
Lima, Hélder (2021) Hypergeometric multiple orthogonal polynomials.  
Doctor of Philosophy (PhD) thesis, University of Kent,. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/88717/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.22024/UniKent/01.02.88717

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/88717/
https://doi.org/10.22024/UniKent/01.02.88717
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


Hypergeometric multiple

orthogonal polynomials
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Abstract

This thesis is devoted to the analysis of multiple orthogonal polynomials for indices

on the so-called step-line with respect to absolutely continuous measures on the

positive real line, whose moments are given by ratios of Pochhammer symbols

(also known as rising factorials). We investigate both type I and type II multiple

orthogonal polynomials, though the main focus is on the type II polynomials.

For the former, the characterisation includes Rodrigues-type formulas for the type

I polynomials and type I functions. On the latter, the characterisation includes

explicit representations as terminating generalised hypergeometric series as well as

solutions of differential equations and recurrence relations, and an analysis of their

asymptotic behaviour and the location of their zeros. We investigate the link of

these polynomials with branched-continued-fraction representations of generalised

hypergeometric series, which were introduced to solve total-positivity problems in

combinatorics. The polynomials analysed here also have direct applications to the

study of Painlevé equations and to random matrix theory.

We give a detailed characterisation of two new families of multiple orthogonal

polynomials associated with Nikishin systems of 2 absolutely continuous measures.

These measures are supported on the positive real line and on the interval (0, 1)

and they admit integral representations via the confluent hypergeometric function

of the second kind (also known as the Tricomi function) and Gauss’ hypergeo-

metric function, respectively. The vectors of orthogonality weights satisfy matrix

Pearson-type differential equations, linked to the action of the differentiation op-

erator on the type II polynomials and type I functions as a shift in their index

and parameters. As a result, the type II polynomials and type I functions satisfy

Hahn’s property. We further draw the links between these two families of multiple

orthogonal polynomials and other known polynomial sets via limiting relations or

specialisations. Examples of such connections encompass the components of the

cubic decomposition of Hahn-classical threefold-symmetric 2-orthogonal polyno-

mials as well as Jacobi-Piñeiro polynomials and multiple orthogonal polynomials

with respect to Macdonald functions.
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Chapter 1

Background and motivation

The central theme of this thesis are multiple orthogonal polynomials, which are a

generalisation of orthogonal polynomials consisting of polynomials of one variable

satisfying orthogonality conditions with respect to several measures. We refer

to the multiple orthogonal polynomials studied in this thesis as hypergeometric

because they admit explicit representations in the form of terminating generalised

hypergeometric series.

Multiple orthogonal polynomials originate from Hermite-Padé approximation, a

simultaneous rational approximation to several functions, and were introduced in

Hermite’s proof of the transcendence of e. Other applications of rational approxi-

mations using multiple orthogonal polynomials to analytic number theory include

proofs of transcendence and construction of upper bounds for the measure of ir-

rationality of π as well as demonstrations of several results on the irrationality of

values of the Riemann zeta function ζ(s), including the irrationality of ζ(2), ζ(3)

(the famous Apéry theorem in [3]) and infinitely many zeta values with an odd

positive integer argument. See [70] for more details on the applications of Hermite-

Padé rational approximation to results on the irrationality and transcendence of

numbers and references for each of the specific results mentioned.
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Research on multiple orthogonal polynomials has received increasing attention in

the past decades, partly motivated by their applicability to different areas of Math-

ematics and Mathematical Physics. Adding to the aforementioned applications in

analytic number theory, there are connections of multiple orthogonal polynomi-

als to random matrix theory [9, 42], spectral theory of non-selfadjoint operators

[6, 69], and the description of rational solutions to Painlevé equations [15, 73], to

name a few. More recently, a surprising connection was discovered between mul-

tiple orthogonal polynomials and the branched continued fractions introduced in

[61], which are a generalisation of continued fractions originating from combina-

torics of lattice paths. In this document, that connection is applied in the analysis

of the multiple orthogonal polynomials under study.

In this initial chapter we give an introduction to:

• measures and linear functionals;

• some relevant special functions, including hypergeometric functions;

• (standard) orthogonal polynomials;

• multiple orthogonal polynomials;

• continued fractions;

• branched continued fractions;

• totally positive matrices and production matrices.

The main aim of this introduction is to present the necessary background and give

some motivation for the following chapters. Besides, we establish some terminology

and notation to be used throughout the thesis. All the definitions and results

presented in this introduction as well as the respective proofs can be found in the

references cited throughout the chapter.

We end this introductory chapter with an outline of the thesis.
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1.1 Measures and linear functionals

The standard and multiple orthogonal polynomials appearing in this thesis satisfy

orthogonality conditions with respect to positive Borel measures. These measures

define linear functionals on the vector space of polynomials. Therefore, we can use

some known results about orthogonality and multiple orthogonality with respect

to linear functionals to study the polynomials appearing here. As such, we make a

brief introduction to the theories of measures and linear functionals in this section.

On the former, we present the concepts of measurable spaces, positive measures,

Borel measures and absolutely continuous measures as well as the Radon-Nikodym

derivative and Stieltjes transform of a measure. On the latter, we describe the

vector space of polynomials and its dual space, where we define the dual sequence of

a polynomial sequence and two key operations. For more information on measure

theory and functional theory, we refer to [16] and [68], respectively.

Measures are defined in measurable spaces, which are pairs (X,Σ) where X is a

set and Σ is a σ-algebra on X. A σ-algebra on a set X is a collection Σ of subsets

of X such that ∅ ∈ Σ, E ∈ Σ =⇒ X\E ∈ Σ, and (En)n∈N ⊂ Σ =⇒
⋃
n∈N

En ∈ Σ.

A positive measure, or simply measure, in a measurable space (X,Σ) is a function

µ : Σ → R+
0 ∪ {+∞} such that µ(∅) = 0 and µ

(⋃
n∈N

An

)
=

∞∑
n=0

µ (An), for any

countable sequence {An}n∈N ⊂ Σ of pairwise disjoint sets.

When µ(X) < +∞, µ is a finite measure. We often deal with finite measures µ

such that µ(X) = 1. In that case, we say that µ is a probability measure. Moreover,

for A ∈ Σ, we refer to µ(A) as the µ-measure of A.

A Borel measure on a topological space X is a measure defined in the Borel σ-

algebra of X, denoted by B(X), which is the smallest σ-algebra containing all open

subsets of X. For instance, the Borel σ-algebra of R (with its usual topology),

B(R), is the smallest σ-algebra that contains all the open intervals of R and a

Borel measure in R is any measure defined in B(R). The Lebesgue measure in R,

which maps each real interval to its length, is a Borel measure.
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Let µ and ν be two finite measures in a measurable space (X,Σ). We write ν � µ

and say that the measure ν is absolutely continuous with respect to µ if, for each

set A ∈ Σ, µ(A) = 0 implies ν(A) = 0. A function f : A ∈ Σ→ R is Σ-measurable

if the set {x ∈ A : f(x) ≤ t} belongs to Σ, for each t ∈ R. This condition

remains equivalent if we replace “≤” by any of “≥”, “<” or “>” in this definition.

An important result about absolutely continuous measures is the Radon-Nikodym

theorem, which states that if ν � µ then there exists an Σ-measurable function

w : X → R+
0 , unique up to sets of µ-measure zero, such that ν(A) =

∫
A
wdµ, for

each set A ∈ Σ. The function w is called the Radon-Nikodym derivative of ν with

respect to µ and it is sometimes denoted by
dν

dµ
.

Our main focus will be on absolutely continuous measures with respect to the

Lebesgue measure, which are simply said to be absolutely continuous, supported

on subsets of the real line. Let µ be a measure of that type, with Radon-Nikodym

derivative w with respect to the Lebesgue measure. Then we write dµ(x) = w(x)dx

and w is called the density of µ. Besides, we use the term weight function for the

density of an absolutely continuous measure.

The support of a continuous real or complex valued function f defined on a topo-

logical space X, denoted by supp(f), is the closure of the set {x ∈ X : f(x) 6= 0}.

Similarly, the support of a measure µ on a topological spaceX, denoted by supp(µ),

which is defined as the complement of the union of all open subsets of X with µ-

measure zero, is the smallest closed set of X whose complement has µ-measure

zero. As a result, if ν � µ then supp(ν) ⊂ supp(µ) and the Radon-Nikodym

derivative w of ν with respect to µ such that supp(w) = supp(ν) is unique.

The Stieltjes transform of a measure µ supported on a real interval I is given by

F (z) =

∫
I

dµ(x)

x− z
, for z ∈ C\I.
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Now we introduce linear functionals in the vector space of polynomials with one

variable and coefficients on a field K, which here is always either R or C. We

denote this vector space of polynomials by P . A linear functional u defined on

P is a linear map u : P → K. The action of u on a polynomial f is denoted by

〈u, f〉. The moment of order n ∈ N of a linear functional u ∈ P ′ is equal to 〈u, f〉,

with f : x 7→ xn, which we denote by 〈u, xn〉. By linearity, every linear functional

u is uniquely determined by its moments or, alternatively, by the values of u at

the elements of any basis of P . The dual space of P , denoted by P ′, is the vector

space consisting of all linear functionals on P .

Similarly, we define the moment of order n ∈ N of a measure µ by the integral∫
xndµ(x). If all these moments exist and are finite (which in particular implies

that the measure is finite), we can define in P ′ a linear functional u such that

〈u, p〉 =
∫
p(x)dµ(x), for all p ∈ P , and the moment sequences of the measure µ

and the linear functional u defined via µ clearly coincide.

A polynomial sequence is a sequence (Pn(x))n∈N ⊂ P such that each Pn is a

polynomial of degree exactly n. Note that a polynomial sequence always forms a

basis of P . The dual sequence of a polynomial sequence (Pn(x))n∈N is the unique

sequence (un)n∈N in the dual space P ′ such that, for all n,m ∈ N,

〈un, Pm〉 = δnm =

1 if n = m,

0 if n 6= m.

Operations in the polynomial space P induce operations in the dual space P ′. For

instance, the derivative of u and the left-multiplication of u by f , with u ∈ P ′

and f ∈ P , which are the two operations on the dual space P ′ used in this thesis,

namely in Chapter 2, are defined, by duality,

〈u′, p〉 = −〈u, p′〉 and 〈fu, p〉 = 〈u, fp〉 , for any p ∈ P .
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1.2 Special and hypergeometric functions

The multiple orthogonal polynomials under discussion here can be explicitly ex-

pressed via terminating generalised hypergeometric series. Besides, most orthogo-

nality measures appearing in this thesis have densities involving special functions.

As such, we present the definitions and some basic properties of the special func-

tions relevant to this thesis, including the ordinary and generalised hypergeometric

functions. For more details on special functions, we refer to [1, 10, 22, 51], among

the many references on this topic.

The Gamma function, usually denoted by Γ(z), is defined by Euler’s integral

Γ(z) =

∫ ∞
0

e−ttz−1dt if Re z > 0, (1.1)

and by analytic continuation elsewhere in the complex plane, except for the non-

positive integers, via the functional relation

Γ(z + 1) = zΓ(z). (1.2)

The Pochhammer symbol, denoted by (z)n, with z ∈ C and n ∈ N, is defined by

(z)0 = 1 and (z)n = z(z + 1) · · · (z + n− 1), n ∈ Z+.

Due to (1.2), and because Γ(z) is always nonzero, the Pochhammer symbol can

also be defined as a ratio of Gamma function values as

(z)n =
Γ(z + n)

Γ(z)
, unless z ∈ Z−0 .

In particular, n! = (1)n = Γ(n+ 1), for any n ∈ N.

Furthermore, as a result of the well-known Gauss’ multiplication formula, the

values of the Gamma function with rational arguments satisfy

n−1∏
k=1

Γ

(
k

n

)
= (2π)

n−1
2 n−

1
2 , for any n ≥ 2.
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The initial cases n = 2 and n = 3 of this formula imply that

Γ

(
1

2

)
=
√
π and Γ

(
1

3

)
Γ

(
2

3

)
=

2π√
3
. (1.3)

The former is the most widely known value of the Gamma function with a non-

integer argument, while the latter identity is useful in Chapter 2.

The Beta function is a two-variable function, defined by Euler’s Beta integral,

whenever Reα,Re β > 0, and equal to a ratio of Gamma function values:

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt =
Γ(α)Γ(β)

Γ(α + β)
. (1.4)

Note that B(α, β) = B(β, α).

For parameters α, β, γ ∈ C with γ 6∈ Z−0 , the ordinary hypergeometric function or

Gauss’ hypergeometric function is defined by Gauss’ series

2F1 (α, β; γ | z ) =
∞∑
n=0

(α)n (β)n
(γ)n

zn

n!
(1.5)

on the disk |z| < 1 and by analytic continuation elsewhere. The hypergeometric

function 2F1 (α, β; γ | z ) is a solution of the hypergeometric differential equation

z(1− z)F ′′(z) + (γ − (α + β + 1)z)F ′(z)− αβF (z) = 0 (1.6)

and, if Re γ > Re β > 0, it admits the integral representation

2F1 (α, β; γ | z ) =
1

B(β, γ − β)

∫ 1

0

tβ−1(1− t)γ−β−1(1− zt)−αdt. (1.7)

The generalised hypergeometric series is formally defined by

pFq

a1, · · · , ap
b1, · · · , bq

∣∣∣∣∣∣ z
 =

∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
, (1.8)

with p, q ∈ N, z, a1, · · · , ap ∈ C and b1, · · · , bq ∈ C\Z−0 . It is called the generalised

hypergeometric series because it reduces to (1.5) when (p, q) = (2, 1).
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If p ≤ q, (1.8) converges for all finite values of z; if p = q + 1, it generally only

converges absolutely on the disk |z| < 1, with convergence on the unit circle if

Re

(
p∑
j=0

bj −
q∑
i=0

ai

)
> 0;

and, if p ≥ q + 2, it generally diverges for all z 6= 0. However, if one of the

parameters a1, · · · , ap is a non-positive integer, the series (1.8) terminates, and it

defines a hypergeometric polynomial convergent everywhere in the complex plane.

The derivative of a generalised hypergeometric series is equal to a shift in the

parameters, up to multiplication by a constant. To be precise,

d

dz
pFq

a1, · · · , ap
b1, · · · , bq

∣∣∣∣∣∣ z
 =

a1 · · · ap
b1 · · · bq

pFq

a1 + 1, · · · , ap + 1

b1 + 1, · · · , bq + 1

∣∣∣∣∣∣ z
 . (1.9)

Furthermore, (1.8) is a solution of the generalised hypergeometric differential equa-

tion [(
q∏
j=1

(
z

d

dz
+ bj

))
d

dz
−

p∏
i=1

(
z

d

dz
+ ai

)]
F (z) = 0. (1.10)

Here and always throughout this thesis, the product of differential operators is

understood as their composition so we write (L1L2) f := L1 (L2f). Note that if

(p, q) = (2, 1), (1.10) reduces to (1.6).

The generalised hypergeometric series also satisfies the confluent relations

lim
|α|→∞

p+1Fq

a1, · · · , ap, α

b1, · · · , bq

∣∣∣∣∣∣ zα
 = pFq

a1, · · · , ap
b1, · · · , bq

∣∣∣∣∣∣ z
 (1.11)

and

lim
|β|→∞

pFq+1

 a1, · · · , ap
b1, · · · , bq, β

∣∣∣∣∣∣ βz
 = pFq

a1, · · · , ap
b1, · · · , bq

∣∣∣∣∣∣ z
 ,

whenever the hypergeometric series and the limits on the left-hand side of these

relations are convergent.
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The Bessel functions of first and second kind, respectively denoted by Jα (z) and

Yα (z), are solutions to Bessel’s equation

z2w′′ + zw′ + (z2 − α2)w = 0.

The Bessel function of the first kind is defined by

Jα (z) =
(z

2

)α ∞∑
k=0

(
− z2

4

)k
k!Γ(α + k + 1)

=

(
z
2

)α
Γ(α + 1)

0F1

(
−;α + 1

∣∣∣∣−z2

4

)
. (1.12)

The modified Bessel functions of the first and second kind, respectively denoted

by Iα (z) and Kα (z), are solutions to the modified Bessel equation

z2w′′ + zw′ − (z2 + α2)w = 0.

When | arg z| ≤ π

4
, the modified Bessel function of the second kind Kα (z), which

is also known as the Macdonald function, admits the integral representation

Kα (z) =
1

2

(z
2

)α ∫ ∞
0

exp

(
−t− z2

4t

)
dt

tα+1
. (1.13)

As a result, making the change of variable u =
z2

4t
, we deduce that the Macdonald

function is symmetric with respect to the parameter α, that is,

K−α (z) = Kα (z) . (1.14)

The Airy functions of the first and second kind, respectively denoted by Ai(z) and

Bi(z), are solutions to the Airy differential equation w′′ = zw. For real variable,

the Airy function of the first kind satisfies the integral representation on R+

Ai(x) =
1

π

∫ ∞
0

cos

(
1

3
t3 + xt

)
dt. (1.15)
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The Airy function of the first kind and its derivative can be written in terms of

the Macdonald function by

Ai(x) =
2
√
x

3Γ
(

1
3

)
Γ
(

2
3

) K± 1
3

(
2

3
x

3
2

)
and Ai′(x) = − 2x

3Γ
(

1
3

)
Γ
(

2
3

) K± 2
3

(
2

3
x

3
2

)
.

(1.16)

The confluent hypergeometric functions of the first and second kind, respectively

denoted by M (α, β; z) and U (α, β; z) and also known as the Kummer and Tricomi

function, respectively, are solutions to Kummer’s differential equation

z
d2y

dz2
+ (β − x)

dy

dz
− αy = 0. (1.17)

If Reα > 0 and | arg(z)| < π

2
, the Tricomi function admits the integral represen-

tation

U (α, β; z) =
1

Γ(α)

∫ ∞
0

e−zttα−1(t+ 1)β−α−1dt. (1.18)

Besides that, U (0, β;x) = 1 and

U (α, β; z) = x1−β U (α− β + 1, 2− β; z) . (1.19)

1.3 Orthogonal polynomials

In this section we give a short introduction to orthogonal polynomials, to which

we often refer as standard orthogonal polynomials, with the purpose of clearly

distinguishing them from multiple orthogonal polynomials. The classical reference

on orthogonal polynomials is [66]. We also refer to [14, 36, 37], among the many

references on this topic.

We start this section by defining an orthogonal polynomial sequence. Then we

recall the spectral theorem for orthogonal polynomials leading to the connection

between orthogonal polynomials, recurrence relations and Jacobi matrices. Fi-

nally, we survey the well-known families of classical orthogonal polynomials, as

well as the notion of symmetric polynomials and its implications in orthogonality.



13

Throughout this thesis, we consistently deal with monic polynomials, which means

that the leading coefficient is equal to 1.

A polynomial sequence (Pn(x))n∈N is orthogonal with respect to a linear functional

u if

〈u, PmPn〉 =

Nn 6= 0 if m = n,

0 if m 6= n,

or, equivalently,

〈
u, xkPn

〉
=

Nn 6= 0 if k = n,

0 if k < n.

The orthogonal polynomial sequence with respect to a linear functional u is unique,

up to multiplication of each polynomial by a constant. As a result, the monic

orthogonal polynomial sequence is unique.

Suppose that a polynomial sequence (Pn(x))n∈N is orthogonal with respect to a

linear functional that admits an integral representation via a measure µ (or a

weight function w) over its support. Then, we refer to µ (respectively, w), as the

orthogonality measure (respectively, orthogonality weight) of (Pn(x))n∈N, and we

say that (Pn(x))n∈N is orthogonal with respect to µ (respectively, w).

If (Pn(x))n∈N is orthogonal with respect to a linear functional u and (un)n∈N is the

dual sequence of (Pn(x))n∈N then u = N0u0, with N0 6= 0. Besides, there exists a

unique sequence of nonzero constants (Nn)n∈N such that un = N−1
n Pnu0, that is,

〈un, f〉 = N−1
n 〈u0, Pnf〉, for any f ∈ P . In fact, the choice f = Pn implies that

Nn = 〈u0, P
2
n 〉. From now on, we assume that N0 = 1, which means that u = u0.

1.3.1 Spectral theorem and recurrence relation

The spectral theorem for orthogonal polynomials (also known as Shohat-Favard

theorem) states that a polynomial sequence (Pn(x))n∈N is orthogonal if and only

if, for each n ∈ N, there exist coefficients βn and γn+1 6= 0 such that (Pn(x))n∈N
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satisfies the second order recurrence relation

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x), (1.21)

with initial conditions P−1(x) = 0 and P0(x) = 1. The polynomial sequence

(Rn(x))n∈N satisfying (1.21) with initial conditions R0(x) = 0 and R1(x) = 1 is

called the associated polynomial sequence.

We consider an infinite tridiagonal matrix T = (ti,j)i,j∈N with entries

ti,i+1 = 1, ti,i = βi, ti,i−1 = γi, and ti,j = 0 if |j − i| > 1. (1.22)

For each n ∈ N, we let Tn be the tridiagonal n × n-matrix formed by the first n

rows and columns of T so that

Tn =



β0 1 0 · · · 0

γ1 β1 1
. . .

...

0
. . . . . . . . . 0

...
. . . γn−3 βn−2 1

0 · · · 0 γn−2 βn−1


. (1.23)

Then, the recurrence relation (1.21) can be expressed as

Tn



P0(x)

P1(x)
...

Pn−2(x)

Pn−1(x)


= x



P0(x)

P1(x)
...

Pn−2(x)

Pn−1(x)


− Pn(x)



0

0
...

0

1


. (1.24)

Suppose that βn ∈ R and γn+1 ∈ R+ for all n ∈ N, and let (pn(x))n∈N be the or-

thonormal polynomial sequence defined by pn(x) = λnPn(x), with λn =
n∏
k=1

(
γ
− 1

2
k

)
.

Then (pn(x))n∈N satisfies the recurrence relation

xpn(x) = anpn+1(x) + bnpn(x) + an−1pn−1(x), (1.25)
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with an =
√
γn+1 and bn = βn, for all n ∈ N. The recurrence relation (1.25) can

be expressed as

Jn



p0(x)

p1(x)
...

pn−2(x)

pn−1(x)


= x



p0(x)

p1(x)
...

pn−2(x)

pn−1(x)


− pn(x)



0

0
...

0

1


,

where

Jn =



β0
√
γ1 0 · · · 0

√
γ1 β1

√
γ2

. . .
...

0
. . . . . . . . . 0

...
. . .

√
γn−3 βn−2

√
γn−2

0 · · · 0
√
γn−2 βn−1


.

is the n× n-matrix formed by the first n rows and columns of the infinite Jacobi

matrix J = (Ji,l)i,l∈N with entries

Ji,i = βi, Ji,i+1 = Ji+1,i =
√
γi+1, and Ji,l = 0 if |l − i| > 1.

As a result, the zeros of pn(x), which coincide with the zeros of Pn(x), are the

eigenvalues of the matrix Jn and Pn(x) is the characteristic polynomial of Jn.

Therefore, because Jn is a real symmetric matrix, the zeros of Pn(x) are all real

and simple. Besides, due to Cauchy’s Interlacing Theorem (see [35, Th. 4.3.17]),

the zeros of consecutive polynomials interlace, that is, there is always a zero of Pn

between two consecutive zeros of Pn+1.

The infinite Jacobi matrix J acts as a symmetric linear operator defined in `2 or in

a subset of `2, which is called a Jacobi operator. Under suitable extra conditions,

for example if the coefficients are bounded, the Jacobi operator is self-adjoint.

Therefore, there is a strong link between orthogonal polynomials and the spectral

theory of symmetric and self-adjoint Jacobi operators (see [41]).
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1.3.2 Classical and symmetric orthogonal polynomials

An orthogonal polynomial sequence (Pn(x))n∈N is said to be classical if its sequence

of monic derivatives

(
1

n+ 1
P ′n+1(x)

)
n∈N

is also orthogonal.

Up to a linear transformation of the variable, the classical orthogonal polynomials

are the Hermite, Laguerre, Jacobi and Bessel polynomials. The Hermite poly-

nomials, (Hn(x))n∈N, are orthogonal with respect to e−x
2

over R. The Laguerre

polynomials, (Ln(x;α))n∈N, α > −1, are orthogonal with respect to e−xxα over

R+. The Jacobi polynomials, (Jn(x;α, β))n∈N, α, β > −1, are orthogonal with

respect to (1 − x)α(1 + x)β over the interval (−1, 1). As a result, the zeros of

Hermite, Laguerre and Jacobi polynomials are all located on the interior of their

orthogonality intervals and the zeros of consecutive polynomials interlace. The

linear functional of orthogonality of the Bessel polynomials cannot be represented

via any positive measure on the real line. Moreover, all their zeros are complex

when the degree is even and they have only one real zero when the degree is odd.

The following are alternative defining properties of the classical orthogonal poly-

nomials:

• They satisfy a second-order differential equation, known as Bochner’s differential

equation, of the type

φ(x)P ′′n (x) + ψ(x)P ′n(x) + nλnPn(x) = 0, (1.26)

where φ and ψ are polynomials independent of n with degree not greater than

2 and exactly 1, respectively, and λn = ψ ′(0)− n− 1

2
φ ′′(0) 6= 0 for all n ≥ 1.

• Their linear functional of orthogonality is a non-trivial solution to a first-order

differential equation, commonly referred to as the Pearson equation,

d

dx
(φ(x)u) + ψ(x)u = 0, (1.27)

involving the same polynomials φ and ψ appearing in (1.26).
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• They can be generated via Rodrigues-type formulas

Pn(x) =
an
w(x)

dn

dxn
(φn(x)w(x)) , (1.28)

where the polynomial φ is the same as in (1.26) and (1.27).

For the Hermite, Laguerre and Jacobi polynomials, the function w(x) in the

Rodrigues-type formula (1.28) is their orthogonality weight, which also satisfies

the Pearson equation (1.27), while for the Bessel polynomials, w(x) = xa−2e−
b
x ,

for parameters a, b. The original Rodrigues formula is the one for Legendre poly-

nomials, which are the Jacobi polynomials with parameters α = β = 0.

A polynomial sequence (Pn(x))n∈N is symmetric if

Pn(−x) = (−1)nPn(x), for all n ∈ N. (1.29)

or, equivalently, if there exist two polynomial sequences
(
P [k]
n (x)

)
n∈N, k ∈ {0, 1},

which we call the quadratic components of (Pn(x))n∈N, such that

P2n(x) = P [0]
n (x2) and P2n+1(x) = xP [1]

n (x2), for all n ∈ N. (1.30)

A polynomial sequence (Pn(x))n∈N is symmetric and orthogonal if and only if it

satisfies a second order recurrence relation of the form

Pn+1(x) = xPn(x)− γnPn−1(x), n ≥ 1,

with γn 6= 0, for all n ≥ 1, and initial conditions P0 = 1 and P1(x) = x.

A linear functional u is symmetric if all its moments of odd order are equal to 0.

The notions of symmetry for orthogonal polynomials and for linear functionals are

naturally connected. Indeed, if (Pn(x))n∈N is orthogonal with respect to u0, then

(Pn(x))n∈N is symmetric if and only if u0 is symmetric.
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Up to a linear transformation of the variable, the only classical orthogonal poly-

nomials that are also symmetric are the Hermite polynomials and the Jacobi poly-

nomials with α = β. The latter are known as the Gegenbauer or ultraspherical

polynomials and include, as particular cases, the Legendre polynomials, when

α = β = 0, and the Chebyshev polynomials of the first and second kind, when

α = β = −1

2
and α = β =

1

2
, respectively.

The quadratic components of a symmetric orthogonal polynomial sequence are also

orthogonal. Let (Pn(x))n∈N be a symmetric and orthogonal polynomial sequence

with quadratic decomposition (1.30), and let σ2 : P ′ → P ′ be the linear operator

defined by 〈σ2(v), f〉 :=
〈
v, f(x2)

〉
for any v ∈ P ′ and f ∈ P . Then,

(
P [0]
n (x)

)
n∈N

and
(
P [1]
n (x)

)
n∈N are orthogonal with respect to σ2(u0) and σ2(xu1), respectively,

where u0 and u1 are the first two elements of the dual sequence of (Pn(x))n∈N. In

particular, if (Pn(x))n∈N is orthogonal with respect to an even function w(x) over

the interval (−c, c), where c ∈ R+ ∪ {+∞}, then
(
P [0]
n (x)

)
n∈N and

(
P [1]
n (x)

)
n∈N

are orthogonal with respect to x−
1
2w
(
x

1
2

)
and x

1
2w
(
x

1
2

)
, respectively, over the

interval (0, c2).

1.4 Multiple orthogonal polynomials (MOPs)

In this section we present some background on multiple orthogonal polynomials.

Our main references on the general theory of multiple orthogonal polynomials are

[4], [36, Ch. 23], [59, Ch. 4], [49] and [74, §3]. Throughout this thesis, we often

use the abbreviation MOPs for multiple orthogonal polynomials.

Other terminology used to refer to these polynomials in the bibliography include

Hermite-Padé polynomials [60], polyorthogonal polynomials [59], polynomials of

simultaneous orthogonality [39], vector orthogonal polynomials [76, 77] and d-

orthogonal polynomials [53] (the latter terminology is only used for the type II

polynomials on the so-called step-line).
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The orthogonality measures of multiple orthogonal polynomials are spread across

a vector of r linear functionals or measures, with r ∈ Z+, and they are polynomials

of a single variable depending on a multi-index ~n = (n0, · · · , nr−1) ∈ Nr of length

|~n| = n0 + · · · + nr−1. In this section, we present definitions of the two types

of multiple orthogonal polynomials, type I and type II, with respect to vectors

of measures (these definitions can easily be rewritten replacing the orthogonality

measures by linear functionals); we describe three special examples of perfect

systems, Angelesco systems, AT-systems and Nikishin systems, with emphasis

on the latter; we give more detail on multiple orthogonal polynomials for multi-

indices on the so-called step-line and the recurrence relations satisfied by them;

and we extend the concepts of classical and symmetric orthogonal polynomials to

the context of multiple orthogonality.

1.4.1 Type I and type II MOPs

The type I multiple orthogonal polynomials for ~n = (n0, · · · , nr−1) ∈ Nr with

respect to the system of r measures (µ0, · · · , µr−1) are given by a vector of r

polynomials (A~n,0, · · · , A~n,r−1), with degA~n,j ≤ nj − 1 for each j ∈ {0, · · · , r− 1},

satisfying the orthogonality and normalisation conditions

r−1∑
j=0

∫
xkA~n,j(x)dµj(x) =

0 if k ∈ {0, · · · , |~n| − 2}

1 if k = |~n| − 1.

(1.31)

In this thesis, we will be dealing with systems of absolutely continuous measures

µj(x) with respect to a common measure µ. Therefore, the measures µj(x) can be

represented via weight functions wj(x) such that dµj(x) = wj(x)dµ(x), for each

j ∈ {0, · · · , r − 1}. In these cases, the type I function is defined as

Q~n(x) =
r−1∑
j=0

A~n,j(x)wj(x), (1.32)
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and the conditions in (1.31) are equivalent to

∫
xkQ~n(x)dµ(x) =

0 if k ∈ {0, · · · , |~n| − 2},

1 if k = |~n| − 1.

(1.33)

The type II multiple orthogonal polynomial for ~n = (n0, · · · , nr−1) ∈ Nr with

respect to the system of r measures (µ0, · · · , µr−1) consists of a monic polynomial

P~n of degree |~n| which satisfies, for each j ∈ {0, · · · , r − 1}, the orthogonality

conditions ∫
xkP~n(x)dµj(x) = 0 if k ∈ {0, · · · , nj − 1}. (1.34)

Observe that both types of multiple orthogonality reduce to standard orthogonality

when the number of measures, r, is equal to 1.

The orthogonality conditions for multiple orthogonal polynomials give a non-

homogeneous system of |~n| linear equations for the |~n| unknown coefficients of

the vector of type I polynomials (A~n,0, · · · , A~n,r−1) in (1.31) or the type II poly-

nomials P~n(x) in (1.34). However, this system may not have a solution, or when a

solution exists it may not be unique. The existence and uniqueness of a solution

is equivalent for type I and type II polynomials. If the solution is unique, then

the multi-index ~n is called normal. A system of multiple orthogonal polynomials

is said to be perfect [52] if all the multi-indices are normal.

Furthermore, if ~n ∈ Nr is a multi-index in a perfect system and j ∈ {0, · · · , r−1},

then the type I polynomial A~n,j has degree exactly nj − 1 whenever nj ≥ 1, and

the type II polynomial P~n(x) satisfies

∫
xnjP~n(x)dµj(x) 6= 0.
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1.4.2 Special systems: Angelesco, AT- and Nikishin

A vector of measures (µ0, · · · , µr−1) is an Angelesco system (introduced in [2]) if the

supports of the measures are subsets of pairwise disjoint intervals, that is, if there

exist intervals ∆0, · · · ,∆r−1 such that supp(µj) ⊆ ∆j, for each j ∈ {0, · · · , r− 1},

and ∆i ∩ ∆j = ∅, whenever i 6= j. Usually, the intervals are allowed to touch

each other, that is, the last condition is replaced by ∆̊i ∩ ∆̊j = ∅, whenever i 6= j.

An Angelesco system is always perfect. Furthermore, for any ~n ∈ Nr and each

j ∈ {0, · · · , r− 1}, the type II and type I multiple orthogonal polynomials P~n and

A~n,j (with nj ≥ 1) have exactly nj and nj − 1, respectively, distinct zeros on ∆̊j.

Therefore, P~n has exactly |~n| zeros, all simple and located in
r−1⋃
j=0

∆̊j.

A vector of measures (µ0, · · · , µr−1) is an AT-system (introduced in [59, Ch. 4]),

where AT stands for Algebraic Tchebyshev, on an interval ∆ for a multi-index

~n = (n0, · · · , nr−1) ∈ Nr if the measures µj(x) are absolutely continuous with

respect to a common positive measure µ on ∆, via weight functions wj(x) such

that the set of functions

r−1⋃
j=0

{
wj(x), xwj(x), · · · , xnj−1wj(x)

}
forms a Chebyshev system on ∆. This latter condition is equivalent to imposing

that, for any polynomials p0, · · · , pr−1 not all identically equal to 0 with deg(pj)

not greater than nj−1 for each j ∈ {0, · · · , r−1}, the function
r−1∑
j=0

pj(x)wj(x) has

at most |~n| − 1 zeros on ∆. A vector of measures (µ0, · · · , µr−1) is an AT-system

on an interval ∆ if it is an AT-system on ∆ for every multi-index in Nr.

All AT-systems are perfect. Furthermore, the type I function Q~n defined by (1.32)

and the type II multiple orthogonal polynomial P~n have exactly |~n| − 1 and |~n|

simple zeros on ∆, respectively, for every multi-index ~n 6= (0, · · · , 0) ∈ Nr in an

AT-system. Moreover, the zeros of the type II polynomials interlace with the

zeros of their nearest neighbours (see [34, Th. 2.1]), which means that there is

always a zero of P~n between two consecutive zeros of P~n+~ek , where ~ek ∈ Nr, with
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k ∈ {0, · · · , r − 1}, is the multi-index that has all entries equal to 0 except the

entry of index k which is equal to 1.

A pair of measures (µ0, µ1) forms a Nikishin system of order 2, firstly introduced in

[58], if µ0 and µ1 are both supported on an interval ∆0 and there exists a measure

σ supported on an interval ∆1, with ∆̊0 ∩ ∆̊1 = ∅, such that µ1 is absolutely con-

tinuous with respect to µ0, with Radon-Nikodym derivative equal to the Stieltjes

transform of σ, that is,
dµ1(x)

dµ0(x)
=

∫
∆1

dσ(t)

x− t
. (1.35)

A Nikishin system formed by r > 2 measures is defined by induction using a non-

commutative product of measures 〈·, ·〉 such that, for any two measures σ1 and

σ2, 〈σ1, σ2〉 is an absolutely continuous measure with respect to σ1, with Radon-

Nikodym derivative equal to the Stieltjes transform of σ2, that is,

d 〈σ1, σ2〉 (x) =

(∫
dσ2(t)

x− t

)
dσ1(x).

Observe that (1.35) is equivalent to µ1 = 〈µ0, σ〉. A Nikishin system of order r > 2

is formed by r measures (µ0, · · · , µr−1) supported on a common interval ∆0 such

that there exists a Nikishin system (σ1, · · · , σr−1) of order r−1 on an interval ∆1,

with ∆̊0 ∩ ∆̊1 = ∅, such that µj = 〈µ0, σj〉, for each j ∈ {0, · · · , r − 1}.

It was proved in [29] that every Nikishin system is an AT-system (see also [30]

for the cases where the supporting intervals of the measures are unbounded or

where consecutive intervals touch at one point). Therefore, all Nikishin systems

are perfect and the zeros of their type I functions and type II multiple orthogonal

polynomials satisfy the properties stated for AT-systems.
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1.4.3 MOPs on the step-line and recurrence relations

A multi-index (n0, · · · , nr−1) ∈ Nr is on the step-line if n0 ≥ n1 ≥ · · · ≥ nr−1 ≥

n0 − 1, or, equivalently, if there exists m ∈ N and j ∈ {0, · · · , r − 1} such that

nk =

m+ 1 if 0 ≤ k ≤ j − 1,

m if j ≤ k ≤ r − 1.

(1.36)

Fixing r ∈ Z+, there is a unique multi-index of length n on the step-line of Nr, for

each n ∈ N. If n = rm + j, with m ∈ N and j ∈ {0, · · · , r − 1}, the multi-index

of length n is (n0, · · · , nr−1) ∈ Nr with entries as described in (1.36). Therefore,

when the number of measures is fixed and we only consider multi-indices on the

step-line, we can replace the multi-index of the multiple orthogonal polynomials

of both type I and type II by its length without any ambiguity. Throughout the

rest of this section, we assume that we are dealing with a perfect system.

The type I multiple orthogonal polynomials for the multi-index on the step-line

(n0, · · · , nr−1), with entries given by (1.36) and length n = rm+ j, are given by a

vector of r polynomials (An,0, · · · , An,r−1), with degAn,k =

⌊
n− k − 1

r

⌋
, for each

k ∈ {0, · · · , r − 1}, satisfying (1.31), with all “~n ” and “|~n|” replaced by “n”.

The type II multiple orthogonal polynomials on the step-line form a sequence

with exactly one polynomial of degree n, for each n ∈ N. These are often referred

to as d-orthogonal polynomials, as introduced in [53], where d is the number of

orthogonality measures. This means that a polynomial sequence (Pn(x))n∈N is

r-orthogonal with respect to a vector of r measures (µ0, · · · , µr−1) if Pn(x), with

n = rm + j for m ∈ N and j ∈ {0, · · · , r − 1}, is the type II multiple orthogonal

polynomial for the multi-index on the step-line (n0, · · · , nr−1), with entries given

by (1.36). By definition, (Pn(x))n∈N satisfies, for j ∈ {0, · · · , r − 1},

∫
xkPn(x)dµj(x) =

Nn 6= 0 if n = rk + j,

0 if n ≥ rk + j + 1.

(1.37)
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Throughout most of this thesis, in particular in Chapters 2, 4 and 5, we focus on

multiple orthogonal polynomials on the step-line with respect to 2 measures, with

emphasis on the type II polynomials, that is, on the 2-orthogonal polynomials. For

r = 2, the step-line as defined above corresponds to the lower step-line as illus-

trated in Figure 1.1. The type II polynomials and type I function for multi-indices

on the upper step-line with respect to the pair of measures (µ0, µ1) correspond to

the polynomials on the lower step-line with respect to (µ1, µ0), which means that

moving between the lower and upper step-line corresponds to swapping the order

of the measures. In Chapter 4, we investigate a family of multiple orthogonal

systems which, under the action of the derivative operator, bounce from the lower

to the upper step-line, and reciprocally, with shifted parameters.

n1

n0

Figure 1.1: [47, Fig. 1] Lower and upper step-line for the multi-index
(n0, n1) ∈ N2 in solid and dashed black line, respectively.

Like standard orthogonal polynomials, multiple orthogonal polynomials also sat-

isfy recurrence relations of finite order. In fact, both type II and type I multiple

orthogonal polynomials satisfy nearest-neighbour recurrence relations as well as

recurrence relations for sequences of polynomials for indices on a path starting

from the origin and with one and only one component increasing by exactly one

at each step. All these recurrence relations are shown in [36, § 23.1.4] and the

nearest-neighbour recurrence relations are also investigated in [71].

We are particularly interested in recurrence relations for the type II multiple or-

thogonal polynomials with multi-indices on the step-line. In fact, a polynomial

sequence (Pn(x))n∈N is r-orthogonal if and only if it satisfies a recurrence relation
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of order r + 1 of the form

Pn+1(x) = (x− βn)Pn(x)−
r∑
j=1

γ
[j]
n−j+1Pn−j(x), (1.38)

with γ
[r]
n 6= 0, for all n ∈ Z+, and initial conditions P0 = 1 and P−j = 0, for each

1 ≤ j ≤ r. This result can be found in [53, Th. 2.1].

When r = 2, the relation (1.38) reduces to the third order recurrence relation

Pn+1(x) = (x− βn)Pn(x)− αnPn−1(x)− γn−1Pn−2(x), (1.39)

with γn 6= 0 for all n ∈ Z+, and initial conditions P0 = 1 and P−1 = P−2 = 0.

When (Pn(x))n∈N satisfies (1.38), we consider an infinite (r + 1)-banded lower-

Hessenberg matrix H = (hi,j)i,j∈N, to which we refer to as the infinite Hessenberg

matrix associated with (Pn(x))n∈N, whose entries are

hi,j =



1 if j = i+ 1,

βi if j = i,

γ
[k]
i−k+1 if j = i− k, for 1 ≤ k ≤ r,

0 if j ≥ i+ 2 or j ≤ j − r − 1.

(1.40)

For each n ∈ Z+, we let Hn be the lower-Hessenberg (n × n)-matrix formed by

the first n rows and columns of H. Then, in the same manner as the recurrence

relation (1.21) satisfied by an orthogonal polynomial sequence can be expressed by

(1.24) using the tridiagonal matrix (1.23), the recurrence relation (1.38) satisfied

by a r-orthogonal polynomial sequence can be expressed, for each n ∈ Z+, by

Hn


P0(x)

...

Pn−2(x)

Pn−1(x)

 = x


P0(x)

...

Pn−2(x)

Pn−1(x)

− Pn(x)


0
...

0

1

 . (1.41)
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In particular, setting r = 2, (1.38) can be expressed as in (1.41) with

Hn =



β0 1 0 0 · · · 0

α1 β1 1 0 · · · 0

γ1 α2 β2 1
. . .

...

0
. . . . . . . . . . . . 0

...
. . . γn−3 αn−2 βn−2 1

0 · · · 0 γn−2 αn−1 βn−1


.

If (Pn(x))n∈N is the r-orthogonal polynomial sequence satisfying (1.41), then the

zeros of Pn(x), n ∈ Z+, are the eigenvalues of the Hessenberg matrix Hn. So,

Pn(x) is the characteristic polynomial of Hn, that is, Pn(x) = det (xIn − Hn).

When we are dealing with r-orthogonal polynomials, with r ≥ 2, the corresponding

(r+1)-banded Hessenberg matrices Hn and H, whose entries are given by (1.40), are

not symmetrisable. Hence, the operator associated with H is non-selfadjoint. This

leads to a connection between multiple orthogonal polynomials and the spectral

theory of non-selfadjoint operators (for more information, we refer to [6] and [69]),

which is much harder to explore than the spectral theory of self-adjoint Jacobi

operators naturally linked to orthogonal polynomials.

1.4.4 Extensions of classical and symmetric orthogonal poly-

nomials

As we have seen in §1.3.2, there are several equivalent defining properties of classi-

cal orthogonal polynomials. These properties give rise to different sets of multiple

orthogonal polynomials, so the notion of “classical” in the context of multiple

orthogonality requires further details.

Amongst these extensions of the classical orthogonal polynomials, there are the

multiple orthogonal polynomials with respect to vectors of measures such that all

the measures are obtained from a classical weight. For instance, by taking weights

of the same type with different parameters and supported on a common interval to
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form AT-systems, often Nikishin systems, or by considering the same weight sup-

ported in different domains, which may be real intervals or curves on the complex

plane, to form Angelesco systems. Examples of the former include the multiple

Hermite, multiple Laguerre of first and second kind and Jacobi-Piñeiro polynomi-

als, while Laguerre-Angelesco and Jacobi-Angelesco polynomials are examples of

the latter. For more information on several of these families of multiple orthogonal

polynomials, we refer to [5, 18] and the references therein.

Another generalisation of the classical character for orthogonal polynomials, with

an emphasis on the algebraic properties of the polynomials, plays a bigger role

in this thesis: a sequence of multiple orthogonal polynomials is said to be Hahn-

classical, or to satisfy the Hahn-classical property, if the sequence of their deriva-

tives is also multiple orthogonal. This terminology is mostly used for r-orthogonal

polynomials, which, typically, satisfy orthogonality conditions with respect to a

vector of weight functions satisfying a non-trivial first-order matrix differential

equation, where each weight is a solution to an ordinary differential equation of

order equal to the number of orthogonality measures.

The definition of a symmetric polynomial sequence can also be generalised. For

m ≥ 2, a polynomial sequence (Pn(x))n∈N is m-fold symmetric if

Pn

(
e

2πi
m x
)

= e
2nπi
m Pn(x), for all n ∈ N, (1.42)

or, equivalently, if there exist m polynomial sequences
(
P [k]
n (x)

)
n∈N, each supra

indexed with k ∈ {0, · · · ,m− 1}, such that

Pmn+k(x) = xkP [k]
n (xm), for all n ∈ N. (1.43)

Observe that a 2-fold symmetric polynomial sequence is, in fact, a symmetric

polynomial sequence as defined by (1.29).

Recall that symmetric orthogonal polynomials satisfy a simpler case of the recur-

rence relation (1.21) with βn = 0. Analogously, if (Pn(x))n∈N is a (r + 1)-fold

symmetric r-orthogonal polynomial sequence, with r ∈ Z+, the coefficients in
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(1.38) satisfy βn = γ
[j]
n+1−j = 0, for all n ∈ N and each j ∈ {1, · · · , r − 1}, and

(Pn(x))n∈N satisfies a three-term recurrence relation (of order r + 1)

Pn+1(x) = xPn(x)− γn−r+1Pn−r(x), (1.44a)

with

γn 6= 0, for all n ∈ Z+, and Pj(x) = xj, for each j ∈ {0, · · · , r}. (1.44b)

Conversely, a polynomial sequence (Pn(x))n∈N satisfying (1.44a)-(1.44b) is neces-

sarily (r + 1)-fold symmetric and r-orthogonal.

We end this section by making a remark that, when investigating multiple orthog-

onal polynomials, we are often interested in analysing their asymptotic behaviour.

For that purpose, Landau’s asymptotic notation is very useful. As such, through-

out this thesis, we use for functions f, g : N→ C:

• Landau’s little-o notation: f = o(g) as n→∞ if lim
n→∞

f(n)

g(n)
= 0;

• Landau’s big-O notation: f = O(g) as n → ∞ if there exist M ∈ R+ and

n0 ∈ N such that |f(n)| < M |g(n)|, for all n ≥ n0;

• asymptotic equivalence notation: f ∼ g as n→∞ if lim
n→∞

f(n)

g(n)
= 1.

1.5 Continued fractions

In this subsection, we give a brief account of the analytic theory of continued

fractions, whose investigation seems to have originated from Stieltjes’ memoir

[65]. Our main reference for the analytic theory of continued fractions is [78]. For

examples of continued fractions involving special functions, we refer to [20].

We start by giving the definition of continued fractions as well as introducing some

basic concepts about these mathematical objects. Then, we show some special ex-

amples of continued fractions, namely Stieltjes and Jacobi continued fractions,
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also known as S-fractions and J-fractions, respectively. Next, we discuss the key

role of J-fractions in the connection of continued fractions and orthogonal poly-

nomials. Finally, we observe that S-fractions and J-fractions have representations

as Stieltjes transforms, which are instrumental for us to prove that we are dealing

with Nikishin systems in Chapters 4 and 5.

Following the notation in [20], a continued fraction is an expression of the type

∞

K
n=0

(
αn
βn

)
:=

α0

β0 +
α1

β1 +
α2

β2 + · · ·

. (1.45)

A continued fraction is a limiting case of rational fractions. For any n ∈ Z+, the

n-th-approximant of the continued fraction (1.45) is

fn = fn

α0, · · · , αn−1

β0, · · · , βn−1

 =
α0

β0 +
α1

β1 +
.. .

αn−1

βn−1

.

The n-th-approximant of a continued fraction can be written in the form fn =
Rn

Sn
,

where Rn and Sn denote the n-th-numerator and n-th-denominator of (1.45),

which are polynomials in the indeterminates α0, · · · , αn−1 and β0, · · · , βn−1 that

can be generated by the recurrence formulas

Rn+1 = βnRn + αnRn−1 and Sn+1 = βnSn + αnSn−1, n ∈ Z+, (1.46)

with initial conditions R0 = 0, S0 = 1, R1 = α0 and S0 = β0.

A continued fraction (1.45) is convergent if the limit of its sequence of approxi-

mants, exists and is finite, and it is divergent otherwise. If (1.45) is convergent

then its value is equal to the limit of its sequence of approximants. Two continued
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fractions are equivalent if their n-th-approximants are all equal. It is straightfor-

ward that two equivalent convergent continued fractions have the same value.

A contraction of a continued fraction with a convergent sequence (fn)n∈N is a

continued fraction whose convergents (f ′n)n∈N form a subsequence of (fn)n∈N, that

is, f ′n = fs(n), n ∈ N, where s : N → N is an increasing sequence. Conversely, the

original continued fraction is an extension of its contraction. Observe that any

contraction of a convergent continued fraction is also convergent and has the same

value as the original continued fraction. Examples of contractions of a continued

fraction with a convergent sequence (fn)n∈N are its even and odd part which are

defined, up to equivalence, as the continued fractions with convergent sequences

equal to (f2n)n∈N and (f2n+1)n∈N, respectively.

A continued fraction (1.45) with αn = 1, for all n ∈ N, is called a regular or simple

continued fraction. A classical example of a regular continued fraction is obtained

from (1.45) by setting βn = cnz
n+1 mod 2, with cn ∈ R+ for all n ∈ N (that is,

β2k = c2kz and β2k+1 = c2k+1, for each k ∈ N):

∞

K
n=0

(
1

cnzn+1 mod 2

)
=

1

c0z +
1

c1 +
1

c2z +
1

c3 + · · ·

. (1.47)

The latter continued fraction was the object of Stieltjes’ work in [65]. Hence, the

terms Stieltjes continued fraction and S-fraction are used for continued fractions of

the form (1.47), as well as for any continued fraction which is equivalent to (1.47)

or which can be obtained from (1.47) by a change of variable.

If we set α0 =
1

c0

and αn+1 =
1

cncn+1

, for each n ∈ N, then (1.47) is equivalent to

∞

K
n=0

( αn
zn+1 mod 2

)
=

α0

z +
α1

1 + · · ·

. (1.48)
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Making the change of variable w = z−1, the latter leads to

∞

K
n=0

(αnw
1

)
=

α0w

1 +
α1w

1 + · · ·

. (1.49)

Therefore, the continued fractions (1.47), (1.48) and (1.49) are all S-fractions.

Another well-known example of continued fractions are the so-called Jacobi con-

tinued fractions or J-fractions, obtained from (1.45) by setting α0 = a0, αn = −an,

for any n ≥ 1, and βn = z + bn, for all n ∈ N, with an, bn ∈ C, to get

−
∞

K
n=0

(
−an
z + bn

)
=

a0

z + b0 −
a1

z + b1 −
a2

z + b2 − · · ·

. (1.50)

If every an, bn ∈ R+ then the J-fraction (1.50) can be obtained by contraction from

the S-fraction (1.48). More precisely, applying to (1.48) the identity

z +
β0

1 +
β1

λ

= z + β0 −
β0β1

β1 + λ
,

valid for any β0, β1, λ ∈ C, we derive that (1.50), with coefficients a0 = α0, b0 = α1

and an = α2n−1α2n and bn = α2n +α2n+1, for n ≥ 1, is the even part of (1.48). For

more details, including how to recover αn from an and bn, see [65, Eqs. (Ia)-(Id)]

and [78, Th. 28.3].

Recalling (1.46), the n-th-approximants of the J-fraction (1.50) are rational func-

tions
Rn(z)

Sn(z)
, where Rn(z) and Sn(z) are polynomial solutions of the recurrence

relation

yn+1(z) = (z + bn) yn(z)− anyn−1(z), n ∈ Z+,

with initial conditions R0 = 0 and R1 = a0, S0 = 1 and S1 = z + b0. Therefore,

(Sn)n∈N is the orthogonal polynomial sequence satisfying the recurrence relation
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(1.21) with βn = −bn and γn = an, for n ∈ N, and (Rn)n∈N are the corresponding

associated polynomials.

From what we have written above, it is clear how orthogonal polynomials are

intrinsically connected with continued fractions. In the context of multiple or-

thogonality, we will use continued fractions and, in particular, S-fractions and

J-fractions to prove that certain pairs of measures form Nikishin systems, because

these continued fractions can be represented via Stieltjes transforms.

In fact, Stieltjes showed in [65] that the S-fraction (1.47) can be represented as

a Stieltjes transform of a measure with support in R−. More precisely, if every

cn ∈ R+ then there exists a probability measure in R+, that is, a non decreasing

bounded function σ in R+
0 with σ(0) = 0 and lim

u→∞
σ(u) = 1, such that

∞

K
n=0

(
1

cnzn+1 mod 2

)
=

1

c0

∫ 0

−∞

dσ(−t)
z − t

=
1

c0

∫ ∞
0

dσ(u)

z + u
.

Due to the relations between the continued fractions (1.47)-(1.50), we also have

the integral representations

−
∞

K
n=0

(
−an
z + bn

)
=

∞

K
n=0

( αn
zn+1 mod 2

)
= α0

∫ ∞
0

dσ(u)

z + u
(1.51)

and
∞

K
n=0

(αnw
1

)
= α0

∞∫
0

dσ(u)

w−1 + u
= α0

∞∫
0

wdσ(u)

1 + uw
,

with αn, an, bn ∈ R+, for all n ∈ N.
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1.6 Branched continued fractions

Although various types of branched continued fractions have been introduced in

the literature, the main object of this section are the branched continued fractions

introduced in [61] as a fundamental tool to prove coefficientwise Hankel-total pos-

itivity of combinatorially interesting sequences of polynomials and total positivity

of related matrices. As such, this section is based on [61].

Firstly, we present the connection of m-branched continued fractions with the

combinatorics of m-Dyck paths as a generalisation of the connection of continued

fractions with Dyck paths. In fact, m-branched continued fractions appear as

a representation of the ordinary generating function of weighted m-Dyck paths.

Like the authors of [61], we do not deal directly with the m-branched continued

fractions, and instead we deal with the associated m-Stieltjes-Rogers polynomials,

which are the generating polynomials of the same m-Dyck paths with fixed length.

A Dyck path is a path in the upper half-plane Z× N, starting and ending on the

horizontal axis, using steps (1, 1) (called “rise” or “up step”) and (1,−1) (called

“fall” or “down step”). More generally, a Dyck path at level k is a path in Z×N≥k,

starting and ending on the horizontal line at height k, using steps (1, 1) and (1,−1).

Observe that a Dyck path always has even length, where the length is the number

of the steps, because the number of rises and falls must be equal.

For an infinite set of indeterminates λ = (λi)i≥1, we define the Stieltjes-Rogers

polynomial of order n (introduced in [31]), which we denote by Sn (λ), as the

generating polynomial for all Dyck paths of length 2n, with each rise having weight

1 and each fall from height i having weight λi. Clearly Sn (λ) is a homogeneous

polynomial of degree n with nonnegative integer coefficients.

The ordinary generating function of a sequence (an)n∈N is the formal series

f(t) =
∞∑
n=0

an t
n.
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Let f0(t) =
∞∑
n=0

Sn (λ) tn be the ordinary generating function for Dyck paths with

the weights specified above, considered as a formal power series in t. More gener-

ally, let fk(t) be the ordinary generating function for Dyck paths at level k with

the same weights. Then, fk is f0 with each λi replaced by λi+k. Observe that we

can split a Dyck path at level k of nonzero length at its last visit to level k and

rewrite the path in the form P0UP1D where P0 and P1 are arbitrary Dyck paths

at level k and k + 1, respectively, U is an up step and D is a down step. As a

result, the functions fk(t) satisfy the equivalent functional equations

fk(t) = 1 + λk+1 t fk(t)fk+1(t) and fk(t) =
1

1− λk+1 t fk+1(t)
.

Successively iterating the former we derive the continued-fraction representation

fk(t) =
1

∞

K
j=1

(
−λk+jt

1

) =
1

1−
λk+1t

1−
λk+2t

1− · · ·

.

In particular,

f0(t) =
1

∞

K
j=1

(
−λjt

1

) =
1

1−
λ1t

1−
λ2t

1− · · ·

.

For any positive integer m, a m-Dyck path is a path in the upper half-plane Z×N,

starting and ending on the horizontal axis, using steps (1, 1) (called “rise”) and

(1,−m) (called “m-fall”). More generally, a m-Dyck path at level k is a path in

Z× N≥k, starting and ending at height k, using steps (1, 1) and (1,−m). Clearly

the length of a m-Dyck path must be a multiple of m + 1 and, when m = 1, the

1-Dyck paths are standard Dyck paths.
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Figure 1.2: [61, Fig. 1] A 2-Dyck path of length 18.

For any positive integer m and any infinite set of indeterminates λ = (λi)i≥m, we

define the m-Stieltjes-Rogers polynomial of order n, which we denote by S(m)
n (λ),

as the generating polynomial for m-Dyck paths of length (m+ 1)n, with each rise

having weight 1 and each m-fall from height i having weight λi Clearly S(m)
n (λ)

is a homogeneous polynomial of degree n with nonnegative integer coefficients.

Similarly to the generating functions defined earlier, let f0(t) =
∞∑
n=0

S(m)
n (λ) tn

be the ordinary generating function for m-Dyck paths with the weights specified

above, considered as a formal power series in t and, more generally, let fk(t) be the

ordinary generating function for m-Dyck paths at level k with the same weights.

Then, fk is again f0 with each λi replaced by λi+k. Observe that, analogously

to how we split a Dyck path at level k at its last visit to level k, we can split

a m-Dyck path at level k of nonzero length at its last visit to level k and then

we further split the remaining part of the path at its last return to height k + 1,

then at its last return to height k + 2 and so on and rewrite the path in the form

P0UP1U · · · PmD where each Pj, j ∈ {0, · · · ,m}, is an arbitrary Dyck path at

level k + j, U is a rise and D is a m-fall. Therefore, we derive the equivalent

functional equations

fk(t) = 1 + λk+m t
m∏
j=0

fk+j(t) and fk(t) =
1

1− λk+m t
m∏
j=1

fk+j(t)

.
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Successively iterating the former we derive that

fk(t) =
1

1− αk+mt
m∏
i1=1

1

1− αk+m+i1t
m∏
i2=1

1

1− αk+m+i1+i2t
m∏
i3=1

1

1− · · ·

. (1.52)

In particular, a representation for f0(t) is obtained by taking k = 0 in (1.52).

We call the right-hand side of (1.52) a m-branched continued fraction. From now

on, we do not deal directly with the m-branched continued fractions but with the

associated m-Stieltjes-Rogers polynomials.

The m-Stieltjes-Rogers polynomials can be generalised to form a unit lower tri-

angular matrix whose first column entries are the m-Stieltjes-Rogers polynomials.

The construction of this generalisation is connected with partial m-Dyck paths,

which are paths in the upper half-plane Z×N, only using steps (1, 1) and (1,−m),

starting on the horizontal axis and allowed to end anywhere in the upper half-

plane. Note that every point (x, y) of a partial m-Dyck path, and in particular

the final point, satisfy x ≡ y mod (m + 1). For an infinite set of indeterminates

λ = (λi)i≥m, we define the generalised m-Stieltjes-Rogers polynomials, denoted by

S
(m)
n,k (λ), with n, k ∈ N, as the generating polynomial for partial m-Dyck paths

from (0, 0) to ((m+1)n, (m+1)k) in which each rise gets weight 1 and each m-fall

from height i gets weight λi. It is clear that S
(m)
n,0 (λ) = S(m)

n (λ), S(m)
n,n (λ) = 1 and

S
(m)
n,k (λ) = 0, if k > n. Therefore, the matrix S =

(
S

(m)
n,k (λ)

)
n,k∈N

is a unit-lower-

triangular matrix, whose first column displays the ordinary m-Stieltjes-Rogers

polynomials.
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1.7 Total positivity and production matrices

In this section we give a brief introduction to the theory of totally positive matrices,

the method of production matrices and the link between these two topics. We

highlight a special class of totally positive matrices, called oscillation matrices,

which has applications to the study of zeros of multiple orthogonal polynomials,

as explained in Section 3.4. Our main references for totally positive matrices and

oscillation matrices are [28, 32, 63], while for production matrices, we refer to [21],

where they were introduced.

We call a matrix totally positive if all its minors are nonnegative and strictly totally

positive if all its minors are positive. This terminology is the same used in [61] and

[63]. However, in [32] and [28], the authors use the terms totally nonnegative and

totally positive matrices for what we define here as totally positive and strictly

totally positive matrices, respectively.

Oscillation matrices are a class of matrices intermediary between totally positive

and strictly totally positive matrices. A (n× n)-matrix A is an oscillation matrix

if A is a totally positive matrix and some power of A is a strictly totally positive

matrix. We are interested in oscillation matrices because they share the nice

spectral properties of strictly totally positive matrices. In fact, if A is a (n × n)-

oscillation matrix (and, in particular, if A is strictly positive) then A has n real,

positive and simple eigenvalues (see [32, Th. II-6], this result is known as the

Gantmacher-Krein theorem), which interlace with the eigenvalues of the matrix

obtained from A by removing either its first or last row and column (see [32,

Th. II-14] and [28, Th. 5.5.2]).

Now we introduce production matrices. Let P = (pi,j)i,j∈N be an infinite matrix

with entries in a commutative ring. We assume that P is either row-finite or

column-finite, that is, P has only finitely many nonzero entries in each row or in

each column, respectively. Then, all the powers of P are well defined and we can

define an infinite matrix Q = (qn,k)n,k∈N by qn,k = (P n)0,k. In particular, q0,0 = 1

and q0,k = 0, if k ≥ 1. We call P the production matrix and Q the output matrix.
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Total positivity and production matrices are strongly connected topics because

production matrices can be used to solve total-positivity problems. That is a

consequence of the following result (see [61, Th. 9.4]): if P is a totally positive

matrix with entries in a commutative ring and P is either row-finite or column-

finite, then its output matrix is also a totally positive matrix.

For instance, the matrix S =
(
S

(m)
n,k (λ)

)
n,k∈N

of generalised m-Stieltjes-Rogers

polynomials, for the set of indeterminates λ = (λk+m)k∈N, introduced in Section

1.6, is proved to be totally positive in the polynomial ring Z[λ] equipped with

the coefficientwise partial order (that is, a polynomial in Z[λ] is nonnegative if

all its coefficients are nonnegative), due to the total positivity of its production

matrix (see [61, §9.5]). Based on [61, Prop. 8.2], this production matrix P is a

(m+ 1)-banded lower-Hessenberg matrix admitting the decomposition

P =
m−1∏
i=0

(
L
((
λk(m+1)+i

)
k≥1

))
U
((
λk(m+1)−1

)
k≥1

)
, (1.53)

where L
(
(sk)k≥1

)
is the lower-bidiagonal infinite matrix with entries Lk,k = 1 and

Lk+1,k = sk+1 for all k ∈ N, and U
(
(tk)k≥1

)
is the upper-bidiagonal infinite matrix

with entries Uk,k+1 = 1 and Uk,k = tk+1, for all k ∈ N. We often refer to P in (1.53)

as the production matrix of the m-Stieltjes-Rogers polynomials
(
S

(m)
n (λ)

)
n∈N

or

the production matrix of the corresponding branched continued fraction.

To prove that the production matrix P is totally positive in Z[λ] equipped with the

coefficientwise partial order, we combine two known results about totally positive

matrices. Firstly, the product of totally positive matrices (when well-defined) is

also totally positive. This is a corollary of the Cauchy-Binet formula, which gives

a formula for the minors of the product of two matrices as a sum of products of

minors of each matrix (see, for instance, [63, §4.6]). Secondly, a bidiagonal matrix

is totally positive if and only if all its entries are nonnegative. The nonnegativity

of all the entries of a matrix is naturally a necessary condition for any matrix to be

totally positive. For bidiagonal matrices, it is also a sufficient condition because

all their nonzero minors are simply a product of some entries. Combining these

two results, we derive the total positivity of P .
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1.8 Outline

The overarching theme of this thesis lies on the characterisation of multiple or-

thogonal polynomials with respect to absolutely continuous measures. The main

object of interest is on the type II multiple orthogonal polynomials on the step-line,

or r-orthogonal polynomials, which admit representations as terminating hyper-

geometric series. The r-orthogonal polynomials analysed here, as well as the type

I functions on the step-line, satisfy the Hahn-classical property, as a consequence

of the differential properties of their orthogonality weights. The main focus of the

research presented here lies on multiple orthogonal polynomials with respect to 2

measures, but the techniques obtained can be extended to cases involving more

orthogonality measures.

The object of study in Chapter 2 are Hahn-classical 3-fold symmetric 2-orthogonal

polynomials. After presenting some known results on this collection of polynomi-

als, we obtain explicit expressions for the orthogonality weights of the components

of their cubic decomposition, and we prove that these cubic components are al-

ways Hahn-classical. This approach is instrumental to the extension of those cubic

components obtained in Chapters 4 and 5. In the meantime, we show that the

cubic components are always Hahn-classical, a result that is new to the theory.

In Chapter 3 we investigate multiple orthogonal polynomials with respect to mea-

sures supported on the positive real line (or on a subset of it), whose moments

are ratios of Pochhammer symbols. In Chapters 4 and 5, we analyse in detail two

families of multiple orthogonal polynomials with respect to vectors of two mea-

sures, which are instances of the polynomials studied in Chapter 3. In Chapter

4 the orthogonality measures are supported on the positive real line and admit

integral representations involving the Tricomi confluent hypergeometric function

defined by (1.18), while in Chapter 5 the orthogonality measures are supported

on the interval (0, 1) and admit integral representations involving Gauss’ hyperge-

ometric function defined by (1.5) and (1.7). Chapters 4 and 5 are based on joint

publications with Ana Loureiro [47] and [48], respectively.
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For both of these cases, we start by observing that the moments of the orthogonal-

ity measures are ratios of, respectively, two-by-one and two-by-two Pochhammer

symbols. In fact, when the number of orthogonality measures is two, the multiple

orthogonal polynomials originating from Chapter 3 are the two families studied in

Chapters 4 and 5 and the multiple orthogonal polynomials with respect to Macdo-

nald functions introduced in [75] and [11]. Moreover, the cubic components of any

Hahn-classical 3-fold-symmetric 2-orthogonal polynomial sequence is a particular

realisation of one of these three families of multiple orthogonal polynomials.

We prove that the orthogonality measures of the multiple orthogonal polynomials

in Chapters 4 and 5 form Nikishin systems, which guarantees the existence and

uniqueness of the entire systems of multiple orthogonal polynomials. We start our

analysis of these polynomial systems by studying the differential properties of the

orthogonality weights, which we use to prove that both type I functions and type

II polynomials on the step-line satisfy the Hahn-classical property, and to obtain

Rodrigues-type formulas generating the type I functions and polynomials on the

step-line. Then, we focus on the characterisation of the type II polynomials on

the step-line, via their explicit representations as terminating hypergeometric se-

ries and as solutions of third-order differential equations and recurrence relations

as well as by investigating their asymptotic behaviour and the location of their

zeros. Furthermore, we link these polynomials with branched-continued-fraction

representations of generalised hypergeometric series, equal to the generating func-

tions of the moment sequences of their first orthogonality measures. We also show

that the polynomials studied in [75] and [11] are a limiting case of the polynomi-

als investigated in Chapter 4, which in turn are a limiting case of the polynomials

analysed in Chapter 5. At the end of Chapter 4, we present some known properties

of the polynomials in [75] and [11] and we link these polynomials with branched

continued fractions and production matrices.

Finally, in Chapter 6, we give a brief summary of the results in this thesis and the

connection between them, leading to a discussion on possible future directions of

investigation related to the research presented here.



Chapter 2

Hahn-classical 3-fold-symmetric

2-orthogonal polynomials

As explained in the introduction, a 2-orthogonal polynomial sequence (Pn(x))n∈N

is Hahn-classical if its sequence of derivatives is also 2-orthogonal and is 3-fold

symmetric if

Pn

(
e

2πi
3 x
)

= e
2nπi
3 Pn(x), for all n ∈ N. (2.1)

This definition is equivalent to the existence of three polynomial sequences
(
P [k]
n (x)

)
n∈N

supra indexed with k ∈ {0, 1, 2}, the cubic components of (Pn(x))n∈N, such that

P3n+k(x) = xkP [k]
n (x3), for all n ∈ N. (2.2)

The definition (2.1) and the characterisation (2.2) of 3-fold symmetry can be ob-

tained by taking m = 3 in (1.42) and (1.43), respectively.

There are four distinct families of Hahn-classical 3-fold-symmetric 2-orthogonal

polynomials, up to a linear transformation of the variable, as shown in [23]. All

these families were studied in detail in [50] and the four arising cases were therein

denominated as cases A, B1, B2, and C. We use the same terminology.

41
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The outline of this chapter is as follows. In Section 2.1, we introduce several

known results about 3-fold-symmetric 2-orthogonal polynomials, some of them

also involving the Hahn-classical property. In Section 2.2, we obtain original

formulas for the orthogonality weights of the cubic components of a generic 3-

fold-symmetric Hahn-classical 2-OPS (Proposition 2.8). We use these formulas in

§2.2.1-2.2.4 to obtain new explicit expressions for the cubic components of each

of the four aforementioned cases of Hahn-classical 3-fold-symmetric 2-orthogonal

polynomials. In Section 2.3, we prove the main original result of this chapter: the

cubic decomposition preserves the Hahn-classical property, that is, the cubic com-

ponents of Hahn-classical 3-fold-symmetric 2-orthogonal polynomials are always

Hahn-classical 2-orthogonal polynomials (Theorem 2.9). Both Proposition 2.8 and

Theorem 2.9 were originally published in [47, §4].

2.1 Known results

Recalling (1.44a)-(1.44b), a polynomial sequence (Pn(x))n∈N is both 3-fold sym-

metric and 2-orthogonal if and only if

Pn+1(x) = xPn(x)− γn−1Pn−2(x), (2.3)

with γn 6= 0, for all n ≥ 1, and initial conditions P0 ≡ 1, P1(x) = x and P2(x) = x2.

Note that a 3-fold-symmetric polynomial sequence (Pn(x))n∈N is never orthogonal

with respect to any linear functional u. Otherwise we would have

0 = 〈u, P0 P2〉 =
〈
u, x2

〉
=
〈
u, P 2

1

〉
6= 0.

There is also a notion of 3-fold symmetry for linear functionals and for measures.

A pair of measures (µ0, µ1), or alternatively a pair of linear functionals (u0, u1), is

3-fold symmetric if, for j ∈ {0, 1} and k ∈ {0, 1, 2} with k 6= j,

∫
x3n+kdµj(x) = 0, or alternatively

〈
uj, x

3n+k
〉

= 0.
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Note that, if (µ0, µ1) is a 3-fold-symmetric pair of measures (or linear functionals),

then an orthogonal polynomial sequence with respect to either µ0 or µ1 does not

exist. The latter is a direct consequence of

∫
dµ1(x) = 0, while the former is a

result of the moments or order 1 and 2 being both equal to 0.

The notions of 3-fold symmetry for polynomials and for linear functionals are

naturally connected. In fact, if (Pn(x))n∈N is a 2-orthogonal polynomial sequence

with respect to a pair of measures (µ0, µ1), or to a pair of linear functionals (u0, u1),

then (Pn(x))n∈N is 3-fold symmetric if and only if (µ0, µ1), or (u0, u1), is 3-fold

symmetric as shown in [23, Th. 5.1].

Furthermore, the cubic components of a 3-fold-symmetric 2-orthogonal sequence

are also 2-orthogonal. The structure of the orthogonality linear functionals of the

cubic components and the expressions for their recurrence relation coefficients are

obtained in [23], and they are as follows.

Lemma 2.1. [23, §5.1 & §6.1] (cf. [50, Lemma 2.1]) Let (Pn(x))n∈N be a 3-

fold-symmetric 2-orthogonal polynomial sequence with respect to a pair of linear

functionals (u0, u1) satisfying (2.3) and let {un}n∈N be the corresponding dual se-

quence. Then, for each k ∈ {0, 1, 2}:

(a) The cubic component
(
P [k]
n (x)

)
n∈N is 2-orthogonal with respect to the vector

of linear functionals
(
u

[k]
0 , u

[k]
1

)
such that

u
[k]
0 = σ3(xkuk) and u

[k]
1 = σ3(xkuk+3),

where σ3 : P ′ → P ′ represents the linear operator defined in P ′ by

〈σ3(v), f〉 :=
〈
v, f(x3)

〉
, for any v ∈ P ′ and f ∈ P .

(b)
(
P [k]
n (x)

)
n∈N satisfies the recurrence relation

P
[k]
n+1(x) =

(
x− β[k]

n

)
Pn(x)− α[k]

n Pn−1(x)− γ[k]
n−1Pn−2(x),

where, for each n ∈ N,
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• β[k]
n = γ3n−1+k + γ3n+k + γ3n+1+k,

• α[k]
n+1 = γ3n+kγ3n+2+k + γ3n+1+kγ3n+2+k + γ3n+1+kγ3n+3+k,

• γ[k]
n+1 = γ3n+1+kγ3n+3+kγ3n+5+k.

It was proved in [8] that the orthogonality measures of a 3-fold-symmetric 2-

orthogonal polynomial sequence (with positive recurrence coefficients γn) are sup-

ported on subsets of the starlike set with three rays, referred to here as the 3-star

and illustrated in Figure 2.1,

S =
2⋃

k=0

Γk, with Γk =
(

0, e
2kπi
3 ∞

)
for each k ∈ {0, 1, 2}. (2.4)

Figure 2.1: [50, Fig. 2] The 3-star S with rays Γ0, Γ1 and Γ2.

Theorem 2.2. [8] (cf. [50, Th. 2.1]) Let (Pn(x))n∈N be a 2-orthogonal polynomial

sequence with respect to a pair of linear functionals (u0, u1) satisfying (2.3) with

γn > 0, for all n ∈ Z+. Then there exists a pair of measures (µ0, µ1) such that

〈u0, f〉 =

∫
Sγ

f(x)dµ0(x) and 〈u1, f〉 =

∫
Sγ

f(x)dµ1(x),

where supp(µ0) = supp(µ1) = Sγ =
2⋃

k=0

(
0, γ e

2kπi
3

)
, for some γ ∈ R+ ∪ {∞}, and

the measures µ0 and µ1 are invariant under rotations of angle
2πi

3
.

Moreover, all the zeros of the 3-fold-symmetric 2-orthogonal polynomials (with

positive recurrence coefficients γn) lie on the 3-star (2.4), due to the following

result obtained in [12].
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Theorem 2.3. [12, Th. 2.2, d = 2] Let (Pn(x))n∈N be a 2-orthogonal polynomial

sequence with respect to a pair of linear functionals (u0, u1) satisfying (2.3) with

γn > 0, for all n ∈ Z+. Then, for each n ∈ N and j ∈ {0, 1, 2}:

(a) P3n+j has n positive real simple zeros, which we denote by {x(k)
3n+j}nk=1 with

0 < x
(1)
3n+j < · · · < x

(n)
3n+j, satisfying the interlacing property

x
(k)
3n+3 < x

(k)
3n < x

(k)
3n+1 < x

(k)
3n+2 < x

(k+1)
3n+3 .

for any n ∈ Z+ and k ∈ {1, · · · , n}.

(b) If x is a zero of P3n+j, then e
2πi
3 x and e

4πi
3 x are also zeros of P3n+j.

(c) 0 is a zero of P3n+j of multiplicity j when j ∈ {1, 2}.

Furthermore, there is a relation between the asymptotic behaviour of the zeros

of 3-fold-symmetric 2-orthogonal polynomials and the corresponding recurrence

coefficients γn, as follows.

Theorem 2.4. [50, Th. 2.2] Let (Pn(x))n∈N be a 2-orthogonal polynomial sequence

satisfying (2.3) with γn > 0 and γ2k+j = cj k
λ + o

(
kλ
)
, j ∈ {0, 1}, as k →∞, with

λ, c0, c1 ∈ R+
0 and c = max{c0, c1} > 0. Then, if we denote by x

(n)
n , with n ≥ 1,

the largest zero in absolute value of Pn(x),

∣∣x(n)
n

∣∣ ≤ (27

4
c

) 1
3

n
λ
3 + o

(
n
λ
3

)
, as n→ +∞.

Now we start presenting results involving the Hahn-classical property. Firstly,

we recall an alternative characterisation of the Hahn-classical property for 2-

orthogonal polynomials, via a matrix Pearson-type differential equation satisfied

by the orthogonality linear functionals, corresponding to [24, Th. 3.1] with d = 2.
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Proposition 2.5. [24, Th. 3.1, d = 2] (cf. [56, Prop. 6.2]) Let (Pn(x))n∈N be

a 2-orthogonal polynomial sequence with respect to a pair of linear functionals

(u0, u1), where (un)n∈N is the dual sequence of (Pn(x))n∈N. Then (Pn(x))n∈N is

Hahn-classical if and only if u =

u0

u1

satisfies a differential equation of the type

d

dx
(Φ(x)u) + Ψ(x)u = 0, (2.5)

with Φ(x) =

φ00(x) φ01(x)

φ10(x) φ11(x)

 and Ψ(x) =

 0 1

ηP1(x) ξ

, where η and ξ are

nonzero constants and the φij, with i, j ∈ {0, 1}, are polynomials such that deg φij

is not greater than 1 when (i, j) 6= (1, 0) and deg φ10 is not greater than 2.

The following theorem gives a necessary and sufficient condition for a 3-fold-

symmetric 2-orthogonal polynomial sequence to be Hahn-classical.

Theorem 2.6. [50, Th. 3.2] Let (Pn(x))n∈N be a 2-orthogonal polynomial sequence.

Then the following conditions are equivalent:

• The sequence (Pn(x))n∈N satisfies (2.3) with

γn+2

γn+1

=
n+ 3

n+ 1

n (ϑn − 1) + 1

(n+ 4) (ϑn+1 − 1) + 1
(2.6)

where, for each k ∈ N and j ∈ {0, 1},

ϑ2k+j = 1 +
ϑj − 1

k (ϑj − 1) + 1
,

and ϑ1, ϑ2 6=
m− 1

m
, for any m ≥ 1.

• The sequence (Qn(x))n∈N, defined by Qn(x) =
1

n+ 1
P ′n+1(x), for all n ∈ N, is

2-orthogonal satisfying the recurrence relation

Qn+1(x) = xQn(x)− n− 1

n+ 1
ϑn−1γnQn−2(x). (2.7)
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Next we present an integral representation for the (absolutely continuous) orthogo-

nality measures of Hahn-classical 3-fold-symmetric 2-orthogonal polynomials (with

positive recurrence coefficients γn), via a pair of weight functions satisfying a ma-

trix differential equation of the type in (2.5), but involving weight functions instead

of linear functionals.

Theorem 2.7. [50, Th. 3.3 & 3.1] Let (Pn(x))n∈N be a 3-fold-symmetric Hahn-

classical 2-orthogonal polynomial sequence satisfying (2.3) with γn+1 > 0, for all

n ∈ N. Then (Pn(x))n∈N is 2-orthogonal with respect to a pair of measures (µ0, µ1)

admitting, for both j ∈ {0, 1}, the integral representations

∫
S

f(z)dµj(z) =
2∑

k=0

ωk(j+1)

∫ γω3−k

0

f(z)Uj
(
ωkz
)

dz, (2.8)

where ω = e
2πi
3 , γ =

27

4
lim
n→∞

γn, S =
2⋃

k=0

[
0, γ e

2kπi
3

]
and the Uj : [0, γ] → R are

twice differentiable functions satisfying the matrix differential equation

d

dx

Φ(x)

U0(x)

U1(x)

+ Ψ(x)

U0(x)

U1(x)

 = 0, (2.9)

where there exist constants ϑ1, ϑ2 6=
n− 1

n
, for any n ≥ 1, such that

Φ(x) =

 ϑ1 (1− ϑ1)x

2 (1− ϑ2)

γ1

x2 2ϑ2 − 1

 and Ψ(x) =

 0 1

2

γ1

x 0

 .

Let j ∈ {0, 1} and m ∈ N. Making the change of variable x = ωkz for each

k ∈ {0, 1, 2}, the integral representation in (2.8) is equivalent to

∫
S

zmdµj(z) =
2∑

k=0

ωk(m−j)
∫ γ

0

xm Uj(x)dx for all m ∈ N.
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Moreover,

2∑
k=0

ωk(m−j) =

3, if m = 3n+ j

1 + ω + ω2 = 0, if m = 3n+ k with k ∈ {0, 1, 2}\{j}.

Therefore, the integral representations in (2.8) imply that the pair of measures

(µ0, µ1) is 3-fold symmetric and, for both j ∈ {0, 1} and any n ∈ N,

∫
S

z3n+jdµj(z) = 3

∫ γ

0

x3n+j Uj(x)dx =

∫ γ3

0

tn+ j−2
3 Uj

(
t
1
3

)
dt. (2.10)

The latter integral representation is obtained via the change of variable t = x3

and it will be useful in the following section.

As explained in [54], all elements of the dual sequence (un)n∈N of a 2-orthogonal

polynomial sequence (Pn(x))n∈N can be written as a combination of u0 and u1.

Namely, for each n ∈ N, there exists polynomials En(x), an−1(x), Fn(x) and bn(x)

with degEn = degFn = n, deg an−1 ≤ n− 1 and deg bn ≤ n, such that

u2n = En(x)u0 + an−1(x)u1 and u2n+1 = bn(x)u0 + Fn(x)u1.

It is clear that E0(x) = F0(x) = 1 and b0(x) = a−1(x) = 0. Moreover, the

polynomials En(x), an−1(x), Fn(x) and bn(x), for n ≥ 1, can be generated by the

recursive relations given in [54, Lemma 2.2]. In particular, when (Pn(x))n∈N is

a 3-fold-symmetric 2-orthogonal polynomial sequence satisfying (2.3), the initial

elements of the dual sequence (after u0 and u1) are

• u2 = E1u0 + a0u1 =
x

γ1

u0, (2.11a)

• u3 = b0u0 + F1u1 =
1

γ2

(xu1 − u0), (2.11b)

• u4 = E2u0 + a1u1 =
1

γ1γ3

(
x2u0 − γ1u1

)
, (2.11c)

• u5 = b2u0 + F2u1 =
1

γ2γ4

(
x2u1 −

(
1 +

γ2

γ1

)
xu0

)
. (2.11d)
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2.2 Cubic components and their orthogonality

weights

As explained in [23] and [50], there are four distinct families of Hahn-classical

3-fold-symmetric 2-orthogonal polynomials, up to a linear transformation of the

variable. Using the terminology from [50] and the coefficients ϑn with the same

meaning as in Theorem 2.6, the four cases to consider are

• Case A: ϑ1 = ϑ2 = 1. This implies that ϑn = 1, for all n ∈ Z+.

• Case B1: ϑ1 6= 1 and ϑ2 = 1. We set ϑ1 =
ν + 2

ν + 1
and obtain

ϑ2m+1 =
m+ ν + 2

m+ ν + 1
and ϑ2m+2 = 1, for all m ∈ N. (2.12a)

• Case B2: ϑ1 = 1 and ϑ2 6= 1. We set ϑ2 =
ρ+ 2

ρ+ 1
and obtain

ϑ2m+1 = 1 and ϑ2m+2 =
m+ ρ+ 2

m+ ρ+ 1
, for all m ∈ N. (2.12b)

• Case C: ϑ1, ϑ2 6= 1. We set ϑ1 =
ν + 2

ν + 1
and ϑ2 =

ρ+ 2

ρ+ 1
, obtaining

ϑ2m+1 =
m+ ν + 2

m+ ν + 1
and ϑ2m+2 =

m+ ρ+ 2

m+ ρ+ 1
, for all m ∈ N. (2.12c)

As observed in [23, §4], there are limiting relations connecting these 4 cases:

case C
ρ→∞−−−→ case B1

ν→∞−−−→ case A and case C
ν→∞−−−→ case B2

ρ→∞−−−→ case A.

In this section, we present explicit representations as hypergeometric polynomials

for the cubic components of each of these four cases, and we obtain explicit ex-

pressions for their orthogonality weights. For the latter purpose, we firstly derive

expressions for the orthogonality weights of the cubic components of a generic 3-

fold-symmetric Hahn-classical 2-orthogonal polynomial sequence, as shown in the

following proposition, which will be useful again in Section 2.3.
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Proposition 2.8. [47, Prop. 4.4] Suppose that (Pn(x))n∈N is a 3-fold-symmetric

2-orthogonal polynomial sequence with respect to a pair of measures (µ0, µ1) ad-

mitting the integral representations given by (2.8) and that (Pn(x))n∈N satisfies

(2.3) with γn+1 > 0, for all n ∈ N. Then the cubic components
(
P [k]
n (x)

)
n∈N,

k ∈ {0, 1, 2}, are 2-orthogonal with respect to the pairs of measures
(
µ

[k]
0 , µ

[k]
1

)
admitting the integral representations

∫
f(x)dµ

[k]
j (x) =

∫ γ3

0

f(x)U [k]
j (x)dx, (2.13)

for both j ∈ {0, 1}, where the weight functions U [k]
j (x) are

• U [0]
0 (x) = x−

2
3U0

(
x

1
3

)
, (2.14a)

• U [1]
0 (x) = x−

1
3U1

(
x

1
3

)
, (2.14b)

• U [2]
0 (x) =

1

γ1

x
1
3 U0

(
x

1
3

)
, (2.14c)

• U [0]
1 (x) =

1

γ2

(
x−

1
3U1

(
x

1
3

)
− x−

2
3U0

(
x

1
3

))
, (2.14d)

• U [1]
1 (x) =

1

γ1γ3

(
x

1
3 U0

(
x

1
3

)
− γ1x

− 1
3 U1

(
x

1
3

))
, (2.14e)

• U [2]
1 (x) =

1

γ2γ4

(
x

2
3 U1

(
x

1
3

)
−
(

1 +
γ2

γ1

)
x

1
3 U0

(
x

1
3

))
, (2.14f)

Proof. Let (un)n∈N be the dual sequence of (Pn(x))n∈N and, for k ∈ {0, 1, 2}, let(
u

[k]
0 , u

[k]
1

)
be the pair of orthogonality linear functionals for the cubic component(

P [k]
n (x)

)
n∈N. Because every linear functional is uniquely determined by its mo-

ments, it suffices to prove (2.13) when f(x) = xn, for any n ∈ N. Recalling Lemma

2.1, the moments of u
[k]
j , with j ∈ {0, 1} and k ∈ {0, 1, 2}, are equal to

〈
u

[k]
j , x

n
〉

=
〈
σ3

(
xkuk+3j

)
, xn
〉

=
〈
xkuk+3j, x

3n
〉

=
〈
uk+3j, x

3n+k
〉
. (2.15)

As a result, recalling (2.10), we deduce that

〈
u

[0]
0 , x

n
〉

=
〈
u0, x

3n
〉

=

∫ γ3

0

xn−
2
3 U0

(
x

1
3

)
dx



51

and 〈
u

[1]
0 , x

n
〉

=
〈
u1, x

3n+1
〉

=

∫ γ3

0

xn−
1
3 U1

(
x

1
3

)
dx.

Therefore, (2.13) holds for j = 0 and k ∈ {0, 1}, with U [0]
0 (x) and U [1]

0 (x) given by

(2.14a) and (2.14b), respectively.

To obtain the expressions for the other orthogonality weights of the cubic compo-

nents from (2.15), we recall the expressions for the elements of the dual sequence

u2, u3, u4 and u5 as combinations of u0 and u1 given by (2.11a)-(2.11d). As a

result, we derive from (2.15) that

•
〈
u

[2]
0 , x

n
〉

=
〈
u2, x

3n+2
〉

=
1

γ1

〈
u0, x

3n+3
〉

=
1

γ1

〈
u

[0]
0 , x

n+1
〉

=
1

γ1

〈
xu

[0]
0 , x

n
〉

,

•
〈
u

[0]
1 , x

n
〉

=
〈
u3, x

3n+3
〉

=
1

γ2

(〈
u1, x

3n+1
〉
−
〈
u0, x

3n
〉)

=
1

γ2

(〈
u

[1]
0 , x

n
〉
−
〈
u

[0]
0 , x

n
〉)

,

•
〈
u

[1]
1 , x

n
〉

=
〈
u4, x

3n+1
〉

=
1

γ1γ3

(〈
u0, x

3n+3
〉
− γ1

〈
u1, x

3n+1
〉)

=
1

γ3

(〈
u

[2]
0 , x

n
〉
− γ1

〈
u

[1]
0 , x

n
〉)

,

•
〈
u

[2]
1 , x

n
〉

=
〈
u5, x

3n+2
〉

=
1

γ2γ4

(〈
u1, x

3n+4
〉
−
(

1 +
γ2

γ1

)〈
u0, x

3n+3
〉)

=
1

γ2γ4

(〈
xu

[1]
0 , x

n
〉
−
(

1 +
γ2

γ1

)〈
xu

[0]
0 , x

n
〉)

.

Therefore, (2.13) holds for all cases and the orthogonality weights satisfy

• U [2]
0 (x) =

x

γ1

U [0]
0 (x),

• U [0]
1 (x) =

1

γ2

(
U [1]

0 (x)− U [0]
0 (x)

)
,

• U [1]
1 (x) =

1

γ3

(
U [2]

0 (x)− U [1]
0 (x)

)
,

• U [2]
1 (x) =

x

γ2γ4

(
U [1]

0 (x)−
(

1 +
γ2

γ1

)
U [0]

0 (x)

)
.

Finally, (2.14c)-(2.14f) follow directly from the latter identities combined with

(2.14a) and (2.14b).
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2.2.1 Case A

Observe that multiplying the coefficients γn in (2.3), for all n ∈ Z+, by a common

positive constant c corresponds to making a linear transformation from Pn(x) to

a−nPn(ax), with a = c
1
3 . Therefore, for each case (A, B1, B2, and C), we can

choose any positive real value for γ1 and keep dealing with the same 2-orthogonal

polynomials, up to a linear transformation of the variable. Moreover, recalling

(2.6), the values of γn, for n ≥ 2, are uniquely determined by γ1 and ϑn, n ∈ Z+.

Let (Pn(x))n∈N be the Hahn-classical 3-fold-symmetric 2-orthogonal polynomial

sequence corresponding to case A. Then (Pn(x))n∈N satisfies the recurrence relation

(2.3), with coefficients γn determined by (2.6) with ϑn = 1, for all n ∈ Z+. Setting

γ1 = 2, we obtain γn = n(n+ 1), for all n ∈ Z+.

Moreover, if Qn(x) =
1

n+ 1
P ′n+1(x), for each n ∈ N, then, recalling (2.7),

Qn+1(x) = xQn(x)− n(n− 1)Qn−2(x).

Therefore, Qn(x) = Pn(x) and (Pn(x))n∈N is an Appell sequence.

Based on [50, Prop. 3.2] and recalling (1.16), the sequence (Pn(x))n∈N is 2-orthogonal

with respect to the pair of measures (µ0, µ1) with integral representations as in

(2.8), involving the weight functions, defined on the positive real line,

U0(x) = Ai(x) =
2
√
x

3Γ
(

1
3

)
Γ
(

2
3

) K± 1
3

(
2

3
x

3
2

)
(2.17a)

and

U1(x) = −Ai′(x) =
2x

3Γ
(

1
3

)
Γ
(

2
3

) K± 2
3

(
2

3
x

3
2

)
, (2.17b)

where Ai(x) is the Airy function of the first kind defined by (1.15).

Because it is a 3-fold-symmetric polynomial sequence, (Pn(x))n∈N satisfies a cubic

decomposition as in (2.2). According to [11, §5] (see also [50, §3.1.1]), the cubic
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components are

P [k]
n (x) = (−9)n (ak)n (bk)n 1F2

 −n
ak, bk

∣∣∣∣∣∣ x9
 , (2.18)

with k ∈ {0, 1, 2} and

(a0, b0) =

(
1

3
,
2

3

)
, (a1, b1) =

(
4

3
,
2

3

)
and (a2, b2) =

(
4

3
,
5

3

)
. (2.19)

The cubic components are 2-orthogonal with respect to vectors of weight functions(
U [k]

0 (x),U [k]
1 (x)

)
defined on the positive real line. Inputting the weight functions

(2.17a)-(2.17b) in the formulas for U [k]
j (x), with j ∈ {0, 1} and k ∈ {0, 1, 2}, given

in Proposition 2.8, we obtain

• U [0]
0 (x) = x−

2
3 Ai

(
x−

1
3

)
=

2

9Γ
(

1
3

)
Γ
(

2
3

) (x
9

)− 1
2

K± 1
3

(
2

3

√
x

)
; (2.20a)

• U [1]
0 (x) = −x−

1
3 Ai′

(
x−

1
3

)
=

2

9Γ
(

4
3

)
Γ
(

2
3

)K± 2
3

(
2

3

√
x

)
; (2.20b)

• U [2]
0 (x) =

1

2
x

1
3 Ai

(
x−

1
3

)
=

2

9Γ
(

4
3

)
Γ
(

5
3

) (x
9

) 1
2

K± 1
3

(
2

3

√
x

)
; (2.20c)

• U [0]
1 (x) = −1

6

(
x−

1
3 Ai′

(
x

1
3

)
+ x−

2
3 Ai

(
x

1
3

))
= −1

2

d

dx

(
x

1
3 Ai

(
x

1
3

))
; (2.20d)

• U [1]
1 (x) =

1

24

(
2x−

1
3 Ai′

(
x

1
3

)
+ x

1
3 Ai

(
x

1
3

))
=

1

8

d

dx

(
x

2
3 Ai′

(
x

1
3

))
; (2.20e)

• U [2]
1 (x) = − 1

120

(
x

2
3 Ai′

(
x

1
3

)
+ 4x

1
3 Ai

(
x

1
3

))
= − 1

20

d

dx

(
x

4
3 Ai

(
x

1
3

))
. (2.20f)

The expressions (2.20a)-(2.20f) for the orthogonality weights can be rewritten as

U [k]
0 (x) =

2

9Γ(ak)Γ(bk)

(x
9

)ak+bk
2
−1

Kak−bk

(
2

3

√
x

)
(2.21a)

and

U [k]
1 (x) = − 1

9akbk

d

dx

(
xU [k]

0 (x)
)
, (2.21b)

with (ak, bk) given by (2.19).
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2.2.2 Case B1

Let (Pn(x; ν))n∈N be the Hahn-classical 3-fold-symmetric 2-orthogonal polynomial

sequence, corresponding to case B1, satisfying the recurrence relation (2.3), with

coefficients γn = γn(ν), n ∈ Z+, determined by (2.6), where ϑn is given by (2.12a).

Setting γ1 =
2

3(ν + 2)
, we get, for any m ∈ N,

γ2m+1 =
(2m+ 1)(2m+ 2)

3(3m+ ν + 2)
and γ2m+2 =

(2m+ 2)(2m+ 3)(m+ ν + 1)

3(3m+ ν + 2)(3m+ ν + 5)
.

In particular,

γ2 =
2(ν + 1)

(ν + 2)(ν + 5)
, γ3 =

4

ν + 5
and γ4 =

20(ν + 2)

3(ν + 5)(ν + 8)
.

Based on [50, Prop. 3.3], the sequence (Pn(x; ν))n∈N is 2-orthogonal with respect

to the pair of measures (µ0, µ1) with integral representations as in (2.8), involving

the weight functions, defined on the positive real line,

U0(x; ν) =
Γ
(
ν+2

3

)
Γ
(

1
3

)
Γ
(

2
3

) e−x
3

U

(
ν

3
,
2

3
;x3

)
(2.22a)

and

U1(x; ν) =
Γ
(
ν+5

3

)
Γ
(

4
3

)
Γ
(

2
3

) x2e−x
3

U

(
ν

3
+ 1,

5

3
;x3

)
. (2.22b)

Like the polynomial sequence corresponding to case A, (Pn(x; ν))n∈N satisfies a

cubic decomposition as in (2.2). Based on [50, §3.2.2], the cubic components are

P [k]
n (x; ν) =

(−1)n (ak)n (bk)n(
ν+2

3
+
⌊
n+k

2

⌋)
n

2F2

−n, ν+2
3

+
⌊
n+k

2

⌋
ak, bk

∣∣∣∣∣∣ x
 , (2.23)

with k ∈ {0, 1, 2} and (ak, bk) given by (2.19).

The cubic components are 2-orthogonal with respect to vectors of weight functions(
U [k]

0 (x; ν),U [k]
1 (x; ν)

)
defined on the positive real line. Inputting the weight func-

tions (2.22a)-(2.22b) in the formulas for U [k]
j (x), with j ∈ {0, 1} and k ∈ {0, 1, 2},

given in Proposition 2.8, we obtain
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• U [0]
0 (x; ν) =

Γ
(
ν+2

3

)
Γ
(

1
3

)
Γ
(

2
3

) e−xx−
2
3 U

(
ν

3
,
2

3
;x

)
, (2.24a)

• U [1]
0 (x; ν) =

Γ
(
ν+5

3

)
Γ
(

4
3

)
Γ
(

2
3

) e−xx
1
3 U

(
ν

3
+ 1,

5

3
;x

)
, (2.24b)

• U [2]
0 (x; ν) =

Γ
(
ν+5

3

)
Γ
(

4
3

)
Γ
(

5
3

) e−xx
1
3 U

(
ν

3
,
2

3
;x

)
, (2.24c)

and

• U [0]
1 (x; ν) = λ[0] e−xx−

2
3

(
ν + 2

3
xU

(
ν

3
+ 1,

5

3
;x

)
− 1

3
U

(
ν

3
,
2

3
;x

))
,

• U [1]
1 (x; ν) = λ[1] e−xx

1
3

(
U

(
ν

3
,
2

3
;x

)
− 2

3
U

(
ν

3
+ 1,

5

3
;x

))
,

• U [2]
1 (x; ν) = λ[2] e−xx

1
3

(
ν + 5

3
xU

(
ν

3
+ 1,

5

3
;x

)
− 4

3
U

(
ν

3
,
2

3
;x

))
,

with λ[0] =
Γ
(
ν+8

3

)
ν+1

3
Γ
(

4
3

)
Γ
(

5
3

) , λ[1] =
Γ
(
ν+8

3

)
Γ
(

7
3

)
Γ
(

5
3

) and λ[2] =
Γ
(
ν+11

3

)
ν+1

3
Γ
(

7
3

)
Γ
(

8
3

) .

Now we rewrite the weights U [k]
1 (x; ν) as expressions that will make the connection

with the 2-orthogonal polynomials analysed in Chapter 4 more obvious. Based on

[22, Eqs. 13.3.10 & 13.3.9], we have

xU

(
ν

3
+ 1,

5

3
;x

)
= U

(
ν

3
,
2

3
;x

)
− ν + 1

3
U

(
ν

3
+ 1,

2

3
;x

)
(2.26a)

and

U

(
ν

3
,
2

3
;x

)
= U

(
ν

3
,
5

3
;x

)
− ν

3
U

(
ν

3
+ 1,

5

3
;x

)
. (2.26b)

Applying (2.26a) and (2.26b), respectively for k ∈ {0, 2} and k = 1, to the expres-

sions above for the weights U [k]
1 (x; ν) we derive that

• U [0]
1 (x; ν) =

Γ
(
ν+8

3

)
Γ
(

4
3

)
Γ
(

5
3

) e−xx−
2
3

(
U

(
ν

3
,
2

3
;x

)
− ν + 2

3
U

(
ν

3
+ 1,

2

3
;x

))
, (2.27a)

• U [1]
1 (x; ν) =

Γ
(
ν+8

3

)
Γ
(

7
3

)
Γ
(

5
3

)e−xx
1
3

(
U

(
ν

3
,
5

3
;x

)
− ν + 5

3
U

(
ν

3
+ 1,

5

3
;x

))
, (2.27b)

• U [2]
1 (x; ν) =

Γ
(
ν+11

3

)
Γ
(

7
3

)
Γ
(

8
3

) e−xx
1
3

(
U

(
ν

3
,
2

3
;x

)
− ν + 5

3
U

(
ν

3
+ 1,

2

3
;x

))
. (2.27c)
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For each k ∈ {0, 1, 2}, we set (ak, bk) as in (2.19) and

εk =

0, if k ∈ {0, 2},

1, if k = 1.

(2.28)

Then formulas (2.24a)-(2.24c) and (2.27a)-(2.27c) can be rewritten as

U [k]
0 (x; ν) =

Γ
(
ν
3

+ bk + εk
)

Γ(ak)Γ(bk)
e−xxak−1U

(
ν

3
+ εk,

2

3
+ εk;x

)
(2.29a)

and

U [k]
1 (x; ν) =

Γ
(
ν
3

+ bk + 2
)

Γ(ak + 1)Γ(bk + 1)
e−xxak−1 (2.29b)(

U

(
ν

3
,
2

3
+ εk;x

)
−
(ν

3
+ bk + εk

)
U

(
ν

3
+ 1,

2

3
+ εk;x

))
.

2.2.3 Case B2

Let (Pn(x; ρ))n∈N be the Hahn-classical 3-fold-symmetric 2-orthogonal polynomial

sequence, corresponding to case B2, satisfying the recurrence relation (2.3), with

coefficients γn = γn(ρ), n ∈ Z+, determined by (2.6), where ϑn is given by (2.12b).

Setting γ1 =
2

3(ρ+ 3)
, we get, for any m ∈ N,

γ2m+1 =
(2m+ 1)(2m+ 2)(m+ ρ)

3(3m+ ρ)(3m+ ρ+ 3)
and γ2m+2 =

(2m+ 2)(2m+ 3)

3(3m+ ρ+ 3)
.

In particular,

γ2 =
2

ρ+ 3
, γ3 =

4(ρ+ 1)

(ρ+ 3)(ρ+ 6)
and γ4 =

20

3(ρ+ 6)
.

Based on [50, Prop. 3.4], the sequence (Pn(x; ρ))n∈N is 2-orthogonal with respect

to the pair of measures (µ0, µ1) with integral representations as in (2.8), involving
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the weight functions, defined on the positive real line,

U0(x; ρ) =
Γ
(
ρ
3

+ 1
)

Γ
(

1
3

)
Γ
(

2
3

) e−x
3

U

(
ρ+ 1

3
,
2

3
;x3

)
(2.30a)

and

U1(x; ρ) =
Γ
(
ρ
3

+ 1
)

Γ
(

4
3

)
Γ
(

2
3

) e−x
3

x2 U

(
ρ+ 1

3
,
5

3
;x3

)
. (2.30b)

Like the polynomial sequences corresponding to cases A and B1, (Pn(x; ρ))n∈N sat-

isfies a cubic decomposition as in (2.2). Based on [50, §3.3], the cubic components

are

P [k]
n (x; ρ) =

(−1)n (ak)n (bk)n(
ρ
3

+
⌊
n+k+1

2

⌋)
n

2F2

−n, ρ3 +
⌊
n+k+1

2

⌋
ak, bk

∣∣∣∣∣∣ x
 , (2.31)

with k ∈ {0, 1, 2} and (ak, bk) given by (2.19).

The cubic components are 2-orthogonal with respect to vectors of weight functions(
U [k]

0 (x; ρ),U [k]
1 (x; ρ)

)
defined on the positive real line. Inputting the weight func-

tions (2.30a)-(2.30b) in the formulas for U [k]
j (x), with j ∈ {0, 1} and k ∈ {0, 1, 2},

given in Proposition 2.8, we obtain

• U [0]
0 (x; ρ) =

Γ
(
ρ
3

+ 1
)

Γ
(

1
3

)
Γ
(

2
3

) e−xx−
2
3 U

(
ρ+ 1

3
,
2

3
;x

)
, (2.32a)

• U [1]
0 (x; ρ) =

Γ
(
ρ
3

+ 1
)

Γ
(

4
3

)
Γ
(

2
3

) e−xx
1
3 U

(
ρ+ 1

3
,
5

3
;x

)
, (2.32b)

• U [2]
0 (x; ρ) =

Γ
(
ρ
3

+ 2
)

Γ
(

4
3

)
Γ
(

5
3

) e−xx
1
3 U

(
ρ+ 1

3
,
2

3
;x

)
(2.32c)

as well as

• U [0]
1 (x; ρ) = λ[0](ρ) e−xx−

2
3

(
xU

(
ρ+ 1

3
,
5

3
;x

)
− 1

3
U

(
ρ+ 1

3
,
2

3
;x

))
,

• U [1]
1 (x; ρ) = λ[1](ρ)e−xx

1
3

((ρ
3

+ 1
)

U

(
ρ+ 1

3
,
2

3
;x

)
− 2

3
U

(
ρ+ 1

3
,
5

3
;x

))
,

• U [2]
1 (x; ρ) = λ[2](ρ)e−xx

1
3

(
xU

(
ρ+ 1

3
,
5

3
;x

)
− 4

3
U

(
ρ+ 1

3
,
2

3
;x

))
,
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with λ[0](ρ) =
Γ
(
ρ
3

+ 2
)

Γ
(

4
3

)
Γ
(

5
3

) , λ[1](ρ) =
Γ
(
ρ
3

+ 3
)

ρ+1
3

Γ
(

7
3

)
Γ
(

5
3

) and λ[2](ρ) =
Γ
(
ρ
3

+ 3
)

Γ
(

7
3

)
Γ
(

8
3

) .

Now, like we did for case B1, we rewrite the weights U [k]
1 (x; ρ) as expressions

that make clearer the connection with the 2-orthogonal polynomials analysed in

Chapter 4. Considering (2.26a) with ν = ρ − 2 and (2.26b) with ν = ρ + 1, and

applying these two formulas to the expressions above for the weights U [k]
1 (x; ρ),

respectively for k ∈ {0, 2} and k = 1, we derive that

• U [0]
1 (x; ρ) =

Γ
(
ρ
3

+ 2
)

Γ
(

4
3

)
Γ
(

5
3

) e−xx−
2
3

(
U

(
ρ− 2

3
,
2

3
;x

)
− ρ

3
U

(
ρ+ 1

3
,
2

3
;x

))
,

(2.33a)

• U [1]
1 (x; ρ) =

Γ
(
ρ
3

+ 3
)

Γ
(

7
3

)
Γ
(

5
3

)e−xx
1
3

(
U

(
ρ+ 1

3
,
5

3
;x

)
−
(ρ

3
+ 1
)

U

(
ρ+ 4

3
,
5

3
;x

))
,

(2.33b)

• U [2]
1 (x; ρ) =

Γ
(
ρ
3

+ 3
)

Γ
(

7
3

)
Γ
(

8
3

)e−xx
1
3

(
U

(
ρ− 2

3
,
2

3
;x

)
−
(ρ

3
+ 1
)

U

(
ρ+ 1

3
,
2

3
;x

))
.

(2.33c)

As we did for case B1, we set, for each k ∈ {0, 1, 2}, (ak, bk) and εk as in (2.19)

and (2.28), respectively. Then formulas (2.32a)-(2.32c) and (2.33a)-(2.33c) can be

rewritten as

U [k]
0 (x; ν) =

Γ
(
ρ+1

3
+ bk

)
Γ(ak)Γ(bk)

e−xxak−1U

(
ρ+ 1

3
,
2

3
+ εk;x

)
(2.34a)

and

U [k]
1 (x; ν) =

Γ
(
ρ+4

3
+ bk + εk

)
Γ(ak + 1)Γ(bk + 1)

e−xxak−1 (2.34b)(
U

(
ρ− 2

3
+ εk,

2

3
+ εk;x

)
−
(
ρ− 2

3
+ bk + εk

)
U

(
ρ+ 1

3
+ εk,

2

3
+ εk;x

))
.
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2.2.4 Case C

Let (Pn(x; ν, ρ))n∈N be the Hahn-classical 3-fold-symmetric 2-orthogonal polyno-

mial sequence, corresponding to case B2, satisfying the recurrence relation (2.3),

with coefficients γn = γn(ν, ρ), n ∈ Z+, determined by (2.6), where ϑn is given by

(2.12c). Setting γ1 =
2

(ν + 2)(ρ+ 3)
, we get, for any m ∈ N,

γ2m+1 =
(2m+ 1)(2m+ 2)(m+ ρ)

(3m+ ν + 2)(3m+ ρ)(3m+ ρ+ 3)

and

γ2m+2 =
(2m+ 2)(2m+ 3)(m+ ν + 1)

(3m+ ν + 2)(3m+ ν + 5)(3m+ ρ+ 3)
.

In particular,

γ2 =
6(ν + 1)

(ν + 2)(ν + 5)(ρ+ 3)
, γ3 =

12(ρ+ 1)

(ν + 5)(ρ+ 3)(ρ+ 6)
and γ4 =

20(ν + 2)

(ν + 5)(ν + 8)(ρ+ 6)
.

Based on [50, Prop. 3.5], the sequence (Pn(x; ρ))n∈N is 2-orthogonal with respect

to the pair of measures (µ0, µ1) with integral representations as in (2.8), involving

the weight functions, defined on the interval (0, 1),

U0(x; ν, ρ) =
Γ
(
ν+2

3

)
Γ
(
ρ
3

+ 1
)

Γ
(

1
3

)
Γ
(

2
3

)
Γ
(
ν+ρ+2

3

) (1− x3)
ν+ρ−1

3 2F1

 ν
3
, ρ+1

3

ν+ρ+2
3

∣∣∣∣∣∣ 1− x3

 (2.35a)

and

U1(x; ν, ρ) =
Γ
(
ν+5

3

)
Γ
(
ρ
3

+ 1
)

Γ
(

4
3

)
Γ
(

2
3

)
Γ
(
ν+ρ+2

3

) x2(1− x3)
ν+ρ−1

3 2F1

 ν
3

+ 1, ρ+1
3

ν+ρ+2
3

∣∣∣∣∣∣ 1− x3

 .

(2.35b)

Like the other Hahn-classical 3-fold-symmetric 2-orthogonal polynomial sequences,

(Pn(x; ν, ρ))n∈N satisfies a cubic decomposition as in (2.2). Based on [50, §3.4.1],

the cubic components are

P [k]
n (x; ν, ρ) =

(−1)n (ak)n (bk)n
(ck(n; ν))n (dk(n; ρ))n

3F2

−n, ck(n; ν), dk(n; ρ)

ak, bk

∣∣∣∣∣∣ x
 , (2.36)
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with k ∈ {0, 1, 2}, (ak, bk) given by (2.19),

ck(n; ν) =
ν + 2

3
+

⌊
n+ k

2

⌋
and dk(n; ρ) =

ρ

3
+

⌊
n+ k + 1

2

⌋
.

Note that ck(n; ν) and dk(n; ρ) were parameters of the cubic components of cases

B1 and B2, respectively.

The cubic components are 2-orthogonal with respect to vectors of weight functions(
U [k]

0 (x; ν, ρ),U [k]
1 (x; ν, ρ)

)
defined on the interval (0, 1). Inputting the weight func-

tions (2.35a)-(2.35b) in the formulas for U [k]
j (x), with j ∈ {0, 1} and k ∈ {0, 1, 2},

given in Proposition 2.8, we obtain

• U [0]
0 (x; ν, ρ) =

Γ
(
ν+2

3

)
Γ
(
ρ
3

+ 1
)

Γ
(

1
3

)
Γ
(

2
3

)
Γ
(
ν+ρ+2

3

) x− 2
3 (1−x)

ν+ρ−1
3 2F1

 ν
3
, ρ+1

3

ν+ρ+2
3

∣∣∣∣∣∣ 1− x

, (2.37a)

• U [1]
0 (x; ν, ρ) =

Γ
(
ν+5

3

)
Γ
(
ρ
3

+ 1
)

Γ
(

4
3

)
Γ
(

2
3

)
Γ
(
ν+ρ+2

3

) x 1
3 (1− x)

ν+ρ−1
3 2F1

 ν
3

+ 1, ρ+1
3

ν+ρ+2
3

∣∣∣∣∣∣ 1− x

,

(2.37b)

• U [2]
0 (x; ν, ρ) =

Γ
(
ν+5

3

)
Γ
(
ρ
3

+ 2
)

Γ
(

4
3

)
Γ
(

5
3

)
Γ
(
ν+ρ+2

3

) x 1
3 (1−x)

ν+ρ−1
3 2F1

 ν
3
, ρ+1

3

ν+ρ+2
3

∣∣∣∣∣∣ 1− x

 (2.37c)

as well as

• U [0]
1 (x; ν, ρ) =

Γ
(
ν+8

3

)
Γ
(
ρ
3

+ 2
)

νΓ
(

4
3

)
Γ
(

5
3

)
Γ
(
ν+ρ+2

3

) x− 2
3 (1− x)

ν+ρ−1
3 (2.38a)(ν + 2) 2F1

 ν
3
, ρ−2

3

ν+ρ+2
3

∣∣∣∣∣∣ 1− x

− 2 2F1

 ν
3
, ρ+1

3

ν+ρ+2
3

∣∣∣∣∣∣ 1− x

,

• U [1]
1 (x; ν, ρ) =

Γ
(
ν+8

3

)
Γ
(
ρ
3

+ 3
)

(ρ+ 1)Γ
(

7
3

)
Γ
(

5
3

)
Γ
(
ν+ρ+2

3

) x 1
3 (1− x)

ν+ρ−1
3 (2.38b)(ρ+ 3) 2F1

 ν
3
, ρ+1

3

ν+ρ+2
3

∣∣∣∣∣∣ 1− x

− 2 2F1

 ν
3

+ 1, ρ+1
3

ν+ρ+2
3

∣∣∣∣∣∣ 1− x

,

• U [2]
1 (x; ν, ρ) =

Γ
(
ν+11

3

)
Γ
(
ρ
3

+ 3
)

νΓ
(

7
3

)
Γ
(

8
3

)
Γ
(
ν+ρ+2

3

) x 1
3 (1− x)

ν+ρ−1
3 (2.38c)(ν + 5) 2F1

 ν
3
, ρ−2

3

ν+ρ+2
3

∣∣∣∣∣∣ 1− x

− 5 2F1

 ν
3
, ρ+1

3

ν+ρ+2
3

∣∣∣∣∣∣ 1− x

.
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To obtain the expressions above for U [0]
1 (x; ν, ρ) and U [2]

1 (x; ν, ρ), we use [22, Eq. 15.5.13]

to derive that

νx 2F1

 ν
3

+ 1, ρ+1
3

ν+ρ+2
3

∣∣∣∣∣∣ 1− x

 = (ν+1) 2F1

 ν
3
, ρ−2

3

ν+ρ+2
3

∣∣∣∣∣∣ 1− x

−2F1

 ν
3
, ρ+1

3

ν+ρ+2
3

∣∣∣∣∣∣ 1− x

 .

For each k ∈ {0, 1, 2}, we set (ak, bk) as in (2.19) as well as

ζk =


ν
3
, if k ∈ {0, 2},

ρ+1
3
, if k = 1.

and ξk =


ρ+1

3
, if k ∈ {0, 2},

ν
3

+ 1, if k = 1.

Then formulas (2.37a)-(2.37c) and (2.38a)-(2.38c) can be rewritten as

U [k]
0 (x; ν, ρ) =

Γ (ζk + bk) Γ (ξk + bk)

Γ(ak)Γ(bk)Γ
(
ν+ρ+2

3

) xak−1(1− x)
ν+ρ−1

3 2F1

 ζk, ξk
ν+ρ+2

3

∣∣∣∣∣∣ 1− x


(2.39a)

and

U [k]
1 (x; ν, ρ) =

Γ (ζk + bk + 2) Γ (ξk + bk + 1)

ζkΓ(ak + 1)Γ(bk + 1)Γ
(
ν+ρ+2

3

) xak−1(1− x)
ν+ρ−1

3(ζk + bk)2F1

ζk, ξk − 1

ν+ρ+2
3

∣∣∣∣∣∣ 1− x

− bk2F1

 ζk, ξk
ν+ρ+2

3

∣∣∣∣∣∣ 1− x

 .

(2.39b)

2.3 Cubic decomposition and the Hahn-classical

property

The aim of this section is to prove that the cubic components of Hahn-classical

3-fold-symmetric 2-orthogonal polynomials (with positive recurrence coefficients

γn) are always Hahn-classical, as stated in the following theorem, which is the

main new result in this chapter.
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Theorem 2.9. [47, Th. 4.1] Let (Pn(x))n∈N be a 3-fold-symmetric Hahn-classical

2-orthogonal polynomial sequence satisfying (2.3) with γn+1 > 0, for all n ∈ N.

Then all the cubic components
(
P

[k]
n (x)

)
n∈N

, with k ∈ {0, 1, 2}, in (2.2) are Hahn-

classical 2-orthogonal polynomial sequences.

Proof. Let (Pn(x))n∈N be a 3-fold-symmetric Hahn-classical 2-orthogonal polyno-

mial sequence satisfying (2.3) with γn+1 > 0, for all n ∈ N. Our goal is to show

that, under the assumptions, the sequences of monic derivatives of the cubic com-

ponents of (Pn(x))n∈N, that is, the sequences
(

1
n+1

d
dx
P

[k]
n+1(x)

)
n∈N

are 2-orthogonal,

for each k ∈ {0, 1, 2}.

If (Pn(x))n∈N is a 3-fold-symmetric Hahn-classical 2-orthogonal polynomial se-

quence, then the sequence of derivatives
(
Qn(x) := 1

n+1
d

dx
(Pn(x))

)
n∈N

is also 3-

fold symmetric and 2-orthogonal and, recalling Lemma 2.1, the same holds for the

cubic components
(
Q

[k]
n (x)

)
n∈N

, k ∈ {0, 1, 2}. As a result, it is straightforward

to check that Theorem 2.9 is valid for k = 0, that is,
(

1
n+1

d
dx

(
P

[0]
n+1(x)

))
n∈N

is a

2-orthogonal polynomial sequence because, by definition of P
[0]
n+1(x),

1

n+ 1

d

dx

(
P

[0]
n+1(x)

)
=

1

n+ 1

d

dx

(
P3n+3

(
x

1
3

))
=

x−
2
3

3n+ 3
P ′3n+3

(
x

1
3

)
.

Therefore, by definition of Qn(x) and Q
[2]
n (x),

1

n+ 1

d

dx

(
P

[0]
n+1(x)

)
= x−

2
3Q3n+2

(
x

1
3

)
= Q[2]

n (x).

This observation had already been made by Douak and Maroni in [25].

An analogous procedure does not give an obvious way to conclude anything about

the 2-orthogonality of
(

1
n+1

d
dx
P

[k]
n+1(x)

)
n∈N

, for k ∈ {1, 2}. So we take a different

approach to prove these two cases: we check that the orthogonality weights satisfy

a matrix differential equation of the type in (2.5). More precisely, we find matrices

Φ[k](x) =

 φ00 φ01

ϕ(x) φ11

 and Ψ[k](x) =

 0 1

ψ(x) ξ

 ,
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where ξ and φij, with (i, j) ∈ {(0, 0), (0, 1), (1, 1)}, are constants, and ϕ and ψ are

polynomials with degϕ ≤ 1 and degψ = 1, such that

d

dx

(
xΦ[k](x)U [k]

(x)
)

+ Ψ[k](x)U [k]
(x) = 0, (2.40)

Based on Proposition 2.5, or alternatively using [47, Prop. 3.6] (which is the case

r = 2 of part (a) of Proposition 3.2), that is sufficient to prove the Hahn-classical

character of
(
P [k]
n (x)

)
n∈N, for k ∈ {1, 2}.

To find the matrices Φ[k](x) and Ψ[k](x), we start by rewriting formulas (2.14b)

and (2.14e), (2.14c) and (2.14f) as

U [k]
(s) = Tk(s)U

(
s

1
3

)
,

where

T1(s) =

 0 s−
1
3

1

γ1γ3

s
1
3 − 1

γ3

s−
1
3

 and T2(s) =


1

γ1

s
1
3 0

− 1

γ4

(
1

γ2

+
1

γ1

)
s

1
3

1

γ2γ4

s
2
3

 .
These equations are naturally equivalent to

U
(
s

1
3

)
= T−1

k (s)U [k]
(s),

with

T−1
1 (s) =

γ1 s
− 1

3 γ3 γ1 s
− 1

3

s
1
3 0

 and T−1
2 (s) =

 γ1 s
− 1

3 0

(γ1 + γ2) s−
2
3 γ2 γ4 s

− 2
3

 .

If we consider the change of variable s = x
1
3 in the matrix differential equation

(2.9) and then use the previous formula, we obtain, for both k ∈ {1, 2},

3x
2
3

d

dx

(
Φ
(
x

1
3

)
T−1
k (x)U [k]

(x)
)

+ Ψ
(
x

1
3

)
T−1
k (x)U [k]

(x) = 0.



64

Equivalently, we can write

M [k](x)
d

dx

(
U [k]

(x)
)

+N [k](x)U [k]
(x) = 0, (2.41)

with

M [k](x) = 3 x
2
3 Φ
(
x

1
3

)
T−1
k (x)

and

N [k](x) = Ψ
(
x

1
3

)
T−1
k (x) + 3x

2
3

d

dx

(
Φ
(
x

1
3

)
T−1
k (x)

)
.

Finally, we multiply (2.41) from the left by a suitable matrix to derive (2.40).

When k = 1, we have (2.41) with

M [1](x) = 3

(1− ϑ1)x
4
3 + ϑ1γ1x

1
3 ϑ1γ1γ3x

1
3

x 6 (1− ϑ2) γ3 x


and

N [1](x) =

(3− 2ϑ1)x
1
3 − ϑ1γ1x

− 2
3 −ϑ1γ1γ3x

− 2
3

3 −2 (2ϑ2 − 1) γ3

 ,

which, after a multiplication by

 0 1

x
2
3 0

, leads to (2.40), with

Φ[1](x) = 3

 1

2 (2ϑ2 − 1) γ3

1− ϑ2

2ϑ2 − 1

(1− ϑ1)x+ ϑ1γ1 ϑ1γ1γ3

 and Ψ[1](x) =

 0 1

ψ[1](x) −4ϑ1γ1γ3

 ,
where ψ[1](x) = (4ϑ1 − 3)x− 4ϑ1γ1.

As a result,
(
P [1]
n (x)

)
n∈N is a Hahn-classical 2-orthogonal polynomial sequence.
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To prove the result when k = 2, we start by using (2.6), with n = 0, to write

γ1 =
1

3
(4ϑ1 − 3) γ2 and obtain

T−1
2 (s) =

1

3
(4ϑ1 − 3) γ2 s

− 1
3 0

4

3
ϑ1γ2s

− 2
3 γ2 γ4 s

− 2
3

 .
Therefore, we derive (2.41) with

M [2](x) = 3

 1

3
ϑ1γ2 x

1
3 γ2γ4 (1− ϑ1) x

1
3

2 (1− ϑ2)x+
4

3
γ2 (2ϑ2 − 1) γ2γ4 (2ϑ2 − 1)


and

N [2](x) =

 ϑ1γ2 x
− 2

3 ϑ1γ2γ4 x
− 2

3

2 (2− ϑ2) +
8

3
γ2 (1− 2ϑ2)x−1 −2γ2γ4 (2ϑ2 − 1)x−1

 ,

which, after a multiplication by

x 2
3 0

0 x

, corresponds to (2.40) with

Φ[2](x) =

 ϑ1γ2

3γ1γ4

(1− ϑ1)
γ2

γ1

ϕ[2](x) 3 (2ϑ2 − 1) γ2γ4

 and Ψ[2](x) =

 0 1

ψ[2](x) −5 (2ϑ2 − 1) γ2γ4

 ,
where

ϕ[2](x) = 6 (1− ϑ2)x+ 4 (2ϑ2 − 1) γ2

and

ψ[2](x) = 2 (5ϑ2 − 4)x− 20

3
ϑ1 (2ϑ2 − 1) γ2.

Therefore,
(
P [2]
n (x)

)
n∈N is Hahn-classical.
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Although we have made a remark that the case k = 0 of Theorem 2.9 is a conse-

quence of an observation made by Douak and Maroni in [25], we also checked that

(2.40) holds for k = 0, with

Φ[0](x) = 3

 1 (1− ϑ1) γ2

ϕ[0](x) (2ϑ2 − 1) γ1γ2

 and Ψ[0](x) =

 0 ϑ1γ2

ψ[0](x) −2 (2ϑ2 − 1) γ1γ2


where ϕ[0](x) = 2 (1− ϑ2)x+ (2ϑ2 − 1) γ1 and ψ[0](x) = 2 (2ϑ2 − 1) (x− γ1).

It was already known that the cubic components for case A are Hahn-classical,

because it was observed in [11, §5] that they are particular cases of 2-orthogonal

polynomials with respect to Macdonald functions, which are Hahn-classical be-

cause the differentiation operator acts on them as a shift in the parameters and in

the index (see Section 4.6). Similarly, we can prove that the cubic components for

cases B and C are Hahn-classical by showing that they are particular realisations

of the 2-orthogonal polynomials analysed in Chapters 4 and 5, on which the differ-

entiation operator also acts as a shift in the parameters and index. However, we

have proved here that the cubic decomposition preserves the Hahn-classical prop-

erty for all 3-fold-symmetric Hahn-classical 2-orthogonal polynomial sequences in

a much simpler way, without using the generalisations of the cubic components. A

further benefit from this proof are the techniques involved, which may be adapt-

able to prove analogous results regarding Hahn-classical (r + 1)-fold symmetric

r-orthogonal polynomials, with r > 2, or Hahn-classical polynomials with respect

to other lowering operators such as the q-derivative.



Chapter 3

MOPs associated with ratios of

Pochhammer symbols

The object of study in this chapter are multiple orthogonal polynomials with

respect to measures whose moments are ratios of Pochhammer symbols, that is,

∫
I

xnW(x)dx =
(a1)n · · · (ar)n
(b1)n · · · (bs)n

, for n ∈ N, (3.1)

with

r, s ∈ N and {ai}ri=1, {bj}sj=1 ⊂ R+ such that s ≤ r and min
1≤j≤s

{bj} > max
1≤i≤r

{ai}.

(3.2)

Throughout this chapter, we outline techniques to investigate hypergeometric mul-

tiple orthogonal polynomials, which we use in Chapters 4 and 5 and constitute the

building blocks of an ongoing investigation of more general multiple orthogonal

polynomials. The techniques introduced in Section 3.4 are new and particularly

interesting. The main original results in this chapter are Theorem 3.2 (b) and

Theorem 3.5. Proposition 3.1 is also new. These results and techniques will be

submitted for publication as part of an ongoing joint work with Alan Sokal on the

connection of branched-continued-fraction representations of hypergeometric series

and multiple orthogonal polynomials with respect to measures whose moments are

ratios of Pochhammer symbols.

67
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In Section 3.1, we investigate the differential properties of the weight function

which is the Radon-Nikodym derivative of an absolutely continuous measure µ

with moments as in (3.1). We prove that such a weight satisfies an ordinary

differential equation of order r (Proposition 3.1). In general, if r ≥ 2, then an

explicit and complete description of the (standard) orthogonal polynomials for

such weights is a challenging open problem. Instead, it is more natural to inves-

tigate the multiple orthogonal polynomials with respect to a vector of r measures

with moment sequences as in (3.1). For each particular case we have investigated,

the vector of r orthogonality measures satisfies a matrix Pearson-type differen-

tial equation, which implies that the corresponding type I functions and type II

polynomials on the step-line satisfy the Hahn-classical property (Theorem 3.2).

In Section 3.2 we discuss how to generate the type I functions on the step-line

via a Rodrigues-type formula of the type (3.15) and the corresponding type I

polynomials via a matrix Rodrigues-type formula of the type (3.17).

In Section 3.3 we investigate the type II polynomials on the step-line or r-orthogonal

polynomials. We present auxiliary results to find representations as terminating

hypergeometric series as in (3.18a) for these polynomials. Then, we explain how

to use those representations to prove that the polynomials are solutions to an

ordinary differential equation of order r + 1 of the type (3.23) and to obtain ex-

plicit expressions for the coefficients of the recurrence relation of order r+1 (3.24)

they satisfy. Next, we focus on investigating the location of the zeros of these

r-orthogonal polynomials. We argue that the zeros are all simple and located in

the support of the orthogonality measures, which is either the positive real line or

the interval (0, 1), for all the cases we have analysed. We prove a result about the

asymptotic behaviour of the zeros from the respective recurrence coefficients (The-

orem 3.5), with emphasis on the case where there are 2 orthogonality measures

(Corollary 3.6). We also discuss how to deduce Mehler-Heine-type asymptotic

formulas near the origin, which give us more information about the asymptotic

behaviour of the polynomials and their zeros, and we introduce the asymptotic

zero distribution of a polynomial sequence.
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In Section 3.4, we focus on the connection between the type II polynomials on the

step-line investigated here and branched continued fractions. The starting point is

to observe that the ordinary generating function of the moment sequence given by

(3.1) is a generalised hypergeometric function, which admits a branched-continued-

fraction representation due to results in [61]. An important consequence of this

observation is that the conditions (3.2) guarantee the existence of a measure µ on

the positive real line with a moment sequence determined by (3.1). We explain how

the infinite lower-Hessenberg matrix associated with the r-orthogonal polynomials

is equal to the production matrix of the generalised r-Stieltjes-Rogers polynomials

associated with the moment sequences of the first orthogonality measure. This

identity gives alternative expressions for the recurrence coefficients, which make

clear that they are all positive, and it leads to an alternative proof that the zeros

of the polynomials are all simple and located in the support of the orthogonality

measures with the zeros of consecutive polynomials interlacing.

For r = 1, the condition s ≤ r in (3.2) implies that either s = 0 or s = 1. The

two corresponding measures with moments as in (3.1) are closely related with

classical orthogonal polynomials as they are the orthogonality measures of the La-

guerre polynomials and the Jacobi polynomials on the interval (0, 1), respectively.

We give more detail about these two cases in Section 3.5. Besides that, we note

that these two families of orthogonal polynomials include as particular cases the

components of the quadratic decomposition of the Hermite and Gegenbauer poly-

nomials, respectively, which are, up to a linear transformation of the variable, the

only symmetric classical orthogonal polynomials.

The multiple orthogonal polynomials analysed in Chapters 4 and 5 satisfy or-

thogonality conditions with respect to measures with moments equal to the ratio

of two-by-one and two-by-two Pochhammer symbols, respectively, that is, mo-

ments as in (3.1) with (r, s) = (2, 1) and (r, s) = (2, 2). The multiple orthogonal

polynomials with respect to measures with moments equal to the products of r

Pochhammer symbols, which correspond to (3.1) with s = 0, have already been

investigated.



70

The multiple orthogonal polynomials introduced in [75] and [11] satisfy orthogo-

nality conditions with respect to two measures which, after an adequate normal-

isation, have moments given by the product of two Pochhammer symbols. These

orthogonality measures are supported on the positive real line and they admit in-

tegral representations involving the Macdonald function Kν (z) defined by (1.13).

We mention some results about these multiple orthogonal polynomials in Sec-

tion 4.6, where they appear as a limiting case of the polynomials characterised in

Chapter 4.

More generally, the multiple orthogonal polynomials used in [44] to investigate

the singular values of products of Ginibre random matrices satisfy orthogonality

conditions with respect to measures whose moments, after an adequate normalisa-

tion, are equal to the products of M Pochhammer symbols, with M ∈ Z+. These

orthogonality measures are supported on the positive real line and admit integral

representations using weight functions expressed in terms of Meijer G-functions.

As mentioned in [44, §2.3], the case M = 2 of the multiple orthogonal polynomials

analysed therein reduces to the polynomials introduced in [75] and [11].

3.1 Differential properties

As previously mentioned, we are interested in multiple orthogonal polynomials

with respect to measures whose moments are ratios of Pochhammer symbols as

in (3.1), under the assumptions in (3.2). These measures admit integral represen-

tations via weight functions that are solutions of ordinary differential equations

of order r. The relation between these differential equations and the moment

sequences of the corresponding measures is a consequence of the following propo-

sition.

Proposition 3.1. Let W(x) be a positive r times continuously differentiable func-

tion defined on an interval I ⊂ R such that f(x)W(k)(x)
∣∣∣
I

= 0, for any polynomial

f ∈ P and each k ∈ {0, · · · , r}. Let µ be the measure supported on I such that

dµ(x) = W(x)dx for all x ∈ I, and suppose that all the moments of µ exist and
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are finite. Then, µ satisfies (3.1) subject to (3.2) if and only if

∫
I

W(x)dx = 1 and

there are polynomials φk, with k ∈ {0, · · · , r}, of degree not greater than 1 such

that ∫
I

xn

(
r∑

k=0

(
d

dx
x

)k (
φk(x)W(x)

))
dx = 0, (3.3)

holds for all n ∈ N, with φk determined by the conditions φ ′k(0) = 0 if k ≥ s+ 1,

φ ′k(0) = (−1)k+1
∑

1≤j1<···<js−k≤s

(
s−k∏
λ=1

bjλ

)
if k ≤ s, (3.4a)

and

φk(0) = (−1)k
∑

1≤i1<···<ir−k≤r

(
r−k∏
λ=1

aiλ

)
for any 0 ≤ k ≤ r. (3.4b)

Proof. Observe that the measure µ supported on I with dµ(x) = W(x)dx for all

x ∈ I satisfies (3.1) if and only if

∫
I

W(x)dx = 1 and, for all n ∈ N,

∫
I

xn+1W(x)dx∫
I

xnW(x)dx
=

s∏
j=1

(n+ bj)

r∏
i=1

(n+ ai)

. (3.5)

Therefore, we simply need to prove that, for any n ∈ N, (3.5) is equivalent to

(3.3), where the polynomials φk(x), k ∈ {0, · · · , r}, are the ones defined in the

statement of the proposition.

For any n ∈ N, (3.3) is clearly equivalent to

r∑
k=0

(∫
I

xn
(

d

dx
x

)k (
φk(x)W(x)

)
dx

)
= 0. (3.6)

For any differentiable functions f, g such that xf(x)g(x)
∣∣∣
I

= 0, we get, via inte-

gration by parts,

∫
I

f(x)
d

dx

(
xg(x)

)
dx = −

∫
I

x
d

dx

(
f(x)

)
g(x)dx.
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Hence, using integration by parts k times,

∫
I

xn
(

d

dx
x

)k (
φk(x)W(x)

)
dx = (−1)k

∫
I

(
x

d

dx

)k (
xn
)
φk(x)W(x)dx.

As a result, because

(
x

d

dx

)(
xn
)

= nxn,

∫
I

xn
(

d

dx
x

)k (
φk(x)W(x)

)
dx = (−1)knk

∫
I

xnφk(x)W(x)dx.

Furthermore, φk(x) = φ′k(0)x+ φk(0), because deg(φk) ≤ 1. Therefore,

∫
I

xn
(

d

dx
x

)k (
φk(x)W(x)

)
dx

= (−1)knk
(
φ ′k(0)

∫
I

xn+1W(x)dx+ φk(0)

∫
I

xnW(x)dx

)
.

As a result, (3.3) and (3.6) are equivalent to

r∑
k=0

(−1)knk
(
φ ′k(0)

∫
I

xn+1W(x)dx+ φk(0)

∫
I

xnW(x)dx

)
= 0,

and to ∫
I

xn+1W(x)dx∫
I

xnW(x)dx
=

r∑
k=0

(
(−1)k+1φ ′k(0)nk

)
r∑

k=0

(
(−1)kφk(0)nk

) . (3.7)

Finally, recalling (3.4a)-(3.4b), we get

r∑
k=0

(
(−1)k+1φ ′k(0)nk

)
=

s∑
k=0

 ∑
1≤j1<···<js−k≤s

(
s−k∏
λ=1

bjλ

)
nk

 =
s∏
j=1

(n+ bj)

and

r∑
k=0

(
(−1)kφk(0)nk

)
=

r∑
k=0

 ∑
1≤i1<···<ir−k≤r

(
r−k∏
λ=1

aiλ

)
nk

 =
r∏
i=1

(n+ ai).

Therefore, the conditions (3.5), (3.7) and (3.3) are all equivalent.
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Note that, for any differentiable functions f and ψ,

(
d

dx
x

)(
ψ(x)f(x)

)
= xψ(x)f ′(x) + (ψ(x) + xψ ′(x)) f(x).

Therefore, (3.3) can also be written in the form

∫
I

xn

(
r∑

k=0

xkφ̃k(x)W(k)(x)

)
dx = 0,

where the φ̃k(x) are all polynomials of degree not greater than 1 and φ̃r(x) = φr(x).

For each of the cases analysed in more detail here, we find weight functions that

satisfy the differential equation

r∑
k=0

(
d

dx
x

)k (
φk(x)W(x)

)
=

r∑
k=0

xkφ̃k(x)W(k)(x) = 0,

which can be used to derive a matrix differential equation of the type in (3.8),

called a matrix Pearson-type equation, satisfied by a vector of r measures that

satisfy a differential equation of the type in (3.3) and are obtained from each

other via shifts in the parameters.

In Theorem 3.2, we deduce differential properties for type II and type I multiple

orthogonal polynomials on the step-line with respect to a vector of measures that

satisfies a matrix Pearson-type differential equation. The type II result is a con-

sequence of the characterisation of the Hahn-classical property for d-orthogonal

polynomials in Proposition 2.5, corresponding to [24, Th. 3.1] with d = 2. Evoking

similar arguments, we derive an analogous result for type I polynomials. These

two results when r = 2 can be found in [47, §2.3].

There are two important differences distinguishing the type II result we show here

from [24, Th. 3.1]. Firstly, the latter is stated and proved using linear functionals,

while we restrict ourselves to the use of weight functions in both the statement and

the proof of our result. Secondly, the authors of [24] consider r-orthogonal polyno-

mials (Pn(x))n∈N with respect to the vector of the first r elements (u0, · · · , ur−1)

of the dual sequence of (Pn(x))n∈N, which implies the moment of order 0 of uj
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is equal to 0 whenever j ≥ 1. Instead we consider each orthogonality weight to

be a probability density, so that all of the weights have the moment of order 0

equal to 1. This is relevant because our focus is on perfect systems and all the

orthogonality weights having a nonzero moment of order 0 is a necessary condition

for a system of multiple orthogonal polynomials to be perfect.

Theorem 3.2. For r ∈ Z+, let w(x) = [w0(x), · · · , wr−1(x)]T be a vector of r

functions supported on a common interval I such that, for each j ∈ {0, · · · , r−1},

all the moments of wj(x) over I exist and are finite, and f(x)wj(x)
∣∣∣
I

= 0 for any

polynomial f . Suppose that there exist two (r × r)-matrices Φ(x) = [φi,j]
r−1
i,j=0 and

Ψ(x) = [ψi,j]
r−1
i,j=0, with

• φi,j = ψi,j = 0 if j ≥ i+ 2 (that is, Φ and Ψ are lower-Hessenberg matrices),

• φi,j and ψi,j are constants unless (i, j) = (r − 1, 0),

• deg φr−1,0 ≤ 1 and degψr−1,0 = 1,

• ψi,i+1 6= kφi,i+1 for all k ∈ N and 0 ≤ i ≤ r − 2,

• ψ′r−1,0(0) 6= kφ ′r−1,0(0), for all k ∈ N,

such that w(x) satisfies the matrix differential equation

d

dx

(
xΦ(x)w(x)

)
+ Ψ(x)w(x) = 0. (3.8)

If all multi-indices on the step-line are normal with respect to both w(x) and

xΦ(x)w(x), the following statements hold:

(a) If (Pn(x))n∈N is the r-orthogonal polynomial sequence with respect to w(x),

then
(

1
n+1

P ′n+1(x)
)
n∈N

is r-orthogonal with respect to xΦ(x)w(x).

(b) If Qn(x) is the type I function for the index of length n ∈ Z+ on the step-line

with respect to xΦ(x)w(x), then
(
− 1
n
Q ′n(x)

)
is the type I function for the

index of length n+ 1 on the step-line with respect to w(x).
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The differentiable properties described in Theorem 3.2 are the main pillars for

further characterisation of the multiple orthogonal polynomials under analysis

and they resemble those found within the context of the very classical standard

orthogonal polynomials.

Proof. Let v(x) = xΦ(x)w(x) = [v0(x), · · · , vr−1(x)]T , which means that

vi(x) = x
r−1∑
j=0

φi,j(x)wj(x), for i ∈ {0, · · · , r − 1}. (3.9a)

Moreover, by virtue of equation (3.8),
d

dx
(v(x)) = −Ψ(x)w(x), which means that

v′i(x) = −
r−1∑
j=0

ψi,j(x)wj(x), for i ∈ {0, · · · , r − 1}. (3.9b)

We begin by proving statement (a). For that purpose, we let i ∈ {0, · · · , r − 1}

and k, n ∈ N. Combining (3.9a) and (3.9b), we obtain

d

dx

(
xkvi(x)

)
= xk

r−1∑
j=0

((
kφi,j(x)− ψi,j(x)

)
wj(x)

)
.

Therefore, using integration by parts, we derive

∫
I

xkP ′n+1(x)vi(x)dx =
r−1∑
j=0

(∫
I

(
ψi,j(x)− kφi,j(x)

)
xkPn+1(x)wj(x)dx

)
. (3.10)

Due to the r-orthogonality of (Pn(x))n∈N with respect to w(x), we know that, for

any k,m ∈ N and j ∈ {0, · · · , r − 1},

∫
I

xkPm(x)wj(x)dx =

Nm 6= 0 if m = rk + j,

0 if m ≥ rk + j + 1.
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Let 0 ≤ i ≤ r− 2. Then φi,j and ψi,j are constants, for all j ∈ {0, · · · , r− 1}, and

φi,j = ψi,j = 0, if j ≥ i+ 2. Therefore, for any k, n ∈ N, (3.10) implies

∫
I

xkP ′n+1(x)vi(x)dx =
i+1∑
j=0

((
ψi,j − kφi,j

) ∫
I

xkPn+1(x)wj(x)dx

)
.

If n ≥ rk + i+ 1, then

∫
I

xkPn+1(x)wj(x)dx = 0, for each 0 ≤ j ≤ i+ 1,

and, as a result, ∫
I

xkP ′n+1(x)vi(x)dx = 0.

If n = rk + i, then

∫
I

xkPrk+i+1(x)wj(x)dx = 0, for each 0 ≤ j ≤ i,

and, as a result,

∫
I

xkP ′rk+i+1(x)vi(x)dx =
(
ψi,i+1 − kφi,i+1

) ∫
I

xkPrk+i+1(x)wi+1(x)dx 6= 0.

Let i = r − 1 and k, n ∈ N. Then, we have

∫
I

xkP ′n+1(x)vr−1(x)dx =
r−1∑
j=1

((
ψr−1,j − kφr−1,j

) ∫
I

xkPn+1(x)wj(x)dx

)
+
(
ψr−1,0(0)− kφr−1,0(0)

) ∫
I

xkPn+1(x)w0(x)dx

+
(
ψ′r−1,0(0)− kφ ′r−1,0(0)

) ∫
I

xk+1Pn+1(x)w0(x)dx.

Therefore, if n ≥ r(k + 1),

∫
I

xkP ′n+1(x)vr−1(x)dx = 0,
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and, if n = rk + (r − 1),

∫
I

xkP ′r(k+1)(x)vr−1(x)dx =
(
ψ′r−1,0(0)− kφ ′r−1,0(0)

) ∫
I

xk+1Pr(k+1)(x)w0(x)dx 6= 0,

which proves (a).

To prove (b), we let
(
Cn,0(x), · · · , Cn,r−1(x)

)
, with n ∈ Z+, be the vector of type

I multiple orthogonal polynomials for the index of length n on the step-line with

respect to v(x). Then, by definition of the type I function (1.32) combined with

the relation (3.9a), we have deg(Cn,i) ≤
⌊
n− (i+ 1)

r

⌋
for all i ∈ {0, · · · , r − 1},

and

Qn(x) =
r−1∑
i=0

Cn,i(x) vi(x) =
r−1∑
j=0

(
wj(x)

r−1∑
i=0

(
xφi,j(x)Cn,i(x)

))
. (3.11)

Since f(x)wj(x)
∣∣∣
I

= 0 for each j ∈ {0, · · · , r−1} and any polynomial f , it follows

from the latter that

∫
I

Q ′n(x)dx = Qn(x)
∣∣∣
I

=
r−1∑
j=0

(
wj(x)

r−1∑
i=0

(
xφi,j(x)Cn,i(x)

)) ∣∣∣∣∣
I

= 0.

By performing integration by parts and arguing with Qn(x) satisfying orthogonal-

ity conditions as in (1.33), we have

∫
I

xk+1Q ′n(x)dx = −(k + 1)

∫
I

xkQn(x)dx =

0, if 0 ≤ k ≤ n− 2,

−n, if k = n− 1.

Hence, we obtain

∫
I

(
−xm Q ′n(x)

n

)
dx =

0, if 0 ≤ m ≤ n− 1,

1, if m = n.

As a result, it is sufficient to show that there exists a vector of polynomials(
An+1,0(x), · · · , An+1,r−1(x)

)
, with deg(An+1,j) ≤

⌊
n− j
r

⌋
for j ∈ {0, · · · , r − 1},
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such that

− 1

n
Q ′n(x) =

r−1∑
j=0

(
An+1,j(x)wj(x)

)
. (3.12)

In that case, (An+1,0(x), · · · , An+1,r−1(x)) is the vector of type I multiple orthogo-

nal polynomials for the index of length n+ 1 on the step-line with respect to w(x)

and, consequently, − 1

n
Q ′n(x) is the type I function for the index of length n + 1

on the step-line with respect to w(x).

Differentiating the first expression for Qn(x) in (3.11), we obtain

Q ′n(x) =
r−1∑
i=0

(
C ′n,i(x)vi(x) + Cn,i(x)v′i(x)

)
,

which, using (3.9a)-(3.9b), leads to

Q ′n(x) =
r−1∑
j=0

(
wj(x)

r−1∑
i=0

(
xφi,j(x)C ′n,i(x)− ψi,j(x)Cn,i(x)

))
.

The latter is equivalent to (3.12) if we set, for all j ∈ {0, · · · , r − 1},

An+1,j(x) = − 1

n

r−1∑
i=0

(
xφi,j(x)C ′n,i(x)− ψi,j(x)Cn,i(x)

)
. (3.13)

Now to prove that (An+1,0(x), · · · , An+1,r−1(x)) defined by (3.13) is the vector of

type I polynomials with respect to w(x) for the index of length n+ 1 on the step-

line and, as a result, that − 1

n
Q ′n(x) is the corresponding type I function, it is

sufficient to check that deg (An+1,j) ≤
⌊
n− j
r

⌋
, for each j ∈ {0, · · · , r − 1}.

If j = 0, then φi,0 and ψi,0 are constants, for all 0 ≤ i ≤ r − 2, deg φr−1,0 ≤ 1 and

degψr−1,0 = 1. Therefore, −nAn+1,0(x) is equal to

r−2∑
i=0

(
φi,0xC

′
n,0(x)− ψi,0Cn,0(x)

)
+ xφr−1,0(x)C ′n,r−1(x)− ψr−1,0(x)Cn,r−1(x),

which has degree not greater than deg (Cn,r−1)+1 ≤
⌊n
r

⌋
. Furthermore, if n = rm

with m ≥ 1, then deg (Arm+1,0(x)) = deg (Crm,r−1) + 1 = m.
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If j ∈ {1, · · · , r−1}, then φi,j and ψi,j are constants for all i ∈ {0, · · · , r−1}, and

φi,j = ψi,j = 0 if j ≥ i+ 2. Therefore,

An+1,j(x) = − 1

n

r−1∑
i=j−1

(
φi,jxC

′
n,i(x)− ψi,jCn,i(x)

)
,

which has degree not greater than max
j−1≤i≤r−1

deg(Cn,i) ≤
⌊
n− j
r

⌋
. Furthermore, if

n = rm+ j with m ∈ N, then deg (Arm+j+1,j(x)) = deg (Crm+j,j−1) = m.

3.2 Rodrigues-type formulas for type I MOPs

Here we explain how part (b) of Theorem 3.2 and formula (3.13) appearing in its

proof can be used to find Rodrigues-type formulas generating the type I functions

and the type I multiple orthogonal polynomials on the step-line.

Throughout the rest of this thesis, we consider vectors of orthogonality weights

W(x) =W

x
∣∣∣∣∣∣ a1, · · · , ar
b1, · · · , bs

 =

W0

x
∣∣∣∣∣∣ a1, · · · , ar
b1, · · · , bs

 , · · · ,Wr−1

x
∣∣∣∣∣∣ a1, · · · , ar
b1, · · · , bs

T ,
depending on the parameters a1, · · · , ar and b1, · · · , bs in (3.1), which satisfy dif-

ferential equation of the type in (3.8), meaning that there exist matrices

Φ(x) := Φ

x
∣∣∣∣∣∣ a1, · · · , ar
b1, · · · , bs

 and Ψ(x) := Ψ

x
∣∣∣∣∣∣ a1, · · · , ar
b1, · · · , bs

 , (3.14)

satisfying the conditions on the statement of Theorem 3.2, such that

d

dx

(
xΦ(x)W(x)

)
+ Ψ(x)W(x) = 0.

It is instrumental to our techniques that xΦ(x)W(x) is equal to W(x) up to a

shift in the parameters. This property is common to all the cases analysed here.
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Firstly, we obtain the initial type I polynomials and functions. By the conditions

on the degrees of the type I polynomials, we have A0,j(x) = 0 for all j, and

A1,j(x) = 0 whenever j 6= 0. In addition, we have the normalisation A1,0(x) = 1,

because we are assuming that the moment of order 0 of the orthogonality measures

is always equal to 1. As a result, we have Q0(x) = 0 and Q1(x) =W0(x).

Then, we use part (b) of Theorem 3.2 to generate, by induction, the type I func-

tions on the step-line. More precisely, we derive, by concatenated differentiation

of the weight function, the Rodrigues-type formulas

Qn+1

x
∣∣∣∣∣∣ a1, · · · , ar
b1, · · · , bs

 =
(−1)n

n!

dn

dxn

W
x

∣∣∣∣∣∣ a
[n]
1 , · · · , a[n]

r

b
[n]
1 , · · · , b[n]

s

 , (3.15)

valid for each n ∈ N, where a
[n]
i , i ∈ {1, · · · , r}, and b

[n]
j , j ∈ {1, · · · , s}, can be

determined by induction on n ∈ N setting a
[0]
i = ai, b

[0]
j = bj and

xΦ

x
∣∣∣∣∣∣ a

[n]
1 , · · · , a[n]

r

b
[n]
1 , · · · , b[n]

s

W
x

∣∣∣∣∣∣ a
[n]
1 , · · · , a[n]

r

b
[n]
1 , · · · , b[n]

s

 =W

x
∣∣∣∣∣∣ a

[n+1]
1 , · · · , a[n+1]

r

b
[n+1]
1 , · · · , b[n+1]

s

 .

Moreover, as a consequence of (3.13), the type I multiple orthogonal polynomials

on the step-line with respect to W(x) and xΦ(x)W(x), respectively denoted by(
An,0(x), · · · , An,r−1(x)

)
and

(
Cn,0(x), · · · , Cn,r−1(x)

)
, are related, for n ∈ N, by

n [An+1,j(x)]r−1
j=0 =

(
Ψ(x)T − xΦ(x)T

d

dx

)
[Cn,j(x)]r−1

j=0 , (3.16)

where ΦT and ΨT are the transpose of the matrices in (3.14).

In addition, recalling that
(
A1,0(x), · · · , A1,r−1(x)

)
=
(
1, 0 · · · , 0

)
, we obtain a

matrix Rodrigues-type formula generating the type I polynomials

An+1,j

x
∣∣∣∣∣∣ a1, · · · , ar
b1, · · · , bs

r−1

j=0

=
1

n!

n−1∏
k=0

O

a[k]
1 , · · · , a

[k]
r

b
[k]
1 , · · · , b

[k]
s




1

0
...

0

 , (3.17)
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for each n ∈ N, where a
[k]
i , i ∈ {1, · · · , r}, and b

[k]
j , j ∈ {1, · · · , s}, are the same

parameters appearing in (3.15) and the raising operator O is defined by

O

a1, · · · , ar
b1, · · · , bs

 = Ψ

x
∣∣∣∣∣∣ a1, · · · , ar
b1, · · · , bs

T

− xΦ

x
∣∣∣∣∣∣ a1, · · · , ar
b1, · · · , bs

T

d

dx
.

A detailed illustration of these claims for particular cases with 2 orthogonality

measures is discussed in Sections 4.3 and 5.3.

3.3 Characterisation of the type II MOPs

In this section, we focus on the type II multiple orthogonal polynomials on the step-

line, or r-orthogonal polynomials, with respect to vectors of measures (µ0, · · · , µr−1)

such that µ0 satisfies (3.1) and each µj, with j ∈ {1, · · · , r − 1}, is obtained from

µ0 by a certain shift in the parameters ai and bj in (3.1), which we specify for each

particular case we investigate.

3.3.1 Explicit expressions as hypergeometric polynomials

The r-orthogonal polynomials under analysis here are hypergeometric polynomials,

as they can be written as terminating hypergeometric series of the form

Pn(x) =

(−1)n
q∏

k=1

(βk)n

p∏
l=1

(αl)n

p+1Fq

−n, α1, · · · , αp
β1, · · · , βq

∣∣∣∣∣∣ x
 , n ∈ N, (3.18a)

with p = s, q = r, βi = ai, for 1 ≤ i ≤ r, and αj = bj + fj(n), for 1 ≤ j ≤ s,

where fj(n) is a non-negative function of n. By definition of the generalised
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hypergeometric series (1.8), this representation is equivalent to

Pn(x) =
n∑
k=0

τn,kx
n−k, τn,k =

(−1)k

k!
(n− k + 1)k

q∏
j=1

(n− k + βj)k

p∏
i=1

(n− k + αi)k

. (3.18b)

For specific cases, as for instance the ones in Chapters 4 and 5, we show that

(Pn(x))n∈N defined by (3.18a) satisfy the r-orthogonality conditions (1.37) with

respect to (µ0, · · · , µr−1), as a consequence of the following Lemmas 3.3 and 3.4.

Lemma 3.3. For n, p, q, r, s ∈ N and {ai}ri=1, {bj}sj=1, {αl}
p
l=1, {βk}

q
k=1 ⊂ C\Z−0 ,

let µ be a measure with moments given by (3.1) and (Pn(x))n∈N a polynomial

sequence defined by (3.18a). Then, for any m,n ∈ N,∫
xmPn(x)dµ(x) =

(−1)n
q∏

k=1

(βk)n

r∏
i=1

(ai)m

p∏
l=1

(αl)n

s∏
j=1

(bj)m

p+r+1Fq+s

−n, α1, · · · , αp, a1 +m, · · · , ar +m

β1, · · · , βq, b1 +m, · · · , bs +m

∣∣∣∣∣∣ 1

 .

(3.19)

Proof. Recalling (1.8), we have

Pn(x) =

(−1)n
q∏

k=1

(βk)n

p∏
l=1

(αl)n

n∑
λ=0


p∏
l=1

(αl)λ

λ!

q∏
k=1

(βk)λ

xλ

 .

As a result,

∫
xmPn(x)dµ(x) =

(−1)n
q∏

k=1

(βk)n

p∏
l=1

(αl)n

n∑
λ=0


p∏
l=1

(αl)λ

λ!

q∏
k=1

(βk)λ

∫
xm+λdµ(x)

 .
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Recalling (3.1), the latter implies that

∫
xmPn(x)dµ(x) =

(−1)n
q∏

k=1

(βk)n

p∏
l=1

(αl)n

n∑
λ=0


p∏
l=1

(αl)λ

r∏
i=1

(ai)m+λ

λ!

q∏
k=1

(βk)λ

s∏
j=1

(bj)m+λ

 ,

which is equivalent to

∫
xmPn(x)dµ(x) =

(−1)n
q∏

k=1

(βk)n

r∏
i=1

(ai)m

p∏
l=1

(αl)n

s∏
j=1

(bj)m

n∑
λ=0


p∏
l=1

(αl)λ

r∏
i=1

(ai +m)λ

λ!

q∏
k=1

(βk)λ

s∏
j=1

(bj +m)λ

 .

Therefore, by definition of the generalised hypergeometric series, we derive (3.19).

Lemma 3.4. [47, Lemma 3.2] Let n, p ∈ N, {mi}pi=1 ⊂ N and m :=

p∑
i=1

mi such

that m ≤ n and let β, {fi}pi=1 be complex numbers with positive real part. Then

p+1Fp

−n, f1 +m1, · · · , fp +mp

f1, · · · , fp

∣∣∣∣∣∣ 1

 =


0 if m < n,

(−1)nn!
p∏
i=1

(fi)mi

if m = n. (3.20)

and

p+2Fp+1

−n, β, f1 +m1, · · · , fp +mp

β + 1, f1, · · · , fp

∣∣∣∣∣∣ 1

 =

n!

p∏
i=1

(fi − β)mi

(β + 1)n

p∏
i=1

(fi)mi

. (3.21)

Proof. Formula (3.21) was deduced by Minton in [57] (see also [40, Eq. 1.2]) and

(3.20) can be obtained by taking the limit β → +∞ in (3.21).

The representation for the r-orthogonal polynomials as terminating generalised

hypergeometric series can be used to derive differential equations and recurrence
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relations of which they are solutions, as explained in Sections 3.3.2 and 3.3.3,

respectively. We can also obtain limiting relations connecting the multiple orthog-

onal polynomials investigated here from their explicit representations, using the

confluent relation for the generalised hypergeometric series (1.11).

3.3.2 Differential equation

Recalling the generalised hypergeometric differential equation (1.10), the polyno-

mial defined by (3.18a) satisfies the ordinary differential equation of order equal

to max{p+ 1, q + 1}

[
q∏
i=1

(
x

d

dx
+ βi

)]
d

dx
(Pn(x)) =

(
x

d

dx
− n

)[ p∏
j=1

(
x

d

dx
+ αj

)]
(Pn(x)) .

(3.22)

Expanding both sides of (3.22), we deduce that the left-hand side is equal to

q∑
k=0

(
η[k]xk

dk+1

dxk+1
(Pn(x))

)
,

while the right-hand side is equal to

−nζPn(x) +

p∑
k=0

(
ξ[k]
n x

k+1 dk+1

dxk+1
(Pn(x))

)
,

where ζ, η[k] and ξ
[k]
n are constants with ζ =

p∏
j=1

αj and η[q] = 1 = ξ
[p]
n .

Therefore, (3.22) can be rewritten in the form

nζPn(x) +

max{p,q}∑
k=0

((
η[k] − ξ[k]

n x
)
xk

dk+1

dxk+1
(Pn(x))

)
= 0, (3.23)

where η[k] = 0, if p < k < q, or ξ
[k]
n = 0, if q < k < p.

In particular, when we consider p = s, q = r and s ≤ r, the order of the differential

equation is r + 1 with the coefficient of the highest order derivative equal to xr if

s < r or to xr(1− x) if s = r.
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This differential equation can be seen as a generalisation of the second-order dif-

ferential equation (1.26) satisfied by the classical orthogonal polynomials.

3.3.3 Recurrence relation

The r-orthogonal polynomial sequences of the type (3.18a) naturally satisfy a

(r + 1)-order recurrence relation of the type in (1.38), that is,

Pn+1(x) = (x− βn)Pn(x)−
r∑
j=1

γ
[j]
n−j+1Pn−j(x). (3.24)

To obtain expressions for the recurrence coefficients in (3.24), we replace the poly-

nomials Pn+1−k(x), k ∈ {0, · · · , r + 1}, appearing in that recurrence relation by

their corresponding expansion over the powers of x given by (3.18b), using the

same notation τn,k, n ≥ k, for its coefficients. The linear independence of (xn)n∈N

implies that we can equate the coefficients on both sides of the recurrence relation.

After equating the coefficients of xn, for n ∈ N, we obtain

βn = τn,1 − τn+1,1.

In addition, a comparison of the coefficients of xn−k, with k ∈ {1, · · · , r} and

n ≥ k, in (3.24) implies that

γ
[k]
n−k+1 = τn,k+1 − τn+1,k+1 − τn,1τn,k + τn+1,1τn,k −

k−1∑
j=1

τn−j,k−jγ
[j]
n+1−j.

However, for k = r, it is easier, from the computational point of view, to derive

the expressions for γ
[r]
n+1, n ∈ N, directly from the r-orthogonality conditions. To

be precise, integrating both sides of (3.24) with n = r(m + 1) + j, where m ∈ N

and j ∈ {0, · · · , r−1}, multiplied by xm with respect to the measure µj, we obtain

γ
[r]
rm+j+1 =

∫
xm+1Pr(m+1)+j(x)dµj(x)∫
xmPrm+j(x)dµj(x)

.



86

In particular, when the polynomials defined by (3.18a)-(3.18b) are 2-orthogonal

with respect to a pair of measures (µ0, µ1), the sequence (Pn(x))n∈N satisfies a

third order recurrence relation of the type in (1.39), that is,

Pn+1(x) = (x− βn)Pn(x)− αnPn−1(x)− γn−1Pn−2(x). (3.25)

with coefficients

βn = τn,1 − τn+1,1; (3.26a)

αn = τn,2 − τn+1,2 − τ 2
n,1 + τn,1τn+1,1; (3.26b)

γ2n+1 =

∫
xn+1P2n+2(x)dµ0(x)∫
xnP2n(x)dµ0(x)

and γ2n+2 =

∫
xn+1P2n+3(x)dµ1(x)∫
xnP2n+1(x)dµ1(x)

. (3.26c)

3.3.4 Asymptotic behaviour and location of the zeros

For a (standard) orthogonal polynomial sequence with respect to a positive mea-

sure on the real line, it is known that all the zeros are simple and located in the

support of the orthogonality measure, and that the zeros of consecutive polynomi-

als interlace. These results about the location of the zeros do not necessarily hold

for a r-orthogonal polynomial sequence. However, we show that they hold for all

the cases we analyse in detail here, using two alternative arguments.

Firstly, we prove that, for each of these cases, the orthogonality measures form a

Nikishin system. Therefore, as explained in Section 1.4, the zeros of all type II

polynomials are simple and located in the support of the orthogonality measures,

which here is always equal to or a subset of the positive real line, and that the

zeros of nearest neighbour polynomials interlace. Alternatively, we check that,

the (r + 1)-banded lower Hessenberg matrix Hn such that the recurrence relation

satisfied by the r-orthogonal polynomials (Pn(x))n∈N can be expressed as in (1.41)

is an oscillation matrix. As a result, the zeros of Pn(x), which are the eigenvalues

of Hn as observed in Subsection 1.4.3, are all simple, real and positive and the

zeros of consecutive polynomials interlace, as expounded in Section 3.4.
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We also find an upper bound for the largest zeros of the r-orthogonal polyno-

mials, which can be derived from the asymptotic behaviour of their recurrence

coefficients, as described in the following theorem.

Theorem 3.5. For r ∈ Z+, let (Pn(x))n∈N be a r-orthogonal polynomial sequence

satisfying (3.24), where, for any n ∈ N, βn ∈ R, γ
[k]
n+1 ∈ R, for each 1 ≤ k ≤ r,

with γ
[r]
n+1 > 0, and there exist constants β ∈ R+

0 , γ[k] ∈ R+
0 , if 1 ≤ k ≤ r − 1, and

γ[r] ∈ R+ as well as a non-decreasing positive sequence (Mn)n∈Z+ such that, for

any n ∈ Z+:

• |βn−1| ≤ βMn + o (Mn) and (3.27a)

•
∣∣γ[k]
n

∣∣ ≤ γ[k]Mk+1
n + o

(
Mk+1

n

)
, for each 1 ≤ k ≤ r. (3.27b)

Then, if we denote by x
(n)
n , n ∈ Z+, the largest zero in absolute value of Pn(x),

∣∣x(n)
n

∣∣ ≤ min
s∈R+

(
s+ β +

r∑
k=1

γ[k]

sk

)
Mn + o (Mn) , as n→ +∞. (3.28)

The particular case r = 2 of the latter theorem, which is presented in this text

as Corollary 3.6, corresponds to [47, Th. 3.5] and the proof presented here for

Theorem 3.5 is a generalisation of the proof therein.

Proof. Let n ∈ Z+ and Hn be the (r + 1)-banded lower Hessenberg matrix such

that the recurrence relation satisfied by (Pn(x))n∈N can be expressed as in (1.41).

Then, the zeroes of Pn are the eigenvalue of Hn. As a result, if x
(n)
n is the largest

zero in absolute value of Pn(x),
∣∣x(n)
n

∣∣ is equal to the spectral radius of Hn, which

is, by definition, the maximum of the absolute values of the eigenvalues of Hn.

Therefore, based on [35, Cor. 6.1.8], we have

∣∣x(n)
n

∣∣ ≤ min
s0,··· ,sn−1∈R+

(
max

i∈{0,··· ,n−1}

{
n−1∑
j=0

(
sj
si
|(Hn)i,j|

)})
,
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which, recalling the values of the entries of Hn, implies that

∣∣x(n)
n

∣∣ ≤ min
s0,··· ,sn−1∈R+

(
max

i∈{0,··· ,n−1}

{
si+1

si
+ |βi|+

r∑
k=1

(∣∣∣γ[k]
i−k+1

∣∣∣ si−k
si

)})
,

with the convention sl = 0 if l = n or l ∈ Z−. In particular we can set, for any

s ∈ R+,

sj =

j∏
l=1

(sMl) = sj
j∏
l=1

Ml > 0, j ∈ {0, · · · , n− 1},

to obtain

∣∣x(n)
n

∣∣ ≤ min
s∈R+

(
max

i∈{0,··· ,n−1}

{
sMi+1 + |βi|+

r∑
k=1

(∣∣∣γ[k]
i−k+1

∣∣∣ s−k k−1∏
l=0

M−1
i−l

)})
.

Furthermore, recalling (3.27a)-(3.27b), we derive that

∣∣x(n)
n

∣∣ ≤ min
s∈R+

(
max

i∈{0,··· ,n−1}

{
sMi+1 + βMi+1 +

r∑
k=1

(
γ[k]Mk+1

i−k+1

sk
∏k−1

l=0 Mi−l

)
+ o (Mi+1)

})
.

Therefore, due to the sequence (Mn)n∈Z+ being non-decreasing,

∣∣x(n)
n

∣∣ ≤ min
s∈R+

(
max

i∈{0,··· ,n−1}

{(
s+ β +

r∑
k=1

γ[k]

sk

)
Mi+1 + o (Mi+1)

})
,

and (3.28) holds.

Setting r = 2 in Theorem 3.5, we derive the following result.

Corollary 3.6. [47, Th. 3.5] Let (Pn(x))n∈N be a 2-orthogonal polynomial sequence

satisfying (3.25), where, for any n ∈ N, βn, αn+1 ∈ R, γn+1 ∈ R+ and there exist

constants α, β ∈ R+
0 and γ ∈ R+, with ∆ := γ2 − α3

27
≥ 0, and a non-decreasing

positive sequence (Mn)n∈Z+ such that, for any n ∈ Z+:

• |βn−1| ≤ βMn + o (Mn); (3.29a)

• |αn| ≤ αM 2
n + o

(
M 2

n

)
; (3.29b)

• |γn| ≤ γM 3
n + o

(
M 3

n

)
. (3.29c)
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Then, if we denote by x
(n)
n , n ∈ Z+, the largest zero in absolute value of Pn(x),

∣∣x(n)
n

∣∣ ≤ (3

2
τ + β +

α

2τ

)
Mn + o (Mn) , as n→ +∞, (3.30)

with τ =
3

√
γ +
√

∆ +
3

√
γ −
√

∆.

Observe that Theorem 2.4 is a particular case of Corollary 3.6, obtained when we

set Mn = nλ, with λ ≥ 0, and α = β = 0.

Proof. Considering the case r = 2 of Theorem 3.5, we have

∣∣x(n)
n

∣∣ ≤ min
s∈R+

(
s+ β +

α

s
+
γ

s2

)
Mn + o (Mn) , as n→ +∞.

Therefore, to find the sharpest upper bound for
∣∣x(n)
n

∣∣ given by this formula we

need to find the minimum value on R+ of f(s) = s + β +
α

s
+

γ

s2
. With that

purpose, we look for the roots of f ′(s) = 1 − α

s2
− 2γ

s3
=

1

s3

(
s3 − αs− 2γ

)
. Due

to the condition ∆ > 0, we know that f ′ has one real root and two complex

roots. The real root is τ =
3

√
γ +
√

∆ +
3

√
γ −
√

∆ > 0, where we are taking real

and positive square and cubic roots. Furthermore, f ′′(s) =
2α

s3
+

6γ

s4
> 0, for any

s ∈ R+, so f ′′(τ) > 0 and the choice s = τ gives a minimum value to f(s). Finally,

f ′(τ) = 0 implies that
2γ

τ 3
= 1 − α

τ 2
. As a result, f(τ) =

3

2
τ + β +

α

2τ
, which

implies (3.30).

Note that if we remove the terms o
(
M j

n

)
from the upper bounds for the recurrence

relation coefficients in Theorem 3.5 and Corollary 3.6, then we can also remove

the term o(Mn) from the upper bound for the largest zeros of the polynomials.

Taking r = 1 in Theorem 3.5, we derive an upper bound for the zeros of orthogonal

polynomials. More precisely, let (Pn(x))n∈N be an orthogonal polynomial sequence

satisfying the recurrence relation

Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x), (3.31)
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where, for each n ∈ N, βn ∈ R and γn+1 ∈ R+, and there exist constants β ≥ 0

and γ > 0 and a non-decreasing positive sequence (Mn)n∈Z+ such that

|βn| ≤ βMn + o (Mn) and |γn+1| ≤ γM 2
n + o

(
M 2

n

)
. (3.32)

Then, if we denote by x
(n)
n the largest zero in absolute value of Pn(x), n ∈ Z+,

∣∣x(n)
n

∣∣ ≤ (β + 2
√
γ)Mn + o (Mn) , as n→ +∞. (3.33)

In fact, based on [43, Th. 1.4], it is known that the zeros of Pn(x) are all located

on intervals of the form
((
β − 2

√
γ
)
Mn + o (Mn) ,

(
β + 2

√
γ
)
Mn + o (Mn)

)
.

To obtain more information on the zeros of the r-orthogonal polynomials inves-

tigated here, we also derive Mehler-Heine-type asymptotic formulas satisfied by

them near the origin. The original Mehler-Heine formula gives the asymptotic

behaviour of Legendre polynomials near the endpoint x = 1 of their interval of

orthogonality (−1, 1). This result was later generalised to obtain an asymptotic

formula near x = 1 satisfied by the classical Jacobi polynomials on the interval

(−1, 1), involving the Bessel function of the first kind Jα(z) defined by (1.12). Sim-

ilarly, the Laguerre polynomials satisfy a Mehler-Heine type asymptotic formula

near the origin, also involving Jα(z). We present the Mehler-Heine-type formu-

las satisfied by Jacobi and Laguerre polynomials in Section 3.5 and the resulting

information about the zeros of these classical orthogonal polynomials.

Examples of Mehler-Heine type formulas for multiple orthogonal polynomials can

be found, for instance, in [67] and [72]. Like the Mehler-Heine-type formulas for

the classical Jacobi and Laguerre polynomials, the Mehler-Heine formulas for mul-

tiple orthogonal polynomials also give important information about the location of

their zeros (see [72, §4]). In later chapters, we obtain Mehler-Heine type formulas

from the representations as terminating hypergeometric series for the r-orthogonal

polynomials we analyse, applying the confluent relation for the generalised hyper-

geometric series (1.11) to polynomials of the form (3.18a). Therefore, the limits
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obtained are of the type 0Fr (−; a1, · · · , ar | −z ), with r equal to the number of or-

thogonality measures, similarly to the results in [72] for the Jacobi-Piñeiro polyno-

mials and for the multiple orthogonal polynomials with respect to the Macdonald

function (for r = 2) and to Meijer G-functions (when r > 2).

When investigating the zeros of r-orthogonal polynomials, we are also interested

in finding their asymptotic zero distribution ν, by studying the limit for the nor-

malised zero counting measure of Pn(x)

ν(Pn) :=
1

n

∑
Pn(x)=0

δx,

where δx is the Dirac point mass at x. If the limit exists, then we say it converges

to a measure ν in the sense of the weak convergence of measures, that is,

∫
fdν = lim

n→∞

∫
fdν(Pn) = lim

n→∞

 1

n

∑
Pn(x)=0

f(x)

 .

for all bounded and continuous functions f on I, the smallest interval containing all

the zeros of (Pn(x))n∈N. Fundamental in this analysis is the uniform convergence

of the ratio of two consecutive polynomials for all compact subsets in C\I. To be

precise, if there exists a function ρ defined in C\I such that

ρ(z) = lim
n→∞

Pn(z)

Pn+1(z)
, (3.34)

uniformly on compact subsets of C\I, and the zeros of (Pn(x))n∈N are all simple

with the zeros of consecutive polynomials interlacing, then, as explained in [17],

lim
n→∞

P ′n(z)

nPn(z)
= −ρ

′(z)

ρ(z)
and

P ′n(x)

nPn(x)
=

∫
dν(Pn)(t)

x− t
.

Therefore, under suitable conditions, −ρ
′(z)

ρ(z)
is the Stieltjes transform of ν. Thus,

determining the ratio asymptotics (3.34) is crucial to find the asymptotic zero

distribution ν, which may be obtainable via the Stieltjes inverse transform.

We apply this analysis in a particular case in Section 5.4.4.
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3.4 Link to branched continued fractions

By definition of the generalised hypergeometric series, the ordinary generating

function of the ratio of Pochhammer symbols appearing in (3.1) is

∞∑
n=0


r∏
i=1

(ai)n

s∏
j=1

(bj)n

tn

 = r+1Fs

a1, · · · , ar, 1

b1, · · · , bs

∣∣∣∣∣∣ t
 =

r+1Fs

a1, · · · , ar, 1

b1, · · · , bs

∣∣∣∣∣∣ t


r+1Fs

a1, · · · , ar, 0

b1, · · · , bs

∣∣∣∣∣∣ t
 .
(3.35)

In this section, we explain how branched-continued-fraction representations of

the generating function (3.35) can be used to obtain information about the r-

orthogonal polynomials under analysis here. Firstly, we observe that the gener-

ating function (3.35) can be expressed as a ratio of contiguous generalised hyper-

geometric series of the type in [61, Eq. 14.2], with ar+1 = 1. Then, we can use

[61, Ths. 13.1, 14.5, 14.6] to express the moments in (3.1) as m-Stieltjes-Rogers

polynomials of order n, where m = max{r, s}, denoted by S
(m)
n (λ) as in Section

1.6. Furthermore, based on [61, Cor. 14.4], a corollary of these results is that, if we

impose the conditions (3.2), then the moments in (3.1) form a Stieltjes moment

sequence, i.e. there exists a measure µ on the positive real line satisfying (3.1).

We want to check that, for each r-orthogonal polynomial sequence (Pn(x))n∈N un-

der study with a first orthogonality weight satisfying (3.1), the infinite Hessenberg

matrix H associated with (Pn(x))n∈N is equal to the production matrix P of the

generalised m-Stieltjes-Rogers polynomials S =
(
S

(m)
n,k (λ)

)
n,k∈N

. Recall that this

production matrix P admits the decomposition in bidiagonal matrices given by

(1.53). Therefore, if we check that H is equal to the production matrix P with

λk+m > 0 for all k ∈ N, then H is a totally-positive matrix, because it is the

product of bidiagonal matrices with positive entries in the nonzero diagonals.

Furthermore, the finite Hessenberg (n×n)-matrices (Hn)n∈Z+ , obtained from H by

truncation, such that (Pn(x))n∈N satisfies (1.41) are oscillation matrices, because a
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(n×n)-matrix is an oscillation matrix if and only if it is totally positive, nonsingu-

lar, and all the entries lying in its subdiagonal and its superdiagonal are positive

(see [63, Th. 5.2]). As a result, the zeros of Pn(x), which are the eigenvalues of Hn,

are simple, real, and positive, and the zeros of consecutive polynomials interlace

(similar to the main result in [64, §9.2]). Another consequence of the decompo-

sition (1.53) for the infinite Hessenberg matrix H associated with a r-orthogonal

polynomial sequence (Pn(x))n∈N is that all its recurrence coefficients are positive.

As we mostly deal with multiple orthogonal polynomials with respect to 2 mea-

sures, we now set m = 2 in (1.53). Then the production matrix of the 2-Stieltjes-

Rogers polynomials
(
S

(2)
n (λ)

)
n∈N

for the set of indeterminates λ = (λk+2)k∈N is


1

λ3 1

λ6 1
. . . . . .




1

λ4 1

λ7 1
. . . . . .




λ2 1

λ5 1

λ8 1
. . . . . .

 , (3.36)

which is equal to the (2, 1)-banded lower Hessenberg matrix



λ2 1

λ2λ3 + λ2λ4 λ3 + λ4 + λ5 1

λ2λ4λ6 λ4λ6 + λ5λ6 + λ5λ7 λ6 + λ7 + λ8 1

λ5λ7λ9 λ7λ9 + λ8λ9 + λ8λ10 λ9 + λ10 + λ11 1
. . . . . . . . . . . .


.

Therefore, the production matrix of the 2-Stieltjes-Rogers polynomials S
(2)
n (λ)

for the set of indeterminates λ = (λk+2)k∈N, is equal to the Hessenberg matrix

associated with the 2-orthogonal polynomial sequence (Pn(x))n∈N satisfying the

recurrence relation (3.25) if and only if, setting λ0 = λ1 = 0 then, for any n ∈ N,

• βn = λ3n + λ3n+1 + λ3n+2,

• αn+1 = λ3n+1λ3n+3 + λ3n+2λ3n+3 + λ3n+2λ3n+4,

• γn+1 = λ3n+2λ3n+4λ3n+6.
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3.5 Some classical orthogonal polynomials

We end this chapter with a brief analysis of the results obtained throughout the

chapter specialised to the case of (1-)orthogonal classical polynomials. In Chapters

4 and 5 we give a detailed account of these general results applied to multiple

orthogonal polynomials with respect to 2 measures.

As mentioned in the beginning of this chapter, the standard orthogonal polynomi-

als with respect to a single measure µ satisfying (3.1), with r = 1 and s ∈ {0, 1},

are the Laguerre polynomials and the Jacobi polynomials on the interval (0, 1). In

this section we show that several well-known properties of these classical orthog-

onal polynomials can be derived using results presented in the previous sections.

These properties can be found in several references including [66]. However, the

polynomials therein are not monic and the orthogonality interval of the Jacobi

polynomials is, as usual, (−1, 1); hence, the results presented here and therein are

equivalent but not equal.

3.5.1 Laguerre polynomials

For a ∈ R+, we define the gamma probability density function on the positive real

line as

W(x; a) =
e−xxa−1

Γ(a)
, (3.37)

where Γ(a) is the Gamma function defined by (1.1).

The moments of the measure µ supported on R+, with dµ(x) = W(x; a)dx, are

given, for n ∈ N, by

∫ ∞
0

xnW(x; a)dx =

∫ ∞
0

e−xxa+n−1

Γ(a)
dx =

Γ(a+ n)

Γ(a)
= (a)n . (3.38)

Therefore, the measure µ satisfies (3.1) with (r, s) = (1, 0) and a1 = a.



95

The weight function defined by (3.37) satisfies the first-order differential equation

d

dx
(xW(x; a)) + (x− a)W(x; a) = 0. (3.39)

Note that, by Proposition 3.1, (3.38) is equivalent to all the moments of the left-

hand side of (3.39) integrated over the positive real line vanishing.

Let (Pn(x; a))n∈N and (Qn(x; a))n∈N be, respectively, the sequences of monic or-

thogonal polynomials and type I functions on the step-line with respect toW(x; a).

Then, by definition of the type I function, Q0(x; a) = 0 and

Qn+1(x; a) =
1

n! (a)n
Pn(x; a)W(x; a), n ∈ N,

where the normalisation constant is derived from (1.33) and (3.41).

The differential equation (3.39) is a scalar particular case of (3.8) with

w(x) =W(x; a), Φ(x) = 1 and Ψ(x) = x− a = P1(x; a).

Then, Φ(x)W(x; a) = aW(x; a+ 1) and, using Theorem 3.2, we have

P ′n+1(x; a) = (n+ 1)Pn(x; a+ 1) and Qn+1(x; a) = − 1

n
Q ′n(x; a+ 1).

Therefore, we deduce, by induction on n ∈ N, that

Qn+1(x; a) =
(−1)n

n!

dn

dxn
(
W(x; a+ n)

)
=

(−1)n

n! (a)n

dn

dxn
(
xnW(x; a)

)
,

As a result, we obtain a Rodrigues-type formula generating the Laguerre polyno-

mials:

Pn(x; a) =
(−1)n

W(x; a)

dn

dxn
(
xnW(x; a)

)
= (−1)n ex x1−a dn

dxn
(
e−x xa+n−1

)
.
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Furthermore, we can express Pn(x; a) as a terminating hypergeometric series:

Pn(x; a) = (−1)n (a)n 1F1 (−n; a |x)

=
n∑
k=0

(
(−1)k

k!
(n− k + a)k (n− k + 1)k x

n−k
)
.

(3.40)

To check the orthogonality conditions of Pn(x; a) defined by (3.40) with respect

to W(x; a), we use Lemma 3.3 and compute, for n,m ∈ N,

∫ ∞
0

xmPn(x; a)W(x; a)dx = (−1)n (a)n (a)m 2F1

−n, a+m

a

∣∣∣∣∣∣ 1

 .

Then, applying (3.20) to the latter hypergeometric function, we deduce that

∫ ∞
0

xmPn(x; a)W(x; a)dx =

0 if m < n,

n! (a)n > 0 if m = n.

(3.41)

Recalling the differential equation for hypergeometric polynomials (3.22), the La-

guerre polynomials defined by (3.40) satisfy the differential equation

(
x

d

dx
+ a

)
d

dx
(Pn(x; a)) =

(
x

d

dx
− n

)
(Pn(x; a)) ,

which can be expanded to find

xP ′′n (x; a) + (a− x)P ′n(x; a) + nPn(x; a) = 0.

Applying (3.26a)-(3.26c) to (3.40)-(3.41), we deduce that (Pn(x; a))n∈N satisfies

the recurrence relation (3.31) with

βn = 2n+ a and γn+1 = (n+ 1)(n+ a) for all n ∈ N. (3.42)
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These expressions for the recurrence coefficients can be rewritten as

βn = λ2n + λ2n+1 and γn+1 = λ2n+1λ2n+2 for n ∈ N, (3.43)

with

λ2n = n and λ2n+1 = n+ a for n ∈ N. (3.44)

The coefficients (λn+1)n∈N appear in the continued fraction representation of the

generating function of the moment sequence (3.38), which is equal to 2F0 (a, 1;− | t).

In fact, setting α0 = 1 and αn = −λnt for all n ∈ Z+, we have (see [78, Eq. 92.2])

∞∑
n=0

(a)n t
n = 2F0 (a, 1;− | t) =

∞

K
n=0

(αn
1

)
.

Furthermore, (3.43) gives the decomposition, involving the coefficients in (3.44),


β0 1

γ1 β1 1

γ2 β2 1
. . . . . . . . .

 =


1

λ2 1

λ4 1
. . . . . .




λ1 1

λ3 1

λ5 1
. . . . . .

 , (3.45)

for the infinite tridiagonal matrix whose entries are determined by (1.22) and

(3.42). Moreover, recalling (1.53), the matrix (3.45) is equal to the production

matrix of the Stieltjes-Rogers polynomials (Sn(λ))n∈N, with Sn(λ) = (a)n.

Recalling the confluent relation (1.11), we derive a Mehler-Heine type formula near

the origin for the Laguerre polynomials defined by (3.40):

lim
n→∞

(
(−1)n

(a)n
Pn

( z
n

; a
))

= lim
n→∞

(
1F1

(
−n; a

∣∣∣ z
n

))
= 0F1 (−; a | −z ) , (3.46)

which, by definition of the Bessel function of first kind (1.12), is equivalent to

lim
n→∞

(
(−1)n

Γ(a+ n)
Pn

( z
n

; a
))

= z
1−a
2 Ja−1

(
2
√
z
)
. (3.47)
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The Mehler-Heine-type asymptotic formulas (3.46)-(3.47) converge uniformly in

every compact region of the complex plane and they give important information

about the location of the zeros of the Laguerre polynomials near the origin. In

fact, if we fix a ∈ R+ and denote the zeros of Pn(x; a), which are all simple and

positive, by
(
x

(n)
k

)
1≤k≤n

and the infinite positive zeros of Ja−1 (z), which are also

all simple, by (jk)k∈Z+ , with the zeros written in increasing order for both cases,

then we have lim
n→∞

x
(n)
k = jk, for any fixed k ∈ Z+.

Moreover, note that the recurrence coefficients (3.42) satisfy the upper bound in

(3.32) with Mn = n, β = 2 and γ = 1. As a result, using (3.33), we derive an

upper bound for the largest zero of Pn(x; a): x
(n)
n ≤ 4n+ o(n), as n→ +∞.

3.5.2 Jacobi polynomials

For a, b ∈ R+ such that a < b, we define the beta probability density function on

the interval (0, 1) as

W(x; a; b) =
xa−1(1− x)b−a−1

B(a, b− a)
, (3.48)

where B(α, β) is the Beta function defined by (1.4). It is straightforward to deduce

from the definition that W(1− x; a; b) =W(x; b− a; b).

The moments of the measure µ supported on the interval (0, 1), with

dµ(x) =W(x; a; b)dx, are given, for n ∈ N, by

∫ 1

0

xnW(x; a; b)dx =

∫ 1

0

xa+n−1(1− x)b−a−1

B(a, b− a)
dx =

B(a+ n, b− a)

B(a, b− a)
=

(a)n
(b)n

.

(3.49)

Therefore, the measure µ satisfies (3.1) with (r, s) = (1, 1) and (a1; b1) = (a; b).

The weight function defined by (3.48) satisfies the first-order differential equation

d

dx

(
x(1− x)W(x; a; b)

)
+ (bx− a)W(x; a; b) = 0. (3.50)

Note that, by Proposition 3.1, (3.49) is equivalent to all the moments of the left-

hand side of (3.50) integrated over the interval (0, 1) vanishing.
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Let (Pn(x; a; b))n∈N and (Qn(x; a; b))n∈N be, respectively, the sequences of monic

orthogonal polynomials and type I functions on the step-line with respect to

W(x; a; b). Then, by definition of the type I function, Q0(x; a; b) = 0 and

Qn+1(x; a; b) =
(b)2n (b+ n− 1)n
n! (a)n (b− a)n

Pn(x; a; b)W(x; a; b), n ∈ N,

where the normalisation constant is derived from (1.33) and (3.52).

The differential equation (3.50) is a scalar particular case of (3.8) with

w(x) =W(x; a; b), Φ(x) = 1− x and Ψ(x) = bx− a = b P1(x; a; b).

Then, Φ(x)W(x; a) =
a(b− a)

b(b+ 1)
W(x; a+ 1; b+ 2) and, using Theorem 3.2, we have

P ′n+1(x; a; b) = (n+1)Pn(x; a+1; b+2) and Qn+1(x; a; b) = − 1

n
Q ′n(x; a+1; b+2).

Therefore, we deduce, by induction on n ∈ N, that

Qn+1(x; a; b) =
(−1)n

n!

dn

dxn
(
W(x; a+ n; b+ 2n)

)
=

(−1)n (b)2n

n! (a)n (b− a)n

dn

dxn
(
xn(1− x)nW(x; a, b)

)
.

As a result, we obtain a Rodrigues-type formula generating the Jacobi polynomials

on the interval (0, 1):

Pn(x; a; b) =
(−1)n

(b+ n− 1)n
x1−a(1− x)1+a−b dn

dxn
(
xa+n−1(1− x)b−a+n−1

)
.

Furthermore, we can express Pn(x; a; b) as a terminating hypergeometric series:

Pn(x; a; b) =
(−1)n (a)n

(b+ n− 1)n
2F1

−n, b+ n− 1

a

∣∣∣∣∣∣ x


=
n∑
k=0

(
(−1)k (n− k + 1)k (n− k + a)k

k! (2n− 1− k + b)k
xn−k

)
.

(3.51)
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In fact, we can check the orthogonality conditions of (Pn(x; a; b))n∈N with respect

to W(x; a; b), using Lemma 3.3 to compute, for any n,m ∈ N,

∫ 1

0

xmPn(x; a; b)W(x; a; b)dx =
(−1)n (a)n (a)m

(b+ n− 1)n (b)m
3F2

−n, a+m, b+ n− 1

a, b+m

∣∣∣∣∣∣ 1

 .

Recalling (3.20) and (3.21), we have

3F2

−n, a+m, b+ n− 1

a, b+m

∣∣∣∣∣∣ 1

 =


0 if m ≤ n− 1,

(−1)n n! (b− a)n
(a)n (b+ n)n

if m = n.

Therefore,

∫ 1

0

xmPn(x; a; b)W(x; a; b)dx =


0 if m ≤ n− 1,

n! (a)n (b− a)n
(b)2n (b+ n− 1)n

> 0 if m = n.
(3.52)

Recalling the differential equation for hypergeometric polynomials (3.22), the Ja-

cobi polynomials defined by (3.51) satisfy the differential equation

(
x

d

dx
+ a

)
d

dx
(Pn(x; a; b)) =

(
x

d

dx
− n

)(
x

d

dx
+ (b+ n− 1)

)
(Pn(x; a; b)) ,

which can be expanded to find

x(1− x)P ′′n (x; a; b) + (a− bx)P ′n(x; a; b) + n(b+ n− 1)Pn(x; a; b) = 0.

Applying (3.26a)-(3.26c) to (3.51)-(3.52), we deduce that (Pn(x; a; b))n∈N satisfies

the recurrence relation (3.31) with

βn =
2n(n+ b− 1) + a(b− 2)

(2n+ b− 2)(2n+ b)
and γn+1 =

(n+ 1)(n+ a)(n+ b− a)(n+ b− 1)

(2n+ b− 1)(2n+ b)2(2n+ b+ 1)
(3.53)

for all n ∈ N.
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These expressions for the recurrence coefficients can be rewritten as in (3.43) with

λ2n =
n(n+ b− a− 1)

(2n+ b− 2)(2n+ b− 1)
and λ2n+1 =

(n+ a)(n+ b− 1)

(2n+ b− 1)(2n+ b)
for n ∈ N.

(3.54)

The coefficients (λn+1)n∈N appear in the continued fraction representation of the

generating function of the moment sequence (3.49), which is equal to 2F1 (a, 1; b | t),

To be precise, setting α0 = 1 and αn = −λnt, for all n ∈ Z+, we have, based on a

degenerate case of Gauss’ continued fraction (see [78, Eq. 89.16]),

∞∑
n=0

(a)n
(b)n

tn = 2F1 (a, 1; b | t) =

∞

K
n=0

(αn
1

)
.

Furthermore, analogously to what happened for the Laguerre polynomials, the in-

finite tridiagonal matrix whose entries are determined by (1.22) and the recurrence

coefficients (3.53) have a decomposition of the form (3.45), involving the coeffi-

cients in (3.54), which is equal to the production matrix of the Stieltjes-Rogers

polynomials (Sn(λ))n∈N, with Sn(λ) =
(a)n
(b)n

.

Recalling the confluent relation (1.11), we have

lim
b→∞

(
2F1

(
−n, b+ n− 1; a

∣∣∣ x
b

))
= 1F1 (−n; a |x) .

Therefore, we derive the following limiting relation between the Jacobi and La-

guerre polynomials defined by (3.51) and (3.40), equivalent to [66, Eq. 5.3.4]:

lim
b→∞

(
bnPn

(x
b

; a; b
))

= Pn(x; a).

Applying again (1.11) to (3.51), and now taking n → ∞ instead of b → ∞, we

obtain a Mehler-Heine type formula near the origin for the Jacobi polynomials on

the interval (0, 1):

lim
n→∞

(
(−1)n (b+ n− 1)n

(a)n
Pn

( z
n2

; a; b
))

= 0F1 (−; a | −z ) . (3.55)
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Let (Jn(y;α; β))n∈N be the monic classical Jacobi polynomials, which are orthog-

onal with respect to (1− y)α (1 + y)β, with α, β > −1, on the interval (−1, 1).

Then, Pn(x; a; b) = Jn(1 − 2x; a − 1; b − a − 1). Recalling the definition of the

Bessel function of the first kind (1.12) and taking w = 2
√
z, (3.55) is equivalent

to the Mehler-Heine-type formula for the classical Jacobi polynomials

lim
n→∞

n−αJn
(

cos
(w
n

)
;α, β

)
= lim

n→∞
n−αJn

(
1− w2

2n2
;α, β

)
=
(w

2

)−α
Jα (w) .

(3.56)

The case α = β = 0 of (3.56) is the original Mehler-Heine formula for the Legen-

dre polynomials. The Mehler-Heine-type asymptotic formulas (3.55)-(3.56) con-

verge uniformly in every compact region of the complex plane. Therefore, they

give important information about the location of the zeros of the classical Jacobi

polynomials near the endpoint x = 1, or alternatively the zeros of the Jacobi

polynomials on the interval (0, 1) near the origin. If we denote the zeros of the

classical Jacobi polynomials Jn(y;α, β), n ∈ Z+ and α, β > −1, in decreasing

order by
(
y

(n)
k

)
1≤k≤n

, and we write y
(n)
k = cos

(
θ

(n)
k

)
with 0 < θ

(n)
k < π, for each

1 ≤ k ≤ n, and the (infinite and simple) positive zeros of Ja−1 (z) in increasing

order by (jk)k∈Z+ , then lim
n→∞

nθ
(n)
k = jk for a fixed k ∈ Z+.

Furthermore, the asymptotic behaviour of the classical Jacobi polynomials and

the location of their zeros near the endpoint y = −1 can be obtained from (3.56),

using the relation Jn(−y;α, β) = (−1)nJn(y; β, α) for n ∈ N. Similarly, we can

obtain the asymptotic behaviour of the Jacobi polynomials on the interval (0, 1)

and the location of their zeros near the origin from the Mehler-Heine-type formula

(3.55) and near x = 1 via the relation

Pn(1− x; a; b) = (−1)nPn(x; b− a; b) for n ∈ N,

which is a consequence of the propertyW(1−x; a; b) =W(x; b−a; b) of the weight

function.
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3.5.3 Quadratic decompositions

As mentioned in Subsection 1.3.2, the only symmetric classical orthogonal poly-

nomials, up to a linear transformation of the variable, are the Hermite and Gegen-

bauer polynomials. The Laguerre polynomials and the Jacobi polynomials on the

interval (0, 1) generalise the quadratic components of these two families of orthog-

onal polynomials.

Based on [66, Eq. 5.6.1], the Hermite polynomials (Hn(x))n∈N, which are orthog-

onal with respect to the symmetric weight function e−x
2

over the real line, satisfy

the quadratic decomposition

H2n(x) = H [0]
n (x2) and H2n+1(x) = xH [1]

n (x2) for all n ∈ N,

with

H [0]
n (x) = Pn

(
x;

1

2

)
and H [1]

n (x) = Pn

(
x;

3

2

)
,

where Pn(x; a) are the Laguerre polynomials defined by (3.40).

The Gegenbauer or ultraspherical polynomials, (Cn(x;λ))n∈N with λ > −1

2
, are

orthogonal with respect to the symmetric weight function (1−x2)λ−
1
2 over the inter-

val (−1, 1). This means that Cn(x;λ) = Jn
(
x;λ− 1

2
, λ− 1

2

)
, where (Jn (y;α; β))n∈N

are again the classical Jacobi polynomials on the interval (−1, 1).

Based on [66, Eq. 4.7.30], the Gegenbauer polynomials satisfy the quadratic de-

composition

C2n(x;λ) = C [0]
n (x2;λ) and C2n+1(x;λ) = xC [1]

n (x2;λ) for all n ∈ N,

with

C [0]
n (x;λ) = Pn

(
x;

1

2
;λ+ 1

)
and C [1]

n (x;λ) = Pn

(
x;

3

2
;λ+ 2

)
,

where Pn(x; a; b) are the Jacobi polynomials on the interval (0, 1) defined by (3.51).



Chapter 4

MOPs with respect to the

modified Tricomi weights

In this chapter we investigate the multiple orthogonal polynomials with respect to

two absolutely continuous measures supported on the positive real line and admit-

ting integral representations via weight functionsW(x; a, b; c) andW(x; a, b; c+1),

involving the confluent hypergeometric function of the second kind (1.18), aka the

Tricomi function, and defined, for a, b, c ∈ R+ with c > max{a, b}, by

W(x; a, b; c) =
Γ(c)

Γ(a)Γ(b)
e−xxa−1 U (c− b, a− b+ 1;x) . (4.1)

This chapter consists entirely of original work, except for Section 4.6. Most of this

work was published in [47]. The exceptions are Theorem 4.8, Proposition 4.12,

and the results in Section 4.5, which are new unpublished work obtained after the

publication of [47]. We hereby explore the results obtained in [47], bringing in a

new broader perspective based on the investigation expounded in Chapter 3.

Note that the parameters a and b are interchangeable because, using (1.19),

W(x; a, b; c) =
Γ(c)

Γ(a)Γ(b)
e−xxa−1 U (c− b, a− b+ 1;x)

=
Γ(c)

Γ(a)Γ(b)
e−xxb−1 U (c− a, b− a+ 1;x) =W(x; b, a; c).

104
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The conditions a, b, c ∈ R+ and c > max{a, b} guarantee that W(x; a, b; c) is

integrable over the positive real line. In fact (see [22, Eq. 13.10.7]),

∫ ∞
0

e−xxa−1 U (c, a+ 1− b;x) dx =
Γ(a)Γ(b)

Γ(c)
.

Therefore, W(x; a, b; c) is a probability density function on R+ with moments

∫ ∞
0

xnW(x; a, b; c) dx =
(a)n (b)n

(c)n
, n ∈ N. (4.2)

Hence, the measure µ supported on the positive real line with dµ(x) =W(x; a, b; c) dx

satisfies (3.1) with (r, s) = (2, 1) and (a1, a2; b1) = (a, b; c).

In Section 4.1, we prove that the weight functionsW(x; a, b; c) andW(x; a, b; c+1)

form a Nikishin system on the positive real line (Theorem 4.1). As a result, all

multiple orthogonal polynomials of both type I and type II with respect to these

weight functions exist and are unique for every multi-index and their zeros satisfy

the properties common to all Nikishin systems. We also obtain an explicit formula

for the generating measure of the ratio of the weight functions (Proposition 4.2).

In Section 4.2, we describe the weight function W(x; a, b; c) and the two vectors

of weights in (4.7) as solutions to a second-order ordinary differential equation

(Proposition 4.3) and a matrix first-order differential equation (Theorem 4.5),

respectively. The latter implies that both type II polynomials and type I functions

on the step-line satisfy the Hahn property because the differentiation operator acts

on them as a shift in the parameters and in the index (Theorem 4.6).

In Section 4.3, we focus on the type I polynomials on the step-line: we obtain

a Rodrigues-type formula generating the type I functions (Theorem 4.7) and a

matrix Rodrigues-type formula generating the type I polynomials (Theorem 4.8).

Section 4.4 is devoted to a detailed characterisation of the type II multiple or-

thogonal polynomials on the step-line, that is, the 2-orthogonal polynomials. This

characterisation includes finding an explicit representation for these polynomials

as terminating generalised hypergeometric series 2F2 (Theorem 4.9), and obtaining
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a third order differential equation (Theorem 4.10) and recurrence relation (Theo-

rem 4.11) of which these 2-orthogonal polynomials are a solution. It turns out that

the recurrence coefficients are unbounded and asymptotically periodic of period 2,

and we believe this to be the first explicit example of a Nikishin system associated

with asymptotically periodic unbounded recurrence coefficients. We also derive a

Mehler-Heine-type asymptotic formula satisfied by the 2-orthogonal polynomials

(Proposition 4.12), which gives us information about their zeros near the origin,

and we find an upper bound for their largest zero (Theorem 4.13). Finally, we

show that the cubic components of cases B1 and B2 of the Hahn-classical 3-fold-

symmetric 2-orthogonal polynomials analysed in Chapter 2 are particular cases of

the polynomials characterised here.

The starting point of Section 4.5 is a branched-continued-fraction representation

for the ordinary generating function of the moment sequence given by (4.2), which

is a generalised hypergeometric series 3F1. We obtain explicit formulas for the

coefficients of this branched continued fraction, which we use to obtain alternative

expressions for the recurrence coefficients of the 2-orthogonal polynomials char-

acterised in Section 4.4. As a result, the recurrence coefficients are all positive

and we derive a decomposition of the infinite lower-Hessenberg matrix associated

with these 2-orthogonal polynomials as a product of bidiagonal matrices. This

shows that this lower-Hessenberg matrix is the production matrix of a sequence

of 2-Stieltjes-Rogers polynomials: the moment sequence given by (4.2).

Finally, in Section 4.6, we prove that the multiple orthogonal polynomials with

respect to a pair of weights supported on the positive real line and involving the

Macdonald function, introduced in [75] and [11], are a limiting case of the polyno-

mials characterised in Section 4.4. Furthermore, we show that some properties of

the multiple orthogonal polynomials with respect to Macdonald functions can be

derived from results presented in Chapter 3. These properties include a decompo-

sition of the recurrence coefficients via the indeterminates of a branched-continued-

fraction representation of the generating function of the moment sequence of the

Macdonald weight: a generalised hypergeometric series 3F0.
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4.1 Nikishin system

The first question to address when investigating the system of multiple orthogonal

polynomials with respect to W(x; a, b; c) and W(x; a, b; c + 1) is on whether such

a system exists and it is unique. We are able to answer affirmatively to these

questions by using the connection between continued fractions (in this case, J-

fractions) and Stieltjes transforms introduced in Section 1.5 to prove that these

weight functions form a Nikishin system, as explained in Theorem 4.1.

As a consequence of the system being Nikishin, we guarantee the existence and

uniqueness of the multiple orthogonal polynomials of type I, (A~n, B~n), and type II,

P~n, with respect to the vector of weight functions
(
W(x; a, b; c),W(x; a, b; c+ 1)

)
,

for any ~n = (n0, n1) ∈ N2. Furthermore, the type I polynomials A~n and B~n have

exactly degree n0−1 and n1−1, respectively, the type I function Q~n and the type

II multiple orthogonal polynomial P~n have exactly |~n| − 1 and |~n| simple zeros on

R+, respectively, and the zeros of the type II polynomials interlace with the zeros

of their nearest neighbours, as explained in the Subsection 1.4.2.

Theorem 4.1. [47, Th. 2.1] For a, b, c ∈ R+ such that c > max{a, b}, let

W(x; a, b; c) be defined by (4.1). Then, setting α0 = c, αn = −(c−a+n)(c− b+n)

for n ≥ 1, and βn = 2c− a− b+ 2n+ 1 for all n ∈ N, we have

W(x; a, b; c+ 1)

W(x; a, b; c)
=

∞

K
n=0

(
αn

x+ βn

)
, (4.3)

Therefore, there exists a probability density measure σ in R+ such that

W(x; a, b; c+ 1)

W(x; a, b; c)
= c

∫ 0

−∞

dσ(−t)
x− t

, (4.4)

and the vector of weight functions
(
W(x; a, b; c),W(x; a, b; c+ 1)

)
forms a Nikishin

system on the positive real line.
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Proof. Following the definition of W(x; a, b; c),

W(x; a, b; c+ 1)

W(x; a, b; c)
=
cU (c− b+ 1, a− b+ 1;x)

U (c− b, a− b+ 1;x)
.

According to [22, Eq. 13.3.7], we have

(c− a)(c− b)U (c− b+ 1, a− b+ 1;x)

= (x+ 2c− a− b− 1)U (c− b, a− b+ 1;x)−U (c− b− 1, a− b+ 1;x) ,

which implies that

W(x; a, b; c+ 1)

W(x; a, b; c)
=

c

(c− a)(c− b)

(
(x+ 2c− a− b− 1)− U (c− b− 1, a− b+ 1;x)

U (c− b, a− b+ 1;x)

)
.

Furthermore, based on [20, Eq. 16.1.20], we derive

U (c− b− 1, a− b+ 1;x)

U (c− b, a− b+ 1;x)
= (x+ 2c− a− b− 1) +

∞

K
n=0

(
α̃n

x+ βn

)
,

with α̃n = −(c− a+ n)(c− b+ n) and βn = 2c− a− b+ 2n+ 1 for all n ∈ N.

Combining the two latter equations, we deduce that (4.3) holds. Moreover, because

c > max{a, b}, we have αn, βn > 0 for any n ∈ N. Therefore, recalling (1.51), (4.3)

implies (4.4), and we have proved that
(
W(x; a, b; c),W(x; a, b; c+ 1)

)
forms a

Nikishin system on the positive real line.

The generating measure σ in (4.4) can be found via the Stieltjes-Perron inversion

formula. As such, we have

dσ(t)

dt
= lim

ε→0+

G(−t− iε)−G(−t+ iε)

2πi
= lim

ε→0+

G(e−iπ(t+ iε))−G(eiπ(t− iε))
2πi

,

(4.5)

where

G(x) =
W(x; a, b; c+ 1)

cW(x; a, b; c)
=

U (c− b+ 1, a− b+ 1;x)

U (c− b, a− b+ 1;x)
,

which is well defined because c > b implies that U (c− b, a− b+ 1;x) has no zeros

in the sector |arg(x)| < π (see [22, §13.9(ii)]).
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During the remainder of this section, we set α = c− b and β = a− b+1 to shorten

the notation. Based on [22, Eqs. 13.3.22 & 13.3.10], we have

xU ′ (α, β;x) = α(α− β + 1)U (α + 1, β;x)− αU (α, β;x) . (4.6)

Therefore, we can rewrite

G(x) =
1

α(α− β + 1)

(
x

U ′(α, β;x)

U (α, β;x)
+ α

)

and (4.5) reads as

dσ(t)

dt
= lim

ε→0+

(
e−πi(t+ iε)U ′(α, β; e−πi(t+ iε))U (α, β; eπi(t− iε))

2πiα(α− β + 1) |U (α, β; eπi(t− iε))|2

− eπi(t− iε)U (α, β; e−πi(t+ iε)) U ′(α, β; eπi(t− iε))
2πiα(α− β + 1) |U (α, β; eπi(t− iε))|2

)
.

In [38, Eqs. 3.4-3.5], it was shown that, for non-integer values of β, we have

lim
ε→0+

(
U ′(α, β + 1; e−πi(t+ iε))U (α, β + 1; eπi(t− iε))

2πi |U (α, β; eπi(t− iε))|2

− U (α, β + 1; e−πi(t+ iε)) U ′(α, β + 1; eπi(t− iε))
2πi |U (α, β; eπi(t− iε))|2

)

=
−t−β e−t

Γ(α)Γ(α− β + 1) |U (α, β; eπit)|2
.

The latter was obtained by expressing the function U as a linear combination of

two independent solutions to the confluent differential equation as in [22, Eq. 13.2.42]

to then use the expression for the Wronskian of those two functions given in [22,

Eq. 13.2.34]. Therefore, we deduce that

dσ(t)

dt
=

t1−β e−t

Γ(α + 1)Γ(α− β + 2) |U (α, β; eπit)|2
,

and we obtain the following result.
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Proposition 4.2. [47, Prop. 2.2] For a, b, c ∈ R+ such that c > max{a, b}, let

W(x; a, b; c) be defined by (4.1). If a− b /∈ Z, then relation (4.4) can be written as

W(x; a, b; c+ 1)

W(x; a, b; c)
= c

∫ ∞
0

tb−a e−t |U (c− b, a− b+ 1;−t)|−2 dt

(x+ t)Γ(c− b+ 1)Γ(c− a+ 1)
.

4.2 Differential properties

From this point forth, we index the vector
[
W(x; a, b; c),W(x; a, b; c+ 1)

]T
of func-

tions defined by (4.1), with an extra parameter ε ∈ {0, 1}, by considering

W [ε]
(x; a, b; c) :=

 W(x; a, b; c+ ε)

W(x; a, b; c+ 1− ε)

 . (4.7)

The parameter ε ∈ {0, 1} swaps the roles of the weight functions W(x; a, b; c) and

W(x; a, b; c+1) causing a reflection of the multiple orthogonal polynomials of both

types with respect to the diagonal polynomials, which remain the same. When

focusing on the step-line, changing the parameter ε ∈ {0, 1} corresponds to a flip

between the multiple orthogonal polynomials for the lower and the upper step-line

multi-indexes. In particular, both type II and type I polynomials (and the type I

function) for the multi-indices of even length on the step-line remain unchanged

when changing the parameter ε ∈ {0, 1}.

There are further motivations for the introduction of this parameter ε. Under the

action of the derivative operator, the multiple orthogonal system forW [ε]
(x; a, b; c)

bounces from the lower to the upper step-line and reciprocally with shifted pa-

rameters, as expounded in Theorem 4.6, which comes as a consequence of the

description of the vector of weights (4.7) as a solution to a matrix first order dif-

ferential equation in Theorem 4.5. Beforehand, in Proposition 4.3, we describe the

weight function W(x; a, b; c) as a solution to a second-order differential equation.
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Proposition 4.3. [47, Prop. 2.3] For a, b, c ∈ R+ such that c > max{a, b}, let

W(x) =W(x; a, b; c) be the weight function defined by (4.1). Then

x2W ′′(x) + (x− (a+ b− 3))xW ′(x) + ((a− 1)(b− 1)− (c− 2)x)W(x) = 0

(4.8a)

which, defining the operator Θ : P → P by Θ (f(x)) =
d

dx

(
xf(x)

)
, is equivalent

to

Θ2
(
W(x)

)
+ Θ

(
(x− (a+ b))W(x)

)
+ (ab− cx)W(x) = 0. (4.8b)

Note that, recalling Proposition 3.1, the formula for the moments of W(x; a, b; c)

given by (4.2) is equivalent to all the moments of the left-hand side of (4.8b)

integrated over the positive real line vanishing.

Proof. It is easy to check that the differential equations (4.8a) and (4.8b) are

equivalent because expanding the latter we obtain the former. Hence, it is sufficient

to prove that (4.8a) holds. To simplify the notation, we set λ =
Γ(c)

Γ(a)Γ(b)
and we

write U(x) = U (c− b, a+ 1− b;x), so that

W(x) =W(x; a, b; c) = λ e−xxa−1 U(x).

Differentiating the latter with respect to x, we obtain

W ′(x) = λ e−xxa−2 (xU ′(x) + (a− 1− x)U(x)) . (4.9)

Another differentiation brings

W ′′(x) = λ e−xxa−3
(
x2U′′(x) + 2(a− 1− x)xU ′(x)

+
(
x2 − 2(a− 1)x+ (a− 1)(a− 2)

)
U(x)

)
.

Based on (1.17), xU ′′(x) = (x− a− 1 + b)U′(x) + (c− b)U(x), which implies that

W ′′(x) = λ e−xxa−3
(

(a+ b− 3− x)xU ′(x)

+
(
x2 + (c− b− 2a− 2)x+ (a− 1)(a− 2)

)
U(x)

)
.
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Finally, combining the latter expression with the definition of W(x; a, b; c) and

(4.9), we deduce (4.8a).

In the following result, we obtain expressions for
d

dx
(xW(x; a, b; c+ ε)), ε ∈ {0, 1},

as combinations of W(x; a, b; c) and W(x; a, b; c+ 1).

Lemma 4.4. [47, Lemma. 2.4] For a, b, c ∈ R+ such that c > max{a, b}, let

W(x; a, b; c) be the weight function defined by (4.1). Then

d

dx
(xW(x; a, b; c)) = −(x+ c− a− b)W(x; a, b; c) +

(c− a)(c− b)
c

W(x; a, b; c+ 1)

(4.10a)

and

d

dx
(xW(x; a, b; c+ 1)) = cW(x; a, b; c+ 1)− cW(x; a, b; c). (4.10b)

Proof. Combining (4.9) and (4.6), we can write

W ′(x; a, b; c) =
Γ(c)

Γ(a)Γ(b)
e−xxa−2 g(x)

with

g(x) = (c−a)(c−b)U (c− b+ 1, a− b+ 1;x)−(x+c−a−b+1)U (c− b, a− b+ 1;x) .

As a result,

d

dx
(xW(x; a, b; c)) = xW ′(x; a, b; c) +W(x; a, b; c) =

Γ(c)

Γ(a)Γ(b)
e−xxa−1g̃(x),

with

g̃(x) = (c−a)(c−b)U (c− b+ 1, a− b+ 1;x)−(x+c−a−b)U (c− b, a− b+ 1;x) ,

which implies that (4.10a) holds.
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Making the shift c→ c+ 1 in (4.10a) and (4.1), we obtain, respectively,

d

dx
(xW(x; a, b; c+ 1))

= − (x+ c− a− b+ 1)W(x; a, b; c+ 1) +
(c− a+ 1)(c− b+ 1)

c+ 1
W(x; a, b; c+ 2).

and
(c− a+ 1)(c− b+ 1)

c+ 1
W(x; a, b; c+ 2)

= (x+ 2c− a− b+ 1)W(x; a, b; c+ 1)− cW(x; a, b; c).

As a result, combining the two latter equations, we deduce that (4.10b) holds.

Based on the previous lemma, we can write the vector of weightsW [ε]
(x; a, b; c) as

a solution to a matrix first order equation of Pearson type as follows.

Theorem 4.5. [47, Th. 2.5] For a, b, c ∈ R+ such that c > max{a, b} and ε ∈

{0, 1}, let W [ε]
(x; a, b; c) be defined as in (4.7), and define the matrices

Φ[0](x) =

 0
c+ 1

ab
c

ab
0

 and Ψ[0](x) =

 c(c+ 1)

ab
−c(c+ 1)

ab
c

ab
(x+ c− a− b) −(c− a)(c− b)

ab

 ;

Φ[1](x) =


c+ 1

ab
0

(c+ 1)(c+ 2)(x+ 2c− a− b+ 1)

ab(c− a+ 1)(c− b+ 1)
− c(c+ 1)(c+ 2)

ab(c− a+ 1)(c− b+ 1)

 and

Ψ[1](x) =

 −c(c+ 1)

ab

c(c+ 1)

ab

− (c+ 1)2(c+ 2)

ab(c− a+ 1)(c− b+ 1)

(
x+ c− ab

c+ 1

)
c(c+ 1)2(c+ 2)

ab(c− a+ 1)(c− b+ 1)

 .
Then

d

dx

(
xΦ[ε](x)W [ε]

(x; a, b; c)
)

+ Ψ[ε](x)W [ε]
(x; a, b; c) = 0, (4.11)

and

xΦ[ε](x)W [ε]
(x; a, b; c) =W [1−ε]

(x; a+ 1, b+ 1; c+ 1 + ε). (4.12)
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Proof. To simplify the notation, we let W [ε]
(x) = W [ε]

(x; a, b; c), ε ∈ {0, 1}. The

equations (4.10a)-(4.10b) in Lemma 4.4 can be rewritten as

d

dx

(
xW [ε]

(x)
)

= Ω[ε](x)W [ε]
(x),

with

Ω[0](x) =

−(x+ c− a− b) (c− a)(c− b)
c

−c c


and

Ω[1](x) =

 c −c
(c− a)(c− b)

c
−(x+ c− a− b)

 .
As a result, we obtain

d

dx

(
xΦ[ε](x)W [ε]

(x)
)

=

(
x

d

dx

(
Φ[ε](x)

)
+ Φ[ε](x)Ω[ε](x)

)
W [ε]

(x),

which corresponds to (4.11), after checking that

Ψ[0](x) = −Φ[0]Ω[0](x) and Ψ[1](x) = −Φ[1](x)Ω[1](x)− x d

dx

(
Φ[1](x)

)
.

Now, we let V [ε]
0 (x)

V [ε]
1 (x)

 = xΦ[ε](x)W [ε]
(x), ε ∈ {0, 1}.

In order to prove (4.12), we need to check that

V [ε]
0 (x)

V [ε]
1 (x)

 =

 W(x; a+ 1, b+ 1; c+ 2)

W(x; a+ 1, b+ 1; c+ 1 + 2ε)

 .
Firstly, observe that both V [0]

0 (x) and V [1]
0 (x) are equal to

c+ 1

ab
xW(x; a, b; c+ 1) =

Γ(c+ 2)e−xxa

Γ(a+ 1)Γ(b+ 1)
U (c− b+ 1, a− b+ 1;x) .
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Hence,

V [0]
0 (x) = V [1]

0 (x) =W(x; a+ 1, b+ 1; c+ 2).

Moreover,

V [0]
1 (x) =

c

ab
xW(x; a, b; c) =

Γ(c+ 1)e−xxa

Γ(a+ 1)Γ(b+ 1)
U (c+ 1, a− b+ 1;x) ,

thus

V [0]
1 (x) =W(x; a+ 1, b+ 1; c+ 1).

Finally,

V [1]
1 (x) =

(c+ 1)(c+ 2)x

ab(c− a+ 1)(c− b+ 1)

(
(x+2c−a−b+1)W(x; a, b; c+1)−cW(x; a, b; c)

)
,

which, recalling (4.1) (with the shift c→ c+ 1), can be rewritten as

V [1]
1 (x) =

Γ(c+ 3)e−xxa

Γ(a+ 1)Γ(b+ 1)
U (c− b+ 2, a− b+ 1;x) =W(x; a+ 1, b+ 1; c+ 3).

Combining the latter result with Theorem 3.2, we show that the type II multiple

orthogonal polynomials and the type I functions on the step-line satisfy the Hahn-

classical property, because the differentiation with respect to the variable gives a

shift in the parameters as well as in the index, as described in the following result.

Theorem 4.6. [47, Th. 2.9] For a, b, c ∈ R+ such that c > max{a, b}, ε ∈ {0, 1}

and n ∈ N, let P
[ε]
n (x; a, b; c) and Q

[ε]
n (x; a, b; c) be, respectively, the type II multiple

orthogonal polynomial and the type I function for the index of length n on the

step-line with respect to W [ε]
(x; a, b; c). Then

d

dx

(
P

[ε]
n+1(x; a, b; c)

)
= (n+ 1)P [1−ε]

n (x; a+ 1, b+ 1; c+ 1 + ε) (4.13)

and
d

dx

(
Q[1−ε]
n (x; a+ 1, b+ 1; c+ 1 + ε)

)
= −nQ[ε]

n+1(x; a, b; c). (4.14)
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Proof. Let Φ[ε](x; a, b; c) be defined as in Theorem 4.5.

Part (a) of Theorem (3.2) ensures that

(
1

n+ 1

d

dx

(
P

[ε]
n+1(x; a, b; c)

))
n∈N

is 2-

orthogonal with respect to the vector of weights xΦ[ε](x; a, b; c)W [ε]
(x; a, b; c). Sim-

ilarly, part (b) of Theorem (3.2) implies that, if R
[ε]
n (x; a, b; c) is the type I function

for the index of length n on the step-line with respect to xΦ[ε](x; a, b; c)W [ε]
(x; a, b; c)

then − 1

n

d

dx

(
R[ε]
n (x; a, b; c)

)
is the type I function for the index of length n+ 1 on

the step-line with respect to the vector of weights W [ε]
(x; a, b; c).

Therefore, by virtue of (4.12), we conclude that both (4.13) and (4.14) hold.

4.3 Rodrigues-type formulas for type I MOPs

We denote by
(
A

[ε]
n (x; a, b; c), B

[ε]
n (x; a, b; c)

)
the vector of type I multiple orthog-

onal polynomials with respect to W [ε]
(x; a, b; c), ε ∈ {0, 1}, for the multi-index of

length n on the step-line. Then, the type I functions on the step-line are

Q[ε]
n (x; a, b; c) = A[ε]

n (x; a, b; c)W(x; a, b; c+ ε) +B[ε]
n (x; a, b; c)W(x; a, b; c+ 1− ε),

and they can be generated via a Rodrigues-type formula of the type in (3.15) as

described in the following result.

Theorem 4.7. [47, Th. 2.10] For a, b, c ∈ R+ such that c > max{a, b}, ε ∈ {0, 1}

and n ∈ N, let Q
[ε]
n (x; a, b; c) be the type I function with respect to W [ε]

(x; a, b; c)

for the index of length n on the step-line. Then, for any n ∈ N,

Q
[ε]
n+1(x; a, b; c) =

(−1)n

n!

dn

dxn

(
W
(
x; a+ n, b+ n; c+ n+

⌊
n+ 1 + ε

2

⌋))
.

(4.15)

Proof. We proceed by induction on n ∈ N. For n = 0, the relation (4.15) trivially

holds, because it reads as Q
[ε]
1 (x; a, b; c) =W(x; a, b; c+ ε).
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Using the differential formula (4.14) and then evoking the assumption that (4.15)

holds for a fixed n ∈ N, we obtain

Q
[ε]
n+2(x; a, b; c) = − 1

n+ 1

d

dx

(
Q

[1−ε]
n+1 (x; a+ 1, b+ 1; c+ 1 + ε)

)
=

(−1)n+1

(n+ 1)!

dn+1

dxn+1

(
W
(
x; a+ n+ 1, b+ n+ 1; c+ n+ 1 +

⌊
n+ 2 + ε

2

⌋))
.

If we equate the first and latter members, we readily see that (4.15) holds for n+1

and, as a result, we can state that it holds for all n ∈ N by induction.

Moreover, applying formula (3.16) to
(
A

[ε]
n (x; a, b; c), B

[ε]
n (x; a, b; c)

)
, we deduce

that, for any n ∈ N,

n

A[ε]
n+1(x; a, b; c)

B
[ε]
n+1(x; a, b; c)

 = O[ε](a, b; c)

A[1−ε]
n (x; a+ 1, b+ 1; c+ ε)

B[1−ε]
n (x; a+ 1, b+ 1; c+ ε)

 ,
where the raising operator O[ε](a, b; c), involving the transpose of the matrices in

Theorem 4.5, is defined by

O[ε](a, b; c) =
(
Ψ[ε](x)

)T − x (Φ[ε](x)
)T d

dx
. (4.16)

Therefore, recalling that
(
A

[ε]
1 (x; a, b; c), B

[ε]
1 (x; a, b; c)

)
= (1, 0), we obtain a ma-

trix Rodrigues-type formula of the type (3.17) generating the type I polynomials

on the step-line. Precisely, we have the following result.

Theorem 4.8. For a, b, c ∈ R+ such that c > max{a, b}, ε ∈ {0, 1} and n ∈

N, let
(
A

[ε]
n (x; a, b; c), B

[ε]
n (x; a, b; c)

)
be the vector of type I multiple orthogonal

polynomials with respect to W [ε]
(x; a, b; c) for the index of length n on the step-

line. Then, for any n ∈ N,

A[ε]
n+1 (x; a, b; c)

B
[ε]
n+1 (x; a, b; c)

 =
1

n!

(
n−1∏
k=0

O[ε]

(
a+ k, b+ k; c+ k +

⌊
k + 1 + ε

2

⌋))1

0

 ,
where the raising operator O[ε](a, b; c) is defined by (4.16).



118

4.4 Characterisation of the type II MOPs

We start this section by giving an explicit representation as terminating hyperge-

ometric series 2F2 for the type II multiple orthogonal polynomials on the step-line

with respect toW [ε]
(x; a, b; c). We use this representation to obtain the third-order

differential equation and recurrence relation satisfied by these polynomials as well

as a Mehler-Heine-type asymptotic formula near the origin satisfied by them. The

latter and the asymptotic behaviour of the recurrence coefficients give us informa-

tion about the zeros of these 2-orthogonal polynomials. Finally, we highlight the

particular cases connected to Hahn-classical 3-fold-symmetric 2-orthogonal poly-

nomials.

4.4.1 Explicit expressions as hypergeometric polynomials

Based on the moments expression (4.2), the explicit formula for the 2-orthogonal

polynomials with respect to W [ε]
(x; a, b; c) is presented in the following theorem.

Theorem 4.9. [47, Th. 3.1] For a, b, c ∈ R+ such that c > max{a, b} and ε ∈

{0, 1}, let
(
P [ε]
n (x; a, b; c)

)
n∈N be the monic 2-orthogonal polynomial sequence with

respect to W [ε]
(x; a, b; c). Then

P [ε]
n (x; a, b; c) =

(−1)n (a)n (b)n(
c+

⌊
n+ε

2

⌋)
n

2F2

−n, c+
⌊
n+ε

2

⌋
a, b

∣∣∣∣∣∣ x
 , (4.17)

or, equivalently,

P [ε]
n (x; a, b; c) =

n∑
k=0

(
(−1)k (1 + n− k)k (a+ n− k)k (b+ n− k)k

k!
(
c+

⌊
n+ε

2

⌋
+ n− k

)
k

xn−k

)
.

(4.18)
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To prove this theorem we check that
(
P

[ε]
n (x)

)
n∈N

in (4.17) satisfies the 2-orthogonality

conditions with respect to W [ε]
(x; a, b; c), which are:

∫ ∞
0

xkP [ε]
n (x; a, b; c)W(x; a, b; c+ ε)dx =

0 if n ≥ 2k + 1,

N
[ε]
2k(a, b; c) 6= 0 if n = 2k,

(4.19a)

and

∫ ∞
0

xkP [ε]
n (x; a, b; c)W(x; a, b; c+ 1− ε)dx =

0 if n ≥ 2k + 2,

N
[ε]
2k+1(a, b; c) 6= 0 if n = 2k + 1.

(4.19b)

Actually, as we are dealing with a Nikishin system, the existence of a 2-orthogonal

polynomial sequence with respect to W [ε]
(x; a, b; c) is guaranteed. By virtue of

formula (1.9) for the derivative of a generalised hypergeometric series, it is rather

straightforward to show that the polynomials given by (4.17) satisfy the differ-

ential property (4.13), which the 2-orthogonal polynomial sequence with respect

to W [ε]
(x; a, b; c) must satisfy, as stated in Theorem 4.6. Therefore, it would be

sufficient to check the orthogonality conditions (4.19a)-(4.19b) when k = 0 to

then prove the result by induction on n ∈ N (the degree of the polynomials).

However, we opt for checking that the polynomials in (4.17) satisfy all the or-

thogonality conditions in (4.19a)-(4.19b). On the one hand, this process enables

us to show directly that these polynomials are indeed 2-orthogonal with respect

to W [ε]
(x; a, b; c) without using the Nikishin property. On the other hand, this

proof provides a method to derive explicit expressions for the nonzero coefficients

N
[ε]
n (a, b; c) in (4.19a)-(4.19b), which are used in Subsection 4.4.3 to obtain explicit

expressions for the positive γn-coefficients in the third order recurrence relation

(4.24) satisfied by these polynomials.
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Proof of Theorem 4.9. Recalling the expression for the moments given by (4.2),

we can use Lemma 3.3 to derive that, for k, n ∈ N and ε ∈ {0, 1},

∫ ∞
0

xkP [ε]
n (x; a, b; c)W(x; a, b; c+ ε)dx

=
(−1)n (a)n (b)n (a)k (b)k(
c+

⌊
n+ε

2

⌋)
n

(c+ ε)k
4F3

−n, a+ k, b+ k, c+
⌊
n+ε

2

⌋
a, b, c+ ε+ k

∣∣∣∣∣∣ 1

 .

If n ≥ 2k + 1, then

⌊
n+ ε

2

⌋
− ε+ k ≤ n

2
+ k < n. Hence, using (3.20) in Lemma

3.4, we deduce that

4F3

−n, a+ k, b+ k, c+
⌊
n+ε

2

⌋
a, b, c+ ε+ k

∣∣∣∣∣∣ 1

 = 0.

Therefore,

∫ ∞
0

xkP [ε]
n (x; a, b; c)W(x; a, b; c+ ε)dx = 0, for any n ≥ 2k + 1. (4.20a)

Moreover,

∫ ∞
0

xkP
[ε]
2k (x; a, b; c)W(x; a, b; c+ ε)dx

=
(a)2k (b)2k (a)k (b)k
(c+ k)2k (c+ ε)k

4F3

−2k, a+ k, b+ k, c+ k

a, b, c+ ε+ k

∣∣∣∣∣∣ 1

 .

For ε = 0 the latter hypergeometric series simplifies to a 3F2, which, on account

of the identity (3.20), can be evaluated to

3F2

−2k, a+ k, b+ k

a, b

∣∣∣∣∣∣ 1

 =
(2k)!

(a)k (b)k
,

whilst for ε = 1 we use (3.21) to get

4F3

−2k, a+ k, b+ k, c+ k

a, b, c+ k + 1

∣∣∣∣∣∣ 1

 =
(2k)! (c− a+ 1)k (c− b+ 1)k

(a)k (b)k (c+ k + 1)2k

.
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As a result, we have

∫ ∞
0

xkP
[ε]
2k (x; a, b; c)W(x; a, b; c+ ε)dx (4.20b)

=


(2k)! (a)2k (b)2k

(c)3k

> 0, if ε = 0,

(2k)! (a)2k (b)2k (c− a+ 1)k (c− b+ 1)k
(c+ 1)3k (c+ k)2k

> 0, if ε = 1.

Hence, recalling (4.20a), we conclude that (4.19a) holds for all k, n ∈ N, with the

nonzero coefficients N
[ε]
2k(a, b; c) being given by (4.20b).

Analogously, we recall (4.2) and use Lemma 3.3 to derive that

∫ ∞
0

xkP [ε]
n (x; a, b; c)W(x; a, b; c+ 1− ε)dx

=
(−1)n (a)n (b)n (a)k (b)k(
c+

⌊
n+ε

2

⌋)
n

(c+ 1− ε)k
4F3

−n, a+ k, b+ k, c+
⌊
n+ε

2

⌋
a, b, c+ 1− ε+ k

∣∣∣∣∣∣ 1

 .

If n ≥ 2k + 2, then

⌊
n+ ε

2

⌋
− 1 + ε+ k < n and identity (3.20) leads to

4F3

−n, a+ k, b+ k, c+
⌊
n+ε

2

⌋
a, b, c+ 1− ε+ k

∣∣∣∣∣∣ 1

 = 0.

As a result,

∫ ∞
0

xkP [ε]
n (x; a, b; c)W(x; a, b; c+ 1− ε)dx = 0, for any n ≥ 2k + 2. (4.21a)

When n = 2k + 1,

∫ ∞
0

xkP
[ε]
2k+1(x; a, b; c)W(x; a, b; c+ 1− ε)dx

= −
(a)2k+1 (b)2k+1 (a)k (b)k

(c+ k + ε)2k+1 (c+ 1− ε)k
4F3

−(2k + 1), a+ k, b+ k, c+ k + ε

a, b, c+ 1− ε+ k

∣∣∣∣∣∣ 1

 .
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In order to evaluate the terminating hypergeometric series in the latter expression,

we use (3.21) when ε = 0 and (3.20) when ε = 1 to deduce that

4F3

−(2k + 1), a+ k, b+ k, c+ k + ε

a, b, c+ 1− ε+ k

∣∣∣∣∣∣ 1

 =


(2k+1)!(c−a+1)k(c−b+1)k

(c+1+k)2k+1(a)k(b)k
, for ε = 0,

− (2k+1)!
(a)k(b)k(c+k)

, for ε = 1.

Therefore,

∫ ∞
0

xkP
[ε]
2k+1(x; a, b; c)W(x; a, b; c+ 1− ε)dx (4.21b)

=


−

(2k + 1)! (a)2k+1 (b)2k+1 (c)k (c− a+ 1)k (c− b+ 1)k
(c)3k+1 (c+ 1)3k+1

< 0, for ε = 0,

(2k + 1)! (a)2k+1 (b)2k+1

(c)3k+2

> 0, for ε = 1.

The latter identity and (4.21a) ensure that (4.19b) holds for any k, n ∈ N, with

the nonzero coefficients N
[ε]
2k+1(a, b; c) being given by (4.21b).

4.4.2 Differential equation

The hypergeometric 2-orthogonal polynomials defined by (4.17)-(4.18) are solu-

tions to a third order differential equation of the type in (3.23), as described in

the following result.

Theorem 4.10. [47, Th. 3.3] For a, b, c ∈ R+ such that c > max{a, b} and

ε ∈ {0, 1}, let
(
P [ε]
n (x) = P [ε]

n (x; a, b; c)
)
n∈N be the monic 2-orthogonal polynomial

sequence with respect to W [ε]
(x; a, b; c). Then

x2 d3

dx3

(
P [ε]
n (x)

)
− xϕ(x)

d2

dx2

(
P [ε]
n (x)

)
+ ψ[ε]

n (x)
d

dx

(
P [ε]
n (x)

)
+ nζ [ε]

n P
[ε]
n (x) = 0,

(4.22)

where ϕ(x) = x − (a + b + 1), ψ[ε]
n (x) =

(⌊
n+ 1− ε

2

⌋
− (c+ 1)

)
x + ab and

ζ [ε]
n = c+

⌊
n+ ε

2

⌋
.
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Proof. Combining the explicit formula for the polynomials given by (4.17) with

the differential equation (3.22) satisfied by hypergeometric polynomials, we obtain

(
x

d

dx
+ a

)(
x

d

dx
+ b

)
d

dx

(
P [ε]
n (x)

)
=

(
x

d

dx
+ ζ [ε]

n

)(
x

d

dx
− n

)(
P [ε]
n (x)

)
.

(4.23)

The left-hand side of (4.23) is equal to

x2 d3

dx3

(
P [ε]
n (x)

)
+ (a+ b+ 1)x

d2

dx2

(
P [ε]
n (x)

)
+ ab

d

dx

(
P [ε]
n (x)

)
,

and, observing that ζ [ε]
n − n+ 1 = c+ 1−

⌊
n+ 1− ε

2

⌋
, the right-hand side is

x2 d2

dx2

(
P [ε]
n (x)

)
+

(
c+ 1−

⌊
n+ 1− ε

2

⌋)
x

d

dx

(
P [ε]
n (x)

)
− nζ [ε]

n Pn(x).

Combining the expressions above for both sides of (4.23), we obtain (4.22).

4.4.3 Recurrence relation

As a 2-orthogonal sequence, the hypergeometric polynomials P
[ε]
n (x) = P

[ε]
n (x; a, b; c)

defined by (4.17) necessarily satisfy a third order recurrence relation of the form

P
[ε]
n+1(x) =

(
x− β[ε]

n

)
P [ε]
n (x)− α[ε]

n P
[ε]
n−1(x)− γ[ε]

n−1P
[ε]
n−2(x), (4.24)

and we obtain here explicit expressions for the recurrence coefficients.

Recalling formulas (3.26a)-(3.26b), and the expansion of P
[ε]
n (x) over the powers

of x given by (4.18), we derive that

β[ε]
n = τ

[ε]
n,1 − τ

[ε]
n+1,1 and α[ε]

n = τ
[ε]
n,2 − τ

[ε]
n+1,2 −

(
τ

[ε]
n,1

)2

+ τ
[ε]
n,1τ

[ε]
n+1,1, (4.25)

with

τ
[ε]
n,1 = −n(n− 1 + a)(n− 1 + b)

n+
⌊
n+ε

2

⌋
− 1 + c

and τ
[ε]
n,2 =

(n− 1)2 (n− 2 + a)2 (n− 2 + b)2

2
(
n+

⌊
n+ε

2

⌋
− 2 + c

)
2

.
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Throughout this subsection we use the notation n ≡2 ε, with n ∈ N and ε ∈ {0, 1},

meaning that n ≡ ε (mod 2). The formulas in (4.25) lead, for each n ∈ N, to

β[ε]
n (a, b; c) =

2(n+ 1)(n+ a)(n+ b)

3n+ ε+ 2c
− 2n(n+ a− 1)(n+ b− 1)

3n+ ε+ 2c− 2
if n ≡2 ε,

(4.26a)

and

β[ε]
n (a, b; c) =

2(n+ 1)(n+ a)(n+ b)

3n+ ε+ 2c+ 1
− 2n(n+ a− 1)(n+ b− 1)

3n+ ε+ 2c− 3
if n 6≡2 ε;

(4.26b)

as well as to

α
[ε]
n+1(a, b; c) =

2(n+ 1)(n+ a)(n+ b)

3n+ 2c+ ε

(
(n+ 2)(n+ a+ 1)(n+ b+ 1)

3n+ 2c+ ε+ 2
(4.26c)

− 2(n+ 1)(n+ a)(n+ b)

3n+ 2c+ ε
+
n(n+ a− 1)(n+ b− 1)

3n+ 2c+ 3ε− 2

)
if n ≡2 ε,

and

α
[ε]
n+1(a, b; c) = α

[1−ε]
n+1 (a, b; c+ ε) if n 6≡2 ε. (4.26d)

Expanding these formulas we obtain

β[ε]
n (a, b; c) =


14n3 +O (n2)

(3n+ ε+ 2c− 2) (3n+ ε+ 2c)
if n ≡2 ε,

10n3 +O (n2)

(3n+ ε+ 2c− 3) (3n+ ε+ 2c+ 1)
if n 6≡2 ε;

and

α
[ε]
n+1(a, b; c) =


2(n+ 1)(n+ a)(n+ b) (26n3 +O (n2))

(3n+ 2c+ ε− 2)(3n+ 2c+ ε)2(3n+ 2c+ ε)
if n ≡2 ε,

2(n+ 1)(n+ a)(n+ b) (26n3 +O (n2))

(3n+ 2c+ ε− 1)(3n+ 2c+ ε+ 1)2(3n+ 2c+ ε+ 3)
if n 6≡2 ε.
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Furthermore, recalling (3.26c), we have, for each m ∈ N,

γ
[ε]
2m+1(a, b; c) =

∞∫
0

xm+1P
[ε]
2m+2(x; a, b; c)W(x; a, b; c+ ε)dx

∞∫
0

xmP
[ε]
2m(x; a, b; c)W(x; a, b; c+ ε)dx

and

γ
[ε]
2m+2(a, b; c) =

∞∫
0

xm+1P
[ε]
2m+3(x; a, b; c)W(x; a, b; c+ 1− ε)dx

∞∫
0

xmP
[ε]
2m+1(x; a, b; c)W(x; a, b; c+ 1− ε)dx

.

Hence, due to (4.20b) and (4.21b),

γ
[ε]
n+1(a, b; c) =

(n+ 1)2 (n+ a)2 (n+ b)2(
3n+ε

2

)
3

if n ≡2 ε; (4.26e)

and

γ
[ε]
n+1(a, b; c) =

(n+ 1)2 (n+ a)2 (n+ b)2

(
n+1+ε

2 + c− 1
) (

n+1+ε
2 + c− a

) (
n+1+ε

2 + c− b
)(

3n+ε−1
2

)
3

(
3n+ε+1

2

)
3

if n 6≡2 ε. (4.26f)

As a consequence, we proved the following result.

Theorem 4.11. [47, Th. 3.4] For a, b, c ∈ R+ such that c > max{a, b} and

ε ∈ {0, 1}, let
(
P

[ε]
n (x) := P

[ε]
n (x; a, b; c)

)
n∈N

be the monic 2-orthogonal polynomial

sequence with respect to W [ε]
(x; a, b; c). Then

(
P

[ε]
n (x)

)
n∈N

satisfies the recurrence

relation (4.24), with coefficients given by (4.26a)-(4.26f). Furthermore, γ
[ε]
n+1 >

0, for all n ∈ N, and the recurrence coefficients have the following asymptotic

behaviour of period 2, as n→∞:

β[ε]
n ∼


14

9
n if n ≡2 ε,

10

9
n if n 6≡2 ε;

α[ε]
n ∼

52

81
n2; and γ[ε]

n ∼


8

729
n3 if n ≡2 ε,

8

27
n3 if n 6≡2 ε.

(4.27)
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4.4.4 Asymptotic behaviour and location of the zeros

Let
(
P

[ε]
n (x) := P

[ε]
n (x; a, b; c)

)
n∈N

be again the monic 2-orthogonal polynomial se-

quence with respect to the vector of weight functions W [ε]
(x; a, b; c), ε ∈ {0, 1}.

As we have already stated in Section 4.1, due to W [ε]
(x; a, b; c) forming a Niki-

shin system, P
[ε]
n (x) has n simple zeros, all located on the positive real line, and

the zeros of consecutive polynomials interlace as there is always a zero of P
[ε]
n (x)

between two consecutive zeros of P
[ε]
n+1(x).

An upper bound for the largest zero of each P
[ε]
n (x), n ∈ Z+, is derived immediately

from Corollary 3.6, using the asymptotic behaviour of the recurrence coefficients

obtained in Theorem 4.11. Furthermore, the asymptotic behaviour of the zeros

near the origin is related to the location of the zeros of the generalised hypergeo-

metric function 0F2 (−; a, b | −z ), which are all real and positive, as a consequence

of the following Mehler-Heine-type asymptotic formula.

Proposition 4.12. For a, b, c ∈ R+ such that c > max{a, b} and ε ∈ {0, 1}, let(
P [ε]
n (x) = P [ε]

n (x; a, b; c)
)
n∈N be the monic 2-orthogonal polynomial sequence with

respect to W [ε]
(x; a, b; c). Then,

lim
n→∞

(
(−1)n

(
c+

⌊
n+ε

2

⌋)
n

(a)n (b)n
P [ε]
n

( z
n2

; a, b; c
))

= 0F2

 −
a, b

∣∣∣∣∣∣ − z

2

 , (4.28)

uniformly on compact subsets of C.

Proof. Recalling (4.17), we get

(−1)n
(
c+

⌊
n+ε

2

⌋)
n

(a)n (b)n
P [ε]
n

( z
n2

; a, b; c
)

= 2F2

−n, c+
⌊
n+ε

2

⌋
a, b

∣∣∣∣∣∣ z

n2

 .

Applying the confluent relation for the generalised hypergeometric series (1.11)

twice to the identity above, we obtain (4.28).

Our results on the location of the zeros of the 2-orthogonal polynomials P
[ε]
n (x)

are summarised in the following theorem.
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Theorem 4.13. (cf. [47, Cor. 3.6]) For a, b, c ∈ R+ such that c > max{a, b} and

ε ∈ {0, 1}, let
(
P [ε]
n (x) = P [ε]

n (x; a, b; c)
)
n∈N be the monic 2-orthogonal polynomial

sequence with respect to W [ε]
(x; a, b; c). Then P

[ε]
n (x) has n zeros

(
x

(n)
k

)n
k=1

such

that

0 < x
(n)
1 < · · · < x(n)

n < M · n+ o(n), as n→ +∞,

where M =
3

2
τ + β +

α

2τ
≈ 3.484, with α =

52

81
, β =

14

9
, γ =

8

27
,

∆ = γ2 − α3

27
=

1119104

14348907
> 0 and τ =

3

√
γ +
√

∆ +
3

√
γ −
√

∆.

Furthermore, if we denote the zeros of 0F2 (−; a, b | −z ), in increasing order, by

(fk)k∈Z+, we have

lim
n→∞

(
n2x

(n)
k

)
= 2fk.

We illustrate the upper bound for the zeros given above with (a, b; c) = (3, 2.5; 7.5)

in Figure 4.1, produced in Maple. The curve y = 3.484n clearly gives an upper

bound for the largest zero of P
[ε]
n (x), ε ∈ {0, 1}.

Figure 4.1: [47, Fig. 2] Joint plots of the largest zeros of P
[ε]
n (x; 3, 2.5, 7.5) for

ε = 0 (crosses) and ε = 1 (dots) for each n = 1, . . . , 100 with the upper bound
curve y = 3.484x in solid line.
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4.4.5 The cubic components of cases B1 and B2

The aim of this subsection is to show that the cubic components of the Hahn-

classical 3-fold-symmetric 2-orthogonal polynomial sequences corresponding to

cases B1 and B2 (using the same terminology as in Chapter 2) are particular

cases of the 2-orthogonal polynomials we have characterised in this section. We

check this relation by comparing both the explicit expressions for the polynomials,

as we have done in [47, §4], and, alternatively, by examining the expressions for

their orthogonality weights.

Let (Sn(x; ν))n∈N and (Tn(x; ρ))n∈N be the Hahn-classical 3-fold-symmetric 2-orthogonal

polynomial sequences in Subsections 2.2.2 and 2.2.3 corresponding to cases B1

and B2, respectively, whose cubic components
(
S

[k]
n (x; ν)

)
n∈N

and
(
T

[k]
n (x; ρ)

)
n∈N

,

k ∈ {0, 1, 2}, are the polynomials explicitly represented as terminating 2F2 hyper-

geometric series by (2.23) and (2.31).

These representations can be obtained taking particular choices on the parameters

(a, b; c; ε) in (4.17). For that purpose, we set (ak, bk) and εk as in (2.19) and (2.28),

that is,

ak =


1
3

if k = 0,

4
3

if k ∈ {1, 2};
bk =


2
3

if k ∈ {0, 1},

5
3

if k = 2;

and εk =

0 if k ∈ {0, 2},

1 if k = 1;

(4.29)

and, comparing (4.17) with (2.23) and (2.31), we deduce that

S[k]
n (x; ν) = P [εk]

n

(
x; ak, bk;

ν

3
+ bk

)
(4.30a)

and

T [k]
n (x; ρ) = P [1−εk]

n

(
x; ak, bk;

ρ− 1

3
+ ak

)
, (4.30b)

for each k ∈ {0, 1, 2}.

Alternatively, formulas (4.30a)-(4.30b) can be deduced from the expressions for

the orthogonality weights of the cubic components in Subsections 2.2.2 and 2.2.3.
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In fact, formulas (2.29a)-(2.29b) and (2.34a)-(2.34b) are equivalent to state that,

setting ck =
ν

3
+ bk and ck =

ρ+ 1

3
− εk, for cases B1 and B2, respectively,

U [k]
0 (x) =W (x; ak, bk; ck + εk)

and

U [k]
1 (x) =

ck(ck + 1)

akbk

(
W (x; ak, bk; ck)−W (x; ak, bk; ck + 1)

)
.

Therefore, the 2-orthogonal polynomials with respect to
(
U [k]

0 (x), U [k]
1 (x)

)
and to(

W(x; ak, bk; ck + εk), W(x; ak, bk; ck + 1− εk)
)

are the same, which means that

formulas (4.30a)-(4.30b) hold.

4.5 Link to branched continued fractions

Recalling (3.35), with (r, s) = (2, 1), the ordinary generating function of the mo-

ment sequence given by (4.2) is

∞∑
n=0

(
(a)n (b)n

(c)n
tn
)

= 3F1 (a, b, 1; c | t) =
3F1 (a, b, 1; c | t)
3F1 (a, b, 0; c | t)

.

Therefore, using [61, Th. 14.6], the ratios of Pochhammer symbols appearing in the

latter formula, which are the moments in (4.2), are equal to the 2-Stieltjes-Rogers

polynomials S
(2)
n (λ[1]), with coefficients λ[1] =

(
λ

[1]
k+2

)
k∈N

, given by

λ
[1]
k+2 =



(
c

[1]
k − a′k

) ∏
i∈{1,2,3}, i 6≡k mod 3

ai,k(
c

[1]
k − 1

)
c

[1]
k

if k is even,

∏
i∈{1,2,3}, i 6≡k mod 3

ai,k

c
[1]
k

if k is odd,

(4.32)
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with a1 = a, a2 = b, a3 = 1; c
[1]
k = c+

⌊
k

2

⌋
;

ai,k = ai + 1 +

⌊
k − i

3

⌋
=


a+m if i = 1 and k ∈ {3m− 2, 3m− 1, 3m},

b+m if i = 2 and k ∈ {3m− 1, 3m, 3m+ 1},

m+ 1 if i = 3 and k ∈ {3m, 3m+ 1, 3m+ 2};

and

a′k = a[k−1 mod 3]+1,k =


a3,3m = m+ 1 if k = 3m,

a1,3m+1 = a+m+ 1 if k = 3m+ 1,

a2,3m+2 = b+m+ 1 if k = 3m+ 2.

Note that (4.32) with k = 0 gives λ
[1]
2 =

ab

c
, because a′0 = 1. The coefficients in

(4.32) can be rewritten, for each n ∈ N, as

• λ[1]
6n+2 =

a1,6na2,6n

(
c

[1]
6n − a′6n

)
(
c

[1]
6n − 1

)
c

[1]
6n

=
(2n+ a)(2n+ b)(n+ c− 1)

(3n+ c− 1)(3n+ c)
;

• λ[1]
6n+3 =

a2,6n+1a3,6n+1

c
[1]
6n+1

=
(2n+ 1)(2n+ b)

3n+ c
;

• λ[1]
6n+4 =

a1,6n+2a3,6n+2

(
c

[1]
6n+2 − a′6n+2

)
(
c

[1]
6n+2 − 1

)
c

[1]
6n+2

=
(2n+ 1)(2n+ a+ 1)(n+ c− b)

(3n+ c)(3n+ c+ 1)
;

• λ[1]
6n+5 =

a1,6n+3a2,6n+3

c
[1]
6n+3

=
(2n+ a+ 1)(2n+ b+ 1)

3n+ c+ 1
;

• λ[1]
6n+6 =

a2,6n+4a3,6n+4

(
c

[1]
6n+4 − a′6n+4

)
(
c

[1]
6n+4 − 1

)
c

[1]
6n+4

=
2(n+ 1)(2n+ b+ 1)(n+ c− a)

(3n+ c+ 1)(3n+ c+ 2)
;

• λ[1]
6n+7 =

a1,6n+5a3,6n+5

c
[1]
6n+5

=
2(n+ 1)(2n+ a+ 2)

3n+ c+ 2
.
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Similarly to (4.32), we define

λ
[0]
k+2 =



∏
i∈{1,2,3}, i 6≡k mod 3

ai,k

c
[0]
k

if k is even,

(
c

[0]
k − a′k

) ∏
i∈{1,2,3}, i 6≡k mod 3

ai,k(
c

[0]
k − 1

)
c

[0]
k

if k is odd,

where, for i ∈ {1, 2, 3} and k ∈ N, ai, ai,k and a′k are defined as before and

c
[0]
k = c+

⌊
k + 1

2

⌋
.

Then, we have, for any n ∈ N,

• λ[0]
6n+2 =

a1,6na2,6n

c
[0]
6n

=
(2n+ a)(2n+ b)

3n+ c
;

• λ[0]
6n+3 =

a2,6n+1a3,6n+1

(
c

[0]
6n+1 − a′6n+1

)
(
c

[0]
6n+1 − 1

)
c

[0]
6n+1

=
(2n+ 1)(2n+ b)(n+ c− a)

(3n+ c)(3n+ c+ 1)
;

• λ[0]
6n+4 =

a1,6n+2a3,6n+2

c
[0]
6n+2

=
(2n+ 1)(2n+ a+ 1)

3n+ c+ 1
;

• λ[0]
6n+5 =

a1,6n+3a2,6n+3

(
c

[0]
6n+3 − a′6n+3

)
(
c

[0]
6n+3 − 1

)
c

[0]
6n+3

=
(2n+ a+ 1)(2n+ b+ 1)(n+ c)

(3n+ c+ 1)(3n+ c+ 2)
;

• λ[0]
6n+6 =

a2,6n+4a3,6n+4(
c

[0]
6n+4 − 1

)
c

[0]
6n+4

=
2(n+ 1)(2n+ b+ 1)

3n+ c+ 2
;

• λ[0]
6n+7 =

a1,6n+5a3,6n+5

(
c

[0]
6n+5 − a′6n+5

)
(
c

[0]
6n+5 − 1

)
c

[0]
6n+5

=
2(n+ 1)(2n+ a+ 2)(n+ c− b+ 1)

(3n+ c+ 2)(3n+ c+ 3)
.

Let ε ∈ {0, 1} and a, b, c ∈ R+ such that c > max{a, b, ε}. Using the expressions

above for the coefficients
(
λ

[ε]
k+2

)
k∈N

and setting λ
[ε]
0 = λ

[ε]
1 = 0 (which is consistent

with the formulas for λ
[ε]
6n+6 and λ

[ε]
6n+7, with n = −1), we checked, using Maple,

that the recurrence coefficients given by (4.26a)-(4.26f) can be rewritten as follows,

for any n ∈ N:
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• β[ε]
2n(a, b; c− ε) = λ

[ε]
6n + λ

[ε]
6n+1 + λ

[ε]
6n+2; (4.33a)

• α[ε]
2n+1(a, b; c− ε) = λ

[ε]
6n+1λ

[ε]
6n+3 + λ

[ε]
6n+2λ

[ε]
6n+3 + λ

[ε]
6n+2λ

[ε]
6n+4; (4.33b)

• γ[ε]
2n+1(a, b; c− ε) = λ

[ε]
6n+2λ

[ε]
6n+4λ

[ε]
6n+6; (4.33c)

• β[ε]
2n+1(a, b; c− ε) = λ

[ε]
6n+3 + λ

[ε]
6n+4 + λ

[ε]
6n+5; (4.33d)

• α[ε]
2n+2(a, b; c− ε) = λ

[ε]
6n+4λ

[ε]
6n+6 + λ

[ε]
6n+5λ

[ε]
6n+6 + λ

[ε]
6n+5λ

[ε]
6n+7; (4.33e)

• γ[ε]
2n+2(a, b; c− ε) = λ

[ε]
6n+5λ

[ε]
6n+7λ

[ε]
6n+9. (4.33f)

Therefore, the infinite lower-Hessenberg matrix associated with the recurrence

relation satisfied by P
[ε]
n (x; a, b; c−ε), the 2-orthogonal polynomials with respect to(

W(x; a, b; c),W(x; a, b; c+1−2ε)
)
, presented in Theorem 4.11, can be decomposed

as in (3.36), replacing (λk+2)k∈N by the coefficients λ[ε] =
(
λ

[ε]
k+2

)
k∈N

. Moreover,

this is the production matrix of the sequence of 2-Stieltjes-Rogers polynomials(
S(2)
n

(
λ[ε]
))
n∈N, and S(2)

n

(
λ[1]
)

=
(a)n (b)n

(c)n
for all n ∈ N.

The recurrence coefficients determined by (4.33a)-(4.33f) are all positive and it is

clear that, for both ε ∈ {0, 1} and any fixed j ∈ N,

λ
[ε]
6n+j ∼


4

3
n if j ≡ ε (mod 2),

4

9
n if j 6≡ ε (mod 2),

as n→∞.

As a result, the asymptotic behaviour (4.27) of the recurrence coefficients in The-

orem 4.11 can be derived directly from formulas (4.33a)-(4.33f). Furthermore,

recalling the observations made in Section 3.4, we have an alternative proof that

the zeros of P
[ε]
n (x) are all simple, real and positive with the zeros of consecutive

polynomials interlacing, without using the Nikishin property of the system.
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4.6 A limiting case: MOPs with respect to Mac-

donald functions

Throughout this section, we always assume that a, b ∈ R+. Under this assumption,

we define the weight function supported on the positive real line

V(x; a, b) =
2

Γ(a)Γ(b)
x
a+b
2
−1Ka−b

(
2
√
x
)
, (4.34)

where Kν (z) is the Macdonald function defined by (1.13). Observe that, as a

consequence of (1.14), we have V(x; b, a) = V(x; a, b).

Furthermore, we denote the vector
[
V(x; a, b), V(x; a, b + 1)

]T
by V(x; a, b). As

shown in [75], the vector of weight functions V(x; a, b) forms a Nikishin system.

Hence all the multiple orthogonal polynomials with respect to V(x; a, b) exist and

are unique, and the polynomials satisfy all the previously mentioned properties

common to all Nikishin systems. The multiple orthogonal polynomials on the

step-line with respect to this system were introduced in [75] (for both type I and

type II) and [11] (only for type II) and were also investigated in [19].

The measure µ supported on R+, with dµ(x) = V(x; a, b)dx, satisfies (3.1), with

(r, s) = (2, 0) and (a1, a2) = (a, b), because, based on [22, Eq. 10.43.19],

∫ ∞
0

xnV(x; a, b)dx = (a)n (b)n , for all n ∈ N. (4.35)

Therefore, the multiple orthogonal polynomials with respect to V(x; a, b) are an-

other instance of the multiple orthogonal polynomials studied in Chapter 3, and

we can derive some of their properties using results from Chapter 3.

Based on [19, Th. 2] or [11, Th. 4.1], the 2-orthogonal polynomials with respect

to V(x; a, b), for a, b ∈ R+, are the hypergeometric polynomials

Rn(x; a, b) = (−1)n (a)n (b)n 1F2

−n
a, b

∣∣∣∣∣∣ x
 , (4.36)
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or, equivalently,

Rn(x; a, b) =
n∑
k=0

(
(−1)k

k!
(n− k + 1)k (n− k + a)k (n− k + b)k x

n−k
)
.

We can use Lemmas 3.3 and 3.4 to check thatRn(x; a; b) satisfies the 2-orthogonality

conditions with respect to V(x; a, b). Recalling (4.35), we can use Lemma 3.3 to

compute, for k, n ∈ N and j ∈ {0, 1},∫ ∞
0

xkRn(x; a, b)V(x; a, b+ j)dx

=(−1)n (a)n (b)n (a)k (b+ j)k 3F2

−n, a+ k, b+ k + j

a, b

∣∣∣∣∣∣ 1

 .

Furthermore, using Equation (3.20) from Lemma 3.4, we have

3F2

−n, a+ k, b+ k + j

a, b

∣∣∣∣∣∣ 1

 =


(−1)j(2k + j)!

(a)k (b)k+j

if n = 2k + j,

0 if n ≥ 2k + j + 1.

Therefore, we derive that

∫ ∞
0

xkRn(x; a, b)V(x; a, b+j)dx =

(2k + j)! (a)2k+j (b+ j)2k if n = 2k + j,

0 if n ≥ 2k + 1 + j.

Hence, the sequence (Rn(x; a, b))n∈N is indeed 2-orthogonal with respect to V(x; a, b).

The polynomials Rn(x; a, b) are a limiting case of the 2-orthogonal polynomials

P
[ε]
n (x; a, b; c) with respect to W [ε](x; a, b; c) defined by (4.7), as

lim
c→∞

(
cnP [ε]

n

(x
c

; a, b; c
))

= Rn (x; a, b) , for both ε ∈ {0, 1}. (4.37)

Furthermore, the weight functions V(x; a, b) andW(x; a, b; c), defined, respectively,

by (4.34) and (4.1) also satisfy a corresponding confluent relation

lim
c→∞

(
1

c
W
(x
c

; a, b; c
))

= V (x; a, b) . (4.38)
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To prove the confluent relation (4.37) satisfied by the 2-orthogonal polynomials

P
[ε]
n (x; a, b; c) and Rn (x; a, b), we recall (4.17) and get

cnP [ε]
n

(x
c

; a, b; c
)

=
(−1)n (a)n (b)n c

n(
c+

⌊
n+ε

2

⌋)
n

2F2

−n, c+
⌊
n+ε

2

⌋
a, b

∣∣∣∣∣∣ xc
 . (4.39)

Therefore, observing that

c+

⌊
n+ ε

2

⌋
∼ c and

(
c+

⌊
n+ ε

2

⌋)
n

∼ cn, as c→∞,

and applying (1.11) to the polynomials in (4.39), we deduce that

lim
c→∞

 cn(
c+

⌊
n+ε

2

⌋)
n

2F2

−n, c+
⌊
n+ε

2

⌋
a, b

∣∣∣∣∣∣ xc
 = 1F2

−n
a, b

∣∣∣∣∣∣ x
 ,

which, by definition of P
[ε]
n (x; a, b; c) and Rn(x; a, b), is equivalent to (4.37).

Now we prove the confluent relation (4.38) satisfied by the weight functionsW(x; a, b; c)

and V(x; a, b). Based on [27, Eq. 6.9.19], we have

lim
c→∞

(
Γ(c− a)U

(
c− b, a− b+ 1;

x

c

))
= 2x

b−a
2 Ka−b

(
2
√
x
)
, (4.40)

Moreover, because Γ(c − a) ∼ c−a Γ(c) as c → ∞ (see [22, Eq. 5.11.12]), and

e−
x
c

c→∞−−−→ 1, the limiting relation (4.40) implies that

lim
c→∞

(
Γ(c)

c
e−

x
c

(x
c

)a−1

U
(
c− b, a− b+ 1;

x

c

))
= 2x

a+b
2
−1Ka−b

(
2
√
x
)
,

which, by definition of W(x; a, b; c) and V(x; a, b), is equivalent to (4.38).

Let (Sn(x))n∈N be the Hahn-classical 3-fold symmetric 2-orthogonal polynomial

sequence corresponding to case A (using the same terminology as in Chapter 2),

whose cubic components
(
S [k]
n (x)

)
n∈N

, k ∈ {0, 1, 2}, are the polynomials explicitly

represented as terminating 1F2 hypergeometric series by (2.18). As observed in

[11, Th. 5.1], the cubic components S [k]
n (x) are particular cases of the 2-orthogonal

polynomials (Rn(x; a, b))n∈N. In fact, if we set again (ak, bk) as in (2.19) and (4.29),
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then comparing (2.18) with (4.36), we get, for each k ∈ {0, 1, 2},

S [k]
n (x) = 9nRn

(x
9

; ak, bk

)
. (4.41)

Alternatively, this result can be derived from the expressions (2.21a)-(2.21b) for

the orthogonality weights of the cubic components for case A, because these can

be rewritten as

U [k]
0 (x) =

1

9
V
(x

9
; ak, bk

)

and

U [k]
1 (x) =

1

81ak

(
V
(x

9
; ak, bk + 1

)
− V

(x
9

; ak, bk

))
.

Considering (4.41) and (4.30a)-(4.30b), the confluent relation (4.37) generalises the

limiting relation observed in [23] for Hahn-classical 3-fold symmetric 2-orthogonal

polynomials: taking ν, ρ→∞ in cases B1 and B2, respectively, leads to case A.

Now, we use results from Chapter 3 to derive some properties of the 2-orthogonal

polynomials Rn(x; a, b) and their orthogonality weights V(x; a, b). These properties

were obtained in [75], [11] and [19].

The weight function defined by (4.34) satisfies the differential equation (cf. [11,

Eq. 4.14])

x2 V ′′(x; a, b)− (a+ b−3)xV ′(x; a, b)−
(
x− (a−1)(b−1)

)
V(x; a, b) = 0, (4.43a)

which, defining the operator Θ : P → P by Θ (f(x)) =
d

dx

(
xf(x)

)
as in Proposi-

tion (4.3), is equivalent to

Θ2
(
V(x; a, b)

)
− (a+ b)Θ

(
V(x; a, b)

)
− (x− ab)V(x; a, b) = 0. (4.43b)

Note that, recalling Proposition 3.1, the formula for the moments given by (4.35)

is equivalent to all the moments of the left-hand side of (4.43b) integrated over

the positive real line vanishing.
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The differential equations (4.43a)-(4.43b) can be used to derive a matrix differen-

tial equation satisfied by the vector of weight functions V(x; a, b). To be precise,

if we define the matrices

Φ(a, b) =


1

ab
0

0
1

a(b+ 1)

 and Ψ(x; a, b) =

 −1

a

1

a
x

ab(b+ 1)
− 1

b+ 1

 ,
then we have

xΦ(a, b)V(x; a, b) = V(x; a+ 1, b+ 1) (4.44)

and
d

dx

(
xΦ(a, b)V(x; a, b)

)
+ Ψ(x; a, b)V(x; a, b) = 0. (4.45)

For each n ∈ N, let Qn(x; a, b) and Rn(x; a, b) be, respectively, the type I function

and the 2-orthogonal polynomial with respect to V(x; a, b) for the multi-index of

length n on the step-line. Based on Theorem 3.2, and as a consequence of (4.44)

and (4.45), we obtain the differential formulas (cf. [75, Ths. 1 & 2])

R′n+1(x; a, b) = (n+ 1)Rn(x; a+ 1, b+ 1), (4.46)

and

Q′n(x; a+ 1, b+ 1) = −nQn+1(x; a, b). (4.47)

Observe that (4.46) could alternatively be obtained by applying the formula (1.9)

for the derivative of a generalised hypergeometric series to the representation as a

1F2 for Rn(x; a, b) given by (4.36).

Furthermore, (4.47) can be used to obtain a Rodrigues-type formula generating

the type I functions Qn+1(x; a, b), for n ∈ N (cf. [75, Th. 3]):

Qn+1(x; a, b) =
(−1)n

n!

dn

dxn

(
W(x; a+ n, b+ n)

)
=

(−1)n

n! (a)n (b)n

dn

dxn

(
xnW(x; a, b)

)
.
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Now we focus on the characterisation of the 2-orthogonal polynomials Rn(x; a, b)

defined by (4.36). Recalling (3.22), they satisfy the third-order differential equa-

tion (cf. [11, Eq. 2.25])

x2R′′′n (x; a, b) + (a+ b+ 1)xR′′n(x; a, b)− (x− ab)R′n(x; a, b) + nRn(x; a, b) = 0.

Furthermore, as a 2-orthogonal polynomial sequence, (Rn(x; a, b))n∈N necessarily

satisfies a third order recurrence relation of the form

Pn+1(x; a, b) = (x− βn)Pn(x; a, b)− αnPn−1(x; a, b)− γn−1Pn−2(x; a, b), (4.48)

and, recalling (3.26a)-(3.26c), the recurrence coefficients are given, for each n ∈ N,

by (cf. [75, Th. 4])

• βn = 3n2 + (2a+ 2b− 1)n+ ab; (4.49a)

• αn+1 = (n+ 1)(n+ a)(n+ b)(3n+ a+ b+ 1); (4.49b)

• γn+1 = (n+ 1)(n+ 2)(n+ a)(n+ a+ 1)(n+ b)(n+ b+ 1). (4.49c)

As it was mentioned in the beginning of this section, V(x; a, b) forms a Nikishin

system. Therefore, the 2-orthogonal polynomials Rn(x; a, b), have n real, positive

and simple zeros, which we denote by
(
x

(n)
k

)n
k=1

, and the zeros of consecutive

polynomials interlace.

It is clear from (4.49a)-(4.49c) that the asymptotic behaviour of the recurrence

coefficients is

βn ∼ 3n2, αn ∼ 3n4, and γn ∼ n6, as n→∞.

As a result, using Corollary 3.6 with Mn = n2, α = β = 3 and γ = 1, we obtain

an upper bound for the largest zero of Rn(x; a, b) and we have

0 < x
(n)
1 < · · · < x(n)

n <
27

4
n2 + o(n2), n→ +∞. (4.50)
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Applying the confluent relation (1.11) to (4.36), we deduce that the 2-orthogonal

polynomials Rn(x; a, b) satisfy a Mehler-Heine-type asymptotic formula near the

origin (cf. [72, Th. 6])

lim
n→∞

(−1)n

(a)n (b)n
Pn

(x
n

; a, b
)

= lim
n→∞ 1F2

−n
a, b

∣∣∣∣∣∣ xn
 = 0F2

 −
a, b

∣∣∣∣∣∣ − x
 . (4.51)

which converges uniformly on compact subsets of C.

As a consequence of this asymptotic behaviour of the 2-orthogonal polynomials

Rn(x; a, b) near 0, we can relate their zeros near 0 with the zeros of 0F2 (−; a, b | −z ),

which are all real and positive. In fact, if we denote the zeros of Rn(x; a, b) as in

(4.50) and the zeros of 0F2 (−; a, b | −z ), in increasing order, by (fk)k∈Z+ , then, as

a consequence of (4.51) and as explained in [72, §4],

lim
n→∞

nx
(n)
k = fk.

Recalling (3.35), with (r, s) = (2, 0), the ordinary generating function of the mo-

ment sequence given by (4.35) is

∞∑
n=0

(a)n (b)n t
n = 3F0 (a, b, 1;− | t) =

3F0 (a, b, 1;− | t)
3F0 (a, b, 0;− | t)

.

As a result, using [61, Th. 13.1], the product of Pochhammer symbols (a)n (b)n is

equal to the 2-Stieltjes-Rogers polynomial S
(2)
n (λ), with coefficients λ = (λk)k≥2

given, for any n ∈ N, by

• λ3n+2 = (n+ a)(n+ b);

• λ3n+3 = (n+ 1)(n+ b);

• λ3n+4 = (n+ 1)(n+ a+ 1).
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Therefore, setting λ0 = λ1 = 0, which is consistent with the formulas above, the

recurrence coefficients (4.49a)-(4.49c) can be rewritten, for each n ∈ N, as

• βn = λ3n + λ3n+1 + λ3n+2,

• αn+1 = λ3n+1λ3n+3 + λ3n+2λ3n+3 + λ3n+2λ3n+4,

• γn+1 = λ3n+2λ3n+4λ3n+6.

Therefore, the infinite lower-Hessenberg matrix associated with the recurrence re-

lation (4.48) can be decomposed as in (3.36), via the coefficients (λk+2)k∈N given

by (4.6). This is the production matrix of the sequence of 2-Stieltjes-Rogers poly-

nomials S
(2)
n (λ), n ∈ N. Therefore, recalling the observations made in Section 3.4,

we have an alternative proof, without using the Nikishin property of the system,

that the zeros of Rn(x; a, b) are all simple, and located on the positive real line,

with the zeros of consecutive polynomials interlacing.



Chapter 5

MOPs with respect to Gauss’

hypergeometric function

In this chapter we investigate the multiple orthogonal polynomials with respect to

two absolutely continuous measures supported on the interval (0, 1) and admitting

integral representations via weight functions W(x; a, b; c, d) and W(x; a, b+ 1; c+

1, d), involving Gauss’ hypergeometric function (1.5) and defined by

W(x; a, b; c, d) =
Γ(c)Γ(d)

Γ(a)Γ(b)Γ(δ)
xa−1(1− x)δ−1

2F1

c− b, d− b
δ

∣∣∣∣∣∣ 1− x

 , (5.1)

with a, b, c, d ∈ R+ such that min{c, d} > max{a, b} and δ = c+d−a−b. (5.2)

This chapter is based on the work presented in [48]. Similarly to Chapter 4, most

of the underlying techniques in this chapter are specialisations of those introduced

in Chapter 3. All the results obtained are original and new to the literature.

Observe that the parameters a and b are interchangeable and the same happens

with c and d. The latter is a straightforward consequence of combining (5.1) with

(1.5), while the former holds because, using [22, Eq. 15.8.1], we have

2F1

c− b, d− b
δ

∣∣∣∣∣∣ 1− x

 = xb−a2F1

d− a, c− a
δ

∣∣∣∣∣∣ 1− x

 .

141
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Under the assumptions (5.2), W(x; a, b; c, d) is integrable over the positive real

line. In fact (see [13, Eq. 2.21.1.11] or [33, Eq. 7.512.4])

∫ 1

0

xa−1(1− x)δ−1
2F1

c− b, d− b
δ

∣∣∣∣∣∣ 1− x

 dx =
Γ(a)Γ(b)Γ(δ)

Γ(c)Γ(d)
.

Therefore, W(x; a, b; c, d) is a probability density function on (0, 1) with moments

∫ 1

0

xnW(x; a, b; c, d)dx =
(a)n (b)n
(c)n (d)n

, n ∈ N, (5.3)

Hence, the measure µ supported on the interval (0, 1), with dµ(x) =W(x; a, b; c, d) dx,

satisfies (3.1) with (r, s) = (2, 2) and (a1, a2; b1; b2) = (a, b; c, d).

In Section 5.1, we prove that the weight functions W(x; a, b; c, d) and W(x; a, b+

1; c+1, d) form a Nikishin system on the interval (0, 1) (Theorem 5.1). This readily

implies that the multiple orthogonal polynomials of both type I and type II with

respect to these weight functions exist and are unique for every multi-index and

their zeros satisfy the properties common to all Nikishin systems. We also obtain

explicit formulas for the generating measure of the ratio of the weight functions.

In Section 5.2, we describe the weight function W(x; a, b; c, d) and the vector of

weights
[
W(x; a, b; c, d), W(x; a, b+ 1; c+ 1, d)

]T
as solutions to a second-order or-

dinary differential equation (Proposition 5.2) and a matrix first-order differential

equation (Theorem 5.3), respectively. The latter implies that both type II poly-

nomials and type I functions on the step-line satisfy the Hahn property because

the differentiation operator acts on them as a shift in the parameters and in the

index (see Theorem 5.4).

In Section 5.3, we focus on the type I polynomials on the step-line: we obtain

a Rodrigues-type formula generating the type I functions (Theorem 5.5) and a

matrix Rodrigues-type formula generating the type I polynomials (Theorem 5.6).

Section 5.4 is devoted to a detailed characterisation of the type II multiple or-

thogonal polynomials on the step-line, that is, the 2-orthogonal polynomials. This

characterisation includes finding an explicit representation for these polynomials
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as terminating generalised hypergeometric series 3F2 (Theorem 5.7), and obtaining

a third order differential equation (Theorem 5.8) and recurrence relation (Theorem

5.9) of which these 2-orthogonal polynomials are a solution. The recurrence coeffi-

cients are bounded and they have the same asymptotic behaviour as the recurrence

coefficients of the Jacobi-Piñeiro 2-orthogonal polynomials. As a result, the ratio

asymptotics of two consecutive polynomials and the asymptotic zero distribution

(Theorem 5.10) as well as a Mehler-Heine-type formula for the asymptotic be-

haviour near the origin (Proposition 5.11) and the consequent information about

the zeros near the origin all coincide with the corresponding results observed for

the Jacobi-Piñeiro polynomials in [17, 72]. Next, we observe that if we impose

the condition d = c+ 1
2
, then the polynomials characterised in Section 5.4 reduce

to the Jacobi-type 2-orthogonal polynomials investigated in [46]. A particular

case of these polynomials corresponds to a 2-orthogonal polynomial sequence with

constant recurrence coefficients. We end Section 5.4 by showing that the cubic

components of case C of the Hahn-classical 3-fold-symmetric 2-orthogonal polyno-

mials analysed in Chapter 2 are particular cases of the 2-orthogonal polynomials

studied here and that the polynomials characterised in Chapter 4 are a limiting

case of the polynomials analysed in this chapter.

The starting point of Section 5.5 is a branched-continued-fraction representation

for the ordinary generating function of the moment sequence given by (5.3), which

is a generalised hypergeometric series 3F2. We obtain explicit formulas for the

coefficients of this branched continued fraction, which we use to obtain alternative

expressions for the recurrence coefficients of the 2-orthogonal polynomials char-

acterised in Section 5.4. As a result, the recurrence coefficients are all positive

and we derive a decomposition of the infinite lower-Hessenberg matrix associated

with these 2-orthogonal polynomials as a product of bidiagonal matrices, which

is equal to the production matrix of a sequence of 2-Stieltjes-Rogers polynomials:

the moment sequence given by (5.3).
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5.1 Nikishin system

In this section, we use the connection between continued fractions (in this case,

S-fractions) and Stieltjes transforms introduced in Section 1.5 to prove that the

pair of weight functions
(
W(x; a, b + 1; c + 1, d),W(x; a, b; c, d)

)
forms a Nikishin

system, as explained in Theorem 5.1.

As a result, the type I and II multiple orthogonal polynomials with respect to these

weight functions exist and are unique for every multi-index (n0, n1) ∈ N2; the type

I multiple orthogonal polynomials A(n0,n1) and B(n0,n1) have degree exactly n0 − 1

and n1 − 1, respectively; and the type II multiple orthogonal polynomial P(n0,n1)

has n0 + n1 simple zeros located on the interval (0, 1) such that there is always a

zero of P(n0,n1) between two consecutive zeros of P(n0+1,n1) or P(n0,n1+1).

Theorem 5.1. [48, Th. 2.1] Let W(x) :=W(x; a, b; c, d) be given by (5.1), under

the assumptions (5.2). Then,

W(x; a, b; c, d)

W(x; a, b+ 1; c+ 1, d)
=

∞

K
n=0

(αn
1

)
, (5.4)

where α0 =
b

c
and, for n ≥ 1, αn = (1− gn−1) gn(x− 1), with g0 = 0 and

g0 = 0; g2k+1 =
c− b+ k

δ + 2k
and g2k+2 =

d− b+ k

δ + 2k + 1
for all k ∈ N. (5.5)

Moreover, there exist probability density measures σ in (0, 1) and θ in (1,+∞)

such that

W(x; a, b; c, d)

W(x; a, b+ 1; c+ 1, d)
=
b

c

∫ 1

0

dσ(t)

1 + t(x− 1)
=
b

c

∫ 0

−∞

dθ(1− s)
x− s

. (5.6)

Therefore, the pair of weight functions
(
W(x; a, b+ 1; c+ 1, d),W(x; a, b; c, d)

)
forms

a Nikishin system on the interval (0, 1).
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Proof. Recalling (5.1),

W(x; a, b; c, d)

W(x; a, b+ 1; c+ 1, d)
=
b

c
2F1 (c− b, d− b; δ | 1− x)

2F1 (c− b, d− b− 1; δ | 1− x)
. (5.7)

Therefore, the ratio of weight functions above admits a representation similar to

Gauss’ continued fraction. In fact, accordingly to [45, Eqs. 2.7-2.8], the ratio of

weights in (5.7) can be represented by a continued fraction of the type on the right-

hand side of (5.4), with α0 =
b

c
and, for n ≥ 1, αn = α̃n(x− 1), where (α̃n)n∈Z+ is

the chain sequence (see [78, Ch. IV, §19] for more information on chain sequences)

of the form α̃n = (1− gn−1) gn, with (gn)n∈N given by (5.5).

Observe that min{c, d} > max{a, b} implies that 0 < gn < 1 for all n ≥ 1. As

a result, the continued fraction described above is of the type in [78, Eq. 27.8].

Therefore, based on [78, Eq. 67.5], there exists a probability density function σ

in (0, 1) such that the first integral representation in (5.6) holds. Alternatively,

combining [78, Ths. 66.1 & 27.5], we deduce that there exists a probability density

function θ in (1,+∞) such that

W(x; a, b; c, d)

W(x; a, b+ 1; c+ 1, d)
=
b

c

∫ −1

−∞

dθ(−u)

x− 1− u
.

The second integral representation in (5.6) is obtained from the one above via the

change of variable s = u+ 1.

Under the additional assumption b > a − 1 and using a recent result in [26,

§4, Ex. 2] (which Alex Dyachenko kindly shared with us whilst in draft form), the

generating measure σ in (5.6) admits the integral representation

W(x; a, b; c, d)

W(x; a, b+ 1; c+ 1, d)
=
b

c

(∫ 1

0

λ tc+d−2b−2(1− t)b−adt
(1 + t(x− 1)) |2F1 (c− b, d− b− 1; δ | t−1 )|2

+K

)
,

with

λ =
(Γ(δ))2

Γ(c− b)Γ(d− b)Γ(d− a)Γ(c− a+ 1)
and K =


0 if d ≤ c+ 1,

d− c− 1

d− b− 1
if d ≥ c+ 1.
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Note that K represents a mass point at the origin when d > c+ 1. The change of

variable t = (1− s)−1 in the latter integral representation gives an explicit canon-

ical representation as a Stieltjes transform for the ratio of the weight functions:

W(x; a, b; c, d)

W(x; a, b+ 1; c+ 1, d)
=
b

c

∫ 0

−∞

λ(−s)b−a(1− s)1−δ ds

(x− s)
∣∣∣2F1 (c− b, d− b− 1; δ | 1− s)

∣∣∣2 +K

 .

5.2 Differential properties

We describe the weight function W(x; a, b; c, d) in (5.1) and the vector

W(x; a, b; c, d) :=

 W(x; a, b; c, d)

W(x; a, b+ 1; c+ 1, d)

 , (5.9)

as solutions to a second-order ordinary differential equation and to a first order

matrix differential equation, respectively. The latter is crucial to prove that the

derivative operator acts on the multiple orthogonal polynomials of type II and on

the functions of type I on the step-line as a shift in their index and parameters,

revealing that they satisfy the Hahn-classical property.

Proposition 5.2. (cf. [48, Prop. 2.2]) Let W(x) := W(x; a, b; c, d) be given by

(5.1), under the assumptions (5.2). Then

(1− x)x2W ′′(x) + η(x)xW ′(x) + ψ(x)W(x) = 0, (5.10a)

with η(x) = (c+ d− 5)x− (a+ b− 3) and ψ(x) = (a− 1)(b− 1)− (c− 2)(d− 2)x.

Equivalently, defining the operator Θ : P → P by Θ (f(x)) =
d

dx

(
xf(x)

)
,

Θ2
(
(1−x)W(x)

)
+Θ

(
((c+ d)x− (a+ b))W(x)

)
+(ab− cdx)W(x) = 0. (5.10b)
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Based on Proposition 3.1, the formula for the moments of W(x; a, b; c, d) given by

(5.3) is equivalent to all the moments of the left-hand side of (5.10b) integrated

over the interval (0, 1) vanishing.

Proof. The equivalence between (5.10a) and (5.10b) is easily checked by expanding

the latter to obtain the former. As such, it is sufficient to prove (5.10a). To simplify

the notation, we denote 2F1 (c− b, d− b; δ | z ) by F (z). Then, after differentiating

(5.1) twice, we have

W(j)(x) =
Γ(c)Γ(d)

Γ(a)Γ(b)Γ(δ)
xa−1−j(1− x)δ−1−jFj(x), for j ∈ {0, 1, 2}, (5.11)

with F0(x) = F (1− x),

F1(x) =
(
(2− a− δ)x+ (a− 1)

)
F0(x) + x(1− x)F ′0(x)

=
(
(2 + b− c− d)x+ (a− 1)

)
F (1− x)− x(1− x)F ′(1− x)

and

F2(x) =
(
(4 + b− c− d)x+ (a− 2)

)
F1(x) + x(1− x)F ′1(x)

= x2(1− x)2F ′′(1− x) + 2x(1− x)g1(x)F ′(1− x) + g2(x)F (1− x),

where g1(x) = (c+ d− b− 2)x+ (1− a) and

g2(x) = (c+ d− b− 2)(c+ d− b− 3)x2− 2(a− 1)(c+ d− b− 3)x+ (a− 1)(a− 2).

Recalling (1.6), we derive that F (1− x) = 2F1 (c− b, d− b; δ | 1− x) satisfies

x(1−x)F ′′(1−x) = (c−b)(d−b)F (1−x)−
(
(c+d−2b+1)x+(b−a−1)

)
F ′(1−x).

As a result, we can rewrite F2(x) as

F2(x) = −η(x)F1(x)− (1− x)ψ(x)F0(x),

and, combining the latter relation with (5.11), we find (5.10a).
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Next, we present a system of first order differential equations for which the vector

(5.9) is a solution, as described in the following theorem.

Theorem 5.3. [48, Th. 2.3] LetW(x; a, b; c, d) as defined in (5.9), subject to (5.2).

Then, the following identities hold

xΦ(x)W(x; a, b; c, d) =W(x; a+ 1, b+ 1; d+ 1, c+ 2) (5.12)

and
d

dx

(
xΦ(x)W(x; a, b; c, d)

)
+ Ψ(x)W(x; a, b; c, d) = 0, (5.13)

where

Φ(x) := Φ(x; a, b; c, d) =


c(c+ 1)d

ab(c− b)
−(c+ 1)d

a(c− b)

−c(c+ 1)d(d+ 1)

ab(b+ 1)(d− a)
x

(c+ 1)d(d+ 1)

a(b+ 1)(d− a)

 (5.14)

and

Ψ(x) := Ψ(x; a, b; c, d) =

 −c(c+ 1)d

a(c− b)
c(c+ 1)d

a(c− b)
c(c+ 1)d2(d+ 1)

ab(b+ 1)(d− a)
x −(c+ 1)d(d+ 1)

(b+ 1)(d− a)

 . (5.15)

Proof. In order to prove (5.12), we need to check that

V0(x)

V1(x)

 := xΦ(x)

 W(x; a, b; c, d)

W(x; a, b+ 1; c+ 1, d)

 =

W(x; a+ 1, b+ 1; d+ 1, c+ 2)

W(x; a+ 1, b+ 2; d+ 2, c+ 2)

 .
To shorten the notation, we write α = c− b and β = d− b. Then,

V0(x) = x
(c+ 1)d

aα

(c
b
W(x; a, b; c, d)−W(x; a, b+ 1; c+ 1, d)

)
=

Γ(c+ 2)Γ(d+ 1)

Γ(a+ 1)Γ(b+ 1)Γ(δ)
xa(1− x)δ−1 Ṽ0(x)

α
,

with

Ṽ0(x) = 2F1

α, β
δ

∣∣∣∣∣∣ 1− x

− 2F1

α, β − 1

δ

∣∣∣∣∣∣ 1− x

 .
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Based on [22, Eqs. 15.5.15, 15.5.16], respectively, we have

α 2F1

α + 1, β

δ + 1

∣∣∣∣∣∣ 1− x

 = δ 2F1

α, β
δ

∣∣∣∣∣∣ 1− x

− (δ − α) 2F1

 α, β

δ + 1

∣∣∣∣∣∣ 1− x


and

(δ−α)(1−x)2F1

 α, β

δ + 1

∣∣∣∣∣∣ 1− x

 = δ 2F1

α, β − 1

δ

∣∣∣∣∣∣ 1− x

−δx 2F1

α, β
δ

∣∣∣∣∣∣ 1− x

 .

(5.16)

Hence, we deduce that

α(1−x) 2F1

α + 1, β

δ + 1

∣∣∣∣∣∣ 1− x

 = δ 2F1

α, β
δ

∣∣∣∣∣∣ 1− x

−δ 2F1

α, β − 1

δ

∣∣∣∣∣∣ 1− x

 ,

(5.17)

and we obtain

Ṽ0(x) =
α

δ
(1− x) 2F1

α + 1, β

δ + 1

∣∣∣∣∣∣ 1− x

 .

Therefore,

V0(x) =
Γ(c+ 2)Γ(d+ 1)

Γ(a+ 1)Γ(b+ 1)Γ(δ + 1)
xa(1− x)δ 2F1

α + 1, β

δ + 1

∣∣∣∣∣∣ 1− x


=W(x; a+ 1, b+ 1; d+ 1, c+ 2).

(5.18)

Moreover,

V1(x) = x
(c+ 1)d(d+ 1)

a(b+ 1)(δ − α)

(
W(x; a, b+ 1; c+ 1, d)− c

b
xW(x; a, b; c, d)

)
=

Γ(c+ 2)Γ(d+ 2)

Γ(a+ 1)Γ(b+ 2)Γ(δ)
xa(1− x)δ−1 Ṽ1(x)

δ − α
,

with

Ṽ1(x) = 2F1

α, β − 1

δ

∣∣∣∣∣∣ 1− x

− x 2F1

α, β
δ

∣∣∣∣∣∣ 1− x

 .
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Applying (5.16) to the latter, we obtain

Ṽ1(x) =
δ − α
δ

(1− x) 2F1

 α, β

δ + 1

∣∣∣∣∣∣ 1− x

 .

Therefore,

V1(x) =
Γ(c+ 2)Γ(d+ 2)xa(1− x)δ

Γ(a+ 1)Γ(b+ 2)Γ(δ + 1)
2F1

 α, β

δ + 1

∣∣∣∣∣∣ 1− x


=W(x; a+ 1, b+ 2; d+ 2, c+ 2).

(5.19)

In order to prove (5.13), we need to check that

V ′0(x)

V ′1(x)

 =


c(c+ 1)d

aα

(
W(x; a, b; c, d)−W(x; a, b+ 1; c+ 1, d)

)
(c+ 1)d(d+ 1)

(b+ 1)(δ − α)

(
W(x; a, b+ 1; c+ 1, d)− cd

ab
xW(x; a, b; c, d)

)
 .

Recalling (5.18),

V ′0(x) =
Γ(c+ 2)Γ(d+ 1)

Γ(a+ 1)Γ(b+ 1)Γ(δ + 1)

d

dx

xa(1− x)δ 2F1

α + 1, β

δ + 1

∣∣∣∣∣∣ 1− x


=

Γ(c+ 2)Γ(d+ 1)

Γ(a+ 1)Γ(b+ 1)Γ(δ + 1)
xa−1(1− x)δ−1G0(x),

with G0(x) equal to

(a(1−x)−δx) 2F1

α + 1, β

δ + 1

∣∣∣∣∣∣ 1− x

−(α + 1)β

δ + 1
x(1−x) 2F1

α + 2, β + 1

δ + 2

∣∣∣∣∣∣ 1− x

 .

Using [22, Eq. 15.5.19],

(α + 1)β

δ + 1
x(1− x) 2F1

α + 2, β + 1

δ + 2

∣∣∣∣∣∣ 1− x

 =

δ 2F1

α, β − 1

δ

∣∣∣∣∣∣ 1− x

− (δ − (α + β)(1− x)
)

2F1

α + 1, β

δ + 1

∣∣∣∣∣∣ 1− x

 .
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Hence,

G0(x) = −δ 2F1

α, β − 1

δ

∣∣∣∣∣∣ 1− x

+ b(1− x) 2F1

α + 1, β

δ + 1

∣∣∣∣∣∣ 1− x

 ,

and, recalling (5.17), we have

G0(x) =
δ

α

b 2F1

α, β
δ

∣∣∣∣∣∣ 1− x

− c 2F1

α, β − 1

δ

∣∣∣∣∣∣ 1− x

 ,
Therefore, setting K0 =

Γ(c+ 2)Γ(d+ 1)

Γ(a+ 1)Γ(b)Γ(δ)α
, we deduce that

V ′0(x) = K0 x
a−1(1− x)δ−1


2F1

α, β
δ

∣∣∣∣∣∣ 1− x

− c

b
2F1

α, β − 1

δ

∣∣∣∣∣∣ 1− x


=
c(c+ 1)d

aα

(
W(x; a, b; c, d)−W(x; a, b+ 1; c+ 1, d)

)
.

Recalling (5.19),

V ′1(x) =
Γ(c+ 2)Γ(d+ 2)

Γ(a+ 1)Γ(b+ 2)Γ(δ + 1)

d

dx

xa(1− x)δ 2F1

 α, β

δ + 1

∣∣∣∣∣∣ 1− x


=

Γ(c+ 2)Γ(d+ 1)

Γ(a+ 1)Γ(b+ 1)Γ(δ + 1)
xa−1(1− x)δ−1G1(x),

with G1(x) equal to

(a(1−x)−δx) 2F1

 α, β

δ + 1

∣∣∣∣∣∣ 1− x

− αβ

δ + 1
x(1−x) 2F1

α + 1, β + 1

δ + 2

∣∣∣∣∣∣ 1− x

 .

Using [22, Eq. 15.5.19],

αβ

δ + 1
x(1− x) 2F1

α + 1, β + 1

δ + 2

∣∣∣∣∣∣ 1− x

 =

δ 2F1

α− 1, β − 1

δ

∣∣∣∣∣∣ 1− x

+
(
(α + β − 1)(1− x)− δ

)
2F1

 α, β

δ + 1

∣∣∣∣∣∣ 1− x

 .
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So,

G1(x) = −δ 2F1

α− 1, β − 1

δ

∣∣∣∣∣∣ 1− x

+ (b+ 1)(1− x) 2F1

 α, β

δ + 1

∣∣∣∣∣∣ 1− x

 .

(5.20)

Based on [22, Eq. 15.5.13], we have

(δ − α)(1− x) 2F1

α− 1, β − 1

δ

∣∣∣∣∣∣ 1− x

 =

(a− b+ 1) 2F1

α, β − 1

δ

∣∣∣∣∣∣ 1− x

+ (β − 1)x 2F1

α, β
δ

∣∣∣∣∣∣ 1− x

 .

Applying the latter and (5.16) to (5.20), we deduce that

G1(x) =
δ

δ − α

a 2F1

α, β − 1

δ

∣∣∣∣∣∣ 1− x

− dx 2F1

α, β
δ

∣∣∣∣∣∣ 1− x

 .
Therefore, setting K1 =

Γ(c+ 2)Γ(d+ 2)

Γ(a)Γ(b+ 2)Γ(δ)(δ − α)
,

V ′1(x) = K1 x
a−1(1− x)δ−1


2F1

α, β
δ

∣∣∣∣∣∣ 1− x

− d

a
x 2F1

α, β − 1

δ

∣∣∣∣∣∣ 1− x


=

(c+ 1)d(d+ 1)

(b+ 1)(δ − α)

(
W(x; a, b+ 1; c+ 1, d)− cd

ab
xW(x; a, b; c, d)

)
.

Combining the latter result with Theorem 3.2, we show that the type II multiple

orthogonal polynomials and the type I functions on the step-line satisfy the Hahn-

classical property, because the differentiation with respect to the variable gives a

shift in the parameters as well as in the index, as described in the following result.
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Theorem 5.4. [48, Th. 2.4] Let Pn(x; a, b; c, d) and Qn(x; a, b; c, d), with n ∈ N,

be, respectively, the type II multiple orthogonal polynomial and the type I function

for the index of length n on the step-line with respect to W(x; a, b; c, d), defined by

(5.9), under the assumptions in (5.2). Then

d

dx
(Pn+1(x; a, b; c, d)) = (n+ 1)Pn(x; a+ 1, b+ 1; d+ 1, c+ 2) (5.21)

and

d

dx

(
Qn(x; a+ 1, b+ 1; d+ 1, c+ 2)

)
= −nQn+1(x; a, b; c, d). (5.22)

Proof. Let Φ(x) be defined by (5.14) and denote W(x; a, b; c, d) by W(x).

Since W(x) satisfies the equation (5.13) and on account of the degrees of the

polynomial entries in the matrices Φ(x) and Ψ(x), then part (a) of Theorem 3.2

ensures that the sequence
(
(n+ 1)−1 P ′n+1(x; a, b; c, d)

)
n∈N is 2-orthogonal with

respect to the vector of weights xΦ(x)W(x). Similarly, part (b) of Theorem 3.2

implies that, if Rn(x) is the type I function for the index of length n on the step-

line with respect to xΦ(x)W(x), then −n−1R′n(x) is the type I function for the

index of length n+ 1 on the step-line with respect to the vector of weights W(x).

Therefore, by virtue of (5.12), we conclude that both (5.21) and (5.22) hold.
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5.3 Rodrigues-type formulas for type I MOPs

Due to the differential relation (5.22), the type I functions on the step-line can be

generated by a Rodrigues-type formula of the type in (3.15) as described in the

following result.

Theorem 5.5. [48, Th. 2.5] Let Qn(x) := Qn(x; a, b; c, d), n ∈ N, be the type I

function for the index of length n on the step-line with respect to W(x; a, b; c, d)

defined by (5.9), under the assumptions in (5.2). Then, for any n ∈ N,

Qn+1(x) =
(−1)n

n!

dn

dxn

(
W
(
x; a+ n, b+ n; c+

⌊
n+ 1

2

⌋
+ n, d+

⌊n
2

⌋
+ n

))
.

(5.23)

Proof. We proceed by induction on n ∈ N. For n = 0, (5.23) trivially holds,

because it reads as Q1(x; a, b; c, d) =W(x; a, b; c, d).

Using (5.22), we have

Qn+2(x; a, b; c, d) = − 1

n+ 1

d

dx
(Qn+1(x; a+ 1, b+ 1; d+ 1, c+ 2)) .

Then, evoking the assumption that (5.23) holds for a fixed n ∈ N, we obtain

Qn+2(x; a, b; c, d) =
(−1)n+1

(n+ 1)!

dn+1

dxn+1
(W (x; a+ n+ 1, b+ n+ 1; dn+1, cn+1)) ,

with

dn+1 = d+

⌊
n+ 1

2

⌋
+ n+ 1 and cn+1 = c+

⌊
n+ 2

2

⌋
+ n+ 1. (5.24)

Therefore, using the interchangeability of the parameters, (5.23) holds for n + 1

and the result follows by induction.
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Moreover, applying formula (3.16) to
(
An(x; a, b; c, d), Bn(x; a, b; c, d)

)
, we deduce

that, for any n ∈ N,

n

An+1(x; a, b; c, d)

Bn+1(x; a, b; c, d)

 = O(a, b; c, d)

An(x; a+ 1, b+ 1; d+ 1, c+ 2)

Bn(x; a+ 1, b+ 1; d+ 1, c+ 2)

 ,
where the raising operator O(a, b; c, d), involving the transpose of the matrices

(5.14) and (5.15) introduced in Theorem 5.3, is defined by

O(a, b; c, d) = (Ψ(x; a, b; c, d))T − x (Φ(x; a, b; c, d))T
d

dx
. (5.25)

Therefore, recalling that
(
A1(x; a, b; c, d), B1(x; a, b; c, d)

)
= (1, 0), we obtain a

matrix Rodrigues-type formula of the type (3.17) generating the type I polynomials

on the step-line as follows.

Theorem 5.6. Let
(
An(x; a, b; c, d), Bn(x; a, b; c, d)

)
, with n ∈ N, be the vector of

type I multiple orthogonal polynomials for the index of length n on the step-line

with respect to W(x; a, b; c, d) defined by (5.9), under the assumptions in (5.2).

Then, defining the raising operator O(a, b; c, d) by (5.25), we have, for any n ∈ N,

An+1(x; a, b; c, d)

Bn+1(x; a, b; c, d)

 =
1

n!

(
n−1∏
k=0

O
(
a+ k, b+ k; c̃k, d̃k

))1

0

 ,
with

c̃k =

c+ 3j if k = 2j,

d+ 3j + 2 if k = 2j + 1;

and d̃k =

d+ 3j if k = 2j,

c+ 3j + 1 if k = 2j + 1.

(5.26)

Note that, comparing the parameters defined by (5.24) and (5.26), we have

{cn+1, dn+1} = {c̃n+1, d̃n+1}.



156

5.4 Characterisation of the type II MOPs

We start this section by giving an explicit representation as terminating hyperge-

ometric series 3F2 for the type II multiple orthogonal polynomials on the step-line

with respect to W(x; a, b; c, d). Then, we use this representation to obtain the

third-order differential equation and recurrence relation satisfied by these polyno-

mials, which share the asymptotic behaviour of the recurrence coefficients with

the Jacobi-Piñeiro polynomials. As a result, we show that they also share the

ratio asymptotics and the asymptotic zero distribution. We also derive a Mehler-

Heine-type asymptotic formula near the origin satisfied by the polynomials inves-

tigated here, which give us more information about the asymptotic behaviour of

their zeros. Finally, we highlight the particular cases connected to Jacobi-type

2-orthogonal polynomials and to the cubic components of Hahn-classical 3-fold-

symmetric 2-orthogonal polynomials, and we show that the polynomials charac-

terised in Chapter 4 are a limiting case of the polynomials analysed in this chapter.

5.4.1 Explicit expressions as hypergeometric polynomials

Based on the moments expression (5.3), we deduce an explicit representation

for the type II multiple orthogonal polynomials on the step-line with respect to

W(x; a, b; c, d) as generalised hypergeometric series.

Theorem 5.7. [48, Th. 3.1] Let (Pn(x) := Pn(x; a, b; c, d))n∈N be the monic 2-

orthogonal polynomial sequence with respect to W(x; a, b; c, d) defined by (5.9), un-

der the assumptions in (5.2). Then

Pn(x) =
(−1)n (a)n (b)n(

c+
⌊
n
2

⌋)
n

(
d+

⌊
n−1

2

⌋)
n

3F2

−n, c+
⌊
n
2

⌋
, d+

⌊
n−1

2

⌋
a, b

∣∣∣∣∣∣ x
 . (5.27)

or, equivalently,

Pn(x) =
n∑
k=0

(
(−1)k (1 + n− k)k (a+ n− k)k (b+ n− k)k
k!
(
c+

⌊
n
2

⌋
+ n− k

)
k

(
d+

⌊
n−1

2

⌋
+ n− k

)
k

xn−k

)
. (5.28)
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To prove Theorem 5.7 we need to show that the sequence (Pn(x))n∈N defined by

(5.27) satisfies the 2-orthogonality conditions with respect to W(x; a, b; c, d), that

is, we need to check that, for each j ∈ {0, 1},

∫ 1

0

xkPn(x)W(x; a, b+ j; c+ j, d)dx =

0, if n ≥ 2k + j + 1,

Nn(a, b; c, d) 6= 0, if n = 2k + j.

(5.29)

Similarly to how we argued in Section 4.4.1, the existence of a 2-orthogonal polyno-

mial sequence with respect toW(x; a, b; c, d) is guaranteed, because we are dealing

with a Nikishin system. As a result, we can use the differential property (5.21)

stated in Theorem 5.4 to show that it is sufficient to check the orthogonality con-

ditions (5.29) when k = 0 to then prove the result by induction on the degree

of the polynomials. However, as in Section 4.4.1, we opt for checking that the

polynomials in (5.27) satisfy all the orthogonality conditions (5.29), because this

process enables us to show directly that these polynomials are indeed 2-orthogonal

with respect to W(x; a, b; c, d), without using with the Nikishin property, as well

as it provides a method to derive explicit expressions for the nonzero coefficients

Nn(a, b; c, d) in (5.29), which are used in Subsection 5.4.3 to obtain explicit expres-

sions for the positive γn-coefficients in the third order recurrence relation (5.35)

satisfied by these polynomials.

Proof of Theorem 5.7. Recalling the expression for the moments given by (5.3),

we can use Lemma 3.3 to derive that, for k, n ∈ N and j ∈ {0, 1},

∫ 1

0

xkPn(x)W(x; a, b+ j; c+ j, d)dx

=λ
(j)
n,k 5F4

−n, a+ k, b+ k + j, c+
⌊
n
2

⌋
, d+

⌊
n−1

2

⌋
a, b, c+ k + j, d+ k

∣∣∣∣∣∣ 1

 ,

(5.30)

with

λ
(j)
n,k =

(−1)n (a)n (b)n (a)k (b+ j)k(
c+

⌊
n
2

⌋)
n

(
d+

⌊
n−1

2

⌋)
n

(c+ j)k (d)k
.
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For any n ∈ N,
⌊n

2

⌋
+

⌊
n− 1

2

⌋
= n − 1 and, if n ≥ 2k + j + 1 with j ∈ {0, 1},

then
⌊n

2

⌋
≥ k + j and

⌊
n− 1

2

⌋
≥ k. Therefore, using (3.20) in Lemma 3.4, we

deduce that, for both j ∈ {0, 1},

5F4

−n, a+ k, b+ k + j, c+
⌊
n
2

⌋
, d+

⌊
n−1

2

⌋
a, b, c+ k + j, d+ k

∣∣∣∣∣∣ 1

 = 0, for any n ≥ 2k+j+1.

As a result,

∫ 1

0

xkPn(x)W(x; a, b+ j; c+ j, d)dx = 0, for any n ≥ 2k + j + 1.

Taking j = 0 and n = 2k in (5.30), we get

∫ 1

0

xkP2k(x)W(x; a, b; c, d)dx

=
(a)2k (b)2k (a)k (b)k

(c)3k (d)3k−1 (d+ k − 1)
4F3

−2k, a+ k, b+ k, d+ k − 1

a, b, d+ k

∣∣∣∣∣∣ 1

 .

Using (3.21), we have

4F3

−2k, a+ k, b+ k, d+ k − 1

a, b, d+ k

∣∣∣∣∣∣ 1

 =
(2k)! (d− a)k (d− b)k

(a)k (b)k (d+ k)2k

.

Therefore,

∫ 1

0

xkP2k(x)W(x; a, b; c, d)dx =
(2k)! (a)2k (b)2k (d− a)k (d− b)k

(c)3k (d)3k (d+ k − 1)2k

> 0, (5.31)

and (5.29) holds for any k, n ∈ N when j = 0.

Similarly, taking j = 1 and n = 2k + 1 in (5.30),

∫ 1

0

xkP2k+1(x)W(x; a, b+ 1; c+ 1, d)dx

= −
(a)2k+1 (b)2k+1 (a)k (b+ 1)k

(c+ 1)3k (c+ k) (d)3k+1
4F3

−2k − 1, a+ k, b+ k + 1, c+ k

a, b, c+ k + 1

∣∣∣∣∣∣ 1

 .



159

Using again (3.21), we get

4F3

−2k − 1, a+ k, b+ k + 1, c+ k

a, b, c+ k + 1

∣∣∣∣∣∣ 1

 = −
(2k + 1)! (c− a+ 1)k (c− b)k+1

(a)k (b)k+1 (c+ k + 1)2k+1

,

so that ∫ 1

0

xkP2k+1(x)W(x; a, b+ 1; c+ 1, d)dx

=
(2k + 1)! (a)2k+1 (b+ 1)2k (c− a+ 1)k (c− b)k+1

(c+ 1)3k+1 (c+ k)2k+1 (d)3k+1

> 0,

(5.32)

ensuring that (5.29) also holds for any k, n ∈ N when j = 1.

5.4.2 Differential equation

The hypergeometric 2-orthogonal polynomials defined by (5.27)-(5.28) are solu-

tions to a third order differential equation of the type in (3.23), as described in

the following result.

Theorem 5.8. [48, Th. 3.3] Let (Pn(x) := Pn(x; a, b; c, d))n∈N be the monic 2-

orthogonal polynomial sequence with respect to W(x; a, b; c, d) defined by (5.9), un-

der the assumptions in (5.2). Then

x2(1− x)P ′′′n (x)− xϕ(x)P ′′n (x) + ψn(x)P ′n(x) + nλnPn(x) = 0, (5.33)

with

ϕ(x) = (c+ d+ 2)x− (a+ b+ 1),

ψn(x) =
(
(n− 1)(c+ d+ n)− λn

)
x+ ab,

λn =
(
c+

⌊n
2

⌋)(
d+

⌊
n− 1

2

⌋)
.



160

Proof. Combining the explicit formula for the 2-orthogonal polynomials as termi-

nating hypergeometric series (5.27) and the generalised hypergeometric differential

equation (1.10), we obtain

[(
x

d

dx
+ a

)(
x

d

dx
+ b

)
d

dx

]
Pn(x) =

=

[(
x

d

dx
− n

)(
x

d

dx
+ c+

⌊n
2

⌋)(
x

d

dx
+ d+

⌊
n− 1

2

⌋)]
Pn(x).

(5.34)

Expanding the left-hand side of (5.34), we get

[(
x

d

dx
+ a

)(
x

d

dx
+ b

)
d

dx

]
Pn(x) = x2P ′′′n (x)+(a+b+1)xP ′′n (x)+abP ′n(x).

Similarly, recalling that
⌊n

2

⌋
+

⌊
n− 1

2

⌋
= n− 1, for any n ∈ N, we derive

[(
x

d

dx
+ c+

⌊n
2

⌋)(
x

d

dx
+ d+

⌊
n− 1

2

⌋)]
Pn(x)

=x2P ′′n (x) + (c+ d+ n)xP ′n(x) + λnPn(x).

Therefore, the right-hand side of (5.34) is

[(
x

d

dx
− n

)(
x

d

dx
+ c+

⌊n
2

⌋)(
x

d

dx
+ d+

⌊
n− 1

2

⌋)]
Pn(x)

=x3 P ′′′n (x) + (c+ d+ 2)x2 P ′′n (x) + (λn − (n− 1)(c+ d+ n))xP ′n(x)− nλnPn(x).

Finally, combining the expressions for both sides of (5.34), we obtain the differen-

tial equation (5.33).

5.4.3 Recurrence relation

As a 2-orthogonal sequence, the hypergeometric polynomials Pn(x) defined by

(5.27) necessarily satisfy a third order recurrence relation of the form

Pn+1(x) = (x− βn)Pn(x)− αnPn−1(x)− γn−1Pn−2(x). (5.35)
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Our purpose here is to obtain explicit expressions for the recurrence coefficients

involved.

Recalling formulas (3.26a)-(3.26b), and the expansion of Pn(x) over the powers of

x given by (5.28), we find that

βn = τn,1 − τn+1,1 and αn = τn,2 − τn+1,2 − (τn,1)2 + τn,1τn+1,1,

with

τn,1 = − n(n+ a− 1)(n+ b− 1)(
n+

⌊
n
2

⌋
+ c− 1

) (
n+

⌊
n−1

2

⌋
+ d− 1

)
and

τn,2 =
(n− 1)2 (n+ a− 2)2 (n+ b− 2)2

2
(
n+

⌊
n
2

⌋
+ c− 2

)
2

(
n+

⌊
n−1

2

⌋
+ d− 2

)
2

.

Hence, we obtain, for each k ∈ N,

β2k(a, b; c, d) =
(2k + 1)(2k + a)(2k + b)

(3k + c)(3k + d)
− 2k(2k + a− 1)(2k + b− 1)

(3k + c− 1)(3k + d− 2)

and

β2k+1(a, b; c, d) =
(2k + 2)(2k + a+ 1)(2k + b+ 1)

(3k + c+ 2)(3k + d+ 1)
− (2k + 1)(2k + a)(2k + b)

(3k + c)(3k + d)
;

as well as

α2k+1(a, b; c, d) =
(2k + 1)(2k + a)(2k + b)

(3k + c)(3k + d)

(
k(2k + a− 1)(2k + b− 1)

(3k + c− 1)(3k + d− 1)

− (2k + 1)(2k + a)(2k + b)

(3k + c)(3k + d)
+

(k + 1)(2k + a+ 1)(2k + b+ 1)

(3k + c+ 1)(3k + d+ 1)

)
,

and

α2k+2(a, b; c, d) =
2(k + 1)(2k + a+ 1)(2k + b+ 1)

(3k + c+ 2)(3k + d+ 1)

(
(2k + 1)(2k + a)(2k + b)

2(3k + c+ 1)(3k + d)

− 2(k + 1)(2k + a+ 1)(2k + b+ 1)

(3k + c+ 2)(3k + d+ 1)
+

(2k + 3)(2k + a+ 2)(2k + b+ 2)

2(3k + c+ 3)(3k + d+ 2)

)
.
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Expanding these formulas, we derive that

• β2k(a, b; c, d) =
36k4 +O (k3)

(3k + c− 1)(3k + c)(3k + d− 2)(3k + d)
;

• β2k+1(a, b; c, d) =
36k4 +O (k3)

(3k + c)(3k + c+ 2)(3k + d)(3k + d+ 1)
;

• α2k+1(a, b; c, d) =
(2k + 1)(2k + a)(2k + b) (54k5 +O (k4))

(3k + c− 1)2 (3k + c)2 (3k + d− 1)2 (3k + d)2

;

• α2k+2(a, b; c, d) =
(2k + 1)(2k + a)(2k + b) (54k5 +O (k4))

(3k + c+ 2)2 (3k + c+ 3)2 (3k + d+ 1)2 (3k + d+ 2)2

.

Furthermore, recalling (3.26c), we have, for each k ∈ N and j ∈ {0, 1},

γ2k+1+j(a, b; c, d) =

∫ 1

0

xk+1P2k+2+j(x; a, b; c, d)W(x; a, b+ j; c+ j, d)dx∫ 1

0

xkP2k+j(x; a, b; c, d)W(x; a, b+ j; c+ j, d)dx

.

Based on the latter alongside with (5.31) and (5.32), we deduce that, for all k ∈ N,

γ2k+1(a, b; c, d) =
(2k + 1)2 (2k + a)2 (2k + b)2 (d− 1 + k)(d− a+ k)(d− b+ k)

(3k + c)3 (3k + d− 1)3 (3k + d)3

and

γ2k+2(a, b; c, d) =

(2k + 2)2 (2k + a+ 1)2 (2k + b+ 1)2 (c+ k)(c− a+ k + 1)(c− b+ k + 1)

(3k + c+ 1)3 (3k + c+ 2)3 (3k + d+ 1)3

.

As a consequence, we have just proved the following result.

Theorem 5.9. [48, Th. 3.4] Let (Pn(x) := Pn(x; a, b; c, d))n∈N be the monic 2-

orthogonal polynomial sequence with respect to W(x; a, b; c, d) defined by (5.9), un-

der the assumptions in (5.2). Then (Pn(x))n∈N satisfies the recurrence relation

Pn+1(x) = (x− βn)Pn(x)− αnPn−1(x)− γn−1Pn−2(x),
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where, for each n ∈ N,

βn =
(n+ 1)(n+ a)(n+ b)(
n+ c ′n−1

)
(n+ c ′n)

− n(n+ a− 1)(n+ b− 1)(
n+ c ′n−1 − 1

)
(n+ c ′n − 2)

, (5.36a)

αn+1 =
(n+ 1)(n+ a)(n+ b)

(n+ c ′n−1)(n+ c ′n)

(
n(n+ a− 1)(n+ b− 1)

2(n+ c ′n−1 − 1)(n+ c ′n − 1)

− (n+ 1)(n+ a)(n+ b)

(n+ c ′n−1)(n+ c ′n)
+

(n+ 2)(n+ a+ 1)(n+ b+ 1)

2(n+ c ′n−1 + 1)(n+ c ′n + 1)

)
,

(5.36b)

and

γn+1 =
(n+ 1)2 (n+ a)2 (n+ b)2 (c ′n − 1)(c ′n − a)(c ′n − b)(

n+ c ′n−1

)
3

(n+ c ′n)3 (n+ c ′n − 1)3

, (5.36c)

with

c ′n =

c+m if n = 2m− 1,

d+m if n = 2m.

(5.37)

Furthermore, γn+1 > 0, for all n ∈ N, and the recurrence coefficients are real,

bounded and, as n→∞,

βn → 3

(
4

27

)
=

4

9
, αn → 3

(
4

27

)2

=
16

243
and γn →

(
4

27

)3

=
64

19683
. (5.38)

5.4.4 Asymptotic behaviour and connection with Jacobi-

Piñeiro polynomials

The Jacobi-Piñeiro polynomials are multiple orthogonal polynomials with respect

to several classical Jacobi weights on the same interval. They are usually de-

fined as the multiple orthogonal polynomials with respect to a vector of measures

(µ0, · · · , µr−1) supported on the interval (0, 1), where dµi(x) = xαi(1 − x)βdx,

with β, α0, · · · , αr−1 > −1 and αi − αj 6∈ Z whenever i 6= j. The Jacobi-Piñeiro

polynomials were introduced by Piñeiro in [62], with β = 0. The polynomials in

[62] are a limiting case of the polynomials investigated here, because the choice of

c = a and d = b+ 1 gives

W(x; a, b; c, d) = bxb−1 and W(x; a, b+ 1; c+ 1, d) = axa−1.
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See [18, §3.1] for explicit formulas for the type II Jacobi-Piñeiro polynomials with

respect to 2 measures as well as explicit expressions for the recurrence coefficients

of the polynomials on the step-line. The asymptotic behaviour (5.38) of the recur-

rence coefficients in Theorem 5.9 coincides with the asymptotic behaviour obtained

in [18] for the coefficients of the recurrence relation satisfied by the Jacobi-Piñeiro

2-orthogonal polynomials. Based on this relation, the polynomials investigated

here share the ratio asymptotics and the asymptotic zero distribution with the

Jacobi-Piñeiro polynomials, which are expressed in the following result.

Theorem 5.10. Let (Pn(x) := Pn(x; a, b; c, d))n∈N be the monic 2-orthogonal poly-

nomial sequence with respect to W(x; a, b; c, d) defined by (5.9), under the assump-

tions in (5.2). Then:

(a) The ratios of consecutive polynomials satisfy the asymptotic behaviour:

lim
n→∞

Pn(z)

Pn+1(z)
=

27

4

(
3

2
z

1
3

(
e

4πi
3

(
−1 +

√
1− z

) 1
3 + e

2πi
3

(
−1−

√
1− z

) 1
3

)
− 1

)
,

(5.39)

uniformly on compact subsets of C\[0, 1].

(b) The asymptotic zero distribution of (Pn(x))n∈N, which we denote by ν, is

supported on the interval (0, 1), with density

dν

dx
=

√
3

4π

(
1 +
√

1− x
) 1

3 +
(
1−
√

1− x
) 1

3

x
2
3

√
1− x

, for x ∈ (0, 1). (5.40)

Proof. We have shown in Section 5.1 thatW(x; a, b; c, d) forms a Nikishin system,

and, consequently, Pn(x) has n simple zeros, all located on the interval (0, 1),

with the zeros of consecutive polynomials interlacing as there is always a zero of

Pn(x) between two consecutive zeros of Pn+1(x). Therefore, using the asymptotic

behaviour (5.38) of the recurrence coefficients in Theorem 5.9, which are all real,

formulas (5.39) and (5.40) can be obtained directly from [17, Th. 3.1] and [17,

Th. 2.1], respectively. Alternatively, the ratio asymptotics formula (5.39) can also

be derived from [7, Lemma 3.2 & Remark 3.1].
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Next, we derive a Mehler-Heine asymptotic formula near the origin satisfied by

the 2-orthogonal polynomial sequence (Pn(x))n∈N.

Proposition 5.11. Let (Pn(x) := Pn(x; a, b; c, d))n∈N be the monic 2-orthogonal

polynomial sequence with respect to W(x; a, b; c, d) defined by (5.9), under the as-

sumptions in (5.2). Then,

lim
n→∞

(
(−1)n

(
c+

⌊
n
2

⌋)
n

(
d+

⌊
n−1

2

⌋)
n

(a)n (b)n
Pn

( z
n3

))
= 0F2

 −
a, b

∣∣∣∣∣∣ − z

4

 , (5.41)

uniformly on compact subsets of C.

Note that the limit (5.41) in the Mehler-Heine formula coincides with the limit in

the corresponding result for the Jacobi-Piñeiro polynomials [72, Th. 2], with r = 2

and q1 = q2 = 1/2.

Proof. Recalling Theorem 5.7, we have

(−1)n
(
c+

⌊
n
2

⌋)
n

(
d+

⌊
n−1

2

⌋)
n

(a)n (b)n
Pn

( z
n3

)
= 3F2

−n, c+
⌊
n
2

⌋
, d+

⌊
n−1

2

⌋
a, b

∣∣∣∣∣∣ z

n3

 .

Furthermore, c +
⌊n

2

⌋
, d +

⌊
n− 1

2

⌋
∼ n

2
as n → ∞. Therefore, applying the

confluent relation (1.11) to the generalised hypergeometric series on the right-

hand side of the latter equation, we obtain (5.41).

Based on the Mehler-Heine-type asymptotic formula (5.41), we obtain a result

about the asymptotic behaviour of the zeroes of Pn(x; a, b; c, d) near the origin, co-

inciding with the corresponding result for the 2-orthogonal Jacobi-Piñeiro polyno-

mials obtained in [72, §4]. If we denote the zeros of Pn(x; a, b; c, d) by
(
x

(n)
k

)
1≤k≤n

,

which are all located on the interval (0, 1), and the zeros of the generalised hy-

pergeometric series 0F2 (−; a, b | −z ), which are all real and positive, by (fk)k∈Z+ ,

with the zeros written in increasing order for both cases, then we have

lim
n→∞

(
n3x

(n)
k

)
= 4fk.
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5.4.5 Particular cases

5.4.5.1 Jacobi-type 2-orthogonal polynomials

Using the coefficients c ′n introduced in (5.37), the explicit expression for the 2-

orthogonal polynomials given by (5.27) can be rewritten as

Pn(x; a, b; c, d) =
(−1)n (a)n (b)n(
c ′n−2

)
n

(
c ′n−1

)
n

3F2

−n, c ′n−2, c
′
n−1

a, b

∣∣∣∣∣∣ x


Furthermore, if d = c+
1

2
, then c ′n = c+

n+ 1

2
, for any n ∈ N, and the expression

above becomes

Pn

(
x; a, b; c, c+

1

2

)
=

(−4)n (a)n (b)n
(2c− 1 + n)2n

3F2

−n, c+ n−1
2
, c+ n

2

a, b

∣∣∣∣∣∣ x
 . (5.42)

The latter polynomials coincide, up to a linear transformation of the variable, with

the Jacobi-type 2-orthogonal polynomials investigated in [46], with c =
ν + 1

2
.

A particular case of (5.42) of special interest arises when (a, b; c, d) =

(
4

3
,
5

3
; 2,

5

2

)
.

In this case, we have c ′n =
n+ 5

2
for all n ∈ N, and the recurrence coefficients given

by (5.36a)-(5.36c) are all constant and equal to the limits in (5.38), that is,

βn

(
4

3
,
5

3
; 2,

5

2

)
=

4

9
, αn+1

(
4

3
,
5

3
; 2,

5

2

)
=

16

243
and γn+1

(
4

3
,
5

3
; 2,

5

2

)
=

64

19683
.

Therefore, the sequence

(
Pn

(
x;

4

3
,
5

3
; 2,

5

2

))
n∈N

satisfies the third-order recur-

rence relation with constant coefficients

Pn+1(x) =

(
x− 4

9

)
Pn(x)− 16

243
Pn−1(x)− 64

19683
Pn−2(x).
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Moreover, observing that

(
4

3

)
n

(
5

3

)
n

=
(n+ 1)2n+2

2 · 27n
, for any n ∈ N, we can

derive from (5.42) that

Pn

(
x;

4

3
,
5

3
; 2,

5

2

)
=

(n+ 1)(n+ 2)

2

(
−4

27

)n
3F2

−n, n+3
2
, n

2
+ 2

4
3
, 5

3

∣∣∣∣∣∣ x
 . (5.43)

By definition, the polynomials in (5.43) are 2-orthogonal with respect to

W
(
x;

4

3
,
5

3
; 2,

5

2

)
=


Γ(2)Γ

(
5
2

)
Γ
(

4
3

)
Γ
(

5
3

)
Γ
(

3
2

) x 1
3 (1− x)

1
2 2F1

(
1

3
,
5

6
;
3

2

∣∣∣∣ 1− x)
Γ(3)Γ

(
5
2

)
Γ
(

4
3

)
Γ
(

8
3

)
Γ
(

3
2

) x 1
3 (1− x)

1
2 2F1

(
1

3
,−1

6
;
3

2

∣∣∣∣ 1− x)
 .

Based on [22, Eq. 15.4.9], we have

(1− x)
1
2 2F1

(
1

3
,
5

6
;
3

2

∣∣∣∣ 1− x) =
3

2

((
1 +
√

1− x
) 1

3 −
(
1−
√

1− x
) 1

3

)
and

(1− x)
1
2 2F1

(
1

3
,−1

6
;
3

2

∣∣∣∣ 1− x) =
3

8

((
1 +
√

1− x
) 4

3 −
(
1−
√

1− x
) 4

3

)
.

Furthermore, recalling formulas (1.2) and (1.3), we get

Γ(2)Γ
(

5
2

)
Γ
(

4
3

)
Γ
(

5
3

)
Γ
(

3
2

) =
27
√

3

8π
and

Γ(3)Γ
(

5
2

)
Γ
(

4
3

)
Γ
(

8
3

)
Γ
(

3
2

) =
81
√

3

20π
.

As a result, we have shown that the polynomials in (5.43) are 2-orthogonal with

respect to the vector of weights

W
(
x;

4

3
,
5

3
; 2,

5

2

)
=


81
√

3

16π
x

1
3

((
1 +
√

1− x
) 1

3 −
(
1−
√

1− x
) 1

3

)
243
√

3

160π
x

1
3

((
1 +
√

1− x
) 4

3 −
(
1−
√

1− x
) 4

3

)
 . (5.44)

Observe the similarities between the orthogonality weights in (5.44) and the den-

sity (5.40) of the asymptotic zero distribution.
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5.4.5.2 The cubic components of case C

The aim of this subsection is to show that the cubic components of the Hahn-

classical 3-fold-symmetric 2-orthogonal polynomial sequences corresponding to

case C (using the same terminology as in Chapter 2) are particular cases of the

2-orthogonal polynomials which we have characterised in this section. We check

this relation by comparing both the explicit expressions for the polynomials, as we

have done in [48, §3.6], and, alternatively, by examining the expressions for their

orthogonality weights.

Let (Sn(x; ν; ρ))n∈N be the Hahn-classical 3-fold-symmetric 2-orthogonal polyno-

mial sequence in Subsection 2.2.4 corresponding to case C, whose cubic compo-

nents
(
S

[k]
n (x; ν, ρ)

)
n∈N

, k ∈ {0, 1, 2}, are the polynomials explicitly represented

as terminating 3F2 hypergeometric series by (2.36). These representations can be

obtained taking particular choices on the parameters (a, b; c, d) in (5.27). In fact,

comparing (5.27) with (2.36), we deduce that

S[k]
n (x; ν, ρ) = Pn (x; ak, bk; ck, dk) , for k ∈ {0, 1, 2}, (5.45a)

with (ak, bk; ck, dk) for k = 0, 1, 2, respectively equal to

(
1

3
,
2

3
;
ν + 2

3
,
ρ

3
+ 1

)
,

(
4

3
,
2

3
;
ρ

3
+ 1,

ν + 5

3

)
and

(
4

3
,
5

3
;
ν + 5

3
,
ρ

3
+ 2

)
.

(5.45b)

Alternatively, formulas (5.45a)-(5.45b) can be deduced from the expressions for

the orthogonality weights of the cubic components in Subsections 2.2.4. In fact,

setting (ak, bk; ck, dk) by (5.45b), formulas (2.39a)-(2.39b) are equivalent to

U [k]
0 (x) =W (x; ak, bk; ck, dk)

and

U [k]
1 (x) =

ck(ck + 1)d

ak(ck − bk)

(
W (x; ak, bk + 1; ck + 1, dk)−W (x; ak, bk; ck, dk)

)
.
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Hence, the 2-orthogonal polynomials with respect to
(
U [k]

0 (x), U [k]
1 (x)

)
and to(

W(x; ak, bk; ck, dk), W(x; ak, bk + 1; ck + 1, dk)
)

are the same, which means that

the formula (5.45a) holds.

5.4.6 Confluent relation with the MOPs in Chapter 4

There are confluent relations between the 2-orthogonal polynomials analysed in

this chapter and the ones investigated in Chapter 4. These relations generalise the

limiting relations between case C and cases B1 and B2 in [50], similarly to how

the confluent relations shown in Section 4.6 generalise the ones between cases B1

and B2 and case A.

Throughout this section, we denote by V(x; a, b; c) the weight function defined by

(4.1), with a, b, c ∈ R+ and c > max{a, b}, and by R
[ε]
n (x; a, b; c) the 2-orthogonal

polynomials with respect to
(
V(x; a, b; c+ ε),V(x; a, b; c+ 1− ε)

)
, with ε ∈ {0, 1},

analysed in Chapter 4.

The polynomials R
[ε]
n (x; a, b; c) are a limiting case of the 2-orthogonal polynomials

Pn(x; a, b; c, d) with respect to
(
W(x; a, b; c, d), W(x; a, b + 1; c + 1, d)

)
, because

they satisfy the limiting relations

lim
d→∞

(
dn Pn

(x
d

; a, b; c, d
))

= R[0]
n (x; a, b; c) (5.47a)

and

lim
c→∞

(
cn Pn

(x
c

; a, b; c, d
))

= R[1]
n (x; a, b; d− 1) . (5.47b)

Furthermore, the weight functionsW(x; a, b; c, d), defined by (5.1), and V(x; a, b; c),

defined as in (4.1), also satisfy similar confluent relations:

lim
d→∞

(
1

d
W
(x
d

; a, b; c, d
))

= V (x; a, b; c) (5.48a)

and

lim
c→∞

(
1

c
W
(x
c

; a, b; c, d
))

= V (x; a, b; d) . (5.48b)
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To derive the confluent relations (5.47a)-(5.47b) satisfied by the 2-orthogonal poly-

nomials Pn(x; a, b; c, d) and R
[ε]
n (x; a, b; c), we use the confluent relation for the

generalised hypergeometric series (1.11) to find that

lim
d→∞


3F2

−n, c+
⌊
n
2

⌋
, d+

⌊
n−1

2

⌋
a, b

∣∣∣∣∣∣ xd
 = 2F2

−n, c+
⌊
n
2

⌋
a, b

∣∣∣∣∣∣ x
 ,

and

lim
c→∞


3F2

−n, c+
⌊
n
2

⌋
, d+

⌊
n−1

2

⌋
a, b

∣∣∣∣∣∣ xc
 = 2F2

−n, d+
⌊
n−1

2

⌋
a, b

∣∣∣∣∣∣ x
 .

As a result, recalling the explicit representations (5.27) and (4.17) for the polyno-

mials Pn(x; a, b; c, d) and R
[ε]
n (x; a, b; c), respectively, we obtain (5.47a) and (5.47b).

Now we prove the confluent relations (5.48a)-(5.48b) connecting the weight func-

tions W(x; a, b; c, d) and V(x; a, b; c). These two relations are clearly equivalent,

due to the interchangeability of the parameters c and d in (5.1), so it is sufficient

to prove (5.48a). By definition,

1

d
W
(x
d

; a, b; c, d
)

=
Γ(c)Γ(d)

Γ(a)Γ(b)Γ(δ)

xa−1

da

(
1− x

d

)δ−1

2F1

c− b, d− b
δ

∣∣∣∣∣∣ 1− x

d

 .

Based on [22, Eq. 15.8.1], we have

2F1

c− b, d− b
δ

∣∣∣∣∣∣ 1− x

d

 =
(x
d

)b−c
2F1

c− b, c− a
δ

∣∣∣∣∣∣ 1− d

x


The limiting relation in [27, Eq. 6.8.1], connecting the hypergeometric and Tricomi

functions, implies that

lim
d→∞

2F1

c− b, c− a
δ

∣∣∣∣∣∣ 1− d

x

 = xc−b U (c− b, a− b+ 1;x) .
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Furthermore, because δ = d+ c− a− b ∼ d as d→∞, we have

lim
d→∞

(
1− x

d

)δ−1

= e−x and lim
d→∞

Γ(d)

Γ(δ)
= da+b−c.

Therefore, we deduce that

lim
d→∞

(
1

d
W
(x
d

; a, b; c, d
))

=
Γ(c)

Γ(a)Γ(b)
xa−1 U (c− b, a− b+ 1;x) = V(x; a, b; c),

which means that (5.48a) holds. Analogously, (5.48b) also holds.

5.5 Link to branched continued fractions

Recalling (3.35), with (r, s) = (2, 2), the ordinary generating function of the mo-

ment sequence given by (5.3) is

∞∑
n=0

(
(a)n (b)n
(c)n (d)n

tn
)

= 3F2 (a, b, 1; c, d | t) =
3F2 (a, b, 1; c, d | t)
3F2 (a, b, 0; c, d | t)

.

Therefore, using [61, Th. 14.5], the ratios of Pochhammer symbols appearing in the

latter formula, which are the moments in (5.3), are equal to the 2-Stieltjes-Rogers

polynomials S
(2)
n (λ), with coefficients λ = (λk+2)k∈N, given by

λk+2 =

(c ′k − a′k)
∏

i∈{1,2,3}, i 6≡k mod 3

ai,k

(c ′k − 1) c1,k c2,k

for all k ∈ N, (5.49)

with a1 = a, a2 = b, a3 = 1, c1 = c, c2 = d;

ai,k = ai + 1 +

⌊
k − i

3

⌋
=


a+m if i = 1 and k ∈ {3m− 2, 3m− 1, 3m},

b+m if i = 2 and k ∈ {3m− 1, 3m, 3m+ 1},

1 +m if i = 3 and k ∈ {3m, 3m+ 1, 3m+ 2};
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a′k = a[k−1 mod 3]+1,k =


a3,3m = m+ 1, if k = 3m,

a1,3m+1 = a+m+ 1, if k = 3m+ 1,

a2,3m+2 = b+m+ 1, if k = 3m+ 2;

ci,k = ci + 1 +

⌊
k − i

2

⌋
=

c+m, if i = 1 and k ∈ {2m− 1, 2m},

d+m, if i = 2 and k ∈ {2m, 2m+ 1};

and c ′k = c[k−1 mod 2]+1,k is the same as in (5.37).

Note that, for any k ∈ N, {c1,k, c2,k} = {c ′k, c ′k−1}. As a result, the coefficients in

(5.49) can be expressed as follows:

• λ3n+2 =
a1,3na2,3n (c ′3n − a′3n)

(c ′3n − 1) c ′3nc
′
3n−1

=
(a+ n)(b+ n)(c ′n − 1)

(c ′n + n− 1)(c ′n + n)(c ′n−1 + n)
;

• λ3n+3 =
a2,3n+1a3,3n+1

(
c ′3n+1 − a′3n+1

)(
c ′3n+1 − 1

)
c ′3n+1c

′
3n

=
(n+ 1)(b+ n)(c ′n−1 − a)

(c ′n−1 + n)(c ′n−1 + n+ 1)(c ′n + n)
;

• λ3n+4 =
a1,3n+2a3,3n+2

(
c ′3n+2 − a′3n+2

)(
c ′3n+2 − 1

)
c ′3n+2c

′
3n+1

=
(n+ 1)(a+ n+ 1)(c ′n − b)

(c ′n−1 + n+ 1)(c ′n + n)(c ′n + n+ 1)
,

for any n ∈ N.

Let a, b, c, d ∈ R+ such that min{c, d} > max{a, b}. Using the expressions above

for the coefficients (λk+2)k∈N and setting λ0 = λ1 = 0, we checked, using Maple,

that the recurrence coefficients given by (5.36a)-(5.36c) can be rewritten, for any

n ∈ N, as follows:

• βn = λ3n + λ3n+1 + λ3n+2; (5.50)

• αn+1 = λ3n+1λ3n+3 + λ3n+2λ3n+3 + λ3n+2λ3n+4; (5.51)

• γn+1 = λ3n+2λ3n+4λ3n+6. (5.52)
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Therefore, the infinite lower-Hessenberg matrix associated with the recurrence re-

lation satisfied by Pn(x; a, b; c, d), the 2-orthogonal polynomials with respect to(
W(x; a, b; c, d),W(x; a, b+ 1; c+ 1, d)

)
, presented in Theorem 5.9, can be decom-

posed as in (3.36), with the coefficients λ = (λk+2)k∈N given by (5.5). Moreover,

this is the production matrix of the sequence of 2-Stieltjes-Rogers polynomials

S(2)
n (λ) =

(a)n (b)n
(c)n (d)n

, n ∈ N.

As a result, the recurrence coefficients determined by (4.33a)-(4.33f) are all pos-

itive. In addition, it is clear from (5.5) that λk →
4

27
, as k → ∞. Hence, the

asymptotic behaviour (5.38) of the recurrence coefficients in Theorem 5.9 can be

derived directly from formulas (5.50)-(5.52). Furthermore, applying Corollary 3.6

to these 2-orthogonal polynomials, their zeros have absolute value smaller than 1.

Therefore, recalling the observations made in Section 3.4, we have an alternative

proof, independent of the system being Nikishin, that the zeros of Pn(x; a, b; c, d)

are all simple and located in the interval (0, 1), with the zeros of consecutive

polynomials interlacing.



Chapter 6

Final remarks

The central topic of this thesis are the multiple orthogonal polynomials with re-

spect to r absolutely continuous measures on the positive real line, whose moments

are ratios of Pochhammer symbols as in (3.1), under the assumptions (3.2). In

Chapter 3, we outlined, developed, and detailed an array of techniques and re-

sults, useful in the subsequent research presented here and in a future general

investigation of other multiple orthogonal polynomials. In Chapters 4 and 5, we

gave detailed characterisations of two families of multiple orthogonal polynomials,

with emphasis on the type II polynomials on the step-line, with respect to pairs

of measures whose moments are ratios of two-by-one (4.2) and two-by-two (5.3)

Pochhammer symbols, respectively. Therefore, these families are particular cases

of the polynomials studied in Chapter 3. In fact, when the number of orthogonal-

ity measures is equal to 2, these are two of the three cases to consider, with the

remaining one being the multiple orthogonal polynomials with respect to Macdo-

nald functions. The latter polynomials have appeared in Section 4.6 as a limiting

case of the polynomials analysed in Chapter 4, which are themselves a limiting

case of the polynomials characterised in Chapter 5. All these three families of

multiple orthogonal polynomials are Nikishin systems.

174
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Moreover, we have shown that the cubic components of Hahn-classical 3-fold-

symmetric 2-orthogonal polynomials, the object of study in Chapter 2, are par-

ticular realisations of one of these three families of multiple orthogonal polyno-

mials. We proved in Section 2.3 that these cubic components of Hahn-classical

3-fold-symmetric 2-orthogonal polynomials are also Hahn-classical. We believe

that the proof of this result may be extended to prove that the components of

Hahn-classical (r + 1)-fold symmetric r-orthogonal polynomials, with r > 2, are

also Hahn-classical, as well as to prove analogous results regarding Hahn-classical

polynomials with respect to other lowering operators, such as the q-derivative.

The most natural future direction of research following the work presented here is

the investigation of the multiple orthogonal polynomials with respect to vectors

of r > 2 absolutely continuous measures on the positive real line, whose moments

are ratios of Pochhammer symbols as in (3.1), subject to (3.2). The investigation

of these multiple orthogonal polynomials will build on the techniques and results

developed in Chapter 3, using the analysis of the multiple orthogonal polynomials

in Chapters 4 and 5 as a source of inspiration. An interesting question about

these families of multiple orthogonal polynomials is whether they all are Nikishin

systems, as it happens in the cases with 2 orthogonality measures. The newly

found connection of these polynomials with branched continued fractions will play

a fundamental role in the future analysis of the polynomials, and reciprocally the

study of this connection will lead to new results on branched continued fractions

and, consequently, to solve total-positivity problems of combinatorial interest.

The decompositions of infinite Hessenberg matrices associated with 2-orthogonal

polynomials in Sections 4.5 and 5.5 are explicit examples of the applications of

branched continued fractions in the analysis of multiple orthogonal polynomi-

als. The results in Section 4.5 involve sequences of coefficients
(
λ

[ε]
k+2

)
k∈N

, with

ε ∈ {0, 1}. The coefficients
(
λ

[1]
k+2

)
k∈N

were obtained from a 2-branched-continued-

fraction representation of the generalised hypergeometric series 3F1 (a, b, 1; c | t),

the generating function of the 2-Stieltjes-Rogers polynomials S
(2)
n

((
λ

[1]
k+2

)
k∈N

)
,
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equal to
(a)n (b)n

(c)n
for all n ∈ N. Very recently, we proved that the 2-Stieltjes-

Rogers polynomials S
(2)
n

((
λ

[0]
k+2

)
k∈N

)
are also equal to

(a)n (b)n
(c)n

for all n ∈ N,

and, consequently, that their ordinary generating function, the 2-branched con-

tinued fraction with coefficients
(
λ

[0]
k+2

)
k∈N

, is 3F1 (a, b, 1; c | t). This result is a

particular case of a generalisation of the branched-continued-fraction representa-

tions for ratios of hypergeometric series described in [61, §14], to be submitted for

publication in a joint work with Alan Sokal. This is an example of an original

result on branched continued fractions obtained as a fruit of the study of their

connection with multiple orthogonal polynomials.

Throughout Chapter 3, we imposed the conditions (3.2) to guarantee the existence

of an absolutely continuous measure on the positive real line with moments as in

(3.1). However, most results in Chapter 3 (in fact, all except the ones on the

asymptotic behaviour and the location of the zeros) can be adapted to remain

valid without the existence of a measure with moments as in (3.1), whose role

is replaced by a linear functional, in those cases. Therefore, the investigation

outlined in Chapter 3 can be extended by weakening the conditions (3.2).

For instance, we can remove the assumption that min
1≤j≤s

{bj} > max
1≤i≤r

{ai} and re-

place the condition of the parameters being all positive by the less restrictive

condition of no parameters being non-positive integers, while keeping s ≤ r. This

is an extension of the modification of the classical Laguerre and Jacobi orthogo-

nal polynomials obtained by weakening the conditions α > −1 or α, β > −1 and

simply assuming that the parameters cannot be negative integers. These mod-

ifications preserve most formal properties of the classical polynomials, but the

existence of an orthogonality measure on the real line is not available (see [55]).

Another lifting of restrictions in (3.1), perhaps of further interest, is to remove the

condition s ≤ r, leading to an investigation of multiple orthogonal polynomials

with respect to vectors of s linear functionals with moments given by (3.1) with

r ≤ s. The simplest case, with (r, s) = (0, 1), corresponds to the classical Bessel

orthogonal polynomials. Therefore, this investigation would lead to an extension

of the Bessel polynomials to the context of multiple orthogonality.
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We showed that the cubic components of Hahn-classical 3-fold-symmetric 2-orthogonal

polynomials are particular cases of the 2-orthogonal polynomials with respect to

the Macdonald, Tricomi or hypergeometric weights. This is analogous to how the

components of the quadratic decomposition of the Hermite and Gegenbauer poly-

nomials, the only symmetric and classical orthogonal polynomials up to a linear

transformation of the variable, are particular realisations of the Laguerre and Ja-

cobi polynomials (on the interval (0, 1)), respectively, as seen in Subsection 3.5.3.

As such, we conjecture that, for any r ∈ Z+, the components of the decomposition

(1.43) of a (r + 1)-fold symmetric r-orthogonal polynomial sequence are always

particular realisations of a family of multiple orthogonal polynomials with respect

to a vector of absolutely continuous measures on the positive real line, whose

moments are ratios of Pochhammer symbols as in (3.1), subject to (3.2).

A related possible direction of future research is to consider the 2-orthogonal poly-

nomials with respect to the Macdonald, Tricomi and hypergeometric weights as

the cubic components of new 3-fold-symmetric 2-orthogonal polynomial sequences,

which are not Hahn-classical. This idea is inspired by the generalised Hermite

and Gegenbauer semi-classical orthogonal polynomials defined as the symmetric

polynomials with quadratic components equal to Laguerre polynomials and Ja-

cobi polynomials on the interval (0, 1), respectively (see [14, Ch.I.8 & Ch.V.2]).

More generally, one may construct (r+1)-fold-symmetric r-orthogonal polynomial

sequences, whose components of the decomposition (1.43) are r-orthogonal poly-

nomials with respect to a vector of absolutely continuous measures on the positive

real line, whose moments are ratios of Pochhammer symbols as in (3.1).

Our main focus throughout this thesis was on the type II polynomials on the step-

line, the 2-orthogonal polynomials. However, in Sections 4.3 and 5.3 we derived

Rodrigues-type formulas generating the type I polynomials and functions on the

step-line with respect to the Tricomi and hypergeometric weights, respectively. A

relevant future development in the characterisation of these type I polynomials

would be to find explicit formulas for them, analogous to the ones obtained in

[19, §2] for the type I polynomials on the step-line with respect to the Macdonald

weights. Furthermore, the study of the systems of multiple orthogonal polynomials
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investigated in Chapters 4 and 5 for multi-indices away from the step-line and, in

particular, the study of the (standard) orthogonal polynomials with respect to the

Tricomi and hypergeometric weights defined by (4.1) and (5.1) remains an open

(and challenging) problem. Recently, the orthogonal polynomials with respect to

the Macdonald weight (4.34) were analysed in [79].

An important problem that remains open about the 2-orthogonal polynomials

with respect to the Tricomi weights analysed in Chapter 4 is to find their asymp-

totic zero distribution. We defer this investigation where, amongst other results,

a sharper upper bound for their largest zeros, than the one in Theorem 4.13,

could likely be obtained by adapting Theorem 3.5 to incorporate the asymptotic

periodicity of the recurrence coefficients.

The analysis of multiple orthogonal polynomials with respect to weights involving

the confluent hypergeometric function of the first kind is another possible direction

for future work closely related to the research in Chapter 4. Such an investigation

may lead to the characterisation of a family of multiple orthogonal polynomials

with respect to a pair of orthogonality measures whose moments have a different

structure to the ones in (3.1). Equally compelling is to unfold the connection of

those multiple orthogonal polynomials with branched continued fractions.

The Mehler-Heine asymptotic behaviour near the origin of the 2-orthogonal poly-

nomials under analysis in Chapter 5 is given in Proposition 5.11 and it coin-

cides with the corresponding asymptotic behaviour of the Jacobi-Piñeiro polyno-

mials. Similarly to the Jacobi-Piñeiro polynomials, the Mehler-Heine asymptotic

behaviour of the 2-orthogonal polynomials investigated in Chapter 5 near the end-

point 1 remains unknown, and its analysis is a possible direction for future work

related to the research presented in this thesis. We believe that this asymptotic

behaviour involves the Bessel function Jδ−1 because the orthogonality weights be-

have as O
(
(1− x)δ−1

)
near x = 1. A similar remark is made for Jacobi-Piñeiro

polynomials in [72, §5].
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To sum up, we have presented, in Chapters 4 and 5, detailed characterisations of

two new families of Nikishin systems of multiple orthogonal polynomials. These

polynomial systems are connected with Hahn-classical 3-fold-symmetric 2-orthogonal

polynomials, which were studied in Chapter 2. Both are part of a bigger picture:

the multiple orthogonal polynomials with respect to absolutely continuous mea-

sures on the positive real line with moments equal to ratios of Pochhammer sym-

bols, an investigation we outlined in Chapter 3. This research is still in an initial

stage with a lot of questions to be addressed, particularly on their connection with

branched continued fractions. Furthermore, as expounded here, there are several

possible future directions of research related to the work presented in this thesis

and applications to related fields.



Bibliography

[1] G. E. Andrews, R. Askey, and R. Roy. Special Functions, volume 71 of

Encyclopedia Math. Appl. Cambridge University Press, 1999.

[2] M. Angelesco. Sur deux extensions des fractions continues algébriques. C.R.
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