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and CpG Oligodeoxynucleotides

Nigel J. Temperton,1 Debra C. Quenelle,2 Keirissa M. Lawson,1 Jane N. Zuckerman,3

Earl R. Kern,2 Paul D. Griffiths,1 and Vincent C. Emery1*
1Department of Virology, Royal Free and University College Medical School, London, United Kingdom
2Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
3Academic Centre for Travel Medicine and Vaccines, Department of Medical Microbiology, Royal Free and University
College Medical School, London, United Kingdom

A human cytomegalovirus (HCMV) glycoprotein
B (gpUL55) DNA vaccine has been evaluated
in BALB/c mice. Intramuscular immunization of
these mice with pRc/CMV2-gB resulted in the
generation of high levels of gpUL55-specific
antibody (geometric mean titer [GMT] 1:8900)
and neutralizing antibody (GMT 1:74) after 2
booster doses given 5 and 10weeks after primary
inoculation. Emulsifying the construct with the
aluminum phosphate gel adjuvant Adju-Phos
before immunization enhanced gpUL55-specific
antibody responses (GMT 1:17800, P¼ 0.04). Co-
immunization with CpG oligodeoxynucleotides
was shown to enhance levels of neutralizing anti-
bodies generated by immunization of mice with
a pRc/CMV2-gB/Adju-Phos emulsion (P¼0.04).
The results provide a rationale for evaluating
combinations of other HCMV proteins for incor-
poration into a multi-target DNA vaccine, and for
the optimization of adjuvant usage, to elicit en-
hanced levels of neutralizing antibodies. J.Med.
Virol. 70:86–90, 2003. � 2003 Wiley-Liss, Inc.
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CpG ODN; adjuvant

INTRODUCTION

The b-herpesvirus, human cytomegalovirus (HCMV),
infects most individuals during their lifetime, yet
results in disease only in those whose immune system
is immature, impaired by immunosuppressive drugs or
the human immunodeficiency virus (HIV). The virus
infects 0.3–2.4% of neonates, making it the most impor-
tant cause of intrauterine infection [Stagno, 1990].
Women who enter pregnancy seronegative for HCMV
havea1%chanceofdevelopingprimaryHCMVinfection

while pregnant [Griffiths and Baboonian, 1984; Stagno
et al., 1986]. The development of a cytomegalovirus
(CMV) vaccine for the prevention of primary HCMV
infection is thus a major public health priority. A recent
report from the Institute ofMedicine,Washington,D.C.,
strongly supports the development of a HCMV vaccine
based on the economic impact of the disease caused by
this virus [Stratton et al., 2001]. In a study reported
recently by our group, using a mathematical modeling
approach, we calculated that the critical vaccination
proportion required for eradication of HCMV in the
developedworld lies between 59%and 62%. This finding
demonstrates that HCMV could be eradicated from the
population, given the current routine pediatric immu-
nization rates (�90%) by a vaccine with only 65–68%
efficacy at preventing primary infection [Griffiths et al.,
2001].

Of the large number of unique proteins encoded
within the HCMV genome [Chee et al., 1990; Prichard
et al., 2001], only a small proportion are thought to be
important targets of the protective immune responses
[Plotkin, 1999, 2001]. The neutralizing antibody re-
sponse against HCMV is directed predominantly
against a single protein, glycoprotein B (gpUL55) [Utz
et al., 1989; Britt et al., 1990], while the tegument
protein pp65 (ppUL83) is a major target of the cellular
immune response [Riddell et al., 1991; McLaughlin-
Taylor et al., 1994; Wills et al., 1996]. These antigens
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have formed the basis of most experimental vaccine
candidates thus far, which encompass their use within
recombinant viral vectors [Berencsi et al., 1993, 2001],
recombinant protein vaccines [Pass et al., 1999], and
peptide vaccines [Diamond et al., 1997].

Over the last decade, DNA vaccines have been shown
to be effective inducers of cellular and humoral
responses against many viral antigens [Davis and
McCluskie, 1999; Robinson and Pertmer, 2000]. This
relatively new technology has been employed to pro-
duce candidate vaccines against CMV [Pande et al.,
1995; Gonzalez Armas et al., 1996; Endresz et al.,
1999, 2001; Hwang et al., 1999; Morello et al., 2000;
Schleiss et al., 2000; Temperton, 2002]. Many groups
have attempted to enhance the immune response to
DNA vaccines by the coadministration of various im-
munomodulators (cytokines, chemokines, costimulatory
molecules), the delivery of plasmids in liposomes, and
the use of experimental adjuvants [Gurunathan et al.,
2000]. However, these experimental adjuvants are cur-
rentlyunlicensed foruse inhumans. It has recently been
shown that negatively charged aluminum salts, which
are currently licensed for use in humans, can be employ-
ed to enhance substantially, antibody responses to
DNA vaccine-encoded genes [Ulmer et al., 1999]. CpG
motifs within plasmid backbones or oligodeoxynu-
cleotides (ODNs) are potent immunostimulators of the
mammalian immune system [Krieg, 2000]. Synthetic
CpG ODNs with a nuclease-resistant phosphorothioate
backbone have been employed as adjuvants for succes-
sful enhancement of both humoral and cellular re-
sponses to protein antigens. These ODNs also have
adjuvant effects when coadministered with DNA vac-
cines [Klinman et al., 1997, 1999, 2000]. Since CpG
ODNs trigger B-cell proliferation and secretion of
immunoglobulin, they may be particularly useful to
enhance the anti-gpUL55 antibody responses [Krieg
et al., 1995].

In this study, we have evaluated the adjuvant effects
of aluminum phosphate and coadministered CpG ODN
on the generation of gpUL55-specific and neutralizing
antibody responses after inoculation of mice with an
HCMV gpUL55 DNA vaccine.

MATERIALS AND METHODS

Plasmid Construction

A complete gpUL55 DNA vaccine construct was
generated by polymerase chain reaction (PCR) amplifi-
cation of the entire open reading frame (ORF) from
strain AD169 using BIO-X-ACTTM DNA polymerase
(Bioline, London, UK) with primers, incorporating
restriction enzyme sites to facilitate cloning (shown
underlined): gBA (50-gAAgCTTCgACgCgCCTCATCgC-
TgCT-30) and gBB (50-gTCTAgACCTCCTggTTCAgAC-
gTTCT-30). The product was cloned into pGEM-T
(Promega, Southampton,UK); the resulting cloneswere
subjected to nucleotide sequence analysis in both direc-
tions to confirm that no point mutations had been intro-
duced during the amplification process. The gpUL55

gene was then subcloned into the high-level nonfusion
expression vector pRc/CMV2 (Invitrogen, Groningen,
the Netherlands). Recombinants were grown in Escher-
ichia coli DH5a cells, which facilitate the production of
high-levels of supercoiled plasmid necessary for DNA
vaccination purposes, and high-quality plasmid DNA
was purified using Qiagen plasmid kits according to the
manufacturer’s instructions (Qiagen, Crawley, UK).

DNA Transfection

HeLa cells were transfected transiently with pRc/
CMV2-gB and the parental plasmid using the Lipo-
fectamineTM 2000 reagent (Invitrogen) according to the
manufacturer’s protocol. For immunofluorescence ex-
periments, these cells were spotted onto wells in multi-
spotmicroscope slides (Hendley, Essex,UK) and fixed in
100% acetone at �208C before binding with the 7.17
anti-gB monoclonal antibody (MAb) [Utz et al., 1989].

Adjuvants

Aluminum phosphate gel adjuvant (Adju-Phos,
Superfos Biosector A/S, Vedbaek Denmark) was mixed
with plasmid or plasmid/CpG ODN, for a final alumi-
num concentration of 450 mg/ml. CpG ODN 1668: 50-
TCC-ATG-ACG-TTC-CTG-ATG-CT-30 was synthesized
with a nuclease-resistant phosphorothioate backbone
(Operon, Alameda, CA). In this study, 10 mg of this ODN
was combined with 50 mg pRc/CMV2-gB before being
emulsified in Adju-Phos.

Immunizations of Mice

Groups of five 5-week-old female BALB/c mice were
immunized intra-muscularly oncewith50mgpRc/CMV2
(parental plasmid for mock infection), 50 mg pRc/CMV2-
gB, 50 mg pRc/CMV2-gB emulsified with Adju-Phos or
50 mg pRc/CMV2-gB/CpG ODN 1668 emulsified with
Adju-Phos. Booster immunizations were given 5 and
10weeksafter initial inoculationwith identical plasmid/
adjuvant formulations. Serum samples were obtained
before immunization, and at weeks 2, 6, and 11, and
were stored at �208C in 0.1-ml aliquots before use.

Determination of HCMV-gpUL55-Specific
Antibody Responses

Anti-gpUL55 antibody responses in BALB/c mice
immunized with pRc/CMV2 constructs were analyzed
by endpoint dilution immunofluorescence, using a re-
combinant baculovirus expressing HCMV gpUL55
[Wells et al., 1990] (a kind gift fromW. Britt, University
of Alabama). Sf21 insect cells were infected with re-
combinant baculovirus at a multiplicity of infection
(MOI) of 10. After 48-hr incubation at 288C, 3�104 cells
in a 15-ml volume were spotted onto wells in multispot
microscope slides (Hendley, Essex, UK) and fixed in
100% acetone at �208C. Doubling dilutions of mouse
sera (1:40–1:40960) were prepared, and 15 ml of each
dilution was added to wells containing either infected
or uninfected control Sf21 cells. After incubation in a
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humidified chamber at 378C for 40 min, slides were
washed once for 5 min in 1% bovine serum albumin
(BSA) in phosphate-buffered saline (PBS), twice in PBS,
and air-dried; 15 ml of FITC-conjugated goat antimouse
immunoglobulins diluted 1:10 in PBS (DAKO, Glostrup
Denmark) was added to each well. The slides were
incubated in a humidified chamber at 378C for 40 min,
washed once for 5 min in 1% BSA in PBS, twice in PBS,
and air-dried. After mounting slides with Citifluor
(Citifluor Ltd, Leicester, UK), they were viewed under
fluorescence microscope and the last serum dilution at
which positive staining cells were visible was taken as
the antibody titer.

Determination of Neutralizing Antibody Titers

Human MRC5 fibroblasts (passages 20–30) were
seeded in 8 well chamber slides (2�104 cells/well)
24 hr before testing. In this study, 20 ml mouse serum
(dilutions 1:4–1:256 in minimal essential medium
[MEM]þ10% fetal calf serum [FCS]) was mixed with
15 ml of a constant titer of AD169 virus stock (50
immediate-early antigen-producing units (IEU)/well)
and 5 ml guinea pig complement (Sigma). After 1-hr
incubation (378C, 5% CO2), the virus/serum mixture
was added to the cell monolayer and incubated for
1 hr. After aspiration and the addition of fresh MEM,
the slideswere incubated at 378C for a further 18–24 hr.
After fixing with acetone the cells were incubated for
30minwithaMAbagainst the72-kDIEprotein,washed
3 times in PBS and then incubated for 30 min with
FITC-conjugated sheep antimouse IgG (Sigma) (diluted
1:100). After washing, the cells were air-dried, mounted
with Citifluor and positive nuclei scored by fluorescent
microscopy (full field at 20� magnification). The serum
dilution producing 50% inhibition of IEU input virus
infectivity, as compared with an untreated control, was
taken as the neutralizing titer.

Statistical Analysis

Comparisons between groups for statistical signifi-
cance were performed with the Mann-Whitney test. All
P-values of <0.05 were regarded as significant.

RESULTS

Effect of Adju-Phos on Antibody Responses
to a gpUL55 DNA Vaccine

Serum antibody titers were measured at pre-
inoculation and at weeks 2, 6, and 11 after first in-
oculation. Antibody to gpUL55 was not detected in any
pre-inoculation sera, 2-week sera, or sera from mice
immunized with the parental vector pRc/CMV2. Intra-
muscular immunization of BALB/c mice with pRc/
CMV2-gB (50 mg) resulted in the generation of gpUL55-
specific antibodies in 5/5 mice immunized. The admin-
istration of a second booster dose augmented signifi-
cantly the anti-gpUL55 response (P¼0.01) compared
with the first boost with 4/5 mice generating titers of
1:10240 (Fig. 1). Thegeometricmeanantibody titer after

the second booster dose (1:8900) was almost 14-fold
greater than that obtained after the first boost. All four
BALB/cmice immunizedwith three doses of pRc/CMV2-
gB (initial primeþ2 booster doses) developed antibodies
capable of neutralizing AD169. The geometric mean
neutralizing antibody titer was 1:74, with titers for
individual mice ranging from 1:32 to 1:256 (Fig. 2).

In an attempt to boost levels of gB antibodies induc-
ed by DNA immunization, pRc/CMV2-gB DNA was
emulsified with aluminum phosphate gel adjuvant
(Adju-Phos) before use. Two of the five mice given pRc/
CMV2-gBþAdju-Phos developed gpUL55-specific anti-
bodies at week 6 with a geometric mean titer of 1:5120,
which was greater than the geometric mean antibody
titer of 1:640 obtained in mice given DNA vaccine alone
(Fig. 1). By week 11, all five mice had developed
antibodies to gpUL55 with a geometric mean titer of
1:17800 (1:20480 in 4/5 mice) representing a 2-fold
increase in titer over those obtained with the gpUL55
DNA vaccine alone (P¼ 0.04). In contrast, neutralizing
antibody titers measured at week 11 in mice given pRc/
CMV2-gBþAdju-Phos were not significantly different
to those from mice given pRc/CMV2-gB alone (P¼0.3;
Fig. 2).

Effect of CpG ODN on Antibody Responses

At week 11 after the initial inoculation (booster doses
given at weeks 5 and 10), mice immunized with a CpG
ODN/pRc/CMV2-gB/Adju-Phos emulsion developed
neutralizing antibody titers that were not significantly
different from those in mice immunized with pRc/
CMV2-gB alone (geometric mean titer 1:97 vs 1:74,
P¼ 0.6; Fig. 2). Interestingly, neutralizing antibody
titers generated byCpGODN/pRc/CMV2-gB/Adju-Phos
immunization were significantly higher than those
generated by pRc/CMV2-gB/Adju-Phos (1:97 vs 1:37,
P¼ 0.04;Fig. 2).No increase in gB-specific antibody titer

Fig. 1. Effect of the aluminium phosphate gel adjuvant, Adju-Phos,
on HCMV gB-specific antibody titres elicited by immunisation of
BALB/cmice with the pRc/CMV2-gBDNA vaccine (booster doses given
atweeks5and10postprime). Theantibody titre,measuredby endpoint
dilution immunofluorescence, was the last serum dilution at which
positive staining cells were visible. Geometric mean antibody titres
represented by histograms and arrow-ended lines cover the range of
titres generated in individual mice. Wk, week; A, Adju-Phos; GM,
geometric mean.
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was found using CpGODN/pRc/CMV2-gB/Adju-Phos as
immunogen compared with pRc/CMV2-gB/Adju-Phos
(P¼ 0.35) or pRc/CMV2-gB alone (P¼ 0.21) (data not
shown).

DISCUSSION

We have developed a prototype HCMV DNA vaccine,
pRc/CMV2-gB, and evaluated its immunogenicity in a
BALB/c mouse system. In the absence of exogenous
adjuvants, the vaccine was shown to be highly immuno-
genic, generating strong anti-gpUL55 and neutralizing
antibody responses comparable to those obtained by
other groups for candidate HCMV vaccine constructs
evaluated in mice and humans [Endresz et al., 1999,
2001; Frey et al., 1999; Hwang et al., 1999; Gonczol and
Plotkin, 2001].

Consistent with previous studies evaluating the
immunogenicity of DNA vaccines delivered with con-
ventional aluminum adjuvants, the formulation of our
vaccine with aluminum phosphate gel adjuvant (Adju-
Phos) was found to enhance gpUL55-specific antibody
responses significantly, with antibody titers of 1:20480
elicited in 4/5mice given three doses of theDNAvaccine.
This approach represents a procedurally simplemethod
of enhancing antibody responses to a DNA vaccine-
encoded antigen in amousemodel system. Interestingly,

Ulmer et al. [1999] also showed that this adjuvant is
able to boost humoral immune responses to DNA
vaccines in non-human primates. In contrast, we found
no significant difference in neutralizing antibody titer
in mice immunized with a pRc/CMV2-gB/Adju-Phos
emulsion compared with groups immunized with pRc/
CMV2-gB alone, although further studies with more
mice are required to confirm this observation.

It is thought that emulsifying CpGODNwith vaccine
antigen maintains closeness and thus augments the
adjuventicity and immunostimulatory potential of the
CpG species [Klinman et al., 1999]. Mice immunized
with a CpG ODN/pRc/CMV2-gB/Adju-Phos emulsion
showed a significant increase in neutralizing antibody
titer compared with mice given pRc/CMV2-gB/Adju-
Phos alone. In contrast, immunization of mice with pRc/
CMV2-gBþCpG ODN emulsified with Adju-Phos did
not result in an enhancement of gpUL55-specific anti-
body responses compared with pRc/CMV2-gBþAdju-
Phos or pRc/CMV2-gB alone. Such a result may be
attributable to the fact that HCMV gpUL55 encoded by
the pRc/CMV2-gB plasmid is already highly immuno-
genic in BALB/c mice making the immunostimulatory
effects of CpG coadministration, at the concentrations
used, difficult to quantify in the numbers of mice used.
Weeratna et al. [1998] reported that co-immunization
of CpG ODNs synthesized with phosphorothioate back-
bones and DNA vaccines results in an ODN dose-
dependent reduction in gene expression from the
plasmid and postulate that this may be due to compe-
titive interference at binding sites on the surface of
target cells. Our data do not appear to support these
observations, at least at the ODN concentrations used,
since mice immunized with pRc/CMV2-gBþCpG ODN
emulsified with Adju-Phos developed gpUL55-specific
titers of 1:20480 at week 11 after initial inoculation.

In conclusion,wehave shown that coadministration of
Adju-Phos and/or CpG ODN can enhance the humoral
immune responses engendered by an HCMV gpUL55-
based DNA vaccine. The results provide a rationale
for evaluating combinations of other HCMV proteins,
such as gH/gL [Spaete et al., 1993; Urban et al., 1996]
and gM/gN [Mach et al., 2000], in such amodel system to
determine whether enhanced levels of neutralizing
antibodies can be achieved.
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