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Abstract

This thesis considers mirror symmetry for the small quantum cohomology of cominus-

cule homogeneous spaces. We present two main results: Firstly, in Theorem 2.2.7, we

present a type-independent Laurent polynomial expression for Rietsch’s Lie-theoretic

mirror model [Rie08] restricted to an algebraic torus. Secondly, in Theorems 3.1.1

and 3.1.2, we present canonical mirror models for the exceptional family in terms of

projective coordinates called (generalized) Plücker coordinates, and show that these

are isomorphic to Rietsch’s models.

The Laurent polynomial expression resembles the potential for projective complete

intersections given in [Giv96]: the sum of all the toric coordinates plus a “quantum

term” consisting of a homogeneous polynomial in the toric coordinates divided by the

product of all toric coordinates. This polynomial is initially enumerated by subex-

pressions of a given Weyl group element in another. In Corollary 2.5.12 we show

that this enumeration can be replaced by diagrammatic combinatorics considering

subsets of the quivers defined in [Per07, CMP08]. As we illustrate in the example of

Grassmannians, these subsets can be considered as generalizations of Young diagrams.

The canonical mirror models for the exceptional family are similar to the models

found for other cominuscule families in [MR20, PR13, PRW16]. One notable differ-

ence is that we find cubic and quartic homogeneous polynomials in the Plücker coor-

dinates, whereas these polynomials were found to be at most quadratic in the cases

of Lagrangian Grassmannians and quadrics, and linear for Grassmannians. Analo-

gously to the aforementioned papers, we use a presentation of the coordinate ring of

a unipotent cell by [GLS11]. However, we give a type-independent criterion for the

generators of this presentation to coincide (up to a constant) with Plücker coordinates

in Proposition 3.2.5, and we show the isomorphism with Rietsch’s mirror model using

the algebraic torus where our Laurent polynomial expression holds.
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1.6 Generalized Plücker coordinates and the coordinate ring of (UP
− )T . . . 37

1.7 The exceptional cominuscule family . . . . . . . . . . . . . . . . . . . . 43

2 Laurent polynomial LG-models for cominuscule homogeneous spaces 48

2.1 A comparison of the actions of W and U∨− on minuscule representations 51

2.2 Statement of the Laurent polynomial potential . . . . . . . . . . . . . . 53

2.3 Proof of the Laurent polynomial expression . . . . . . . . . . . . . . . . 56

2.4 Proof of the intermediate results . . . . . . . . . . . . . . . . . . . . . . 58

2.5 Reformulating the quantum term using quiver subsets . . . . . . . . . . 65

2.6 Laurent polynomial potentials for all cominuscule homogeneous spaces 72

3 Mirror symmetry for exceptional cominuscule homogeneous spaces 85

3.1 The canonical models for cominuscule Esc
n /Pn . . . . . . . . . . . . . . 86

3.2 Overview of the isomorphisms . . . . . . . . . . . . . . . . . . . . . . . 89

3.3 The coordinate ring of UP
− for the Cayley plane . . . . . . . . . . . . . 93

3.4 The coordinate ring of UP
− for the Freudenthal variety . . . . . . . . . . 102

3.5 Proof of the isomorphism of LG-models on cominuscule Esc
n /Pn . . . . 106

Bibliography 110

iv



Chapter 1

Context and Background

This thesis presents results in the context of mirror symmetry for cominuscule ho-

mogeneous spaces. The first chapter of this thesis will be devoted to introducing all

concepts necessary to present our results. However, before we do so, let us start by

giving a short overview of the context of this thesis and a summary of the main results.

We also mention some of the implications and our intentions for future research.

An overview of the context. We should start by specifying what we mean with

mirror symmetry. One could argue that in its essence, mirror symmetry strives to

find relations between structures defined in different geometric theories: algebraic

geometry and symplectic geometry. These relations, more commonly than not, involve

finding a pair of spaces (X,X∨) such that the symplectic structure on X is isomorphic

to the algebraic structure on X∨. There are many ways to fill in the structures one

wants to consider mirror symmetry for.

In this thesis, we consider the small quantum cohomology qH∗(X) as the symplectic

structure on X. One can consider this structure to be a rigorous way to count curves

intersecting two given subspaces of X, generalizing the (intersection) cohomology that

counts intersection points (i.e. degree-0 curves) of two subspaces. We will introduce

this in Section 1.3 and illustrate it with the example of the quantum cohomology of

CPn. For now, we note that qH∗(X) is a polynomial ring over a set of “quantum

parameters” that keep track of the degrees of the curves, with coefficients in H∗(X).
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Thus, we want to find a mirror space X∨ and an algebraic structure related to X∨

that is isomorphic to the small quantum cohomology of X. The algebraic structure

we find is the coordinate ring of X∨ modulo relations generated by the derivatives of

a function W : X∨ → C called the potential. However, there is a catch: to obtain an

isomorphism, one needs to localize the quantum parameters of the quantum cohomol-

ogy (i.e. adjoin the inverses of the quantum parameters to the quantum cohomology).

A pair (X∨,W : X∨ → C) such that C[X∨]/〈∂W〉 ∼= qH∗(X)loc is called a Landau-

Ginzburg model for X. (Note that the ideal 〈∂W〉 generated by the derivatives ofW is

known as the Jacobi ideal ofW and the ring C[X∨]/〈∂W〉 is also known as the Jacobi

ring associated to (X∨,W). However, we will refrain from using this terminology.)

Now we have discussed mirror symmetry, let us have a look at cominuscule homo-

geneous spaces. We will consider homogeneous spaces as projective varieties X over C

with a transitive action of an (almost) simple, complex linear algebraic group G. We

will recall the basic definitions in Section 1.1. In particular, we will note that we can

assume without loss of generality that G is simply-connected, and that there exists a

parabolic subgroup P ⊂ G such that X ∼= G/P . After the choice of a maximal torus

(diagonalizable, commutative subgroup of maximal dimension) and a Borel subgroup

(subgroup of minimal dimension such that the quotient is a projective variety), we

will see that this parabolic subgroup corresponds to a choice of vertices in the Dynkin

diagram of G. When P = Pk corresponds to a single vertex marked k such that the

fundamental weight ωk is cominuscule, the homogeneous variety X = G/P is called

cominuscule; see Section 1.5.

Mirror symmetry for homogeneous spaces has seen a lot of progress over the last

decade and a half. Of particular relevance to this thesis is Rietsch’s Lie-theoretic

Landau-Ginzburg model, see [Rie08]. We will introduce this model in Section 1.4.

This Landau-Ginzburg model holds for all homogeneous spaces, also non-cominuscule

ones. It is completely defined in Lie-theoretic terms: namely it has as mirror variety

a Richardson variety in the Langlands dual full flag variety, and as potential the sum

of dual Chevalley generators. However, this is not the end of the story: the geometric
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Satake correspondence implies a correspondence between a basis for the cohomology of

a homogeneous space G/P and a set of projective coordinates on the Langlands dual

homogeneous space P∨\G∨ known as (generalized) Plücker coordinates, see Section

1.6. Therefore, it is convenient to find a Landau-Ginzburg model that is formulated

in terms of Plücker coordinates.

For cominuscule homogeneous spaces, the correspondence between the basis of the

cohomology of G/P and Plücker coordinates on P∨\G∨ is in fact one-to-one. Thus, in

the papers [MR20, PR13, PRW16] Plücker coordinate Landau-Ginzburg models were

constructed and proven to be isomorphic to Rietsch’s Lie-theoretic mirror models for

Grassmannians, Lagrangian Grassmannians, and quadrics, respectively. (See Table

1.5.1 for the definitions of these homogeneous spaces.) Following [PRW16], these

Plücker coordinate mirror models have become known as canonical mirror models :

they consist of the complement of an anti-canonical divisor in P∨\G∨ defined by the

potential, which is a rational map in terms of the Plücker coordinates. In constructing

the canonical models and proving the isomorphisms with the Lie-theoretic models, all

cases relied on Laurent polynomial expressions for Rietsch’s potential restricted to an

algebraic torus.

Summary of the main results. This is where the results of this thesis come in. In

Chapter 2 we prove a type-independent Laurent polynomial expression for Rietsch’s

Lie-theoretic potential restricted to an algebraic torus, see Theorem 2.2.7. In this

proof, the Weyl groups associated to G and P play a large role, so we will introduce

these in Section 1.2. The Laurent polynomial potential consists of the sum of the

toric coordinates plus a “quantum term” consisting of a homogeneous polynomial

in these coordinates divided by the product of the toric coordinates. Initially, the

homogeneous polynomial is enumerated by reduced subexpressions of a given Weyl

group element in another. In Corollary 2.5.12 we show that this enumeration can be

replaced by subsets of a quiver defined in [Per07, CMP08]. Moreover, we give combi-

natorial tools to find all such subsets, see Lemma 2.5.9 and Proposition 2.5.11. The

Laurent polynomial expression coincides with the known potentials for Lagrangian

3



Grassmannians and quadrics, and the expression offers Laurent polynomial potentials

for orthogonal Grassmannians and the exceptional family, which have not been found

before. These results have been published in [Spa21].

In Chapter 3, we construct canonical mirror models for the exceptional cominus-

cule homogeneous spaces and show that they are isomorphic to Rietsch’s Lie-theoretic

mirror models, see Theorems 3.1.1 and 3.1.2. These models are similar to the canoni-

cal mirror models for Grassmannians, Lagrangian Grassmannians and quadrics given

in [MR20, PR13, PRW16]. However, there is one notable difference: where the terms

in the potentials were at most quadratic homogeneous polynomials in Plücker coordi-

nates for Lagrangian Grassmannians and quadrics and even linear for Grassmannians,

we find cubic and quartic terms for the exceptional family. We take an analogous ap-

proach to the earlier cases by using a presentation by [GLS11] of the coordinate ring

of a certain unipotent cell. However, we also give a type-independent criterion for the

generators of this coordinate ring to coincide (up to a constant) with Plücker coor-

dinates, see Proposition 3.2.5. Moreover, we simplify a part of the computations by

restricting to the algebraic torus where our Laurent polynomial expression is defined.

Using this torus, we also find “Plücker relations” on the mirror varieties expressing

the remaining Plücker coordinates in terms of the generating ones.

Implications and future research. The first and most direct implications of these

results are the advances made in developing a type-independent approach to describe

mirror symmetry for cominuscule homogeneous spaces. The Laurent polynomial po-

tential and the criterion for Plücker coordinates to be coordinate ring generators we

present in this thesis have been formulated without restrictions on the type. Therefore,

the largest remaining obstruction to formulating a general canonical mirror model for

cominuscule homogeneous spaces is a type-independent Plücker coordinate descrip-

tion of a set of generalized minors which we introduce in Section 1.6. Obtaining such

a description might turn out to be troublesome, since it requires comparisons of ac-

tions of unipotent elements on different representations. As indicated in the proof of
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Lemma 3.3.2, these comparisons can be quite complicated, but restricting to the alge-

braic torus simplifies the calculations and might be sufficient for a type-independent

consideration.

The canonical models themselves also have interesting features. For example, it is

expected that they all have cluster structures. These structures have been determined

for Grassmannians and quadrics in [MR20] and [PRW16]. In the second reference, a

description of the cluster structures in terms of generalized minors by [GLS08] was

used. Currently, I am collaborating with Charles Wang at Harvard University to see

if a type-independent Plücker coordinate expression for the cluster structure based

on the same reference is feasible, especially since the approach there is extremely

general. We initially focused on obtaining more examples and have found the cluster

structures for the mirrors of the exceptional cominuscule homogeneous spaces. In

fact, to simplify a number of calculations in obtaining these, we made use of the

Laurent polynomial potential and the algebraic torus on which it is defined. These

simplifications work quite similarly to those we will see in Chapter 3. We are hoping

to release our results on arXiv shortly [SW21], but the results were not yet at a stage

to be included in this thesis.

The canonical mirrors also play a role in a stronger mirror conjecture concern-

ing homogeneous spaces. This strengthening is obtained by replacing the quantum

cohomology with the D-module associated to the Dubrovin connection, and by replac-

ing the Landau-Ginzburg model with the D-module obtained from the Gauss-Manin

system associated to the model. In the case of quadrics, an injection from the first

D-module into the second is shown in [PRW16] using the description of canonical

mirror. Moreover, it is known from [LT17] that the two D-modules are isomorphic

for minuscule homogeneous spaces, i.e. G/Pk with ωk minuscule. See Table 1.5.1 for

homogeneous spaces that are either minuscule, cominuscule or both. However, note

in particular that odd quadrics are cominuscule but not minuscule. Furthermore, the

isomorphism is not formulated explicitly in [LT17]; instead, they rely on Langlands
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reciprocity. Thus, we believe that obtaining descriptions in terms of Plücker coor-

dinates of the mirrors of more cominuscule cases will help to make the isomorphism

more explicit and expand it to all cominuscule homogeneous spaces.

In [PRW16], the Laurent polynomial expression was subsequently used to calculate

the components of a flat section of the (dual) Dubrovin connection defined in [Giv96].

This implied an expression for the A-series or hypergeometric series that forms a

part of Givental’s J-function. These methods could be generalized using the type-

independent Laurent polynomial potential presented here.

In [Rie08], Rietsch also conjectures that the Lie-theoretic Landau-Ginzburg models

give rise to oscillatory integrals that are solutions to the quantum differential equations

ofX, see Conjecture 8.1 there. This conjecture is verified in [MR20] for Grassmannians

and [PRW16] for quadrics using the descriptions of a flat section of the Dubrovin

connection obtained from the Laurent polynomial expressions. Therefore, we expect

that progress can be made in resolving this conjecture for other cominuscule examples

with our Laurent polynomial expression. We would like to note that the results

of [LT17] imply the conjecture for all minuscule cases as well, again using different

methods.

Due to the one-to-one correspondence between the Schubert classes in the (quan-

tum) cohomology of a cominuscule homogeneous space and the (generalized) Plücker

coordinates on its mirror, we can use the canonical models to investigate the quantum

product (this is also known as quantum Schubert calculus). For example, the Plücker

relations we found in Remarks 3.3.4 and 3.4.4 imply similar relations between Schu-

bert classes through this correspondence. We have not made any investigations of this

in this thesis, focusing instead on the construction and its proof. However, we would

like to note that descriptions of the ring structure of the quantum cohomology of

cominuscule homogeneous spaces are already available. For example, [CMP08] gives

a unified expression of the quantum cohomologies of cominuscule cases and explic-

itly describes the ring structure for the exceptional family, achieved using different
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approaches. There one can also find references to the descriptions of the quantum co-

homologies for the cominuscule homogeneous spaces for the classical linear algebraic

groups that were already available before. Even non-cominuscule cases have been in-

vestigated: for example, for adjoint homogeneous spaces (these are quasi-cominuscule

but not cominuscule) the quantum cohomologies have been described in [CP11], while

the quantum cohomologies of homogeneous spaces with maximal parabolic subgroups

(i.e. X = G/P with P = Pk associated to a single vertex k of the Dynkin diagram)

for the classical linear algebraic groups have been described in [BKT09].

Another example of a future implication of the canonical models is in homological

mirror symmetry. This is an isomorphism of triangulated categories between the

Fukaya category of a variety (on the symplectic side) and the (bounded) derived

category of coherent sheaves on its mirror (on the algebraic side). Recently, [Cas20]

used the canonical mirror model for Grassmannians proven in [MR20] to show that

homological mirror symmetry holds for Grassmannians Gr(k, n) for n prime. This

result is a very promising step in the consideration of homological mirror symmetry

for homogeneous spaces, especially now canonical models are available for (almost)

all cominuscule homogenous spaces.

I will conclude with some remarks on my plans for future research, other than the

investigations of cluster structures with Charles Wang mentioned in passing before.

Firstly, I have been awarded an Early Career Fellowship by the London Mathematical

Society to collaborate with Prof Nicolas Perrin at the Laboratoire de Mathématiques

de Versailles on extending the Laurent polynomial potentials and the definition of the

quivers used to enumerate their quantum terms to the adjoint homogeneous spaces

we mentioned before. This would most likely be followed up by an investigation into

canonical models for these spaces, as well as into the possibility of a type-independent

unification of the adjoint and cominuscule cases. I am also interested in investigating

the stronger mirror symmetry statements discussed before, either on the level of D-

modules or triangulated categories, for cominuscule homogeneous spaces. Finally, I
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have recently become interested in considering the Newton-Okounkov bodies of comi-

nuscule homogeneous spaces. A Newton-Okounkov body is a polytope associated to

a variety parametrizing its toric deformations. In [RW19], the Laurent polynomial

potential for the Grassmannian is used to describe its Newton-Okounkov body from

a mirror-symmetric perspective. I would be interested in investigating these meth-

ods for the other cominuscule homogenous spaces and have contacted Prof Akihiro

Higashitani at Osaka University and Dr Naoki Fujita at the University of Tokyo to

start a collaboration regarding these.

A final remark regarding this chapter. We have restricted the presentation of

the background material in this chapter to those concepts strictly necessary for these

results. However, we have tried to give ample references for the reader interested

in finding out more about them. The expert reader can most likely skip the first

three or four sections. Nevertheless, we would like to encourage the expert reader

to at least have a look at Examples 1.1.10, 1.2.7 and in particular Example 1.4.6, as

they introduce a number of phenomena that play an important role in the narrative of

Chapter 2. Sections 1.5 and 1.6 are essential for Chapters 2 and 3 respectively. Finally,

Section 1.7 introduces some notation for the exceptional cominuscule homogeneous

spaces that will also play a role in Chapter 3.

1.1 Homogeneous spaces and Langlands duality

Homogeneous spaces (i.e. spaces with a transitive group action) can be considered

in a number of contexts. Here, we will restrict ourselves to the context of algebraic

varieties, or more specifically projective varieties. The transitive groups are therefore

assumed to have the structure of linear algebraic groups. The theory of homogeneous

spaces in this context is well established and there are many in-depth references avail-

able, e.g. [Hum75, Bor91, Spr98]. We will only present a short overview of this here,

focusing on the concepts that will play a role. Moreover, we will only consider varieties

over C.
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At the end of this section we illustrate all definitions for CP2, which is homogeneous

for the simple, complex algebraic group SL3 = SL3(C).

We will be considering transitive actions of simple, simply-connected, complex

algebraic groups.

Definition 1.1.1. A (complex) algebraic group is a variety G (over C) with morphisms

µ : G × G → G and ι : G → G that form the product and inverse maps for a group

structure on G. These morphisms will henceforth be denoted by the juxtaposition

(µ(g, h) = gh) and reciprocal (ι(g) = g−1) of the elements respectively.

Example 1.1.2. Consider Cn×n as the affine variety of complex-valued n×n-matrices.

Recall that det : Cn×n → C is polynomial in the coefficients of the matrix. Hence,

one obtains GLn = GLn(C) = {M ∈ Cn×n | det(M) 6= 0} as a quasi-affine subvariety

(open subset of an affine variety). In fact, GLn is isomorphic to the affine variety

{(M, t) ∈ Cn×n×C | t det(M)− 1 = 0} through the morphism M 7→ (M, det(M)−1).

In any case, GLn is an algebraic variety. Since the inverse of a matrix is obtained using

determinants, M 7→M−1 is a morphism on GLn, and it is clear from the definition of

matrix multiplication that (M1,M2) 7→M1M2 is a morphism as well. It is well known

that matrix multiplication and inversion induce a group structure on GLn. Thus, GLn

is an algebraic group known as the general linear group of invertible n × n-matrices

over C. ♦

Definition 1.1.3. A linear algebraic group is an algebraic group that is (isomor-

phic to) a subgroup of GLn. A connected (nontrivial) linear algebraic group is called

semisimple when the trivial subgroup is the only (proper) closed, connected, com-

mutative normal subgroup. A noncommutative, semisimple algebraic group is called

simple1 when the trivial subgroup is the only (proper) connected, normal subgroup.

The simple complex algebraic groups can be classified using the classification of

simple Lie algebras (see e.g. Sections 13.5 and 14.1 of [Hum75]). However, as they

1This is also called almost simple, see Section 14.2 of [Hum75]. This is because a simple algebraic
group can have a nontrivial center (albeit discrete), which contradicts the definition of a simple
(abstract) group.
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allow nontrivial discrete centers, there are multiple simple complex algebraic groups

of a given type. Those that have a trivial center are called adjoint, while those with

maximal2 discrete center are in fact simply-connected varieties.

type An Bn Cn Dn

ad PSLn+1 SO2n+1 PSp2n PSO2n

sc SLn+1 Spin2n+1 Sp2n Spin2n

Table 1.1.1: The adjoint (ad) and simply-connected (sc) simple linear algebraic groups
of classical types.

Definition 1.1.4. A homogeneous space X for a linear algebraic group G is a pro-

jective variety with a transitive action of G.

We will only consider simple linear algebraic groups G.

Similarly to the theory of Lie groups, one can associate a Lie algebra to a linear

algebraic group. Write g for the Lie algebra of G and fix a set of Chevalley generators

(e1, f1, . . . , en, fn), i.e. Lie algebra generators such that for each i ∈ {1, . . . , n} the

triple (ei, fi, hi) with hi = [ei, fi] generates a Lie subalgebra isomorphic to sl2. This

gives the decomposition g = u+ ⊕ t⊕ u−, where u+ is generated by {ei | 1 ≤ i ≤ n},

u− is generated by {fi}, and the Cartan subalgebra t is spanned by {hi}. We denote

by U+ and U− the universal enveloping algebras of u+ and u− respectively, and we

write their completions as Û+ and Û−.

Let T be the maximal torus, i.e. diagonalizable, commutative subgroup of maximal

dimension, of G that has t as Lie algebra. Let U+ and U− be the subgroups of G that

have u+ and u− as Lie algebras, respectively. These are called unipotent subgroups,

as they are (isomorphic to) subgroups of the (upper/lower) triangular matrices with

ones on the diagonal in GLn. We can consider U+ and U− as lying inside Û+ and Û−

respectively, generated by the one-parameter subgroups

xi(a) = exp(a ei) and yi(a) = exp(a fi),

2The center needs to be a subgroup of the fundamental group of the root system, i.e. quotient of
the weight lattice by the root lattice.
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for i ∈ {1, . . . , n} and a ∈ C. Here exp(a ei) = 1 + a ei + 1
2
a2 e2

i + . . . ∈ Û+ and

exp(a fi) ∈ Û− is given analogously.

For any choice of IP ⊂ {1, . . . , n}, we can define a Lie algebra p that is generated

as

p = 〈ei, hi, fj | i ∈ {1, . . . , n}, j ∈ IP 〉. (1.1.1)

There is a unique subgroup P ⊂ G with p as Lie algebra. These subgroups have the

property that G/P is a (projective) homogeneous space for G, and are called parabolic

subgroups. The complement of IP will play a role in the following and is denoted IP .

Remark 1.1.5. One can define a parabolic subgroup to be a subgroup P of G

such that G/P is a (projective) homogeneous space. In this way, one finds that

the parabolic subgroups fall into conjugacy classes that are determined by a subset

IP of the Dynkin diagram of G (see Theorem 29.3 of [Hum75]). Fixing a maximal

torus T and a unipotent subgroup U+ then gives a unique element of each of these

conjugacy classes that satisfies TU+ ⊂ P ⊂ G (see Corollary 23.1C of [Hum75]).

As noted above, the subgroup B+ = TU+ plays an important role. It is a parabolic

subgroup of minimal dimension, with IP = ∅, so that its Lie algebra is t ⊕ u+.

Parabolic subgroups of minimal dimension are called Borel subgroups. There is a

second Borel subgroup that will play a role, namely B− = TU−, which is called its

opposite and has t⊕ u− as Lie algebra.

With the subgroups of G fixed as above, there is a unique parabolic subgroup P

(up to symmetries of the Dynkin diagram) containing B+ such that G/P ∼= X for

any homogeneous space for G. Therefore, we can consider homogeneous spaces of the

form X = G/P without loss of generality.

Remark 1.1.6. Let X = G/P be a projective space for G a simple linear algebraic

group, and let G̃ be the (simply-connected) universal cover of G. Let P̃ be the

preimage of P under G̃ → G; then we have G̃/P̃ ∼= X. Thus, we can assume that

the simple algebraic group acting transitively is simply-connected, without loss of

generality.
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We write X for the lattice of characters χ : T → C∗ of the maximal torus (written

additively). Within X , we denote the set of roots by Φ ⊂ X and a base of simple roots

∆ = {α1, . . . , αn} is determined by the Chevalley generators. The associated sets of

positive and negative roots are denoted by Π and Π− respectively. We denote the

cocharacter lattice by X ∨, the coroots by Φ∨ and the simple coroots by α∨i : X → C.

With a given root system Φ and character lattice X , there exists a unique group

G∨ determined by having as root system the coroots Φ∨ and as character lattice the

cocharacter lattice X ∨ ofG. The character lattice X ∨ ofG∨ also determines a maximal

torus T∨ in G∨. The pair (G∨, T∨) is called the Langlands dual pair associated to

(G, T ); we call G∨ the Langlands dual group.

Remark 1.1.7. As G is assumed to be simply-connected, G∨ will be adjoint.

The Langlands dual group G∨ inherits the base of simple roots ∆∨ = {α∨1 , . . . , α∨n},

which in turn determines the decomposition of the Lie algebra g∨ of G∨ into g∨ =

u∨− ⊕ t∨ ⊕ u∨+. The Langlands dual groups U∨+, U∨−, B∨+, B∨− and P∨ are now defined

analogously to above, and we write Π∨ and Π∨− for the sets positive and negative

roots of G∨. We also obtain Chevalley generators (e∨1 , f
∨
1 , . . . , e

∨
n , f

∨
n ) and define the

corresponding one-parameter subgroups of U∨+ and U∨−

x∨i (a) = exp(a e∨i ) and y∨i (a) = exp(a f∨i ) (1.1.2)

for i ∈ {1, . . . , n} and a ∈ C. Here exp(a e∨i ) = 1 + a e∨i + 1
2
a2(e∨i )2 + . . . ∈ Û∨+ in the

completed universal enveloping algebra of u∨+, and analogously for exp(a f∨i ). Note

that the parabolic subgroup P∨ is associated to the same set IP as P : that is, its Lie

algebra is given by

p∨ = 〈e∨i , h∨i , f∨j | i ∈ {1, . . . , n}, j ∈ IP 〉. (1.1.3)

Thus, the complement of the set of indices is IP as well.
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Remark 1.1.8. When the Dynkin diagram of G is simply-laced, G∨ has the same

Dynkin diagram (with the same numbering of the vertices). When the Dynkin diagram

of G has a double or triple edge, the Dynkin diagram of G∨ is obtained by reversing

the arrows at these edges. Explicitly, if G is of type An, Dn or En, then G∨ is of the

same type; if G is of type Bn, then G∨ is of type Cn, and vice versa; finally, for G of

type F4 and G2, G∨ is of the same type but has the reverse numbering of vertices.

Apart from the Chevalley generators (e∨1 , f
∨
1 , . . . , e

∨
n , f

∨
n ) for g∨, we will need the

corresponding dual maps (e∨i )∗, (f∨i )∗ ∈ (g∨)∗ as well, satisfying

(e∨i )∗(e∨j ) = δij = (f∨i )∗(f∨j ) and (e∨i )∗(f∨j ) = 0 = (f∨i )∗(e∨j ) (1.1.4)

and vanishing on t∨ and the other root spaces of g∨.

We extend these maps to be defined on arbitrary products of the Chevalley gen-

erators using the inclusions of u∨+ and u∨− into their completed universal algebras Û∨+
and Û∨−. This in turn allows us to define (e∨i )∗ and (f∨i )∗ on U∨+ and U∨− through

the identification of the one-parameter subgroups x∨i (a) ∈ U∨+ and y∨i (a) ∈ U∨− with

exp(a e∨i ) ∈ Û∨+ and exp(a f∨i ) ∈ Û∨− respectively. Equivalently, (e∨i )∗ and (f∨i )∗ are

defined as the unique group homomorphisms U∨+ → C and U∨− → C such that

(e∨i )∗(x∨j (a)) = aδij = (f∨i )∗(y∨j (a)). (1.1.5)

As G∨ is in general not simply-connected, we will need to consider the universal

cover G̃∨ of G∨ in Section 2.3. As before, we define the universal covers P̃∨, T̃∨, B̃∨+

and B̃∨−. Note that the cover of U∨+ is in fact isomorphic to U∨+ and the same holds

for U∨−, so we simply identify them.

Remark 1.1.9. Considering Remark 1.1.8, we note that for a simply-connected group

G with a simply-laced Dynkin diagram we have G̃∨ ∼= G as they are both simply-

connected and of the same type.
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Example 1.1.10. Let us illustrate the concepts of this section for X = CP2, which

is homogeneous for G = SL3, the simple, simply-connected complex algebraic group

of type A2. Its Lie algebra is sl3 and has the standard Chevalley generators:

e1 =

 0 1 0
0 0 0
0 0 0

, e2 =

 0 0 0
0 0 1
0 0 0

 and fi = eTi .

We find that the Cartan subalgebra elements hi = [ei, fi] are

h1 =

 1 0 0
0 −1 0
0 0 0

 and h2 =

 0 0 0
0 1 0
0 0 −1

.
Thus, t = Ch1 ⊕ Ch2, u+ = Ce1 ⊕ Ce2 ⊕ C[e1, e2] and u− = Cf1 ⊕ Cf2 ⊕ C[f1, f2].

The subgroups of G that have these as Lie algebras are

T =


 λ 0 0

0 λ−1µ 0
0 0 µ−1

 ∣∣∣∣∣∣ λ, µ ∈ C∗
 , U+ =


 1 z1 z3

0 1 z2

0 0 1

 ∣∣∣∣∣∣ z1, z2, z3 ∈ C


and U− = UT

+ . Considering U+ ⊂ Û+, we find that x1(a), a ∈ C, corresponds to the

u ∈ U+ with z1 = a and z2 = z3 = 0. We obtain x2, y1 and y2 similarly.

The Borel subgroups B+ = TU+ and B− = TU− can easily be deduced to be

B+ =


 λ z1 z3

0 λ−1µ z2

0 0 µ−1

 ∣∣∣∣∣∣ λ, µ ∈ C∗, z1, z2, z3 ∈ C

 and B− = BT
+. (1.1.6)

There are three parabolic subgroups containing B+. Firstly, taking IP = {1}, we find

P1 =


 λ−1 z1 z2

0
0

λM

 ∣∣∣∣∣∣ λ ∈ C∗, z1, z2 ∈ C, M ∈ SL2

 . (1.1.7)

The second parabolic subgroup, with IP = {2}, is

P2 =


 λM

z1

z2

0 0 λ−1

 ∣∣∣∣∣∣ λ ∈ C∗, z1, z2 ∈ C, M ∈ SL2

 .
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Finally, the third parabolic subgroup has IP = {1, 2}, so that P1,2 = B+.

Clearly, the parabolic subgroup P such that SL3/P = CP2 is P = P1. The other

homogeneous spaces are SL3/P2 = Gr(2, 3) and SL3/P1,2 = SL3/B+ = Fl(1, 2; 3) (the

full flag variety parametrizing pairs (L,H) of a line L and a plane H in C3 satisfying

L ⊂ H).

The Langlands dual group to G = SL3 is G∨ = PSL3 = SL3/Z3, where Z3 ⊂ C is

the set of cube roots of unity (embedded in SL3 as multiples of the identity matrix).

This is indeed the adjoint, simple, complex algebraic group of type A2. The Langlands

dual subgroups are therefore simply the quotients of the original subgroups by Z3; in

the following, we will denote the class in PSL3 of a matrix M ∈ SL3 by Z3M . Note

that we have G∨/P∨ ∼= CP2, as we noted in Remark 1.1.6.

Finally, it is clear that the universal cover of G∨ = PSL3 is G̃∨ = SL3 = G, in

accordance with Remark 1.1.9. ♦

1.2 Weyl groups and Schubert classes

Lie theory is intimately related to the theory of reflection groups via the reflections

on root systems. It should not be a surprise, then, that the same holds for linear

algebraic groups. Indeed, the Weyl group associated to a linear algebraic group G

is known to parametrize a cell decomposition of the group, and appropriate subsets

parametrize a basis for the cohomology of homogeneous spaces for G. In Chapter

2, the Weyl group will also play an important role in deriving a Laurent polynomial

expression for Rietsch’s potential. Thus, we will take some time to introduce the Weyl

groups associated to linear algebraic groups and their derived concepts here. We will

again use CP2 = SL3/P1 to illustrate this section at the end.

We keep the notation from Section 1.1. In particular, we have maximal tori T ⊂ G

and T∨ ⊂ G∨. Denote byNG(T ) ⊂ G andNG∨(T∨) ⊂ G∨ their respective normalizers,

which of course contain the tori themselves (as they are commutative subgroups).

Thus, we can define the Weyl group of G as W = NG(T )/T and the Weyl group of
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G∨ as W∨ = NG∨(T∨)/T∨. These groups are named because of the following fact:

Theorem 1.2.1 (See e.g. Theorem 27.1 of [Hum75]). The group W = NG(T )/T is

isomorphic to the Weyl group of the root system of G.

Here the Weyl group of a root system is the Coxeter group generated by the

reflections in the simple roots. Note that these Weyl groups only depend on the

underlying Coxeter diagram of the root system, and since Remark 1.1.8 implies that

G and G∨ have the same Coxeter diagram, we obtain

Corollary 1.2.2. The Weyl groups W = NG(T )/T of G and W∨ = NG∨(T∨)/T∨ of

G∨ are isomorphic.

Thus, we can consider both Weyl groups at the same time without the need to

introduce parallel notation. In particular, we will also refer to the Weyl group of G∨

as W .

Remark 1.2.3. Note that for type F4 and G2 the isomorphism in fact reverses the

labeling of the simple roots, so one needs to be more careful for these types. However,

as we will see in Section 1.5, these types will not play a role in our results, so we will

ignore these subtleties here.

We denote the simple reflections by si, where each si corresponds to the reflection

through a simple root αi ∈ ∆ (or α∨i ∈ ∆∨). Thus, every w ∈ W can be expressed as

w = si1 · · · sij ; when j is minimal this is called a reduced expression and the integer

j is called the length of w and denoted by `(w) = j. This integer coincides with the

number of positive roots mapped to negative roots by w (see for example [Hum78],

Lemma 10.3A). The longest element of W is denoted by w0, and we denote `(w0) = `0.

It is well known that w0 maps Π bijectively to Π− (and similarly Π∨ to Π∨−), so that

#Π = #Π∨ = `0.

There is also a Weyl group WP associated to the parabolic subgroup by removing

the simple reflections {si | i ∈ IP} from the generators of W , compare equation (1.1.3).

Note that WP is a Weyl group in its own right, associated to the Dynkin diagram of
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G∨ with the vertices marked by IP removed. The longest element of WP is denoted

by wP , and we write `(wP ) = `P . It maps `P positive (co-) roots to negative ones;

the sets of these are denoted ΠP ⊂ Π and Π∨P ⊂ Π∨. Let ΠP,− = wP (ΠP ) ⊂ Π− and

Π∨P,− = wP (Π∨P ) ⊂ Π∨−. Note that ΦP = ΠP tΠP,− and Φ∨P = Π∨P tΠ∨P,− form mutually

dual root systems in their own right, corresponding to the same Dynkin subdiagram

as WP .

We will need representatives in G∨ for si ∈ W = NG∨(T∨)/T∨. There are two

convenient representatives determined by the one-parameter subgroups:

ṡi = x∨i (1)y∨i (−1)x∨i (1) and s̄i = x∨i (−1)y∨i (1)x∨i (−1) = ṡ−1
i . (1.2.1)

Note that these elements are not their own inverses, as one would expect of reflections:

they square to elements in T∨. Moreover, note that ṡi and s̄i only differ by a torus

element and both normalize T∨.

We can extend this choice of representative to an arbitrary w ∈ W with reduced

expression w = si1 · · · sid by setting ẇ = ṡi1 · · · ṡid and w̄ = s̄i1 · · · s̄id . Note that

w̄ is not equal to ẇ−1 in general: it has the reverse product of simple reflections,

i.e. ẇ−1 = s̄id · · · s̄i1 .

We let

T P = (T∨)WP ⊂ T∨ (1.2.2)

be the part of T∨ that is invariant under the action WP ×T∨ → T∨ given by (w, t) 7→

ẇtẇ−1. Clearly, T P has dimension #IP .

One of the classical results involving elements of the Weyl group is the following

(see e.g. Theorem 28.3 of [Hum75]):

Theorem 1.2.4 (Bruhat decomposition). A Bruhat cell B+w1B+ equals another

B+w2B+ if and only if w1 = w2 ∈ W ; otherwise the cells are disjoint. Moreover, we

obtain a decomposition G =
⊔
w∈W B+wB+.

Note that since T ⊂ B+, the choice of representative in G for the Weyl group

elements is immaterial. Moreover, note that we can obtain a similar decomposition
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with B+ replaced by B−, and that G∨ allows both decompositions over the same

group W (using B∨+ or B∨−) as well.

The Bruhat decomposition of G implies in turn Bruhat decompositions for G/B+

(see e.g. Theorem 14.12 of [Bor91]) and for G/P (see e.g. Proposition 1.3 of [Köc91]).

Namely, we have G/B+ =
⊔
w∈W B+wB+/B+. For the decomposition of G/P , we

need to fix a set of minimal coset representatives of W/WP , which we denote by

W P ⊂ W (i.e. for every coset the representative of minimal length). With this, the

Bruhat decomposition becomes G/P =
⊔
w∈WP B+wP/P .

The elements of W P will play an important role throughout this thesis. In par-

ticular, we will need the minimal representative of w0WP , which we denote by wP .

We denote its length by `(wP ) = `. (The length of wP will occur frequently, so

we simply write ` instead of `P .) Note that w0 = wPwP , so that in particular

`0 = ` + `P . Moreover, we can now see from the Bruhat decomposition of X = G/P

that dim(X) = `(wP ) = `. We fix reduced expressions

wP = sr1 · · · sr` and wP = sq1 · · · sq`P , (1.2.3)

so we obtain a reduced expression w0 = sr1 · · · sr`sq1 · · · sq`P .

Remark 1.2.5. We would like to note that the sequence of indices (r1, . . . , r`) of the

reduced expression for wP will play a large role throughout this thesis. The sequence

(q1, . . . , q`P ) will play less of a significant role and only appear in Chapter 2. Whenever

we use (qi) to denote the sequence of indices of the reduced expression for wP , we will

always explicitly recall this. We will use q throughout the thesis to denote the quantum

parameter in the quantum cohomology of the homogeneous spaces we will consider,

and in Chapter 3 we will use qi to denote a set of homogeneous polynomials in Plücker

coordinates.
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There are two kinds of varieties related to the Bruhat decomposition that will play

a role in the following. The first are the open Richardson varieties

Rv,w =
(
B+vB− ∩B−wB−

)
/B− ⊂ G/B−,

which are the intersections of the Bruhat cells of G/B− of decompositions with respect

to opposite Borel subgroups, here B+ and B−. These intersections are only non-empty

when v ≤ w in the Bruhat order :

v ≤ w if there is a u ∈ W such that w = uv and `(w) = `(u) + `(v). (1.2.4)

The second kind is the Schubert variety B+wP/P ⊂ G/P for w ∈ W P , which

is the closure of the Bruhat cell (also called Schubert cell in this context) B+wP/P .

Note that

B+wP/P =
⊔
v≤w

B+vP/P, (1.2.5)

where v ≤ w is again the Bruhat order given in (1.2.4). The dimension of this variety

is `(w) and we denote the associated cohomology class by σw ∈ H2`(wP )−2`(w)(G/P ).

These classes are called Schubert classes and are particularly important because of

the following result:

Proposition 1.2.6. The Schubert classes {σw | w ∈ W P} form a basis for H∗(G/P ).

(See for example Corollary 1.5 of [Köc91]. However, note that there the statement

is formulated in terms of the Chow ring CH∗(G/P ), but that for homogeneous spaces

this is isomorphic to the cohomology ring under doubling of degrees.)

Example 1.2.7. We continue Example 1.1.10 to illustrate the new concepts. We have

CP2 = SL3/P1. As G is of type A2, we have W = {e, s1, s2, s1s2, s2s1, s1s2s1 = s2s1s2}.

The Weyl group associated to P1 is WP = {e, s2}. Note that we can represent W as
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a permutation group by representing s1 and s2 by

S1 =

 0 1 0
1 0 0
0 0 1

 and S2 =

 1 0 0
0 0 1
0 1 0

.
However, these matrices are not elements of SL3. Moreover, their classes Z3Si are not

elements of PSL3. (Recall from Example 1.1.10 that we represent the class in PSL3

of a matrix M ∈ SL3 by Z3M .) The representatives ṡ1 and s̄1 of s1 in PSL3 defined

in equation (1.2.1) are in fact

ṡ1 = Z3

 1 1 0
0 1 0
0 0 1

 1 0 0
−1 1 0
0 0 1

 1 1 0
0 1 0
0 0 1

 = Z3

 0 1 0
−1 0 0
0 0 1

,
s̄1 = Z3

 1 −1 0
0 1 0
0 0 1

 1 0 0
1 1 0
0 0 1

 1 −1 0
0 1 0
0 0 1

 = Z3

 0 −1 0
1 0 0
0 0 1

.
Similarly, we find

ṡ2 = Z3

 1 0 0
0 0 1
0 −1 0

, s̄2 = Z3

 1 0 0
0 0 −1
0 1 0

.
Note that ṡ1, s̄1, ṡ2 and s̄2 do not square to (the class of) the identity matrix:

ṡ2
1 = s̄2

1 = Z3

 −1 0 0
0 −1 0
0 0 1

 ∈ T∨, ṡ2
2 = s̄2

2 = Z3

 1 0 0
0 −1 0
0 0 −1

 ∈ T∨.
The other Weyl group elements are represented by

ṡ1ṡ2 = Z3

 0 0 1
−1 0 0
0 −1 0

, ṡ2ṡ1 = Z3

 0 1 0
0 0 1
1 0 0

,
s̄1s̄2 = Z3

 0 0 1
1 0 0
0 1 0

, s̄2s̄1 = Z3

 0 −1 0
0 0 −1
1 0 0

,
ṡ1ṡ2ṡ1 = ṡ2ṡ1ṡ2 = s̄1s̄2s̄1 = s̄2s̄1s̄2 = Z3

 0 0 1
0 −1 0
1 0 0

;
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Recall from Example 1.1.10 that the torus T∨ consist of classes of diagonal matrices

with determinant 1. Clearly, t ∈ T P if it satisfies t = ṡ2tṡ
−1
2 , so writing

t = Z3

 λ 0 0
0 λ−1µ 0
0 0 µ−1


we find

ṡ2tṡ
−1
2 = Z3

 1 0 0
0 0 1
0 −1 0

 λ 0 0
0 λ−1µ 0
0 0 µ−1

 1 0 0
0 0 −1
0 1 0

 = Z3

 λ 0 0
0 µ−1 0
0 0 λ−1µ

.
From this we see that t = ṡ2tṡ

−1
2 if and only if λ = µ2, so we find that

T P =

Z3

 µ2 0 0
0 µ−1 0
0 0 µ−1

 ∣∣∣∣∣∣ µ ∈ C∗
 ,

which is indeed of dimension #IP = 1.

Instead of giving a description of the Bruhat cells of SL3 and Richardson varieties

in SL3/B+, we will only describe the Schubert cells and varieties of CP2 = SL3/P1.

The approach is quite similar and it would take too long to discuss them all. For the

Schubert cells, we first need the set W P for P = P1.

As WP = {e, s2}, the Weyl group W splits into the following cosets: {e, s2} = WP ,

{s1, s1s2} = s1WP and {s2s1, s2s1s2} = s2s1WP . The longest element w0 = s2s1s2 is

contained in the third coset, so that wP = s2s1. Indeed, the longest element of WP is

wP = s2, so we find wPwP = s2s1s2 = w0. Thus, we find W P = {e, s1, s2s1}. Clearly,

we have e ≤ s1 ≤ s2s1 in the Bruhat order.

According to equation (1.2.5), we find B+eP/P ⊂ B+s1P/P ⊂ B+s2s1P/P .

Let us verify this.

First, we have B+eP/P = P/P is a point, so σe ∈ H4(CP2) is the class of a point.

Next, we have B+s1P/P . Note from (1.1.6) that bs̄1 ∈ B+s1 is of the form

 λ−1µ−1 z1 z3

0 λ z2

0 0 µ

 0 −1 0
1 0 0
0 0 1

 =

 z1 −λ−1µ−1 z3

λ 0 z2

0 0 µ

.
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Here we have defined s̄1 ∈ G analogously to the definition of s̄i ∈ G∨ given in

(1.2.1). Recall that we described P = P1 in equation (1.1.7), so that the class

bs̄1P/P is uniquely determined by the value of λ ∈ C∗, i.e. B+s1P/P = y1(λ)P/P

for λ ∈ C∗. Clearly, the closure of this Schubert cell is obtained by adding the point

y1(0)P/P = P/P . Thus, as claimed, we find that B+eP/P ⊂ B+s1P/P and more

precisely B+s1P/P = B+eP/P t B+s1P/P . Note that σs1 ∈ H2(CP2) is the class of

a line (and hyperplane).

Finally, B+s2s1P/P . We find that elements bs̄2s̄1 ∈ B+s2s1 are of the form

 λ−1µ−1 z1 z3

0 λ z2

0 0 µ

 0 −1 0
0 0 −1
1 0 0

 =

 z3 −λ−1µ−1 −z1

z2 0 −λ
µ 0 0

.
Thus, the class bs̄2s̄1P/P is uniquely determined by µ ∈ C∗ and z2 ∈ C. Note that

this has an empty intersection with the other Schubert cells as µ 6= 0. We see that

B+s2s1P/P = B+eP/P t B+s1P/P t B+s2s1P/P = CP2, verifying the inclusions

B+eP/P ⊂ B+s1P/P ⊂ B+s2s1P/P . Clearly, σs2s1 ∈ H0(CP2) is the fundamental

class. ♦

1.3 Small quantum cohomology

As mentioned in the introduction, the main object of study in this thesis is the small

quantum cohomology of cominuscule homogeneous spaces. This warrants an intro-

duction to its definition, structure and the underlying motivation. However, since our

approach is to investigate the quantum cohomology using mirror symmetry, almost

all our considerations are done on the “algebraic side of the mirror”. Therefore, we

will only introduce the quantum cohomology3 briefly.

We would like to suggest the book An Invitation to Quantum Cohomology by

Kock and Vainsencher [KV07] as a reference (for both the small and big quantum

cohomology of CPn).

3There are two concepts of quantum cohomology, which are distinguished by the names “small”
and “big”. We are only concerned with the “small” version, and we will drop the adjective.
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As the name suggests, the quantum cohomology qH∗(X) is an extension of the or-

dinary (intersection/de Rham) cohomology of a variety. In fact, it is a deformation in

the formal sense: qH∗(X) is obtained by adjoining formal “quantum parameters” and

deforming the intersection product of H∗(X) to a “quantum product”. In particular,

setting the quantum parameters to zero returns the ordinary cohomology.

This time, we will start with an example instead of ending with one:

Example 1.3.1. Consider X = CPn, so that H∗(X) = C[h]/〈hn+1〉. Let us consider

the relation hi ∪hj = hi+j: we can rewrite it as hi ∪hj = 〈hi ·hj ·hn−i−j〉0 hi+j, where

〈hi · hj · hn−i−j〉0 =

∫
CPn

hi ∪ hj ∪ hn−i−j =

∫
CPn

hn = 1,

denoting by 〈γ1 · γ2 · γ2〉0 the integration over CPn of the intersection product of the

three classes. Note that for k 6= i+ j, we have 〈hi · hj · hn−k〉0 = 0, so we can rewrite

the intersection product even further as

hi ∪ hj =
n∑
k=0

〈hi · hj · hn−k〉0 hk.

Now, we can interpret 〈[Y1] · [Y2] · [Y3]〉0 as the number of degree-0 curves (i.e. points)

intersecting Y1, Y2 and Y3. This leads to an obvious generalization: let 〈[Y1]·[Y2]·[Y3]〉d

be the number of degree-d curves intersecting Y1, Y2 and Y3. Then we deform ∪ into

the quantum product ∗ by setting

hi ∗ hj =
∞∑
d=0

n∑
k=0

〈hi · hj · hn−k〉d hkqd.

Clearly, setting q = 0 returns the intersection product. It turns out that for given

(i, j), the number 〈hi · hj · hn−k〉d is only non-zero for one pair (k, d), so the sum is

actually finite. In fact, we find

hi ∗ hj =

 hi+j, i+ j ≤ n,

hi+j−(n+1)q, i+ j > n.
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Thus, the quantum cohomology of X = CPn is qH∗(X) = C[h, q]/〈hn+1 − q〉. ♦

To properly define 〈γ1 · γ2 · γ2〉d, we have to consider stable maps to X.

Remark 1.3.2. To preclude any complications with the definitions, we assume that

X is convex. i.e. that H1(CP1, µ∗TX) = 0 for all maps µ : CP1 → X. Homogeneous

spaces are convex by the transitivity of the group action (see [FP97], p. 6).

Definition 1.3.3. Let C be a projective, connected, nodal curve of genus 0, and fix

distinct smooth points p1, . . . , pn ∈ C, which we call marked points. A map µ : C → X

is called (Kontsevich) stable if every smooth component (∼= CP1) mapped to a point

has at least three marked or singular points. We call the β ∈ H2(X,Z) such that

µ∗([C]) = β the degree of the map. Note that β is necessarily effective. The moduli

space of stable maps to X of degree β ∈ H2(X,Z)eff with n marked points is denoted

M0,n(X, β). This space has n natural evaluation maps given by

evi : M0,n(X, β)→ X : (C, {p1, . . . , pn};µ) 7→ µ(pi).

Remark 1.3.4. Stability of a map can equivalently be characterized by the finiteness

of the automorphism group of the map, see Lemma 2.3.1 of [KV07].

Remark 1.3.5. Stable maps (and their associated Gromov-Witten invariants below)

can also be defined for higher genera. However, the structure of the associated moduli

spaces is much less understood.

Under the assumptions of Remark 1.3.2, it is known that the moduli space is nicely

behaved:

Theorem 1.3.6 ([FP97], Theorem 2). For X projective, nonsingular and convex,

M0,n(X, β) is a normal projective variety of pure dimension dim(X)+
∫
β
c1(TX)+n−3.

Locally, it is the quotient of a nonsingular variety by a finite group.

In particular, in the case of convex varieties, integration over M0,n(X, β) is well-

defined.

24



Definition 1.3.7. For γ1, . . . , γn ∈ H∗(X) and β ∈ H2(X), the (n-point) Gromov-

Witten invariant 〈γ1 · . . . · γn〉d is defined as

〈γ1 · . . . · γn〉d =

∫
M0,n(X,β)

ev∗1(γ1) ∪ . . . ∪ ev∗n(γn).

Note that this is independent of the order of the factors.

As ev∗i ([Y ]) is (the class of) the locus of stable maps µ satisfying µ(pi) ∈ Y ,

the Gromov-Witten invariant seems to count the stable maps whose images intersect

with n given subvarieties. However, for this count to work, one needs a Bertini-type

transversality condition. For homogeneous spaces, the transitive group action can

be used to obtain this, and the Gromov-Witten invariants indeed agree with these

counts (see [FP97], p. 8). Moreover, note that the count includes more than simply

the curves of a given degree, although for X a homogeneous space an open, dense

subvariety of M0,n(X, β) consists of maps whose image are smooth curves.

Only the 3-point invariants appear in the (small) quantum cohomology:

Definition 1.3.8. Let X be a smooth, projective and convex variety. Take a Z-basis

{β1, . . . , βr} ⊂ H2(X,Z), and let Γ ⊂ H∗(X) be a C-basis. For every γ ∈ Γ, denote

by γ∗ the the Poincaré dual element. The quantum cohomology qH∗(X) is defined as

the ring H∗(X)[q1, . . . , qr] equipped with the quantum product ∗. For γ1, γ2 ∈ H∗(X),

this is defined as

γ1 ∗ γ2 =
∑
d∈Nr0

∑
γ∈Γ

〈γ1 · γ2 · γ〉d·β qdγ∗, (1.3.1)

where d · β =
∑r

i=1 diβi and qd =
∏r

i=1 q
di
i . (We denoted N0 = N ∪ {0}.)

The quantum cohomology of homogeneous spaces has had a lot of attention of the

years since the initial conception of quantum cohomology. A complete survey of these

references would lead us too far afield. Of particular relevance is the paper [CMP08],

as well as the references therein. In particular, it gives a unified treatment of the

quantum cohomology of ring of cominuscule homogeneous spaces as well as explicitly

describing its ring structure for the exceptional family.
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As we will discuss in Section 1.5, cominuscule homogeneous spaces are in particular

homogeneous spaces G/P with P of maximal dimension, i.e. IP = {k} for a certain

k ∈ {1, . . . , n}. It is easy to see that for homogeneous spaces X = G/P with P = Pk,

the second homology group H2(X,Z) is one-dimensional. Indeed, we can deduce this

from Poincaré duality and our discussion of Schubert varieties in Section 1.2:

If IP = {k}, then WP = 〈si | i 6= k〉, so that siWP = WP for all i 6= k. Thus,

skWP is the only coset wWP with `(w) = 1 unequal to WP . This implies that the

Schubert variety B+skP/P is the only one-dimensional Schubert variety. Now, since

the Schubert classes form a basis of the cohomology, we find that H2n−2(X) = Cσsk ,

implying that H2(X,Z) = Zβ for the Poincaré dual β of σsk . (Here we are using that

the Schubert classes form a basis over Z as well.)

Thus, in the case of homogeneous spaces G/P with P of maximal dimension, the

expression in (1.3.1) simplifies significantly:

γ1 ∗ γ2 =
∑
d∈N0

∑
γ∈Γ

〈γ1 · γ2 · γ〉dβ qdγ∗. (1.3.2)

Similarly, the quantum cohomology of these homogeneous spaces is a polynomial ring

over a single quantum parameter q.

1.4 Rietsch’s Lie-theoretic mirror model

In [Rie08], Rietsch constructs a Landau-Ginzburg model for general homogeneous

spaces X = G/P for P an arbitrary parabolic subgroup. The mirror variety there is

a subvariety of the open Richardson variety associated to (wP , w0). Recall that this

open Richardson variety is given by

X∨Lie = R∨wP ,w0
=
(
B∨+wPB

∨
− ∩B∨−w0B

∨
−
)
/B∨− ⊂ G∨/B∨−. (1.4.1)
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This variety turns out to be related the following subset of G∨:

Z∨P = B∨−w̄
−1
0 ∩ U∨+T P w̄PU∨− ⊂ G∨. (1.4.2)

Namely, there exists an isomorphism

Ψ : X∨Lie × T P
∼−→ Z∨P , (1.4.3)

whose inverse is given by z 7→ (zB∨−, t) where z = u+tw̄Pu−. This map is well-defined

by Lemma 1.4.4.

Remark 1.4.1. These results are analogous to the statements in [Rie08], Section

4.1, although we have modified the definition of Z∨P compared to [Rie08] to facilitate

calculations in Section 2.4. Indeed, Ψ can be obtained as follows: For a given t ∈ T P ,

a class rB∨− ∈ R∨wP ,w0
allows by definition a representative of the form r = b−w̄

−1
0 b′− =

b+w̄P tu− (where b−, b
′
− ∈ B∨−, b+ ∈ B∨+ and u− ∈ U∨−). Note that this representative is

unique up to right-multiplication with an element of U∨−. Writing b′− = t′u′− for t′ ∈ T∨

and u′− ∈ U∨−, the element r(u′−)−1 is independent of the choice of representative.

Moreover, it is an element of B∨−w̄
−1
0 , as b−w̄

−1
0 t′ = b−t

′′w̄−1
0 for some t′′ ∈ T∨. Writing

b+ = t+u+ for t+ ∈ T∨ and u+ ∈ U∨+, we find that Ψ(z) = t−1
+ r(u′−)−1 is well-defined

and an element of Z∨P (using w̄P t = tw̄P ).

Now, in [Pet97], Peterson gave a presentation of the quantum cohomology of a

generalized flag variety G/P as the coordinate ring of what is subsequently called

the Peterson variety (see e.g. [Rie08], paragraph 3.2). The coordinate ring of a well-

chosen open stratum of this (non-reduced) variety gives the quantum cohomology

localized at the quantum parameters (see e.g. [Rie08], equation (3.2)). In [Rie08],

this open stratum is then shown to be isomorphic to the critical locus of a certain

function on Z∨P . Thus, using the isomorphism Ψ of equation (1.4.3), we obtain a

subvariety of X∨Lie × T P whose coordinate ring is also isomorphic to the localized

quantum cohomology of X.
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Instead of presenting these statements in more detail, we will instead follow the

reformulation of these results presented in [MR20], Theorem 6.5; see also Section 4.2

of [PR18]. There the critical locus is replaced with all of X∨Lie× T P , but one needs to

take the quotient of the coordinate ring by an ideal generated by the derivatives of a

potential.

Theorem 1.4.2 ([Rie08], Theorem 4.1, Lie-theoretic Landau-Ginzburg model). Let

X = G/P be a complete homogeneous space with G a simple, simply-connected

algebraic group over C and with P a (not necessarily maximal) parabolic subgroup.

There exists a potential WLie : X∨Lie × T P → C (given in Definition 1.4.5) such that‘

qH∗(X)loc
∼= C[X∨Lie × T P ]/〈∂WLie〉,

where qH∗(X)loc is the (small) quantum cohomology of X with inverted quantum

parameters and 〈∂WLie〉 is the ideal generated by the derivatives of WLie along X∨Lie.

The potential WLie is presented in [PR18] as the pull-back of a potential defined

on Z∨P along the isomorphism Ψ : X∨Lie × T P
∼−→ Z∨P from equation (1.4.3). To state

this potential, we introduce to the following subset of U∨−, which is an intersection of

U∨− with a Bruhat cell (see Section 1.2):

UP
− = U∨− ∩B∨+w̄P w̄0B

∨
+ = U∨− ∩B∨+(ẇP )−1B∨+ ⊂ U∨−. (1.4.4)

Remark 1.4.3. Note that the two definitions of UP
− coincide: (wP )−1 = wPw0 and

the chosen representatives only differ by a torus element, so that B∨+w̄P w̄0B
∨
+ =

B∨+(ẇP )−1B∨+. We will use both expressions; the first will be more convenient in

Chapter 2, while the second will be used in Chapter 3.

This set has the following property, which will also be important in Section 2.2:

Lemma 1.4.4 ([PR18], Proposition 5.1). Every z ∈ Z∨P has a unique decomposition

z = u+tw̄Pu− with u+ ∈ U∨+, t ∈ T P and u− ∈ UP
− . Moreover, the map Z∨P → UP

−×T P

given by z 7→ (u−, t) is an isomorphism. In particular, fixing (u−, t) determines u+.

28



The proof of this result in [PR18] can be carried over to the general case without

any modification, so it will be omitted here.

The potential on Z∨P is now defined as follows:

Definition 1.4.5. Define the potential WZ∨P : Z∨P → C as the map

WZ∨P : z = u+tw̄Pu− 7−→ E∗(u−1
+ ) + F∗(u−),

where E∗ =
∑n

i=1(e∨i )∗ and F∗ =
∑n

i=1(f∨i )∗, and where the decomposition of z =

u+tw̄Pu− is the unique decomposition with u− ∈ UP
− as stated in Lemma 1.4.4. More-

over, the potential WLie : X∨Lie × T P → C mentioned in Theorem 1.4.2 is given by

WLie =WZ∨P ◦Ψ with Ψ given in equation (1.4.3).

Example 1.4.6. We will illustrate Rietsch’s mirror model for CP2, continuing Ex-

amples 1.1.10 and 1.2.7. We will need to consider the subvariety Z∨P = B∨−w̄
−1
0 ∩

U∨+T
P w̄PU

P
− of G∨ = PSL3 = SL3/Z3. Let us start with the elements of U∨+T

P w̄PU
P
− .

Recall that UP
− = U∨− ∩ B∨+(ẇP )−1B∨+ is the intersection of U∨− with a Bruhat cell.

This cell contains elements of the form (note that (ẇP )−1 = (ṡ2ṡ1)−1 = s̄1s̄2)

Z3

 λ1 z1 z3

0 λ−1
1 λ2 z2

0 0 λ−1
2

 0 0 1
1 0 0
0 1 0

 λ3 z4 z6

0 λ−1
3 λ4 z5

0 0 λ−1
4


= Z3

 λ3z1 z1z4 + λ−1
3 λ4z3 z1z6 + z3z5 + λ1λ

−1
4

λ−1
1 λ2λ3 λ−1

1 λ2z4 + λ−1
3 λ4z2 λ−1

1 λ2z6 + z2z5

0 λ−1
2 λ−1

3 λ4 λ−1
2 z5


where λi ∈ C∗ and zi ∈ C. The elements in the intersection of this cell with U∨− are

thus of the form

Z3

 1 0 0
a1 1 0
0 a2 1

 = y∨1 (a1)y∨2 (a2)

for a1, a2 ∈ C∗. (One can check that zi ∈ C give enough degrees of freedom to make

the upper triangle of the matrix the required form.)
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Note that this is an algebraic torus isomorphic to (C∗)2 and that the indices

(1, 2) are exactly the indices of the reduced expression of (wP )−1 = s1s2, the in-

verse expression of wP . The algebraic torus U◦− consisting of elements of the form

y∨r`(a`) · · · y
∨
r1

(a1) where ai ∈ C∗ and (r1, . . . , r`) is such that wP = sr1 · · · sr` will play

an important role in Chapters 2 and 3, see Definition 2.2.1. However, in general we

have that U◦− ⊂ UP
− is a strict dense subset. In fact, it is the restriction to the torus

Z◦P = B∨−w̄
−1
0 ∩ U∨+T P w̄PU◦− inside Z∨P (see Definition 2.2.3) where the Laurent poly-

nomial expression is defined, see Theorem 2.2.7. Moreover, by restricting to U◦− we

will be able to prove the isomorphism between Rietsch’s Lie-theoretic model and the

canonical models for the exceptional cominuscule homogeneous spaces in Theorems

3.1.1 and 3.1.2.

Now we have a description of UP
− , we can work out U∨+T

P w̄PU
P
− : its elements are

of the form (note that w̄P = s̄2)

Z3

 1 z1 z3

0 1 z2

0 0 1

 µ2 0 0
0 µ−1 0
0 0 µ−1

 1 0 0
0 0 −1
0 1 0

 1 0 0
a1 1 0
0 a2 1


= Z3

 µ2 + µ−1a1z3 µ−1z3 − µ−1a2z1 −µ−1z3

µ−1a1z2 µ−1z2 − µ−1a2 −µ−1

µ−1a1 µ−1 0


where µ, a1, a2 ∈ C∗ and z1, z2, z3 ∈ C.

On the other hand, the elements of B∨−w̄
−1
0 are of the form (note that w̄−1

0 =

(s̄2s̄1s̄2)−1 = ṡ2ṡ1ṡ2)

Z3

 µ1 0 0
w1 µ−1

1 µ2 0
w3 w2 µ−1

2

 0 0 1
0 −1 0
1 0 0

 = Z3

 0 0 µ1

0 −µ−1
1 µ2 w1

µ−1
2 −w2 w3


where µ1, µ2 ∈ C∗ and w1, w2, w3 ∈ C. Comparing these elements with the elements

of U∨+T
P w̄PU

P
− , we find that the three zero entries in the top-left of this expression

imply that z2 = 0, z3 = −µ3/a1 and in turn z1 = −µ3/a1a2. (In particular, we find

that z1 6= 0 and z3 6= 0.) There are no restrictions on µ, a1, a2 ∈ C∗. Thus, elements
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Z∨P can be decomposed in the form u+tw̄Pu− as

Z3

 1 − µ3

a1a2
−µ3

a1

0 1 0
0 0 1


 µ2 0 0

0 µ−1 0
0 0 µ−1

 1 0 0
0 0 −1
0 1 0

 1 0 0
a1 1 0
0 a2 1

.
Now, note that (e∨i )∗ : U∨+ → C and (f∨i )∗ : U∨− → C (i ∈ {1, 2}) are given by

(e∨i )∗ : Z3

 1 z1 z3

0 1 z2

0 0 1

 7→ zi, and (f∨i )∗ : Z3

 1 0 0
w1 1 0
w3 w2 1

 7→ wi,

and that (e∨i )∗(u−1) = −(e∨i )∗(u) for u ∈ U∨+. Thus, WZ∨P : Z∨P → C is given by

WZ∨P (z) = (e∨1 )∗(u−1
+ ) + (e∨2 )∗(u−1

+ ) + (f∨1 )∗(u−) + (f∨2 )∗(u−)

= −(− µ3

a1a2
) + 0 + a1 + a2 = a1 + a2 + q

1

a1a2

,

writing q = µ3 = α∨1 (t). Note that the choice of representative in SL3 of t ∈ PSL3

is ambiguous: we can replace µ by multiplying it with a cube root of unity without

changing its class in PSL3, but all choices have α∨(t) = µ3, so that α∨1 : T P → C∗

given by t 7→ µ3 is in fact an isomorphism. This holds because G∨ is adjoint, which

is in turn implied by our initial assumption that G is simply-connected.

Before comparing the ring C[Z∨P ]/〈∂WZ∨P 〉 with the quantum cohomology of CP2,

we would like to make a number of comments on the (toric, as UP
− = U◦− in this

case) expression for the potential: Firstly, note that we found that F∗(u−) =
∑

i ai

is the sum of the toric coordinates on U◦−. In Lemma 2.3.4, we will show that this

always holds on U◦−, even when U◦− ( UP
− . Secondly, we found that (e∨i )∗(u−1

+ ) = 0 for

i 6= 1 (i.e. i = 2) where P = P1. This also holds in general on U◦−, see Lemma 2.3.6.

Thirdly, the fact that the denominator of the quantum term always equals the product

of the toric coordinates on U◦− will be shown in general in Lemma 2.3.7. Finally, we

will see in Lemma 2.3.8 that the numerator of the quantum term on U◦− corresponds

to the subexpressions of w′ = wP (w′′)−1 inside wP , where w′′ is the minimal coset

representative of wP skWP for k such that P = Pk. However, for CP2 (and indeed all
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CPn), we find that wP s1 = wP , so that w′ = e is the identity element and we find

that the numerator is simply 1. In fact, these four lemmas will be the majority of the

proof of the Laurent polynomial expression we give in Theorem 2.2.7; the lemmas will

be proven in Section 2.4.

Now, let us finally verify Theorem 1.4.2 for CP2 by calculating C[Z∨P ]/〈∂WZ∨P 〉.

Recall that in Theorem 1.4.2 the ideal 〈∂WLie〉 is generated by the derivatives along

X∨Lie. For CP2, these correspond on Z∨P to the derivatives with respect to a1 and a2.

Note that

〈∂WZ∨P 〉 =
〈

1− q 1
a21a2

, 1− q 1
a1a22

〉
⊃ 〈a1 − a2〉.

(Multiply the first generator with a1 and the second with a2 and take the difference.)

Thus, we find that

C[Z∨P ]/〈∂WZ∨P 〉 = C[a±1
1 , a±1

2 , q±1]/
〈
1− q 1

a21a2
, 1− q 1

a1a22

〉 ∼= C[a±1, q±]/〈a3 − q〉.

(Note that the inverse generators a−1
i and q−1 come from the fact that ai ∈ C∗ and

q = µ3 ∈ C∗.) Recall that qH∗(CP2) ∼= C[h, q]/〈h3 − q〉 from Example 1.3.1, then we

clearly have

C[Z∨P ]/〈∂W〉 ∼= C[a±1, q±1]/〈a3 − q〉 ∼= C[h, q±1]/〈h3 − q〉 ∼= qH∗(CP2)loc,

as was claimed in Theorem 1.4.2. ♦
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1.5 Cominuscule homogeneous spaces and minus-

cule representations

In section 2.2 we will give a Laurent polynomial expression for the potential WZ∨P
restricted to an open algebraic torus inside Z∨P , after assuming the homogeneous

space is cominuscule. In this section we will discuss this property, fix further notation

and finally consider minuscule representations of a given Lie algebra.

We will maintain all the assumptions and conventions of Sections 1.1 and 1.2. In

particular, we assume that X = G/P is a homogeneous space for a (complex) linear

algebraic group G of rank n that is both simple and simply-connected. Now, we

assume in addition that X is minimal. This is equivalent to the assumption that P

is a maximal parabolic subgroup; that is, IP = {k} for a single index k ∈ {1, . . . , n},

see equation (1.1.1). Thus, P is associated to a single vertex k of the Dynkin diagram

of G. This fact is denoted by P = Pk. Note that we can also write P∨ = P∨k as P∨ is

associated to the kth vertex of the Dynkin diagram of G∨ (see equation (1.1.3)).

Because of the maximality of P∨ = P∨k , we know that WP = 〈si | i 6= k〉. In

particular, the invariant torus T P ⊂ T∨ is one-dimensional and α∨k : T P → C∗ gives

an isomorphism (G∨ being adjoint; we saw this in Example 1.4.6). The element

wP sk ∈ W will turn out to be of particular interest; we will write w′′ ∈ W P for the

minimal coset representative of wP skWP and denote its length by `(w′′) = `′′ ≤ ` =

`(wP ). Note that wP skwP = s0, where s0 is the reflection through the highest (co-)

root, so that we can equivalently define w′′ as the minimal coset representative of

s0WP . Define w′ ∈ W by

w′ = wP (w′′)−1 (1.5.1)

and write `(w′) = `′; clearly ` = `′ + `′′.

The second assumption we will impose on X = G/Pk is that it is a cominuscule

homogeneous space. A minimal homogeneous space X = G/Pk is called (co-) minus-

cule if the fundamental weight ωk is (co-) minuscule. Recall that the fundamental

weights {ω1, . . . , ωn} form a basis of the character lattice X dual to the simple coroot
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basis ∆∨ = {α∨1 , . . . , α∨n} of the cocharacter lattice X ∨.

Definition 1.5.1. A fundamental weight ωi is called minuscule if it satisfies one of

the following equivalent conditions (see also [Bou68], Section VI.1, exercise 24):

(i) For every α∨ ∈ Φ∨, 〈〈ωi, α∨〉〉 ∈ {−1, 0,+1}, where 〈〈·, ·〉〉 : X ×X ∨ → C denotes

the dual pairing.

(ii) For α∨0 the longest root of the root system Φ∨, 〈〈ωi, α∨0 〉〉 = 1.

(iii) The coefficient of α∨i in α∨0 is 1.

A fundamental weight ωi is called cominuscule if the corresponding coweight ω∨i is

minuscule.

(Recall that the coweights {ω∨1 , . . . , ω∨n} form a basis of X ∨ dual to the basis

of simple roots ∆ = {α1, . . . , αn} of X .) The list of minuscule and cominuscule

fundamental weights is well-known; we have included it in Table 1.5.1 together with

the associated minimal homogeneous spaces X = G/Pk.

Thus, assuming that X = G/Pk is cominuscule means that ω∨k is minuscule, which

in turn implies that the fundamental weight representation V (ω∨k ) is minuscule; that

is, the Weyl group acts transitively on the weight spaces of V (ω∨k ). Here the simple

reflection si ∈ W acts on a vector vµ∨ of weight µ∨ by mapping it to the vector s̄i ·vµ∨

of weight si(µ
∨).

Recall that the fundamental weight representation V (ω∨k ) is the highest weight

representation of g∨ with ω∨k as highest weight. For any choice of a highest-weight

vector v+
ω∨k

, we obtain the representation as V (ω∨k ) = U∨− · Cv+
ω∨k

, where U∨− is the

universal enveloping algebra of u∨− (see for example [Hum78], Theorem 20.2). Thus,

{f∨i1 · · · f
∨
ij
· v+

ω∨k
| j ≥ 0} spans V (ω∨k ). We want to compare the actions of U∨− and W ,

so we will need some results on the structure of minuscule representations.

Remark 1.5.2. To be able to apply the results directly to our case, we will change

the notation of the following theorem to conform to our situation; for example, we

write g∨ for a general Lie algebra, as we want to apply the theorem to the minuscule
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highest weight representation of the Lie algebra g∨ of the (adjoint) Langlands dual

group G∨ associated to the (simply-connected) group G such that X = G/Pk.

We denote the Cartan integers of a root system Φ∨ by aij ∈ Z, i, j ∈ {1, . . . , n}.

They are given by aij = 2
(α∨j ,α

∨
i )

(α∨i ,α
∨
i )

for any choice of non-degenerate, symmetric, bilinear

form (·, ·) (e.g. the Killing form). We also use the notation c(µ∨, α∨i ) = 2
(µ∨,α∨i )

(α∨i ,α
∨
i )

for

µ∨ a general weight.

Theorem 1.5.3 (Green [Gre08]). Let g∨ be a simple Lie algebra and fix a set of

simple roots ∆∨ = {α∨1 , . . . , α∨n} and Chevalley generators (e∨i , f
∨
i ). Suppose V (λ∨) is

a minuscule representation of g∨ with highest weight λ∨. Denote by M(λ∨) the weights

of V (λ∨) and let µ∨ ∈M(λ∨) be an arbitrary weight. The following statements hold:

(i) c(µ∨, α∨i ) ∈ {−1, 0, 1}, and µ∨ − cα∨i ∈M(λ∨) if and only if c = c(µ∨, α∨i ).

(ii) Each of the weight spaces is one-dimensional.

(iii) Given a highest weight vector v+
λ∨ , we can find a basis {vµ∨ | µ∨ ∈M(λ∨)} with

the following properties: vµ∨ has weight µ∨ and the basis vector of the highest

weight vλ∨ coincides with v+
λ∨ ; the Chevalley generators act on vµ∨ as

e∨i · vµ∨ =

 vµ∨+α∨i
, if c(µ∨, α∨i ) = −1,

0, otherwise,

f∨i · vµ∨ =

 vµ∨−α∨i , if c(µ∨, α∨i ) = +1,

0, otherwise,

and h∨i · vµ∨ = c(µ∨, αi) vµ∨ .

(iv) For any v ∈ V (λ∨) and any i ∈ {1, . . . , n}, we have (e∨i )2 ·v = 0 and (f∨i )2 ·v = 0.

Moreover, if j ∈ {1, . . . , n} is such that the Cartan integer aij = −1 (i.e. when in

the Dynkin diagram we have i j or >i j )4 we have both e∨i e
∨
j e
∨
i ·v = 0

and f∨i f
∨
j f
∨
i · v = 0. Finally, if aij < 0 we have e∨i f

∨
j · v = 0 = f∨j e

∨
i · v.

4Strictly speaking, we also have aij = −1 when we have >i j , but these edges only appear
in the Dynkin diagram of type G2, and the corresponding Lie algebra does not have any minuscule
representations.
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Applying Theorem 1.5.3 to the definition of ṡi and s̄i given in equation (1.2.1) we

obtain the following corollary directly:

Corollary 1.5.4. With the assumptions of Theorem 1.5.3, write c = c(µ∨, α∨i ), then

we have si(µ
∨) = µ∨ − cα∨i and

ṡi · vµ∨ =


vµ∨+α∨i

= e∨i · vµ∨ , if c = −1,

vµ∨ , if c = 0,

−vµ∨−α∨i = −f∨i · vµ∨ , if c = +1,

s̄i · vµ∨ =


−vµ∨+α∨i

= −e∨i · vµ∨ , if c = −1,

vµ∨ , if c = 0,

vµ∨−α∨i = f∨i · vµ∨ , if c = +1.

Conversely, we have

e∨i · vµ∨ =

 vµ∨+α∨i
= ṡi · vµ∨ = −s̄i · vµ∨ , if c = −1,

0, otherwise,

f∨i · vµ∨ =

 vµ∨−α∨i = s̄i · vµ∨ = −ṡi · vµ∨ , if c = +1,

0, otherwise.

The explicit description of the action of a Lie algebra on a minuscule representation

in Theorem 1.5.3 and the comparison of the actions of Chevalley generators and Weyl

group elements in Corollary 1.5.4 allow us to easily compare the actions of U∨− and

W . We will do so in Section 2.1. The coset representatives W P will turn out to play

an important role in this comparison.
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1.6 Generalized Plücker coordinates and the coor-

dinate ring of (UP
− )

T

For cominuscule homogeneous spaces X = G/Pk, a consequence of the geometric

Satake correspondence is that the Schubert classes that form a basis of the coho-

mology are in one-to-one correspondence with a set of projective coordinates called

(generalized) Plücker coordinates on the Langlands dual homogeneous space

X∨ = P∨k \G∨ = P̃∨k \G̃∨. (1.6.1)

(Following a similar reasoning to Remark 1.1.6, we note that both expressions give

the same homogeneous space. We will most frequently use the second expression.)

See [MR20], p. 3, for more references regarding the geometric Satake correspondence.

Thus, if we reformulate the potential in Definition 1.4.5 in terms of Plücker coor-

dinates, we obtain a description of the localized quantum cohomology in terms of

Schubert classes and relations between them. Plücker coordinate expressions for Ri-

etsch’s potential have been given for Grassmannians [MR20], quadrics [PRW16], and

Lagrangian Grassmannians [PR13]. In [PRW16], this was obtained using a description

of the coordinate ring of UP
− by [GLS11].

In Chapter 3, we will present Plücker coordinate expressions for the potentials of

the exceptional cominuscule homogeneous spaces, the Cayley plane and the Freuden-

thal variety. Our approach will be analogous to [PRW16] (with some deviations), so

we will introduce Plücker coordinates and the description of the coordinate ring of the

transpose of UP
− in this section. We will discuss the Cayley plane and the Freudenthal

variety in Section 1.7.

Generalized Plücker coordinates. As we discussed in Section 1.5, the assump-

tion that X = G/Pk is cominuscule implies that V (ω∨k ) is minuscule. Now, note that

V (ω∨k ) has w0 · ω∨k as lowest weight, which equals either −ω∨k (in the cases of type

Bn, Cn, D2n and E7) or −ω∨σ0(k) for σ0 : {1, . . . , n} → {1, . . . , n} the symmetry of the
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Dynkin diagram of G (in the cases of An, D2n+1 and E6). In either case, we see from

〈〈−w0 · ω∨k , α〉〉 = 〈〈−w0 · ω∨k ,−w0 · α′〉〉 = 〈〈ω∨k , α′〉〉 ∈ {−1, 0,+1}

(where α ∈ Φ and α′ = −w0 · α), that −w0 · ω∨k is minuscule as well, see Definition

1.5.1. Thus, we can consider the minuscule fundamental representation V (−w0 · ω∨k ),

which now has −ω∨k as lowest weight. Taking the dual, we find that V (−w0 ·ω∨k )∗ has

highest weight ω∨k and a right action of G̃∨.

As V (−w0 · ω∨k ) is minuscule, Theorem 1.5.3 tells us that it has a natural basis

{vi} after fixing a lowest weight vector, which we denote by v0. Taking the dual

basis {v∗i } for V (−w0 · ω∨k )∗, we note that v∗0 is the highest weight vector of weight

ω∨k . Thus, we have [v∗0] · P̃∨ = [v∗0] ∈ P
(
V (−w0 · ω∨k )∗

)
and we obtain a natural

embedding X∨ ↪→ P
(
V (−w0 · ω∨k )∗

)
given by P̃∨g 7→ [v∗0 · g], using the fact that P̃∨

and {y∨k (a) | a ∈ C} generate G̃∨. Using this embedding, we can define the coordinates

as follows:

Definition 1.6.1. For any basis element vi as fixed above, and g ∈ G̃∨, define the

map pi : G̃∨ → C by

pi(g) = (v∗0 · g)(vi) = v∗0(g · vi). (1.6.2)

These maps induce projective coordinates on X∨ called (generalized) Plücker coordi-

nates.

We will abuse notation and call the maps pi : G̃∨ → C Plücker coordinates as well.

The coordinate ring of UP
+ = (UP

− )T ⊂ G̃∨. Recall from equation (1.4.4) that

we defined UP
− = U∨− ∩ B∨−(ẇP )−1B∨−. In Proposition 8.5 of [GLS11], the coordinate

rings of these unipotent cells have been described using a dual PBW basis compatible

with a reduced expression. However, the result is formulated using cells of U∨+ instead

of U∨−: we will have to use the transposition anti-automorphism ·T to translate their

results to cells of U∨−. Recall that this anti-automorphism is given by mapping x∨i (a)

to y∨i (a) and vice versa, while acting trivially on T̃∨. Note that s̄Ti = ṡi = s̄−1
i .
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We would like to emphasize that the results in [GLS11] hold for general unipotent

cells, but we will only consider the case of UP
− for P = Pk with ωk cominuscule here.

Writing UP
+ for the transpose of UP

− , we clearly have

UP
+ = (UP

− )T = U∨+ ∩B∨+ẇPB∨+. (1.6.3)

The coordinates are defined on UP
+ using the embedding of U∨+ in the completed

universal enveloping algebra Û∨+ of u∨+. Namely, they form a subset of a basis for

the graded dual of Û∨+. As the universal enveloping algebra is in particular a infinite-

dimensional vector space, we need to be more careful in defining the dual. We will

make use of the Chevalley generators (e∨1 , f
∨
1 , . . . , e

∨
n , f

∨
n ).

Consider the Cartan (or root space) decomposition

g∨ = t∨ ⊕
⊕
α∨∈Φ∨

u∨α∨ ,

where for α∨ ∈ Π∨ a positive root we have that u∨+α∨ ⊂ u∨+ and u∨−α∨ ⊂ u∨− are one-

dimensional subspaces (see for example [Hum78], Section 8.5). Clearly, u∨+α∨i
= Ce∨i

is spanned by the corresponding Chevalley generator, u∨+si(α∨j ) = C[e∨i , e
∨
j ] is spanned

by the commutator of the generators if (sisj)
2 6= 1, and so on.

Now, consider the positive root lattice N0∆∨ ∼= Nn
0 , i.e. all non-negative integral

linear combinations of the simple roots α∨i . For α∨ =
∑n

i=1 diα
∨
i ∈ N0∆∨, denote

by Û∨+(α∨) the subspace spanned by those pure tensors e∨i1 · · · e
∨
ij

such that exactly

di of the factors have index i. For example, Û∨+(α∨i ) = Ce∨i = u∨+α∨i
for α∨i ∈ ∆∨,

and Û∨+(2α∨1 + α∨2 ) = Ce∨1 e∨1 e∨2 ⊕ Ce∨1 e∨2 e∨1 ⊕ Ce∨2 e∨1 e∨1 . (If 2α∨1 + α∨2 ∈ Π∨, note that

u∨2α∨1 +α∨2
= C[e∨1 , [e

∨
1 , e
∨
2 ]] ⊂ Û∨+(2α∨1 + α∨2 ) .) This endows Û∨+ with an N0∆∨-grading

that naturally extends the root space decomposition of u∨+ (i.e. u∨+α∨ ⊂ Û∨+(α∨) for

α∨ ∈ Π∨ ⊂ N0∆∨). The graded dual is defined as the direct sum of the duals of these

finite-dimensional subspaces,

(
Û∨+
)∗

gr
=

⊕
α∨∈N0∆∨

(
Û∨+(α∨)

)∗
.
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To define a basis on this dual, we start by recalling that we fixed a reduced

expression for the minimal representative wP ∈ W P of the coset w0WP and denoted

its sequence of indices by (ri)
`
i=1 where ` = `(wP ), see equation (1.2.3). As a Weyl

group element, wP maps a set Π∨wP = {β∨wP (j) | j = 1, . . . , `} ⊂ Π∨ of positive roots

to negative roots. It is well known that these are given by

β∨wP (1) = α∨r` and β∨wP (j) = sr` · · · sr`−j+2
(α∨r`−j+1

) for j ∈ {2, . . . , `}, (1.6.4)

(for example, this follows from [Hum78], Section 10.2). Note that sr` · · · sr`−j+2
are

the first j − 1 factors of the reduced expression for (wP )−1 obtained by reversing the

simple reflections in (1.2.3). Since w0 = wPwP , it is easy to see that Π∨ = Π∨wP tΠ∨P ,

where one recalls from Section 1.2 that Π∨P is the set of positive (co-) roots mapped

to negative ones by wP . We also remark that both Π∨wP and Π∨P are bracket closed

subsets: if α∨, β∨ ∈ Π∨wP and α∨ + β∨ ∈ Π∨ then α∨ + β∨ ∈ Π∨wP , and the same holds

for roots in Π∨P . (This follows from the linearity of action of the Weyl group elements

on roots.) See also [GLS11], Section 4.3, and the references therein.

For each of the positive roots β∨wP (m), m ∈ {1, . . . , `}, we choose a basis element

e∨wP (m) for u∨+β∨
wP

(m). In particular, we take e∨wP (1) = e∨k , as β∨wP (1) = α∨k .

Remark 1.6.2. In [GLS11], the basis elements for the one-dimensional subspaces

u∨+β∨
wP

(m) are not defined more explicitly, nor will we need an explicit choice of basis

vector in the following. However, it is easy to define a set of basis elements e∨wP (m) ∈

u∨+β∨
wP

(m) for m ∈ {1, . . . , `} using the following algorithm: consider the defining

expression of β∨wP (m) in (1.6.4); remove all simple reflections acting trivially; replace

each remaining simple reflection si by the corresponding ad(e∨i ); and finally replace

α∨i with the corresponding e∨i .

Now, we complete the elements {e∨wP (m) | m = 1, . . . , `} to a basis of u∨+ by

choosing generating elements in u∨+α∨ for α∨ ∈ Π∨ \Π∨wP = Π∨P . To simplify notation,

we will denote these additional elements by e∨wP (m) for m ∈ {`+ 1, . . . , `+ `P}, where

` + `P = `0 = `(w0) is the number of positive roots. Here we will also assume that
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the Chevalley generators e∨i are part of this basis. With a basis for u∨+, we can in turn

define a PBW basis for Û∨+, the elements of which we denote by

e∨wP (m) =
(
e∨wP (1)

)m1
(
e∨wP (2)

)m2 · · ·
(
e∨wP (`0)

)m`0 , (1.6.5)

for m = (m1, . . . ,m`0) ∈ N`0
0 . As each e∨wP (m) is homogeneous with respect to

the grading on Û∨+ (this follows from Remark 1.6.2), the PBW basis elements are

homogeneous as well.

We can now define the dual PBW basis for
(
Û∨+
)∗

gr
by taking the finite-dimensional

vector space dual bases and extending the functionals trivially on the complement. We

denote these dual basis elements pGLS
m , so that pGLS

m

(
e∨wP (n)

)
equals 1 if m = n ∈ N`0

0

and 0 otherwise. Whenever m = (0, . . . , 0, 1, 0, . . . , 0) with a 1 at the mth position, we

simply write pGLS
m = pGLS

m ; indeed, in this case we have e∨wP (m) = e∨wP (m). This basis

is called the dual PBW basis compatible with the reduced expression for wP . Using

the natural embedding of U∨+ into Û∨+, we can consider the maps pGLS
m on U∨+ as well.

From the results in [GLS11], it follows that the coordinate ring of UP
+ is generated

by the dual basis elements pGLS
m for m ∈ {1, . . . , `} where ` = `(wP ). However, to

fully express the coordinate ring, we also need to introduce a number of generalized

minors in the sense of Fomin and Zelevinsky [FZ99]. Recall that the highest weight

space of any highest weight representation is one-dimensional. Thus, taking a highest

weight vector v+
ω∨i

, we can define the projection V (ω∨i )→ Cv+
ω∨i

(parallel to a basis of

weight vectors). We denote the coefficient c such that a vector v ∈ V (ω∨i ) projects to

cv+
ω∨i

by 〈
v, v+

ω∨i

〉
= c. (1.6.6)

Note that the highest weight representation V (ω∨i ) is implicit in the notation. Using

the action of G̃∨ on these representations, we obtain maps G̃∨ → C given by g 7→

〈g · v+
ω∨i
, v+
ω∨i
〉. For w1, w2 ∈ W , the generalized minors are given in Definition 1.4 of

[FZ99] as

∆w1(ω∨i ),w2(ω∨i )(g) =
〈

(w̄1)−1gw̄2 · v+
ω∨i
, v+
ω∨i

〉
.
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(The definition in [FZ99] uses decompositions of g instead, but can easily be seen to

agree with this expression. See for example Proposition 7.2 of [GLS11].) In particular,

we will be concerned with the following minors:

∆ω∨i ,(w
P )−1(ω∨i )(g) =

〈
g(ẇP )−1 · v+

ω∨i
, v+
ω∨i

〉
. (1.6.7)

Note that we wrote (ẇP )−1 = (wP )−1 to simplify the expression; it has the reverse

reduced expression compared to wP . We can now state the result:

Proposition 1.6.3 (Proposition 8.5 of [GLS11]). The cell UP
+ = (UP

− )T ⊂ G̃∨, see

equation (1.6.3), is an affine variety with coordinate ring isomorphic to

C[pGLS
1 , . . . , pGLS

` ][∆−1
ω∨1 ,(w

P )−1(ω∨1 )
, . . . ,∆−1

ω∨n ,(w
P )−1(ω∨n )

]. (1.6.8)

In Proposition 3.2.5, we will give a (type-independent) criterion for a generator

pGLS
m to correspond to a Plücker coordinate under the translation isomorphism ·T :

UP
− → UP

+ (and up to a constant). Unfortunately, we have not yet found a type-

independent approach to express the localized generalized minors in terms of Plücker

coordinates. However, using the open, dense torus U◦− ⊂ UP
− (or more precisely: its

transpose) we can directly verify Plücker coordinate expressions for the minors in the

case of the Cayley plane Esc
6 /P6 (see Section 3.3) and in the case of the Freudenthal

variety Esc
7 /P7 (see Section 3.4). The remainder of Chapter 3 will be devoted to

show an isomorphism between Rietsch’s Lie-theoretic Landau-Ginzburg model (as

discussed in Section 1.4) and the so-called canonical Landau-Ginzburg model, which

we will define in Section 3.1 for these exceptional cominuscule homogeneous spaces

Esc
n /Pn. Therefore, the final section of this introductory chapter will be devoted to

introducing these.
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1.7 The exceptional cominuscule family

As we can see from Table 1.5.1, of the exceptional types, only E6 and E7 allow

cominuscule weights. In type E6, there are two cominuscule weights, ω1 and ω6.

However, the homogeneous spaces Esc
6 /P1 and Esc

6 /P6 are isomorphic. There is only

one cominuscule weight in type E7, namely ω7. Thus, in practice, we only need to

consider two exceptional cominuscule homogeneous spaces: the Cayley plane OP2 =

Esc
6 /P6 and the Freudenthal variety Esc

7 /P7. Whenever we consider both varieties at

the same time, we will call them “cominuscule Esc
n /Pn” (we are adding the adjective

“cominuscule” to exclude the quasi-cominuscule Esc
8 /P8).

To avoid any confusion: we follow the labeling on the Dynkin diagrams used by

[Bou68]:

E6 :
1

2

3 4 5 6

E7 :
1

2

3 4 5 6 7

The Cayley plane and the Freudenthal variety are similar enough to allow for the

same approach, but they do have some notable differences. For example, for type E7

the longest Weyl group element w0 maps the fundamental weights ωi to −ωi, whereas

the longest Weyl group element w0 in type E6 maps them to −ωσ0(i), where σ0 is the

obvious Dynkin diagram symmetry. Note that this implies that −w0 ·ω∨6 = ω∨1 for E6

and −w0 · ω∨7 = ω∨7 for E7.

In fact, we will need very few geometric properties of the exceptional cominuscule

homogeneous spaces other than the structure of their cohomologies. The cohomology

ring, and indeed the (small) quantum cohomology ring, of both varieties are already

known; see [CMP08] for presentations of both as well as for further references. Ri-

etsch’s Lie-theoretic mirror model (discussed in Section 1.4) holds for these exceptional

cominuscule homogeneous spaces as well. However, as we remarked at the start of

Section 1.6, our goal is a mirror model in terms of Plücker coordinates. In Chapter

3, we will construct such mirror models for the exceptional cominuscule homogeneous

spaces.
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The Cayley plane. The exceptional cominuscule variety Esc
6 /P6 is often denoted

by OP2 as it can be interpreted as the variety of (complex) octonion lines in three-

dimensional (complex) octonion space. However, we will not use this description

here and simply consider the Cayley plane as a homogeneous space of type E6. The

geometry and the Chow ring (and thus the cohomology) of OP2 is discussed in [IM05]5.

For the Cayley plane X = Esc
6 /P6, the embedding of the Langlands dual homoge-

neous space is X∨ ↪→ P
(
V (ω∨1 )∗

)
. Since the fundamental weight representation V (ω∨1 )

is minuscule, the Weyl group acts transitively on the weights. Thus, we can define a

graph that the weights of V (ω∨1 ) as vertices and has an edge labeled i between two

weights if si maps one weight to the other (and vice versa). The graph we obtain is

the following:
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3

2

1
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1

2
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1

4
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2

5

2

6

2
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v0v1v2v3

v′4

v′′4

v′5

v′′5

v′6

v′′6

v′7

v′′7

v8

v′8

v′′8

v′9

v′′9

v′10

v′′10

v′11

v′′11

v′12

v′′12

v13v14v15v16 (1.7.1)

Here, we have set the highest weight space at the left and denoted a choice of highest

weight vector by v16. Applying equation (1.6.2) to each of the basis vectors v
(j)
i gives

the full set of Plücker coordinates.

Using Corollary 1.5.4, we see that the action of the representatives ṡi, s̄i ∈ G̃∨ can

be directly related to the action of e∨i , f
∨
i ∈ g∨. Here, applied to V (ω∨1 ), this translates

as follows: an edge marked i between two vectors v (on the left) and w (on the right)

means that s̄i · v = f∨i · v = w and ṡi · w = e∨i · w = v.

The diagram for V (ω∨6 ) is in fact the same, however, now the highest weight space

is on the right, and the actions of s̄i and ṡi go in the opposite direction. (In other

words, exchange the position of v and w in the above.)

5Note that a different labeling of the Dynkin diagram is used in [IM05].

44



More importantly, this graph is identical to the Hasse diagram for the Cayley

plane: the Hasse diagram has as vertices the Schubert classes, and edges mark inclu-

sions. The identification between the graph above and the Hasse diagram is obtained

by replacing the weight vector v
(j)
i with the Schubert class σ

(j)
i , where we use the

labeling of Schubert classes given in [CMP08], Section 2.3.6 This correspondence is

implied by the geometric Satake correspondence, which we mentioned at the start of

this section. Indeed, we have chosen the labeling for the basis of the representation in

such a way that these match up with the labeling for the Schubert classes of [CMP08].

Note that the fundamental class [X] = σ0 = 1 ∈ H0(X) of the Cayley plane is on the

right, and σ1 is the class of a hyperplane. Considering the diagram in this way, an

edge i from σw1 (on the left) to σw2 (on the right) denotes that w2 = siw1. (Here σw

is the class of the Schubert variety B+wP/P as in Section 1.2.)

Now, the interpretation of (1.7.1) as the Hasse diagram indicates a final interpre-

tation: we can interpret the diagram as the partial ordering of the elements of W P

under the Bruhat order given in (1.2.4). Thus, any path from the left to the right in

the diagram in (1.7.1) gives a reduced expression for the minimal coset representative

wP of w0WP ; we will fix the following:

wP = s1s3s4s2s5s4s3s1s6s5s4s3s2s4s5s6. (1.7.2)

Whenever we consider the Cayley plane, the sequence (ri)
16
i=1 will denote the sequence

of indices of this reduced expression by, i.e. r1 = 1, r2 = 3 and so on.

The Freudenthal variety. The Freudenthal variety is also related to (complex)

octonions, namely it is the closed orbit of E7 on the Zorn algebra, see [CMP08] Section

2.3. The most extensive analysis of the Freudenthal variety can be found in [Fre64].

For the Freudenthal variety, the Langlands dual homogeneous space is embedded

X∨ ↪→ P
(
V (ω∨7 )∗

)
. The minuscule fundamental weight representation V (ω∨7 ) has the

6Note that [CMP08] consider OP2 as Esc
6 /P1, so the diagram would have the reverse labeling of

edges.
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following weight structure:
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v0v1v2v3v4

v′5
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v′6

v′′6

v′7

v′′7

v′8

v′′8
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v′9

v′′9

v10
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v′′10

v11

v′11

v′′11

v12

v′12

v′′12

v13

v′13

v′′13

v′′14

v′14

v14

v′′15

v′15

v15

v′′16

v′16

v16

v′′17

v′17

v17

v′′18

v′18

v18

v′′19

v′19

v′′20

v′20

v′′21

v′21

v′′22

v′22

v23v24v25v26v27

(1.7.3)

Here we used the same conventions as for the diagram in (1.7.1). Note that the center

consists of the following commutative cube:

7

5

2

5

2 7
7 2

5

2

5

7

v′12

v13

v′13

v′′13

v′′14

v′14

v14

v′15

with all southwest-northeast edges marked 2, all west-east edges marked 5 and all

northwest-southeast edges marked 7. We have again used the same labeling for the

basis vectors as used for the Schubert classes of the cohomology of Esc
7 /P7 in [CMP08]

in accordance with the geometric Satake correspondence.

We have the same interpretations of diagram (1.7.3) as the actions of e∨i and f∨i

on V (ω∨1 ), as the Hasse diagram for the cohomology, and as the partial order on the

elements of W P under the Bruhat order.

Although any path from left to right in (1.7.3) gives a reduced expression for wP ,

we fix the following:

wP = s7s6s5s4s3s2s4s5s6s1s3s4s2s5s7s4s3s1s6s5s4s2s3s4s5s6s7. (1.7.4)

Note that we have (wP )−1 = wP , which did not hold in the case of the Cayley Plane

OP2 = Esc
6 /P6.
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type and weight (co-) minuscule variety dim index

An−1 any k both Gr(k, n) k(n− k) n

Bn > 1 cominuscule Q2n−1 2n− 1 2n− 1

Bn > n minuscule OG(n, 2n+ 1) 1
2
n(n+ 1) 2n

Cn < 1 minuscule CP2n−1 2n− 1 2n

Cn < n cominuscule LG(n, 2n) 1
2
n(n+ 1) n+ 1

Dn 1 both Q2n−2 2n− 2 2n− 2

Dn n− 1 or n both OG(n, 2n) 1
2
n(n− 1) 2n− 2

E6 1 or 6 both OP2 = Esc
6 /P6 16 12

E7 7 both Esc
7 /P7 27 18

Table 1.5.1: Table listing for each type the fundamental weights that are minuscule,
cominuscule or both, the associated homogeneous spaces and their dimensions and
indices. In this table, Qn denotes a quadric of dimension n; Gr(k, n) denotes the
Grassmannian of k-dimensional subspaces in Cn; LG(n, 2n) denotes the Lagrangian
Grassmannian of maximal isotropic subspaces with respect to the standard symplectic
form; OG(n, 2n) and OG(n, 2n + 1) denote (one of the two isomorphic connected
components of) the orthogonal Grassmannians of maximal isotropic subspaces with
respect to the standard quadratic form; OP2 = Esc

6 /P6 denotes the Cayley plane
which is a homogeneous space for Esc

6 , the simply-connected Lie group of type E6;
and finally Esc

7 /P7 is called the Freudenthal variety and is homogeneous for Esc
7 , the

simply-connected Lie group of type E7. Note that the two varieties that are only
minuscule are redundant: the type-Bn minuscule variety OG(n, 2n+ 1) is isomorphic
to the variety OG(n+ 1, 2n+ 2) which is both minuscule and cominuscule as a type-
Dn+1 homogeneous space; similarly, the type-Cn minuscule variety CP2n−1 is of course
the same as Gr(1, 2n), which is both minuscule and cominuscule as a type-A2n−1

homogeneous space. Adapted from [CMP08].
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Chapter 2

Laurent polynomial LG-models for

cominuscule homogeneous spaces

In this chapter, we present the results published in [Spa21], namely a Laurent poly-

nomial expression in the case of cominuscule homogeneous spaces for Rietsch’s Lie-

theoretic Landau-Ginzburg models for the small quantum cohomology.

In Section 1.4, we introduced Rietsch’s Lie-theoretic mirror models for homoge-

neous spaces [Rie08]. These mirrors model the small quantum cohomology in terms of

a potential defined Lie-theoretically on a specific Langlands dual Richardson variety,

see equation (1.4.1). These models are constructed completely type-independently

and hold on all homogeneous spaces.

However, as we discussed in Section 1.6, especially in the case of cominuscule

homogeneous spaces there are advantages to obtaining a Landau-Ginzburg model

expressed in terms of (generalized) Plücker coordinates. In particular, there is a direct

correspondence between the Schubert basis of the cohomology of the homogeneous

space and the Plücker coordinates on its mirror, see for example Section 1.7. This is

a consequence of the geometric Satake correspondence, see [MR20] p. 3 for references.

Consequently, in the articles [MR20, PR13, PR18, PRW16], Rietsch’s Lie-theoretic

mirror model is reformulated in terms of these Plücker coordinates in a case-by-case

approach. The cases in question were Grassmannians, Lagrangian Grassmannians,
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and (odd and even) quadrics, respectively. Following [PRW16], these reformulated

models have become known as canonical mirror models.

In obtaining these canonical models, each of these articles relied on a local Laurent

polynomial expression for Rietsch’s potential. For Grassmannians, such an expression

was already available, but the articles [PR18, PRW16, PR13] had to develop new

expressions. We have compared the approaches in these articles and have been able

to generalize the expressions using knowledge of the general structure of the involved

minuscule representations obtained from [Gre08], which we discussed in Section 1.5.

The Laurent polynomial expression is defined on an algebraic torus Z◦P ⊂ Z∨P
given in Definition 2.2.3. It is known that this is an open, dense torus inside Z∨P . The

Laurent polynomial expression we find is as follows:

WZ◦P (z) =
∑̀
i=1

ai + q

∑
(ij)∈I ai1 · · · ai`′∏`

i=1 ai
,

where ` = dim(X) = dim(X∨Lie), the ai are the toric coordinates for i ∈ {1, . . . , `}, and

q is the quantum parameter. The set I is the set of subexpressions of a certain Weyl

group element w′ in a fixed reduced expression of the minimal coset representative

wP of the longest Weyl group element, see equation (1.2.3) for wP , equation (1.5.1)

for w′ and Definition 2.2.5 for I. For the full statement, see Theorem 2.2.7.

Notice that this expression is reminiscent of the Laurent polynomial potential for

projective complete intersections given in [Giv96]. Indeed, it is given as the sum of

the toric coordinates ai plus a quantum term consisting of a homogeneous polynomial

divided by the product of all the toric coordinates. We give a second type-independent

description for this homogeneous polynomial: we replace the summation over I by

a summation over the set S of special subsets of the quiver QX∨ associated1 to wP

by [Per07, CMP08], see Definitions 2.5.3 and 2.5.5 as well as Corollary 2.5.12. These

subsets of QX∨ can be considered as generalizations of Young tableaux used in a similar

way.

1Note that we are associating the quiver to X∨ in this thesis instead of to X as in [Spa21]. We
will explain this change of notation in Remark 2.5.4.
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We use the second type-independent expression to obtain Laurent polynomial

potentials for all cominuscule homogeneous spaces in Section 2.6: Grassmannians

Gr(k, n), quadrics Qn, Lagrangian Grassmannians LG(n, 2n), orthogonal Grassman-

nians OG(n, 2n), the Cayley plane Esc
6 /P6, and the Freudenthal variety Esc

7 /P7. The

obtained expressions for quadrics and Lagrangian Grassmannians coincide with those

given earlier in [PRW16] and [PR13]. This is to be expected from the fact that the

type-independent expression is a generalization of these cases. However, to the best

of our knowledge, the expressions for orthogonal Grassmannians (for general n), the

Cayley plane and the Freudenthal variety are new.

We have already mentioned the implications of this expression in the introduction

to Chapter 1, so we will not repeat them here.

The outline of this chapter is as follows. We begin in Section 2.1 with using

the results from Section 1.5 to get a more elaborate description of the action of W

on the minuscule representation V (ω∨k ). Next, in Section 2.2 we state our Laurent

polynomial expression (Theorem 2.2.7) for the potential restricted to an open dense

subset. We prove this expression in Section 2.3, postponing the proof of a number of

intermediate results to Section 2.4. We deduce an alternative description of the quan-

tum term (Corollary 2.5.12) using subsets of a specific quiver in Section 2.5, which

simplifies the calculation of the Laurent polynomials. Finally, we apply the expres-

sion in Corollary 2.5.12 to all the cominuscule homogeneous spaces in Section 2.6,

verifying that the expression coincide with [PRW16] and [PR13] for quadrics and

Lagrangian Grassmannians, and obtaining new Laurent polynomial potentials for or-

thogonal Grassmannians (Subsection 2.6.4), the Cayley plane (Subsection 2.6.5) and

the Freudenthal variety (Subsection 2.6.6).
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2.1 A comparison of the actions of W and U∨− on

minuscule representations

Let G be a simply-connected (complex) linear algebraic group such that X = G/Pk

is cominuscule, so that the Langlands dual group G∨ is adjoint. We consider the

highest weight representation V (ω∨k ) of the Lie algebra g∨ of G∨. As we mentioned in

Section 1.5, we have two actions on V (ω∨k ): the actions of W and U∨−. We will need

to compare these two actions to find the Laurent polynomial expression for Rietsch’s

Lie-theoretic potential.

Now, since the representation V (ω∨k ) is minuscule, Theorem 1.5.3 and Corollary

1.5.4 apply to V (ω∨k ). We can use these results to obtain the following facts regarding

the action of the Weyl group W on the highest weight vector v+
ω∨k

:

Lemma 2.1.1. Consider the highest weight vector v+
ω∨k

of the minuscule fundamental

weight representation V (ω∨k ), where k is such that X = G/Pk.

(i) Given an arbitrary w ∈ W with minimal coset representative wc ∈ W P , then

we have w̄ · v+
ω∨k

= w̄c · v+
ω∨k

and ẇ · v+
ω∨k

= ẇc · v+
ω∨k

.

(ii) An element wc ∈ W P with reduced expression wc = si1 · · · sic acts on the vector

v+
ω∨k

by w̄c · v+
ω∨k

= f∨i1 · · · f
∨
ic · v

+
ω∨k

and by ẇc · v+
ω∨k

= (−1)cf∨i1 · · · f
∨
ic · v

+
ω∨k

.

(iii) Conversely, if f∨i1 · · · f
∨
ij
· v+
ω∨k

is non-zero of weight µ∨, then si1 · · · sij is a reduced

expression for the (unique) element wc ∈ W P such that wc · ω∨k = µ∨.

(iv) In particular, w̄P , ẇP and their inverses act trivially on v+
ω∨k

and we have that

the lowest weight vector defined by v−ω∨k
= w̄0 · v+

ω∨k
satisfies v−ω∨k

= w̄P · v+
ω∨k

=

f∨r1 · · · f
∨
r`
·v+
ω∨k

, where wP = sr1 · · · sr` is the reduced expression fixed in equation

(1.2.3). Moreover, if f∨i1 · · · f
∨
ij
· v+

ω∨k
= v−ω∨k

, then si1 · · · sij = wP and this is a

reduced expression.

Proof. (i) Recall the identity sj(ω
∨
k ) = ω∨k for j 6= k, i.e. when sj ∈ WP . This implies

that an arbitrary w ∈ W acts on ω∨k by its minimal coset representative wc in W P .

Corollary 1.5.4 implies that w̄ · v+
ω∨k

= w̄c · v+
ω∨k

and ẇ · v+
ω∨k

= ẇc · v+
ω∨k

.
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(ii) We need to show that each factor of w̄c = s̄i1 · · · s̄ic acts as f∨i on v+
ω∨k

. Consid-

ering Corollary 1.5.4, each s̄i acts either by f∨i , −e∨i or as the identity map. Clearly,

none of these factors acts as the identity, as we could remove it from the product,

which would contradict the minimality of the coset representative ẇc. Moreover, none

of the factors acts as −e∨i either, because of the following argument:

Let s̄i be the rightmost factor acting as −e∨i . As v+
ω∨k

is the highest weight vector,

we have e∨i ·v+
ω∨k

= 0 (as e∨i raises the height of the weight), so there must be a number

of s̄j in between s̄i and v+
ω∨k

acting as f∨j . Let f∨j be the factor next to e∨i . There

are three cases: j 6= i and aij < 0; j 6= i and aij = 0; and j = i. When j 6= i and

aij < 0, Theorem 1.5.3 (iv) tells us that e∨i f
∨
j · v = 0 in the representation, which is

impossible. When j 6= i and aij = 0, we know that e∨i and f∨j commute in the Lie

algebra, so we can assume without loss of generality that only the case j = i occurs.

In the case j = i we obtain e∨i f
∨
j · v = v according to Theorem 1.5.3 (iii). However,

this is in contradiction with the fact that wc is a minimal coset representative. Thus,

all of the factors s̄i of w̄P act as f∨i .

For the equality ẇc = (−1)cf∨i1 · · · f
∨
ic ·v

+
ω∨k

, we use an analogous argument combined

with the fact that ṡi acts as either e∨i , −f∨i or the identity due to Corollary 1.5.4.

(iii) Let w = si1 · · · sij and let wc ∈ W P denote the minimal length representative

of wWP . Given a reduced expression wc = si′1 · · · si′c , parts (i) and (ii) imply that

w̄ · v+
ω∨k

= w̄c · v+
ω∨k

= f∨i′1 · · · f
∨
i′c
· v+

ω∨k
.

Thus, w̄ · v+
ω∨k

has weight ω∨k − α∨i′1 − · · · − α
∨
i′c

by Theorem 1.5.3 (iii).

On the other hand, f∨i1 · · · f
∨
ij
· v+

ω∨k
= s̄i1 · · · s̄ij · v+

ω∨k
= w̄ · v+

ω∨k
by Corollary 1.5.4,

since none of the factors act as the zero map. This has two implications. Firstly,

w = si1 · · · sij is a reduced expression: else, one of the factors of f∨i1 · · · f
∨
ij

must act

as the identity map, which contradicts Theorem 1.5.3 (iii). Secondly, the weight of

w̄ · v+
ω∨k

can also be written as ω∨k − α∨i1 − . . .− α
∨
ij

.
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We conclude that

ω∨k − α∨i′1 − · · · − α
∨
i′c

= w(ω∨k ) = ω∨k − α∨i1 − . . .− α
∨
ij
.

Clearly, this can only hold when c = `(wc) = `(w) = j.

Thus, we have w = wc ∈ W P and we have already shown that si1 · · · sij is a

reduced expression for w. Moreover, w(ω∨k ) = µ∨ by definition and this determines w

uniquely, proving (iii).

(iv) As wP ∈ WP , (i) implies that w̄P , ẇP and their inverses act trivially on

v+
ω∨k

. As wP is defined as the minimal coset representative of w0, we conclude that

v−ω∨k
= w̄0 · v+

ω∨k
= w̄P · v+

ω∨k
by (i), and since wP = sr1 · · · sr` is the reduced expression

we fixed in Section 1.2, (ii) implies that v−ω∨k
= s̄r1 · · · s̄r` · v+

ω∨k
= f∨r1 · · · f

∨
r`
· v+

ω∨k
. Part

(iii) implies the last statement directly.

2.2 Statement of the Laurent polynomial potential

In this section we state the main result of this chapter, Theorem 2.2.7, which is an

explicit Laurent polynomial expression for WZ∨P on an open, dense algebraic torus

Z◦P inside Z∨P , whenever X = G/P is a cominuscule homogeneous space. Recall that

X = G/P is cominuscule when P = Pk is maximal and ω∨k is minuscule.

First, we define another subset of U∨−:

Definition 2.2.1. Recall the reduced expression wP = sr1 · · · sr` fixed in equation

(1.2.3). Let U◦− ⊂ U∨− be the algebraic torus of elements u− that can be written as

u− = y∨r`(a`) · · · y
∨
r1

(a1) (2.2.1)

with ai ∈ C∗.

Lemma 2.2.2. We have U◦− ⊂ UP
− open and dense, where UP

− = U∨− ∩ B∨+w̄P w̄0B
∨
+

was defined in equation (1.4.4).
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Proof. (See also Section 5.2 of [PR18].) Note that

B∨+ṡiB
∨
+ = B∨+x

∨
i (1)y∨i (−1)x∨i (1)B∨+ = B∨+y

∨
i (−1)B∨+,

so that y∨i (a) ∈ B∨+ṡiB∨+, as the −1 can be scaled to any a ∈ C∗ since T∨ ⊂ B∨+. Of

course, sr` · · · sr1 = (wP )−1 is reduced, so the Bruhat lemma (see for example [Hum75],

Lemma 29.3.A) implies that

U◦− ⊂ B∨+ṡr` · · · ṡr1B∨+ = B∨+(w̄P )−1B∨+

and it remains to show that B∨+(w̄P )−1B∨+ = B∨+w̄P w̄0B
∨
+. This follows from the fact

that w0 = wPwP and the fact that ṡi and s̄i only differ by a torus element.

It is clear that U◦− ⊂ UP
− is an open subset and it is dense as both have dimension

`(wPw0) and UP
− is irreducible [Lus94].

Definition 2.2.3. We define the open, dense algebraic torus Z◦P ⊂ Z∨P as

Z◦P = B∨−w̄
−1
0 ∩ U∨+T P w̄PU◦− ⊂ Z∨P .

Note that the fact that this variety is non-zero and an algebraic torus follows from

Lemma 1.4.4 and the resulting isomorphism Z∨P → UP
− × T P : z 7→ (u−, t).

The following is immediate from the definition and Lemma 1.4.4:

Corollary 2.2.4. Every z ∈ Z◦P can be factorized in two ways: as b−w̄
−1
0 for b− ∈ B∨−;

and as z = u+tw̄Pu− with u− ∈ U◦− of the form (2.2.1), u+ ∈ U∨+ and t ∈ T P .

Moreover, the latter decomposition is unique with u+ determined by a choice of (u−, t).

We will define the Laurent polynomial expression for the potential on this algebraic

torus Z◦P . It turns out that this expression is indexed by the subexpressions of w′ in

wP . Recall from equation (1.5.1) that w′ ∈ W is defined by wP = w′w′′, where

wP , w′′ ∈ W P are the minimal coset representatives of w0WP and wP skWP (with k

such that P = Pk). Moreover, their lengths are denoted by `(wP ) = `, `(w′) = `′ and

`(w′′) = `′′ and satisfy ` = `′ + `′′.
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Definition 2.2.5. Let I be the set indexing reduced subexpressions for w′ occurring

inside the fixed reduced expression wP = sr1 · · · sr` of equation (1.2.3). In other words,

I =
{

(i1, . . . , i`′)
∣∣ 1 ≤ i1 < i2 < . . . < i`′ ≤ ` and w′ = sri1 · · · sri`′

}
.

Remark 2.2.6. Note that the reduced expression w′ = sri1 · · · sri`′ is not fixed, i.e. if

(ij), (i
′
j) ∈ I, then we do not necessarily have rij = ri′j for all j.

Theorem 2.2.7 (An explicit Laurent-polynomial Landau-Ginzburg model). Let X =

G/P be a cominuscule complete homogeneous space with G a simply-connected, sim-

ple, (complex) linear algebraic group and P = Pk a (maximal) parabolic subgroup.

The restriction WZ◦P of WZ∨P to Z◦P has the following Laurent polynomial expression:

WZ◦P (z) =
∑̀
i=1

ai + q

∑
(ij)∈I ai1 · · · ai`′∏`

i=1 ai
. (2.2.2)

Here z ∈ Z◦P is uniquely decomposed as z = u+tw̄Pu− with u− = y∨r`(a`) · · · y
∨
r1

(a1) ∈

U◦− as in Corollary 2.2.4, and q ∈ C∗ is given by q = α∨k (t) (with t ∈ T P ). Finally, the

set I is given in Definition 2.2.5.

The proof of this statement follows in Sections 2.3 and 2.4. In Section 2.5 we

rewrite the summation over I into a summation over subsets of a quiver associated to

wP by [CMP08], see Corollary 2.5.12. In Section 2.6 we apply Theorem 2.2.7 and its

reformulation as Corollary 2.5.12 to all the cominuscule homogeneous spaces, leading

to new Laurent polynomial potentials for the cominuscule homogeneous spaces of type

Dn, E6 and E7, see Subsections 2.6.4, 2.6.5 and 2.6.6, respectively. We also work out

an example for each of the families of cominuscule homogeneous spaces.
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2.3 Proof of the Laurent polynomial expression

In Section 2.2 we stated the main result of this chapter in Theorem 2.2.7. This

section is dedicated to proving this theorem. Before we get started on the proof, let

us introduce the following notation:

Definition 2.3.1. Write V (ω∨i ) for the irreducible representation of g∨ with highest

weight ω∨i , and denote by v+
ω∨i

a choice of a highest weight vector. Denote by v−ω∨i
=

w̄0 · v+
ω∨i

the associated lowest weight vector. Note that the weight space of v+
ω∨i

is one-

dimensional, so that the projection of an arbitrary v ∈ V (ω∨i ) to this weight space

(parallel to the other weight spaces) is a scalar multiple of v+
ω∨i

; we denote this scalar

by 〈v, v+
ω∨i
〉.

Remark 2.3.2. Recall that every representation of a Lie algebra induces a represen-

tation of the associated simply-connected linear algebraic group. Here, the highest

weight representation V (ω∨i ) of g∨ induces a representation of the universal cover G̃∨

of G∨. Since this representation does not always descend to a representation of G∨,

we need to work on G̃∨ instead. Because we identified U∨+ and U∨− with their universal

covers, we consider the factors u+ and u− of z = u+tw̄0u− ∈ Z◦P as elements of G̃∨.

The same holds for the one-parameter subgroups x∨j (a) ∈ U∨+ and y∨j (a) ∈ U∨− for

j ∈ {1, . . . , n}, which we also consider as elements of G̃∨. However, the elements ṡi

and s̄i of G∨ associated to si ∈ W have multiple lifts to G̃∨; we choose the lifts to be

the elements obtained by taking the product of the one-parameter subgroups in G̃∨,

i.e.

ṡi = x∨i (1)y∨i (−1)x∨i (1) ∈ G̃∨ and s̄i = x∨i (−1)y∨i (1)x∨i (−1) ∈ G̃∨.

Note that we abuse notation and denote these lifts in the same way as the original

elements. Also note that with these choices we still have s̄i = ṡ−1
i . The elements

ẇ, w̄ ∈ G̃∨ associated to w ∈ W are similarly defined by ẇ = ṡi1 · · · ṡij and w̄ =

s̄i1 · · · s̄ij respectively, where w = si1 · · · sij is a reduced expression. This fixes the lift

of z = u+tw̄0u− up to a choice of lift of t ∈ T P ⊂ T∨; the choices differ by a factor in
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ker(α∨k ) ⊂ T̃∨, so all the lifts have α∨k (t) = q and we choose one arbitrarily (we will

continue to abuse notation and also denote the lift of t ∈ T P by t ∈ T̃∨).

Remark 2.3.3. Expressions of the form 〈g · v+
ω∨i
, v+
ω∨i
〉 are a priori only defined for

g ∈ G̃∨, so expressions of that form will always assume the group element g to be

an element of the universal cover G̃∨. Thus, the abuse of notation in Remark 2.3.2

should not give rise to ambiguity.

The proof of Theorem 2.2.7 requires a few intermediate results which we will prove

in Section 2.4. Assuming for the moment that these hold, the proof of Theorem 2.2.7

is a straightforward computation:

Proof of Theorem 2.2.7. We want to find an expression for

WZ◦P (z) = E∗(u−1
+ ) + F∗(u−) = −E∗(u+) + F∗(u−)

in terms of the toric coordinates of z ∈ Z◦P . First, we calculate F∗(u−):

Lemma 2.3.4. For u− ∈ U◦− we have F∗(u−) =
∑`

i=1 ai.

Thus, we only need to find the term involving the quantum parameter, which

comes from E∗(u+) =
∑n

i=1(e∨i )∗(u+). We can rewrite each of the summands of this

term as follows:

Lemma 2.3.5. For z = u+tw̄Pu− ∈ Z◦P we have

(e∨i )∗(u+) = α∨i (t)
〈w̄−1

0 u−1
− w̄

−1
P s̄i · v+

ω∨i
, v+
ω∨i
〉

〈w̄−1
0 u−1

− w̄
−1
P · v

+
ω∨i
, v+
ω∨i
〉
.

It turns out that except for i = k, these summands do not contribute to the sum:

Lemma 2.3.6. For z = u+tw̄Pu− ∈ Z◦P and i 6= k (where k is such that P = Pk) we

have (e∨i )∗(u+) = 0.

Altogether, we have now found that

E∗(u+) = (e∨k )∗(u+) = q
〈w̄−1

0 u−1
− w̄

−1
P s̄k · v+

ω∨k
, v+
ω∨k
〉

〈w̄−1
0 u−1

− w̄
−1
P · v

+
ω∨k
, v+
ω∨k
〉
,
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where q = α∨k (t). Now we of course need to calculate the denominator and numerator

of this quotient:

Lemma 2.3.7. For u− ∈ U◦− we have 〈w̄−1
0 u−1

− w̄
−1
P · v

+
ω∨k
, v+
ω∨k
〉 = (−1)`

∏`
i=1 ai, where

` = `(wP ).

Lemma 2.3.8. For u− ∈ U◦− we have

〈w̄−1
0 u−1

− w̄
−1
P s̄k · v+

ω∨k
, v+
ω∨k
〉 = (−1)`+1

∑
(ij)∈I ai1 · · · ai`′ ,

where I = {(i1, . . . , i`′) | 1 ≤ i1 < i2 < . . . < i`′ ≤ ` and w′ = sri1 · · · sri`′ } and where

we fixed the reduced expression wP = sr1 · · · sr` in Section 1.2.

Thus, we find

E∗(u+) = −q
∑

(ij)∈I ai1 · · · ai`′∏`
i=1 ai

.

We obtain the statement of Theorem 2.2.7 by inserting this together with the expres-

sion for F∗(u−) into WZ◦P (z) = −E∗(u+) + F∗(u−), .

2.4 Proof of the intermediate results

What remains is proving the lemmas stated in the proof of Theorem 2.2.7.

Remark 2.4.1. The five intermediate lemmas in the proof of Theorem 2.2.7 are

generalizations of Lemma 5.5 of [PR18]. Lemmas 2.3.4, 2.3.5 and 2.3.6 follow similar

reasoning in the general case. The proof of Lemma 2.3.7 requires a modification

using the general structure of minuscule representations, while Lemma 2.3.8 follows a

different line of reasoning than its counterpart in [PR18].

Proof of Lemma 2.3.4. We want to show that F∗(u−) =
∑`

i=1 ai for u− ∈ U◦−.

Recall from equation (1.1.5) that (f∨i )∗(yj(a)) = aδij. From this it follows that

(f∨i )∗(u−) = (f∨i )∗
(
y∨r`(a`) · · · y

∨
r1

(a1)
)

= a1δi,r1 + . . .+ a`δi,r` .

Summing over all i ∈ {1, . . . , n}, we find F∗(u−) =
∑n

i=1(f∨i )∗(u−) =
∑`

i=1 ai.
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Unfortunately, the other term, E∗(u+) =
∑n

i=1(e∨i )∗(u+), will not be as easy. We

will first reformulate each of the terms e∨i (u+):

Proof of Lemma 2.3.5. We want to show that

(e∨i )∗(u+) = α∨i (t)
〈w̄−1

0 u−1
− w̄

−1
P s̄i · v+

ω∨i
, v+
ω∨i
〉

〈w̄−1
0 u−1

− w̄
−1
P · v

+
ω∨i
, v+
ω∨i
〉
.

for z = u+tw̄Pu− ∈ Z◦P .

First, note that the map U∨+ → C : u 7→ 〈us̄i · v+
ω∨i
, v+
ω∨i
〉 is equal to the unique

homomorphism (e∨i )∗ sending x∨i (a) = exp(a e∨i ) to a and the other one-parameter-

subgroups to zero, so

(e∨i )∗(u+) = 〈u+s̄i · v+
ω∨i
, v+
ω∨i
〉.

Next, we use the fact that u+ is a factor in the decomposition of z ∈ Z◦P as

z = u+tw̄Pu− to find a decomposition for u+ itself. By definition, we have z = b−w̄
−1
0

for some b− ∈ B∨− as Z◦P ⊂ B∨−w̄
−1
0 . In Remark 2.3.2 we fixed lifts of z = u+tw̄Pu−

and the elements ṡi and s̄i to G̃∨. Thus, there is a unique lift of b− ∈ B∨−, also denoted

by b− ∈ B̃∨−, such that b−w̄
−1
0 = z ∈ G̃∨. This gives

u+ = b−w̄
−1
0 u−1

− w̄
−1
P t−1 ∈ G̃∨. (2.4.1)

Thus, we have to calculate 〈b−w̄−1
0 u−1

− w̄
−1
P t−1s̄i · v+

ω∨i
, v+
ω∨i
〉.

Now, s̄i · v+
ω∨i

has weight ω∨i − α∨i , so t−1 ∈ T̃∨ acts on this vector by scalar

multiplication with

[ω∨i − α∨i ](t−1) =
ω∨i (t−1)

α∨i (t−1)
=
α∨i (t)

ω∨i (t)
∈ C.

(Note that weights and roots are written additively.) We conclude

(e∨i )∗(u+) = α∨i (t)
〈b−w̄−1

0 u−1
− w̄

−1
P s̄i · v+

ω∨i
, v+
ω∨i
〉

ω∨i (t)
.

Noting that b− ∈ B̃∨− sends a vector to a linear combination of vectors of equal or
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lower weight, we see that the only contribution of b− to 〈b−w̄−1
0 u−1

− w̄
−1
P s̄i · v+

ω∨i
, v+
ω∨i
〉

will be the factor 〈b− · v+
ω∨i
, v+
ω∨i
〉, so we find

(e∨i )∗(u+) = α∨i (t)
〈b− · v+

ω∨i
, v+
ω∨i
〉

ω∨i (t)
〈w̄−1

0 u−1
− w̄

−1
P s̄i · v+

ω∨i
, v+
ω∨i
〉. (2.4.2)

Finally, we use the decomposition in (2.4.1) together with the fact that u+ ∈ U∨+
implies 〈u+ · v+

ω∨i
, v+
ω∨i
〉 = 1 to conclude that

1 = 〈u+ · v+
ω∨i
, v+
ω∨i
〉 = 〈b−w̄−1

0 u−1
− w̄

−1
P t−1 · v+

ω∨i
, v+
ω∨i
〉

=
〈b− · v+

ω∨i
, v+
ω∨i
〉

ω∨i (t)
〈w̄−1

0 u−1
− w̄

−1
P · v

+
ω∨i
, v+
ω∨i
〉,

where we calculated the contributions of b− and t−1 in an analogous way as above.

Substituting this into (2.4.2), we obtain

(e∨i )∗(u+) = α∨i (t)
〈w̄−1

0 u−1
− w̄

−1
P s̄i · v+

ω∨i
, v+
ω∨i
〉

〈w̄−1
0 u−1

− w̄
−1
P · v

+
ω∨i
, v+
ω∨i
〉
,

as in the statement of the lemma.

Lemma 2.3.6 claims that all of the summands of E∗(u+) =
∑n

i=1(e∨i )∗(u+) are zero,

except for i = k (where k is such that P = Pk).

Proof of Lemma 2.3.6. We need to show that (e∨i )∗(u+) = 0 for z = u+tw̄Pu− ∈ Z◦P
and i 6= k (where k is such that P = Pk).

Considering the expression for (e∨i )∗(u+) of Lemma 2.3.5, we need to show that

〈w̄−1
0 u−1

− w̄
−1
P s̄i · v+

ω∨i
, v+
ω∨i
〉 = 0 for i 6= k.

Recall that we assumed u− ∈ U◦− ⊂ UP
− = U∨− ∩ B∨+w̄P w̄0B

∨
+ (see Lemma 2.2.2).

Thus, we have u−1
− ∈ B∨+w̄−1

0 w̄−1
P B∨+; in other words, there are b1, b2 ∈ B∨+ such that

u−1
− = b1w̄

−1
0 w̄−1

P b2. Choosing lifts b1, b2 ∈ B̃∨+ such that u−1
− = b1w̄

−1
0 w̄−1

P b2 as elements
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of G̃∨ (again abusing notation), it follows that we have to show that

〈w̄−1
0 b1w̄

−1
0 w̄−1

P b2w̄
−1
P s̄i · v+

ω∨i
, v+
ω∨i
〉 = 0 for i 6= k.

Now, w̄−1
0 b1w̄

−1
0 ∈ w̄−1

0 B̃∨+w̄
−1
0 = B̃∨−, so using an analogous argument to the one in

the proof of Lemma 2.3.5, we find that

〈w̄−1
0 b1w̄

−1
0 w̄−1

P b2w̄
−1
P s̄i · v+

ω∨i
, v+
ω∨i
〉 = 〈w̄−1

0 b1w̄
−1
0 · v+

ω∨i
, v+
ω∨i
〉〈w̄−1

P b2w̄
−1
P s̄i · v+

ω∨i
, v+
ω∨i
〉.

As 〈w̄−1
0 b1w̄

−1
0 · v+

ω∨i
, v+
ω∨i
〉 only contributes a scalar factor, we need to show that

〈w̄−1
P b2w̄

−1
P s̄i · v+

ω∨i
, v+
ω∨i
〉 = 0 for i 6= k. (2.4.3)

In other words, it is enough to show that w̄−1
P b2w̄

−1
P s̄i ·v+

ω∨i
has no components of weight

ω∨i . This is a straightforward argument with weights: s̄i · v+
ω∨i

has weight ω∨i − α∨i , so

that w̄−1
P s̄i · v+

ω∨i
has weight wP

(
ω∨i − α∨i

)
, noting that w−1

P = wP as it is the longest

element of the Weyl group WP = 〈si | i 6= k〉. Now, as b2 ∈ B̃∨+, all components of

b2w̄
−1
P s̄i · v+

ω∨i
will have weight wP

(
ω∨i − α∨i

)
+ α∨+ for some (possibly trivial) sum α∨+

of positive roots. Thus, we find that w̄−1
P b2w̄

−1
P s̄i · v+

ω∨i
has components of weight

wP

(
wP
(
ω∨i − α∨i

)
+ α∨+

)
= ω∨i − α∨i + wP (α∨+),

again using w−1
P = wP . Therefore, one of these components has weight ω∨i if and

only if wP (α∨+) = α∨i . However, since wP is the longest element of the Weyl group

WP = 〈si | i 6= k〉, we know that it maps all the simple roots α∨i with i 6= k to

negative roots, but then we must have that α∨+ = wP (α∨i ) ∈ Π∨− is a negative root

and definitely not a sum of positive roots, which gives a contradiction. Thus, all

components have weight unequal to ω∨i , implying that (2.4.3) holds, which in turn

implies the lemma.
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Combining Lemmas 2.3.5 and 2.3.6, we conclude that

E∗(u+) = (e∨k )∗(u+) = q
〈w̄−1

0 u−1
− w̄

−1
P s̄k · v+

ω∨k
, v+
ω∨k
〉

〈w̄−1
0 u−1

− w̄
−1
P · v

+
ω∨k
, v+
ω∨k
〉
. (2.4.4)

Lemma 2.3.7 calculates the denominator of this quotient and Lemma 2.3.8 calculates

its numerator:

Proof of Lemma 2.3.7. We need to show that for u− ∈ U◦− we have

〈w̄−1
0 u−1

− w̄
−1
P · v

+
ω∨k
, v+
ω∨k
〉 = (−1)`

∏̀
i=1

ai,

where ` = `(wP ).

Using Lemma 2.1.1 (iv) we find

〈w̄−1
0 u−1

− w̄
−1
P · v

+
ω∨k
, v+
ω∨k
〉 = 〈w̄−1

0 u−1
− · v+

ω∨k
, v+
ω∨k
〉.

By definition of U◦− (see Definition 2.2.1), u−1
− has a decomposition of the form

u−1
− = y∨r1(−a1) · · · y∨r`(−a`),

where the sequence of indices (r1, . . . , r`) is the same as the one used in the reduced

expression wP = sr1 · · · sr` fixed in equation (1.2.3). Now, y∨i (a) = exp(a f∨i ) =

1 + a f∨i + 1
2
a2(f∨i )2 + . . ., but only the first two terms act non-trivially on the repre-

sentation, since (f∨i )2 · v = 0 for all v ∈ V (ω∨k ) according to Theorem 1.5.3 (iv). We

conclude that

u−1
− · v+

ω∨k
= (1− a1 f

∨
r1

) · · · (1− a` f∨r`) · v
+
ω∨k
.

Note that this is a sum of vectors of different weights, the term of highest weight

being v+
ω∨k

(obtained by taking the term with all the identity factors), and the term of

lowest weight being (see Lemma 2.1.1 (iv))

(−a1) · · · (−a`)f∨r1 · · · f
∨
r`
· v+

ω∨k
= (−1)`

(∏`
i=1 ai

)
v−ω∨k

.
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Only the lowest weight term contributes a coefficient to 〈w̄−1
0 u−1

− · v+
ω∨k
, v+
ω∨k
〉 since

w̄−1
0 v−ω∨k

= v+
ω∨k

and w̄−1
0 is a bijection. Thus, we obtain

〈w̄−1
0 u−1

− w̄
−1
P · v

+
ω∨k
, v+
ω∨k
〉 = (−1)`

∏`
i=1 ai

as we wanted to show.

Now we turn to the numerator of (2.4.4):

Proof of Lemma 2.3.8. We need to show that for u− ∈ U◦− we have

〈w̄−1
0 u−1

− w̄
−1
P s̄k · v+

ω∨k
, v+
ω∨k
〉 = (−1)`+1

∑
(ij)∈I

ai1 · · · ai`′ ,

where I = {(i1, . . . , i`′) | 1 ≤ i1 < i2 < . . . < i`′ ≤ ` and w′ = sri1 · · · sri`′ } was

defined in Definition 2.2.5 and where we fixed the reduced expression wP = sr1 · · · sr`
in equation (1.2.3).

As we saw in the proof of Lemma 2.3.7, we only need to consider the lowest-

weight term of the vector u−1
− w̄

−1
P s̄k · v+

ω∨k
, as it is the only term mapped to v+

ω∨k
by

w̄−1
0 . However, w̄−1

P s̄k acts non-trivially on v+
ω∨k

, whereas in the proof of Lemma 2.3.7

w̄−1
P acted trivially on v+

ω∨k
by Lemma 2.1.1 (iv).

Recall that we had fixed the reduced expression wP = sq1 · · · sq`P in equation

(1.2.3) and that s̄−1
i = ṡi, so we find that w̄−1

P = ṡq`P · · · ṡq1 . Moreover, note that

s̄k · v+
ω∨k

= f∨k · v+
ω∨k

= −ṡk · v+
ω∨k

(see Corollary 1.5.4). All in all, we find that

w̄−1
P s̄k · v+

ω∨k
= −ṡq`P · · · ṡq1 ṡk · v

+
ω∨k
.

In Section 1.5 we have written w′′ ∈ W P for the minimal coset representative of the

coset wP skWP (note that w−1
P = wP ) and written `′′ = `(w′′) ≤ `(wP ) = ` for its

length. Since sq`P · · · sq1 is a reduced expression for wP ∈ WP and sk /∈ WP , we

deduce that sq`P · · · sq1sk is a reduced expression for wP sk. Thus, by Lemma 2.1.1 (i)
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and (ii), we deduce that w̄−1
P s̄k · v+

ω∨k
= −ṡq`P · · · ṡq1 ṡk · v

+
ω∨k

= −ẇP ṡk · v+
ω∨k

and that

w̄−1
P s̄k · v+

ω∨k
= −ẇP ṡk · v+

ω∨k
= −ẇ′′ · v+

ω∨k
= (−1)`

′′+1f∨j1 · · · f
∨
j`′′
· v+

ω∨k
, (2.4.5)

where w′′ = sj1 · · · sj`′′ is a reduced expression.

Note that in the case `′′ = ` (which only occurs for CPn = Gr(1, n+1) = Asc
n /P1

∼=

Asc
n /Pn) the following arguments become trivial, see Remark 2.4.3 below.

Next, we need to multiply this vector by u−1
− , which due to Theorem 1.5.3 (iv)

reduces to multiplying by (1−a1 f
∨
r1

) · · · (1−a` f∨r`) in the representation. As we men-

tioned at the start of the proof, we only need to look at the coefficient in front of v−ω∨k

in this product. From Lemma 2.1.1 (iv) we know that f∨i1 · · · f
∨
i`
·v+
ω∨k

= v−ω∨k
if and only

if si1 · · · si` = wP and this is a reduced expression. So we need exactly those terms

of (1− a1 f
∨
r1

) · · · (1− a` f∨r`) that complete f∨j1 · · · f
∨
j`′′
· v+

ω∨k
to f∨ri1 · · · f

∨
ri`−`′′

f∨j1 · · · f
∨
j`′′
·

v+
ω∨k

in such a way that the indices satisfy sri1 · · · sri`−`′′ sj1 · · · sj`′′ = wP . However,

sj1 · · · sj`′′ = w′′ and sr1 · · · sr` = wP , so we obtain a contributing term for ev-

ery subexpression sri1 · · · sri`−`′′ of the fixed reduced expression for wP such that

sri1 · · · sri`−`′′w
′′ = wP . Therefore, every subexpression of w′ = wP (w′′)−1 in the

fixed reduced expression of wP gives a contributing term.

Now, in Definition 2.2.5 we defined the set indexing these subexpressions as

I = {(i1, . . . , i`′) | 1 ≤ i1 < i2 < . . . < i`′ ≤ ` and w′ = sri1 · · · sri`′ },

where `′ = `(w′) = `(wP ) − `(w′′) = ` − `′′. In conclusion, for every (i1, . . . , i`) ∈ I,

we obtain the following term

−(−ai1) · · · (−ai`′ )f
∨
ri1
· · · f∨ri`′ (−1)`

′′
f∨j1 · · · f

∨
j`′′
· v+

ω∨k
= (−1)`+1ai1 · · · ai`′ v

−
ω∨k

and we find

〈w̄−1
0 u−1

− w̄
−1
P s̄k · v+

ω∨k
, v+
ω∨k
〉 = (−1)`+1

∑
(ij)∈I

ai1 · · · ai`′ ,

as we wanted to show.
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This concludes the last of the intermediate results for the proof of Theorem 2.2.7.

Remark 2.4.2. Note that at no point in the proof of Lemma 2.3.8 do we fix a reduced

expression for w′, so if (ij), (i
′
j) ∈ I, then we do not necessarily have rij = ri′j for all

j ∈ {1, . . . , `′}.

Remark 2.4.3. Note that if `′′ = `, we have w′′ = wP . In this case, equation (2.4.5)

becomes

w̄−1
P s̄k · v+

ω∨k
= −ṡqm · · · ṡq1 ṡk · v+

ω∨k
= −ẇP · v+

ω∨k
= (−1)`+1f∨r1 · · · f

∨
r`
· v+

ω∨k
= (−1)`+1v−ω∨k

,

Since u− ∈ U∨−, we find that u−1
− acts trivially on this, so that

〈w̄−1
0 u−1

− w̄
−1
P s̄k · v+

ω∨k
, v+
ω∨k
〉 = (−1)`+1.

Of course, w′′ = wP implies that w′ = wP (w′′)−1 = e is the identity element. Thus,

subexpressions of w′ inside wP have zero length and there is only one such subexpres-

sion so we find I = {∅}. We conclude that
∑

(ij)∈I
∏`′

j=1 arij = 1, taking the empty

product to be 1. Thus,

〈w̄−1
0 u−1

− w̄
−1
P s̄k · v+

ω∨k
, v+
ω∨k
〉 = (−1)`+1

∑
(ij)∈I

`′∏
j=1

arij

also holds in case `′′ = `.

2.5 Reformulating the quantum term using quiver

subsets

In the last two sections we proved that Theorem 2.2.7 gives a local Laurent polynomial

expression for the potential constructed by Rietsch in [Rie08]. However, the drawback

of the current expression is the effort required to find all the subexpressions of w′ inside

the fixed reduced expression of wP . In this section we will use a quiver associated to
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wP to enumerate all these subexpressions. For this, we need to use the fact that both

wP and w′ are fully commutative:

Definition 2.5.1. An element w ∈ W is called fully commutative if every reduced

expression of w can be obtained from a given reduced expression by commuting its

factors.

Lemma 2.5.2. Both wP ∈ W P and w′ ∈ W are fully commutative.

Proof. Full commutativity of wP (and in fact of every element of W P ) follows from

Theorem 6.1 of [Ste96]. Full commutativity of w′ is now a consequence of the full

commutativity of wP due to Proposition 2.4 of [Ste96], which states that every element

in W obtained from a fully commutative element by removing simple reflections at

the right (or left) is fully commutative itself.

In [CMP08] a quiver is associated to wP using the full commutativity property.

This quiver is a modification of the quiver introduced in [Per07] and closely related to

the heap associated to (an expression of) a Weyl group element, see [Ste96], section

2.2, and references therein. It is defined as follows:

Definition 2.5.3 ([CMP08], Definition 2.1). Given a fixed reduced expression for wP ,

e.g. the reduced expression wP = sr1 · · · sr` fixed in equation (1.2.3).

• For β ∈ {α1, . . . , αn}, let m(β) be the number of occurrences of sβ in the reduced

expression, i.e. m(β) = #{j | srj = sβ}.

• For (β, j) such that 1 ≤ j ≤ m(β), letJ(β, j) be the index of the jth occurrence

of sβ in the reduced expression (from left to right), i.e. letJ(β, j) be the index

such that srJ(β,j)
= sβ and #{̃ ≤J(β, j) | sr̃ = sβ} = j. Also, setJ(β, 0) = 0

andJ(β,m(i) + 1) =∞.

The quiver is now defined as follows:

• Draw for the jth occurrence of sβ in the reduced expression for wP a ver-

tex labeled (β, j), i.e. the vertices are (β, j) for β ∈ {α1, . . . , αn} and for

j ∈ {1, . . . ,m(β)}.
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• Draw an arrow from (β, j) to (β′, j′) if sβ and sβ′ do not commute and if the

j′th occurrence of sβ′ is the is the first one to the right of the jth occurrence of

sβ in the reduced expression for wP and it occurs before the (j+1)th occurrence

of sβ, i.e. draw an arrow from the vertex (β, j) to (β′, j′) if (sβsβ′)
2 6= 1 and

J(β′, j′ − 1) <J(β, j) <J(β′, j′) <J(β, j + 1).

We will denote the resulting quiver by QX∨ .

Note that the resulting quiver does not depend on the reduced expression for wP as

it is fully commutative; it suffices to check that the quiver is the same after commuting

two simple reflections.

Remark 2.5.4. In Definition 2.5.3, we associate the quiver QX∨ to the Langlands

dual homogeneous space X∨ = P∨k \G∨ which we introduced in Section 1.6. However,

in [Spa21], we associated the quiver to X instead. We chose to do this because X∨

played no other role in that paper (the results of which are presented in this chapter),

although we noted that P∨k \G∨ would be a more appropriate choice as the Laurent

polynomial WZ◦P is defined on Z◦P ⊂ G∨. The Langlands dual homogeneous space X∨

is closely related to the variety X∨Lie of equation (1.4.1) and Theorem 1.4.2. In fact, in

the articles [MR20, PR18, PRW16, PR13] it is shown that X∨Lie is isomorphic to the

canonical mirror variety X∨can, which is an open subvariety of X∨, and an expression

for the pull-back of WLie : X∨Lie × T P → C (see Definition 1.4.5) to X∨ is given. It is

expected that such an isomorphic subvariety exists in general. Indeed, we will prove

a similar isomorphism for the cominuscule homogeneous spaces of exceptional type

(introduced in Section 1.7) in Chapter 3. We note that we are able to choose either

X or X∨, since they determine the same Weyl groups W and WP = 〈si | i 6= k〉 ⊂ W .

This follows from the fact that the Weyl groups only depend on the Coxeter diagram

underlying the Dynkin diagrams of G and G∨ and the vertex k, and these do not

change under Langlands duality (see the discussion at the start of Section 1.2). Thus,

X and X∨ give rise to the same element wP and thus the associated quivers are

actually the same.
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This quiver has as vertices the factors of the reduced expression of wP , so every

subexpression of w′ inside the reduced expression will become a subset of vertices of

this quiver.

Definition 2.5.5. We denote the set of subsets of vertices of the quiver QX∨ that are

associated to reduced subexpressions of w′ inside the reduced expression of wP fixed

in Section 1.2 by S. In other words,

S =
{(

(β1, j1), . . . , (β`′ , j`′)
) ∣∣∣ sβ1 · · · sβ`′ = w′

}
,

where `′ = `(w′). Note that we implicitly order the vertices (β1, j1), . . . , (β`′ , j`′) such

thatJ(β1, j1) < . . . <J(β`′ , j`′), but we will still refer to the elements of S as subsets.2

Remark 2.5.6. Recall from Definition 2.2.5 that we defined I as the set of sequences

of subindices (i1, . . . , i`′) such that sri1 · · · sri`′ = w′ is a reduced subexpression of w′

in the fixed reduced expression wP = sr1 · · · sr` . Note thatJ gives rise to a bijection

between S and I, which we will also denote byJ:

J :
(
(β1, j1), . . . , (β`′ , j`′)

)
7→
(
J(β1, j1), . . . ,J(β`′ , j`′)

)
, (2.5.1)

This bijection gives the translation between the subsets of vertices of the quiver QX∨

(in S) and their associated reduced subexpressions (in I).

Example 2.5.7. To illustrate the quiver and the subsets associated to the subex-

pressions, consider the example of the Grassmannian X = Gr(4, 6) = SL6/P4 of type

A5. Fixing for wP the reduced expression wP = (s2s3s4s5)(s1s2s3s4), we find that

QX∨ is of the form below. Here all edges are arrows are pointing downwards and

the ith column of vertices contains the vertices (αi, j) with j increasing from 1 to

mP (αi) from top to bottom. Above the quiver, we have drawn the labeled Coxeter

diagram in such a way that the ith vertex of the diagram is above the ith column of

2This is to distinguish them from the sequences of subindices that are the elements of I from
Definition 2.2.5.
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the quiver. The vertex labeled 4 is marked in the Coxeter diagram to signify that we

are considering X = SL6/P4, i.e. to signify that k = 4 in X = G/Pk. For each vertex

(β, j), we also give the value ofJ(β, j).

1 2 3 4 5

1

2

3

4

8

7

6

5

The reduced expression w′ = s2s3s4 is unique and appears four times as a subex-

pression of wP : (s2s3s4s5)(s1s2s3s4), (s2s3s4s5)(s1s2s3s4), (s2s3s4s5)(s1s2s3s4), and

(s2s3s4s5)(s1s2s3s4). These correspond in QX∨ to marking the vertices

respectively, where we suppressed the vertices. ♦

It turns out that we can use the quiver QX∨ to find all the reduced subexpressions of

w′ in wP using two operations that are straightforward when considered as operations

on subsets of the quiver. First, we need the following observation:

Remark 2.5.8. From Definition 2.5.3, it is clear that we can only have an arrow

(i, j) → (i′, j′) ifJ(i, j) <J(i′, j′), so that any path (i, j) → (i1, j1) → . . . → (i′, j′)

between the two vertices correspond to simple reflections srJ(i,j)
, srJ(i1,j1)

, . . . , srJ(i′,j′)

that appear in that order in the reduced expression of wP .

The two operations are given as follows:

Lemma 2.5.9. Suppose (i1, . . . , i`′) ∈ I, i.e. suppose it is a sequence of subindices

such that sri1 · · · sri`′ = w′ is a reduced subexpression inside the reduced expression

wP = sr1 · · · sr` . Denote by S ∈ S the corresponding subset obtained by (the inverse

of) the bijection in (2.5.1).
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(i) For every ı̃ such that rı̃ = rij and ij−1 < ı̃ < ij+1, the sequence of subindices ob-

tained by replacing ij with ı̃, i.e. (i1, . . . , ij−1, ı̃, ij+1, . . . , i`′), also gives a reduced

subexpression of w′ in wP .

In terms of subsets in S, this says that we can replace a vertex (β, j) ∈ S with a

vertex (β, ̃) if every (β′, j′) withJ(β, j) <J(β′, j′) <J(β, ̃) is not an element

of S when j < ̃ (orJ(β, j) >J(β′, j′) >J(β, ̃) when j > ̃).

Examples of this operation are (using the conventions of Example 2.5.7):

ij−1
ij

ij+1

7→

ij−1

ı̃
ij+1

ij−1
ij

ij+1

7→

ij−1

ı̃
ij+1

ij−1

ij
ij+1

7→

ij−1

ı̃

ij+1

(ii) For every ı̃ < ij with rı̃ = rij such that there exists a j′ with ij′ < ı̃ < ij′+1 ≤ ij

and (srij sri̃ )
2 = 1 for all ̃ ∈ {j′ + 1, . . . , j − 1}, we have that the sequence of

subindices (i1, . . . , ij′ , ı̃, ij′+1, . . . , ij−1, ij+1, . . . , i`′) is an element of I as well.

Similarly, for every ı̃ > ij with rı̃ = rij such that there exists a j′ with ij ≤ ij′ <

ı̃ < ij′+1 and (srij sri̃ )
2 = 1 for all ̃ ∈ {j + 1, . . . , j′}, the sequence of subindices

(i1, . . . , ij−1, ij+1, . . . , ij′ , ı̃, ij′+1, . . . , i`′) is also an element of I.

In terms of subsets in S, this says that we can replace a vertex (β, j) ∈ S with

a vertex (β, ̃) if for every path (β, j) → (β1, j1) → . . . → (β, ̃) when j < ̃

(or (β, ̃) → (β1, j1) → . . . → (β, j) when j > ̃ respectively) there is no vertex

(β′, j′) ∈ S contained in the path such that (sβsβ′)
2 6= 1. Examples of this

operation are:

ij′

ij′+1

ij−1

ij
ij+1

7→

ij′

ij′+1

ij−1 ı̃

ij+1

ij−1
ij

ij′

ij′+1

7→

ij−1

ij′

ı̃
ij′+1
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Proof. (i) By assumption, (i1, . . . , ij−1, ı̃, ij+1, . . . , i`′) is an increasing sequence of

subindices such that sri1 · · · srij−1
srı̃srij+1

· · · sri`′ = sri1 · · · srij−1
srij srij+1

· · · sri`′ = w′,

and therefore a reduced expression of w′ in wP as well.

(ii) If ı̃ < ij, we can commute the factor srij to the left in the given reduced subex-

pression to obtain the reduced expression sri1 · · · srij′ srij srij′+1
· · · srij−1

srij+1
· · · sri`′ for

w′. Moreover, this is a subexpression of w′ in wP since there is a ı̃ with ij′ < ı̃ < ij′+1

and rı̃ = rij , so that (i1, . . . , ij′ , ı̃, ij′+1, . . . , ij−1, ij, . . . , i`′) is an increasing sequence of

subindices.

The case ı̃ > ij is analogous, except that we commute the factor srij to the

right.

Remark 2.5.10. Note that the operation (i) is actually a special case of the operation

(ii) where no commutation takes place.

It turns out that these operations suffice to obtain all the reduced subexpres-

sions of w′ in wP . To show this, we introduce a total order on the set of reduced

subexpressions by taking the lexicographical order ≺ on I. In other words, we have

(i1, . . . , i`′) ≺ (i′1, . . . , i
′
`′) if and only if there exists a j such that ij < i′j and ij′ = i′j′ for

j′ ∈ {1, . . . , j − 1}. Let (i∗1, . . . , i
∗
`′) be the minimal sequence associated to a reduced

subexpression of w′ in wP .

Proposition 2.5.11. Every reduced subexpression of w′ in wP can be obtained using

the operations of Lemma 2.5.9 on the minimal reduced subexpression w′ = sri∗1
· · · sri∗

`′
.

Proof. We will show that every non-minimal reduced subexpression can be made

smaller using one of the operations in Lemma 2.5.9. This gives a sequence of operations

from any given reduced subexpression to the minimal one. Since it is evident that

each operation is invertible, we obtain the statement.

Therefore, let (i1, . . . , i`′) ∈ I be non-minimal with respect to the lexicographical

order. By definition, there exists a j such that ij > i∗j and ij′ = i∗j′ for all j′ ∈

{1, . . . , j − 1}. We distinguish two cases: rij = ri∗j and rij 6= ri∗j .

In the case rij = ri∗j , we can apply operation (i) to directly obtain the reduced

subexpression (i1, . . . , ij−1, i
∗
j , ij+1, . . . , i`′) ≺ (i1, . . . , ij−1, ij, ij+1, . . . , i`′).
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Now, consider the case rij 6= ri∗j . Suppose that the simple reflection sri∗
j

occurs

for the Nth time in the minimal reduced subexpression of w′ in wP , then there must

exist some j′ > j such that srij′
is the Nth occurrence of the same simple reflection

in the subexpression (i1, . . . i`′). Indeed, w′ is fully commutative so that each sim-

ple reflection appears the same number of times in each reduced expression. (Note

that we have j′ > j since sri∗
̃

= sri̃ for ̃ ∈ {1, . . . , j − 1} and srij 6= sri∗
j
.) We

also know that the simple reflections sri̃ commute with srij′
for ̃ ∈ {j, . . . , j′ − 1}

because of full commutativity of w′, since these simple reflections have commuted

with sri∗
j

= srij′
going from (i∗1, . . . , i

∗
`′) to (i1, . . . , i`′). Thus, we can apply opera-

tion (ii) to obtain (i1, . . . , ij−1, i
∗
j , ij, . . . , ij′−1, ij′+1, . . . , i`′) ≺ (i1, . . . , i`′) as a reduced

subexpression.

Combining this with Theorem 2.2.7 and Remark 2.5.6, we conclude the following:

Corollary 2.5.12. Let X = G/P be a cominuscule complete homogeneous space

with G a simply-connected, simple, complex algebraic group and P = Pk a (maximal)

parabolic subgroup. The restriction WZ◦P of WZ∨P to Z◦P has the following Laurent

polynomial expression:

WZ◦P (z) =
∑̀
i=1

ai + q

∑
S∈S

∏
(β,j)∈S aJ(β,j)∏`
i=1 ai

. (2.5.2)

Here z ∈ Z◦P is uniquely decomposed as z = u+tw̄Pu− with u− = y∨r`(a`) · · · y
∨
r1

(a1) ∈

U◦− as in Corollary 2.2.4. Also, q ∈ C∗ is given by q = α∨k (t) (with t ∈ T P ), and the

subindex relabelingJ is defined in Definition 2.5.3. The set S is defined in Definition

2.5.5 and all its elements are obtained using the operations of Lemma 2.5.9.

2.6 Laurent polynomial potentials for all cominus-

cule homogeneous spaces

Theorem 2.2.7 allows us to calculate Laurent polynomial potentials for the cominus-

cule homogeneous spaces listed in Table 1.5.1, and Corollary 2.5.12 gives us a tractable
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way to find all the terms. In this section, we will give reduced expressions for wP and

w′, the quivers QX∨ for all the cominuscule homogeneous varieties and we will work

out the sets S and the resulting Laurent polynomial expressions for representative

examples.

The Laurent polynomials we obtain for quadrics (type Bn and Dn) and Lagrangian

Grassmannians (type Cn) are identical to those found in [PRW16] (Propositions 2.2

and 3.11) and [PR13] (Proposition A.1). This is to be expected, as Theorem 2.2.7 is

obtained by a generalization of the methods used there.

However, to the best of our knowledge, the Laurent polynomials for orthogonal

Grassmannians (type Dn) for general n, the Cayley plane (type E6) and the Freuden-

thal variety (type E7) have not yet been given. Moreover, all the potentials have a

uniform structure resembling Givental’s Laurent polynomial potential for projective

complete intersections [Giv96], namely they are the sum of the toric coordinates plus

a quantum term consisting of a homogeneous polynomial divided by the product of

all the toric coordinates.

2.6.1 The Grassmannian

Let X = Gr(k, n) = SLn/Pk be the Grassmannian of k-planes in Cn, considered as

a homogeneous space for the special linear group, the simply-connected complex Lie

group of type An−1. Note that the parabolic subgroup is given by

Pk =

 GLk Matk×(n−k)

0 GLn−k

 ∩ SLn.

We make two assumptions on k: Firstly, we assume that k /∈ {1, n − 1}: for k = 1

and k = n − 1 we find w′ = 1. Secondly, we assume without loss of generality that

k ≥ n − k: for the remaining cases apply the Dynkin diagram bijection i 7→ n − i.

The longest Weyl group element has minimal coset representative

wP = (sn−ksn+1−k · · · sn−1)(sn−1−ksn−k · · · sn−2) · · · (s1s2 · · · sk),
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having n− k products in parentheses each with k factors. On the other hand, we find

for w′ the reduced expression

w′ = (sn−k · · · sn−2)(sn−k−1 · · · sn−3) · · · (s2 · · · sk),

having n− k − 1 products in parentheses each with k − 1 factors.

The quiver QX∨ can be written as a (n−k−1)× (k−1)-rectangle and the reduced

subexpression for w′ that is minimal in the lexicographical order is the (n− k − 2)×

(k − 2)-rectangle obtained by removing the bottom row and rightmost column.

Example 2.6.1. Consider Gr(4, 7), which is homogeneous for SL7 of type A6. We

find that wP = (s3s4s5s6)(s2s3s4s5)(s1s2s3s4) and w′ = (s3s4s5)(s2s3s4). The quiver

is of the following form, using the conventions of Example 2.5.7:

1 2 3 4 5 6

1

2

3

4

5

6

7

8

9

10

11

12

The ten subsets associated to reduced subexpressions of w′ in wP are drawn to the

right. So, taking z = u+tw̄Pu− with (u−)−1 = y∨3 (−a1)y∨4 (−a2) · · · y∨4 (−a10) and

q = α∨4 (t), we find

WZ◦P (z) =
12∑
i=1

ai + q
P (ai)

a1a2a3a4a5a6a7a8a9a10a11a12

,

where

P (ai) = a1a2a3a5a6a7 + a1a2a3a5a6a12 + a1a2a5a6a8a12 + a1a2a3a5a11a12

+ a1a2a5a8a11a12 + a1a5a7a8a11a12 + a1a2a3a10a11a12 + a1a2a8a10a11a12

+ a1a7a8a10a11a12 + a6a7a8a10a11a12,
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with the summands written in order of the subsets.

Note that there is a clear bijection between the subsets of the quiver QX∨ and

Young diagrams that fit inside a 2 × 3-rectangle: the unmarked vertices correspond

to the contour of the Young diagram. For example:

a1a2a5a8a11a12 ↔ ↔

This bijection works in general, so we obtain an alternative description of the quantum

term for a general Grassmannian Gr(k, n) that sums over the Young diagrams that

fit inside a (n− k − 1)× (k − 1)-rectangle. ♦

Remark 2.6.2. Other Laurent polynomial Landau-Ginzburg models have already

been given for Grassmannians. Particularly relevant is the potential L : (C∗)k(n−k) ×

C∗ → C given in [EHX97], equation (B.25) (see also [BCFKvS98], Conjecture 4.2.2,

as well as [MR20], Section 6.3), which is described as follows.

For i ∈ {1, . . . , n − k} and j ∈ {1, . . . , k}, write [i, j] for the Young diagram cor-

responding to the partition (j, 1, 1, . . . , 1) of length i; for example, [2, 3] corresponds

to the diagram . Denote the set of these diagrams by Λs. Now, denote the coor-

dinates of (C∗)k(n−k) by z[i,j] for [i, j] ∈ Λs, denote the coordinate of the remaining

factor C∗ by z∞ = q and finally set z∅ = 1. Consider the quiver with as vertices

Λ∗s = Λs ∪ {∅,∞} and as arrows

{[i, j]→ [i, j + 1], [i, j]→ [i+ 1, j]} ∪ {∅→ [1, 1]} ∪ {[n− k, k]→∞}.

For example, for G(4, 7) we obtain:

∅

∞
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Denoting [1, 0] = ∅ and [n − k, k + 1] = ∞ (so that z[1,0] = z∅ = 1 and z[n−k,k+1] =

z∞ = q), consider for [i, j] ∈ Λ∗s the following quotients:

T[i,j] =
z[i+1,j] + z[i,j+1]

z[i,j]

, (2.6.1)

where z[i,j] = 0 for [i, j] /∈ Λ∗s. In other words, for each vertex [i, j] ∈ Λ∗s, T[i,j] consists

of the sum of the coordinates at the ends of the outgoing arrows divided by the

coordinate of the vertex. For example,

T =
z + z

z
, T[n−k,1] =

z[n−k,2]

z[n−k,1]

, T[1,k] =
z[2,k]

z[1,k]

, T∅ = T[1,0] = z ,

T[n−k,k] =
q

z[n−k,k]

and T∞ = T[n−k,k+1] = 0.

The Laurent polynomial potential of [EHX97] is the following:

L(z[i,j]) =
∑

[i,j]∈Λ∗s

T[i,j], (2.6.2)

where the quantum term is T[n−k,k] = q
z[n−k,k]

. In the example of Gr(4, 7), this becomes

L(z[i,j]) = z +
z + z

z
+ . . .+

z

z
+
z

z
+

q

z
,

which has a total of thirteen terms (twelve plus a quantum term).

The potential L of (2.6.2) is shown in [MR20], Theorem 4.6, to be a local Laurent

polynomial expression for the Landau-Ginzburg model used there. That model is

also shown in Proposition 6.7 of [MR20] to be isomorphic to Rietsch’s Lie-theoretic

Landau-Ginzburg model given in [Rie08], see also Theorem 1.4.2 here. By construc-

tion, the Laurent polynomial potential WZ◦P of Theorem 2.2.7 and Corollary 2.5.12

here is a local expression for Rietsch’s Lie-theoretic Landau-Ginzburg model. Thus,

both WZ◦P and L are local Laurent polynomial expressions for the same model. How-

ever, it is clear that WZ◦P and L are not isomorphic: the quantum term of L is a

Laurent monomial, namely T[n−k,k] = q
z[n−k,k]

, whereas the quantum term of WZ◦P is
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not.

On the other hand, it is straightforward to find a birational map Φ such that

Φ∗L = WZ◦P . First, consider the following bijection: for [i, j] ∈ Λs \ {[n − k, k]}, let

φ([i, j]) = i · k − j + 1, and let φ(∅) = (n − k − 1)k + 1. Clearly, φ is a bijection

Λ∗s \ {[n− k, k],∞} → {1, . . . , k(n− k)}. Define Φ : (C∗)k(n−k) → (C∗)k(n−k) to be the

birational map such that Φ∗(ai) = Tφ−1(i). By definition, we find (recalling T∞ = 0)

Φ∗WZ◦P = Φ∗

k(n−k)∑
i=1

ai + q
P (aj)

a1 · · · ak(n−k)


=

∑
[i,j]∈Λ∗s\{[n−k,k]}

T[i,j] + q
P (T[i′,j′])

T∅T[1,1]T[1,2] · · ·T[n−k,k−1]

,

where P is the homogeneous polynomial in the numerator of the quantum term of

Corollary 2.5.12. Thus, what remains to be shown is that the quantum term simplifies

to T[n−k,k] = q
z[n−k,k]

, which is a straightforward computation for any given k and n.

For example, in the case Gr(4, 7) we can simplify the following products:

T∅T = z
z + z

z
= z + z , T T =

z

z

z

z
=
z

z
, T T T =

z

z
.

Thus, the denominator becomes

(T∅T )(T T T T T )(T T )(T T T )

= (z + z )

(
z + z

z

z + z

z

z + z

z

z + z

z

z + z

z

)(
z

z

)(
z

z

)
.

It is more work to simplify P (T[i′,j′]), but in the end we find

P (T[i′,j′]) = (z + z )

(
z + z

z

z + z

z

z + z

z

z + z

z

z + z

z

)(
z

z

)(
1

z

)
.

So the quotient is indeed T[n−k,k] = q
z[n−k,k]

.
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2.6.2 The quadric

Let X = Qd be the d-dimensional quadric. Note that both odd- and even-dimensional

quadrics are homogeneous for Spind+2, and that the parabolic subgroup is associated

to the first vertex of the Dynkin diagram. Note, however, that Spind+2 is of a different

type depending on whether d + 2 = 2n + 1 is odd (type Bn) or d + 2 = 2n is even

(type Dn), but the resulting homogeneous spaces are nonetheless similar enough to

be considered at the same time. We find for wP the reduced expressions:

wP =

 s1s2 · · · sn−1(sn)sn−1sn−2 · · · s1, for d = 2n− 1,

s1s2 · · · sn−2(sn−1sn)sn−2sn−3 · · · s1, for d = 2n− 2.

For both odd and even quadrics we find w′ = s1 and in both cases the simple reflection

s1 only appears as the first and the last factor, so it is easy enough to find the Laurent

polynomial potential without using Corollary 2.5.12. We find the same potential in

both cases, namely:

WZ◦P (z) =
d∑
i=1

ai + q
a1 + ad∏d
i=1 ai

,

where d is the dimension of the quadric, and we decomposed z = u+tw̄Pu− with

u− = y∨1 (−a1)y∨2 (−a2) · · · y∨1 (−ad) and q = α∨1 (t). Note that this Laurent polynomial

expression is indeed identical to the ones obtained in [PRW16], Propositions 2.2 and

3.11. For completeness’ sake, let us consider two examples of quadrics and draw the

associated quivers:

Example 2.6.3. Consider the odd quadric Q7 of type B4 and the even quadric

Q8 of type D5. These have for wP the reduced expressions s1s2s3(s4)s3s2s1 and

s1s2s3(s4s5)s3s2s1 respectively. Thus, we find the quivers

1 2 3 4

1

2

3

4

5

6

7

and

1 2 3 4 5

1

2

3

4 5

6

7

8
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Also in the quivers it is clear that there are only two subsets associated to w′ = s1

each containing one vertex: the top and the bottom one. ♦

Remark 2.6.4. Note that we have chosen to draw the Coxeter diagram of type D5

as instead of as or . This is to avoid confusing the vertex (4, 1)

with either (5, 1) or (3, 1) and (3, 2), respectively. We will continue to do this with

the Coxeter diagrams of type Dn and En. This causes the quivers for the orthogo-

nal Grassmannians (Subsection 2.6.4), the Cayley plane (Subsection 2.6.5) and the

Freudenthal variety (Subsection 2.6.6) to lose their symmetry, but this is purely aes-

thetic.

2.6.3 The Lagrangian Grassmannian

Let X = LG(n, 2n) = Sp2n/Pn be the Grassmannian of Lagrangian subspaces in C2n

equipped with the standard symplectic form, considered as a homogeneous space for

the symplectic group of type Cn. Note that the parabolic subgroup is given by

Pn =

 GLn Matn×n

0 GLn

 ∩ Sp2n.

The coset representative for the longest Weyl group element has reduced expression

wP = (sn)(sn−1sn)(sn−2sn−1sn) · · · (s1s2 · · · sn),

Similarly, we find for w′

w′ = (sn)(sn−1sn)(sn−2sn−1sn) · · · (s2s3 · · · sn).

The quiver QX∨ can be written as the triangle that is the left half of an n × n-

square, and the reduced subexpression for w′ that is minimal with respect to the

lexicographical order is the triangle that is the left half of the (n− 1)× (n− 1)-square

obtained after removing the bottom row and the rightmost column. Note that the
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Laurent polynomial expression of Theorem 2.2.7 coincides with the description given

in Proposition A.1 of [PR13].

Example 2.6.5. Consider LG(4, 8) which is homogeneous for Sp8 of type C4. We

find that wP = (s4)(s3s4)(s2s3s4)(s1s2s3s4), w′ = (s4)(s3s4)(s2s3s4) and the following

quiver:

1 2 3 4

1

2

34

5

6

7

8

9

10

To the right we have drawn the eight subsets corresponding to reduced subexpressions

of w′ inside the reduced expression for wP . So, considering the decomposition z =

u+tw̄Pu− with (u−)−1 = y∨4 (−a1)y∨3 (−a2) · · · y∨4 (−a10) and q = α∨4 (t), we find

WZ◦P (z) =
10∑
i=1

ai + q
P (ai)

a1a2a3a4a5a6a7a8a9a10

,

where

P (ai) = a1a2a3a4a5a6 + a1a2a3a4a5a10 + a1a2a3a4a9a10 + a1a2a4a6a9a10

+ a1a2a3a8a9a10 + a1a2a6a8a9a10 + a1a5a6a8a9a10 + a3a5a6a8a9a10

are the eight reduced expression for w′ obtained from the diagrams above. ♦

2.6.4 The orthogonal Grassmannian

Let X = OG(n, 2n) = Spin2n/Pn be the Grassmannian of maximal isotropic subspaces

in C2n equipped with the standard quadratic form, considered as a homogeneous space

for the spin group of type Dn. We fix for the minimal coset representative wP of the
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longest element the reduced expression

wP =

 sn−1(sn−2)sn(sn−3sn−2)sn−1 · · · (s1s2 · · · sn−2)sn, for n odd,

sn(sn−2)sn−1(sn−3sn−2)sn · · · (s1s2 · · · sn−2)sn, for n even.

Now, for w′ we find the reduced expression

w′ =

 sn−1(sn−2)sn(sn−3sn−2)sn−1 · · · (s3s4 · · · sn−2)sn, for n odd,

sn(sn−2)sn−1(sn−3sn−2)sn · · · (s3s4 · · · sn−2)sn, for n even.

Note that these expressions are very similar to those of Lagrangian Grassmannians

except that the expressions for the orthogonal Grassmannians alternate between sn

and sn−1. The quiver QX∨ is therefore the left half of an (n − 1) × (n − 1)-square

with the longest column split over two columns. The subset that corresponds to the

reduced subexpression for w′ that is minimal with respect to the lexicographical order

is in this case the triangle that is the left half of the (n− 3)× (n− 3)-square obtained

after removing the two bottom rows and the two rightmost columns.

Example 2.6.6. Consider OG(5, 10) which is homogeneous for Spin10 of type D5.

We find that wP = s4(s3)s5(s2s3)s4(s1s2s3)s5 and w′ = s4(s3)s5. We find the quiver

1 2 3 4 5

1

2

34

5

6

7

8

9

10

To the right we have drawn the five subsets corresponding to reduced subexpressions

of w′ inside the reduced expression for wP . So, we find

WZ◦P (z) =
10∑
i=1

ai + q
a1a2a3 + a1a2a10 + a1a5a10 + a1a9a10 + a6a9a10

a1a2a3a4a5a6a7a8a9a10

,

where z = u+tw̄Pu− with (u−)−1 = y∨4 (−a1)y∨3 (−a2) · · · y∨5 (−a10) and q = α∨5 (t). ♦
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2.6.5 The Cayley plane

Let X = OP2 = Esc
6 /P6 be the Cayley plane, considered as a homogeneous space for

the simply-connected Lie group Esc
6 of type E6. We fix for wP the reduced expression

wP = s1s3s4s2s5s6s4s5s3s4s2s1s3s4s5s6

and we find for w′ the (unique) reduced expression w′ = s1s3s4s5s6. Thus, the quiver

is as follows:

1 23 4 5 6

1

2

3

4 5

67

89

10

11

12

13

14

15

16

To the right we have drawn the twelve subsets corresponding to subexpressions of w′.

We find for z = u+tw̄Pu− with (u−)−1 = y∨1 (−a1)y∨3 (−a2) · · · y∨6 (−a16)

WZ◦P (z) =
16∑
i=1

ai + q
P (ai)∏16
i=1 ai

,

with q = α∨6 (t) and where (in order of the drawn subsets)

P (ai) = a1a2a3a5a6 + a1a2a3a5a16 + a1a2a3a8a16 + a1a2a7a8a16

+ a1a2a3a15a16 + a1a2a7a15a16 + a1a2a10a15a16 + a1a9a10a15a16

+ a1a2a14a15a16 + a1a9a14a15a16 + a1a13a14a15a16 + a12a13a14a15a16.
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2.6.6 The Freudenthal variety

Let X = Esc
7 /P7 be the Freudenthal variety, considered as a homogeneous space for

the simply-connected Lie group Esc
7 of type E7. We fix for wP the reduced expression

wP = s7s6s5s4s2s3s4s5s6s7s1s3s4s2s5s6s4s5s3s4s2s1s3s4s5s6s7,

and w′ has reduced expression w′ = s7s6s5s4(s2s3)s4s5s6s7. The quiver QX∨ is of the

form
1 23 4 5 6 7

1

2

3

4

56

7

8

9

10

11

12

13

14 15

1617

1819

20

21

22

23

24

25

26

27

To the right we have drawn the subset corresponding to the reduced subexpression of

w′ that is minimal with respect to the lexicographical order. However, in this case,

there are 78 reduced subexpressions, so instead of giving all the corresponding subsets,

we will simply list in lexicographical order the elements of I consisting of sequences

of subindices (i1, . . . , i10) of wP = sr1 · · · sr` such that w′ = si1 · · · si10 , see Table 2.6.1.

We find for z = u+tw̄Pu− with (u−)−1 = y∨7 (−a1)y∨6 (−a2) · · · y∨7 (−a27) that

WZ◦P (z) =
27∑
i=1

ai + q
P (ai)∏27
i=1 ai

,

with q = α∨7 (t) and P (ai) =
∑

(ij)∈I
∏10

j=1 aij is a homogeneous polynomial of degree

10 with 78 terms.
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I =
{
( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 27), ( 1, 2, 3, 4, 5, 6, 7, 8, 16, 27),

( 1, 2, 3, 4, 5, 6, 7, 8, 26, 27), ( 1, 2, 3, 4, 5, 6, 7, 15, 16, 27), ( 1, 2, 3, 4, 5, 6, 7, 15, 26, 27),

( 1, 2, 3, 4, 5, 6, 7, 18, 26, 27), ( 1, 2, 3, 4, 5, 6, 7, 25, 26, 27), ( 1, 2, 3, 4, 5, 6, 13, 15, 16, 27),

( 1, 2, 3, 4, 5, 6, 13, 15, 26, 27), ( 1, 2, 3, 4, 5, 6, 13, 18, 26, 27), ( 1, 2, 3, 4, 5, 6, 13, 25, 26, 27),

( 1, 2, 3, 4, 5, 6, 17, 18, 26, 27), ( 1, 2, 3, 4, 5, 6, 17, 25, 26, 27), ( 1, 2, 3, 4, 5, 6, 20, 25, 26, 27),

( 1, 2, 3, 4, 5, 6, 24, 25, 26, 27), ( 1, 2, 3, 4, 5, 12, 13, 15, 16, 27), ( 1, 2, 3, 4, 5, 12, 13, 15, 26, 27),

( 1, 2, 3, 4, 5, 12, 13, 18, 26, 27), ( 1, 2, 3, 4, 5, 12, 13, 25, 26, 27), ( 1, 2, 3, 4, 5, 12, 17, 18, 26, 27),

( 1, 2, 3, 4, 5, 12, 17, 25, 26, 27), ( 1, 2, 3, 4, 5, 12, 20, 25, 26, 27), ( 1, 2, 3, 4, 5, 12, 24, 25, 26, 27),

( 1, 2, 3, 4, 5, 19, 20, 25, 26, 27), ( 1, 2, 3, 4, 5, 19, 24, 25, 26, 27), ( 1, 2, 3, 4, 5, 23, 24, 25, 26, 27),

( 1, 2, 3, 4, 6, 14, 17, 18, 26, 27), ( 1, 2, 3, 4, 6, 14, 17, 25, 26, 27), ( 1, 2, 3, 4, 6, 14, 20, 25, 26, 27),

( 1, 2, 3, 4, 6, 14, 24, 25, 26, 27), ( 1, 2, 3, 4, 6, 21, 24, 25, 26, 27), ( 1, 2, 3, 4, 12, 14, 17, 18, 26, 27),

( 1, 2, 3, 4, 12, 14, 17, 25, 26, 27), ( 1, 2, 3, 4, 12, 14, 20, 25, 26, 27), ( 1, 2, 3, 4, 12, 14, 24, 25, 26, 27),

( 1, 2, 3, 4, 12, 21, 24, 25, 26, 27), ( 1, 2, 3, 4, 14, 19, 20, 25, 26, 27), ( 1, 2, 3, 4, 14, 19, 24, 25, 26, 27),

( 1, 2, 3, 4, 14, 23, 24, 25, 26, 27), ( 1, 2, 3, 4, 19, 21, 24, 25, 26, 27), ( 1, 2, 3, 4, 21, 23, 24, 25, 26, 27),

( 1, 2, 3, 7, 12, 14, 17, 18, 26, 27), ( 1, 2, 3, 7, 12, 14, 17, 25, 26, 27), ( 1, 2, 3, 7, 12, 14, 20, 25, 26, 27),

( 1, 2, 3, 7, 12, 14, 24, 25, 26, 27), ( 1, 2, 3, 7, 12, 21, 24, 25, 26, 27), ( 1, 2, 3, 7, 14, 19, 20, 25, 26, 27),

( 1, 2, 3, 7, 14, 19, 24, 25, 26, 27), ( 1, 2, 3, 7, 14, 23, 24, 25, 26, 27), ( 1, 2, 3, 7, 19, 21, 24, 25, 26, 27),

( 1, 2, 3, 7, 21, 23, 24, 25, 26, 27), ( 1, 2, 3, 13, 14, 19, 20, 25, 26, 27), ( 1, 2, 3, 13, 14, 19, 24, 25, 26, 27),

( 1, 2, 3, 13, 14, 23, 24, 25, 26, 27), ( 1, 2, 3, 13, 19, 21, 24, 25, 26, 27), ( 1, 2, 3, 13, 21, 23, 24, 25, 26, 27),

( 1, 2, 3, 17, 19, 21, 24, 25, 26, 27), ( 1, 2, 3, 17, 21, 23, 24, 25, 26, 27), ( 1, 2, 3, 20, 21, 23, 24, 25, 26, 27),

( 1, 2, 8, 13, 14, 19, 20, 25, 26, 27), ( 1, 2, 8, 13, 14, 19, 24, 25, 26, 27), ( 1, 2, 8, 13, 14, 23, 24, 25, 26, 27),

( 1, 2, 8, 13, 19, 21, 24, 25, 26, 27), ( 1, 2, 8, 13, 21, 23, 24, 25, 26, 27), ( 1, 2, 8, 17, 19, 21, 24, 25, 26, 27),

( 1, 2, 8, 17, 21, 23, 24, 25, 26, 27), ( 1, 2, 8, 20, 21, 23, 24, 25, 26, 27), ( 1, 2, 15, 17, 19, 21, 24, 25, 26, 27),

( 1, 2, 15, 17, 21, 23, 24, 25, 26, 27), ( 1, 2, 15, 20, 21, 23, 24, 25, 26, 27), ( 1, 2, 18, 20, 21, 23, 24, 25, 26, 27),

( 1, 9, 15, 17, 19, 21, 24, 25, 26, 27), ( 1, 9, 15, 17, 21, 23, 24, 25, 26, 27), ( 1, 9, 15, 20, 21, 23, 24, 25, 26, 27),

( 1, 9, 18, 20, 21, 23, 24, 25, 26, 27), ( 1, 16, 18, 20, 21, 23, 24, 25, 26, 27), (10, 16, 18, 20, 21, 23, 24, 25, 26, 27)
}

Table 2.6.1: The full list of all the 78 elements of I for the Freudenthal variety Esc
7 .
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Chapter 3

Mirror symmetry for exceptional

cominuscule homogeneous spaces

In this chapter, we will consider the exceptional cominuscule homogeneous spaces, the

Cayley plane and the Freudenthal variety. For these varieties, we will present Plücker

coordinate expressions for the mirror model for homogeneous spaces given by [Rie08],

which we introduced in Section 1.4. We will call these models the canonical mirror

models, following [PRW16].

We follow the general approach as used in [PR13, PRW16]. In particular, we will

use a presentation of the coordinate ring of UP
− derived from the results in [GLS11]

(which we introduced in Section 1.6) and express it in terms of Plücker coordinates

using representation theory. However, the varieties considered in these references are

homogeneous under Sp2n and Spin2n, and the representation theory of these groups

is well-established (although by no means trivial). For the groups of type E6 and E7,

the representations have a more complicated structure. This is remedied by the fact

that we are only considering two groups, and not a whole family, so it is manageable

to make direct computations. Moreover, in contrast with [PR13, PRW16], we will

perform most calculations restricted to the open, dense torus U◦− (or more precisely:

its transpose) to simplify the computations. This is reminiscent of our approach in

Chapter 2.
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The implications of the canonical models have been discussed in the introduction

to Chapter 1.

We will start by formulating the canonical mirror models in Section 3.1. In Sec-

tion 3.2 we continue with an overview of the involved isomorphisms and give a type-

independent criterion relating the generators of the coordinate ring of UP
− given by

[GLS11] and Plücker coordinates. Subsequently, we express the coordinate rings of

(the transpose of) UP
− for the Cayley plane and the Freudenthal variety in terms of

Plücker coordinates in Sections 3.3 and 3.4, respectively. In these sections, we also

give a list of Plücker relations on the mirror varieties of the Cayley plane and the

Freudenthal variety that express the remaining Plücker coordinates in terms of the

generating ones, see Remarks 3.3.4 and 3.4.4. Using the Plücker coordinate presenta-

tions of these coordinate rings, we prove the isomorphism between the Lie-theoretic

and the canonical Landau-Ginzburg models in Section 3.5.

3.1 The canonical models for cominuscule Esc
n /Pn

In this section we will define the canonical mirror models (X∨can,Wcan) for the Cayley

plane and the Freudenthal variety, given in terms of Plücker coordinates. The ter-

minology “canonical” follows that of [PRW16]. This chapter will revolve around the

following two results:

Theorem 3.1.1. For cominuscule Esc
n /Pn, the variety X∨can is isomorphic to the open

Richardson variety X∨Lie = R∨wP ,w0
.

Theorem 3.1.2. For cominuscule Esc
n /Pn, the pull-back of Wcan under the iso-

morphism of Theorem 3.1.1 equals WLie. In other words, the Landau-Ginzburg

model (X∨can,Wcan) is isomorphic to Rietsch’s Lie theoretic Landau-Ginzburg model

(X∨Lie,WLie).

As we noted in Remark 2.5.4, it is expected that canonical mirrors exist more gen-

erally, and they have indeed already been constructed for Grassmannians, Lagrangian

Grassmannians, and quadrics in [MR20, PR13, PR18, PRW16]. The potentials for
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the exceptional cominuscule homogeneous spaces are similar to these cases. However,

there is a notable difference: in the case of Grassmannians, the potential consisted

of a sum of quotients of Plücker coordinates (see equation (6.4) of [MR20]); in both

the cases of quadrics and Lagrangian Grassmannians, some of the quotients had in-

stead homogeneous quadratic polynomials as their numerators and denominators (see

equations (11) and (28) of [PRW16], and equation (7) of [PR13]); however, in the

case of the exceptional cominuscule homogeneous spaces, we find cubic and quartic

homogeneous polynomials as well.

We will denote the homogeneous polynomials appearing in the numerators and

denominators by qi; this should not cause any confusion with quantum parameters as

cominuscule homogeneous spaces always have dimZH2(X,Z) = 1 and thus also only

a single quantum parameter, which we denote by q. (See the discussion at the end

of Section 1.3.) Also note that we will no longer use (qi) to denote the sequence of

indices of the reduced expression of wP ; the qi will from now on be reserved for the

homogeneous polynomials in Plücker coordinates defined below.

The canonical model for the Cayley plane. The homogeneous polynomials in

Plücker coordinates appearing in the denominators are the following:

q12 = p1p
′′
11 − p0p

′′
12, q16 = p′7p

′
9 − p8p

′
8, q20 = p′′5p15 − p′′4p16,

q24 = p0(p′11p13 − p′12p
′′
12)− p1(p′′10p13 − p′′11p

′
12) + p2(p′′10p

′′
12 − p′11p

′′
11); (3.1.1)

and the following will be numerators:

q13 = p2p
′′
11 − p0p13, q17 = p′7p

′
10 − p8p

′′
9, q21 = p′′6p15 − p′5p16,

q25 = p0p
′
11p14 − p1p

′′
10p14 + p3(p′′10p

′′
12 − p′11p

′′
11). (3.1.2)

Using these coordinates, define the following rational map X∨ = P̃∨\G̃∨ → C,

87



called the canonical potential :

Wcan =
p1

p0

+
p′9
p8

+
q13

q12

+
q17

q16

+
q21

q20

+
q25

q24

+ q
p′′5
p16

. (3.1.3)

The denominators of the rational map of equation (3.1.3) define principal divisors

on X∨ which we will denote as follows:

D
(1)
0 = {p0 = 0}, D

(1)
8 = {p8 = 0}, D

(1)
16 = {p16 = 0},

D
(2)
12 = {q12 = 0}, D

(2)
16 = {q16 = 0}, D

(2)
20 = {q20 = 0},

D
(3)
24 = {q24 = 0}.

Take D =
∑
D

(j)
i and let X∨can = X∨ \ D be the complement of this anticanonical

divisor. The restriction of Wcan to X∨can is regular and will also be denoted by Wcan.

The pair (X∨can,Wcan) forms the canonical LG model for the Cayley plane.

The canonical model for the Freudenthal variety. The canonical potential for

the Freudenthal variety will have the following denominators:

q18 = p1p17 − p0p18, q36 = p10p26 − p9p27,

q27 = p0p27 − p1p26 + p2p25 − p3p24 + p4p23 − p′′5p′′22 + p′′6p
′′
21,

q45 = (p9p11 − p10p
′
10)p25 + (−p′8p11 + p′9p10)p26 + (p′8p

′
10 − p9p

′
9)p27,

q′36 = (p0p
′
14 − p1p

′′
13 + p2p

′′
12)p′22 + (−p0p13 + p1p

′
12 − p2p

′′
11)p23

+ (p0p12 − p1p
′
11 + p2p

′′
10)p24 − p2p

′′
9p25 + p1p

′′
9p26 − p0p

′′
9p27,

q54 = (p′′5p
′′
7 − p′6p′′6)(p′′20p

′′
22 − p′21p

′′
21)− (p4p

′′
7 − p′5p′′6)(p′′20p23 − p′′21p

′
22)

+ (p4p
′
6 − p′5p′′5)(p′21p23 − p′22p

′′
22) + q′27q

′′
27, (3.1.4)

where

q′27 = −p0p27 + p1p26 − p2p25 + p3p24,

q′′27 = −p′′6p′′21 − p′7p′20 + p′′7p
′′
20 + p′8p

′
19 − p9p18 + p10p17;
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and the following numerators:

q19 = p2p17 − p0p
′
19, q28 = p′5p23 − p′6p′′22 + p′′7p

′′
21, q37 = p11p26 − p′10p27,

q46 = (p9p12 − p10p
′
11)p25 + (−p′8p12 + p10p

′′
10)p26 + (p′8p

′
11 − p9p

′′
10)p27,

q′37 = (p0p
′
15 − p1p14 + p3p

′′
12)p′22 + (−p0p

′′
14 + p1p

′
13 − p3p

′′
11)p23

+ p3p
′′
10p24 + (p0p12 − p1p

′
11 − p3p

′′
9)p25 + p1p

′′
10p26 − p0p

′′
10p27,

q55 = (p′′5p
′′
8 − p′′6p′7)(p′′20p

′′
22 − p′21p

′′
21)− p4p

′′
8(p′′20p23 − p′′21p

′
22) + p4p

′
7(p′21p23 − p′22p

′′
22)

+ p′5p24(−p′′5p′21 + p′′6p
′′
20) + p4p24(−p4p23 + p′5p

′
22 + p′′5p

′′
22 − p′′6p′′21)

+ (p4p24 − p′7p′21 + p′′8p
′′
20)(−p0p27 + p1p26 − p2p25 + p3p24). (3.1.5)

The canonical potential is the following map X∨ → C:

Wcan =
p1

p0

+
q19

q18

+
q28

q27

+
q37

q36

+
q′37

q′36

+
q46

q45

+
q55

q54

+ q
p10

p27

(3.1.6)

The sum of the loci where the denominators of this potential are zero forms an an-

ticanonical divisor D; we will write X∨can = X∨ \D for its complement. We will also

write Wcan for the regular restriction of the potential to X∨can. The pair (X∨can,Wcan)

is the canonical LG model for the Freudenthal variety.

3.2 Overview of the isomorphisms

The proof of Theorem 3.1.1 requires an auxiliary variety UP
− , which we defined in

Section 1.4. Namely, we will construct the isomorphism as the following composition

of maps:

X∨Lie

ϕ−→ UP
−

π−→ X∨ ⊃ X∨can. (3.2.1)

Recall from equation (1.4.4) that

UP
− = U∨− ∩B∨+w̄P w̄0B

∨
+.
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The map π : UP
− → X∨ is the restriction of the quotient map G̃∨ → P̃∨\G̃∨ = X∨

to UP
− . (Note that we identify U∨− ⊂ G∨ and its universal cover in G̃∨.)

The map ϕ : X∨Lie
∼−→ UP

− is an isomorphism that cannot be expressed so explicitly.

It is given by mapping u+w̄PB
∨
− ∈ X∨Lie (with u+ ∈ U∨+) to the unique u− ∈ UP

− such

that u+w̄Pu− ∈ Z∨P . Here, the variety Z∨P was defined in equation (1.4.2) as

Z∨P = B∨−w̄
−1
0 ∩ U∨+T P w̄PU∨− ⊂ G∨,

and we noted in Lemma 1.4.4 that each z ∈ Z∨P has a unique decomposition as

z = u+tw̄Pu− with u+ ∈ U∨+, t ∈ T P and u− ∈ UP
− . The map can alternatively be

obtained by composing the isomorphism X∨Lie × T P → Z∨P given in equation (1.4.3)

and discussed in Remark 1.4.1 with the isomorphism Z∨P → UP
− × T P sending z to

the unique (u−, t) such that z = u+tw̄Pu− for some u+ ∈ U∨+, and then restricting the

resulting map X∨Lie × T P → UP
− × T P to the unit element in T P .

To show that π is an isomorphism between UP
− and X∨can ⊂ X∨ we use the descrip-

tion of the coordinate ring of UP
+ = (UP

− )T given by [GLS11], which we discussed in

Section 1.6. The first step in proving the isomorphism is to express the coordinate

ring in terms of the Plücker coordinates.

It turns out that there is an easy criterion for a generalized Plücker coordinate

pi defined in equation (1.6.2) to coincide with a coordinate pGLS
m used by [GLS11]

under transposition. Recall from Section 1.6 that pGLS
m was defined as the dual map

associated to a basis element e∨wP (m) for u∨−β∨
wP

(m), where β∨wP (m) is the mth positive

root mapped to a negative root by wP , see equation (1.6.4).

Remark 3.2.1. This criterion holds for general cominuscule homogeneous spaces,

and we will prove it in this context. Thus, until the end of this section, X = G/Pk

refers to a general cominuscule homogeneous space.

We first need the following characterization of the set Π∨wP = {β∨wP (m) | m =

1, . . . , `}, and of its complement Π∨P which coincides with the positive roots mapped

to negative roots by wP :
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Lemma 3.2.2. Every positive root α∨ =
∑n

i=1 diα
∨
i ∈ Π∨ = Π∨wPtΠ∨P has dk ∈ {0, 1}.

Moreover, α∨ ∈ Π∨P if and only if dk = 0; and α∨ ∈ Π∨wP if and only if dk = 1.

Proof. Since ω∨k is minuscule, we know that the longest root α∨0 ∈ Φ∨ has coefficient 1

in front of α∨k in the decomposition of α∨0 in terms of simple roots. (See Section 1.5.)

Thus, we know that dk ∈ {0, 1}.

Now, it is well known that there is a sequence of (not necessarily distinct) simple

roots (α∨ij)
h
j=1, where h = ht(α∨) =

∑n
i=1 di is the height of α∨, such that we have

α∨ =
∑h

j=1 α
∨
ij

and such that for every h′ ≤ h the partial sum
∑h′

j=1 α
∨
ij
∈ Φ∨ is a root

as well. (See Corollary 10.2 of [Hum78].)

Suppose dk = 0, then we clearly have that ij 6= k for all j. Since {α∨i | i 6= k} ⊂ Π∨P

and Π∨P is bracket closed, every partial sum lies in Π∨P and thus α∨ as well. Conversely,

since Π∨P can be considered as the positive roots of the root system with as Dynkin

diagram the diagram of G∨ with the kth vertex removed, we have that α∨ ∈ Π∨P

implies that dk = 0.

As Π∨wP is the complement of Π∨P in Π∨, the statement follows.

Recall that we defined a N0∆∨-grading on the completed universal enveloping

algebra Û∨+ of u∨+ in Section 1.6. Here, N0∆∨ ∼= Nn
0 is the positive root lattice of

all non-negative integral linear combinations of the simple roots α∨i . We defined

Û∨+(α∨) ⊂ Û∨+ as the subspace spanned by pure tensors e∨i1 · · · e
∨
ij

such that exactly

di of the factors have index i, where α∨ =
∑n

i=1 diα
∨
i ∈ N0∆∨. We noted there that

u∨+α∨ ⊂ Û∨+(α∨) for α∨ ∈ Π∨, so we directly conclude that:

Corollary 3.2.3. For j ∈ {1, . . . , `0}, e∨wP (j) ∈ Û∨+(β∨wP (j)). Let di ∈ N0 such that

β∨wP (j) =
∑n

i=1 diα
∨
i . If j ∈ {1, . . . , `}, then dk = 1. Else, i.e. j ∈ {` + 1, . . . , `0}, we

have dk = 0.

We also need the following simple observation regarding the action of the elements

of the completed universal enveloping algebra on V (−w0 · ω∨k ):

Lemma 3.2.4. If u ∈ Û∨+(α∨) for α∨ ∈ N0∆ and v ∈ V (−w0 · ω∨k ) a vector of weight

µ, then u · v is either a vector of weight µ+ α∨ or the zero vector.
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Proof. By Theorem 1.5.3, we know that the statement holds for the Chevalley gener-

ators e∨i ∈ Û∨+(α∨i ). By definition u ∈ Û∨+(α∨) for α∨ =
∑n

i=1 diα
∨
i can be decomposed

into a linear combination of pure tensors in which each e∨i appears di times. The

statement now follows by induction.

Now, recall that the Plücker coordinates pi : g 7→ v∗0(g · vi) are defined using the

minuscule representation V (−w0 · ω∨k ) and its dual, where −w0 · ω∨k = −wP · ω∨k and

this either equals ω∨k or ω∨σ0(k) for σ0 : {1, . . . , n} → {1, . . . , n} the Dynkin diagram

symmetry; see the discussion of Plücker coordinates of Section 1.6. The criterion is

given as follows:

Proposition 3.2.5. If vi is of weight −ω∨k + α∨(vi) and α∨(vi) = β∨wP (m) ∈ Π∨wP ,

then u 7→ pi(u
T ) coincides up to a constant with pGLS

m on UP
+ .

Proof. Let u ∈ UP
+ ↪→ Û∨+ and consider the decomposition of u with respect to the

PBW basis. If the coefficient in front of e∨wP (m) is c, then we have by definition that

pGLS
m (u) = c.

On the other hand, we have that pi(u
T ) is the coefficient in front of v0 of the

projection of uT · vi to Cv0 ⊂ V (−w0 · ω∨k ). Clearly, it suffices to show that e∨wP (m)T

is the only transposed PBW basis element mapping vi to a non-zero multiple of v0.

Equivalently, we need to show that e∨wP (m) is the only PBW basis element mapping

v0 to a non-zero multiple of vi. One can see this equivalence as follows: For Chevalley

generators, Theorem 1.5.3 implies that e∨j maps v to v′ if and only if (e∨i )T = f∨j maps

v′ to v; by induction, the same holds for all pure tensors; finally, each PBW basis

element is a linear combination of these pure tensors, so that the equivalence follows.

By Lemma 3.2.4, only the elements of Û∨+
(
β∨wP (m)

)
map v0 to Cvi. Thus, we can

restrict ourselves to PBW basis elements e∨wP (m) lying in Û∨+
(
β∨wP (m)

)
. Note that

e∨wP (m) ∈ u∨+β∨
wP

(m) ⊂ Û∨+
(
β∨wP (m)

)
. Moreover, Lemma 3.2.2 implies that dk = 1 in

the decomposition β∨wP (m) =
∑n

i=1 diα
∨
i .

First, let us consider e∨wP (m) ∈ Û∨+
(
β∨wP (m)

)
not equal to e∨wP (m). Since for j 6= m

we have e∨wP (j) /∈ Û∨+
(
β∨wP (m)

)
, this assumption means that we are considering those
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e∨wP (m) with m = (m1,m2, . . . ,m`0) satisfying
∑`0

j=1 mj ≥ 2. Corollary 3.2.3 implies

that of the coefficients m1, . . . ,m` (where ` = `(wP )) exactly one is non-zero, and that

coefficient equals 1, as these are the only coefficients contributing to dk = 1. Thus, at

least one of m`+1, . . . ,m`0 is non-zero; let j ∈ {`+ 1, . . . , `0} be the largest index such

that mj 6= 0. Recalling the definition of the PBW basis elements from equation (1.6.5),

we find that e∨wP (m) · v0 =
(
e∨wP (1)

)m1 · · ·
(
e∨wP (j)

)mj · v0. However, e∨wP (j) · v0 = 0:

we have by Corollary 3.2.3 that e∨wP (j) ∈ Û∨+
(
β∨wP (m)

)
where β∨wP =

∑n
j′=1 d

′
j′α
∨
i with

d′k = 0, which implies that e∨wP (j) can be written as a linear combination of pure

tensors involving the Chevalley generators e∨i′ for i′ 6= k, but by Theorem 1.5.3 we

know that e∨i′ · v0 = 0 for i′ 6= k.

Thus, what remains to be shown is that e∨wP (m) · v0 is a non-zero multiple of vi.

Suppose it acts trivially, then we find that Cvi ∩ Û∨+v0 = {0}, which contradicts the

irreducibility of V (−w0 · ω∨k ).

Using this criterion, we will be able to identify all of the generators of the coordi-

nate ring of UP
− given by [GLS11] with generalized Plücker coordinates.

Moreover, we can identify the generalized minors defined in (1.6.7) with the

denominators of the potentials for the cominuscule exceptional homogeneous spaces

as given in (3.1.1) and (3.1.4). We will identify these functions by checking that their

expressions in terms of the coordinates {ai}`i=1 on the algebraic torus U◦− of Definition

2.2.1 agree.

3.3 The coordinate ring of UP
− for the Cayley plane

Recall the conventions for the Cayley plane Esc
6 /P6 from Section 1.7. In particular,

we have ` = `(wP ) = 16. Applying this to the coordinate ring of UP
+ described in

Proposition 1.6.3 (see Proposition 8.5 of [GLS11]), we find that it is generated by the

dual PBW elements pGLS
m , m ∈ {1, . . . , 16}, and localized at the generalized minors

∆ω∨j ,(w
P )−1(ω∨j ), j ∈ {1, . . . , 6}. Using the criterion in Proposition 3.2.5, we find that

the generators pGLS
m can be expressed in terms of Plücker coordinates as follows:
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Lemma 3.3.1. On UP
+ ⊂ G̃∨, we have the following identifications:

p0p1p2p3

p′4

p′′4

p′5

p′′5

p′6

p′′6

p′7

p′′7

p′8

p′′8

p′′9

p′′10

p′′11

1pGLS
1pGLS

2pGLS
3

pGLS
4

pGLS
5

pGLS
6

pGLS
9

pGLS
7

pGLS
10

pGLS
8

pGLS
11

pGLS
12

pGLS
13

pGLS
14

pGLS
15

pGLS
16

(3.3.1)

Here, a vertex marked with p
(j)
i below and pGLS

m above denotes that p
(j)
i (uT+) equals

pGLS
m (u+) up to a constant for u+ ∈ UP

− .

For example, we have that p′′7(uT+) equals pGLS
11 (u+) up to a constant for u+ ∈ UP

+ .

In particular, the rightmost vertex tells us that p0(uT+) is constant, and it is easy to

see that this constant is 1. Note that the diagram of equation (3.3.1) is a subdiagram

of the one in equation (1.7.1). Upon removing the rightmost vertex, this subdiagram

is in fact isomorphic to the Hasse diagram of OG(5, 10) = PSO10/P5 = Dsc
5 /P5. This

variety is also known as a spinor variety. See [IM05], Section 4, for its role in the

geometry of the Cayley plane. Note that the appearance of this variety should not be

too much of a surprise, as we obtain the Dynkin diagram of type D5 upon removing

the sixth vertex from the diagram of type E6; in other words WP is of type D5.

Proof. We can compute the weights of the minuscule fundamental weight represen-

tation V (−w0 · ω∨6 ) directly using diagram (1.7.1) and Theorem 1.5.3. On the other

hand, the positive roots β∨wP (m), m ∈ {1, . . . , 16} are straightforward to compute us-

ing the expression in equation (1.6.4). A comparison of the results gives the following

equalities:

α∨(v1) = β∨wP (1) α∨(v2) = β∨wP (2) α∨(v3) = β∨wP (3) α∨(v′4) = β∨wP (4)

α∨(v′′4) = β∨wP (5) α∨(v′5) = β∨wP (6) α∨(v′′5) = β∨wP (9) α∨(v′6) = β∨wP (7)

α∨(v′′6) = β∨wP (10) α∨(v′7) = β∨wP (8) α∨(v′′7) = β∨wP (11) α∨(v′8) = β∨wP (12)

α∨(v′′8) = β∨wP (13) α∨(v′′9) = β∨wP (14) α∨(v′′10) = β∨wP (15) α∨(v′′11) = β∨wP (16)
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Using Proposition 3.2.5, we find that p
(j)
i (uT+) equals pGLS

m (u+) up to a constant as

indicated in (3.3.1) for u+ ∈ UP
+ . The only exception is the identification p0(u−) = 1,

but this identity is obvious from the fact that uT+ ∈ U∨− is a lower unipotent element

and thus acts trivially on the lowest weight vector v0.

To simplify expressions in the following, we will refer to the Plücker coordinates

appearing in the above as

pα∨ = p
(j)
i when α∨ = α∨(v

(j)
i ) ∈ Π∨wP . (3.3.2)

Note that the set {pα∨ | α∨ ∈ Π∨wP } consists of the Plücker coordinates appearing in

Lemma 3.3.1 (it does not include p0). Moreover, we will write pTα∨ : UP
+ → C for the

map u+ 7→ pα∨(uT+).

Lemma 3.3.2. The generalized minors defined in equation (1.6.7) can be expressed

on UP
+ in terms of Plücker coordinates as

∆ω∨1 ,(w
P )−1(ω∨1 )(u+) = p16(uT+), ∆ω∨2 ,(w

P )−1(ω∨2 )(u+) = q12(uT+),

∆ω∨3 ,(w
P )−1(ω∨3 )(u+) = q20(uT+), ∆ω∨4 ,(w

P )−1(ω∨4 )(u+) = q24(uT+),

∆ω∨5 ,(w
P )−1(ω∨5 )(u+) = q16(uT+), ∆ω∨6 ,(w

P )−1(ω∨6 )(u+) = p8(uT+),

(3.3.3)

where the quadratic and cubic expressions qi in Plücker coordinates were defined in

(3.1.1).

Proof. We will begin by considering the generalized minors. The action of (ẇP )−1 on

the highest weight vector v+
ω∨j

of V (ω∨j ) is straightforward to calculate using the action

of (wP )−1 on the weight ω∨j and the following equality:

s̄i · vµ∨ = 1
m!

(f∨i )m · vµ∨ when si(µ
∨) = µ∨ −mα∨i , (3.3.4)

where vµ∨ ∈ V (ω∨j ) is assumed to be of weight µ∨. As the expression can get quite
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large, we will use the following abbreviation:

(f∨i1)
m1(f∨i2)

m2 · · · = f∨
i
m1
1 i

m2
2 ···

(3.3.5)

These calculations yield (cf. equation (1.7.2)):

(ẇP )−1 · v+
ω∨1

= f∨6542345613452431 · v+
ω∨1
, (ẇP )−1 · v+

ω∨2
= 1

2
f∨625423451342 · v

+
ω∨2
,

(ẇP )−1 · v+
ω∨3

= 1
25
f∨62524223245612345243 · v

+
ω∨3
, (ẇP )−1 · v+

ω∨4
= 1

28
1
32
f∨6353422232425612324524 · v

+
ω∨4
,

(ẇP )−1 · v+
ω∨5

= 1
24
f∨6252422234561345 · v

+
ω∨5
, (ẇP )−1 · v+

ω∨6
= f∨65423456 · v+

ω∨6
.

We now need to find the coefficient in front of v+
ω∨j

of the product u+(ẇP )−1 · v+
ω∨j

to

calculate the minors.

Instead of calculating these coefficients for general u+ ∈ UP
+ , we will restrict to the

open, dense algebraic torus U◦+ ⊂ UP
+ that is the image of U◦− under the transposition

isomorphism ·T : UP
− → UP

+ . Recall from Definition 2.2.1 that the elements of U◦−

have a specific decomposition; after transposing these elements, we find that every

u+ ∈ U◦+ has a decomposition of the form

u+ = x∨r1(a1)x∨r2(a2) · · ·x∨r16(a16), where ai ∈ C∗. (3.3.6)

Note that the sequence (r1, r2, . . . , r16) = (1, 3, 4, 2, 5, 4, 3, 1, 6, 5, 4, 3, 2, 4, 5, 6) is

the same as that of the fixed reduced expression for wP (see (1.7.2)), and thus the

inverse sequence compared to that of (wP )−1.

Since x∨i (a) acts on v ∈ V (ω∨j ) as

x∨i (a) · v =
(
1 + a e∨i + 1

2
a2(e∨i )2 + 1

3!
a3(e∨i )3 + . . .

)
· v, (3.3.7)

we need to find all terms of u+ that cancel each the factors f∨i of (ẇP )−1·v+
ω∨j

. However,

Theorem 1.10 of [FZ99] tells us that the toric coordinates are related to the generalized

minors by an invertible monomial transformation; in other words, there is exactly one

term in the action of u+ that cancels out the f∨i . In the following, we will argue that
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this term is the one whose e∨i have the opposite sequence of indices (counting doubles

and triples).

First, consider u+(ẇP )−1 · v+
ω∨1

= u+f
∨
6542345613452431 · v+

ω∨1
. As (ẇP )−1 · v+

ω∨1
acts

with 16 factors f∨i , lowering the weight by subtracting 16 simple roots, we need to

act with 16 factors e∨i to get back to a vector of the correct weight. However, since

the representation in question is minuscule, we know that (e∨i )2 acts trivially on the

representations for all i ∈ {1, . . . , 6}. (See Theorem 1.5.3.) Thus, the decomposition

of u+ in equation (3.3.6) only has one term with 16 factors acting non-trivially:

(∏16
j=1 aj

)
e∨1342543165432456.

For u+(ẇP )−1 · v+
ω∨6

= u+f
∨
65423456 · v+

ω∨6
, the computation is facilitated by the Hasse

diagram in (1.7.1): we find that (ẇP )−1 ·v+
ω∨6

= v8. (Note that in interpreting diagram

(1.7.1) as the weight spaces of the minuscule representation V (ω∨6 ), we have put the

highest weight vector v+
ω∨6

on the right and denoted it v0, which is the opposite of

the way we interpreted it for V (ω∨1 ).) The diagram shows us that both e∨65423456 and

e∨65432456 map v8 back to v0 = v+
ω∨6

. However, the decomposition of u+ tells us only the

second occurs, so the only term in u+ acting non-trivially is

(∏16
j=9 aj

)
e∨65432456.

The arguments for u+(ẇP )−1 ·v+
ω∨2

= u+
1
2
f∨625423451342 ·v

+
ω∨2

are more involved. First,

note that si(ω
∨
2 ) = ω∨2 − δi2α∨2 implies that of ω∨2 −α∨i only i = 2 is a weight occurring

in the representation V (ω∨2 ). Moreover, it tells us that ω∨2 − 2α∨2 is not a weight of

the representation. Thus, the last factor in any term of u+ acting non-trivially must

be e∨2 . There are only two indices j such that rj = 2 in the decomposition in (3.3.6),

namely j = 4 and j = 13. However, only the j = 4 factor x∨2 (ai) can contribute a

factor e∨2 non-trivially: we will need the second factor to cancel out the second factor
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f∨2 in (ẇP )−1 · v+
ω∨2

. Thus, we reduced u+(ẇP )−1 · v+
ω∨2

to

a4 e
∨
2 x
∨
r5

(a5)x∨r6(a6) · · ·x∨r16(a16) (ẇP )−1 · v+
ω∨2
.

For the second step, we have si(ω
∨
2 − α∨2 ) = ω∨2 − α∨2 − δi4α

∨
4 for i 6= 2 (s2 will

raise the weight back to ω∨2 ), so that the next factor has to be e∨4 . Now, rj = 4 for

j = 3, 6, 11, 14, but we need j > 5 by the above. Moreover, if we take j = 11 or j = 14

we will not have sufficient factors to reach v+
ω∨2

from (ẇP )−1 · v+
ω∨2

(we need ten more

factors). Thus, we reduced u+(ẇP )−1 · v+
ω∨2

to

a4a6 e
∨
24 x

∨
r7

(a7)x∨r8(a8) · · ·x∨r16(a16) (ẇP )−1 · v+
ω∨2
.

In the third step, we have si(ω
∨
2 −α∨2 −α∨4 ) = ω∨2 −α∨2 − δi3α∨3 −α∨4 − δi5α∨5 for i 6= 4,

so there are two “paths”: using an e∨3 or an e∨5 . For the latter path, we are looking

for a j with rj = 5 and j > 6. This means that j = 10 or j = 15, but this would give

a problem: as (ẇP )−1 · v+
ω∨2

= 1
2
f∨625423451342 · v

+
ω∨2

, we need at least one factor e∨1 , but

rj 6= 1 for j > 10. Thus, we need to take the path with e∨3 . We find that j = 7 gives

the only possible factor e∨3 using an argument similar to the second step. Continuing

to apply similar arguments, we conclude that only the term

1
2
a4a6a7a8a10a11a12a13a14a15(a16)2 e∨243154324562

of u+ gives a non-trivial contribution. One can easily see that

1
2
e∨243154324562 · 1

2
f∨625423451342 · v+

ω∨2
= v+

ω∨2
,

so that

∆ω∨2 ,(w
P )−1(ω∨2 )(u+) = a4a6a7a8a10a11a12a13a14a15a

2
16.

Analogous arguments to those used in the previous three calculations imply that

u+(ẇP )−1 · v+
ω∨i

for i = 3, 4, 5 only have the claimed contribution as well.
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Altogether, we find for u+ ∈ U◦+

∆ω∨1 ,(w
P )−1(ω∨1 )(u+) = a1a2a3a4a5a6a7a8a9a10a11a12a13a14a15a16,

∆ω∨2 ,(w
P )−1(ω∨2 )(u+) = a4a6a7a8a10a11a12a13a14a15a

2
16,

∆ω∨3 ,(w
P )−1(ω∨3 )(u+) = a2a3a4a5a6a7a

2
8a9a10a11a

2
12a13a

2
14a

2
15a

2
16,

∆ω∨4 ,(w
P )−1(ω∨4 )(u+) = a3a4a5a6a

2
7a

2
8a9a10a

2
11a

2
12a

2
13a

2
14a

3
15a

3
16,

∆ω∨5 ,(w
P )−1(ω∨5 )(u+) = a5a6a7a8a9a10a11a12a

2
13a

2
14a

2
15a

2
16,

∆ω∨6 ,(w
P )−1(ω∨6 )(u+) = a9a10a11a12a13a14a15a16.

To prove the equalities in (3.3.3), the next step is to evaluate the Plücker coordinate

expressions (defined in equation (3.1.1)) on the transpose of u+ ∈ U◦+. We will find

that they have the same monomial expressions in the toric coordinates {ai} of U◦+.

Recall from Section 1.6 that the generalized Plücker coordinates are defined on the

fundamental weight representation V (ω∨1 ), which is minuscule. As we saw in the

above, this simplifies calculations considerably.

Recall from equation (1.6.2) that pi(g) = v∗0(g · vi), where the vi have been defined

using diagram (1.7.1). Thus, we need to find the terms of uT+ · vi that are multiples of

v0. As V (ω∨1 ) is minuscule, we know that each y∨i (aj) in the decomposition of uT+ ∈ U◦−
(see (2.2.1)) acts as 1 + ajf

∨
i on the representation. Now, every path from vi to v0

in diagram (1.7.1) gives a sequence (b1, . . . , bi) of indices such that s̄b1 · · · s̄bi · vi = v0.

By Lemma 2.1.1, we find that each s̄bj acts as f∨bj , so that f∨b1 · · · f
∨
bi
· vi = v0. Thus,

for each sequence of indices (b1, . . . , bi) obtained from a path from vi to v0, the term

f∨b1 · · · f
∨
bi

in uT+ will contribute its coefficient to p
(j)
i (uT+).

To find these coefficients, apply the following algorithm: determine all the paths

(b1, . . . , bi) from vi to v0 in diagram (1.7.1); find all the subexpressions of the form

sb1 · · · sbi in (wP )−1; for each of the subexpressions, take the respective coefficients in

the decomposition of uT+ ∈ U◦−. Note that we can use the quiver QX∨ of Definition

2.5.3 and Proposition 2.5.11 (applied to (wP )−1; in other words flipping all the arrows)

to find all these subexpressions.
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Let us illustrate with p′7(uT+) for uT+ ∈ U◦−. We find two paths in diagram (1.7.1):

(6, 5, 4, 2, 3, 4, 5) and (6, 5, 4, 3, 2, 4, 5). The first gives the following subexpressions:

s6s5s4s2s3s4s5s6s1s3s4s5s2s4s3s1, s6s5s4s2s3s4s5s6s1s3s4s5s2s4s3s1,

s6s5s4s2s3s4s5s6s1s3s4s5s2s4s3s1, s6s5s4s2s3s4s5s6s1s3s4s5s2s4s3s1,

The second does not give any subexpressions in (wP )−1. We now compare it with the

decomposition of uT+ as

uT+ = y∨6 (a16)y∨5 (a15)y∨4 (a14)y∨2 (a13)y∨3 (a12)y∨4 (a11)y∨5 (a10)y∨6 (a9)

· y∨1 (a8)y∨3 (a7)y∨4 (a6)y∨5 (a5)y∨2 (a4)y∨4 (a3)y∨3 (a2)y∨1 (a1).

to find the contributing terms (in order of the subexpressions):

p′7(uT+) = a10a11a12a13a14a15a16 + a5a11a12a13a14a15a16

+ a5a6a12a13a14a15a16 + a5a6a7a13a14a15a16

=
(
(a5 + a10)a11a12 + a5a6(a7 + a12)

)
a13a14a15a16.

Note the similarities between these calculations and the calculations for the local

Laurent polynomial expression for Rietsch’s potential in the examples in Section 2.6.

Once we obtained all toric expressions for the Plücker coordinates, calculating the

expressions of equation (3.1.1) is straightforward. We find the following for u+ ∈ U◦+

p8(uT+) = a9a10a11a12a13a14a15a16,

p16(uT+) = a1a2a3a4a5a6a7a8a9a10a11a12a13a14a15a16,

q12(uT+) = a4a6a7a8a10a11a12a13a14a15a
2
16,

q16(uT+) = a5a6a7a8a9a10a11a12a
2
13a

2
14a

2
15a

2
16,

q20(uT+) = a2a3a4a5a6a7a
2
8a9a10a11a

2
12a13a

2
14a

2
15a

2
16,

q24(uT+) = a3a4a5a6a
2
7a

2
8a9a10a

2
11a

2
12a

2
13a

2
14a

3
15a

3
16.
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Comparing these with the expressions for the minors, we conclude that the equalities

in (3.3.3) hold, at least for u+ ∈ U◦+. However, U◦+ ⊂ UP
+ is open and dense (this follows

from Lemma 2.2.2 using that the transposition is an anti-isomorphism between U◦−

and U◦+, and between UP
− and UP

+ ) and UP
+ is irreducible, so these equalities extend

to all of UP
− .

Again, we will write pTi : u+ 7→ pi(u
T
+) for i = 8, 16 and qTi : u+ 7→ qi(u

T
+) for

i = 12, 16, 20, 24. Combining Lemmas 3.3.1 and 3.3.2 with Proposition 1.6.3 giving

the expression for the coordinate ring of UP
+ , we conclude the following:

Corollary 3.3.3. The coordinate ring of the affine variety UP
+ is given by

C[UP
+ ] = C[pTα∨ |α∨ ∈ Π∨wP ][(pT8 )−1, (pT16)−1, (qT12)−1, (qT16)−1, (qT20)−1, (qT24)−1].

This implies that the coordinate ring of the affine variety UP
− = (UP

+ )T is given by

C[UP
− ] = C[pα∨ |α∨ ∈ Π∨wP ][p−1

8 , p−1
16 , q

−1
12 , q

−1
16 , q

−1
20 , q

−1
24 ].

This in turn implies that π(UP
− ) ⊆ X∨can.

Recall that the generating Plücker coordinates are the ones appearing in Lemma

3.3.1. and that the (generalized) Plücker coordinates are defined in equation (1.6.2).

The quadratic and cubic expressions qi are given in equation (3.1.1).

Remark 3.3.4. Note that p8, p16, q12, q16, q20 and q24 are not a priori generated by

the generators of the coordinate ring. Recall from Corollary 3.3.3 that the coordinate

ring is generated by the Plücker coordinates pα∨ for α∨ ∈ Π∨wP , i.e.

p1, p2, p3, p
′
4, p
′′
4, p
′
5, p
′′
5, p
′
6, p
′′
6, p
′
7, p
′′
7, p
′
8, p
′′
8, p
′′
9, p
′′
10, p

′′
11.

(Note that p0 ≡ 1 on U∨−.) However, it turns out that there are “Plücker relations”

expressing the remaining Plücker coordinates in terms of these. We have found these

using the toric expressions for the Plücker coordinates restricted to U◦−; as U◦− ⊂ UP
−
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is dense and UP
− is irreducible, this suffices. The relations are given as follows:

p8 = p1p
′
7 − p2p

′
6 + p3p

′
5 − p′4p′′4, p′9 = p1p

′
8 − p2p

′′
7 + p3p

′′
6 − p′4p′′5,

p′10 = p1p
′′
9 − p2p

′′
8 + p′′4p

′′
6 − p′5p′′5, p′11 = p1p

′′
10 − p3p

′′
8 + p′′4p

′′
7 − p′′5p′6,

p′12 = p2p
′′
10 − p3p

′′
8 + p′′4p

′
8 − p′′5p′′7, p′′12 = p1p

′′
11 − p′′4p′8 + p′′5p

′
7 − p′4p′′8,

p13 = p2p
′′
11 − p′4p′′9 + p′5p

′
8 − p′′6p′7, p14 = p3p

′′
11 − p′4p′′10 + p′6p

′
8 − p′7p′′7,

p15 = p′′4p
′′
11 − p′5p′′10 + p′6p

′′
9 − p′7p′′8, p16 = p′′5p

′′
11 − p′′6p′′10 + p′′7p

′′
9 − p′8p′′8.

Thus, the localized expressions are in fact expressible in terms of the generators.

3.4 The coordinate ring of UP
− for the Freudenthal

variety

The approach for the Freudenthal variety Esc
7 /P7 is analogous to the Cayley plane.

Recall the from Section 1.7 that ` = `(wP ) = 27. Thus, Proposition 1.6.3 (see

Proposition 8.5 of [GLS11]) tells us that the coordinate ring of UP
+ is generated by the

dual PBW elements pGLS
m , m ∈ {1, . . . , 27}, and localized at the generalized minors

∆ω∨j ,(w
P )−1(ω∨j ), j ∈ {1, . . . , 7}. The generators are expressed as follows:

Lemma 3.4.1. On UP
+ = (UP

− )T ⊂ G̃∨, we have the following identifications:

1

p0

pGLS
1

p1

pGLS
2

p2

pGLS
3

p3

pGLS
4

p4

pGLS
6

p′5

pGLS
5

p′′5

pGLS
7

p′6

pGLS
10

p′′6

pGLS
8

p′7

pGLS
11

p′′7

pGLS
9

p′8

pGLS
12

p′′8

pGLS
13

p9

pGLS
14

p′9

pGLS
15

p′′9

pGLS
19

p′10

pGLS
16

p′′10

pGLS
20

p′11

pGLS
17

p′′11

pGLS
21

p′12

pGLS
18

p′′12

pGLS
22

p′13

pGLS
23

p′′13

pGLS
24

p14pGLS
25

p15pGLS
26

p16pGLS
27

p17

(3.4.1)

Here, a vertex marked with p
(j)
i below (or left) and pGLS

m above (or right) denotes that

p
(j)
i (uT+) equals pGLS

m (u+) up to a constant for u+ ∈ UP
+ .
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Note that the diagram of equation (3.4.1) is a subdiagram of the one in equation

(1.7.3). Upon removing the rightmost vertex, this subdiagram is isomorphic to the

Hasse diagram of the Cayley plane OP2 (see equation (1.7.1)).

Proof. This is proven by computing the weight of each of the basis vectors v
(j)
i and the

positive roots β∨wP (m) that are mapped to negative roots by wP (m ∈ {1, . . . , 27}),

and using Proposition 3.2.5. Compare Lemma 3.3.1.

Lemma 3.4.2. The generalized minors defined in equation (1.6.7) can be expressed

on UP
+ in terms of Plücker coordinates as

∆ω∨1 ,(w
P )−1(ω∨1 )(u+) = q18(uT+), ∆ω∨2 ,(w

P )−1(ω∨2 )(u+) = q27(uT+),

∆ω∨3 ,(w
P )−1(ω∨3 )(u+) = q′36(uT+), ∆ω∨4 ,(w

P )−1(ω∨4 )(u+) = q54(uT+),

∆ω∨5 ,(w
P )−1(ω∨5 )(u+) = q45(uT+), ∆ω∨6 ,(w

P )−1(ω∨6 )(u+) = q36(uT+),

∆ω∨7 ,(w
P )−1(ω∨7 )(u+) = p27(uT+),

(3.4.2)

where the quadratic, cubic and quartic expressions qi in Plücker coordinates were

defined in (3.1.4).

Proof. The arguments are analogous to the proof of Lemma 3.3.2. Restricting to

u+ ∈ U◦+ = {x∨r1(a1)x∨r2(a2) · · · y∨r27(a27) | ai ∈ C∗}, where the sequence of indices

equals (r1, r2, . . . , r27) = (7, 6, 5, 4, 3, 2, 4, 5, 6, 1, 3, 4, 2, 5, 7, 4, 3, 1, 6, 5, 4, 2, 3, 4, 5, 6, 7),

we find that

∆ω∨1 ,(w
P )−1(ω∨1 )(u+) =

a27

a15

(∏27
i=10 ai

)
,

∆ω∨2 ,(w
P )−1(ω∨2 )(u+) =

a18a23a24a25a26a27

a10

(∏27
i=6 ai

)
,

∆ω∨3 ,(w
P )−1(ω∨3 )(u+) =

a26a27

a6a14a15a19

(∏27
i=13 ai

)(∏27
j=5 aj

)
,

∆ω∨4 ,(w
P )−1(ω∨4 )(u+) =

a25a26a27

a10a11a19a20

(∏27
i1=17 ai1

)(∏27
i2=8 ai2

)(∏27
i3=4 ai3

)
,

∆ω∨5 ,(w
P )−1(ω∨5 )(u+) = a9a22a24a25a26a27

(∏27
i1=14 ai1

)(∏27
i2=3 ai2

)
,

∆ω∨6 ,(w
P )−1(ω∨6 )(u+) = a15

(∏27
i1=19 ai1

)(∏27
i2=2 ai2

)
,

∆ω∨7 ,(w
P )−1(ω∨7 )(u+) =

∏27
i=1 ai.
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We find the same expressions in toric coordinates for the homogeneous polynomials in

Plücker coordinates, so that we obtain the equalities in (3.4.2) on U◦+, and therefore

on UP
+ as well.

Using the same notation as in (3.3.2), Lemmas 3.4.1 and 3.4.2 imply:

Corollary 3.4.3. The coordinate ring of the affine variety UP
+ is given by:

C[UP
+ ] = C[pTα∨ |α∨ ∈ Π∨wP ][(pT27)−1, (qT18)−1, (qT27)−1, (qT36)−1, (q′T36)−1, (qT45)−1, (qT54)−1].

This implies that the coordinate ring of the affine variety UP
− = (UP

+ )T ) is given by

C[UP
− ] = C[pα∨ |α∨ ∈ Π∨wP ][p−1

27 , q
−1
18 , q

−1
27 , q

−1
36 , (q

′
36)−1, q−1

45 , q
−1
54 ].

Consequently, π(UP
− ) ⊆ X∨can.

Recall that the (generalized) Plücker coordinates p
(j)
i are defined in equation (1.6.2)

and the quadratic, cubic and quartic expressions qi are given in equation (3.1.4).

Remark 3.4.4. Just as in the Remark 3.3.4, the localized expressions p27, q18, q36,

(q′36), q45 and q54 are not a priori generated by the generators of the coordinate ring.

Recall that the generators were pα∨ for α∨ ∈ Π∨wP , i.e.

p1, p2, p3, p4, p
′
5, p
′′
5, p
′
6, p
′′
6, p
′
7, p
′′
7, p
′
8, p
′′
8, p9, p

′
9, p
′′
9, p
′
10, p

′′
10,

p′11, p
′′
11, p

′
12, p

′′
12, p

′
13, p

′′
13, p14, p15, p16, p17.

We can express the remaining Plücker coordinates in terms of these using the following

“Plücker relations”:

p10 = p1p9 − p2p
′
8 + p3p

′
7 − p4p

′
6 + p′5p

′′
5,

p11 = p1p
′
10 − p2p

′
9 + p3p

′′
8 − p4p

′′
7 + p′5p

′′
6,

p12 = p1p
′
11 − p2p

′′
10 + p3p

′′
9 − p′′5p′′7 + p′6p

′′
6,

p13 = p1p
′
12 − p2p

′′
11 + p4p

′′
9 − p′′5p′′8 + p′′6p

′
7,
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p′14 = p1p
′′
13 − p2p

′′
12 + p′5p

′′
9 − p′6p8,2 + p′7p

′′
7,

p′′14 = p1p
′
13 − p3p

′′
11 + p4p

′′
10 − p′′5p′9 + p′′6p

′
8,

p′15 = p1p14 − p3p
′′
12 + p′5p

′′
10 − p′6p′9 + p′′7p

′
8,

p′′15 = p2p
′
13 − p3p

′
12 + p4p

′
11 − p′′5p′10 + p′′6p9,

p′16 = p1p15 − p4p
′′
12 + p′5p

′′
11 − p′7p′9 + p′8p

′′
8,

p′′16 = p2p14 − p3p
′′
13 + p′5p

′
11 − p′6p′10 + p′′7p9

p′17 = p1p16 − p′′5p′′12 + p′6p
′′
11 − p′7p′′10 + p′8p

′′
9,

p′′17 = p2p15 − p4p
′′
13 + p′5p

′
12 − p′7p′10 + p′′8p9,

p18 = p1p17 − p′′6p′′12 + p′′7p
′′
11 − p′′8p′′10 + p′9p

′′
9,

p′18 = p2p16 − p′′5p′′13 + p′6p
′
12 − p′7p′11 + p9p

′′
9,

p′′18 = p3p15 − p4p14 + p′5p
′
13 − p′8p′10 + p9p

′
9,

p′19 = p2p17 − p′′6p′′13 + p′′7p
′
12 − p′′8p′11 + p′′9p

′
10,

p′′19 = p3p16 − p′′5p14 + p′6p
′
13 − p′8p′11 + p9p

′′
10,

p′20 = p3p17 − p′′6p14 + p′′7p
′
13 − p′9p′11 + p′10p

′′
10,

p′′20 = p4p16 − p′′5p15 + p′7p
′
13 − p′8p′12 + p9p

′′
11,

p′21 = p4p17 − p′′6p15 + p′′8p
′
13 − p′9p′12 + p′10p

′′
11,

p′′21 = p′5p16 − p′6p15 + p′7p14 − p′8p′′13 + p9p
′′
12,

p′22 = p′′5p17 − p′′6p16 + p′′9p
′
13 − p′′10p

′
12 + p′11p

′′
11,

p′′22 = p′5p17 − p′′7p15 + p′′8p14 − p′9p′′13 + p′10p
′′
12,

p23 = p′6p17 − p′′7p16 + p′′9p14 − p′′10p
′′
13 + p′11p

′′
12,

p24 = p′7p17 − p′′8p16 + p′′9p15 − p′′11p
′′
13 + p′12p

′′
12,

p25 = p′8p17 − p′9p16 + p′′10p15 − p′′11p14 + p′′12p
′
13,

p26 = p9p17 − p′10p16 + p′11p15 − p′12p14 + p′13p
′′
13.

We can express p27 in terms of the generating Plücker coordinates as well, but it is
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more conveniently expressed in terms of the other Plücker coordinates as follows:

p27 = p1p26−p2p25 +p3p24−p4p23 +p′5p
′
22 +p′′5p

′′
22−p′6p′21 +p′7p

′
20−p′8p′19 +p9p18−p10p17.

Substituting the Plücker relations then gives an expression in terms of the generating

Plücker coordinates.

3.5 Proof of the isomorphism of LG-models on

cominuscule Esc
n /Pn

Recall that we want to show that π : UP
− → X∨ is an isomorphism to X∨can ⊂ X∨

Remark 3.5.1. The following proof follows the same rationale as the proof of Theo-

rem 3.9 in Section 8 of [PR13].

Proof of Theorem 3.1.1. Corollaries 3.3.3 and 3.4.3 showed us that π(UP
− ) ⊆ X∨can for

cominuscule Esc
n /Pn.

Now, to show that π : UP
− → X∨can is an isomorphism, it suffices to show that

π∗ : C[X∨can] → C[UP
− ] is an isomorphism since both UP

− and X∨can are affine varieties

(for UP
− , this follows from Proposition 1.6.3; for X∨can, this follows from the fact that

it is the complement of an ample divisor). The fact that π∗ is injective follows from

the fact that π : UP
− → X∨can is dominant, which follows from the fact that UP

− and

X∨can have the same dimension and that π is an open map (as it is the quotient map

u− 7→ P̃∨u−).

Surjectivity of π∗ : C[X∨can] → C[UP
− ] is an easy check that each of the generators

of C[UP
− ] as given in Corollaries 3.3.3 and 3.4.3 is a well-defined function on X∨can,

and that each localized expression is non-zero on X∨can. This is clear from the fact

that they are all generalized Plücker coordinates or expressions in these, and from the

definition of X∨can.

Remark 3.5.2. Note that this proof also shows that every coset in X∨can ⊂ P̃∨\G̃∨

can uniquely be represented by an element of UP
− = U∨− ∩B∨+w̄P w̄0B

∨
+.
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Now we know that π : UP
− → X∨can is an isomorphism, showing that π ◦ ϕ is an

isomorphism of Landau-Ginzburg models reduces to checking that (π ◦ ϕ)∗(Wcan) =

WLie.

Remark 3.5.3. We are abusing notation here: a more proper way to write this would

be
(
(π ◦ϕ)× Id

)∗
(Wcan) =WLie, asWcan : X∨can×T P → C andWLie : X∨Lie×T P → C.

We will continue to use this notation as it should not give rise to ambiguities.

The proof of Theorem 3.1.2 is obtained by restricting to the torus U◦− ⊂ UP
− of

Definition 2.2.1 and showing that (ϕ−1)∗(WLie) = π∗(Wcan) on U◦−×T P . This is most

conveniently done separately for the Cayley plane and the Freudenthal variety:

Proof of Theorem 3.1.2 for the Cayley plane. Applying the results of Theorem 2.2.7

to the Cayley plane, we see that (ϕ−1)∗(WLie) can be written as follows on U◦− × T P :

[(ϕ−1)∗(WLie)](u−, t) = a1 + a2 + . . .+ a16 + q

∑
S∈S

∏
(β,j)∈S aJ(β,j)

a1 · · · a16

,

where u− = y∨r16(a16)y∨r15(a15) · · · y∨r1(a1) and q = α∨6 (t). (Recall that (r1, . . . , r16) is

the sequence of indices in the reduced expression of wP in equation (1.7.2).) The

relabelingJ is given in Definition 2.5.3 and the set S is given in Definition 2.5.5.

On the other hand we need to calculate the terms of Wcan as given in equation

(3.1.3) applied to an element of U◦−. The algorithm to compute these is the same

as the one explained at the end of the proof of Lemma 3.3.2. The computations

are straightforward, consisting of elementary operations on polynomials (addition,

multiplication, and so on). As this is somewhat cumbersome, we used a computer

algebra program and simply state the results here:

p1

p0

= a9 + a16,
p′9
p8

= a1 + a8,
q13

q12

= a5 + a10 + a15,

q17

q16

= a2 + a7 + a12,
q21

q20

= a4 + a13,
q25

q24

= a3 + a6 + a11 + a14,

q
p′′5
p16

= q

∑
S∈S

∏
(β,j)∈S aJ(β,j)

a1 · · · a16

,
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where we suppressed the arguments of the Plücker coordinates (they are all applied

to u−). Clearly, we have (ϕ−1)∗(WLie) = π∗(Wcan) on U◦−× T P , but since U◦− ⊂ UP
− is

open and dense and UP
− is irreducible, we conclude that the equality holds on all of

UP
− × T P . The theorem now follows in the case of the Cayley plane.

Proof of Theorem 3.1.2 for the Freudenthal variety. In this case, the results of Theo-

rem 2.2.7 yield the following expression for (ϕ−1)∗(WLie) on U◦− × T P :

[(ϕ−1)∗(WLie)](u−, t) = a1 + a2 + . . .+ a27 + q

∑
S∈S

∏
(β,j)∈S aJ(β,j)

a1 · · · a27

,

where u− = y∨r27(a27)y∨r26(a26) · · · y∨r1(a1) and q = α∨7 (t). (Recall that (r1, . . . , r27) is

the sequence of indices in the reduced expression of wP in equation (1.7.4).)

The terms ofWcan applied to an element of U◦− can be computed using a computer

algebra program to be the following:

p1

p0

= a1 + a15 + a27,
q19

q18

= a2 + a9 + a19 + a26,
q28

q27

= a6 + a13 + a22

q37

q36

= a10 + a18,
q′37

q′36

= a3 + a8 + a14 + a20 + a25,
q46

q45

= a5 + a11 + a17 + a23

q55

q54

= a4 + a7 + a12 + a16 + a21 + a24, q
p10

p27

= q

∑
S∈S

∏
(β,j)∈S aJ(β,j)

a1 · · · a27

Here all the Plücker coordinates are applied to u− ∈ U◦−, so this is suppressed. This

shows that (ϕ−1)∗(WLie) = π∗(Wcan) on U◦−×T P , implying that the equality holds on

UP
− × T P , as U◦− ⊂ UP

− is open and dense and UP
− is irreducible.

Thus, we have shown that the canonical models we defined in Section 3.1 for

the exceptional cominuscule homogeneous spaces are isomorphic to the Lie-theoretic

Landau-Ginzburg models given in [Rie08] (discussed in Section 1.4 of this thesis).

From this we conclude that the canonical models are indeed Landau-Ginzburg models,

satisfying

qH∗(X)loc
∼= C[Xcan × T P ]/〈∂Wcan〉,
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where 〈∂Wcan〉 is generated by the derivatives ofWcan along Xcan. Due to the geomet-

ric Satake correspondence, this isomorphism is given by associating to σi ∈ H∗(X)

the Plücker coordinate pi ∈ C[Xcan].
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vol. IV-VI, Springer-Verlag, Berlin-Heidelberg, 1968.

[Cas20] M. Castronovo, Fukaya category of Grassmannians: rectangles, Adv.

Math. 372 (2020), 107287, 40.

[CMP08] P.-E. Chaput, L. Manivel, and N. Perrin, Quantum cohomology of mi-

nuscule homogeneous spaces, Transform. Groups 13 (2008), no. 1, 47–89.

[CP11] P.-E. Chaput and N. Perrin, On the quantum cohomology of adjoint

varieties, Proc. Lond. Math. Soc. (3) 103 (2011), no. 2, 294–330.

[EHX97] T. Eguchi, K. Hori, and C.-S. Xiong, Gravitational quantum cohomology,

Internat. J. Modern Phys. A 12 (1997), no. 9, 1743–1782.

[FP97] W. Fulton and R. Pandharipande, Notes on stable maps and quantum

110



cohomology, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure

Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 45–96.

[Fre64] H. Freudenthal, Lie groups in the foundations of geometry, Advances in

Math. 1 (1964), no. fasc. 2, 145–190.

[FZ99] S. Fomin and A. Zelevinsky, Double Bruhat cells and total positivity, J.

Amer. Math. Soc. 12 (1999), no. 2, 335–380.

[Giv96] A. B. Givental, Equivariant Gromov-Witten invariants, Internat. Math.

Res. Notices (1996), no. 13, 613–663.

[GLS08] C. Geiß, B. Leclerc, and J. Schröer, Partial flag varieties and preprojec-
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