by using the MM principle and the L; norm in the
design of the MFASMC. Further, matrix inversion is avoided in the new control, which will effectively decrease the online
computation time.



III. MFASMC DESIGN

Inspired by the fundamental results on Linearized Bregman iteration and MM in [19], [20] respectively, the proposed control
scheme is designed as follows:

u(k) = u(k—1)+Au(k)

where I' = diag ([v1,...,7]) € R"*™,0<~; <1 (i=1,2,...,n) are weighting factors, Auprpa (k) € R" is the equivalent
control law and Augys (k) € R™ is a discontinuous element of the control law. The components Aupsra (k) and Augas (k)
are obtained by using Algorithm 1 and Algorithm 2, respectively.

Algorithm 1:

Step 1: Establish the objective function relating to the equivalent control law:

2

5T
Ll Al Au ()l (12

(0%

Grra (Au (k’)) =al|ld (k‘) =+

(Aya () = @ (k)9 (B)) = D (k)

2

where o > €igmax, €1gmax 1S the maximum eigenvalue of <I>T(/<:) (k), 0 < XA < 1 is weighting constant and ¥ (k) € R™ is an
instrumental variable.
Step 2: Solve ¥ (k) by using the following iterative calculation:

7 (k)

9, (k) = 9y_y (k) + (Ayd (k) — & (k) 0,1 (k)) (13)

where ¥, (k) € R™ is an iterative loop variable, p = 1,2, ... is the iteration number and the initial value of VYo (k) is an
arbitrary vector.

Step 3: If W < ¢ then stop the iteration and let ¢ (k) = 9, (k). Otherwise, let o = ¢+ 1 and go to Step 2, where
€ represents the precision of the calculation.

Step 4: Optimise (12) by using the linearized Bregman approach. The parameter update law for Aupyrpa (k) is given as

follows:
{ Uy (k) = U (k) — 2 (A (k) — Aujy (k) — & (Aujoy (B) — v (k)

Aujir (k) = 20Ty (97 (k) Ui (k) (14)

where U; (k) € R™ and Au; (k) € R™ are iterative loop variables, j = 1,2,... is an iteration number and the initial
values of Uy (k) € R™ and Aug (k) € R"™ are zero vectors, v (k) = ¢ (k) + L (k (Ayd (k) —<i>(k:)19(k)), Ty (w) =
[t (w(1)),... . tx(w(n))]”, and ty () € R is given as
0, if €] < A
t = . ;
v ={ Sanier0g -, i

Step 5: If ”AuJ(ngA(;SH LB < 5 then stop iteration and let Auprpa (k) = Au; (k). Otherwise, let j = j+ 1 and go to Step
4, where § denotes the precision of the iteration.
End of Algorithm 1.

15)

Algorithm 2:
Step 1: Establish an objective function for the discontinuous control law:
2

T (k ‘ .
Gsar (A (k) = [ () + 2B (g (1) — s () 4TS (6) + wTsign (S (8) — & () 0" () — Du (k)| 16
2
where 9* (k) € R™ is an instrumental variable, £ > 0.
Step 2: Solve ¢* (k) by using the following iterative calculation:
* * ‘i)T k * x *
a7 () =07y () + = (s ) - @ ()97, () (1)

where J; (k) € R" is an iterative loop variable, | = 1,2,. .. is an iteration number and the initial value of Jf (k) is an arbitrary
vector, Ayﬁ (k) =ya(k+1) —ya (k) + ¢TS (k) + kTsign (S (k)).

Step 3: If WTW < &* then stop iteration and let 9* (k) = 9} (k). Otherwise, let { = [+ 1 and go to Step 2, where
€* represents the premsion of the iteration.

Step 4: Optimise (16) where the discontinuous control law Augps (k) is obtained as follows:

. T (k

Aug s (k‘) =9 (k‘) + a( )

(Ay;; (k) — & (k) 0" (k:)) (18)



End of Algorithm 2.

Remark 6: Compared with continuous time system, the study on discrete time system are very difficult. Specifically, the
associated results of model-free adaptive sliding mode control for nonlinear discrete systems are very rare. In this paper, a
novel MFASMC is designed for a class of multiple input and multiple output nonlinear discrete time systems. When compared
with the control law proposed in [17], the above approach replaces the matrix inversion in (5) with iterative calculations and
replaces the Lo norm with the L; norm in the formulation of the objective function. The avoidance of inverse calculation
enhances the efficiency of on-line calculation of the controller. It is noteworthy that the L, norm variance is sensitive to noises
with large norms [21], [23]. So substituting the L; norm variance for the Ly norm in the objective function is a meliorative
strategy. This method can enhance the closed loop system robustness when compared with traditional MFASMC. Further, the
proposed approach replaces matrix inversion o1 (k) in (10) with iterative calculations, which can further provide stronger
robustness than the approach in [17]. The proposed strategy uses sliding mode control to deal with the system uncertainty
and disturbances. When the system state is in the sliding mode, it can be expected to have excellent insensitivity to parameter
variations and external disturbances.

IV. STABILITY ANALYSIS

Lemma 3: Under Assumptions 1, 2 and 3, the sequences {9, (k)} and {¢; (k)} are absolutely convergent.
Proof: Equation (13) can be written as

Do (k) = Vo1 (k) +

_ (1_ b7 (k)i(k)) B (k) + z@: ;9T (k)é(k)> ‘i)Ta(k)Ayd(k)

Since & > Amax, 0 < Hliw“ < 1, then lim (If M>Q = 0,,xn. Because HIf WH < 1,

0—00 @

g ST R)dHR) \T L. .

> (I — T) is absolutely convergent [24]. Hence, {¥, (k)} is absolutely convergent.
w=1
In a similar way, {0; (k)} can be proved to be absolutely convergent.

Remark 7: In theory, ¢ and [ are required to be infinite to guarantee {1}, (k)} and {9} (k)} are absolutely convergent. Note
that they appear as a power term and with the availability of modern hardware, the numbers of iterations can be expected to
be large enough within a sampling time to ensure that the computational results approach the theoretical values.

Definition 1: If H is a convex function, then the Bregman distance of H at two points A, B is defined as

DE(A,By=H(A)—H(B)—(A—B,P) (19)

where P € OH is a sub-gradient in the sub-differential of H at A red and (A, B) is the inner product of A and B[19].
Assumption 4: The convex function .J(u) is continuously differentiable and there exists a positive constant 3 such that

10 (w) — 8 ()||* < BT (u) — 8J (v) ,u — v) ,Yu,v € R" (20)

where 0.J(u) is the gradient of J(u) [19].
Lemma 4: Under Definition 1 and Assumption 4, if {Au; (k)} is generated by the linearized Bregman iteration (14) with
a > Apax and Au; (k) # Aujyq (k), then

[Au; (k) — v (B)|| < nl|Auj—1 (k) —v (k)] 2D

where 0 < n < 1.

Proof: See Appendix.
Theorem 1: If H (Au (k)) is convex and Assumption 4 is satisfied, then both of the sequences {Auw; (k)} and {U; (k)} are
convergent and the convergence rate n < 1.
Proof: Suppose that there exists an integer j* such that Awu;«yq (k) = Au,- (k). From (14), it can be obtained that Au; (k) =
Aujiq (k) and U; (k) = Ujqq1 (k) for all j > j*. Thus, both the sequences {Au; (k)} and {U; (k)} converge.

Otherwise, suppose that Au;yq (k) # Au; (k) for all j. Taking the inner product of both sides of (A-8) with respect to
Auy (k) — Aujy (k)

A(Uj1 = Uj), Aug (k) = Auyy () + 20| Auy (k) = Auj 1 (B)|* = —a ((Auy (k) = v (k) , Auy (k) — Ay (k)(>22)
From (A-3)
a((Au; (k) —v (k) , Aujq (k) — Au; (K))

20| Ay (k) — Auy (k)% < —
< al[(Au; (k) — v (k)| |Aujta (k) — Au; (k)|



Therefore 1
1Auj 41 (k) = Auj (k)| < 5 [|Au; (k) — v (k)] (23)

Considering Lemma 4 '
[Au; (k) = v (R)]] <7’ [[Aug (k) — v (K] 24)

Thus, for any j* > j

[Au; (k) = Aug- (F)]| < Z [Augr (k) = Aug (R)]|

< fznu — Au, )]

< —Zn ||U AUO( )H
77J

< pT— lv (k) — Aug (k)|

As j* — o0, it can be obtained that

|[Aug (k) — v (F)]| i
2(1—mn)
The sequence {Aw; (k)} is a Cauchy sequence, which is convergent and the convergence rate is 7. The convergence of
{U; (k)} can be proved similarly.
Theorem 2: Consider system (1) where Assumptions 1-4 are satisfied and the control law is designed as (11). Then S (k) and
e (k) are bounded.
Proof: When the desired trajectory is constant, then

1A (k) — Auge (R)]] < | (25)

e(k+1) = ya —y(k +1) = ya —y(k + 1) = (y(k) — y(k)) = e(k) — D" (k) Au(k) (26)
Consider Lemma 3 and Lemma 4, and substitute (11) into (26)
e(k+1) = e(k) — Me(k) —TqTS (k) — TeTsign (S (k)) 27)
Since S(k) = e(k), then i
S(k+1)— 8 (k) = —WS(IC) —TqTS (k) — TkTsign (S (k)) (28)

It follows that
ST (k—1)®(k —

Sk)y=S(k-1)— 1)S(I€— 1) —Tq¢TS (k—1) —T'kTsign (S (k—1))

- (1 _ Tk lf)(k b_ qu> S (k—1) — TxT'sign (S (k — 1))
BT (k — 1)k — 1) * EL T — )bk — 1) e
- (1 - - — qu> SO)-> (1 - - - qu> kT sign (S (T))
T=0

Since o > Apax , 1 —¢T > 0and 0 <~; <1, it follows that 0 < HI — w — FqTH < 1. Then

~ ~ k
T(1. _ _
. (1 Tk -1)®(k—1) qu> — 0,

k—o0 «

ookl &7 (k—1)d(k—1) k1= .
Meanwhile (I - = FqT) is absolutely convergent when k — oo, so S(k) is bounded. As S(k) =

e(k), then e(k) is bounded.
When the desired trajectory is time varying, the result can also be proved by the above method using the following augmented
system to replace the system (1)

2(k+1) = F(y(k),...,y(k — ny),ulk), .., u(k — n,)) = ya(k + 1) (29)



In a similar way, S (k) and e (k) can be proved to be bounded.

Remark 8: From Lemma 3, it can be seen that the Majorization-Minimization algorithm is convergent in Algorithms 1
and 2. The Majorization-Minimization algorithm converts the matrix inversion into iterative calculation, which increases the
computational efficiency and avoids the impact of any reset of d (k) on the controller performance. From Theorem 1, it can
be seen that the objective function with the L; norm converges. Because of the disruptive effect of the Lo norm variance at
points with large norms, the L; norm is expected to be more robust to noises than the Lo norm. From Theorem 2, it can be
seen that S (k) is bounded, which makes the system satisfy the existence and reachability conditions, ensuring the stability
of the sliding mode. Therefore, the system state can be guaranteed to converge to the sliding surface, and it follows that the
system will exhibit strong robustness to uncertainties.

V. SIMULATION AND EXPERIMENTAL VERIFICATION
A. SIMULATION RESULTS

In this section, the performance of the proposed control, which will be denoted MFASMC-LI, will be compared with
that of the established MFASMC, denoted MFASMC-L2, from [17]. Two cases are analyzed: Case 1 shows the influence of
substituting the matrix inversion with the proposed iterative approach on system performance; Case 2 shows that using the L
norm improves system robustness.

The parameters of the two control laws are listed in Table I. The iteration accuracy is given as €* = 0.001 and € = 0.001.
In MFASMC-L1 § = 0.001.

TABLE I: Controller Parameters

MFASMC-LI 7=01,x=01,A=01,% =01,¢g=1,k=1,T = 0.01

MFASMC-L2 7=0.1,x=01,A=0.1,v=01,¢=1,xk=1,T=0.01 p=1,a=4.5 b =0.01, b =0.1

A MIMO nonlinear system from [25] is used for the simulation testing, which satisfies the minimal controllability conditions.
The dynamic model is given by

2
T11 k +1) = 11;1%(1]26) 1-0.3(1/'12 (k) + d1

(k+1)
212 (k+1) s + A (B)w (k)

(k+1)

)

L, (k) +a3,; (k) +3,(
21 k +1 2, (k) + 0.25622 (k) + d2

1423, (k) )
_ a2, (k)
v (b +1) = ormenmrgm Bk uz (k)
where A (k) =14 0.1sin (27k/1500), B (k) = 14 0.1 cos (2mk/1500). y1 = x11, y2 = x21 denote the system outputs. The
initial conditions are given as z11(0) = x21(0) = 0.5, 212(0) = z22(0) = 0, ) (0) = 0(')4 004 .

Case 1: Investigation of the influence of substituting the matrix inversion with the proposed iterative approach

The desired trajectory is given by

ya1 (k) = 0.5 4+ 0.25c0s(0.257/100) + 0.25sin(0.257/100)
yaz (k) = 0.5 + 1.5¢08(0.257/100) + 1.5sin(0.257 /100)

In this case no disturbance is present so that

TABLE II: ITSE for the Two Methods

ITSE Y1 Y2

MFASMC-L1  0.0496 0.1429

MFASMC-L2  0.3256  0.1430

Figures 1 and 2 show the tracking performance. It can be observed that MFASMC-LI tracks the desired trajectories well,
while the tracking accuracy with MFASMC-L2 is worse. Fig. 3 shows the time evolution of the adaptive law for MFASMC-
L2. When the adaptive law approaches the singular point, there is a reset in the adaptation. It can be clearly seen from the
simulation results that when the adaptive law starts to reset, the tracking performance worsens. Fig. 4 shows the performance
of the adaptive law for MFASMC-LI. It can be seen that the response is bounded and smooth. The proposed MFASMC-L1
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method uses MM technology to avoid matrix inversion. So it can achieve better tracking performance than that obtained using

MFASMC-L2. Figures 5 amd 6 show the control input of the two methods, respectively. Comparing the results shows that

MFASMC-L2 exhibits large oscillations when compared to the proposed approach. The Integral of Time Squared Error (ITSE)

for the two control methods is listed in Table IL. It is clear that the ITSE of MFASMC-L1 is much smaller than that obtained

for MFASMC-L2. The simulation results validate the effectiveness of the proposed approach. The iterative procedure proposed

is able to overcome problems with matrix inversion and singularity that are present in existing methods.(see, e.g. [16] [17])
Case 2: The control performance in the presence of external disturbances

The desired trajectory is given by

ya1 (k) = 0.5 + 0.25¢05(0.257/100) + 0.25sin(0.257/100)
Yaz (k) = 0.5 + 0.25¢05(0.257/100) + 0.25sin(0.257/100)

The disturbance is

{ dy =0.05,d; =0.06 if5<T <51 (30)

di =0,dy =0 otherwise
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TABLE III: ITSE for the Two Methods

ITSE Disturbance (30) Disturbance (31)
yl y2 yl y2

MFASMC-L1  0.0301 0.0186  0.0277 0.0172

MFASMC-L2  0.0394 0.0210 0.0301 0.0176

Figures 7 and 8 show the tracking control performance. By comparing the performance of the two methods, the proposed
approach converges to the desired trajectory more quickly in the presence of a disturbance (30). Due to the use of the Lo
norm, the MFASMC-L2 is more sensitive to external disturbances. The sparsity of the L; norm can deal with disturbances
more effectively, which renders the proposed approach more robust. Figures 9 and 10 show the performance of the adaptive
law for the two methods. It can be seen that the adaptive law for MFASMC-L2 does not reset and both adaptive laws are
bounded in the absence of singular effects. Figures 11 and 12 show the control inputs for both methods. By comparing Figures
11 and 12, the proposed method is observed to oscillate less when the disturbance occurs.

To further test the system robustness, the previous impulsive disturbance (30) is replaced by the following step disturbance
31):

Gh { dy =0.05,de =0.05 ifT >4 31)
di1 =0,dy =0 otherwise

Figures 13 and 14 show the tracking performance. It can be seen that due to the adopted sliding mode control, the system
state in both cases converges to the desired trajectory in the presence of the step disturbance (31). The proposed approach
converges to the desired trajectory more quickly. The Integral of Time Squared Error (ITSE) for the two control methods is
listed in Table III. It is clear that the ITSE of MFASMC-L1 is generally smaller than that of MFASMC-L2, which indicates
that the proposed method is robust.

B. EXPERIMENT

The effectiveness of the proposed approach will now be validated using an experimental rig The Process Modelling and
Control Group at the China University of Petroleum (East China) have installed an experimental rig which is shown in Fig. 15.
The operation interface of the rig is shown in Fig. 16. The four reactors, labelled R101, R102, R103, R104, can be connected in
numerous ways for controller validation and testing (series, parallel, series and parallel). The process can implement continuous
operation as well as enable measurement and control of the flow, liquid level and temperature. Only one reactor is used in
this experiment. The sampling period is selected to be T's = 1s and the sampling length is N = 7000. For reactor R101, the
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temperature is used as the system output and the desired set-point is 30 degrees Celsius. The initial temperature of R101 is 26
degrees Celsius. The hot water flow in the jacket is used as the control input. The definitions of the variables and the values
of the process parameters can be found in Tables IV and V, respectively. The MFASMC-LI algorithm is used for control of
the system.

For comparison purposes, the same experiment is performed using a classical MFASMC scheme (MFASMC-L2) [17]. Fig.
17 shows the tracking performance of MFASMC-L2 and MFASMC-LI. It can be seen that the overshoot using MFASMC-L1
is smaller and the convergence speed is faster than obtained using MFASMC-L2. The experimental results further validate the
proposed approach.

The parameters of the two control laws are listed in Table VI. The iteration accuracy is given by ¢* = 0.001 and € = 0.001

TABLE IV: Definitions for the variables of the process parameters

Variables Definitions

Foy Flow rate of fresh A

F Flow rate of recycled A from reactor 2

F3 Flow rate of additional fresh stream feeding pure A

Fy, Fy Effluent flow rate from reactors 1, 2

Ca1, Cas Molar concentration of A in reactors 1, 2

Ty, To Temperatures in reactors 1, 2

Ty, Tos Feed stream temperatures to reactor 1, 2

Qr1, Qr2 Heat input rate into reactors 1, 2

Ca0, Cas Inlet reactant concentration of reactors 1, 2

Vi, Vo Reactor volume of reactors 1, 2

AHj, kj, E;  Enthalpies, pre-exponential constants and activation energies of the reaction
ps, R, cp Heat capacity, gas constant and density of fluid in the reactor

TABLE V: Values of the process parameters

Fo =5.04m3/h To = 300K k3o =3 x 10°R~1 C%, = 1.6Tkmol/m?>
Fy =50m3/h Tos = 300K E1 =5 x 10*kJ/kmol TS = 431.91K

F3 =30m3/h AH; = —5 x 10*kJ/kmol Ey = 6.5 x 10%kJ/kmol  C%, = 1.73kmol/m?>
Fr =35m3/h AHy = —5.2 x 10*kJ/kmol ~ E3 = 5.5 x 10*kJ/kmol Q3 = 1.2 x 10kJ/h
Vi = 1.0m3 AHs = —5.4 x 10*kJ/kmol  cp = 0.88kJ/kgK C5o = 4kmol /m3
Vo = 1.0m3 k10 =3 x 10°h~1 ps = 1000kg/m? Q3 = 1.6 x 10°kJ/h

R = 8.314kJ/kmol K

koo = 3 x 10°h~1

Ts = 469.2580K

C% g1 = 2kmol/m3
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and 0 = 0.001 using MFASMC-L1.

TABLE VI: Controller Parameters

MFASMC-LI 7=0.1,x=0.1,A=0.1,% =01,¢g=1,k=1,T=0.01, a = 1.2

MFASMC-L2 7=0.1, x=01,A=0.1,v=01,¢=1~x=1,T=0.01, p=0.04, a = 4.5, by =0.01, bo =0.1

Fig. 15: Experimental equipment

Fig. 16: Experimental operation interface

VI. CONCLUSIONS

In this paper, linearized Bregman iteration has been proposed for model-free adaptive sliding mode controller design for
unknown MIMO nonlinear discrete-time systems. Unlike traditional MFASMC, the proposed approach avoids matrix inversion
and uses the L; norm in the controller design, which can enhance both computational efficiency and robustness. The proposed
algorithm is straightforward to implement and improves system performance. Extensive simulation and experimental testing
demonstrates the advantages of the proposed approach when compared to existing approaches in the literature. Future research
efforts will aim to further improve the proposed solution with respect to robustness and consider further industrial applications.
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VIII. APPENDIX

Proof of Lemma 4 is given as follows:
Proof: Consider Definition 1, the definition of Bregman distance implies that

H (Auj (k) — H (Auj—y1 (k) — (Au; (k) — Aujy (k) ,U; (k) =0 (A-1)
and
H (Auj_y (k) — H (Au; (k) = (Auj—y (k) — Au; (k) ,Ujza (k) =0 (A-2)
where H (Au; (k)) = Auj (k) — v (k).
By combining equations (A-1) and (A-2)
(Auj (k) = Auj_y (k) ,Ujyr (k) = Uj (k) = (A-3)

Let 6 € (0, %) be a constant, define ’(/Je( ) = (Auj (k) — Auj—1 (k) , A (U1 (k) — U (k) + 0 (Au;j (k) — Auj—q (K))),
then ¢ (k) > 0]| Auj (k) — Auj_y (k)||°. When Auj (k) # Auj_y (k), ¥¢ (k) > 0, and hence, a matrix can be defined as

Qf (k) = % A (Uji1 (k) = Uy (k) + 60 (A (k) = Aujy (k)] [N (U (k) = Uy (k) + 60 (Auy (k) — Auyy (k)]
’ (A-4)
It is obvious that Q? (k) is symmetric positive semi-definite and satisfies
A (Ujs1 (k) = Uj (k) + 6 (A (k) — Auyoy (k) = QF (k) (Auy (k) — Aujy () (A-5)
Furthermore,
1Q% (k)| = wel(k) A(Ujy1 (k) = Uj (k) + 6 (Auj (k) = Auj g (k) , A (U (k) = Uj (k) + 0 (Auy (k) — Aujq (K)))
1(k) (A Uy (k) = Uj (k) + 0 (Auy (k) = Auj (k) A (U (k) = U; (k) + 005 (k)
1
S ,(/)]9 (kﬁ) (ﬁ)\ + 9) <Au]‘ (k‘) — AUj_l (k) 5 )\ (Uj-i-l (k) — Uj (ki))> + 9
< Wl( 5 (BA+0) (Au; (k) — Auj—y (k) , A (Ujga (k) = Uj (K)) + 0 (Auy (k) — Aujy (k))) +6
= BA+20
Note that the first equation in (14) yields

A(Uj+1 (k) = Uj (k) + 2a (Au; (k) — Auj—y (k) = —a (Au;—y (k) — v (k) (A-6)
By substituting (A-5) into (A-6)
(QF (k) + 2a = 0) I) (Auy (k) — Auyy (k) = —a(Au; 1 (k) — v (k) (A-T)



It follows that

1/1 1 -t
Therefore )
1/1 ., 1 B
Auj (k) —v(k)=|1- 3 (QQQj (k) + <1 - 2040) I) (Auj_q1 (k) —v (k)) (A-9)
Since 0 < Q? (k) < (BA+20) 1, it can be established that
1 1 4 1 1 1
_ < 0 _ < = = _
(1 2a9> I< 204@] (k) + (1 2@9) 1< (1 + 2045)\+ 2@0) I (A-10)
It follows that L
« 1/1 20— 0 \ «
= 7> =0 (K I > 7 A-11
200 — 6 _2<2a i (B)+ 2a ) T 20+ pA+0 ( )
so that L
« 1/1 200— 60 \ «
1— ——VI<I—=-|—0° —7 <(1l— ———)I A-12
( 2a—9) - 2<2a 5 (k) + 2a ) = 2a—|—5}\+9) ( )
and )
1/1 200—0 \ o «
I—=(—q° i < l—— 1= — A-1
2<2a i)+ =55 ) —maX{H 2 — 0 ’ 2a+6>\+9H} (A-13)
Considering equation (A-9)
« «

Letn = max{‘ll — 5og
function of 6, let

o . - . o . .
1-— Py H } Since # can be any positive number in (O7 ﬁ), and the norm is a continuous

)

— 0. From (A-10), it follows that

« «
< 1— — 1— — A-15
n_maX{H 2all’ 204+BAH} ¢ )
It follows that 1 o
0<=-<|1——| <1 A-16
3 <=5l (A-16)

The above inequality also implies ||Au; (k) — v (k)| < n||Auj—1 (k) — v (k)||, where 0 < n < 1.
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