
Mohamed, Elhassan, Sirlantzis, Konstantinos and Howells, Gareth (2021) 
Incorporation Of Rejection Criterion - A Novel Technique For Evaluating 
Semantic Segmentation Systems.  In: 2021 14th International Conference 
on Human System Interaction (HSI). . IEEE ISBN 978-1-66544-112-4. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/88514/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1109/HSI52170.2021.9538787

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/88514/
https://doi.org/10.1109/HSI52170.2021.9538787
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


Incorporation Of Rejection Criterion - A Novel

Technique For Evaluating Semantic Segmentation

Systems

Elhassan Mohamed

School of Engineering and Digital Art

University of Kent

Canterbury, Kent, UK

enrm4@kent.ac.uk

Konstantinos Sirlantzis

School of Engineering and Digital Art

University of Kent

Canterbury, Kent, UK

k.sirlantzis@kent.ac.uk

Gareth Howells

School of Engineering and Digital Art

University of Kent

Canterbury, Kent, UK

w.g.j.howells@kent.ac.uk

Abstract—Semantic segmentation ‘SS’ evaluation metrics are
great tools to assess systems’ performance in terms of pixels’
accuracy and the alignment of segments. Standard metrics ignore
pixels’ confidence scores which can carry useful information.
Pixels’ scores represent the level of confidence of the system
for assigning class labels to image pixels. However, it has not
been utilised by any evaluating metric for semantic segmentation
systems. We propose to incorporate pixels’ confidence scores with
existing metrics to gain better insights into systems’ behaviours.
Results show the usefulness of the introduced approach to utilise
the pixels’ scores in the evaluation process. Besides, using pixels’
scores thresholding can help to enhance the system performance
on a specific task or objects of a particular size.

Index Terms—Convolutional Neural Network, Evaluation met-
rics, Pixels classification, Semantic segmentation, Thresholding

I. INTRODUCTION

Pixels classification is the process of assigning a label to

each pixel in an image from a predefined set of labels. It is

a deep learning technique to semantically segment, hence the

Semantic Segmentation ‘SS’ name, an image into an annotated

scene where each pixel has a label. A group of pixels with

the same label represents an object. SS tasks are treated as

supervised learning problems for which classifiers are trained

to fit the training data on the pixels level.

SS systems have seen rapid progress in the past few years,

not only from an accuracy perspective but also in speed and

real-time processing. These systems have many applications

such as autonomous driving [1], medical applications [2], and

general scenes understanding [3]. Many Convolutional Neural

Networks ‘CNN’ for SS tasks have been proposed. These

systems follow two main categories: the series architecture

such as Fully Convolutional Networks [4] and the encoder-

decoder architecture such as U-Net [2], and DeepLab [5]. The

efficiency of a SS system can be measured by its performance

on a target application. However, these kinds of benchmarking

are flawed because of the inability to compare algorithm with

each other due to the subjectivity of the measure. This leads to

the introduction of many other general application-independent

metrics.

Many metrics are introduced to evaluate different deep

learning tasks. Accuracy, Average Precision ‘AP’, Bounding

Box Intersection over Union ‘BB IoU’ and Mask Intersection

over Union ‘Mask IoU’ are mainly used to evaluate Object

Classification ‘OC’, Object Detection ‘OD’, Semantic Seg-

mentation and Instance Segmentation ‘IS’ tasks, respectively.

Other metrics, such as Panoptic Quality ‘PQ’ [6], is introduced

to unify the evaluation of semantic and Instance segmentation.

PQ can be used to assess the performance of a system on

both stuff and things classes (stuff classes such as sky, grass,

... etc., while things classes such as cars, people, ...etc.) in a

simple and informative manner. Unlike Panoptic Segmentation

‘PS’ and SS, IS incorporate Object (segment) confidence score

in the AP metric calculation. Confidence scores are essential

elements in the evaluation of any system. These scores add

a further informative dimension to the downstream systems.

Consequently, utilising them in SS systems can help to better

assess these systems.

This paper is focused on SS tasks as we want to incorporate

the pixels‘ confidence scores in the evaluation of SS systems to

gain more understanding of their behaviours. Results show that

pixels‘ confidence scores can affect the systems performance

evaluations dramatically, as shown in the results section. It can

also provide a deep understanding of the system‘s operation.

The main contributions of this paper are as follows: we

propose a new technique that can be incorporated with the

existing SS evaluation metrics. This technique is based on a

well-known idea of thresholding that has been used in many

applications over the past years. However, introducing this

technique to evaluate SS tasks can be considered as a novel

contribution. Thresholding of pixels’ confidence scores can

contribute to the SS overall output. Consequently, it has a

major impact on the evaluation metrics. Pixels thresholding is

distinct from Mask IoU or BB IoU as it is computed on the

pixel level and not on the Mask or Bounding Box object level

as in the case of IS or OD, respectively. We use a standard

dataset in the comprehensive ablation experiments to analyse

the contribution of the new element (pixels‘ threshold) on the

system‘s output and the evaluation metrics. The used dataset



is the standard Cambridge-driving Labeled Video Database

‘CamVid‘ [7] [8].

The paper is organised as follows: Section 2 covers the

methodology and standard SS evaluation metrics. Section 3

presents the details of the experiment setup, and section 4

presents and discusses the obtained results.

II. METHODOLOGY

Semantic Segmentation evaluation metrics such as accuracy,

‘IoU’ and BF score do not incorporate pixels scores into their

calculations. Pixels scores reflect the degree of confidence

a pixel belongs to a specific class from a set of predefined

classes. For semantic segmentation tasks, all pixels of an image

have to be assigned to one of the predefined classes, even

though these pixels might not belong to any of the classes.

For example, if the predefined classes for a particular semantic

segmentation system do not include a ‘car’ class, but an image

that needs to be classified by the system contains a car, the

system will assign the car’s pixels to any predefined class.

Usually, these pixels will have a very low score. Nevertheless,

these pixels contribute to the system’s performance as the

traditional evaluation metrics uses them during the evaluation

process.

On the other hand, Pixels of objects of non-interest are

usually kept unlabelled in the ground truth ‘gTruth’ data

(undefined or void pixels). While these pixels should not be

used for the system evaluation, some traditional evaluation

metrics cannot exclude them.

We propose a novel evaluation technique that incorporates

pixels threshold in the evaluation process. The method is

similar to posterior probability in statistics at which we assign

all the ‘undefined’ pixels in the gTruth data to an extra class

called ‘Reject’ class. Usually, these pixels belong to objects of

non-interest for the system, object borders or oversight pixels.

In case of CamVid dataset, these pixels might belong to far

objects or pavement borders (Fig 1b). Fig 1c shows that these

pixels have the lowest classification score.

To compare the predicted pixels with the gTruth ones, we

assign all of the predicted pixels below a predefined threshold

to the ‘Reject class’. If the trained system is robust enough,

these low score pixels should belong to objects of non-interest.

Objects that are not in the predefined classes or have not been

seen by the system. Then we evaluate the predicted output of

the system with the gTruth data at different threshold values

to investigate the system’s behaviour and the threshold impact

on the overall system performance.

A. Semantic segmentation evaluation metrics

The performance of semantic segmentation systems can be

evaluated using the following metrics: Accuracy, IoU and

Mean BF score. Each metric reflects a specific quality of

the system, such as the ability of the system to classify

pixels correctly or the alignment of the predicted pixels with

the gTruth one. However, the aforementioned metrics do not

consider pixels’ confidence scores in their calculations. The

softmax layer of a typical semantic segmentation system based

on convolutional layers outputs several scores for each pixel

in the image corresponding to the number of classes. The

highest value represents the class of that pixel. In case of

uncertainty, and sometimes border pixels, even the highest

score pixel across all classes has a low value. Nevertheless,

they still contribute to the system performance.

Two types of accuracy can be calculated for a dataset:

Global Accuracy ‘GA’ and Mean Accuracy ‘MA’. GA is

calculated regardless of the class as the ratio between correctly

classified pixels to the total number of pixels (1). Whereas MA

is the average accuracy of all classes in all images. Accuracy of

each class can be calculated as the ratio of correctly classified

pixels to the total number of pixels in that class using (2). A

major limitation of GA and MA measures is the bias in the

presence of imbalanced classes.

GA =
TP + TN

TP + FP + FN + TN
(1)

Where TP, TN, FP, FN are True Positive, True Negative,

False Positive, and False Negative, respectively.

Accclass =
TP

TP + FN
(2)

Similarly, Mean IoU for a dataset can be calculated as the

average IoU of all classes in all images. IoU (also known as

Jaccard index) for each class is the ratio between correctly

classified pixels to the total number of predicted and gTruth

pixels in that class (3). For disproportionately distributed

classes, Weighted IoU can be reported. It is the standard

IoU but weighted by the number of pixels of each class in

the dataset. IoU metrics evaluate the amount of correctly

classified pixels but do not reflect the boundaries quality,

which can consider as a disadvantage. Trimap [9] is introduced

to overcome this drawback by evaluating the segmentation

accuracy around the segment boundaries using a predefined

narrow band around the contours. Whereas pixels in this

predefined band contribute to the accuracy calculations. It

suggests to measure pixels’ accuracy within a defined region

around the object boundaries rather than considering all image

pixels to better assess the system’s ability to capture objects’

boundaries. Yet, choosing the optimal band size is challenging

and might vary depending on the application.

IoUclass =
TP

TP + FP + FN
(3)

Information retrieval [10] approaches have used Precision-

Recall curves as a standard evaluation metric. The metric

was first used to evaluate edge detectors by Abdou and

Pratt [11]. Precision measures the ratio of detections that are

True Positive rather than False Positive (6). Whereas Recall

measure the ratio of the detected True Positive rather than

missed (7). The parametric Precision-Recall curve captures

the trade-off between accuracy and noise while the detector

threshold changes [12]. A permissible trade-off for a particular

application between noise and accuracy can be defined by the

relative cost α in the F1 score equation (4).



(a) gTruth with annotation. (b) Undefined pixels (blue).
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(c) Pixels classification scores.

Fig. 1: Undefined pixels result in low pixels’ confidence scores.

F1score =
P ·R

(1− α) · P + α ·R
(4)

F1 score calculates the weighted harmonic mean of Preci-

sion and Recall. The maximum F1 score, which is the point on

the curve where the optimal detector threshold occurs, can be

reported as an indication of the detector’s performance [12]. In

our experiments, we set α to 0.5. Thus, (4) can be simplified

to (5). Also using (6) and (7), (5) can be simplified to (8).

F1score =
2 · P ·R

P +R
(5)

Where P and R are the Precision and Recall, respectively.

P =
TP

TP + FP
(6)

R =
TP

TP + FN
(7)

So,

F1score =
TP

TP + 1
2 (FP + FN)

(8)

Trimap [9] does not fully capture the quality of the contours.

Thus, a semantic segmentation contour-based accuracy metric

called BF score is proposed [13]. BF score metric is inspired

by boundary-based evaluation measure [14] [15] and F1 score

[12]. The boundary-based evaluation measure and F1 score

define a distance tolerance to decide if a match has happened

between pixel boundary points in the prediction and gTruth

images.

Boundary-based measure [14] calculates the minimum eu-

clidean distance between two sets of points where the sets

represent the boundaries of two segments(gTruth and predic-

tion). Hence, the mean and the standard deviation is calculated

from the distance distribution between the two sets. A small

mean and standard deviation indicate high matching. Whereas

the weighted harmonic mean of Precision and Recall is used in

the case of F1 score [12] to estimate the point for the optimal

detector threshold.

BF score [13] has extended F1 score to semantic segmen-

tation tasks. The proposed metric (BF score) has been used to

calculate one value per class to evaluate classes independently.

BF score sets the distance tolerance to 0.75% of the length

of the image diagonal. We have used the same ratio in our

experiments.

Mean BF score or contour matching score, which measure

the alignment of the predicted and gTruth boundaries, is the

average BF score of all classes in all images for a dataset (10).

Whereas Mean BF score of a class is the average F1 score (8)

of that class overall images (9).

MeanBF class
score =

∑
F1class

score

no# of images
(9)

MeanBF dataset
score =

∑
classes BFscore

no# of images
(10)

IoU is the standard evaluation metric for PASCAL VOC

challenge [16]. However, solely depending on a specific metric

to assess a SS system is insufficient. Csurka et al. [13] argue

that systems’ parameters for a segmentation algorithm should

be optimized one the target metric for fair comparisons as

different segmentation algorithms can be optimal for different

evaluation metrics. Besides, per-image metrics can provide

more details of the system’s performance and allow more

detailed comparisons. Hence, Mean BF score is averaged over

all images in a dataset. Additionally, in our experiments, we

have reported accuracy and IoU for the dataset and for each

class. We believe that these metrics are complementary to each

other. Furthermore, incorporating pixels’ confidence scores

with these metrics can reveal another level of information of

the system’s performance.

B. Relation of the proposed thresholding technique to the

existing metrics

The calculations of conventional SS evaluation metrics ig-

nore pixels’ confidence scores. We propose to incorporate pixel

confidence scores with the calculation process of these metrics

because of the important information that can be reflected by



these scores. First, we predefine a pixel score threshold. If

the pixel’s value after the softmax layer (the highest pixel

value across all pixel classes) is below this threshold, its

value is assigned to a ‘Reject’ class. Class ‘Reject’ cannot

contribute to any of the evaluation metrics calculations. For a

robust system, a low confidence pixel score usually represents

a high uncertainty pixel. This pixel can be for a class of non-

interest (i.e., has not been predefined for the task) or a pixel

between the borders of predefined classes of interest. Lastly,

we evaluate the system using the existing metrics.

After thresholding, predicted pixels corresponding to gTruth

ones count towards TP , predicted pixels different from gTruth

ones count towards FP , and unpredicted gTruth pixels count

towards False Negative FN .

The novelty of the proposed technique is in assessing

the system under different conditions (pixels’ threshold val-

ues). SS systems under various conditions can behave dif-

ferently. Consequently, the system behaviour should be well-

investigated using many impacting factors. The most important

impacting factor is the pixel itself. Thus, we believe the pixels’

scores should contribute to the evaluation process of any

system.

The segment matching for the IoU denoted by IoU(p, g)
in (11) for the Panoptic Quality metric is different from

the Semantic Segmentation IoU as the former is calculated

between two segments (p and g for the predicted and gTruth

segments, respectively). Whereas the latter is calculated based

on the output pixel labels and completely ignore object-level

labels. Also, the segment matching threshold of 0.5 used by

PQ is distinct from the proposed pixel confidence thresholding.

The former is computed on the segment matching IoU level

(object level). In contrast, the latter is computed on the pixel

confidence score level.

PQ =

∑
(p,g)∈TP IoU(p, g)

|TP |+ 1
2 |FP |+ 1

2 |FN |
(11)

The proposed process is simple and straight forward

(Fig. 2). However, the added dimension of the pixels’ con-

fidence scores helps to exclude the contribution of a specific

area in an image with respect to the overall performance of

the system. As this area might be undefined by the annotator,

yet, it still contributes to the metrics calculations, which is

undesirable in many cases.

III. EXPERIMENTAL SETUP

In our experiments, we have reported GA, MA, Mean IoU,

Weighted IoU and Mean BF score using four different pixels’

threshold values (0.2, 0.4, 0.6, 0.8) that are monotonically

increasing. The choice of these threshold values helps to cap-

ture the system’s behaviour under a wide range of conditions.

The evaluation metrics are calculated for the dataset and the

individual classes.

A. Dataset

Cambridge-driving Labeled Video Database ‘CamVid’ [7]

[8] is used to test the proposed evaluation technique. CamVid

gTruth data Predictions

Assign all ‘void’ 
pixels to ‘Reject’ 

class

Apply threshold 

on pixels’ scores

Evaluate

Accuracy, IoU and 

BF score

For each classFor dataset

Fig. 2: Methodology

dataset has 701 images annotated on the pixel level for 32

classes. Images are captured outdoors from the perspective

of a driving car. We group the 32 classes of the dataset into

11 classes for simplicity as some of the 32 original classes

have very limited objects. These 11 classes are Building,

Pole, Road, Pavement, Tree, Sign/Symbol, Car, Pedestrian,

Bicyclist, Sky, and Fence.

The dataset contains some undefined/void pixels which

belong to non-of-interest objects or overlooked pixels. We

also define an extra ‘Reject’ class for the purpose of our

experiments for which we assign all the undefined pixels.

Pixels distribution of the gTruth data is shown in Fig. 3

(gTruth).

The dataset is split randomly into 70% for training (491),

15% for validation (105 images) and 15% for testing(105

images).

B. System architecture

The neural network architecture that has been used for

training is based on encoder-decoder DeepLab Version 3 plus

‘DLV3+’ [5] for semantic segmentation. The architecture’s

base network uses residual blocks that help the system to

process high-resolution images (960×720×3 pixels) without

losing information because of vanishing gradients. In addition,

the system’s decoder has a simple design but with high

efficiency.

Very deep networks suffer from vanishing/exploding gradi-

ents [17] [18]. Residual blocks help to mitigate this problem by

reusing the activations from previous layers until the adjacent

layer learns its weights. This allows the network to learn more

low-level features without being worried about performance

degradation as it goes deeper. The elegance of this architecture



is that these short-cut connections do not add either extra

parameters or computational complexity [19].

C. Training

The system is trained end-to-end using Stochastic Gradi-

ent Descent with 0.9 Momentum ‘SGDM’ as the training

optimiser. A starting learning rate of 0.001 which is then

dropped by a factor of 0.3 every ten epochs. To avoid sequence

memorisation, training images are shuffled every epoch. Also,

L2 regularisation is used to limit overfitting. To enhance the

overall system accuracy, data augmentation is employed with

X and Y translations. Additionally, different hyper-parameters

and optimisation algorithms are tried to achieve the high-

est performance. Moreover, for reproducibility, systems are

trained several times under the same configurations.

To avoid bias in favour of dominant classes, inverse fre-

quency weighting is used to balance classes weightings. Image

normalisation is employed to rescale all the pixels’ values in

the range of zero to one. The system is trained on relatively

high-resolution images of 960×720×3 pixels, unlike the orig-

inal implementation of DLV3+, which crops patches of 513

size from the PASCAL VOC dataset [16] images during the

training and the testing processes. This approach, training on

high-resolution images, is believed to enhance the system’s

ability to semantically segment small size objects alongside

medium and large size ones. Also, this boosts the effectiveness

of large rate atrous convolutions kernels as its weight will be

applied to actual pixels and not to zero paddings.

IV. RESULTS AND DISCUSSION

A. CamVid dataset results

The trained system on the CamVid datasets has achieved

a validation loss of 0.368. The distance tolerances of 0.75%

of the length of the image diagonal for the BF score cal-

culations is 9 pixels. Results show interesting behaviours of

the evaluation metrics regarding different size objects using

various threshold values. Thresholding has proved that the

pixels’ confidence scores greatly impact the system’s per-

formance concerning the datasets and the individual classes.

Consequently, the proposed technique can be used to optimize

the system on a specific application, task, or group of objects

of interest.

Table I shows that the system’s performance on the CamVid

dataset varies under different thresholds. While applying no

threshold, it has achieved the highest MA and Weighted IoU.

Whereas higher threshold values have achieved better GA,

Mean IoU and Mean BF score. Consequently, it is feasible

to optimize the system on a specific evaluation metric for a

specific application or challenge.

Similar observations can be extracted from Table II. Al-

though applying no threshold has achieved the highest accu-

racy for all classes regardless of the object’s size or pixels’

distribution, higher threshold values have achieved better IoU

and mean BF score.

Large size objects, and therefore high pixels’ distribution

(Fig. 3) such as Sky, Building, and Road, have achieved the

best performance under no pixels’ scores threshold. Large-

medium and medium-sized objects, such as Tree and Pave-

ment, have achieved better IoU and Mean BF score using mod-

erate pixels’ scores thresholding of 0.4 and 0.6. For medium-

small and small size objects, which have the lowest pixels’

distributions but vital to many applications such as Pole,

SignSymbol, Fence, Car, Pedestrian, and Bicyclist, applying

higher threshold values have achieved the best performance in

terms of higher IoU and Mean BF scores.

Objects’ sizes and pixels’ frequencies have a great impact

on the system’s behaviour, consequently, a direct impact on

the evaluation process. As an example, when the number of

pixels that are assigned to the ‘Reject’ class increase due to

the increase in the threshold values, IoU and mean BF score

of things classes, that are mainly of medium and small sizes,

increase (Fig. 3 and Table II).

On the other hand, large size and high pixels frequency

classes (stuff classes) have performed best using low or no

pixels’ score threshold values. Thus, optimizing the network

on a specific class or group of classes for a particular task is

straight forward thanks to the thresholding technique.

Remarkable results are shown in Fig. 4 which depict the per-

image IoU at different threshold values. The number of images

that have achieved an overall IoU of more than 0.5 increases

as we increase the threshold values. Consequently, pixels’

threshold values can directly impact the classifier performance,

which in this case can indicate the enhancement of the system

performance on the IoU metric. The performance boost can

be attributed to the high uncertainty of the undefined pixels

and pixels at the object’s borders that can be elevated using

the appropriate pixels’ threshold values to reduce the impact

of fuzzy pixels quantitatively and qualitatively.

V. CONCLUSION

Pixels are the main building blocks of any image. Thus, we

believe their confidence scores should contribute to the evalua-

tion metrics. Nevertheless, pixels’ scores have been overlooked

by standard evaluation metrics. We have presented a novel

technique that incorporates pixels’ confidence scores in the

evaluation process of semantic segmentation systems, which

can add a further dimension to the evaluation metrics. The

proposed technique is straight forward and has been applied

to many statistical problems, which signifies its efficiency.

Results have shown the potential of the thresholding tech-

nique as it helps to suppress fuzzy pixels that do not belong

to any classes of interest and emerge pixels that belong to

classes of importance to the application. Furthermore, it can

be concluded from the results that optimizing systems on large

size objects (stuff classes) can be achieved using no or low

pixels’ threshold values. Whereas systems’ performances on

medium, small and tiny objects can be boosted using high

pixels threshold values.
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TABLE I: Evaluation Metrics Of The CamVid Test Set At Different Thresholds Values.

Threshold

Metrics
Global Accuracy Mean Accuracy Mean IoU Weighted IoU Mean BFScore

No threshold 0.895 0.864 0.667 0.831 0.690
0.2 0.895 0.864 0.667 0.831 0.690
0.4 0.900 0.858 0.672 0.831 0.697
0.6 0.929 0.815 0.682 0.817 0.699

0.8 0.960 0.731 0.663 0.772 0.660

TABLE II: Class Metrics Of The CamVid Test Set At Different Threshold Values.

Threshold Values No Threshold 0.2 0.4 0.6 0.8

Class

Metrics
Acc IoU M.BF Acc IoU M.BF Acc IoU M.BF Acc IoU M.BF Acc IoU M.BF

Sky 0.940 0.908 0.905 0.940 0.908 0.905 0.939 0.908 0.905 0.920 0.901 0.892 0.880 0.872 0.831
Building 0.816 0.796 0.633 0.816 0.796 0.633 0.809 0.791 0.615 0.753 0.742 0.518 0.654 0.650 0.385

Pole 0.731 0.240 0.578 0.731 0.240 0.578 0.721 0.249 0.588 0.635 0.294 0.630 0.476 0.322 0.645

Road 0.941 0.928 0.817 0.941 0.928 0.817 0.940 0.927 0.816 0.928 0.919 0.784 0.896 0.892 0.706
Pavement 0.903 0.741 0.750 0.903 0.741 0.750 0.899 0.742 0.751 0.865 0.746 0.749 0.782 0.718 0.696

Tree 0.904 0.780 0.722 0.904 0.780 0.722 0.901 0.783 0.726 0.859 0.778 0.707 0.760 0.723 0.598
SignSymbol 0.766 0.456 0.543 0.766 0.456 0.543 0.757 0.463 0.555 0.698 0.496 0.597 0.592 0.495 0.633

Fence 0.806 0.571 0.564 0.806 0.571 0.564 0.798 0.584 0.584 0.737 0.605 0.600 0.639 0.583 0.608

Car 0.925 0.804 0.760 0.925 0.804 0.760 0.919 0.808 0.767 0.888 0.811 0.768 0.829 0.788 0.725
Pedestrian 0.859 0.457 0.625 0.859 0.457 0.625 0.849 0.474 0.649 0.794 0.518 0.716 0.693 0.533 0.719

Bicyclist 0.915 0.656 0.555 0.915 0.656 0.555 0.909 0.665 0.598 0.885 0.695 0.669 0.834 0.715 0.787
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Fig. 3: Pixels distribution at different threshold values for the CamVid test set.
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and the y-axis represents the number of images.
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