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Adapting to Movement Patterns for Face
Recognition on Mobile Devices

Matthew Boakes(B) , Richard Guest , and Farzin Deravi

University of Kent, Canterbury, Kent CT2 7NZ, England
{mjb228,r.m.guest,f.deravi}@kent.ac.uk

Abstract. Facial recognition is becoming an increasingly popular way
to authenticate users, helped by the increased use of biometric technol-
ogy within mobile devices, such as smartphones and tablets. Biometric
systems use thresholds to identify whether a user is genuine or an impos-
tor. Traditional biometric systems are static (such as eGates at airports),
which allow the operators and developers to create an environment most
suited for the successful operation of the biometric technology by using a
fixed threshold value to determine the authenticity of the user. However,
with a mobile device and scenario, the operational conditions are beyond
the control of the developers and operators.

In this paper, we propose a novel approach to mobile biometric
authentication within a mobile scenario, by offering an adaptive thresh-
old to authenticate users based on the environment, situations and con-
ditions in which they are operating the device. Utilising smartphone
sensors, we demonstrate the creation of a successful scenario classifica-
tion. Using this, we propose our idea of an extendable framework to allow
multiple scenario thresholds. Furthermore, we test the concept with data
collected from a smartphone device. Results show that using an adap-
tive scenario threshold approach can improve the biometric performance,
and hence could allow manufacturers to produce algorithms that perform
consistently in multiple scenarios without compromising security, allow-
ing an increase in public trust towards the use of the technology.

Keywords: Mobile · Face · Adaptive · Threshold · Motion ·
Scenario · Classification

1 Introduction

Biometric facial recognition is a useful security tool, allowing a method of authen-
tication with little interaction from the users’ perspective since images can be
captured from a distance and while in motion merely requiring the use of a cam-
era. The technology has gained prevalence in recent years with its incorporation
into mobile devices.

Facial recognition has its share of criticism as campaigners claim the cur-
rent technology is inaccurate, intrusive and infringes on an individual’s right
to privacy [1]. Recently, several locales have implemented or are considering
c© Springer Nature Switzerland AG 2021
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implementing a ban of fixed system facial recognition technology, including San
Francisco [16] and the European Union [1]. In order to support broad adoption
of the technology, we must assure to certify that it is ‘fit for purpose’ and one
method to achieve this would be to ensure consistently high recognition accuracy
across a range of scenarios.

With a camera now installed on the majority of smartphone devices, it is
becoming increasingly convenient to take a self-portrait image (‘selfie’) intended
for facial recognition. Service providers are increasingly asking for users to submit
an ID document photo alongside a selfie, captured on a mobile device, to authen-
ticate their claimed identity as part of Electronic Identity Verification (eIDV)
services [8]. Furthermore, smartphones now increasingly incorporate facial tech-
nology allowing users to verify themselves as well as access services and resources
within the device and beyond.

Static biometric systems, fixed in position, such as airport eGates, have been
in use for a while. In these scenarios, the operators have great control over the
environment to help optimise recognition performance. The same is not valid
with mainstream mobile biometrics, where the operator has no control over the
operational environment. It, therefore, stands to reason that mobile biometrics
would require a more adaptive approach for handling the authentication system.

In this paper, we describe a proof-of-concept adaptive model for mobile
devices which has the potential to outperform a static threshold applied to
all environments and usage conditions. Section 2 introduces related work and
our inspiration for this. Sections 3–4 introduces our data collection and discuses
how movement scenario impact recognition performance. Section 5 introduces
our theory behind an adaptive framework to better deal with changing move-
ment patterns. Section 6 discuses our approach to a scenario detection algorithm
Sections 7–8 shows our experimental work and results in testing the adaptive
threshold algorithm and Sect. 9 draws conclusions and suggests future work.

2 Related Work

The concept of adaptive biometrics systems is not new as Pisani et al. [23]
has provided a comprehensive review of adaptive biometrics systems. However,
the majority of approaches work by updating the biometric reference over time
usually to account for template ageing. Pisani et al. note how “there is still a
limited number of studies that evaluate adaptive biometric systems on mobile
devices” and how researchers “should also acquire data from the sensors on
these devices over time”. Here we take a condition-sensitive (and quality index)
adaptation criterion approach based on Pisani et al. taxonomy.

Our method intends not to alter either the sample or the probe but to
utilise the mobile device’s sensor information to determine the operation sce-
nario and set thresholds accordingly. Techniques utilising the sensors embedded
into smartphones and combining them with the biometric authentication process
are present in the literature. Including the creation of behavioural biometric data
to assess unique traits to identify individuals either independently or as part of
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a multimodal system with another physical or behavioural biometric trait to
produce accurate biometric systems, commonly for continuous authentication
purposes [15,21,25]. Another involvement of smartphone sensor data is in live-
ness detection [17] and defending against presentation attacks, Chen et al. [5]
demonstrated a presentation attack detection approach to use the motion sensors
to defend against 2D media attacks and virtual camera attacks.

The need for a more adaptive recognition framework is present in the liter-
ature as aspects like movement and portability of the device can vary between
enrolment and recognition phases [24]. We previously [2] highlighted the poten-
tial factors that can affect a mobile biometric system and highlighted ‘Scenarios’
as one of these factors by categorising them under ‘Stationary’ and ‘Motion’.
Gutta et al. [12] have filed patents that suggest work and ideas relating to an
adaptive biometric threshold, including the use of a light intensity sensor to assist
in adjusting the threshold value in a facial recognition system. Similarly, Brum-
back et al. [3] (Fitbit Inc) has also filed patents for continuous authentication
purposes on wearable technologies such as smartwatches and fitness trackers.
However, they provide no practical examples of the proposals for mobile sys-
tems. Castilllo-Guerra et al. [4] proposed an adaptive threshold estimation for
voice verification systems allowing the threshold to adapt to specific speakers.
Similarly, Mhenni et al. [20] proposed to use an adaptive strategy specific to
each category of users while investigating using Doddington’s Zoo classification
of user’s keystroke dynamics.

Lunerti et al. [18] showed that for face verification in a mobile environment “it
can be possible to ensure good sample quality and high biometric performance
by applying an appropriate threshold that will regulate the amplitude on vari-
ations of the smartphone movements during facial image capture”. This paper
aims to contribute in showing how an adaptive approach can be the answer
to having an “appropriate threshold” and begin to explore the gap in mobile
biometric adaptive systems by exploring the potential impact of motion scenar-
ios on recognition performance. We aim to answer the following question: can
we improve mobile biometric recognition performance and security by using an
adaptive approach to the decision component using knowledge of the operating
scenario?

3 Data Collection

To trial this approach, we conducted a data collection. This paper will focus on
the results achieved using the Android-based Samsung Galaxy S9 smartphone
device. We developed a custom application to collect and capture data from this
device in an attempt to mimic a biometric authentication. Using the Samsung
Galaxy S9, we were able to collect data including a ‘selfie’ image taken by the
participant in the scenarios and background metadata obtained from the mul-
titude of sensors (including accelerometer, gyro sensor and geomagnetic sensor)
within the device. The device features an 8 megapixel (1.22 µm, f/1.7) front-
facing camera. However, the default front picture size captures images at 5.2
megapixels meaning for the study we had images of resolution 2640x1980.
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We had a total of 25 participants who completed this part of the study during
one session visit. We tasked participants with operating the device in a variety
of scenarios, the order of which was:

1. Sitting - Participant sat down in a chair.
2. Standing - Participant standing.
3. Treadmill - Participant walking at a steady speed on a treadmill (speed set

by the participant).
4. Corridor - Participant walking at a steady speed down a corridor.

The aim was to mimic likely scenarios for smartphone use, the exception being
treadmill, where the aim was to create a controlled walking scenario. We wanted
to ensure the tasks were not too strenuous owing to the repetitive nature of repeat
biometric transactions. The theory is to test the approach on indoor scenarios
in typical biometric authentication environments (room lighting), allowing us to
focus specifically on motion and movement. However, we would like to see the
approach adapted to other scenarios and factors in the future.

In each of the scenarios, the participant held the device with their own hands
as they usually would when operating a smartphone device. The participants
were pre-enrolled at the start of the session using the device’s biometric system
while in the seated position. For each scenario, we asked the participant to take
a ‘selfie’ image. We deliberately did not make any recommendations on how to
position the face within the image; the only requirement was that the face was
within the image, as an additional part of the experiment was to see the impact
on the device’s facial recognition system.

Once the participant had captured the image, they remained in the same
position, including the handling of the device. They were then presented with the
device’s in-built Android BiometricPrompt [10] to perform an authentication.
While this was happening, we simultaneously collected the metadata (sensors,
including Gyroscope, Linear Acceleration, Magnetic Field, Orientation) from the
moment the device’s face authentication started until the process had finished
utilising the abilities of Android SensorManager [9]. As the face recognition
authentication can be over within a second, we wanted to make sure we collected
as much sensor data as possible. Therefore we set the sensor delay to 0.005s;
however, we should note as stated in the documentation “this is only a hint to
the system. Events may be received faster or slower than the specified rate”.

Figure 1 shows examples of one captured ‘selfie’ image from each tested
scenario, taken by a single participant in our study. Table 1 displays the number
of images we collected from each scenario and within how many of those the
facial recognition algorithm we used was able to detect a face. The work in this
paper uses the images where the algorithm detected a face. Table 2 shows the
breakdown of our participant ages. We can see that 76% of our participants who
used the Samsung Galaxy S9 were under the age of 30, as we are capturing
within a student population. Our participants had a gender split of 52% Female
to 48% Male.
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4 Scenario Performance

To test whether our adaptive framework has the potential to outperform a tradi-
tional system, we needed to create a prototype. Commercial off-the-shelf smart-
phone devices have the biometric components tightly locked down for security
and privacy concerns. Therefore, we decided to use open-source software to help
create a prototype of how a potential adaptive system could perform and func-
tion. We used the open-source ‘face-recognition’ python library (version 1.3.0)
by Geitgey [6,7] as the face recognition algorithm for our prototype. This library
utilises the machine learning library ‘Dlib’.

(a) Sitting (b) Standing (c) Treadmill (d) Corridor

Fig. 1. One example image from each scenario obtained from one participant during
the first session

Table 1. Amount of images collected from each scenario

Scenario Images Face detected No face detected

Sitting 139 139 0

Standing 124 123 1

Treadmill 121 116 5

Corridor 122 120 2

Table 2. Participant age ranges

Age ranges # of Subjects

19–21 3

22–24 8

25–29 8

30–39 4

40–49 2

Total 25
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For each user, we took their first sitting attempt as the enrolment reference,
to act as the base-case scenario, and used the remaining images from all the
scenarios as verification probes. Meaning we had a total of 114 verification probes
for the sitting scenario, 123 for the standing scenario, 116 for the treadmill
scenario and finally 120 for the corridor scenario. The ‘face-recognition’ library
calculated and returned the dissimilarity distance scores (between 0 and 1) of a
given enrolled sample and a new verification probe. Here, a high score indicates
that two images are unlikely to be of the same person (no match), and a low
score indicates that the two images are likely to be of the same person (match).
The library recommends a decision threshold of 0.6, meaning, we consider all
comparisons that score 0.6 or below to be the same person, and anything above
is different people.

We previously [2] showed how scenarios could impact the false reject rate of
the Samsung Galaxy S9 and showed the performance results from the device,
although also noted how additional factors could have caused this impact. As an
exploratory investigation, we used the dissimilarity score information provided
by this library, and investigated if a need existed for having a different threshold
for each scenario by examining the performance observed within each. We can
see this by exploring how the dissimilarity scores from the genuine transactions
vary in each scenario. Table 3 shows this information along with the standard
deviation and informs us that our average dissimilarity score for the stationary
scenarios was 0.21(±0.08), whereas the average score for our in-motion scenarios
was 0.30(±0.06). It is indicating a 43% score increase from a user being in a
stationary scenario to them being in a motion scenario. The unpaired two-tailed
t-test gives a t-score equal to 13.84 with an associated p-value of less than 0.00001
demonstrating a statistically significant difference between the genuine distance
scores in stationary and motion scenarios. Similar statistical tests proved that
the difference between the impostor distance scores in this instance was not
statistically significant. We can also see that the baseline recognition performance
varies across scenarios.

Here we used a total of four impostors for each genuine user as discussed
in Sect. 7.1, and the largest FAR occurs in the same scenario as used for the
enrolment. However, this is also the scenario which has a mean dissimilarity score
significantly lower than the baseline threshold of 0.6, highlighting the problem
and affect that using impostor probes taken in the same scenario has on the
false accept rate. We believe that an adaptive threshold could provide greater
security by restricting these passive impostor attacks. These findings highlight
reasons for the introduction of unique thresholds into biometric algorithms.
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Table 3. Performance variations for each tested scenario

Genuine mean dissimilarity score Baseline recognition
performance

Sitting 0.16 (±0.07) FRR: 0.00
FAR: 11.30

Standing 0.25 (±0.06) FRR: 0.00
FAR: 9.04

Treadmill 0.31 (±0.07) FRR: 0.00
FAR: 8.70

Corridor 0.29 (±0.05) FRR: 0.00
FAR: 9.41

5 The Adaptive Scenario Threshold

A traditional biometric system can be seen in Fig. 2 from the International Orga-
nization for Standardization (ISO) based on prior work from Mansfield et al. [19].
The component we are interested in here is the ‘Decision’ (‘Matcher’) compo-
nent of the system. In a traditional static system, this component is relatively
straightforward. We compare our stored enrolment reference to an additionally
provided probe and receive a match score from the system that can determine
how similar or dissimilar the two are. Having received this match score, we can
use a threshold pre-defined to allow our genuine users to access the system while
keeping as many impostors from accessing the system as possible. The aim is to
set a threshold to keep the False Reject Rate (FRR), the percentage of genuine
people rejected by the system, and False Accept Rate (FAR), the percentage of
impostors accepted by the system, as low as possible. The equal error rate (EER)
is the value where the FRR and FAR are identical with a low equal error rate
indicating a high accuracy for the biometric system. Figure 3 shows an example
of the ‘Decision’ component of a static system.

Our method addresses whether we can achieve an improvement in overall
biometric performance, by adjusting the threshold adaptively, based on what
we can find out from the authentication environment. When using a traditional
(static) biometric system, we can create an appropriate environment and provide
directions to users to help ensure optimal usage, giving the best chance of suc-
cessful authentication. However, with the unpredictability of the environments,
scenarios and conditions in which mobile devices are operated within, and hence
where the biometric authentication can occur, can we alter the decision thresh-
old instead to allow for optimal performance? We present a sample of how this
framework could function in Fig. 4. Here we illustrate that instead of having a
single threshold to cover the entire spectrum of environments and scenarios as
depicted in Fig. 3; we can have a separate limit set for specified situations, such
as in this example using ‘Stationary’ and ‘Motion’. To the best of our knowledge,
this is the first work to utilise smartphone sensor data to classify scenarios in an
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Fig. 2. Components of a general biometric system [14]

Fig. 3. A traditional matcher/decision of a biometric system

attempt to create an adaptive biometric system for mobile devices by adjusting
the threshold accordingly.

In using an adaptive threshold, we expect that we will be able to tailor
the authentication experience to better deal with changing movement patterns
and allow for enhanced security and user satisfaction. Our primary driver is to
allow genuine users unobstructed access while keeping out passive impostors.
We, therefore, considered it vital to use appropriate impostors while designing
and testing the framework. This is discussed further in Sect. 7.1.
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6 Automatic Scenario Detection

To achieve this adaptive threshold, we need a methodology to allow us to know
in what scenario the user of the device was performing the authentication within.
The first step is to distinguish between our ‘Stationary’ and ‘Motion’ scenarios.

Fig. 4. An example framework for a simplified adaptive threshold decision for a bio-
metric system

We used a total of five features for our classifiers, including four of the in-
build mobile sensors, two motion-based sensors, two position-based sensors and
a facial image quality assessment. The motion sensors were Gyroscope and Lin-
ear Acceleration. The position sensors were Magnetometer (Magnetic Field) and
phone Orientation. All of these sensors operate on an x, y, and z axis system, and
the data from each channel was collected. We began collecting the sensor data
from the moment the participant started the authentication until the transac-
tion was complete (successful authentication, timeout, attempt limit exceeded).
Because we collected the sensor data during the authentication process alone, we
used the entire sample for analyses purposes. The participant was already and
remained within the scenario when the authentication process began, meaning,
we do not expect outliers in the data from the participants preparing themselves.

Our fifth and final feature was the quality assessment of the ‘selfie’ image.
This information came from an open-source library known as ‘FaceQnet’ and
which uses a Convolutional Neural Network to “predict the suitability of a spe-
cific input image for face recognition purposes” [13]. FaceQnet provides a score
for an input image between 0 and 1 where 0 means the worst quality, 1 means
the best quality. FaceQnet recommends cropping images to the facial region
first before assessing them. By using the open-source Multi-task Cascaded Con-
volutional Neural Networks (MTCNN) library based on the work provided by
Zhang et al. [26], we were able to achieve this. In the rare occasion that the
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MTCNN algorithm was unable to produce a cropped version of the image (usu-
ally because the facial region was already over the frames of the images), we
used the original un-cropped image instead.

We processed the data in the feature set to allow us to achieve reasonable
accuracy. The magnitude (

√
x2 + y2 + z2) of the gyroscope, linear acceleration

and magnetometer were calculated for each data point obtained for each authen-
tication attempt. Figure 5 shows a sample of plotted Gyroscope data from one
random sitting scenario. For the orientation, we used the median value from our
captured data as our feature from each transaction.

We tested standard classifier algorithms (SVM, kNN, Naive Bayes, Decision
Tree) to see the impact on the performance. We started from a ‘Stationary’
and ‘Motion’ classifier as we believed this would provide the most generic form
of scenario categories. We then wanted to create a classifier that could detect
the four scenarios that we are interested in (‘Sitting’, ‘Standing’, ‘Treadmill’,
‘Corridor’). Finally, we tested a combination of three classifiers; one to categorise
‘Stationary’ and ‘Motion’ and another two to classify into the sub-scenarios of
each.

At this point, we grouped our features into the individual transactions, and a
transaction contains multiple rows of features as the sensors continue to release
information. We removed half (50%) of the transactions for training and testing
the classifiers. The reason for doing this was to simulated having unseen data for

Fig. 5. A sample of gyroscope plot recorded from one transaction during the sitting
scenario
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testing the adaptive framework in its entirety later. We repeated this five times,
selecting a different 50% each time to see the impact of classification accuracy.

To produce a classifier, we used Python’s Scikit Learn library [22]. We split
our features into a training (66%) and testing set (33%). We estimated the
accuracy using k-fold cross-validation with a fold value of five and reported the
F1-score. We found that with our features the k-nearest neighbour algorithm,
with a k-value of three, performed the best. Table 4 shows the accuracy results
for tested classifiers when classifying our four scenarios.

Table 4. Classification accuracy for standard classifiers

Classifier Cross-Val (F1-score) Training Testing

Support Vector Machine 0.57 (± 0.03) 0.57 0.57

Decision Tree 0.81 (± 0.04) 0.83 0.83

Random Forest 0.80 (± 0.02) 0.79 0.81

Naive Bayes 0.57 (± 0.09) 0.59 0.60

Quadratic Discriminant 0.58 (± 0.09) 0.60 0.62

The kNN classifier with a k-value of three was capable of classifying all four
of our scenarios with a testing accuracy of 97%. Table 5 shows the accuracy
results for each of our scenario detection classifiers using the k-nearest neighbour
algorithm for each attempt. The random split of data from attempt five provided
the most accurate classifier according to the F1 scores, and this is the one we use
for the remaining work in this paper. Table 6 gives the corresponding confusion
matrix for the ‘Four Scenarios’ classifier when testing with the kNN classifier
in attempt five. We can bin the vast majority of errors under ‘Stationary’ and
‘Motion’ where scenarios within each category are getting misclassified with each
other.

Table 5. Scenario classification results (kNN)

Scenario classifications Accuracy 1 2 3 4 5

Stationary vs Motion Cross-Val (F1-score) 0.99 (±0.01) 0.98 (±0.01) 0.98 (±0.01) 0.98 (±0.00) 0.99 (±0.01)

Training 0.99 1.00 1.00 0.99 1.00

Testing 0.99 0.99 0.99 0.99 0.99

Four Scenarios Cross-Val (F1-score) 0.95 (±0.01) 0.96 (±0.01) 0.96 (±0.01) 0.96 (±0.01) 0.97 (±0.01)

Training 0.98 0.99 0.99 0.98 0.99

Testing 0.95 0.97 0.97 0.97 0.97

Stationary Cross-Validation (F1-score) 0.95 (±0.02) 0.96 (±0.03) 0.98 (±0.01) 0.97 (±0.01) 0.98 (±0.01)

Training 0.98 0.98 0.99 0.99 0.99

Testing 0.96 0.96 0.98 0.97 0.97

Motion Cross-Val (F1-score) 0.96 (±0.02) 0.98 (±0.01) 0.97 (±0.01) 0.98 (±0.02) 0.97 (±0.01)

Training 0.99 1.00 0.99 0.99 0.99

Testing 0.97 0.99 0.98 0.98 0.99
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Using the kNN classifier to classify all four of our scenarios provided a testing
accuracy of 97% and 99% when classifying between stationary and motion
scenarios. In all our classifiers we have been able to achieve a testing accuracy
of above 90%.

Table 6. ‘Four scenarios’ confusion matrix

Predicted

Sitting Standing Treadmill Corridor

True Sitting 775 14 5 4

Standing 24 570 3 4

Treadmill 1 2 494 11

Corridor 6 5 3 563

7 Testing the Framework

We tested our framework by using the metadata (features) with our classifier(s)
and the ‘selfie’ image with the ‘face-recognition’ python library [6,7]. However, in
theory, we would like to see the approach incorporated into commercial devices
and working in real-time by integrating it into the biometric authentication
process. The approach for this would be similar to our off-line approach, the
main difference being the real-time collection of the data. The device would
collect the sensor information relating to motion and position as the biometric
process was happening and continuously turn this information into a feature
set similar to ours. This feature set would be continuously passed to a classifier
to assign a scenario, whereby a majority vote method, where the operational
scenario with the highest number of occurrences, would be used to assign the
overall scenario classification. The overall scenario classification will be the one
used to assign an adaptive decision threshold. For our prototype, we took the
same approach off-line by using our pre-collected data.

We achieved this with a custom Python program which works by excepting
two facial images. All our image files had unique names to allow us to locate the
data associated with each one. The first image was an enrolment template (taken
as the first sitting attempt for each user) and the second was the verification
probe. The authentication sensor data captured for the supplied probe image was
retrieved, and each feature row of data was processed by the classifier to predict
a scenario, and a majority vote method assigned the final scenario classification.
Once the predicted scenario was known, the program set the decision threshold
appropriately. The program then marks the probe image as either being a ‘match’
or a ‘no match’ decision based on the dissimilarity score and the set threshold.
We could then use this information to produce the performance results and begin
to validate our approach.
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7.1 Choosing the Impostors

To assess the effectiveness of the proposed adaptive framework, we need to test
the potential to keep out passive impostors and evaluate the false accept rate of
the system. For each enrolled participant, we wanted to find the most suitable
(tailored) participants to act as impostors. The set theory below represents our
algorithm for achieving this.

– Amount of Impostors Required: x
– Current User: c
– Set of Users: U where c ∈ U
– Set of Impostors: I ⊂ U = c /∈ U
– An Impostor: i where i ∈ I
– Gender Subset: G ⊆ I ∀ c.Gender == i.Gender
– Age Group Subset: A ⊆ I ∀ c.AgeGroup == i.AgeGroup
– Ethnicity Subset: E ⊆ I ∀ c.Ethnicity == i.Ethnicity
– Nationality Subset: N ⊆ I ∀ c.Nationality == i.Nationality
– Subset of Tailored Impostors: T = G ∩ A ∩ E ∩ N ⊆ I
– if |T | >= x {Randomly select x elements from set}
– while |T | < x

• Randomly select from G ∩ A ∩ E ∩ N until |T | == x is reached
• if G ∩ A ∩ E ∩ N becomes ∅ {Randomly select from G ∩ A ∩ E until
|T | == x is reached}

• if G ∩ A ∩ E becomes ∅ {Randomly select from G ∩ A until |T | == x is
reached}

• if G ∩ A becomes ∅ {Randomly select from G until |T | == x is reached}

For our purposes, we define our ‘AgeGroup’ as the ranges specified in Table 2
and our ‘Ethnicity’ under the five broad ethnic groupings specified by the UK
Government [11]. This algorithm should result in a set of x tailored impostors for
each participant who most resembles that of the participant. We expected our
impostor set to provide the most likely cases to cause a false accept to occur. We
experimented adjusting the number of tailored impostors to provide meaningful
results because when using our algorithm, the more impostors we add, the less
tailored they will be resulting in dilution of the results. For our data, we found
using a total of four impostors per genuine user (2015 impostor comparisons)
seemed to provide a fair balance before our impostors became less tailored. We
discuss this more in Sect. 8 and Fig. 6.

7.2 Examining the Threshold

The recommended threshold from the python ‘face-recognition’ library [6,7] is
0.6. When using our data, this gives us a false reject rate of 0.00%, a false accept
rate of 10.22% and an equal error rate of approximately 0.64%. It seems the
library is recommending a practical threshold value for the majority of cases. To
test our adaptive theory, we would like to devise a scenario whereby security is
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of great concern. Therefore, we require a low (<1%) false accept rate by setting
tighter, more restrictive thresholds.

We identified in Sect. 4 that the match score varies across scenarios and that
we should be setting other thresholds for each. We took several approaches to
set appropriate threshold values, and in our case, we wanted to consider trialling
multiple thresholds for our scenarios. The trials allowed us to see how varying
thresholds could affect overall system performance. For example, we could use
the maximum distance score obtained from our data. We experimented with
using the 95th percentile, maximum distance, and the EER threshold value from
our scenario data as the threshold values. Our theory is that this will allow for
the majority of genuine cases without causing extremes and outliers in our data
to be accepted.

Similarly to how we handled the creation of the scenario classifier, we used
a random 75% sample from our dissimilarity score data (75% from genuine and
75% from impostors) to create the thresholds. The impostor scores used for this
were the ones created using our tailored impostors. We repeated this five times,
picking a new random set each time to see the impact as shown in Table 7.

8 Results

Bringing the framework together, we can use the classifiers produced as discussed
in Sect. 6, along with the thresholds found in Sect. 7.2 and chosen tailored impos-
tors as based on Sect. 7.1. Using the open-source ‘face-recognition’ library [6,7]
and our pre-collected data, we can examine how our adaptive framework could
perform.

Figure 6 shows how the false accept rate changes as we used our algorithm to
alter the number of impostors used (the algorithm was rerun for each iteration).
We randomly selected a total of 450 comparisons, to provide a reasonable sample,
from the impostor comparisons pool with x number of impostors per genuine
user, we repeated this three times and took an average to produce the graph. We
can see that the baseline’s FAR declines as the impostors become less tailored;
however, our adaptive approach outperforms the baseline with the most tailored
impostors and continues to do so even when we include less tailored impostors.

We tested our more generic classifier that can classify the authentication
metadata into a ‘Stationary’ and ‘Motion’ category. We followed this with a
test of the classier that could distinguish between the four scenarios that we
were experimenting with: ‘Sitting’, ‘Standing’, ‘Treadmill’, ‘Corridor’. Finally,
we trialled a combination of the two classifiers, where the data would first classify
into ‘Stationary’ and ‘Motion’ and then into separate classifiers for the scenario
that belonged to either category. Trialling both using ‘95th’, ‘Max’ and ‘EER’
thresholds, we can achieve recognition results as shown in Table 7.

We know previously from our classifier accuracy that we are not classifying
all the scenarios correctly every time. Meaning there is a risk of an incorrect
classification to a scenario that has an alternative acceptance threshold. This
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Fig. 6. Changes to false accept rate with varying impostor amounts

Table 7. Recognition performance results when trialing the adaptive threshold

Classifier Threshold 1 2 3 4 5

Stationary vs

Motion

95th FRR: 5.29

FAR: 0.00

FRR: 4.65

FAR: 0.00

FRR: 6.98

FAR: 0.00

FRR: 5.07

FAR: 0.00

FRR: 6.13

FAR: 0.00

Max FRR: 0.00

FAR: 2.53

FRR: 0.00

FAR: 2.53

FRR: 0.00

FAR: 2.53

FRR: 0.00

FAR: 2.53

FRR: 0.63

FAR: 0.35

EER FRR: 0.42

FAR: 0.35

FRR: 0.42

FAR: 0.69

FRR: 0.42

FAR: 0.50

FRR: 0.42

FAR: 0.50

FRR: 0.85

FAR: 0.25

Four Scenarios 95th FRR: 6.13

FAR: 0.05

FRR: 7.19

FAR: 0.10

FRR: 7.40

FAR: 0.00

FRR: 5.92

FAR: 0.10

FRR: 6.98

FAR: 0.00

Max FRR: 0.85

FAR: 1.39

FRR: 1.06

FAR: 1.39

FRR: 0.00

FAR: 2.53

FRR: 0.00

FAR: 2.53

FRR: 1.48

FAR: 0.25

EER FRR: 0.85

FAR: 1.39

FRR: 1.27

FAR: 0.89

FRR: 1.06

FAR: 0.50

FRR: 1.06

FAR: 0.55

FRR: 1.48

FAR: 0.25

Stationary/Motion

+ Scenarios

95th FRR: 6.13

FAR: 0.05

FRR: 7.19

FAR: 0.10

FRR: 7.40

FAR: 0.00

FRR: 5.92

FAR: 0.10

FRR: 6.98

FAR: 0.00

Max FRR: 0.85

FAR: 1.39

FRR: 1.06

FAR: 1.39

FRR: 0.85

FAR: 1.39

FRR: 0.00

FAR: 2.53

FRR: 1.48

FAR: 0.25

EER FRR: 1.06

FAR: 0.55

FRR: 1.27

FAR: 0.89

FRR: 1.06

FAR: 0.50

FRR: 1.06

FAR: 0.55

FRR: 1.48

FAR: 0.25

misclassification poses a risk for impostors to be accepted by the system. Fur-
ther work to improve the classifier accuracy will result in improved recognition
performance.
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Our results show that using an adaptive approach can be capable of produc-
ing reliable recognition accuracy, particularly with maintaining and improving a
low false accept rate above a traditional fixed value. Table 8 highlights this com-
parison when using our four scenario classifier and EER (number 3 in Table 7)
thresholds, to the baseline and a perfect classifier. A perfect classifier would be
able to accurately categories our scenarios 100% of the time. Our most signifi-
cant success in using our adaptive approach has been in reducing the false accept
rate by approximately 95% from baseline performance.

Table 8. Comparing recommended baseline performance to our adaptive approach

Recognition
performance

Baseline FRR: 0.00
FAR: 10.22

Adaptive Threshold FRR: 1.06
FAR: 0.50

Perfect Scenario Classifier FRR: 0.42
FAR: 0.60

8.1 Verification

Having had success testing our scenario adaptive threshold method on the Sam-
sung Galaxy S9, we wanted to test the same concept on another device to see if
the approach was interoperable. We experimented with another Android-based
device the Google Pixel 2. However, Google Pixel 2 does not allow developer
access to its ‘Trusted Face’ feature meaning that we cannot collect background
sensor data during the authentication process. To counter for this, we had the
device collect the sensor features while the participant was operating the in-built
device’s camera and taking a ‘selfie’ in an attempt to simulate the authentication
process. The side effect of this means there was a lot more sensor data collected
as operating and using the camera on average takes more time than the usual
biometric authentication prompt to complete.

We collected the data under the same scenario conditions. We had an addi-
tional 100 genuine ‘sitting’ transactions, 116 ‘standing’ transactions, 124 ‘tread-
mill’ and 141 ‘corridor’ from around 30 different individuals of a similar student
demographic which operated the Samsung Galaxy S9. When running the ‘selfie’
data collected from the Google Pixel 2 through the ‘face-recognition’ Python
library with baseline threshold (0.6), we receive the performance results of FRR:
0.00% and FAR: 9.50%.

We took the same approach as before by removing half of the transactions
before attempting to classify. As devices are unique with different sensors, we
cannot rely on using the same classifier as before, and unique ones will need pro-
ducing for each device/model. The classifier evaluation results were promising
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with the ‘four scenarios’ classifier reporting results of cross-validation accuracy
being 1.00 (±0.00) along with both the training and testing accuracy being
1.00%. We also use 75% of the dissimilarity score data to set appropriate thresh-
olds. As a trial, we generated three sets of EER thresholds by altering the 75%
of the data used. For the three trials, our results were again showing improve-
ments over the baseline case and beginning to prove that the adaptive threshold
is interoperable:

– FRR: 1.25% and FAR: 0.00%
– FRR: 2.91% and FAR: 0.00%
– FRR: 1.66% and FAR: 0.00%

9 Conclusion

In this paper, we presented a novel adaptive approach to biometric authentica-
tion for a mobile device, an area of research currently lacking in the literature, as
noted by Pisani et al. [23]. We proposed the creation of an extendable ‘Adaptive
Framework’, whereby we set a unique threshold value for specified scenarios.
The theoretical advantage to this approach is to allow for stricter control over
access, by not having to specify a one-off static threshold value to account for
the vast amount of conditions where a biometric authentication may occur.

Our approach utilised the sensors readily available on the vast majority of
modern smartphones (and wearables) with developer access. It showed the trans-
formation into potential features for building a classifier that could recognise
simple scenario categories. Our classifier for detecting our four simple scenar-
ios had a testing accuracy of 97%. The framework relies on having the ability
to identify the scenario reliably, and our results suggest that this ability is a
significant factor in the overall function of the adaptive framework to perform
optimally. The paper focuses on using an adaptive approach for face recognition,
but we see no significant obstacles for using the same technique for other physi-
cal and behavioural biometric modalities. We intend to continue this work into
mobile scenario detection to investigate the impact features have on classification
accuracy.

We demonstrated using collected data from a commercial device, and an
open-source face recognition algorithm that this method has potential merit.
By imagining a scenario where security and privacy are of grave concern, and
hence a low false accept rate may be considered more important than the false
reject rate, we tested our method against a static, fixed threshold. With this in
mind, we produced an algorithm to help us identify the best impostors to use for
each participant to help stress-test the approach. We demonstrated the impact
of tailoring in Fig. 6, which proved that our algorithm was working.

We then performed off-line testing using Python’s ‘face recognition’ library [6,
7], which recommends a threshold of around 0.6. We saw when using our col-
lected data; this threshold gave a false reject rate of 0.00% and a false accept
rate of 10.22%. By taking our adaptive approach, we found that one of our best
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methods was using the classifier to detect between stationary and motion sce-
narios along with the EER threshold value. In doing so, we were able to achieve
a result that gave a false reject rate of 0.42% and a false accept rate of 0.35%,
a reduction of 95% over the algorithm’s baseline threshold. We also showed
the interoperability of the approach by replicating it using another device with
similarly successful results. Our relatively simple adaptive method was able to
produce an improvement on recognition performance, which could outperform
an algorithm using a single static threshold value.

We acknowledge that this has been one relatively simple example to demon-
strate the practicalities and proof-of-concept of using this adaptive approach.
Further testing will be required to prove the competency of the method thor-
oughly, including a greater variety of scenarios and environmental lighting and
weather conditions. Testing should include an approach to adapt presentation
attack detection (PAD) methods for individual scenarios and mitigate malicious
actors in exploiting weaknesses in the adaptive approach. We hope that oth-
ers will take the work we have started to produce and further investigate the
effectiveness of the method. As well as allow developers and manufacturers to
incorporate a scenario-based threshold adaptive approach into future algorithms
in mobile biometric systems, to allow for higher security without jeopardising
performance.
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