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Abstract

This thesis concerns itself with the extension theory of second-order dif-
ference equations in both a linear operator and linear relation framework.

In Chapter 1, we introduce the extension theory of linear operators by
means of both the von Neumann and the Krein-Vishik-Birman method. Chap-
ter 2 is devoted to the construction of the non-negative, self-adjoint extensions
of a particular class of second-order difference operators via the Krein-Vishik-
Birman theory, with particular emphasis on the Friedrichs extension. We
determine an explicit characterisation of such extensions, before applying this
result to a second-order difference equation whose solutions are the Stieltjes-
Wigert polynomials.

Linear relations and their extensions are introduced in Chapter 3. In par-
ticular, a construction of the extremal maximal sectorial relations by Hassi et
al. is considered. These results are utilised in Chapter 4 when we construct
the extremal maximal sectorial extensions of the Discrete Laplacian with both

the standard domain ¢? and sequences in ¢? whose first component equals 0.
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Introduction

Isolated, the subtlety of a Jacobi operator’s importance may go unnoticed,
however Jacobi operators — infinite tri-diagonal matrices acting in sequence
spaces [53] — are inseparable from orthogonal polynomials, whose mystery
and utility have been researched extensively — albeit not completely — for
many decades. Indeed, the breadth of this research topic is staggering; one can
pinpoint the influence of these operators within the classical moment problem
[2, 50], continued fractions [39, 55| and random matrix theory [25], and only
be scratching the surface. However, perhaps the most striking feature of the
Jacobi operator is the following: it is the discretisation of a second-order
differential operator. In fact, the symmetric Jacobi operators that will be
focal to this thesis are precisely the analogue to Sturm-Liouville differential
expressions on an interval [4, 6, 45].

Likewise, self-adjoint extensions of symmetric operators in Hilbert spaces
have been studied systematically since von Neumann [46], laying down the op-
erator theoretic foundations for quantum mechanics. Indeed, given a closed,
symmetric operator in a Hilbert space, the method of von Neumann charac-
terises the self-adjoint extensions via unitary maps between deficiency spaces.
If, in addition, the operator is positive, then we may characterise all non-
negative, self-adjoint extensions by means of the Krein-Vishik-Birman (KVB)
theory instead [5, 16, 41, 42, 54]. Having specified that the operator is now
positive, one (natural!) benefit of the KVB theory immediately surfaces: there
exist two distinguished extensions — the Friedrichs extension and the Krein
extension — such that all remaining extensions fall somewhere in between.
In the sense of quadratic forms, the Friedrichs extension — first introduced
in [30] — is the largest non-negative, self-adjoint extension, whilst the Krein
extension (also known as the Krein-von Neumann extension [49]), the smallest
[41, 46].

Krein-Vishik-Birman theory has since been applied to numerous classes
of operators: Brown and Evans determined the non-negative, self-adjoint ex-

tensions of Sturm-Liouville operators [20], whilst second-order elliptic partial
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differential operators were considered in [21], for example. Moreover, KVB
theory was extended to dual pairs of operators and applied to elliptic PDEs
in [31]. However, we — in the first half of this thesis — use the KVB theory
to construct non-negative, self-adjoint extensions of a general positive, sym-
metric Jacobi operator. We should note that [19] utilises the von Neumann
theory to determine boundary conditions associated with the Friedrichs and
Krein extensions of positive Jacobi operators.

However, if one resolved to investigate an operator, then it would be equally
valid to consider its graph instead. Linear relations — arguably, first examined
by Arens in [10] — are the gateway into this line of thought: pairs of elements
in a product of Hilbert spaces. One drawback of both the von Neumann and
KVB theory — and a quirk of operator theory in general — is that the adjoint
of a non-densely defined operator is not defined. Linear relations overcome
this issue and so it becomes natural to posit questions such as, ‘How can one
construct the self-adjoint extensions of a non-densely defined operator?’

Indeed, great strides into answering such questions have been made: meth-
ods for the construction of these extensions — in addition to general discussion
on linear relations — can be attributed to papers such as [11, 24, 26, 32, 33].
This network of mathematicians present various results related to the sectorial
extensions of a sectorial linear relation via several constructions, most notably
through an association with sesquilinear forms and through a method of fac-
torisation. Moreover, an analogous construction to the von Neumann theory
exists in the context of linear relations [15].

Given the significance of both the Friedrichs and Krein extension in the
operator context, it is only reasonable to wonder if such concepts translate
accordingly into the world of relations. Indeed, for a non-densely defined
sectorial relation S, the Friedrichs extension Sy — in the form recognisable to
this thesis — can be traced back to [47]. Conversely, the Krein extension S
of a non-negative, non-densely defined sectorial relation S enjoys the following
form courtesy of [8, 24]: Sk = ((S7!)r)~!. These extensions were referred
to as ‘distinguished’ above, but when we delve into extension theory of linear
relations, this concept may be expressed more formally: they are examples of
extremal sectorial extensions. As such, the second half of this thesis aims to
construct sectorial extensions of the linear relations that are associated to a
certain class of Jacobi operators.

With this division in mind, we choose to partition the thesis into two
distinct halves. As such, we devote Chapter 1 to the presentation of the fun-

damental definitions and concepts necessary to appreciate the original research

iv



undertaken in Chapter 2. We introduce various results concerning linear op-
erators acting in Hilbert spaces; the majority of these results are well known,
but we endeavour to provide the reader with a full account of the relevant
theory in the interest of self-containment. If it appears as though we have
simply brandished terms such as the ‘Friedrichs’ or ‘Krein extension’ of an
operator, or the ‘von Neumann’ or ‘KVB theory’ indiscriminately, then Sec-
tion 1.2 aims to elucidate these essential expressions so that they no longer
appear esoteric. Although only the KVB theory is central to this thesis, we
dedicate Appendix A to an example of Sturm-Liouville type where we apply
both of these methods comprehensively. The purpose is twofold: we hope to
familiarise the reader with the concepts fundamental to the thesis, in addition
to providing a template that we may follow during Chapter 2. Finally, we
close this first, introductory chapter by discussing relevant concepts and re-
sults from difference operator theory. The sections prior are somewhat general
and abstract; here, we establish the types of operators that will be investigated
in the remaining chapters of the thesis.

Chapter 2 opens with a short overview of the problem to be addressed.
Essentially, we associate to a general positive Jacobi operator a sesquilinear
form so that we may then invoke KVB theory. In particular, we conjecture
a form domain for the Friedrichs extension before proving conclusively the
necessary conditions that it must possess. As the Friedrichs extension forms
the basis of KVB theory, we spend ample time convincing ourselves that the
argument holds. Then, arguably, Section 2.5 is the focus of the first half of
the thesis: it is here that we consolidate the chapter thus far, and arrive at the
topic of research’s main theorem. The format of this chapter is unsurprising —
in essence, each section and subsection is dedicated to proving the next stage
in the argument, before culminating with the result that characterises the
operator domains of the non-negative, self-adjoint extensions of the positive
operator introduced at the beginning of the chapter. We feel it prudent to
emphasise that, whilst the results are intended to be the discrete analogues
to those presented in [20], the form domain of the Friedrichs extension and,
consequently, the result central to this chapter is, to our knowledge, new.
Given the aforementioned, intimate relationship between Jacobi operators and
orthogonal polynomials, we conclude this chapter — and half of the thesis —
with an example. In particular, we apply our result to an expression whose
solutions are the Stieltjes-Wigert polynomials.

We then move into the second half of the thesis with Chapter 3. The two

halves are designed to be symmetric: in this chapter, we introduce the basic



terminology and results pertinent to linear relations. Indeed, the decision to
bisect the thesis becomes most obvious here as we simply build upon the con-
cepts and theory presented in Chapter 1, once we realise that linear relations
are simply the generalisation of graphs of operators. Then, we provide the
definition of both the Friedrichs and Krein extension of a linear relation, in
addition to both the von Neumann theory (in this context, for completeness)
and our construction method of choice: the theory presented in [33]. Whilst
it might be alluring to draw further parallels between the chapters so far
— both halves construct the Friedrichs and Krein extension using a method
that utilises sesquilinear forms — we do assert that the underlying founda-
tion to both constructions is subtly different. Here, the Krein extension has
an explicit dependence on the Friedrichs extension as opposed to being ‘just
another’ extension that one can construct, given a different parameter. With
that said, however, Section 3.2.3 details a method in constructing extremal
maximal sectorial extensions of a sectorial linear relation. Once we delve into
this construction more deeply, it becomes apparent that this theory is more
akin to the KVB theory — ultimately, we see that the Friedrichs extension
and Krein extension are the two ends of a containment string, as will become
familiar.

Finally, we conclude this thesis by applying the results detailed in Chap-
ter 3 to two explicit examples: the discrete Laplacian on two different domains.
We begin by constructing both the Friedrichs and Krein extension of a — per-
haps obvious — sectorial relation. Although the results in Section 4.2 may
not be surprising, the section offers an opportunity for the reader to become
acquainted with the theory with a straightforward example and provides us a
structure and methodology that we may follow in Sections 4.3 and 4.4. Indeed,
these two sections form the bulk of this chapter as the nuances and minutiae
of the theory surface throughout in this second, more complex example. Once
we have exhausted the analysis of the first method, in Section 4.5, we continue
by producing the extremal maximal sectorial relations of the two examples via
the factorisation method detailed in Section 3.2.3. Whilst this chapter merely
applies known results to two specific examples, we assert that this does have
value as the results we utilise are exclusively abstract. In fact, we conclude
this chapter — and the thesis — with an outlook, with this in mind. Indeed,
we contemplate a class of bounded Jacobi operators and propose a way to
generalise our calculations, in addition to drawing attention back to the more
appropriate ‘comparison’ between this and the KVB theory. On the surface,

the strongest through-line of the thesis may appear, simply, to be the Jacobi
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operator studied, but the countless parallels between the two halves will be

emphasised, and the thesis, entire.
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Chapter 1

Preliminaries: Extensions of

Linear Operators

1.1 Basic Definitions and Properties

The objective of this section will be to introduce various fundamental defini-
tions and terminology that will be required in future sections of the thesis.
In particular, we introduce the relevant spaces, two mappings in such spaces,
and their relationship to one another. For a more in-depth account of the
concepts provided here, we refer to Akhiezer and Glazman [3], Edmunds and

Evans [27], Kato [37] and Kreyszig [43].

1.1.1 Hilbert Spaces

This section begins by detailing the spaces that will be of interest to us, in a
general setting. In what follows, we may take the scalar field K to be either
the set of real numbers or the set of complex numbers, denoted by R and C
respectively.
Definition 1.1.1. Let X be a vector space over the scalar field K. The
mapping

(): X xX—>K

is called an inner product if, for all vectors x, y, z € X and all scalars A € K,

the following four conditions are satisfied:

(IP1) (r+y,2) = (z,2) + (y,2)

(IP2) Az, y) = Az, y)

(IP3) (z,y) = (y, )

(IP4) (x,z) >0and (r,z) =0 <= z=0.




An inner product space is a vector space X equipped with an inner product
that is defined on X: we denote this by (X, (-,-)). Moreover, the inner product

on X naturally induces a norm on X:

|zl = /{(z,2) >0, =x€X.

If a vector space X is equipped with a norm || - ||, then (X, | - ||) is called a

normed space.

We will be interested in a specific type of inner product space, so we now

introduce the following definition.

Definition 1.1.2. Let (X, (-,-)) be an inner product space. A sequence {x,,}
in X is called a Cauchy sequence if, for all € > 0, there exists an N = N(¢)
such that, for all n, m > N, we have ||z, — x,|| < €, where || - || is the norm

induced by the inner product.

If every Cauchy sequence {z,} in (X, (-,-)) converges to some x € X, that
is, there exists an z € X such that ||z, — x| — 0 as n — oo, then the inner
product space is complete. Complete inner product spaces are called Hilbert

spaces.

Remark. Inner product spaces may also be referred to as pre-Hilbert spaces.
This terminology makes sense: a Hilbert space is merely a complete pre-Hilbert

space.

Remark. If there is no danger of ambiguity, then, for brevity, when we refer
to a Hilbert space (H, (-,-)), we may omit the inner product in our notation.
In other words, H = (H, (-, -)).

Throughout the thesis, we will often find it useful to decompose a Hilbert
space H into a direct sum of two spaces. With this in mind, we introduce the

orthogonal complement to a subspace M in H.

Definition 1.1.3. Let H be a Hilbert space and M a subspace of H. The
orthogonal complement M is the set of elements in H that are orthogonal to

every element in M, i.e.,

Mt ={yeH|ylM}
={yeH| (y,x) =0forallx € M}.

Remark. The orthogonal complement M~ of M is a closed subspace.

Consequently, H admits the following decomposition: H = M @ M=,
Thus, if M itself is closed, then H = M @ M. We often use the notation



M+ = He M due to its generality: the subspaces in question are explicit and
it is suggestive of the direct sum notation.

We conclude this section by presenting two inequalities that will be instru-
mental in the analysis performed in later sections: the first is known as the

Cauchy-Schwarz inequality, whilst the second, the triangle inequality.

Lemma 1.1.4. Let (X,(-,-)) be an inner product space and let || - || be the

norm induced by the inner product. For all x, y € X, we have

[y | <lzllllyl and  flo+yl <[zl + [yl

1.1.2 Linear Operators in Hilbert Spaces

Operators acting in Hilbert spaces can have many properties that make them
interesting to study, or useful in practice. This section will describe several

desirable properties that the operators we will be concerned with may possess.

Definition 1.1.5. Let X and Y be vector spaces over the same field K. We
say that T': D(T') — R(T) is a linear operator from D(T) C X onto R(T) C Y
(or, into Y) if, for all z, y € D(T) and A € K, we have

Tx+y) =Te+Ty and  T'(\zx) = A\Tx.

The vector space D(T) is called the domain of T, whilst R(T') denotes the

range of T": specifically, we have
R(T)={yeY | Tx =y for some z € D(T)}.

When the domain D(T') of an operator T is dense in the ambient Hilbert

space, we have the following useful definition.

Definition 1.1.6. Let H; and Hs be Hilbert spaces and T: D(T) — Ha a
linear operator, where D(T') C H;y. The operator T is densely defined if D(T')
is dense in Hj, that is, D(T') = H;.

We will also make reference to the kernel, or null space, of a linear operator.

In particular, the kernel of T is the set of all elements z in the domain of T’

that are mapped to the zero vector in Y, i.e.,
kerT = {x € D(T) | Tx = 0}.

Throughout this thesis, we will be concerned with operators that act in
Hilbert spaces. As such, the following definitions replace generic normed
spaces (X, [ - [lx) and (Y| - [|y) with Hilbert spaces Hy = (H1,(-,)p,) and



Hy = (Ha, (-,-)p,). The inner products (-,-)z and (), induce the norms
Il - ||z, and || - ||z, respectively. Then, we continue by presenting the next of

our definitions.

Definition 1.1.7. Let T: D(T) — Hj be a linear operator, where D(T') C H;.

The operator 1" is bounded if there exists a constant ¢ € R such that
1T ||y < el
for all z € D(T'). If no such ¢ exists, then 7' is unbounded instead.

Remark. When T is a linear operator, T' being bounded is equivalent to T

being continuous.

When we are in possession of an operator T, it can be useful to speak of

inver rator T, and w uch an rator even exists.
the inverse operator 7', and when such an operator even exists

Definition 1.1.8. Let T': D(T') — Hj be a linear operator, where D(T') C H;.

If T is an injective operator, that is
1 75 o —> Txq 75 Txs, x1, T2 € D(T),

then T-1: R(T) — D(T), where Tz € R(T) C Hs is mapped to xg € D(T),

is called the inverse operator of T.

In fact, the inverse operator 7! of a linear operator T exists if and only
if the kernel of T' contains only the zero vector. More precisely, we have the

following theorem.

Theorem 1.1.9 ([43, Thm. 2.6-10]). Let Hy and Hy be Hilbert spaces over the
same field K. Let T: D(T) — Hs be a linear operator with domain D(T) C H;
and range R(T) C Hs. The inverse operator T=': R(T) — D(T) exists if and
only if

Tr=0 = xz=0.

Furthermore, if T~ exists, then it is a linear operator.

With the existence of the inverse operator fresh in one’s mind, we make
a short detour into spectral theory by presenting some basic definitions that
will surface in later sections.

Let H be a non-empty complex Hilbert space and T': D(T) — H a linear
operator with domain D(T') C H. For any A € C, we can associate to T the
operator

=T — A,



where [ is the identity operator on D(T"). When T} 1 exists, we call this
operator the resolvent operator of T. This operator (often simply referred to

as the resolvent) is denoted by Ry(T'), providing the following notation:
R\(T)=Ty'= (T - M)

Since the resolvent has an explicit dependence on A, we will be interested
in finding regions of the complex plane where the resolvent possesses (or not!)
certain properties. In fact, the subsequent definitions will precisely partition
the complex plane into four disjoint sets which each depend on the value that
A takes.

Definition 1.1.10. Let H be a non-empty complex Hilbert space and let
T:D(T) — H be a densely defined linear operator with domain D(T") C H.
Let A € C. If the following three conditions are satisfied, then A is called a

reqular value of T

(R1) R\ (T) exists,

(R2) R, (T) is bounded,

(R3) R\ (T) is defined on a set which is dense in H.
The set

p(T) ={X € C | \is a regular value of T'}

is called the resolvent set of T. Conversely, the set
o(T) = C\ p(T)

is called the spectrum of T. A complex number \ € o(T) is referred to as a

spectral value of T.

It was alluded to briefly that the complex plane could be partitioned into
four disjoint sets. We can further decompose the spectrum into three disjoint
sets by investigating which of the conditions expressed in Definition 1.1.10 are

(and are not) satisfied. Then, we arrive at the following definitions.

Definition 1.1.11. The point spectrum, or discrete spectrum, which we denote
by o,(T'), is the set of A € C such that the resolvent Ry(7T') does not exist:
(R1) fails. An element A of this set is called an eigenvalue of T

The continuous spectrum, which we denote by o.(T), is the set of A € C
such that the resolvent Ry (T") exists and is defined on a set which is dense in
H, but is not bounded: (R1) and (R3) are satisfied, but (R2) fails.



The residual spectrum, which we denote by o,.(T), is the set of A € C such
that the resolvent R)(T') exists but is not defined on a set that is dense in
H: (R1) holds, but (R3) fails. Here, the resolvent operator can be either
bounded or unbounded — the fulfilment of (R2) does not matter.

From these definitions, we then have the following decomposition of the

complex plane:

C

(T) U o(T)
(T) U op(T) U oo(T) U 0 (T),

p
p
where U denotes the disjoint union between the sets.

Now that we have discussed the basic definitions involved in spectral the-
ory, we continue by presenting more concepts relevant to linear operators that

act in Hilbert spaces. For the remainder of this section, H = (H, (-,-)) will

denote a complex Hilbert space, unless otherwise specified.

Definition 1.1.12. Let T: D(T) — H be a densely defined linear operator,
where D(T') C H. The adjoint operator T*: D(T*) — H is the operator with

domain
D(T*)={y € H | 3z € H such that (Tz,y) = (z,z) forall z € D(T)}.

For each y € D(T™), the adjoint operator T* is defined by the following equal-
ity: THy = z.

Remark. Whenever T is a densely defined operator, the adjoint T will be a

linear operator.

The definition of the adjoint operator introduces an important equality

between two inner products. From this, we obtain the following two definitions.

Definition 1.1.13. Let T: D(T') — H be a densely defined linear operator,
where D(T') C H. The operator T is called symmetric if (Tx,y) = (x,Ty) for
all z, y € D(T).

Definition 1.1.14. Let T: D(T') — H be a densely defined linear operator,
where D(T') C H. The operator T is called self-adjoint if T* =T.

Remark. From the two definitions above, it is immediate that a self-adjoint
operator is also symmetric. However, a symmetric operator is not necessarily

self-adjoint as D(T") may be a proper subset of D(T™).

We continue by investigating the expression (T'z, x); in particular, we focus

our attention on the value that this expression may take.



Definition 1.1.15. Let T: D(T) — H be a linear operator, where D(T") C H.
The set
O(T) = {{Tx,z) e C |z € D(T), ||z =1}

is called the numerical range of the operator T'.

Since the numerical range ©(7") of an operator T is a subset of the complex
plane, we are able to further describe the operator depending on which region
of the plane ©(T) lies in. For example, it can be shown that when T is
symmetric, the quantity (T'z,x) is entirely real. Indeed, let (T'xz,z) = a + ib
for some a, b € R. Then

(Tz,x) = (z,Tz) by (IP3)
= (Tz,x) as T is symmetric
=a — ib.

From this equality, it is clear that b = 0 or, in other words, (T'z,z) € R.
Knowing when ©(T) is a subset of the real line is useful as we can then

classify the operator further: the following definitions explore this statement.

Definition 1.1.16. Let T: D(T) — H be a symmetric linear operator, where
D(T) C H. The operator T is said to be bounded below if there exists a
constant v € R such that

(Tz,x) > v (x,x), Vo € D(T).

The largest such ~y is called the lower bound. Likewise, T is said to be bounded

above if there exists a constant u € R such that
(Te,xz) < plx,x), Va € D(T).

The smallest such p is called the upper bound. If T is either bounded above

or bounded below, then we say that T is semi-bounded.

In fact, we obtain useful terminology by specifically choosing v or u equal

to zero in the above definitions. In particular, we have the following.

Definition 1.1.17. Let T: D(T) — H be a symmetric linear operator, where
D(T) C H. Then

T is positive (non-negative) <= (T'z,x) >0 (> 0), Vz € D(T) \ {0},

T is negative (non-positive) <= (Tz,x) <0 (<0), Vo € D(T)\ {0}.

If T is positive (non-negative), then we write "> 0 (> 0). Similarly, when T’

is negative (non-positive), we write 7' < 0 (< 0).



In these cases, the numerical range lies entirely on the real axis, but we
will also be interested in numerical ranges that lie within sectors, as expressed

in the following definition.

Definition 1.1.18. Let 7': D(T") — H be a linear operator, where D(T') C H.
If the numerical range ©(7') is contained within a sector S, ¢ in the complex

plane, where
Suo={z€C|larg(z=7)| <0}, YeR e [0,7),

then T is said to be sectorial. The constant « is called the vertex, whilst 6 is

called the semi-angle.

Remark. If T is sectorial, then the sector in which the numerical range belongs

to is not unique.

Finally, it can be useful to consider an operator T as the set of pairs
(x,Tx). This concept will be explored further in Chapter 3, but for now we

simply deliver the following definition.

Definition 1.1.19. Let H; and Hs be Hilbert spaces over the same field K
and T': D(T') — Hj a linear operator, with D(T') C H;. The set

G(T)={(z,y) € H x Hy | x € D(T), y = Tx}

is known as the graph of T. If G(T) is a closed set in the space Hy x Hj

endowed with the norm || - || g, x 77, Where

||(5L'7y)HH1><H2 = HxHHl + ||yHH27 (x,y) € Hy x Hy,
then T is called closed.

In fact, there are two other useful characterisations of a closed operator
that we make use of, presented as follows. Let H; and Ho be Hilbert spaces
over the same field K and 7': D(T") — Hj a linear operator, with D(T") C H;.
Firstly, let {x,,} be a sequence in H;. Then T is a closed operator if and only
if

xp — xin Hy and Tz, —» yin Hy = 2 € D(T) and Tz = y.
Alternatively, T is closed if and only if (D(T'), ||-||7) is a complete space, where
|zl = [zl 7, + [T, for all z € D(T).

Closed operators have several useful applications. One such application
is demonstrated by that which we call the Rank-Nullity theorem, as adapted
from [48, Prop. 1.6].



Theorem 1.1.20. Let Hy and Hy be Hilbert spaces and T: D(T) — Hy a
closed, densely defined linear operator, where D(T') C Hy. Then,

Hy =R(T) ® ker T".

Remark. If ker T* = {0}, then R(T) = Hs. In other words, R(T') is dense in

Hy; — we will frequently make use of this argument during later sections.

We have now presented all of the required definitions that will be used
throughout the thesis with regards to general linear operators. The next sec-

tion aims to achieve the same, but with so-called sesquilinear forms instead.

1.1.3 Operators and Forms

In Section 1.1.1 we introduced inner products and Hilbert spaces; here, we
introduce sesquilinear forms and the properties that they may exhibit instead.
The definitions presented will be in a structure comparable to that of Sec-
tion 1.1.2 for maximal insight. We then conclude this section with an impor-
tant representation theorem that showcases the relationship between linear
operators and a certain class of sesquilinear forms: this relationship forms the

basis of the results presented during the next chapter of the thesis.

Definition 1.1.21. Let X and Y be vector spaces over the scalar field C. The
mapping
al,]: X xY —=C

is called a sesquilinear form if, for all vectors x, x1, o € X and y, y1, y2 € Y

and all scalars A, u € C, the following four conditions are satisfied:

(SF1) alry +z2,y] = alry,y| + alra, y]
(SF2) alr,y1 +y2] = alz,yi] + alz, o
(SF3) alAz,y] = Aaz,y]
(SF4) alz,uy| = palz,y|.

Remark. It can be shown directly from the definition that an inner product is

an example of a sesquilinear form.

Similarly to before, we will consider sesquilinear forms (often simply re-
ferred to as forms) in Hilbert spaces rather than in general vector spaces.
In fact, the forms that will be of interest to us will map from Q(a) x Q(a)
to C, where Q(a) C H denotes the form domain of a, unless stated other-
wise. Furthermore, we will make reference to the quadratic form, that is, the
map a: Q(a) — C defined by a[z]| :== a[z,z]. With the domain of the form

established, we arrive at the following definition.



Definition 1.1.22. Let a: Q(a)xQ(a) — C be a form, where Q(a) C H. The
form a is densely defined if its domain @(a) is dense in the ambient Hilbert

space H.

Likewise, we may speak about a form being bounded, as discussed in the

following definition.

Definition 1.1.23. Let a: Q(a) x Q(a) — C be a form, where Q(a) C H.

The form a is said to be bounded if there exists a constant ¢ € R such that

|z, y]| < cllzlallylla,
for all z, y € Q(a). If no such c exists, then a is called unbounded instead.

We have established that to a linear operator T', we can find an adjoint

operator 1T™*: analogous definitions exist in the context of forms.

Definition 1.1.24. Let a: Q(a) x Q(a) — C be a form, where Q(a) C H.
The adjoint form a* is defined by

a”[z,y] = aly, ],
for all z, y € Q(a*) = Q(a).

When we have equality between a form and its adjoint, we obtain the

following definition.

Definition 1.1.25. Let a: Q(a) x Q(a) — C be a form, where Q(a) C H.
The form a is called symmetric if afz,y] = a* [z,y] for all z, y € Q(a).

We continue by introducing two further forms related to the form a.

Definition 1.1.26. Let a: Q(a) x Q(a) — C be a form, where Q(a) C H.
The real and imaginary parts of a form are defined, respectively, as follows:
1 1

age [z,y] = = (a[z,y] +a" [x,y]) and ap, [z,y] = %

2 (a[a:,y]—a* [x,y}),

for z,y € Q(are) = Q(am) = Q(a). Moreover, a [z, y| = age [z, y|+iam [z, y].

Symmetry of a form has two important features that we will often make
use of: if a form a is symmetric, then ag, [z, y] = a[z,y] for all z, y € Q(a) and
the expression a [z, z] is real-valued for all z € Q(a). Furthermore, it is easy to
show that for any sesquilinear form a, both are and ar, are symmetric forms;
this revelation unveils that for any sesquilinear form a: @Q(a) x Q(a) — C, we
have

alzr,z] = age [z, x] +iam [z, ],
Nl

———
€R eR
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for all x € Q(a). Hence, for any sesquilinear form a, we have
Re (a[z,z]) = age [z, 7] and Im (a [z, z]) = amy [z, 2] ,

for all x € Q(a). In general, age [z, y] and ayy, [z, y] are complex-valued, but
by considering them as quadratic forms we justify our use of the terms real
and imaginary.

We now continue by investigating the expression a[x,x] associated to a
sesquilinear form; this is effectively the analogue of (T'x, z) from the operator
setting. Forms also possess numerical ranges, and so we can further describe

forms in relation to where this set lies in the complex plane.

Definition 1.1.27. Let a: Q(a) x Q(a) — C be a form, where Q(a) C H.
The set

O(a) ={a[z,z] | z € Qa), [lz] =1}

is called the numerical range of the form a.

Definition 1.1.28. Let a: Q(a) x Q(a) — C be a form, where Q(a) C H.
The form a is said to be bounded below if there exists a constant v € R such
that

ale, 2] > 9|]?, Ve eQa)

The largest such « is called the lower bound. Likewise, a is said to be bounded

above if there exists a constant u € R such that
alz,z) <pllzl®, Vo e Q(a)

The smallest such p is called the upper bound. If a is either bounded above or

bounded below, then we say that a is semi-bounded.

By setting v or u equal to zero in the above definitions, we obtain the

notion of positivity and negativity of a form.

Definition 1.1.29. Let a: Q(a) x Q(a) — C be a form, where Q(a) C H.
Then

0 (
0 (<0)

v

a is positive (non-negative) <= a|[zx,z]

0), vz € Q(a) \ {0},
: vz € Q(a) \ {0}

>
a is negative (non-positive) <= a[x,z| <
If a is positive (non-negative), then we write a > 0 (> 0). Similarly, when a

is negative (non-positive), we write a < 0 (< 0).

Likewise, if the numerical range ©(a) lies in a sector, then we have the

notion of sectoriality with regards to forms.

11



Definition 1.1.30. Let a: Q(a) x Q(a) — C be a form, where Q(a) C H.
If the numerical range ©(a) is contained within a sector S, ¢ in the complex

plane, where
s
Suo={:€C|larg(z=7)| <0}, veR 0e[0,7),

then a is said to be sectorial. The constant ~ is called the wvertex, whilst 6 is

called the semi-angle.

Remark. If a is sectorial, then the sector in which the numerical range belongs
to lies is not unique.

Remark. Graphically, one can observe that if the numerical range of a lies
within a sector with vertex v € R and semi-angle [0, %), then

|Ima [z, ]| <tana (Realz,z] — ’7”1‘”2) (1.1)

must hold for all z € Q(a). Thus, we arrive at the following alternative
characterisation for a sectorial form: a form a is sectorial if the inequality
given by (1.1) holds for all z € Q(a).

We can also introduce the concept of closed forms, as expressed in the

following definition.

Definition 1.1.31. Let a: Q(a)xQ(a) — C be a sectorial form, where Q(a) C

H. The form a is said to be closed if (Q(a), || - ||a) is a complete space, where

N

[2]la = (are [z, 2] = (v = 1) (z, 2)) z € Q(a),

and + is chosen to ensure positivity of the norm. If a is sectorial, then v can

be chosen to be a vertex.

Remark. This definition of a closed form is comparable to the third charac-

terisation of a closed operator given in Section 1.1.2.

We may also characterise closure via so-called form-convergence, as intro-

duced in the following definition.

Definition 1.1.32. A sequence {z,} in Q(a) C H is said to be a-convergent
tox € H if

Tp, > rasn—ooin H and alx, —xm,x, — Ty — 0 as n,m — oo.

When {z,} is a-convergent to z, we will write x,, —a .

12



Then, a form a is closed if
Tp —ax = x € Q(a) and alz, —x,z, — 2] = 0.

We make use of both of these characterisations of a closed form throughout
the thesis.
It is worth noting that when a form is sectorial with vertex v > 0, there

exists an equivalence between ||-||a and the norm given by ||z|2 = (age [z, x])%

Definition 1.1.33. Let (H, (-,-)) be a Hilbert space. Two norms || - ||; and
Il - |l2 in H are equivalent if there exists two positive constants ¢ and C' such
that

cllzlls < flzfli < Cllll2,

for all z € H.

Let a be a sectorial form with vertex v > 0. To show that the two norms
|| - |la and || - ||2 are equivalent, we split the analysis into two distinct cases:
0 <+ <1and~ > 1. In both cases, we make use of the following consequence
of equation (1.1):

ape [z,2] 2 |z]h. @€ Qa), (1.2)

Firstly, let 0 <y < 1. Then 0 < —(y —1) < 1, and so

|2[I3 = are [z, 2] < age [z,2] = (v = Dlz]F = [l

On the other hand,

213 = age [z, 2] = (v = Dlz]l%

< aRe [z, 7] - aRe [, 7]
1 1
= ;aRG [Qj‘,l‘] = ;”xugv

by means of equation (1.2). Thus, when 0 < v < 1, the two constants ¢ = 1
and C' = \E ensure an equivalence between the two norms.

If instead, v > 1, then we immediately note that
2]z = age [z, 2] = (v = D]z||} < age [z,2] = [l2]3,
since —oo < —(y — 1) < 0. Conversely, an application of equation (1.2) yields

”ng = ARe [:c,x] = YaRe [az,x] - (’7 - 1)aRe [xafE]
< yage [z, 2] — (v = Dyllz|F

=7 (age [z, 2] — (v = )||2l7) = 7ll2[l5-

13



As such,
: 1 1
|zla < ll«l3 < ~llz]3, or, in other words, ;Ilwlli < ;Ilwllg < |lz]l.
Together, these two inequalities show that

1
;Hxllg < lzllz < ll=13,

and so by setting ¢ = \/g and C' = 1, we see that the two norms are equivalent
when v > 1.

Having now covered both cases, we may conclude that the two norms || - ||a
and ||-||2 are, in fact, equivalent. When two norms are equivalent, convergence
in one norm implies convergence in the other: the two norms are effectively
interchangeable. As such, we opt to use the simpler norm when appropriate.

Now, with all of the relevant definitions and terminology in place, we
continue by disclosing an important representation theorem that links a certain

class of sesquilinear forms to self-adjoint operators.

Theorem 1.1.34 ([27, Thm. 2.4]). Let a: Q(a) x Q(a) — C be a closed,
densely defined, symmetric form, where Q(a) C H. Then, there exists a self-
adjoint operator T: D(T) — R(T) C H whose domain D(T) is dense in H

and can be characterised as follows:
D(T)={z€Q(a) | 3f € H such that a[z,z] = (f,z) Yz € Q(a)}.
Then, f=Tz.

This theorem works in reverse too: if we are in possession of a self-adjoint
operator T" with domain D(T'), then there exists a closed, densely defined,

symmetric form a which satisfies the following equality:
(Tz,x) =alz,x], z2€D(T), z € Qa).
In essence, there is a one-to-one correspondence between self-adjoint operators

T and closed, densely defined, symmetric forms a [27].

Remark. When we speak of the unique operator T that is related to the form

a as in Theorem 1.1.34, we will write that T is associated to a (or vice versa).

One key concept that naturally arises from the relationship between a form
and an operator is that of comparing two forms (and operators) to one another.

Notably, we have the following definition.

14



Definition 1.1.35. Let a: Q(a) x Q(a) — C and b: Q(b) x Q(b) — C be

two forms. If
Q(b) C Q(a) and afz,z] <bz,z] < co for all z € Q(b),

then we write a < b. Moreover, let A and B be the operators associated to
the forms a and b, respectively, as in Theorem 1.1.34. We write A < B if and
only if a < b.

This relationship between sesquilinear forms and operators forms the basis
of the original work that we present in Chapter 2. However, we first reserve
the following section for definitions and fundamental theory with regards to

extension theory.

1.2 Extension Theory of Linear Operators

At its core, this thesis aims to characterise extensions of operators that possess
certain properties. The following subsections first introduce basic terminology
before detailing two methods for characterising extensions: the former utilises
so-called deficiency spaces, the latter, the relationship between operators and
forms introduced in Theorem 1.1.34. Furthermore, Appendix A demonstrates

both of the described methods with a comprehensive example.

1.2.1 Extensions of Linear Operators

Given an operator T in a Hilbert space, one might be interested in the following
questions: what happens if we examine T' on a smaller domain, does it ‘make
sense’ to consider 7" on a larger domain? If so, then which of the properties
that T enjoys are preserved when considering 71" on this new domain? The
objective of this section will be to introduce various results from extension
theory, as detailed in [43], so that we can make sense of these questions more

formally.

Definition 1.2.1. Let H be a Hilbert space and T: D(T') — H an operator,
where D(T) C H. Let R be a subset of D(T). The operator T: R — H,

satisfying Tz =Tz for all x € R, is called a restriction of T'.

Remark. If T is the restriction of T' to the subset R, then we often use the
following notation: T=T]|R.

Definition 1.2.2. Let H be a Hilbert space and T: D(T') — H an operator,
where D(T) C H. Let S satisfy D(T) ¢ S C H. Any operator T: S — H,
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such that Tz = Tz for all & € D(T) is called an extension of T. If T is an

extension of T, then we write T C T.

Remark. The relationship between restrictions and extensions is explicit: if
TCT,thenT | D(T)=T.

In general, it seems logical to find extensions of an operator 7' that is,
in some sense, ‘small’. Conversely, restrictions are often spoken about with
regards to an operator that is, in some sense, ‘big’. One such example of this
idea is as follows: if an operator 1" is not closed, then we may attempt to
find its closure T. If T exists, then this closed operator is the smallest, closed
extension of T'. The existence of the closure of an operator is addressed in the

following definition.

Definition 1.2.3. Let H; and Hy be Hilbert spaces and T: D(T') — Hs an
operator, where D(T) C H;. Let G(T') denote the graph of T. If the closure
of G(T) with respect to the graph norm || - ||z, x 1, (that is, G(T')) is a graph,
then T is said to be closable. If T is closable, then the unique operator T such

that G(T') = G(T) is a closed operator and is referred to as the closure of T.

There exists an alternative formulation for the closability of an operator
that we now present. Indeed, T is closable if and only if the following holds:
if {z,,} is a sequence in D(T") such that x,, — 0 as n — oo and {T'z,,} in Ho
is convergent, then Tz,, — 0 as n — oo.

In this thesis, we will be concerned with symmetric operators in Hilbert
spaces. As such, the following theorem has practical consequences that we will

often utilise.

Theorem 1.2.4 ([57, Thm. 5.4]). If T: D(T) — H is a symmetric operator
in a Hilbert space H, where D(T) C H, then T is closable. Moreover, T is

also symmetric.

Abstractly, we may assume that a symmetric operator is closed since its
closure will always exist; in practice, however, it is paramount that we gen-
uinely verify whether the operator is closed or not before applying any further
theory. In line with the previous motivation, we continue by introducing two

distinguished operators.

Definition 1.2.5. Let H be a Hilbert space and T': D(T') — H a symmetric
operator, where D(T) C H. We refer to the closure T of T as the minimal
operator and write T = Tiin. On the other hand, the operator T* is called

the maximal operator and is denoted by Tiax.
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Remark. For any linear operator T, we have T* = (T)*. Then, for T a sym-

metric operator, we have
(Tmin)* =T = Trnax-

Furthermore, T C T C T* or, in other words, T C Tmin C Tmax-

This terminology is hopefully evocative: in practice, we aim to characterise
either the restrictions of the maximal operator or the extensions of the minimal
operator.

We conclude this section by noting that if a form a is not closed, then we
have analogous definitions for both the closability of a form and its closure to

those presented in the operator setting.

Definition 1.2.6. Let a: Q(a) x Q(a) — C be a form, where Q(a) C H. Let
{zn} be a Cauchy sequence in @)(a) that converges to 0 in H. The form a is
said to be closable if and only if {x,} also converges in Q(a) and

lim alz,,z,] =0.
n—oo

The form a with form domain Q(a) is referred to as the closure of a and is

defined as follows: =z € Q(a) if and only if there exists a sequence {z,} in Q(a)

such that
Tn > xasn—ooin H and alz, — oy, o, — Tn] — 0asn, m — oo,
ie., , —a z. For z, y € Q(a), we then set
afz,y| = nlggoa [Zns Ynl s

where {z,}, {yn} are sequences in @(a) that a-converge to x and y, respec-

tively.

Notably, we have the following relationship: a form a is closable if and
only if the operator T' associated to a has a closed extension. The form a is

then the form associated to this minimal, closed extension.

1.2.2 von Neumann Theory for Linear Operators

Typically, one objective in characterising the extensions of an operator T is
to find those extensions that possess certain useful properties. In this section,
we present the von Neumann theory: a way of characterising the self-adjoint
extensions of a closed, symmetric operator T'. In particular, we utilise isomet-
ric maps between the so-called deficiency spaces of T'. We recommend [57] for

a comprehensive account of the theory presented in this section.
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Definition 1.2.7. Let H be a Hilbert space and T: D(T) — H a closed,
symmetric operator, where D(T) C H. The closed subspaces Ny (T) and
N_(T) defined by

Ny =N (T) =%ker (T* —iI) and N_ =N_(T) :=ker (T* +il),

where I is the identity operator on D(T™), are called the deficiency spaces
of T. The dimensions of these subspaces, denoted by m(7") and m_(T)

respectively, are called the deficiency indices.

Remark. We make special mention that the literature may express deficiency
spaces with different or opposing signs to those used here. We justify our
notation by recalling the operator T associated to 1" from Section 1.1.1, i.e.,
Ty =T — X for X € C: clearly, No(T) = ker T'%,.

We continue by presenting a useful decomposition of the domain of the
adjoint operator 7. This decomposition will form the basis of the theorem

which characterises the extensions that we are interested in.

Theorem 1.2.8 ([57, Thm. 8.11}). Let H be a Hilbert space andT: D(T) — H
a closed, symmetric operator, where D(T) C H. Then

D(T*) = D(T) + Ny + N,

where Ny and N_ denote the deficiency spaces of T. Moreover, if f € D(T),
g+ € Ny and g— € N_, then

T°(f+ 9+ +9-)=Tf +igs+ —ig—.

Remark. The symbol + denotes the direct sum between two sets. In particular,

for two sets A and B, we have
A+B={a+blac A be B}.

With this decomposition of the adjoint operator in mind, we proceed by

presenting the main theorem of this section.

Theorem 1.2.9 ([57, Thm. 8.12)). Let H be a Hilbert space andT: D(T) — H

a closed, symmetric operator, where D(T) C H.

1. T is a closed, symmetric extension of T if and only if the following holds:

There are closed subspaces F'y C Ny and F— C N_ and an isometric
mapping U: Fy — F_ such that:

D(T)=D(T)+{g+Ug | g€ Fy}
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and

T(f+g+Ug)=Tf+ig—iUg
=T(f+9g+Uyg),

for f € D(T) and g € Fy.

2. T is self-adjoint <= F. = Ny and F_ = N_. In this case, the defi-
ciency indices my(T) and m_(T) are equal, that is, my(T) = m_(T),

and the mapping U is unitary.

Remark. For a symmetric operator 7', this theorem clearly demonstrates that
T = T* | D(T). Moreover, by reintroducing the maximal and minimal opera-

tor from Definition 1.2.5, we see that Ty, C T C Thax.

Essentially, if there exists an isometric map — that is, a map U such that
|Uz|| = ||z|| for all x € D(U) — between closed subspaces of the two deficiency
spaces, N (T') and N_(T), then the domain D(T) of the extension T' can be
thought of as the domain of T" plus a ‘little bit more’. This is imprecise, but
it serves as a basic interpretation for the theory; in fact, the notion of ‘adding
a bit’ to an already formulated domain will be more prominent in the second

theory we present during Section 1.2.4.

1.2.3 The Friedrichs and Krein Extension

Historically, two specific self-adjoint extensions of a semi-bounded operator
T were studied due to their ‘maximal’ and ‘minimal’ nature: namely, the
Friedrichs extension and the Krein extension, respectively. However, with the
notion of size, there exists a powerful relationship between these extensions and
all other self-adjoint extensions of T'. Both the Friedrichs and Krein extension
will be introduced in this section, as presented in [19], along with a precise
formulation of the aforementioned relationship. We also refer to Edmunds and

Evans [27] for an in-depth account of the theory.

Definition 1.2.10. Let H be a Hilbert space and T': D(T) — H a positive
operator with lower bound v > 0. The Friedrichs extension Tr is the extension

of T" with domain
3z*) € D(T) such that ||z — z®| — 0 as
D(Tr) = { © € D(Tiax) | k — 00 and <T(a:(j) — ), (219) — x(k))> — 0
as j, k — oo

Remark. The Friedrichs extension TF is a positive self-adjoint operator with

lower bound equal to 7.
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With the Friedrichs extension now defined, we continue by presenting a
useful decomposition of the maximal domain in terms of the Friedrichs domain

and kernel elements of Thax.

Lemma 1.2.11. Let T be an operator with positive lower bound v > 0. Then,
D(Tmax) = D(TF) + ker Tiax.

Proof. Let u € D(Tiax). As Thin is the closure of T, it possesses the same
lower bound v > 0 as T itself. Moreover, the lower bound of the Friedrichs
extension Tr coincides with that of Ty, too, so we may conclude that 0 lies

in the resolvent set of T, since v > 0. Then, we may set
U = Tgl(Tmaxu) + (u— Tgl(TmaXu)), u € D(Thax),

since the inverse of Tk exists. Now, we simply show that T ! (Tmaxu) € D(TF)
and u — TEI(TmaXu) € ker Thax.

The former is easy to see: since the inverse of Tr exists, it is obvious that
Tgl(Tmaxu) € D(Tp). To prove the latter, we begin by applying Tiax to
U — T (Tinaxt). Indeed, for u € D(Tax), we see that

Tmax ['LL - TF_l (Tmaxu)] = Tmaxu - Tmax(ijl (Tmaxu))

= Tinaxtt — Tr(Te ! (Timaxt)),
since Tpax = Typaxx for x € D(TF). From this, it is clear to see that
Tnax [U - Tf;l(TmaxU)] = Tmaxt — Tmaxu = 0.

Hence, u — T 1(Tmaxu) € ker Thax, and so the decomposition must be valid.
[ |

Since the Friedrichs extension is a self-adjoint (thus, symmetric) operator,
we may associate to it a closed, densely defined symmetric form, say tg, by

means of Theorem 1.1.34. Then, we state the following result.

Theorem 1.2.12 ([27]). The Friedrichs extension Tp of some positive, sym-

metric operator ' has a domain satisfying
D(TF) = D(Tmax) N Q(tF)7
where Q(tg) denotes the form domain of ty.

We now continue by presenting a characterisation of the Krein extension.
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Definition 1.2.13. Let H be a Hilbert space and T: D(T) — H a posi-
tive, symmetric operator. The Krein extension Tk is the extension of T with

domain
D(TK) — D(Tmin) +N7
where N = ker Tinax.

Remark. The Krein extension Tk is a non-negative, self-adjoint operator. We
refer to [41] for proving that the Krein extension is a self-adjoint operator; here,
we show that Tk is non-negative. Indeed, we begin by letting = € D(Tk). If
N = {0}, then it is immediate that Tk is not only non-negative, but positive,
since T is positive. If, instead, we assume that A is non-trivial, then an
element © € D(Tk) can be decomposed into x = xg +y for some xg € D(Tiyin)
and y € N = ker Tyax. Then,

(T'kz,r) = (T (x0 +y), 20 + y)
= (Tkwo,z0 +y) + (Tky, 0+ ) .

Observe that (Txy,zo+y) = (0,20 +y) = 0 since Ty = Tmaxy = 0 for
y € N. Consequently, (Tkz,z) = (Tkxo,x0+y). Moreover, Tk is a self-

adjoint operator so

(Tkwo, 20 +y) = (20, T (0 + ¥))
= (w0, Trwo) + (20, TkY)

= (z9, T o) -

By recalling that xg € D(Tin), we may replace Tk by Tiin. Thus, we assert
that

(Tkx,z) = (x0, Tk wo) = (Tkxo,0) = (Tminxo, To) -

Since T, is a positive operator, we have
<TK$,$> = <Tmin$07$0> >0

for all z € D(Tk) \ NV, showing that the numerical range at least lies on the
positive axis. To see that 0 also lies in the numerical range, we simply take
zo = 0 and a y # 0 such that ||z|| = 1. This choice of = shows that we can
find an = # 0 with ||z|| = 1 such that (T'z,z) = 0. As such, we may conclude
that 0 € ©(Tk). Then, it is clear that the numerical range O(Tx) lies in the

interval [0, c0), proving that Tk is a non-negative operator.
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With these two distinguished self-adjoint extensions now defined, we con-
tinue by presenting the following theorem by Krein that details the relationship

alluded to in the introduction to this section.

Theorem 1.2.14 ([5, Thm. 2.11)). Let H be a Hilbert space and T: D(T) —
H a positive, symmetric operator. The set of all non-negative self-adjoint

extensions of T is precisely the set of operators T satisfying
Tk <T < Tp,

where T and Tr are the Krein extension and Friedrichs extension of T re-

spectively.

Remark. In [41], the Friedrichs extension is referred to as the ‘hard’ extension,

whilst the Krein, the ‘soft’.

In order to appreciate the operator inequality Tk < T < T, we first

associate to these operators the forms tx, t and tg respectively. Then,

Tk <T<Tp <> tg <t <tp
=tk [r,2] < t[r, 2] for all z € Q(t) and
t [z, 2] < tp [z, 2] for all z € Q(tp),
where Q(tr) € Q(t) € Q(tk). Thus, it is clear that the form associated to
the Friedrichs extension has the smallest form domain. This idea is the crux

of the theory that will be presented in the next section.

1.2.4 Krein-Vishik-Birman Theory

In Section 1.2.2, we presented a theorem which characterised the self-adjoint
extensions of a closed, symmetric operator. Here, we instead express an im-
portant correspondence between non-negative, self-adjoint extensions of a pos-
itive minimal operator Ty, and certain non-negative, self-adjoint operators B.
This section presents results from [41] and follows the presentation in [5].

We begin with the following theorem.

Theorem 1.2.15 ([5, Thm. 2.9]). Let H be a Hilbert space and T: D(T') — H
a positive, symmetric operator, where D(T) C H. There is a one-to-one
correspondence between non-negative, self-adjoint extensions, Tg, of T and
non-negative forms, b, acting on subspaces Ng of N =ker T*. If dim N < oo,

the word non-negative may be dropped in both places.
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By considering the kernel of the adjoint operator, N, in conjunction with
Q(trp) — that is, the domain of the form associated to the Friedrichs extension
of the minimal operator Ty,;, — it is possible to explicitly characterise all of
the non-negative, self-adjoint extensions, T, of Tinin. Indeed, we summarise
the pertinent results from [5] and present them in the following theorem that

will be fundamental to many parts of the thesis.

Theorem 1.2.16. Let T be a non-negative, self-adjoint extension of Tmin.
Then T = Ty for some mon-negative, self-adjoint operator B acting on Np,

where Tp is the operator associated to the form tg satisfying
tp [u,v] = tp [uf, 0] + b [, 0V].
The form domain Q(tg) is given by

Q(ts) = Q(tr) + @(b),
where b is the form associated to B and u, v € Q(tg) are such that

F N
u=u +u,
foru”, v € Q(tg) and u¥, vV € Q(b) C Np.

v=0vF+ vN,
Remark. Theorem 1.2.16 strengthens the notion that the extensions of interest
to us can be constructed by ‘adding a bit’ to a small, yet fundamental, starting

domain.

This decomposition admits a useful consequence: whenb = 0 and Ng = N
we obtain the Krein extension, whilst b = oo yields the Friedrichs extension.
Taking b = oo is purely notational — we do so to reinforce the operator
inequality presented in Theorem 1.2.14. When b = oo, we are to interpret
this as taking Np = {0} and setting oo [0,0] = 0. Since we are interested in
the non-negative extensions of an operator T', the Krein extension will then
be the smallest extension in an operator sense.

In this thesis, we will utilise the Krein-Vishik-Birman theory rather than
the well-documented von Neumann theory of linear operators due to this ex-
plicit relationship with both the Friedrichs and Krein extension. As such,
we devote Appendix A to applying both the von Neumann theory and the
Krein-Vishik-Birman theory to a concrete example of Sturm-Liouville type.
Crucially, the latter example forms a template that we may follow during

Chapter 2.
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1.3 Difference Operators

Throughout the thesis so far, we have provided general theory for an operator
T that acts in a Hilbert space H. In this section, we will specify the type of
operator that will be of interest to us, along with certain useful results that

will be utilised in subsequent chapters.

1.3.1 Difference Operators and Jacobi Operators

We first introduce the Hilbert space fundamental to the thesis: the sequence

space (2.

Definition 1.3.1. The sequence space £2 over the scalar field C is defined to

be the set
[oe)
Z lzn]? < oo}
n=0

equipped with the inner product (:,-),2, where

= {x = {afn}iio

)
<$7y>£2 = angnv T, yc 62-
n=0

Critically, (¢2,(-,-);2) forms a Hilbert space. As one would expect, the

norm induced by this inner product is denoted by || - ||;2, where
1
00 2
|z = (Z |:cn|2> ., zel’
n=0

We will omit the subscript #? present on both the inner product and norm
whenever it is clear what is meant.

With the Hilbert space fundamental to this thesis defined, we continue
by introducing the operator of interest to us: the forward difference operator,
which we denote by A. Indeed, we consider A on ¢?, where the n-th component

of an element u € £2 can be described as follows:
(Au)y, = Upy1 — Unp.

When there is no confusion possible, we will omit the brackets and simply
write Auy = Upt1 — Unp.

It was alluded to in the introduction to the thesis, but we feel it worth-
while to reiterate here: the difference operator is the discrete analogue to the
differential operator in the continuous case. Indeed, consider u, = f(x,) for
a sequence x, in D(f). If 41 = x,, + h, then % = M approx-
imates the derivative of f at x, for small h. Therefore, difference operators

arise naturally when discretising differential equations.
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It is worth remarking that the forward difference operator is a bounded

linear operator. Indeed, let u, v € £2 and X\ € C. Then
()\ul + 1)1) — (Aug + vo)

(Aug +v2) — (Aug + v1)
A(du+v) = :

(Aupt1 + vnt1) — (Auy, + vy)

U1 — Ug U1 — Vo
U9 — U U2 — V1
=A : + : = \Au + Awv.
Un+1 — Un Un+1 — Un

Thus, we have confirmed that A acts linearly. To verify that the operator is

also bounded, we must show that there exists a constant ¢ € R such that
[Au] <cllull, — ue

Consider the expression ||Aul|?. Then

1Aul* = |Auf?
n=0

00

= Z |un+1 - un|2
n=0
00

<Y ([tns | + fun))?,
n=0

after an application of the triangle inequality. Let {,} be the sequence such
that @, = upy1 for all n > 0. Then, after expanding the right-hand side of

this equation, we see that

) 00
D (lunsa ]+ fun)? =D fin|® + [unl? + 2/ tin ||
n=0 n=0

o
<2l +2 finfual,

n=0
since
(o] oo oo
[l =" Jinl> = Junga P = [unl®
n=0 n=0 n=1

00
<3 funf? = ]
n=0
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On the other hand, invoking the Cauchy-Schwarz inequality yields
o
23 [ < 21l
n=0

< 2ful*.
By piecing together the shown inequalities, we see that
AUl < 4flul®,  we

or, in other words,
| Au|| < 2||ul, u € (2.
As we have now produced a constant ¢ € R such that ||Au| < ¢||u| for all
u € £?, we have shown that the operator A is a bounded operator in £2.
Now, let M be an operator with domain D(M) C ¢?. We say that M is a
second-order difference operator if the n-th component of a sequence can be

represented by the expression
(Mu)n = QpUp+1 + bnun + cpp—1, n > 07

where {a,}, {b,} and {c,} are sequences in C with a,, ¢, # 0 for all n > 0.
The accompanying equation Mwu = 0 is then referred to as a second-order
difference equation, or a second-order recurrence relation.

In particular, this thesis will be concerned with second-order difference

operators that satisfy the following:
(Mu)n = _A(pn—lAun—l) + qntn, n >0,

for two real sequences {p,} and {¢,} with p, > 0 for all n € Ny and p_; = 0.
By expanding (Mu),, we see that

(Mu)p = =prns1 + (Pn + Pn-1 + @n)Un — pn—1tin-1, 1 >0,  (1.3)
demonstrating more clearly the second-order nature of the operator. In fact,
this manipulation neatly illustrates the connection to so-called orthogonal
polynomials — a topic we delve into more thoroughly during Section 2.6.

Second-order difference operators have an alternative representation that
will often provide valuable insight during our analysis. Indeed, consider the
symmetric, tri-diagonal matrix J given by
bo ao
ap b a

ar by a

an—1 by an
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for any given sequences {a, } and {b,}. An operator T with domain D(T) C ¢?,
such that Tu = Ju for all u € D(T), is referred to as a Jacobi operator.

By computing Ju, for some u € £2, we see that

bo ag uQ
ap b ay (1
a1 by as U2
Ju =
an—1 bn Qn Unp
boug + aguq

apuo + biur + arus

aiur + baug + asug

p—1Un—1 + bpuy, + anUn+1

It is then evident that

boug + aguy n =0,
(Ju), = ’
aptnt1 + bptn +an_1up—1, n>1.
By comparing this to equation (1.3), the relationship between the given se-

quences {p,}, {gn} and {a,}, {bn} becomes apparent. Namely, we have

an = —Pn and by, = Dn + Pn+1 + Gn,

for all n > 0. Here, and in what follows, we will assume that the sequences

{pn} and {gn} are both real and p,, > 0 for all n € Ny, with p_; = 0.

Remark. If we take n € 7Z instead of Np, then the associated Jacobi matrix
will be infinite in both directions. The literature often makes reference to

doubly-infinite Jacobi matrices: see, for example, [53].

Since the matrices we will investigate are infinite in only one direction, the
first component of Ju plays a vital role in any analysis we undertake due to
the recurrent nature of the operator. If we are investigating equations involv-
ing Ju, then we will often refer to this first equation as the initial condition
prescribed by the first row or, alternatively, the first row condition.

We conclude this section by introducing three important lemmas that will
be used periodically throughout the thesis. Firstly, we present Jacobi’s fac-
torisation identity [14].
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Lemma 1.3.2. For any sequences {x,,} and {p,}, the following equality holds:

A(pPr_1Ag,— 1 n—
—A(pp_1Azp_1) + an =——A [PnlA <x 1)] . (1.4)
dn 9n gn—1

where Py, = pngngn+1 and gp is any fived sequence with g, # 0 for all n € Ny.

Proof. Consider the right-hand side of equation (1.4). Upon applying simple

manipulations, we see that

1 T Ty
- — [pngngnHA <”> — Pn—1gn-19nA < & 1)}
dn 9n 9In—1

. 1 |: <$n+1 xn) <5L'n $n1>:|
= = — |Pndndn+1 - — | = Pn-19n—-19n | — —
9n In+1 gn 9n In—1

1
=- *[ n (Tn419n — Tngnt1) — Pn—1 (Tngn—1 — xn—lgn)]
n

X _1T _
:_pn$n+1+pn ngn+1 +pn 1Lngn—1 Dy 1T 1. (15)

9n gn

In order to simplify this expression, consider the expression —A(p,_1Az,_1).

Upon expanding this, we see that

_A(pn—len—l) = —PnTn+1 + (pn +pn—1) Tn — Pn—1Tn—1- (16)

We may then insert this back into equation (1.5) and see that the right-hand
side of the equation can be expressed as

bnT 1, Pn—1Zngn-1
- A(pnflAfL‘nfl) - (pn + pnfl) Tn + = Zgn+ + = gngn
n n

X
= — A(pnflAfL‘nfl) + = (pngn+1 - (pn +pn71)gn +pnflgn71)

n

N
= — Alpn_1Azp1) + (p;gl)mm

after a reverse application of equation (1.6), as required. |

The second important lemma that we will frequently make use of is the

summation by parts formula [14].

Lemma 1.3.3. Let {x,} and {y,} be two sequences and let k and m be fized
integers satisfying 0 < k < m. Then

m m

> (@ AYn) = T 1Yma1 — etk — Y (Yns1A). (1.7)
n=~k n=~k

Proof. We will prove this lemma by means of induction. First, we must con-
sider the base case. Upon letting m = k, we see that the left-hand side of
equation (1.7) is given by xxAyy, whilst the right, by
Th1Yk+1 — ThYk — Yh-t1 ATk = Th1Yk+1 — ThYk — Yh+1Tk+1 T Ykt 1Tk
= —TEYk + Yr+1Tk

= T AYy.
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As both sides are equal, the base case holds.
We continue by assuming that the equation holds for m = j > k. We wish
to prove that equation (1.7) holds for m = j + 1, that is,

j+1 Jj+1
Z(CCnAyn) = Tj+2¥j+2 — Tklk — Z(ynHAﬂ?n)-
n=~k n=k

Immediately, we note that

J+1 J
D (2nlyn) = 2j1 Ay 11+ Y (@nlyn).
n=~k n=k

Then, we can use our inductive assumption on the right-hand side of this

equation to conclude that

J+1 J
> (wnAyn) = 21 Ay 1+ |TiYien — Tkyk — Y (Unr1A2y)
n=~k n=~k

J
= Tje1yie2 — Thyk — ) (Ynr1 A7),
n==k
By artificially introducing x;12y;+2 — Tj1+2y;+2 = 0 into this equation, we see
that

Jj+1 j
Z(a:nAyn) = Tj+2Yj+2 — Tj+2¥j+2 + Tjt1Yj+2 — TkYk — Z(?JnHAﬁvn)
n=~k n=k

J
= Tjyalie — TkUk — Yjr2ATi01 — > (Ynp1A2n)

n=k
Jj+1
= Tjayjra — Tktk — D (Ynt1A2n),
n=k
as required. [

Finally, consider the equation Ju = f for some f € ¢?. The following
lemma constructs a particular solution to this equation by means of the vari-

ation of constants formula, as seen in [28] and [51].

Lemma 1.3.4. Let {¢,n} be a fundamental system of solutions to the equation

Ju = 0. Then, a particular solution @ to the equation J& = f for some f € ¢?

s given by
n—1 n—1
~ T’f’f’ C?"f’l"
un:<n 7_7771 Y17 7~ N\ TLZO,
;Wr(c,n) ;Wr(é,n)
where
Cr r
Wy (¢,m) = —ay c ; .
r+1 r+1
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Remark. The function W,.((,n) is known as the Wronskian of ¢ and 7.

With the fundamental Hilbert space and operators relevant to this thesis
now described, the next section will be devoted to providing basic definitions

and theory related to such operators.

1.3.2 Difference Operator Theory

In this section, we investigate equations of the form
(Mz), = Ay, n € Np, (1.8)
where A € R and M is a second-order difference expression such that
(M) = =APa-182p-1) + gnn, 1 >0,

for two real sequences {p,} and {q,} with p, > 0 for all n € Ny and p_1 = 0.

In particular, we begin by disclosing the following definitions [14].

Definition 1.3.5. For any real sequence {z,}, we can construct a polygonal
curve by plotting the sequence {z,} in the (n,z)-plane; if this curve crosses

the n-axis, then we call that point a node.

Now, we introduce the notion of oscillatory and non-oscillatory solutions

to equations of the form presented in (1.8).

Definition 1.3.6. Given a fixed A € R, a real solution z = {z,} of equa-
tion (1.8) is said to be oscillatory if, for every m € Ny, there exists a node at
some point M € R where M > m. Conversely, the solution x is said to be
non-oscillatory if there exists an m € Ny such that there are no more nodes
after this point m, or, in other words, either x,, > 0 or z,, < 0 for all n > m. If
all solutions to equation (1.8) are non-oscillatory then equation (1.8) is called

non-oscillatory [14].

Remark. To illustrate this concept, fix A > 0 and consider the two differential
expressions M1 f = —f” and My f = f”, where f is a square integrable function

on the interval [0,00), i.e., f € L?([0,00)). We can then solve
—f"=Xf and  f'=A\f

independently to see that the general solutions to these two equations are

given by

f(x) = ersin (VAz) + ¢acos (VAz) and  f(z) = die¥ + dge_ﬁx,
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respectively. When the constants c¢1, co, di and do are real, the trigonometric
functions sin (v/Az) and cos (v/Az) would correspond to oscillatory solutions of
M7, whilst the exponential functions eV and e‘*r’\x, non-oscillatory solutions
of Ms.

Remark. Let p, > 0 for all n > 0. If equation (1.8) is non-oscillatory for some
A € R, then this is equivalent to the operator 1" associated to M being bounded
below, as stated in [14, Thm. 2.1].

When equation (1.8) is non-oscillatory, say for some A € R, we can further
characterise two classes of noteworthy solutions: namely, the principal solution

and non-principal solutions.

Definition 1.3.7. Let u = {u,} and z = {z,} be real solutions to a non-
oscillatory equation of the form (1.8) for some A € R. The principal solution
u is the unique solution (up to constant multiples) with no nodes after some
m € Ny such that

lim = =0

n—oo 2,

for all solutions z that are not a constant multiple of u. The solutions z are

then called the non-principal solutions.

The principal solution can then be thought of as, in some sense, the smallest
solution due to this limiting behaviour. We stress that there will always exist
a unique principal solution (up to constant multiples) under this construction,

as proved in [14, Thm. 2.4].
Remark. Recall the operator My f = f” for f € L*([0,00]) and fix A > 0. Our

previous remark demonstrated that the equation f” = \f is non-oscillatory:
VA Ve is,

any linear combination of the two non-oscillatory solutions eV** and e
e—Vz

again, non-oscillatory. Here, the principal solution w is given by u(z) =
whilst the non-principal solutions v are of the form

v(z) = dieV™ + dge_ﬁz,

for real constants dy # 0 and ds.

Now, let T' be an operator with domain D(T') C ¢2, where Tz = Mz for
all x € D(T). We can explicitly characterise the operators Tinax and Tinin
associated to this symmetric operator 1. In particular, Ti,.x is the operator
with domain

D(Tiax) = {z € € | Mz € *},
where Tiaxz = Mz for all © € D(Tyax). Conversely, let T" be the restriction

of Tinax to the domain

D(T') = {x € D(Tmax) | T»n = 0 for all but a finite number of values of n} .
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The minimal operator Tii, is defined to be the closure of T in ¢2.

Under this construction, it can be seen that T7. = T.x. Indeed, we

begin by investigating the equality (T"z,y) = (z, (T")*y) for z € D(T") and
y € D((T")*). Since (T)* = (T")", we have (T")* = T%%,. As z, = 0 for all

n > N for some N € N, formally, we have

(T'z,y) = Z [—APn—1AZn_1) + gnzn U
n=0
N+1 N
== Z A(pn—1A2,-1)]7, + Z nTn T,
n=0 n=0

We then isolate the first term in the equation above before applying the

summation by parts formula. In particular, we see that

N+1 N+1
Y [APn 1Az )Ty = Y paA AT,
n=0 n=0

after noticing that both boundary terms vanish since p_; = 0 and z,, = 0 for

all n > N. Another application of the summation by parts formula then yields

N+1 N+1
> pnAzn AT, = —pozoATo — > Tn11A(pnAT,)
n=0 n=0
N+1
= —poonﬂo - Z an(pnflAgn—l)
n=1
N+1
- Z Tn [_A(pn—lAyn—l)] ;
n=0

since —poxoAYy = —2oA(p—1AY_,). We may then conclude that

N+1
(T'z,y) = > @n [~APn-1AT,_1) + 7]

n=0

= an [_A(pn—lAyn—l) + Qnyn] .
n=0

This equality is valid for any y € ¢? with My € £, and so (T")*y = My since
(T'x,y) = (x,(T")*y). Assuch, (T")* = Thax, or, in other words, T7*

min = Lmax;
as required.

We now introduce another two important classes that an operator may
belong to; these classes rely on the computation of the kernel of T}, ax, SO we
begin by investigating the equation Tipaxx = 0 for @ € D(Thax). Indeed, we

expect two linearly independent solutions to the general equation
—A(pn—1A%p—1) + ¢gnrn =0, n €N, (1.9)
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but we must determine whether or not those solutions lie in #2 and which of
them further satisfy the initial condition prescribed by the first row condition,
i.e., when n = 0.

In particular, one can use results from Chapter 5 of [12] — in particular,
Theorem 5.4.1 — to conclude that either one or both of these solutions will
belong to ¢2 (see also: [35]). From this, we can then define what it means for

an operator to be of limit-point type in our setting.

Definition 1.3.8. An operator T is of limit-point type if only one solution to

equation (1.9) lies in ¢2.

When an operator is of limit-point type, there exists precisely one non-
negative, self-adjoint extension of Ti,,: the Friedrichs extension. We now

define the converse in our setting.

Definition 1.3.9. An operator T is of limit-circle type if both solutions to

equation (1.9) lie in 2.

Remark. When the operator T is positive, we have equivalent definitions for
what it means to be of limit-point type and of limit-circle type. Here, the
kernel can either be zero or one-dimensional as the initial condition requires
us to fix one of the constants in the general solution. Thus, T is of limit-point

type if ker 7% = {0} whilst it is of limit-circle type if dim (ker 7*) = 1.

We have now disclosed all of the relevant definitions, theorems and results
that will be necessary in parsing the next chapter of this thesis. Our objective
will be to describe the non-negative, self-adjoint extensions of Jacobi operators
that are associated to a positive difference expression M — that will be intro-
duced at the beginning of the chapter — by means of the Krein-Vishik-Birman
theory.
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Chapter 2

Non-negative, Self-adjoint
Extensions of Jacobi

Operators

2.1 An Introduction to the Problem

Let M be the second-order difference expression M given by
(M-Z')n = _A(pnflAl'nfl) + gnTnp, HANS 627

where {p, } and {g,} are real sequences with p,, > 0 for alln € Ny and p_; = 0.

Recall that A represents the forward difference operator, that is,
AZp = Tpt1 — Tn.

The objective of this chapter will be to characterise the non-negative, self-
adjoint extensions of T,i,, the minimal operator associated to M. In what
follows, we will assume that the operator enjoys a lower bound; in fact, we
may assume, without loss of generality, that this lower bound is positive since
we may simply shift g,, otherwise.

The first step to achieving this characterisation will be to find an expression
that the sesquilinear form tg associated to the Friedrichs extension Tr may
take, before conjecturing its form domain, Q(tg). We can then proceed by
using the known characterisations of the operator domain of the Friedrichs
extension D(TF) given in [14] to show that the operator associated to the
form with domain Q(tg) is in fact T, confirming that our conjectured form
domain is correct. This is the first time, to our knowledge, that the form
associated to the Friedrichs extension — including its domain — has been

explicitly constructed in the difference equation setting.
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With the form domain of the Friedrichs extension established, we are then
in a position to use results from the paper by Alonso-Simon [5], following the
method presented in Brown-Evans [20], to describe all of the non-negative, self-
adjoint extensions of Ty, in terms of a non-principal solution to the equation
Mz = Ax. In particular, we aim to characterise all such extensions of 11y, by
constructing analogous results to those formed in the continuous setting, i.e.,
those presented in [20]. We will then conclude this chapter by applying the
theory and results attained to an example; namely, we investigate a second-
order difference equation whose associated orthogonal polynomials are the

Stieltjes-Wigert polynomials.

2.2 The Form Associated to the Friedrichs Exten-

sion
2.2.1 The Expression of the Form

As the first step in characterising all of the non-negative, self-adjoint extensions
of Tmin is to produce an expression that the associated form will take, this
section will derive a suitable form by means of explicit calculations. We stress
that Jacobi’s factorisation identity — as presented in Lemma 1.3.2 — is crucial
in determining the expression that the form may take as it is not clear that
certain limits that arise exist if we do not first perform the transformation, as
will become clear below.
Hence, Jacobi’s factorisation identity may be expressed as

1 n— A n— A n— —_
~A(pn_1Azy_1)y, = ——A [Pn1A <x 1)] U, — ngnym
gn In—1 9n

where P, = ppgngn+1, after multiplying both sides of equation (1.4) by some
sequence 7,, € £2. If we proceed by summing both sides of this equation from

0 up to some fixed k € Ny, then we see that

d _ i _ A(pn—lA.gn—l) _
Z —A(pn—1A$n—1)yn = Z —-A (PnflAanl) Wp — ——TplYy|
_ — gn
n=0 n=0
upon setting z, = ”;—: and w, = Z—Z. By using the summation by parts formula

described in Lemma 1.3.3, we may conclude that

k k
Z —A (Pn_lAZn_l) Wy = Z P, Az, Aw,, — PkAZk@kJrl + P_1Az_j1wy

k
= Z P, Az, Aw,, — PkAkak—f—l,

n=0
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after recognising that P-4 = p_19_190 = 0. By substituting this into our

equation so far, and then taking the limit of both sides as k£ — oo, we see that

k—o00

k
lim Z —A(pp-1Azp-1)7,
=0

k
= kli)ngonz:o [PnAznAwn —

A(pp—1Agy—
—(pn 129n 1)1'nyn:| — lim PkAzk-wk-Jrl,
gn k—o0
provided that both limits on the right-hand side of this equation exist indi-
vidually. Hence, we arrive at the following equality, provided that the limits
exist: _
. Tk \Y
(Tmax, y) = tr [2,y] — lim prgege 1A <> Zhtl, (2.1)
k=00 9k ) Gk+1

where we have set

> T Yn A(pp—1Agn— _
tr [2,5] = ) Pugngni1A <g> A <y> + |:Qn - (plgl)] TnYp-

9n 9n

n=0

(2.2)

Remark. We note that the term prgrgri1A (;—:) inside of the limit in equa-
tion (2.1) can be expressed precisely as the Wronskian Wy, as introduced in

Lemma 1.3.4, i.e.,

Wi(u,v) = pr (UpVk41 — VpUp41) - (2.3)

In particular, we see that

Tk \ Tr4+1 Tk
PkIkIk+1A <) = PkIkIk+1 ( — )
9k Jk+1 9k

kTl — xkzgkz—i-l)
9kGk+1

= PrIkgk+1 (
= Pk (gkl‘kzﬂ - xk:gk:-‘rl) )

resulting in
. Tk \ Yr+1 . Yr+1
lim prgrgri1A <> ZEHL — lim I/Vk(g,m)—Jr )
k—o0 9k /) Gk+1  k—oo k+1

We will see below that, for a suitable choice of g, this limit exists for all

relevant sequences x and .

With this expression of the form in mind, we must now conjecture a suitable
form domain Q(tg) such that the form ty with form domain Q(tg) possesses
all of the necessary properties in order for us to conclude that there exists a

self-adjoint operator associated to it.
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2.2.2 Constructing the Form Domain

We begin by recalling Theorem 1.2.12: it states that the Friedrichs extension

Tr of some positive, symmetric operator T has a domain satisfying
D(TF) = D(Tmax) N Q(tF> (24)

It is also known that D(7TF) has several explicit characterisations, as displayed
in [14]. In particular, we wish to use the characterisation of D(TF) which

states that

D(Tr) = {az € £

0
Z |(Tmax33)n|2 < 09,
n=0

0o
§ PnUnUn+1
n=m

where v, is a non-principal solution to an equation of the form given in (1.8)

n—00 Uy,

2
A <$n>‘ <ooand lim " = 0}, (2.5)
Un,

that is non-oscillatory from some fixed m € Ny onwards, for some A € R.

Without loss of generality, we may assume that v, > 0 for all n > m.

Remark. We have specified that the equation will be non-oscillatory and the
operator, positive. As such, the operator is bounded below by some strictly
positive constant . Then, upon invoking [14, Thm. 2.1], we see that the
equation is, again, non-oscillatory for all A satisfying A < . As such, here,
and in what follows, we will set A = 0.

With these two facts established, a reasonable conjecture for the form do-
main immediately surfaces. Effectively, the domain of the Friedrichs extension
given in equation (2.5) consists of three conditions: the first of which simply
demands that an = € £? also lies in D(Tjax). Then, the remaining two condi-
tions must be present in Q(tg) for equation (2.4) to hold, and so we conjecture
that Q(tg) is of the form

Q(tF) = {CE € 62 Z Pnngn+1

2
A<x">’ < oo and lim %:0},
gn n—oo ’Un
(2.6)

dn € ]R>07 n < m,
where g, =
v, > 0, n > m.

Now that we are in possession of a form tg and its form domain Q(tg),
we may begin to investigate what properties it may exhibit. In particular,
we hope to utilise Theorem 1.1.34 as this would allow us to associate a self-
adjoint operator to the form. The following section aims to verify that the
form tg given by equation (2.2), whose form domain Q(tg) is expressed in
equation (2.6), is, indeed, in possession of the required properties in order for

us to do so.
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2.3 Properties of the Form ty

Our intention is to show that the form tg, with form domain Q(tg), that was
constructed in Sections 2.2.1 and 2.2.2 is, in fact, associated to the Friedrichs
extension Tr with domain D(TF) as given in equation (2.5): we will do this
by utilising Theorem 1.1.34. Recall that if t is a closed, densely defined,
symmetric form, then we can uniquely associate it to a self-adjoint operator.
This section explores these properties and verifies that it is valid to apply the

theorem described above on the form that we have constructed.

2.3.1 Symmetry and Sectoriality of the Form

It is clear to see that the proposed form tg given by equation (2.2), with
domain Q(tg) expressed in equation (2.6), is, indeed, a sesquilinear form.
Similarly, it is readily observed that tg is a symmetric form since p,, ¢, and

gn are real for all n > 0: in particular,

Py = PrgnGni1 = Pngngn+1 = Pu,

for all n € Ny.

Furthermore, as we have specified that the equation will be non-oscillatory
and the operator positive, it will enjoy a positive lower bound. Since the form
is real and has this positive lower bound, we can easily deduce that the form
is sectorial since its numerical range will lie exclusively in an interval on the

positive real axis.

2.3.2 Closure of the Form

In order to show that the form is closed, we are required to verify that

(Q(tF), | - |ltz) is a Hilbert space, where

>(5)

Note that we have chosen the norm which corresponds to || ||2 in Section 1.1.3

lz]lfy = tr [2]

2 o)
5 A(pr_12k
=0 9k

(e.)
= Prgrgri1
k=0

due to the lower bound ~ of the form being positive.
We begin by letting (™ be a Cauchy sequence in (Q(tr), || - [|tz). That

is, given € > 0, there exists an N € N such that for all n, m > N, we have
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[|2(™) — ||t < €2, or, in other words,

9k

G A(pr—1Agk— n m
+Z[qk_ (Px ;k Jr-1) 2l — 22 < 2

2

oo
> PkgkgE+1
k=0

However, as tg is lower semi-bounded with a positive «, that is,
2
tr (7] > [lzllz, v >0,

we see that
m 1 m
2™ — 2(™))|2, < g\lm(") —aM2 < —.

From this, it is readily observed that ~||z(™ — 2(™) |2, < 2, showing that ()
is also a Cauchy sequence in ¢2. Hence z(™ converges to some limit z, say, as
n — oo in £2.

Now that we have found a candidate for the limit, we must show that the
limit « lies in the space Q(tg) — x must satisfy the two conditions given in

equation (2.6) for this to hold. Firstly, we must determine whether

§ Pndndn+1 A <n>‘ < 00
Un
n=m

for such a sequence x. We begin by fixing B € N; then,

B (n) (m)
X — X

E PrIkIk+1 | A <k k )

k=0 9k

Upon taking m — oo, we see that
B
Z PrYkgk+1 | A
k=0

9k
(m)

since (™ — z in ¢2 and, in particular, x;~ — xy, for all k& € No. Hence,

Z PrIkgr+1 |A
gk

is an increasing sequence in B that is bounded above by €2, showing that the

2

< &2,

B 2

i
Jim_ kz_opkgkgk-i-l

2

B

limit as B — oo exists and, in particular,

<(n) ﬂfk)
E PEkIkgk+1
9k
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We may then conclude that the sequence z(™) — z satisfies the first condition

for lying in the form domain Q(tg). If we define the semi-norm |z|¢, such that

A <z’;) ’2, z € Q(t),

o
Ix\fp = Zpkgkgk—i-l
k=0
then, by the triangle inequality, we have
|$|tF = ’x - x(n) + x(n)|t1~‘ < |.T - x(n)|tF + ‘w(n)|t1~"

We have already shown that |z — 2|, < &2, whilst |2 ]¢. < oo by virtue
of (™ belonging to Q(tg). As such, we can conclude that ||, < 00, or, in
other words, the sequence x satisfies the first condition for lying in Q(tg), as
required.

Next, we must show that limy_, f—: = 0; we will do so by showing that

S = lim Sk :O’

k—o0
o |2
where S, = |Z2L] | Let
Vi+1
(n) |2
S(”) _ Lh+1
W=
Vk+1
. (n) . 2 . (n)
Since ") € Q(tr), we have limg_, o j—k = 0. Hence, we may rewrite S, as

the following telescopic sum:

o0 (n)
e-|£0(5)

m=k+1

m=k+1 (pmvmvm-i-l)

0 (n)
1 Tm

= E 1 [(pmvmvm—kl)éA ( >]
m=k+1 (pmvmvm-i-l) 2 Um

By the Cauchy-Schwarz inequality, we see that

2

2 2

o) 1 00 1 x(")
U< > T > |Emvmomi1)2A (m )
k1| (PmUmVm1)? m=k+1 om
o o )\ |?
1 X
= < Z ) . Z pmvm’l)m+1 A (m>
m=k+1 PmUmUm+1 m=k+1 Um

after recalling that p, is a real sequence where p, > 0 for all n € Ny and v, is

a non-principal solution that has the same sign after some node. Using that

2(22)]).

|z(™) — x|ty — 0, upon taking n — oo, we see that

(5 ) (e

UmU
m=k—+1 PmUmUm+1 m—k-+1

Th+1
V41

Sk =
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2
Having already proven that > 7 | | pmvm¥mi1 ‘A (ﬁ—:’;)‘ < 00, We Now
make use of [14, Thm. 2.4 (iii)] to conclude that

(e 9]

1
DL
St PmUmUm+1

since v, is the non-principal solution. Then, by taking k — co, we see that

[e’e} 1 [e'e} T 2
S <l - Al .
o kir& ( Z PmUmUm+1 ) < Z P tmtm 1 ( Um ) )

In particular, we have that

0o 1 0o - 2
klim E —— =0 and klim E P UmUm+1 |A <m>‘ =0,
VU v
—00 —— PmUmUm+1 —00 ———— m

and so S = 0, as required. As the sequence x satisfies both properties, we can
conclude that € Q(tg). Note that Jacobi’s factorisation identity has allowed
us to introduce limits that we know exist.

With the candidate sequence firmly in Q(tg), it only remains to show
that (™ tends to = in the specified norm | - ||¢z. By recalling the semi-norm

introduced earlier in this section, we see that

n n - A(Pr-1Agk—1 n
o) ol = 1o = aulf, + 3 [0 - SEEI] o0
k=0

Since g is a non-principal solution to the equation (Mx); = 0 for all k after
some m € Ny, we have —A(pp_1Agr—1) + qrgr = 0 or, in other words,

—A(pr—1A0gk-1)
gk

+qr =0,

for all k > m. As such, there will exist a constant ¢ such that

s A(pp_1Agk— - "
3 [qk - W 2 — 2y < efa™ — 2]

k=0
as the sum contains only a finite number of non-zero terms. With this in mind,

we have

|2 — 2|2, < |2 — apl?, + cllz™ - 2|3 (2.7)

Upon taking n — oo in equation (2.7), we finally see that (™ — z in the
tp-norm as the two terms on the right-hand side individually tend to 0: the
first we have already shown, the second because x was defined to be the limit

of (™ in ¢2. Hence, (Q(tr),|| - |ltz) is a Hilbert space and the form, closed.
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2.3.3 Density of the Form Domain

We can verify that tg is a densely defined form by finding a subset of Q(ty)
that is dense in ¢?. Indeed, consider Ej, the set of sequences with finitely

many non-zero terms, that is,
Eoz{xGZQ ! dN € Ny suchthat$n:0foralln>N}.

Then, it is clear that Ej is contained within Q(tg) and it is well known that
the closure of Ey with respect to the standard ¢?-norm is £2, i.e., Eg = ¢2. As
such, Q(tg) contains a dense subset and so is, itself, dense in 2 with respect
to the standard ¢2-norm.

Therefore, we have shown that the form tg with form domain Q(tg) is a
closed, densely defined, symmetric form. Consequently, we may invoke The-
orem 1.1.34 and conclude that there exists a unique self-adjoint operator T,
with domain D(Tr) and range R(T¥) in 2, associated to the form tg that
satisfies

(Tpz,y) = tr [z, Y]

for all z € D(Tr) and y € Q(tp). The next section aims to prove that the
operator Tr associated to the form tg is, in fact, the Friedrichs extension
Tr. This will be achieved by verifying that the form with the conjectured
form domain gives rise to an operator whose domain is one of the known

characterisations of the Friedrichs extension.

2.4 Verifying the Conjectured Form Domain

As we have established that there exists a self-adjoint operator associated to
the form tg, this section intends to verify that this operator is, in fact, the
Friedrichs extension of Ti,i,. We are in possession of several characterisations
that the domain of the Friedrichs extension may take, so it is our hope that
we can show that the domain that arises through the association coincides
precisely with one such characterisation.

Firstly, we recall that the operator T associated with the form a is defined

to have domain
D(T)={zcQ(a) | 3f € 2 such that a[z,y] = (f,y) Yy € Q(a)}, (2.8)

and, in such a case, f = Tx. We may also recall that, in our example, the
Friedrichs extension exhibits a characterisation given by equation (2.5).
However, before we investigate whether or not we have constructed the

Friedrichs extension, we must first ask whether Tp truly is a restriction of
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the operator Thax. This consists of verifying two properties: we must have
D(TF) C D(Tmax), and the equality Tpx = Taxx must hold for all z € D(Tp),
where (Tax®)n = —A(Pn—1A2p—1) + qnay for all n > 0.

We begin by noting that, for all z € D(Tx) and y € Ey C Q(ty), we have

tr [z,9] = (Trz,y),

by means of equation (2.8). As y € Ej, there exists an N € Ny such that
yn = 0 for all n > N. Hence,

N
I 7,,,‘ A n— A n— —
tr [z,y] = angngnJrlA <g> A <y) + [qn — (plgl):| TnlYp

n=0 gn gn

N
= —A(PyAz) W1 +

n=0

|: A (pn—lAgn—l):| _

qn — TnlYp
dn

+ Pni1Azy w1 — PoAzow,

after an application of the summation by parts formula, upon noting that
P, = ppgngn+1 and setting z, = ;g% and w, = g—z. We can simplify this
equation by making use of Jacobi’s factorisation identity in a manner compa-
rable to that used in Section 2.2.1, in addition to noting that wy4+; = 0 and

—A(P_1Az_1)wg = —PyAzywy. Hence,

= X A(pn-1Agn-1)
tp [xvy] = Z -A (PnAZn) W41 + Z |:Qn - n;nl} TnYn
n=0 n

n=—1

N
A(pn-1Agn— _
- Z A (P 1Az )W + [qn _ (19191)] TnTin
0 gn
AR x A(pn_1AGgn_1)
= Z [_A |:Pn—1A < n1>:| - P11 2901 xn:| Yp + @Tnly,
9n gn—1 gn

n=0

[
E

[*A (pnflenfl) + ann] Yn-

3
Il
o

!

Since z € D(TF), we have tg [,y] = (f,y) for some f € ¢? and, in particular,

N

Z [=A (Pr—1Azn—1) + gnan] Yy, = (f,y) -
n=0

Then, for an arbitrary k € N, we may choose y = (0,, ,)n, Where 0, 1, is the
Kronecker delta; this shows that we must take fr = —A(pr_1Axk_1) + qrxk.
As f € (2, we may then conclude that > > o | — A(pp—1Azn_1) + gnan|* < 00,
proving that D(Tx) € D(Tiax)-

Now, for all z € D(TF) and y € Ey,

(Trpx — Tnaxx, y) = 0.
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Hence Tpaz — Tax® € E3-, where EOL = {0} as Ejy is dense in ¢2. Therefore
Tpx = Thax®, as required.

Now that we have ascertained that TF is a restriction of T ax, the final
step consists of proving that the two domains, D(Tx) and D(TF), coincide. If
we can successfully show that D(Tx) = D(Tx), then we will have proven that
the domain of the operator TF associated to the form tg has a domain that
can be described as that of the Friedrichs extension.

We begin the verification by first showing that D(Tr) € D(Tr). In fact,
showing this containment is trivial: both sets naturally contain the two con-
ditions Y 07 Pngndn+1 ‘A (‘;—:) ’
already shown that D(Tr) C D(Tmax). Hence, all that remains is to verify the
converse, that is, D(TF) C D(TF).

We begin by taking = € D(TF). Observe that the same two conditions are

< oo and limy, e 3> = 0, and we have
n

satisfied trivially, precisely as before. Thus, we are only required to show that
for all y € Q(tg) there exists an f € £ such that tg [z,y] = (f,y). In fact, we
have already shown that, under these circumstances, f = Tpx = Taxx. Now,

for y € Q(ty) we have, by equation (2.1),

. TN
<Tmaxx7y> =tF [xvy] — lim pNgNgN—s—lA ( >
N—o0 gN

YN+1
gN+1

In other words, we are looking to prove that limy_, . PNAzywyi1 = 0.

Then, upon considering the expression

N
Z [_A(pn71A$n71) =+ qnmn] gnv

n=m-+1

we see that this equals

N
A(pp—1Agn— _ _
> |:qn - (p191)] Tnlp — PNAZNWN 11

n=m+1 gn
N
+ P Az Wit + Z PyAz, AW,
n=m-+1
for z, = z—: and w, = g—:, after applying both Jacobi’s factorisation identity

and the summation by parts formula once. Then, for sufficiently large m, we
have that
—A(pn-1Agn-1) + Gngn =0,  n>m,

since g, = v, for n > m, where v,, is a non-principal solution to the equation

Tv =0, as we have taken \ = 0.
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Hence,

N

PNAZNEN+1 = Z [[A(pn—lAl'n—l) - ann] Yp + P, Az, Aw,
n=m-+1

+ P Az Wiy1, (2.9)

after simply rearranging the equality above. By taking the limit as N — oo of
both sides of equation (2.9), we see that each expression on the right-hand side
has a limit that exists and is finite, proving that limy_,o PNvAzyWni1 = L

for some limit L. Specifically, we have that

N
li - -1) — Yn =
Ngnoo Z [A(pn—1A%p—1) — gnTs] Y, = L1,
n=m+1

as ¢ € D(Thax) and y € £? and

N N _
. _ . T, Yn
1 P, Az, Aw, = 1 P.Al — A ) = Lo,
Jm 30 Raasm, = im 3 R (3)o(R) -

n=m-+1 n=m+1 9n

since z € D(Tp) and y € Q(tg). Finally, it is clear to see that

lim P,AznWmyt1 = Ls,
N—oo

because P, Az, Wy,+1 does not depend on N.

Now that we know that limy_,co PNAzyWN+1 exists and equals some L,
we simply need to show that L = 0 in order to prove our initial claim; we will
do this by using results stated in Section 4 of [14] to prove a statement similar
to [14, Cor. 4.3].

Lemma 2.4.1. Suppose that Y oo o Py|Azy|? < 00 and Yo% o Po|Aw,|? < oo

for two sequences {zn} and {wy,}. Then

liminf (P, |Az,Wp+1|) =

n—oo

Proof. Suppose, for a contradiction, that there exists an N € N and ¢ > 0
such that P,|Az,W,y1| > € for all n > N. Then, by [14, Lem. 4.1] we have

that
ZPKn ZPKn—1 %
where P, = ppgngn+1 and K(n) =372 P Hence,

1
Z |Aznwn+1| 1 i Pnz‘AZnHwn—i-ﬂ

- 1
Kn=1) e = pikmn-1)

1

1 o] ) E o] |wﬂ+1|2 2
n=N N

n—=

OO_ZNPKn—l
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by means of the Cauchy-Schwarz inequality. This leads to the desired contra-
diction as both expressions in the inequality are decidedly finite; specifically,

we have that .
o0 3
(Z Pn|Azn2> < 00
n=N

as part of the statement of the lemma and

I 1
|wn+1‘2 ’
(Z PK(n—12) =%

n=N
due to [14, Lem. 4.2]. Therefore, it is the case that

lim inf (P, |Az,Wn+1]) =0,
n—oo

as required. [

With Lemma 2.4.1 in hand, we are now able to complete the argument
which proves that D(Tx) C D(T¥). First, recall that

lim PNAZN@N+1 =1L,
N—oo

for some limit L. Then, as the limit exists and has a subsequence converging
to 0, we may assert that L = 0. Hence, D(Tr) C D(TF), and, in fact, the two
domains D(Tr) and D(Tx) coincide.

This completes the proof and verifies that the form tg with form domain
Q(tr) represents the form associated to the Friedrichs extension Tr of the
minimal operator Ty,;,. As such, the next section aims to construct the non-
negative, self-adjoint extensions of T, since the form fundamental to the

Krein-Vishik-Birman theory has been determined explicitly.

2.5 Non-negative, Self-adjoint Extensions of T},

Now that we are in possession of the Friedrichs extension, we may begin our
attempt in characterising the non-negative, self-adjoint extensions of Tiy, by
means of Theorem 1.2.16. If T,y is of limit-point type, then there exists
precisely one non-negative, self-adjoint extension — the Friedrichs extension
— so we will instead assume that T, is of limit-circle type. Thus, we are
now able to characterise all of the non-negative, self-adjoint extensions of T ;.
Indeed, we note that since dim N = 1, distinguishing between subspaces Np
of N is unnecessary: Np is either {0} or N itself. Moreover, when Np = {0},
we obtain the Friedrichs extension after letting B be any self-adjoint operator

(although formally we choose B = 0o, as in Section 1.2.4), so we only need to
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consider the case when Nl = N. Hence, we choose to modify Theorem 1.2.16
and restate it as follows: apart from the Friedrichs extension, all non-negative,

self-adjoint extensions Tp of Ti,, are associated to a form tg which satisfies
tg [u,v] = tr [u’, "] + b [, 0V], (2.10)
whose domain is given by

Q(ts) = Q(tr) + N. (2.11)

Here, b is the form associated to the operator B, which acts in N = ker Tjax.
Furthermore, elements u, v € Q(tg) may be decomposed into
F N
u=u +u,
where v, v € Q(tg) and v, vV € N. (2.12)
v=ovl 4oV s
With this adapted theorem in mind, we are now ready to construct the non-
negative, self-adjoint extensions of Ty, by explicitly characterising the oper-
ator domains.
Let {¢, n} form a fundamental system of solutions to the recurrence rela-
tion

(Tmaxx)n =-A (pnflAfEnfl) + gnxn = 0, (213)

where ( is the principal solution and 7 is a non-principal solution of equa-
tion (2.13).

Remark. Note that we have again chosen A = 0 in equation (2.13) since the

lower bound +y is positive.

Throughout this section, we will use the characterisation of tg which is

given by

- wn 777, A n— A n— —
tr [$7y] = angngn—HA (g) A <z> + |:Qn - (p;gl):| TnYn,
=0 n n n

with domain

Q(tg) = {x cr?

> 2
Z Pngndnt1 |A (%)‘ < oo and lim In _ 05.
n=m gTL n—oo ’]7”

Here, 7, is a non-principal solution to equation (2.13) which is non-oscillatory
eR n<m
after some fixed m € Ny and g, = In 0 ’
s nz=m.

Remark. We have simply chosen the sequence v in equations (2.5) and (2.6)

to be a non-principal solution 7. Furthermore, without loss of generality, we

may assume that n, > 0 for all n > m.
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Since dim N = 1, we may let the sequence {¢};” form a basis of N;
moreover, we may choose to normalise ¢ in such a way that ¥ = 1. Then, as
B: N — N is a non-negative operator, it is clear that if u"¥ = cyp € N, for
some ¢ € C, then BuY = Beyp for some 5 > 0.

Our first step in the process of characterising the extensions is to determine
how we may decompose elements of Q(tg) in line with equations (2.10), (2.11)
and (2.12). It is immediately clear that any sequence u can be expressed as
u = u — cy + cip. Then, we may ask whether there exists a unique constant ¢
such that u — ¢y € Q(ty), as cy will clearly lie in N.

We begin by assuming that there exist two constants ¢; and co such that
u—c1tp, u—cop € Q(tr). As Q(tr) is a vector space, we then have that
(u—c19) — (u— c2v)) € Q(tr). Hence, (c2 — 1)y € Q(tr). If ¥ ¢ Q(tr),
then it must be true that ¢; = co. So, for a contradiction, assume that
¥ € Q(tg) and consider the expression tg [1),1]. As ¢ belongs to the kernel
of the maximal operator, we must have that ¢ also belongs to the maximal

domain D(Tiax); then, we may invoke Theorem 1.2.12, that is
D(TF) = Q(tF) N D(Tmax)a

to conclude that 1) must belong to D(Tr). Now, as Tp1) = Tnaxt) = 0, we can
conclude that ker T # {0}; hence, 0 € 0,(TF). Since we have assumed that

¥ € Q(tr), we arrive at the following two facts since ty is a positive form:

(Tr, 1) = tF [V, Y] and  tr 1, ¥] > c|[¥]?

for some constant ¢ > 0. However, as Tr1) = 0, we immediately observe that
0 > c|[v||?, arriving at a contradiction. Hence ¢ ¢ Q(tg), showing that we
must, indeed, have that ¢; = ¢3. Therefore, we have shown that if u € Q(tg),
then there exists a unique ¢; such that u — 19 € Q(tg) and c1¢ € N.

With this in mind, we may use the notation given in equation (2.12) to
conclude that if u = u* +u!V, then uf" = u—cy,1p and v’V = ¢,1), where we have
relabelled ¢; as ¢, to illustrate its dependence on u. Similarly, we have that
if v =0 + 0N € Q(tg), where vV € Q(tg) and vV € N, then v = v — 9

and vV = ¢,

Remark. Since u — ¢,1) € Q(tg), we must have that lim,, % =0.In

practice, we can use this equality to find the constant c,.

With the decomposition of u, v € Q(tg) established, we may now begin
to investigate expressions of the form given in equation (2.10). In fact, our

goal is to equate two expressions that tg may exhibit in order to produce an
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identity that will form the basis for our characterisation of the domain of the

operator Tp. In particular, we have that tg [u,v] can be written as
b [0 0] 4+ [u 0]

= Z |:pngngn+1A (un _ Cuw"> A <Un —gCU’gZ)n>

0 gn n
A(pn_1Agn—
+ |:Qn - v ; g 1):| (un — cuthn)(vn van):| [ Na'UN]
=3 s (G1) 8 (52) + s S50
= [pngngnHA (u"> A <w”> + |:Qn - A(p”_lAg”_l)} unwn]
=0 In In In

o

Un Up — Cop
- Cu nynYyn A -
CZ[pggH <9> < g >

n n
n=0

A (pnfl Agnfl )

+ |:Qn -
9n

} Y (v cvwn)] b [u¥, "]

For convenience, we may then label each summation by I,,, where n =1, 2 or

3, resulting in

tg[u,v] =L +L+I3+blu N N]
=L+ 1L+ 13+ 1.

We hope to make use of the limiting behaviour of elements in Q(ty) to simplify
the result given above. In particular, after splitting the result into the four

suggested expressions above, we aim to show that

o0

B s ()5 (55)

n—0 n n
A (pn— 1 Agn—l)

+ |:Qn -
9n

| wntin=ct] =0

Indeed, if we begin by applying the summation by parts formula to

an.grLngrlA <wn> <'Un_gcvwn> >

n n

then we see that this equals

Vk4+1 — CoWPk k
(HM) pk+1gk+1gk+2A <¢ +1>

9k+1 Jk+1
k+1
s Un — van V-1
- § Pn— 1gn—lgnA y
In—1
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after shifting the index once. We can insert this back into the formula we have

for I3 and take the limit as k — oo to obtain

Iy=—cy {Z [— (U" ;CWTL) A [pnlgnlgnA <1§":11>}

n=0
A(pp—1AGn— -
(p ; g 1>:| ¢n(vn - Cv¢n):|

Vi — C
+ lim <k vwk) PrIkgr+1A <wk> } :
k—oo Ik 9k

In order to simplify this sum, we first recall Jacobi’s factorisation identity:

wn—l >:| . A(pn—lAgn—l)
In

+ |:Qn_

1
_A(pn—lAwn—l) = _;A [pn—lgn—lgnA < Yn.

n n—1

Hence,

o A(p”_lAwn—l) + gntPn = —glA I:pn—lgn—lgnA (¢n—1):|

n n—1

A(pn-1AGgn_
+[qn_ (Pn—1Agn-1)

B
gn

Now, since 1 belongs to the kernel of Tiax, we have that —A(p,—1AY,—1) +
qn¥n = 0. Then

1
0=—-——A [pn—lgn—lgnA (

9n

%—1)] n |:Qn _ A(pn—1Agn-1)

oo
9n

n—1

or, in other words,

_iA [pn—lgn—lgnA <w"—1)] - _ [Qn _ A(pn_1Agn_1)] Un.  (2.14)
In In—1 9n

If we multiply both sides of equation (2.14) by (v, — ¢yt ), then we obtain an
identity that aids us in simplifying I3. Indeed, it is readily observed that the
entire summation collapses and we are left with

. Vi — Cy
I3 = —¢c, lim (kd}k> PkIkGk+1A (ﬂ%) .
gk 9k

k—o00

In order to evaluate this limit, first recall that vy = v} +0i, where v¥" € Q(tF)
and vV = ¢,9 € N. Then, as gi # 0 for all k € Ny, we may divide both sides

of vy, = v,f + U’ng by g and take the limit as £ — oo. Hence,

F
. VE . Vg, +vak
lim — = lim &——
k—o00 gk k—o0 gk
F
. % .
= lim % +¢, lim %
k—oo g k—o00o gk
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F
As v € Q(ty), we have that limy_,o vg—’z =0, so it is immediate that

. Vg 7
lim — =¢, lim —.
k—o00 gk k—o00 gk
Hence
k—o0 [

and so I3 = 0 provided that limg_,o Prgrgr+1A (%) is finite.

In order to verify that this is indeed the case, we first recall that

PkIkIk+14A (ﬁ) = Pk (941 — ViGit1)

= Wk(QW);

where Wy (g,1) denotes the Wronskian as expressed in equation (2.3). It is
sufficient to show that Wy (g,v) = Wii1(g,) for all k& > m, since this will
immediately confirm that limy_ oo Prgrgr+14A (%) exists and is finite.

Firstly, as g = nx for all £k > m, we have that
~APr-18gk-1) + g =0,  k>m,
since 7y is the non-principal solution to the recurrence relation with A = 0.

Upon rearranging this equation, observe that

_ P9k + Pk—19k — Pk—19k—1 + QK 9k
Pk

Pk—1 qk
=0gr + —Agr—1 + — g,
Pk Dk

gk+1

for all kK > m. On the other hand, —A(pr_1AvYx_1) + qxr = 0 for all k € Ny,

as Y € ker Tiax, and so we see that

Pr— dk
rr1 = Uk + 2L A1 + iy,
Dk Dk

We may use these equations to find expressions for gxyo and 1,12 and insert

them into

Wit1(9, V) = Prt1 (Gr+1Vk42 — Yrt19k+2) -
After noting that the terms involving gi41 cancel out, we see that
- _ Pk Dk
k+1(9: V) = Drg1 | Grt1 | Ynpr + —— AU | — Ypgr | o1 + ——Agi
Pk+1 Pk+1

= Pk (Gr+1A%1 — Yry1A0gk)
= pr(gr¥r41 — Yregrt1)
= Wk(ga 1/})

o1



Then, as Wiy1(g,%) = Wi(g, ) for all k > m, it must be true that
. VY
1 Al —
kggO Pr9k9r+1 ( .
is finite. Therefore I3 = 0, as claimed.

We now use a second approach to calculate tg [u,v] for when v € D(T).

Indeed, we know that if u € D(Tg), then

ty [u,v] = (Tpu,v)
)
= Z [_A(pnflAunfl)] Un + @nUnUn,
n=0

since 1'p is a restriction of Ty ax. Then, by using Jacobi’s factorisation identity,

we see that

o0

1 Un—1\ | _
tg [u,v] = Z -—A |:pn—lgn—lgnA ( - >:| Un
o In In—1
A(pn_1Agy,_
4 |:qn_ (pn 1829Gn 1):| T
9n
After an application of the summation by parts formula, we obtain
oo —
U v A(pr—1Ag,— _
t [u7v] - Z I:pngngn-‘rlA (n) A <n> + I:Qn - (pngnl):| Un'Un:|
n—=0 In In 9n

. Uk \ Vk+1
— lim prgrgr1A () :
k—o0 9k /) Gk+1

We are now in possession of two different expressions for tg [u, v]. Hence,
we may equate the two expressions to see that, for u € D(Tg), we have

. U\ Vg
I+ I+ 1y =11 — lim prgrgr+1A <) s
k—o0 9k /) Gk+1

or, in other words,

o0

= |:pngngn+1A <zn> A (?”) + [qn - A(p”lAgnl)] unwn]
n=0 n n n

+b [uN,vN] = — lim prgrgri1A (uk> Tkl (2.15)
k—o0 9k ) Gk+1

With equation (2.15) in mind, we hope to make further simplifications using an
argument similar to that used previously. In particular, we may use summation

by parts on I» to conclude that

2= —Cy Pn—19n—19n Gt In

n=0
A(pp— ; Agn_1)] unwn]

—-A

+ |:Q7L_

. @k 1| Yk+1
+ lim pry1grt19p424 tl) LS
k—o0 9k+1 | Gk+1
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Since 1 belongs to the kernel of the maximal operator, we are able to use

equation (2.14) again to conclude that

_ . Ek 1| Uk+1
Iy = —¢, lim pyigrpigreed | = | ——.
k—o0 9k+1 | Gk+1

We can then shift the index & + 1 down to k in I3 to conclude that

o P\ g
— ¢ im prgrgr+1A <k — + b [u, V]
k—o0 9k /) 9k

. U\ Uk
= — lim prgrge+18 <> . (2.16)
k—o0 9k /) 9k+1

Our final step to producing a characterisation of the non-negative, self-

adjoint extensions is to try to succinctly write the equality above. Recall that
Up = Uﬁ + ijlv = (Un - cvwn) + Cun

for v € Q(tp) and vV = c,ip € N. Then, as before,

. Vg4l . Vg1 — C 1, ¢C 1
im P~ i [ kb1 — CoWkt N oWkt
k—oo gg4+1  k—oo Jk+1 Gk+1
. C 1
— lim Wi
k—oo gk+1

By inserting this back into equation (2.16), we see that

o P\ uk
— Gy lim prgrgri1A <k — +b [u, 0]
k—o0 9k /) Gk

Y1
Jk+1

_ . U
= —Cy lim prgrgrr1Q <>
k—o0 gk

Finally, we note that
b [quUN] = 5Cuév”¢”2,
for some 5 > 0, which leads us to the identity
) U ) P U
Beu|[YI* = lim prgrgis [M (*”’“) — i (")] :
k=00 9k 9k 9k+1 9k

With the analysis complete, we now have a characterisation of the non-
negative, self-adjoint extensions Tp of Tni,. In particular, we present our

result in the following theorem.

Theorem 2.5.1. Let Ty, be the closed, symmetric operator with positive

lower bound associated to the difference expression

(Mx)n = _A(pnflenfl) + gnxn,
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where {py} and {q,} are two real sequences with p, > 0 for all n € Ny and
p—1 = 0. Fzxcluding the Friedrichs extension, the mon-negative, self-adjoint
extensions Tg of Tmin have a domain that is defined by

. up « (U
lim prgrgr+1 [A <wk>
k—o0 9k 9k

IUSSYN (“’“)] — el |

9k+1 gk

D(TB) =quc D(Tmax)

where 1 is a basis of N with 1y = 1 and By = B4 for 3 > 0. Here,

9n € IR>07 n <m,
In =
Un, n > m,

where v, is a non-principal solution to the difference expression M which is

positive for n > m. The operator Tg acts as follows on an element uw € D(Tg):
Teru = Mu.

Remark. As the kernel of T,y is 1-dimensional, it is clear from Lemma 1.2.11

that an element u € D(Tihax) decomposed into

U =uU— cu + cu1, P € ker Tipax,

satisfies u — ¢, € D(Tp) C Q(tg). Hence, every u € D(Tax) can be decom-
posed into v = u" 4+ u", and so elements in D(Tg) do not require any further

restrictions placed upon them.

It is worth restating that our result excludes the Friedrichs extension. This
is not too surprising: various descriptions of the Friedrichs domain already
exist and are well established — this was even the basis of our work! However,
we note that it is, in fact, possible to obtain the Friedrichs domain explicitly
by means of a corollary. Formally, taking 8 = oo in the limit condition only
makes sense if we, additionally, enforce that ¢, = 0. Indeed, this is consistent
with our construction: ¢, should equal zero, as there is no contribution from
ker Thhax for an element decomposed as in equation (2.11). Then, we arrive at

the following result.

Corollary 2.5.2. The domain of the Friedrichs extension is given by

D(Tr) = {u € D(Thnax) ’ lim £ = o} .

k—oo gk

Remark. This description of the Friedrichs extension is precisely one of the
constructions expressed in [14], and therefore coincides with the Friedrichs

domain as given in equation (2.5).
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2.6 An Example: the Stieltjes-Wigert Polynomials

With the main result of this chapter now established, we continue by pre-
senting a comprehensive example of the theory. We begin by declaring that
the minimal operator Ty, will be associated to the second-order difference

expression of the form
(Mz)n = =A(pn-1A%n-1) + Gnn,

where {p,} and {g,} are two real sequences with p, > 0 for all n € Ny and
p—1 = 0. We will present the sequences {p,} and {g,} shortly, but for now it
is enough to say that the two linearly independent solutions to the equation
Mz = Az, for A € R, will be given by specific variations of the Stieltjes- Wigert
polynomials. For more background on these polynomials, we refer to [22], [40]
and [52], with special mention to the papers by Christiansen [23] and Wang
and Wong [56].

The Stieltjes-Wigert polynomials of the first kind are the solutions Sy, (z; q)

to the recurrence relation

- q2n+1$8n($; Q) = (1 - qn+1)Sn+1(x§ q)
— 14 q—¢"™Su(z; ) + ¢Sn-1(z;9), (2.17)

where

1 q "
Sn(z;q) = y 4, — fans ’
(z;9) @ q)n1¢1 ( 0 4, —q )

for 0 < g < 1. We note that .¢; is the basic hypergeometric series defined by

ap ag e ap
r®s 34, 2
by by --- b,
i (ala az, -, ay; Q)k (_1)(1+s—7‘)kq(1+sfr)(§) 2
— (b1,b2,++ ,bs3 @) (@ @)k

k=0

where
(a1,a2,- -, ar; Q) = (a1;@)k(a2; Ok -~ (ar; @),
and (a; q)g is the g-Pochhammer symbol defined as

k—1

(a;)x = J] (1 — ag™).

m=0

Remark. The expression (a; q)o is to be interpreted as 0 for all a and 0 < ¢ < 1.
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Alternatively, S, (x;q) can be expressed as

Sn(x; Q) = .1 Z [n] (_l)qu2$ka (218)

(qa Q)n =0 k .
where
(1—¢")(1—g™ 1) (1—g—F+1)
H - g RS
’ 0 k> n,

q
denotes the g-binomial coefficient [23].
We will be concerned with the Stieltjes-Wigert polynomials normalised by

Py(z) = \/msn(iﬁ;q), that is,

" | kR gk
(q;q)nkzzolk]q( e (219

Pp(x) =

It can be shown [23] that the Stieltjes-Wigert polynomials given by equa-

tion (2.19) are orthonormal with respect to the weight function

L (lee)
V2rlogg VT 2loggq

on the interval (0,00). In this case, the moments s,, are given by

w(z)

/ z"w(x) do = s,
0
_ 1)

With these moments in mind, we are able to construct the Stieltjes-Wigert
polynomials of the second kind, @, (z), by following the standard method
presented in [23]. First, let P,(z) = Y to cxx® for coefficients

_ q" n kK2
N\ @ Hq( D



We may then simplify the exponent of ¢ by noting that

_<k—2m>+k2:_(k—m)(1€2—m—1)+k2

1 1
:_m(m2+ )+k(k2+ ) 4 ko

CHy e
() (5) e

Hence, the Stieltjes-Wigert polynomials of the second kind that we will be

considering will be those of the form

n—1 n
z) = ¢ =("3) Ty Ak | m (o
Onl) (q;q)nmzoq k;ﬂ Hq( 1) , (2.20)

when n > 1, and Qp(x) = 0. Equally, we may also find it useful to define
Qn(z) = \/mgn(xS q), where

n—1

& (o) = L ey (S (7] gy (B romn |
Sn( aQ) (q;CI)n Oq k:;H k; q( 1) q .

m=|

With the Stieltjes-Wigert polynomials of the first and second kind now
defined, we can continue by finding the symmetric three-term recurrence re-
lation that P,(z) and @, (z) satisfy. In particular, we are aiming to find two

real sequences {a,} and {b,} such that

zP, =ap-1Pp—1+ b, Py + an P, (221)
for all n € Ny. We begin by rewriting the recurrence relation presented in
equation (2.17) as

2n+1$ 1+ q— qn+1

q q
Sn+1 = _1—7(]71"1‘15” -+ 1_ qn+1 Sn — 1 qn+1 Sn_l. (222)

Upon setting v, = 1/¢"(q; ¢)n, we see that P, = 7,5, (x;q). By substituting
this into equation (2.21), we see that

1 b Can
Spi1 = =g, — I Ing  Jn-ifnclg (2.23)
Tn+1 Qn Tn+1 Gn Tn+1 Qn

As S, (z;q) is a polynomial of degree n, we may deduce a,, by comparing the
leading coefficients of both sides of this equation. In particular, we see that
(- (g g (g e 1
(@ @)nt1 (G Dn (G Qnsr On

o7



after extracting the relevant coefficients from equation (2.18). Hence

D" ¢ (D1 V@GDn VT

(=) gD (@) /(g Ongr /"

— _q72n7% /1 . qn+1'

With the sequence {a,,} now in hand, we can easily determine b,, by comparing

Ap =

equation (2.22) to equation (2.23). As such, we see that

l+g—q""' 9 bn
1—gntt V1 an’
or 1
p— e d"
L—gmtt
Hence

14 g =" V(@G D1 V! T g
L—¢t g q)n VO
— [1 +q— qn+1]q72n71

_ q—2n—1 + q—2n . q—n.

With the sequences {a,} and {b,} now determined, we assert that the poly-
nomials P, (x) and Qn(z) given by equations (2.19) and (2.20) respectively are

the two linearly independent solutions to the recurrence relation given by

zUy, = _q72n+% V 1—q"Up—1

+ [q72n71 + q72n _ qin]Un . q72n7% /1 _ q"+1Un+1-

We can now transform the right-hand side of equation (2.21) into some-
thing of the form —A(p,_1Az,—1) + §nzyp, for real sequences {p,} and {g,}.

In particular, we note that

_A(pn—lAmn—l) + (jnxn = —Pn-1Tp-1 + [pn + pn—1+ dn]xn — PnTn41-

Then, by direct comparison, we see that

Gn = —Pn, Pn = —Qn,
bn:pn + Pn—1+ Gn, (jn:bn+an+anfla
or, in other words,

_9p_3
pn=¢q 2"24/1 — g1,

o= q 2L f g2 _ g 25 T = gl g2 T g,
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Here, we draw special attention to the fact that p,, > 0 for all n € Ny — this
is crucial in our analysis, as it was consistently required of our sequence {py, }

in the sections prior. By solving the equation
_A(pn—len—l) + (jnxn =0

with the above sequences {p,} and {G,}, we can immediately deduce that
the solutions are given by P,(0) and @,(0). By studying the behaviour of
these two solutions, we will be able to confirm that this expression is of the
limit-circle type, i.e., both solutions lie in £2.

First, we note that

N "
and  Q,(0
(@ @)n (5900 \ &=

for n > 0, where Qo(0) = 0. We can then utilise [23, Remark 3.1] to simplify

] g

the polynomial @, (0 ) In particular, we see that as
Z [n] (_1)kq(§)$k = (x;Q)na
=0 LF q

we have

) m (—1)*q&)* = (g;9)n — 1.

k=1 q

Therefore, for n > 1, we can write @, (0) as follows:

Qu(0) = 1| o [(@:0) — 1

We will be able to conclude that {P,(0)}, lies in ¢? by the ratio test. In

particular, we note that

‘(Pn+1(0))2 _ ‘ " (G On
(Pn(0>)2 (QQ Q)n+1 q"

—q as n — oo,

since 0 < ¢ < 1. As this expression tends to ¢, and q is strictly less than 1, we
may conclude that > > 07 ) < oo by the ratio test. Hence, {P,(0)} € /2.

In order to determine Whether Q1 (0) lies in £? or not, we first note that
n
- o=
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Since 0 < ¢ < 1, we have that 0 < 1 — ¢F < 1 for all k € N. Then, it is
clear that (g; ), is a decreasing function. Thus, (¢; ), — 1 is also a decreasing

function with
(¢;0)n —1 € (=1,0)

for all n > 1. Upon noting that P,(0) > 0 for all n € Ny, we immediately see
that Q,(0) < 0 for all n > 1. Furthermore, P,(0) > |@,(0)| for all n € Ny,
hence {Q,(0)} € £? by the comparison test. As both solutions {P,(0)} and
{Qn(0)} lie in £2, we can conclude that the difference expression is of limit-
circle type.

Non-principal solutions play an instrumental role in the characterisation of
the extensions, so we must now show that the minimal operator T,;, associ-
ated to the expression whose solutions are the Stieltjes-Wigert polynomials is
bounded below. In fact, we must show more in order to further our analysis:
we need this operator to have a positive lower bound, else we are unable to
apply the theory to this example. Indeed, we could then invoke [14, Thm. 2.1]
to conclude that the equation Mz = 0 is non-oscillatory — certainly then
would there exist principal and non-principal solutions.

Let u € D(Timin) and consider the expression (Tiinu,u). Then,

oo
<Tminu7 U> = Z Ap—1Up—1Up + bn|un‘2 + anun—‘rlﬂn

n=0
o 1
=> [—q‘%* 21— T + (72 4 72" = ) fun
n=0
3 oo
g "2y /1 - q"“un+1un] = sn
n=0
(2.24)

Now,

= ‘q_n—’—lunflq_n_% V 1 —q"u,

1] _ —on—
< 2[q 2n+2|un71|2+q 2n 1(1_qn)’un|2:|’

by means of the binomial formula. Likewise,

—op—3 _ —n—1 —n—1 _
|C] "2 V31— qn+lun+1un| = ‘q " Un+14 "2 V13— qn—Hun‘

1

e e (R T
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These two inequalities are essential as we can then estimate s,, as follows:

o2 = [ P =
+ [q_zn_l +q - q_”] [
| L e e
B q_2n+2‘un_1’2 L [_ ¢ '(1-q") b1y g
2 2
—n - O
__Q”Z”hmqﬁ+-@4"+qtf71—qﬂmaz—qézdhmﬂﬁ-

Since u € D(Tmin), we now specify that u, = 0 for all n > N for some
N € N. From equation (2.24), it is clear that s, = 0 for all n > N. Hence, for

this particular u, we have

n=0
N g2 +? ) ) ¢! )
22:{— 5o+ a7+ g u—qﬂmu
n=0
q—Qn—2

T tunal?]

Since this sum has a finite number of terms, we can reorder and collect the

terms involving |u,|? together. Indeed, we may then deduce that

n—1

2
N g
- 2
n=0

1—gq
> u|?
q

(1= q)un?

N _
<Tminua U> 2 Z g
n=0

i

since 0 < ¢ < 1; note that 0 < 12—_qq < oo for such gq. Hence, Ty, possesses a

1—¢q
2q

is valid to apply our result to this example.

strictly positive lower bound v = and so we have now confirmed that it

Recall that the sequence u is the principal solution if lim,, . Z—: =0 for
any solution v that is not a multiple of u. Then, consider the following limit:

@n(0)

(¢;9)n — 1.

61



If this limit is not 0, then @,(0) is not the principal solution. However, we
have already shown that (¢;¢), — 1 € (—1,0) and is a decreasing function, so

lim (¢;¢)n —1 € [-1,0).

n—oQ

As this limit is decidedly not 0, it must be true that @,,(0) is not the principal

solution. Likewise, if we instead consider lim,, g"—((oo)) then we see that

i F(0) = lim .
n—oo Qn(0)  n—eo (¢;q)n — 1

€ (—oo, —1]

showing that P,(0) is also not the principal solution. Now that we have
candidates for a non-principal solution, we are almost able to construct the
non-negative, self-adjoint extensions of the operator Tiy;, whose difference ex-
pression has solutions that are the Stieltjes-Wigert polynomials.

The final step we must take before we are able to do so is to determine the
kernel of the maximal operator Ty,.x, that is, find the sequence {¢,,} — with
19 = 1 — that forms a basis of ker T,.x. Note that the general solution to
the equation —A(pp—1Au,—1) + Gnun, = 0 is given by u, = ¢1 P, (0) 4+ c2@y(0).
Then, as the kernel element must adhere to the initial condition given by

bouo + agur = 0, we see that

_ _3 / /
boug + agul = q 1[01+0}—q 2\/1—q{01 %—02 1zqq}

= C2,

upon recalling that Qo(0) = 0. Therefore, co = 0 and ¢; € C is arbitrary.
However, since we require the kernel element 1) to have its first component
1o = 1, we may set ¢; = 1 as Py(0) = 1.
Recall that the condition within the domain of the extension is given by
. ug (0 ¥ u

im prgrge+1 |—A <k> — LA () = Bea|l¥ |,

k—oo 9k 9k Jk+1 9k
for u € D(Thax) and 8 > 0. Then, with all of the pieces necessary to construct

the extensions now in hand, we specify the following: both the sequence {g,}

and the kernel element ¢ may be chosen to be P(0), i.e.,
gn:Pn(O) and (1 :Pn(o)a

for all n € Ny. Hence, the condition can be written as

Uf;

T pP(0) i (0) [—A (Pk(o))] B POP. (225
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for 8 > 0, since A(c) = 0 for any constant ¢. We can simplify this condition
by first recognising that

up \  ukPei1(0) — Pr(0)ugia
8 <Pk<0>> T P(0)Pea(0)

We also note that ||P(0)||?> may be written in terms of a basic hypergeometric
series. In particular, we have

[e.o]

PO =3 -2

= (4 Dn

0
=100 | ;9:9]-
Remark. We may then use the identity
a 625 4q)oo
ld)O 34,2 | = (.7Q)7
- (23 @)oo

expressed in [18], to conclude that

0 r1—0-¢"t!
190 (_;Q7Q> = H 1—7q”+1

n=0

n

1
IS (=)
The denominator is of precisely the form expressed in the Pentagonal Number

Theorem [9], originally proved by Euler, which states that

e ad k(3k—1)
[[0-am= 3 (1"
n=1 k=—00
s k(3k+1) k(3k—1)
:1+Z(—1)k(a@ 2 4 x 2 )
k=1

Hence, for x = ¢, the reciprocal of this formula produces an alternative ex-
pression for || P(0)|?.

Furthermore, upon recalling Lemma 1.2.11, i.e.,
D(Tmax) = D(TF) + ker Tyax,

we can simplify our current result. Indeed, a sequence u € D(Tp) can be
written as u = (u — é,¥) + ¢,1 where u — ¢, € D(TF) and é,1 € ker Tipax.
As D(Tr) C Q(tr), we must have

. Up — &y Pp(0)
1 - = A7
noo  Pp(0)



or, in other words, lim, . #”) = ¢y. Finally, we may then write equa-

@
tion (2.25) as

. —2k—32 =
Jim q P71 = P g Py (0) = Pr(0)upy1] = B ( @ q) —00 Pk(kO)

or, more compactly,

. 23

lim Wg(u, P(0 lim ——
kirgo k(u7 ( )) ﬁ1¢>0 < 34, Q> kﬁrgo Pk(o)a
after observing that the left-hand side is precisely the Wronskian as presented
in equation (2.3). Hence, the domains of the non-negative, self-adjoint exten-

sions T of Ty — excluding the Friedrichs extension — are of the form

D(TB) = {u € D(Tmax) ‘ klglolowk( ( ) ) /81¢0 < 4 q> 1—>00P:(k0)}7

for some 5 > 0.

Although we have neglected the Friedrichs extension in this example so
far, we are able to determine an explicit characterisation of D(Tr) by means
of Corollary 2.5.2. Indeed, we complete this chapter — and half of the thesis

— with the following: the domain of the Friedrichs extension is given by

for 0 < g < 1.
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Chapter 3

Preliminaries: Extensions of

Linear Relations

3.1 Linear Relations in Hilbert Spaces

Chapter 1 was devoted to the introductory material necessary for understand-
ing Chapter 2; likewise, this chapter presents the fundamental definitions and
theory required in Chapter 4. Due to the parallels between the topics covered
in the two halves of this thesis, we choose to follow the delivery of Chapter 1,
making reference to any similarities and differences that naturally arise. The
definitions and theory presented can be found in [24], [33] and [34], amongst
others.

Firstly, let H; and Hy be Hilbert spaces. Now, if we equip the space
Hq x Hy with the inner product

<($7y)7 (x,’y/)>H1><H2 = <IB7$/>H1 + <3/:Z//>H2 ) (lﬁy), (37/73//> € Hl X HQ;

then it can be shown that (Hy x Hz,(-,)y, «g,) forms a Hilbert space. This
may seem familiar so far; indeed, to a linear operator T': D(T') — Hs, where
D(T) C Hj, we can associate its graph, as described in Definition 1.1.19.
Then, we can think of an operator as the set of pairs (z,Tz) in H; x Ha, for
x € D(T). Here, the second component is entirely dictated by the first: 7T is
a linear operator, so z is mapped to the unique element Tz € R(T) C Hy.

If T is a multi-valued operator instead, that is, x may be mapped to more
than one element in Hs, then does it still make sense to consider the graph of
T? We introduce linear relations (often, the ‘linear’ is dropped) as a means of

answering this question.

Definition 3.1.1. Let H; and Hs be Hilbert spaces over the complex field C.

Any subspace S of Hy x Hs is called a linear relation from Hy to Hs.
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Remark. Let G(T') be the graph associated to a linear operator T': D(T') — Ha,
where D(T') C H;. It is then clear that a graph is an example of a linear
relation. In fact, we can say more: linear relations are a generalisation of the

graph.

Now that we have defined the term ‘linear relation’, we continue by pre-
senting the way in which we are to interpret the interactions between them.
Let S C Hy x Hy and T C Hy x Hy be two linear relations. The sum of S and
T, denoted by S + T, is the relation given by

S+T={(x,y+2) € H x Hy | (x,y) €S, (x,2) € T},
whereas their componentwise sum, denoted by S+ T, is the relation given by
SFT={(z+2",y+y) e Hi x Hy | (z,y) €S, (2',y) €T}.

Moreover, the product of S C Hy x Hy and U C Hs x Hj, denoted by US, is

the relation given by
US={(x,2) € H x H3 | (z,y) €S, (y,2) €U},
and, for A € C, the relation
AS ={(xz,\y) € Hy x Hy | (z,y) € S},

demonstrates how we are to interpret scalar multiplication.
When we speak of an operator, there are many additional notions that
come along with it: operators have domains, ranges, perhaps an inverse, etc.

The following definition covers what will be the companions to these concepts.

Definition 3.1.2. Let S C Hy x Hy be a linear relation. The domain of S is
given by the set

D(S)={x € Hy | (z,y) € S for some y € Ha},
whilst the range of S is given by the set
R(S)={y € Ha | (z,y) € S for some = € H;}.
The inverse relation S™! is given by the set
S™'={(y,z) € Hy x Hy | (z,y) € S}.

Remark. Note that the inverse relation always exists, unlike the inverse oper-

ator.
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Immediately, we have the following relationship between the domain and

range of a relation S and its inverse S7!:
D(S™H =R(S) and R(S7') =D(9).

Furthermore, we may speak about when a relation is densely defined, precisely

as in the operator setting.

Definition 3.1.3. Let S C H; x Hy be a linear relation. If D(S) is dense in

Hq, then S is a densely defined linear relation.

Remark. Let T be a linear operator and set S = G(T'). It can be seen that the
definitions above are consistent to those presented in the operator setting. As
we progress through this chapter, it is worth keeping this example in mind in

order to appreciate the power that linear relations have.

Given an operator T, it is often useful to analyse its kernel, i.e., the set
of elements in D(T') that are mapped to zero; this concept translates into
the relations setting as one might expect. In particular, we express this set
formally in the following definition, along with another crucial set: the multi-

valued part.

Definition 3.1.4. Let S C Hy x Hs be a linear relation. The kernel of S is
given by the set
ker S = {z € H, | (z,0) € S},

whilst the multi-valued part of S is given by the set
mul S ={y € Hy | (0,y) € S}.

These two sets exhibit the following useful relationship, similar to the

domain and range of S and its inverse:
ker 7! = mul S and mul S~! = ker S.

Remark. If T is a linear operator and S = G(T'), then mul S = {0}. Conversely,
if mul S = {0}, then S is the graph of some linear operator 7. This makes
sense: we do not expect a non-trivial multi-valued part to an operator that is

not multi-valued!

It is useful to know when an operator is closed (or, at least, closable) as we
are then able to apply certain theory or techniques to any analysis undertaken.
We also have the notion of closed linear relations, as expressed in the following

definition.
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Definition 3.1.5. Let S C H; x Hj be a linear relation. The closure S of S
is given by the set closure of S in Hy x Hy. If S = S, then we say that S is a

closed linear relation.

Computing the multi-valued part of a closed relation has a useful conse-
quence: we may decompose a relation into the orthogonal sum of a graph and
a purely multi-valued relation. Indeed, let S be a closed linear relation in

H, x Hy. Then, S has the componentwise orthogonal sum decomposition
S = Ss @ Smul:

where

Ss =86 Smu and Sy = {0} x mulS.

Alternatively, we may express S as the set

Ss = {(z, Py) | (z,y) € 5},

where P is the orthogonal projection onto (mulS)* [33]. In particular, S,
is called the operator part, or single-valued part, of S and is the graph of
some operator, whilst Sy, is an entirely multi-valued relation, known as the

multi-valued part of S.

Remark. Note that Sy, and mul S are different objects that are both referred
to as the multi-valued part — we hope that it is clear which will be meant

due to context, but we endeavour to be explicit if any confusion is possible.

There remains only one crucial relation left to present in this section: the
adjoint relation. We remarked after Definition 1.1.12 that if T was a densely
defined operator, then T* would also be a linear operator. However, if T
is not densely defined, then T is not a linear operator: instead, it will be
multi-valued. One notable benefit of investigating linear relations is that the
adjoint relation S* of some linear relation S will always, again, be a linear
relation — we may apply the same theory to both .S and S* indiscriminately.
In particular, we may sensibly define the adjoint of a non-densely defined

operator through linear relations.

Definition 3.1.6. Let S C H; x H» be a linear relation. The adjoint relation
S* is the linear relation defined by

S* = {(:E/,y/) € Hy x Hy ‘ (W 2)y, = (2 y)y, forall (z,y) € S}'

Remark. The adjoint relation S* is, in fact, a closed relation. Furthermore,
from [15, Prop. 1.1], we have that for any relation S, its closure S is given by

S = 5%
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The following result demonstrates a useful relationship that will arise dur-
ing the next chapter. In particular, we are able to determine when the adjoint

relation is, in fact, the graph of an operator.

Lemma 3.1.7. Let S C Hy X Ho a linear relation. Then
mul §* = (D(S))*.

In particular, if S is densely defined, then the adjoint relation S* is the graph

of an operator.

Proof. Let S C Hy X Hs be a linear relation. We begin the proof by computing
(D(S))*. Then,
(D(8))" ={z € Hy | (x,y) € S}
={zeH | (z,2)g, =0 for all z € D(9)} .

On the other hand, if z lies in mul S*, then the corresponding element in S*

is of the form (0, z). Hence,

mul S* = {z € H | (z,2) g, = (0,), forall (z,y) € S}
={ze H | (z,2) g, =0 for all z € D(S)} .

As the two sets are equal, we may conclude that mul $* = (D(S))* .
Now, let S be a densely defined linear relation. To show that S* is the
graph of an operator, we simply need to show that mulS* = {0}. Since

D(S) C Hy, we may decompose H; into the orthogonal sum
H, = D(S) @ (D(5))",

as discussed after Definition 1.1.3. Then, as D(S) is dense in H; — that is,
D(S) = H; — we may conclude that (D(S))* = {0}. Hence mul S* = {0},
showing that S* is, indeed, the graph of an operator. |

With the adjoint relation now defined, we discuss what it means for a linear

relation to be symmetric or self-adjoint. In what follows, we set Hy = Hy = H.

Definition 3.1.8. Let S C H x H be a linear relation. If S C S*, then S is
called symmetric. If S = S*, then S is called self-adjoint.

Remark. In other words, S C H x H is a symmetric linear relation if (y/, z) ; =
(@, y)y for all (z,y), (2/,y) € S.

In Chapter 1, we made the distinction between positive and non-negative
operators. Here, we are only interested in non-negative relations, as expressed

in the following definition.
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Definition 3.1.9. Let S C H x H be a linear relation. If (y,z) > 0 for all
(x,y) € S, then S is said to be non-negative.

Throughout the thesis so far, symmetry is rarely mentioned without sec-
toriality. Then, in the final definition of this section, we introduce the concept

of sectoriality in the relations setting.

Definition 3.1.10. Let S C H x H be a linear relation. If
|Tm (y,2)| < tana (Re (y,) —7llz|?),  veR, aelo,7),

for all (z,y) € S, then S is said to be sectorial. Furthermore, v and « are

referred to as the vertex and semi-angle, respectively.

Remark. Note that this definition is in line with the alternative description of

a sectorial form as given in the remark following Definition 1.1.30.

Remark. If S is a non-negative relation, then S is also sectorial with vertex

v = 0 and any semi-angle «: for simplicity, we choose v = 0.

We conclude this section by reiterating that the definitions presented here
are valid for whenever S is the graph of an operator T, further strengthening
the claim made at the start of this chapter: relations are a generalisation of
the graph. The next section will be devoted to presenting the extension theory

necessary for the remainder of the thesis.

3.2 Extension Theory of Linear Relations

In Section 1.2, we presented two methods of constructing extensions of opera-
tors: the von Neumann theory and the Krein-Vishik-Birman theory. Here, we
aim to deliver the analogous theory in the context of linear relations. Firstly,
the von Neumann theory will be described so that we may, again, document
the similarities between operators and linear relations. Then, Sections 3.2.2

and 3.2.3 document, in depth, the theory required to appreciate Chapter 4.

3.2.1 von Neumann Theory for Linear Relations

When discussing the von Neumann theory in Section 1.2.2, we noted that the
deficiency spaces of an operator T were fundamental in the construction of
the closed, symmetric extensions of T'; crucially, we decomposed the domain
of the adjoint operator into a particular sum and made use of isometric maps
between subspaces of the deficiency spaces. Here, the idea is the same. Then,
this section details the von Neumann theory with respect to linear relations,

as found in [15].
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First, we need to discuss how we are to interpret the notion of an extension

in the linear relations setting.

Definition 3.2.1. Let S C H; x Hy be a linear relation. Any subspace S
that satisfies S C S C Hy x Hs is called an extension of S.

As per the von Neumann theory, our objective is as follows: we wish to
construct the closed, symmetric extensions S of a closed, symmetric relation
S. Thus, let S be a symmetric relation. Immediately, we note that S is, again,
a closed relation and is the smallest closed extension of S. Likewise, we have

that (S)* = S*. As such, abstractly, we may simply assume that S is a closed

relation to begin with.

Definition 3.2.2. Let S C H x H be a linear relation. The closed subspaces
N; and N defined by

N+ EN+(S) 3:{($7y) es* ‘ (—Zy,ZCU) = (.T,y)}
={(z,iz) | x € D(S*)} N S*

and

N_=N_(5) ={(z,y) € 5" | (—iy,iz) = (—z,—y)}
{(z, —iz) | € D(S)} N S*

are called the deficiency spaces of S. The dimensions of these subspaces,

denoted by m(S) and m_(S) respectively, are called the deficiency indices.

Remark. To see why this construction seems reasonable, let T" be a closed sym-
metric operator and recall that No(T') = ker (T F¢I) from Definition 1.2.7.

Immediately, we observe that
NL(T)={xeD(T*) | (T* Fil)x =0}
={zx e D(T™) | T"x = tix}.
We may then convert these calculations into the graph setting since there is
a one-to-one correspondence between operators and graphs. Essentially, as

NL(G(T)) € G(T*) for G(T) the graph of T, we see that Ny (G(T)) is such
that

NL(G(T)) (x,T*z) | x € D(T*) and T"x = +ix}

={
= {(x, £iz) | x € D(T*)} N G(T™).
Thus, when T is an operator, the two definitions coincide.
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In Theorem 1.2.8, we demonstrated how one could decompose the domain

of the adjoint operator T™* of a closed, symmetric operator 1" into
D(T*) = D(T) + No(T) + N_(T).

We now disclose the analogous decomposition by means of the following the-

orem.

Theorem 3.2.3 ([15, Thm. 1.2]). Let S C H x H be a closed symmetric
relation whose deficiency spaces are given by N (S) and N_(S). Then

S*=8SaNL(S) s N_(S).
Since S is closed, symmetric relation, [15, Prop. 1.1] gives that
ScScs*cs,

for any symmetric extension S of S. Then, we are able to characterise the
closed symmetric extensions S by noting that they are all to be restrictions of

S*. As such, we have the following theorem.

Theorem 3.2.4 ([15, Thm. 1.6]). Let S C H x H be a closed, symmetric
linear relation. If S is a closed, symmetric extension of S, then S = S @& N,
where N is a subspace of N4 (S) ® N_(S) that satisfies

N ={(z,iz) + J(x,iz) | (z,ix) € D(J) CNL(S)},

where J: D(J) = R(J) C N_(S) is some linear isometry with closed domain
D(J) CNi(S). The reverse also holds: for every space N of this form, there

exists a unique closed, symmetric extension S of S satisfying S =S & N.

Remark. This theorem is the analogue of Theorem 1.2.9.

For completeness, we conclude this section by presenting the following

definition along with one final corollary to the theorem above.

Definition 3.2.5. Let S C H x H be a symmetric linear relation. If the only

symmetric extension of S is S itself, then S is said to be mazimal symmetric.

In the operator case, equality between the deficiency indices allowed us to
classify different types of extensions. This concept translates accordingly in

the context of relations, as demonstrated in the following corollary.

Corollary 3.2.6. Let S C H x H be a linear relation. If precisely one of
the deficiency indices m4(S) or m—_(S) is equal to zero, then S is a mazimal
symmetric relation. If both are equal to zero, that is, m(S) = m_(S) = 0,

then S is self-adjoint.
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The von Neumann theory is instantly recognisable no matter the setting
due to its reliance on the decomposition that uses the adjoint and the deficiency
spaces. We also hope that this section has given some insight into why linear
relations have value: the von Neumann theory is not only transferable, but
also more general when considering relations. The next section, however, aims
to construct the closed, sectorial extensions of a sectorial relation S by means

of sesquilinear forms.

3.2.2 The Friedrichs Extension of a Sectorial Relation

In the previous section, we presented the von Neumann theory for linear re-
lations; Sections 1.2.2 and 3.2.1 can be thought of as companion sections due
to the more than intimate connection between the theory presented. For the
purpose of symmetry, this section can be thought of as the analogue to Sec-
tion 1.2.3 as, here, we construct both the Friedrichs and Krein extension of a
sectorial linear relation. Although the theory utilises an association between
sesquilinear forms and sectorial relations, we assert that the Friedrichs exten-
sion will not form the basis for any extension other than the Krein extension
— the Krein-Vishik-Birman theory for linear operators is only tangentially
related, this time. We remark that the theory presented in this section may
be found in [33].

We have established that a relation can be symmetric or sectorial, and
Definition 3.2.5 introduced the notion of maximal symmetric relations. The
following definition completes the set by discussing maximal sectorial rela-

tions.

Definition 3.2.7. Let S C H x H be a sectorial linear relation. If the only

sectorial extension of S is S itself, then S is said to be maximal sectorial.

The theory that we present here, and in what follows, concerns itself with
sectorial linear relations whose vertex is at the origin, i.e., v = 0. Then, we
introduce an important theorem that will form the bulk of the work undertaken

in the final chapter of the thesis.

Theorem 3.2.8 ([33, Thm. 4.3]). Let a be a closed sectorial form in a Hilbert
space H with vertex v = 0 and semi-angle o, where o € [0, %) Then, there
exists a unique maximal sectorial relation S in H with v = 0 and semi-angle
a such that

D(S) € Q(a), (3.1)
and, for every (z,y) € S and k € Q(a),

alz, k] = (y, k). (3.2)



Remark. The converse of this theorem is also true: for every maximal sectorial
relation S with vertex v = 0 and semi-angle a € [O, %), there exists a unique,

closed sectorial form a that satisfies both equation (3.1) and (3.2).
Remark. Note that if a is a densely defined form, then S is the graph of a

maximal sectorial operator.

The proof of this theorem is insightful: it constructs a candidate relation
S before proving that S does indeed possess the desired properties. Since we
follow the steps outlined in this construction during Chapter 4, we choose to
present the method of constructing the maximal sectorial extension S here.

Let (H,(-,-)) be a Hilbert space and a a closed sectorial form with vertex
v = 0 and semi-angle a € [0,5). Denote by Q(a) C H its form domain.
Then, by Definition 1.1.31, (Q(a), || - ||a) is a Hilbert space, where

|2]la = (age [z,2] + (z,2))2,  z € Q(a).

This norm is induced by an inner product, say (-, -)

Let & be the form defined by

a*

afz,yl = alz,yl + (z,9),
for z, y € Q(a) = Q(a). This form will also be sectorial with vertex v = 0 and

s

semi-angle o € [0,%); this is immediate, since the numerical range ©(a) is

simply a translation of ©(a) in the complex plane by precisely 1 to the right.

Remark. If we suppress the entries of the form a, then we will write & = a+1:

the 1 signifies the £2-inner product.

Our first objective is to verify that & is a bounded form in (Q(a), || - |a); if
it is, then we may invoke the Riesz Representation Theorem (see, for example,
[43, Thm. 3.8-4]) and associate to it a bounded linear operator B: Q)(a) —
Q(a) such that

alr,yl = (Br,y),, =, y€Qa) (3.3)
Then, we wish to find a real constant ¢ such that
afz,y] | < cllzllallylla,
for all z, y € Q(a). Since
[z]] < [lzlla, = € Q(a), (3.4)
we immediately observe that
afz,y]| = lafz,y] + (z,9)| < lalz,y]| + [(z,9) |
<lalz,yl [+ lz[llyl,

< lafez, ][+ [|zllallylla;
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after an application of the Cauchy-Schwarz inequality. In order to estimate

la[x,y] |, we first disclose the following lemma [33].

Lemma 3.2.9. Let H be a Hilbert space and let a be a sectorial form with

™

vertex v = 0 and semi-angle o, where o € [0, 5). Then, the following estimate

holds for all x, y € Q(a):

1

lafz,y]| < (14 tan @)age [z, 2]2 agre [y, 4] -

(NI

With this lemma in mind, it is clear that

D=

1
|a[z,y]| < (1 + tan @)age [z, 2]2 age [y, 9] + [|2]lally]la
1 1
< (L + tan ) (age [2, 2] + (2,2))? (are [y, 9] + (4,9))2 + [[z[lally[la

(2 + tan a)|[z[allyla-

Thus, the form & is bounded in (Q(a),| - |la) and so there exists a unique,
bounded linear operator B such that equation (3.3) holds. Consequently, we
see that following equality holds for all x € Q(a):

Re (Bz,z), = Re(a[z,z]) = Re (a[z,z]) + Re (z,z) = aRe [z, 2] + (z,2) .
Then, it is clear that
2|2 = age [z, 2] + (z,2) = Re (Bz,x), < |(Bz,2), | =|a[z,1]],

for all x € Q(a). We may then invoke [33, Lem. 4.1] to deduce that the
operator B is invertible. Moreover, B~! is a bounded operator in Q(a) and
satisfies [|[B~!||a < 1.

Now, fix w € H and consider the linear mapping k +— (k,w); this map is
a linear functional from Q(a) — C that is defined for all £ € Q(a). From the
Cauchy-Schwarz inequality and equation (3.4), it follows that

| (k) | < [IK[[lwll < llwlllk]la, k<€ Qa).

Since we have found a real constant ¢ such that |(k,w)| < c[|k||a for all
k € Q(a), we may conclude that the mapping k — (k,w) is a bounded lin-
ear functional. Therefore, by the Riesz Representation Theorem for linear
functionals (see, for example, [43, Thm. 3.8-1]), there exists a unique element
@ € Q(a) such that for all k € Q(a):

(k,w) = (k,@),  and  [@fla < [l (3.5)
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Note that the inequality ||@||a < ||w|| holds since

[@lla = sup [(k,@),| = sup [k w)
keQ(a), keQ(a),
lIklla=1 llklla=1
< sup [(k,w)| < sup [(k,w)| = [lw],
keQ(a), kel?,
l[klI=1 llkl=1
where we have used the equality given in (3.5) in conjunction with inequal-
ity (3.4).

Since the operator B is invertible, we have
(w, k) = (@, k), = (BB™'@,k)_,
for all k£ € Q(a). Then, from equation (3.3), we have
(BB™'@,k), =a[B'&,k| =a[B'@,k] + (B~'@,k).
By piecing together these two equalities, we see that
a[B7'0,k] ={w—-B'0,k), ke Q(a). (3.6)

Upon recalling equation (3.2), the form a aims to satisfy a[z, k] = (y, k) for
all (z,y) € S and k € Q(a). A direct comparison to equation (3.6) gives us an
indication of how to continue.

Indeed, define the linear mapping A from H to Q(a) by Aw = B~ 1. If
we are to interpret A as a mapping from H to H instead — that is, we embed

B~'% in H — we obtain the following estimate:

[Aw|| < [|Aw]|a by equation (3.4)
= |B7'@|a since Aw = B~
<[@lla since | B |la < 1
<l by equation (3.5).

Hence, the operator A is, in fact, a bounded linear operator on H.
This operator A is fundamental in the construction of the maximal secto-
rial relation S associated to the closed sectorial form a. In particular, when

considering the operator A from H to H, the maximal sectorial relation S —

also from H to H — with vertex 7 = 0 and semi-angle a € [0, %), is given by
S={(Aw,w — Aw) |we H}. (3.7)

Furthermore, the relation S + I has a few notable properties that we wish

to draw attention to. Firstly, as I is defined on all of H, we are to interpret

the domain of S + I by

D(S+1)=D(S) = {Aw | w € H}.
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Then, upon recalling how one is to interpret the addition of two linear relations,

we see that

S+1={(Aw,w—Aw+ Aw) |w e H}
= {(Aw,w) |w e H}.

It is then immediate that R(S 4+ I) = H and ker (S + I) = {0}. Finally, we
remark that when S is a linear relation, the resolvent relation is given by the

relation (S — AI)~! where A € C [13]. Then, upon letting A\ = —1, we see that
(S+ 1) ={(w,Aw) |w e H},

demonstrating that (S+1)~! coincides precisely with the graph of the operator
A.

In essence, when we are in possession of the bounded linear operator A,
as constructed above, we can easily express the maximal sectorial relation S
by means of equation (3.7). In order to verify that this relation does, indeed,
enjoy all of the relevant properties, we divert the reader’s attention to the
proof of Theorem 3.2.8 as stated in [33] i.e., [33, Thm. 4.3].

With the main theorem of this section described, we continue by intro-
ducing the Friedrichs extension Sr and the Krein extension Sk of a sectorial

relation S. Firstly, however, we require the following result.

Lemma 3.2.10 ([33, Lem. 4.2]). Let S C H x H be a sectorial relation with
vertex v = 0 and semi-angle a € [O, %) The form ag with
as [xVZ] :<y72>7 (‘Tay)v (Z,'UJ)ES,

and form domain Q(ag) = D(S) is well-defined, sectorial and closable.

Since the form ag is closable, denote by ag,. its closure. As this new form
is both closed and sectorial, we may associate to it a unique maximal sectorial
relation Sp, say, by means of Theorem 3.2.8. We then invoke [33, Lem. 7.1] to
conclude that this construction of Sg does, indeed, give rise to an extension
of S. The maximal sectorial relation Sg constructed in this manner is the
Friedrichs extension of S.

Perhaps the most striking similarity with the Krein-Vishik-Birman theory
is that the Friedrichs extension is necessary for the construction of the Krein
extension, albeit not in quite the same way. Here, we define the Krein exten-
sion Sk of a sectorial linear relation S to be the maximal sectorial relation

satisfying the following;:



This definition may seem complicated at first, but it may be unravelled me-
thodically. In particular, we take the inverse relation S~' of S and associate
to it the form ag-1, before finding its closure ag 1. To this form, we may as-
sociate a unique maximal sectorial relation: this will be (S~1)p. Afterwards,
we merely need to take the inverse of this relation, that is, ((S_I)F) 1 this

will give rise to the Krein extension Sk of S.

Remark. This construction of the Krein extension coincides with that of [§],
which investigates the non-negative, self-adjoint extensions of positive, sym-
metric operators. Note that the Krein extension is referred to as the wvon

Neumann extension there.

3.2.3 Extremal Maximal Sectorial Relations

Whilst the previous section introduced a way of associating a sesquilinear form
a to a sectorial relation S, it did not yield a practical method of constructing
all of the sectorial extensions of S: we merely obtained the Friedrichs exten-
sion and Krein extension. This section aims to rectify this. We claim that
there exists an approximate comparison to the Krein-Vishik-Birman theory for
linear operators in the context of linear relations. The comparison may not
be perfect, but the theory presented in this section — extracted from [33] —
constructs the Friedrichs extension, the Krein extension and — crucially — all
extensions in between. Moreover, we may then associate to these extensions
a sesquilinear form, strengthening the initial claim.

Definition 3.2.11. Let S C H x H be a sectorial relation with vertex v =10

and semi-angle @ € [0,%) and let ag, be the form with domain Q(ag)
associated to the Krein extension of S. Let S be a maximal sectorial extension
of S. Then S is an extremal maximal sectorial extension of S if the closed

form ag associated to S satisfies the following two conditions:

Q(ag) € Q(ag,) and ag(z,y] = agy [z,y] for all z, y € Q(ag).
Remark. In particular, we note that Sp and Sk are extremal maximal sectorial
extensions of a sectorial relation S.

We now make a short detour to explore this concept in the operator setting
as presented in Chapters 1 and 2. Let T be a positive, sectorial — thus,
symmetric — operator and Tk its Krein extension. Then, by Theorem 1.2.16,

the form tg associated to Tk is such that
tk [u,v] = tg [uF,UF] + by [uN,vN}

=1tr [u , U



for elements u, v in Q(tk), where u = uf’ +«" and v = vF 4+ vV for u”,

v € Q(tg) and u”, vV € Q(by). Recall that in the construction of the Krein
extension, we must take the form by = 0 and Q(b1) = N = ker Tijax. Now
let tg be the form associated to a non-negative, self-adjoint extension T of
T, ie.,

tg [u,v] = tp [uF,UF] + bo [uN,vN],

where u and v are to be decomposed as above. It is clear that any form tg
will satisfy Q(tg) C Q(tk) since Q(tk) has the largest possible domain: we
have taken the entirety of ker Ti,.x for the form domain of by = 0.

On the other hand, if we wish for the equality

tg [u,v] = tp [uF,vF] + ba [uN,UN] =tk [u, ]

=tr [uF,vF]

to hold for all u, v € Q(tg), then we must set bg [uN,vN] = 0 for all uV,
vV € Q(bz). Thus, if tg is an extremal maximal sectorial extension, then we
must fix by = 0 and merely require that Q(bsz) is a subspace of N.

In fact, by analysing the dimension of N, we are able to say more. If
dim N = 1, as in Chapter 2, then there are only two subspaces N of N:
either we take Np = {0} or Ng = N. The former produces the Friedrichs
extension, whilst the latter, the Krein. This shows that, when dim N = 1,
these two extensions are the only extremal maximal sectorial extensions of T'.
Conversely, if dim A > 2, then there will exist other extremal extensions, as
we may simply choose any subspace of A/ that is neither non-trivial nor N
itself. We note that this remains true for the examples of relations we will
consider in Chapter 4.

The remainder of this section will be devoted to detailing the construction
of the extremal maximal sectorial extensions of a sectorial relation S. Let H
be a Hilbert space and S C H x H a sectorial relation with vertex v =0 and
semi-angle o € [0,%). On R(S) x R(S), define the map

<x’,y/>R(S) = % (<a:’,y> + <:c,y/>) , (x,2), (y,y) € S. (3.8)
The following lemma proves that such a map is well-defined, in addition to

being a semi-inner product.

Lemma 3.2.12. The map (-,-)g(s) as defined by equation (3.8) is a well-

defined, semi-inner product.

Proof. Let (z,2'), (zo,2'), (y,v') and (yo,y’) lie in S. First, we show that
(-, '>R( S) is well-defined, that is, the elements in S with the same second com-

ponent but different first components do not produce a different result. In
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other words, we require both

({9 + (2,)) = 5 ({2 9) + (20,%/))

N =
DN | =

<$,»y,>7z(3) =
and

(4 sy = 5 (o) + (9)) = 5 (s0) + (2.1)
to hold, i.e., (z,y) = (z0,y') and (z/,y) = (2, yo), and, in particular,

<:c — xo,y/> =0 and <x/7y — y0> =0. (3.9)

Note that we may associate the form ag to S by means of Lemma 3.2.10. This

form, after applying Lemma 3.2.9, admits a useful consequence:

[ (2',y)| = las [z, y]| < (1 + tana) ((as)re [#,2])? ((as)Re [y, y])?
= (1+tana) (Re <x',x>)% (Re <y',y>)% , (3.10)

for all (z,2'), (y,y') € S, since
(ag)Rre [T, 7] = Re (as [z, 7]) = Re <x’,x>, (x,2") € 8S.

Furthermore, since S is a subspace, it is clear that (z — z¢,0) and (y — o, 0)

must also lie in S. Then, for (y,y'), (x — z0,0) € S, we have

D=

| <y', T — a:0> | < (1+tana) (Re <y’,y>) (Re (0,2 — mo))% ,

whilst for (z,2'), (y — yo,0) € S, we have

[N

| {a',y —yo) | < (1 +tana) (Re <$/7$>)% (Re(0,y —vo0))2 .

Since (0, z — xg) = (0,y — yo) = 0, the left-hand side of these inequalities must
also equal zero, proving that the conditions given in (3.9) are satisfied. Thus,
the map is well-defined.

Upon recalling Definition 1.1.1, a semi-inner product differs to an inner
product by only one property: one of the conditions present in (IP4) states
that (z,z) = 0 <= x = 0, but for a semi-inner product, this does not
have to hold. Then, it is easy to see that (-,-)z g satisfies the first three
properties and (z’,2") gy = 0 for all 2’ € R(S) by virtue of (-,-) being an

inner product. |

We now show that there may exist an (z,2') € S — thus, an 2’ € R(S)
— such that (2',2")5 g = 0. Indeed, let (z,2') € S, then

(<:U', x> + <:v,x'>) = Re <x',x>.

7~
8
&g\
~
3
]
Il
DO |

80



Hence, (2/,2")5(g) = 0 if and only if Re (2, z) = 0. In fact, we observe that
(2',2") g () = 0 if and only (2', z) = 0, since for a sectorial relation S, we have
|Im (2, z)| < (tana)Re (2, z) for all (xz,2') € S. Thus, the existence of an
element (z,2') € S satisfying (2, #) = 0 demonstrates that the map (-, )z g
is not an inner product, but rather a semi-inner product on R(S) x R(S5).
This argument is pivotal in the construction of the extremal maximal sec-
torial extensions of S; it demonstrates precisely which elements in S prevent
(-, )r(s) from being an inner product. Then, let %o be the set of those ele-

ments, i.e.,
Ro = {2’ € R(S) | there exists (x,2") € S such that (z’,z) =0}. (3.11)

There exists an alternative characterisation of SRy that we frequently make use

of, as expressed in the following lemma.

Lemma 3.2.13 ([33, Lem. 8.1]). Let S be a sectorial linear relation with vertex
v =0 and semi-angle o € [O, %) The set Ry as described by equation (3.11)
admits the following representation:

Ro = R(S) Nmul S*.

Since Ry is contained within R(.S), we naturally obtain the quotient space
R(S)/MRo. By factoring out these terms, we assert that the space R(S)/Ro

endowed with the inner product

(21 W Drisymo = é (@' y) +(z.9), (@2, (yy)es  (312)

forms a pre-Hilbert space, where [2/] and [¢/] denote the equivalence classes
containing ' and y' respectively. Let (Hg, (-,")y,) denote the completion of
the pre-Hilbert space R(S)/Ro.

Now, define the form b’ on R(S)/R¢ by

b [['], [y]] = % () = {2 y)),  (z,2)), (y.y)) €S, (3.13)

where [2'], ['] € Q(b) = R(S)/Ro. Notably, this is a well-defined symmetric
form: it is well-defined through an argument similar to that presented in the
proof of Lemma 3.2.12. Furthermore, b’ is a bounded form on Hg. Indeed,
for (z,2'), (y,y') € S, we see that

b (1), 1] = |5 (&'} = ()
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An application of inequality (3.10) then yields

(NI

b 2], [y')] | < (1 + tana) (Re (=/,z))* (Re (¢, y))* . (3.14)

Furthermore, the inner product given in equation (3.12) gives rise to the fol-

lowing equality:

([, [$/]>R(S)/%o = Re (', z), (x,2") € S.

Then, we may insert this equation back into the inequality (3.14) to conclude

that

b [[2'], [y']] | < (1 + tan )|l =) o 11 IRy 9%
= (1 + tan o) [[2)| a5 | Y1 25
since ||[2']||r(s)/:m, = I[2']l| s for [2'] € R(S)/Ro. As such, b’ is a well-defined
symmetric form that is bounded on R(S)/Ro. Its closure b’ (henceforth called
b) is then a well-defined, closed symmetric form that is bounded on Hg, and so
we may associate to it a bounded self-adjoint operator upon invoking the Riesz

Representation Theorem. In particular, there exists a self-adjoint operator Bg,

that is bounded on Hg, such that

b ([« ly]] = (Bsla'], [y )y, (z.2). (,9) €S (3.15)

This operator Bg is fundamental in the construction of the extremal maximal
sectorial extensions of S, as we will see in the subsequent definitions and
theorems.

First, we define the linear relation U C H x Hg by
U={(z,[2']) € Hx Hg | (z,2") € S}. (3.16)

The relation U is merely a modification of S: the second component is now
the corresponding element in R(S)/Mo C Hg. Next, define the linear relation
V C Hg x H by

V= {((I—i—iBs)[aﬁ’],x') € Hgx H ‘ (x,2") € S}, (3.17)

where I is the identity operator on Hg and Bg is defined as in equation (3.15).
Remark. If Bg is the zero operator on Hg, then VU = S.

The relations U and V' defined in this way enjoy several useful properties.
Firstly, U is the graph of an operator. This is evident upon letting (0,z') € S:
it is clear that 2’ will then lie in 2Ry and so [z'] = 0. Moreover,

mulV = {2’ € R(S) | (I +iBs)[2’] =0 and (z,2') € S}
= {2’ e R(9) | [2'] =0 and (z,2") € 5},
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since ker (I +iBg) = {0}. Indeed, let x € ker (I + ¢Bg). Then, since both I

and Byg are self-adjoint operators, for any y € Hg, we have

0= <(I+1B5)xvy>HS = <$7 (I_ZBS)Z/)HS = <xay>HS +Z<xaBSy>HS :
Upon specifying y = x, we see that

0= (z,2)y, +i(z, Bs7)p,,

>0 €RrR

since (-, -) g 1s an inner product. For this equality to hold, we must have that
both terms equal zero and, in particular, (z,x) = 0. Hence, z must equal 0,
and so ker (I +iBg) = {0}.

Upon further inspection, the set mul V' is precisely the set PRy since, for
' € R(S), we have [2/] =0 <= 2’ € Ry. Furthermore, the relation V* is
the graph of an operator, however we first need the following lemma before

we can prove this statement.

Lemma 3.2.14. Let M be a dense subspace of a Hilbert space H andT: H —

H a bounded linear operator. Then,

Proof. Verifying that R(T | M) C R(T) is immediate: as R(T | M) C R(T),
we have R(T | M) C R(T).
Conversely, to prove that R(T) C R(T | M), we begin by letting x be an

element in R(T"). Then, there exists a sequence in R(7T) that converges to
x or, in other words, there exists a sequence {y,} in D(T) = H such that
Ty, — x as n — oo.

Fix an n € N. Since M is dense in H, there exists a sequence {z, 1} in
M such that ||z, , — yn|| = 0 as & — oco. In particular, we may choose a
subsequence of z,j, such that [z, — yn|| < + for all n and k. We need to
show that there exists a sequence in R(T | M) that converges to z, i.e., there
exists a sequence {p,} in M such that Tp, — x as n — oc.

Let p, = 2pn. Then,

1Tpn — x| = HTzn,n —z|| = HTzn,n —Typ +Tyn — 2|
< Tznn — Tynll + [ Tyn — |l

< T Mznn = ynll + 1 Tyn — =]
17

<+ |[Tyn — x|,
n
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since T is a bounded operator. Then, upon taking n — oo, we see that

||

ITpo =l < =2+ [Ty =l 0,

verifying that there exists a sequence in R(T' [ M) that converges to x € R(T),

as required. [
With this lemma in hand, we may now prove the following statement.

Lemma 3.2.15. The adjoint relation V* of the linear relation V', as defined
in equation (3.17), is the graph of an operator.

Proof. To prove that V* is the graph of an operator, we must first prove that

V is densely defined, that is, D(V) = Hg. Since
D(V) = {(I—i—z’Bs)[x’] ‘ (z,2') € S},

this is equivalent to showing that

D(V) = R((I +1iBg) | R(S5)/Ro) = Hs.

Via the construction of the Hilbert space Hg, we immediately recall that the
space R(S)/MRo is a dense subset of Hg. Then, with Lemma 3.2.14 in mind,
we aim to show that R(I +iBg) is a dense subset of Hg instead.

The Rank-Nullity theorem as given in Theorem 1.1.20 is fundamental in
the proof: since I 4+ iBg is a densely defined, bounded (thus closed) operator

on Hg, we may conclude that
Hg =R(I +iBg) @ ker (I + iBs)*.

Therefore, if ker (I 4 iBg)* = {0}, then it must be true that R(I + iBs) = Hs.
However, we have already shown that the kernel of I + ¢Bg is trivial, and so
we may follow an analogous argument to confirm that ker (I 4+ iBg)* = {0}
too. Thus, we may conclude that R(I + iBg) = Hg and so D(V) is dense in
Hg after invoking Lemma 3.2.14.

Since D(V) is dense in Hg, it is then immediate that V* is the graph of

an operator upon recalling Lemma 3.1.7. |

Furthermore, the linear relations U and V are such that V C U* and

U C V*, as detailed in the following lemma.

Lemma 3.2.16. The linear relations U and V', as defined in equations (3.16)
and (3.17) respectively, satisfy:

vV CU* and UCV*.
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Proof. First, we examine the expression ([z'], (I +1iBg)[y])y, for elements
(x,2') and (y,y’) € S. Then,

<[$l]v (I + iBS)[y,DHS

I
~

2], (Y1) g, + [2)iBs[y])

2, y) +(z.y)) — i{Bsly'], 7D
7, y) + (z,y)) — b [ly], [2']]
((@"9) + (8) = ) + T 3)

z,y'), (3.18)

I
— —
7~ 7~

N =N =D =

~

courtesy of equations (3.12), (3.15) and (3.13) respectively.
Now, let (z,2') € S so that ((I +iBg[Z']),2") € V. Moreover, observe that
U~ is of the form

v ={(11)9) € Hs x H | {g,2) = (£, [¢]) , for all (w,[2')) € U}

Then, the element ((I 4+ iBg)[2'],2’) lies in U* if and only if the equality
(#/,x) = ((I +iBs)[#'], [x]) y, holds for all (z,[2']) € U. By unravelling the

right-hand side of this expression, we see that this is, in fact, true. Indeed,

(I +iBs)[2],a") = ([2'], [ +iBs)[]) g

S

by equation (3.18), showing that V' C U*.
Likewise, let (z,2') € S such that (z,[2']) € U and observe that

o) (T + B ), = (o)
for all ((I +1iBg)[z'],2") € V.

V=4 (f,19]) € H x Hyg

Then, (z,[2]) € V* if and only if the equality ([2'], (I +iBgs)[z']) , = (2,2')
holds for all (({ +iBg)[z'],2") € V. This time, the result is immediate from
equation (3.18), and so we may conclude that showing that U C V*. [

Since the adjoint S* of any relation S is closed and for any two relations
S and T', we have
SCT = T*CS*,

we see that Lemma 3.2.16 admits a useful consequence. The relation V* is the
closed graph of an operator, thus any restriction of V' is closable: in particular,
U is closable. Then, as V C U*, we have U = U** C V*. This inclusion

demonstrates that U** is also the closed graph of an operator. Furthermore,
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since the range of U satisfies R(U) = R(S)/Ro, it is clear that R(U) is dense
in Hg by its very construction; we may then conclude that R(U**) is dense in
Hg, since R(U) € R(U**). Moreover, it is then immediate that ker U* = {0}
by the Rank-Nullity theorem as given in Theorem 1.1.20.

The self-adjoint operator Bg and the relations U and V* are fundamental
to describing the extremal maximal sectorial extensions of S — the properties
that we described are imperative to the construction. Essentially, if we are
in possession of some closed linear operator T: H — Hg whose graph G(T')

satisfies
UCg(T) Ccvr,

then we can construct the extremal maximal sectorial extension of S associated

to T'. Formally, we have the following theorem.

Theorem 3.2.17 ([33, Thm. 8.4]). Let H be a Hilbert space and S C H x H
a sectorial relation with vertexr v = 0 and semi-angle o € [0, g) Furthermore,
let Bs, U and V' be defined by equations (3.15), (3.16) and (3.17) respectively.
There is a one-to-one correspondence between extremal maximal sectorial ex-

tensions S of S and closed linear operators T whose graph G(T) satisfies
UCg(T) cv™.

If S is associated to such an operator T, then

§ = G(T)"G(I +iBs)G(T) C H x H,

where G(T)* is the adjoint relation of G(T'). Furthermore, T induces the closed

form § which satisfies
Slz,yl = (I +iBs)Tz,Ty)
for elements x, y € Q(8) = D(T).

Since it was previously shown that the Friedrichs and Krein extensions
of S were extremal, one can ask how these extensions are to be constructed
using Theorem 3.2.17. Observe that since U C U** C V* U** is the small-
est possible closed relation that would make an appropriate choice for G(T').
Likewise, the largest valid closed relation is V* itself. Taking the graph of
the operator T to be either of these relations proves fruitful, as the following

theorem details.

Theorem 3.2.18 ([33, Thm. 8.3]). Let H be a Hilbert space and S C H x H

a sectorial relation with vertex v = 0 and semi-angle o € [O, g) Furthermore,
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let Bg, U and V' be defined by equations (3.15), (3.16) and (3.17) respectively.
The Friedrichs extension Sg of S is given by

Sp=U*G(I +iBg)U™", (3.19)
and the form sy associated to S is given by

sp [z, ] = <(I +iBg)U™z, U**y>H 1z, y€Q(sp) =DU™), (3.20)

S

where U** is the operator associated to U**. The Krein extension Sk of S is
given by
S =V*™G(I +iBg)V™, (3.21)

and the form sk associated to Sk is given by

sk [z,y] = <(I +iBg)V*, f/*y>H , x,y € Q(sk) =D(V"), (3.22)

S

where V* is the operator associated to V*.

We conclude this chapter by remarking that the Friedrichs and Krein ex-
tensions of a sectorial relation S are likely themselves relations rather than
graphs of an operator. This is clear: there is no guarantee that U will be
densely defined so U* would not be the graph of an operator. Conversely, it is
clear that V** may not be the graph on an operator — mul V' = Ry, after all.
However, equations (3.20) and (3.22) together are most illuminating. Since
U™ C V*, it must be true that D(U**) C D(V*). Then, when we consider
the forms associated to these two extremal extensions, we quickly uncover
that the form associated to the Friedrichs extension has the smallest feasible
domain, whilst the Krein, the largest! This revelation is consistent with the
construction of the Friedrichs and Krein extension as in Chapter 1, and so our

decision to study linear relations is, once again, vindicated.

87



Chapter 4

Maximal Sectorial Extensions

of the Discrete Laplacian

4.1 The Discrete Laplacian

The main results presented in [33], as expressed during Section 3.2.3, show
how one can construct all of the extremal maximal sectorial extensions of a
sectorial relation S. This result is abstract and general. In this section, we
apply such results to two particular examples as a means of providing insight
into the theory. The main motivation is as follows: if our sectorial relations
are of a specific form, then can we say more about their extremal maximal
sectorial extensions?

In all that follows, we will work in the ambient Hilbert space H = (2,
and make reference to the subspace of £ whose elements have first component
equal to zero, i.e.,

tg={xel®|z=0}.
Consider the operator J: £2 — ¢2 such that
(Jx)y = =A(Axp—1) = —Zpt1 + 2Tp — Tp—1,

for all n > 0. This linear operator — known as the Discrete Laplacian, at
least, up to a shift — has many favourable properties: it is closed, densely
defined, and bounded. Furthermore, J is self-adjoint and its spectrum o (J) is

precisely the closed interval [0,4] as shown in the following lemma.

Remark. In Chapter 2, our attention was on operators of the form
(Tz)n =-A (pnflAl'nfl) + GnTn, HANS 627

for two real sequences {p,} and {g,} with p, > 0 for all n € Ny and p_; = 0:

we can express J in this form too. To be consistent with this convention, we
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should take p, =1 for all n € Ny, whilst {g,} is the sequence with ¢, = 0 for
n > 1 and gop = 1. This is clear upon expanding (T'x),: indeed,

—A (pn—len—l) + nTn = —PnTpy1 + (pn + Pn—1+ Qn)xn — Pn—1Tn—-1-

However, we may equivalently set p, = 1 for all n > —1 and ¢, = 0 for all
n € Ny. Both of these forms have value, and so we draw special attention to

it here.

Lemma 4.1.1. The operator J: (> — (2, where (Jx), = —A(Az,_1) for all
n > 0, is self-adjoint. Moreover, the spectrum of J is given by o(J) = [0,4].

Remark. Although this result is well known, we choose to present the proof
in full detail because it introduces fundamental techniques and concepts that

will be used throughout the chapter to come.

Proof. First, we show that J is self-adjoint. Then, consider the equality

(Jo,y) = (z, J"y),

for z € D(J) = ¢? and y € D(J*). We aim to use the summation by parts
formula, as expressed in Lemma 1.3.3, on the left-hand side twice to obtain an
expression for J* before determining the elements for which it is valid. Then,

for some fixed N € N, we have

N N
n=0 n=0
N
= — |AzyTn 1 — Ar Ty — Y AznAg,
n=0
N
= —ArNYng1 + DraFo + Y Az Ay,
n=0

Additionally, we have

N N
Z ArnAY, = eN+1AY N1 — T0AYo — Z Tn+1A(AY,)

N+1

= IN+1AYN+1 — T0AYo — Z T A(AY,_q).

n=1
Note that
—20A(AY_1) = Az_17y — T0AYy,

so we may conclude that

N N+1
> (J2)nTn = —ArnGn1 + TN DTN — Y 2nAAT, ). (41)
n=0 n=0
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Observe that for any two sequences {z,} and {y,} that lie in 2, we have

IAzNT N 1| < o TNl + 28T vl

<lzns1l? 420G P+ w2,

by means of the binomial formula. Then, the terms on right-hand side tend

to 0 as N — oo by virtue of the sequences lying in £2. Hence
i AT =0

Likewise, limy 00 TN 41A%x41 = 0. Then, upon taking N — oo in equa-
tion (4.1), we see that

<Jx7 y> == Z mnA(Ayn—l) = Z J,‘n(Jy)n
n=0 n=0

As this equality holds for any y € ¢2, we may conclude that J = J*.
In order to determine the spectrum of .J, we first recall the spectral equa-
tion:

Jxr = Az, reC.

Then, we are able to determine the spectrum of J by using subordinacy theory
— we will investigate the growth of the fundamental solutions to this equation,
in conjunction with [38, Thm. 3]. We can fully characterise the spectrum of
J after checking which, if any, of the solutions are subordinate: essentially, we
wish to identify the solutions that decay. In particular, we have the following

three fundamental statements:

e if there exists a decaying solution to the equation Jx = Az and it satisfies
the initial condition, then A belongs to the spectrum. Moreover, A is an

eigenvalue.

e if there exists a decaying solution to the equation Jx = Az but it does

not satisfy the initial condition, then A does not belong to the spectrum.

e if there does not exist a decaying solution to the equation Jx = Az then

A belongs to the spectrum, however X is not an eigenvalue.

Then, with this result in mind, we merely have to analyse the growth of the
solutions to the spectral equation in order to prove that o(J) = [0,4]. First,
we note that

—x1 + 2z0 = Ax, n =0,

—Tpyl +2Tp — Tpo1 = ATy, n2>1,
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implies that
x1 = (2 — Nz, n =0,
Tnt1 = (2= Nzy —2p_1, n>1

Then, we may introduce transfer matrices to conclude that, for n > 0,
Tn B 0 1 Tp—1
Tpt1 -1 2—-A Tn,
n
. 0 1 To
-1 2-x) \a/)

: - . : 0 1
Since the characteristic polynomial of the transfer matrix M = L9y
is given by

det (M — X)) =(—2)2-A—2)+1=22—2(2-\)+1,
the eigenvalues z1 are precisely the solutions to the characteristic equation
22— 22-N)+1=0.

Then,

L2 AEVA-A+ N -4 2-XE£/AA—4)
= 2 - 2 )
and, notably, satisfy zyz_ = 1. Clearly, if A € C\ {0, 4}, then the two

2+

eigenvalues are distinct.

Since z4z_ =1, either
lz4] =]2=| =1 or |z4+| > 1 and |z_| < 1. (4.2)

Note that we may simply relabel the solutions if this is not the case. We begin
by assuming that |zy| = |z_| = 1. Then, as |z;| = 1, we may set z; = e for

some 6 € [0, 27). Hence,

1 1
Z_:—:W:e*19:§+
Z4 (&
Furthermore, z_ =z, implies that

2y +2- =z +7Z =2Rezy

and

_2—)\+«/)\()\—4)+2—)\—\/)\()\—4)_2 \
2 2 e

Zy +z- =
Together, these two equalities show that
lz4| =]2-] =1 = A=2-2Rez;. (4.3)
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In particular, A is necessarily real-valued — if A € C, then we must have that
|z+] > 1 and |2—| < 1 instead. However, this is clearly not true for every
A € R: we must determine which values of A ensure that |z | = [z_| = 1. In
fact, this is true precisely when A € [0,4]. Indeed, it is clear to see that when
A=0and A =4, we have z+ = 1 and 24 = —1 respectively. Furthermore, if
0 < X\ <4, then \/A(A—4) <0, and so

2- A+ V/AM—D| [2=A+i/AE=N)
2 2

\/4—4A+/\2+4)\—)\21
- ; -

Y [CERSRpCESY

- 4 4

On the other hand, if A € R\ [0,4], then /A(A —4) > 0; this shows that
z4 is entirely real, and so equation (4.3) will not hold. Hence |z4| # 1. As
such, we have accounted for the entire complex plane and so we may conclude
that the four sets I; = C\ [0,4], I = (0,4), I3 = {0} and I, = {4} exhibit
radically different behaviour, and so they must be considered individually.

If e I; = C\ [0,4], then we know from (4.2) that there exists a decaying
solution. However, the initial condition given by z1 = (2 — \)z¢ will not be
satisfied, as a self-adjoint operator cannot have complex eigenvalues. Hence,
if A € Iy, then A does not belong to the spectrum of J. On the other hand,
if A € Iy = (0,4), then neither solution will decay. As such, it is immediate
that these values of A belong to spectrum of J. Finally, when A =0 or A =4,
we have \/m = 0 and so the eigenvalues of the transfer matrix M are
repeated. However, we readily observe that the general solution to the spectral
equation is given by x, = ¢1 + con and x, = (=1)" (¢1 + c2n), for constants
c1 and ca, respectively. Since neither of the fundamental solutions decay, we
see that A = 0 and A = 4 also belong to the spectrum. Thus, having now
accounted for all values of A\ € C, we may conclude that o(J) = [0,4], as

required. |

Remark. The spectrum of J is clearly real. However, [38, Thm. 3] also shows

that o(J) is entirely continuous, i.e., o(J) = o.(J) and J has no eigenvalues.

Let J be the restriction of J to the domain D(J) = £3, that is, J | €2 = J.

Then, the two relations of interest to us are defined as follows:
Si={(z,Jz) € x £* | x € £*}
and

52:{(x,jx)€€2x€2’x€€g},
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where J = J | £ and (Jz), = —A(Ax,_1) for n > 0. Observe that S
and Sy are the graphs of the operator J and J respectively. Furthermore, we
stress that we are to interpret Sy as a relation from £2 to £% and, in particular,
Sy C S since E% C /2.

These relations were chosen specifically: S; is perhaps an obvious choice
for some second-order difference operator J, whereas the adjoint relation of S
will be multi-valued, since £3 is not dense in 2 — we will be able to see how
linear relations play a part in the theory. The chapter to come will be divided
as follows. First, we will construct the Friedrichs extension, S r, and Krein
extension, 51, of S1 by utilising Lemma 3.2.10 and Theorem 3.2.8, before
working through analogous computations for S p and S g — the Friedrichs
and Krein extensions of S3. Once we are in possession of these extensions, we
aim to utilise Theorem 3.2.17 to both corroborate our findings and express all
extremal maximal sectorial extensions of S7 and Ss. Since we merely apply the
theory to these specific examples, we conclude this chapter by reflecting upon
the theory and computations presented; in particular, this outlook addresses
more general class of second-order difference operators J and potential future

works.

4.2 The Friedrichs and Krein Extension of S;

During this section, we aim to construct both the Friedrichs extension and the

Krein extension of S7, where
Si={(z,Jz) e P x * |z € ?}, (4.4)

for the second-order difference operator J, where (Jz), = —A(Az,_1) for
n > 0. Whilst the results of Sy will be of little surprise to experts in the
field, the constructions demonstrate how to proceed in the simple case and
will prove enlightening for the more interesting, complicated example So.
First we must verify that this relation is actually a reasonable choice: can
we apply the relevant theory to S17 To begin with, we show that S is a
sectorial relation with vertex v = 0 and semi-angle o € [0, %) — we may then

associate to it a well-defined, closable sectorial form via Lemma 3.2.10.

Lemma 4.2.1. The relation S1, as defined by equation (4.4), is sectorial with

vertex v = 0 and semi-angle o € [O, g)

Proof. In order to show that 57 is sectorial with the required vertex and semi-

angle, we simply need to show that

|Im (Jz,z)| < (tana) Re (Jz, )
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for all (z,Jx) € S;. To do this, we apply the summation by parts formula

given in Lemma 1.3.3 to the expression (Jz,z). Indeed, observe that

N N
> (J2)nTn = — Y A(Azy1)Tn
n=0 n=0

N
= — AZ‘NTN_H — Az_1Tg — Z Az, AT,
n=0

N
= —AeNTn11+ Y [Aal” + [,
n=0

after recalling that x_; is defined to be 0. By taking N — oo, we see that

[e.9]

(Jz,a) = 3 [Awaf? + o,

n=0
since limy_00 AxNZn4+1 = 0.

Clearly, (Jx,z) is an entirely real, positive quantity, verifying that
0= |Im (Jz,z)| < (tana) Re (Jzx, x)

for all (z,Jx) € S1. Thus S; is a sectorial relation with vertex v = 0 and any

semi-angle o € [O, %) |

Remark. We will take o« = 0 since this provides the most information: under

this construction, the numerical range lies exclusively on the positive real axis.

In fact, the computations within this proof lead nicely into the following
section. We have shown that we can associate a well-defined, closable sectorial
form to S7 by means of Lemma 3.2.10; the closure of this form is instrumental
in the construction of the form s; g associated to the Friedrichs extension S r.

The next section aims to construct S; r by following this argument.

4.2.1 The Friedrichs Extension of 5

Since the linear relation S; defined by equation (4.4) is a sectorial relation, we
continue by defining the form s; associated to it. In particular, the form s;
has form domain Q(s1) = D(S1) = £? and is defined by

S1 [.T,y] = <J'T7y>

=Y A Ay, +aof,  (2,J2), (y,Jy) € S,

n=0
after an application of the summation by parts formula, as we demonstrated
in the previous section. The closure of this well-defined sectorial form is then
s1,r: the form associated to the Friedrichs extension. The following lemma

shows that s; is already closed, i.e., 81 = s1 F.
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Lemma 4.2.2. The form sy with domain Q(s1) = 2 is a closed form.

Proof. Let z € % and let {x,} be a sequence in Q(s;) such that z, —, =.
The proof then consists of two steps: we must show that 2 € (s1) and that
s1|tn —x, 2y, — 2] = 0 as n — oo.

The first step is trivial: since the form domain of s is £2, there is nothing
to show. Now, in order to verify that the second condition holds, we will
consider the expression |sy [z, y] | and show that it is bounded. Hence,

o0

> [Aanyn] + 207

n=0

[s1 [z, yl] =

o0

Z |:xn+1yn+1 — Tp4+1Yy — TnYpt1 + xnyn:| + x0Y
n=0

o0

<> [!xnﬂyw! 1T 1G] + |2 | + lxnynl] + 207l
n=0

o0

-y {\xnym T lenpTal + [aGnsn| + 2Tl ]

n=0

We may then set &, = xp41 and 4, = ynt+1 and use the Cauchy-Schwarz

inequality to conclude that

[s1 [z, gl | < 2[lz[l[lyll + 1Z[[[[yll + [l=[l7]
e

Using this inequality, we can see that
|s1 [ — 2,2 — 2] | < 4|z — 2|

However, we know that x,, — x in ¢? since z,, —s, ¥, and so ||z, — z||*> = 0,
proving that

Is1 [t — 2, 2n — ]| = 0
as n — oo. Hence, s7 is a closed form. |

With this lemma in hand, we may then conclude that sy = sy r. As such,
the maximal sectorial relation associated to sy g is the Friedrichs extension
of S1. As was discussed during Section 3.2.2, we may construct the unique
maximal relation associated to a closed sectorial form by following the steps
outlined in the proof of Theorem 3.2.8; the remainder of this section is devoted
to following this construction in a manner consistent with Section 3.2.2.

Immediately we note that (Q(s1,r), || - [ls, ) is a Hilbert space, where the

norm | - ||s; p is induced by the inner product given by
<xay>slyF = S1,F [JZ, y} + <.’IZ, y> ) T,y € Q(SI,F) - 627
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since (s1 F)re = s1,F. Let §1 ¢ be the form such that
Sir=sip+1 and  Q(1r) = Qs p) =~

This form is bounded in (Q(s1,r), || - [[s; ¢ ), 0 there exists a bounded linear

operator By: Q(s1,r) = Q(s1,r) such that

§l,F [$>y] = <le’y>51,F ) z, Yy € Q(SI,F)' (45)

If we rewrite both sides of equation (4.5), then it can be seen that

S1F [z, yl =s1F [z, Y]l + (z,y)

and
<B1$, y>51,F = SLF [leay] + <qu’.7 y> .

Therefore, we may take B; to be the identity operator on Q(s1F) = ¢2. Then,
with the operator B; firmly established, all that remains is to construct the
operator A; as described in Section 3.2.2. Once we have done so, the unique
maximal sectorial relation associated to sy g will be given by the set whose
form is given in equation (3.7).

Let k, @ € Q(s1¥) and w € £? and recall equation (3.5), that is,

(k,w) = (k,w)

S1,F °

Our objective will be to express @ in terms of w, knowing in advance that
Aw = B{to = .

In particular, we have that

> knton = sy [k, @] + (k, @)

n=0
00

= [Akn Ay, + knlyn] + kolo. (4.6)
n=0
Thus, we need to isolate k, by making use of the summation by parts formula.

Then, the finite sum Zﬁ[zo Ak, Ad,, can be rewritten as

N N
Z Akp Ay = AdN 1k 1 — Adoko — Z (k1 A(AG,)]
n=0 n=0
B B N+1 B
= ADN 1hn1 — Adoko — Y [knA(ADy1)]
n=1
= Awnpikng1 — Z [knA(ADyp—1)] — kowo,
n=0
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by shifting the indices in the summation and recalling that both k_1 = 0 and

W_1 =0. If we let N — 00, then we see that

> Ak ALy == [knA(ADy-1)] — Koo,
n=0 n=0

since
lim AEN+1]€N+1 =0.
N—o0

By inserting this result back into equation (4.6), we see that
oo o . .
D kn@on =Y kn [~A(ADy 1) + D)
n=0 n=0

. —w1 + 3w n=2~0
or, in other words, w, = X ’A X ’
—Wpt1 + 3wy —wWp—1, n>1

We are now in possession of a second-order recurrence relation which ex-
presses wy, in terms of @w,, for all n € Ny. We aim to solve the associated
homogeneous recurrence relation before constructing a particular solution to
the system. By using the variation of constants technique we will, in fact,
derive an expression for w, in terms of w,, just as we require.

Then, we begin by noting that the associated homogeneous equations is
given by:

(;Jl = 3(:)0, n = 0,
Wnt1 = 3Wp — Wp—1, n > 1.

We can proceed by rewriting this system of equations by, once again, intro-

ducing transfer matrices. Then, for n > 0, we have
Wn \ [0 1) [wna
Wna1 -1 3 W,
n
(0 1 @o
-1 3) \&1/)

Since this recurrence relation has constant coefficients, the general solution is
given by

Wp = AL + e, n >0,

-1 3
and ¢; and co are constants to be determined. By solving the characteristic

0 1
where A and A_ are the eigenvalues of the transfer matrix M = ( ),

equation
det(M — X)) =0

345

for A, we see that the eigenvalues of M are given by A+ = ==
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Now that we are in possession of the homogeneous solution, we are able to
construct a particular solution by using the variation of constants technique

as described in Lemma 1.3.4.

Remark. Note that we can express our recurrence relation in terms of a Jacobi

operator. In particular, we see that the homogeneous problem is equivalent to

3 -1 wo
-1 3 -1 1
-1 3 -1 ol |0

This equation has a fundamental system of solutions given by {p, v_}
where (), = A.. Then, a particular solution @ of the equation J& = w can
be constructed using the variation of constants formula. In particular,

A\ Wy lwr
Z W g0+, Z W ‘P-‘r? )

where W, (¢4, p—) denotes the Wronskian between ¢4 and ¢_, i.e.,

AL

Wi (o4, 0-) = |

Note that, in our case, W,.(v4,p_) = —+/5 for all » > 0. Furthermore, when
n = 0 the summation from r = 0 to n — 1 collapses, and is to be interpreted
as 0.

Now that we are in possession of the general solution to the homogeneous
system of equations and the particular solution, we may assert that @ is of

the form

Wp = A + 2\ — [)\" Z)\TWT—)\ Z)\+wr] , n >0,

where ¢; and ¢g are constants to be determined.
Before we find ¢; and cs, it is imperative to state that we require @ to lie in
Q(s1.F) = % since |A;| > 1, we must be mindful of the growth of particular

terms. As such, we find it sensible to collect terms as follows:

n—1
Gy = A2 [cl—\%ZAwr ZA+wT].
r=0

Then, as A1 is dominant in the first term, we must choose ¢ appropriately to

+ A
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ensure that @ € Q(s1,r). If we choose ¢; = % Yot o A wy, then
1 [e'e) 1 n—1 1 00

A —= A ow, — — MNwp| =21 | — A w,

g e e

= \}3 i/\’f"wr < 00,

showing that the problematic term now lies in ¢2. Therefore

IZAM AT 4 e\ — [AﬁZArwr—/\”Z)\err], (4.7)

for n > 0. Finally, we can find cs by using the initial condition given by

W, =

—w1 430y = wy. After substituting n = 0 and n = 1 into the above expression

for w,,, we may eventually conclude that

1 o0
C2 = _)\2_ — AN ow,| .
[ﬁ§ ]

Hence,

o0

for all n > 0, or, alternatively,
AT >

ﬁ) X = [Az S N - ZAM] . (4.8)

Now that we have found @ in terms of w we can assert that the maximal

sectorial relation S1 r associated to s is given by
Sir = {(Aiw,w — Aw) | w e #},

where (Ajw),, = w, as given by equation (4.8).

Whilst this is a valid representation of the Friedrichs extension S; r of St,
we conclude this section by finding an alternative — arguably, more useful —
representation that it enjoys. First, we note that (J + I)w = w. Then, since
J is a non-negative operator, J + I is strictly positive and so is, additionally,

invertible. As such, @ = (J + I)"!w. Then,
Sir={((J+ D 'ww—(J+1)'w) |we?}
={((J+D'w,(I-(J+DNw) |we?}.
Let (J+1)"!w = x for some element x € R((J+1)"!) = D(J+1) = ¢2. Then

(J+ 1)z =w, x € 2.
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We can then insert this sequence into Sy r to see that

Sip={(z,(I -+ (J+1D)z) |z e *}
—{ (J+1)x— Ix) }xeﬁQ}
:{x,J:U ‘:BGKQ}.

Hence, the Friedrichs extension of Sp is S itself, that is, S1 7 = S1. This is
believable: Sp is the graph of a densely defined operator that is of limit-point
type, and therefore as an operator coincides with its Friedrichs extension.

Then, the graph of this extension is precisely the linear relation S; p.

Remark. If we were to investigate this theory in the continuous setting instead,
then the shift operator A would correspond to the differential operator in
L?([0,00)). Notably, the form a associated to the Laplacian V? with Dirichlet
boundary conditions in one-dimension, that is, functions that vanish at z = 0,

would be given by

alf.gl = (V2f,g) = /0 T g de = /O g de,

after an application of integration by parts. Naively perhaps, it may then

seem natural to begin with the form

S1lz,yl =) AwnAy,, x,y€QBE) =0,
n=0

instead — effectively ‘replacing’ any instances of the first derivative with the
shift operator. With this form in mind, we can now construct the maximal
sectorial relation associated to 81 by following the argument above closely. In

particular, we arrive at the following system of equations that must be solved

{ —w1 + 20, n =20,
Wnp =

instead:

—Wnt1 + 30n —Wp—1, n>1.
Many computations can be repeated without fear, but we draw particular
attention to the new initial condition —&q + 2wy = wgy. In fact, this is the
only detail that we must be mindful of: all that changes is the constant co in
equation (4.7). Then, we assert that the maximal sectorial relation associated
to form 8 is given by equation (3.7), where Ajw = & and

N

@n:ﬁ A w, + A Z)\Twr+2)\+wr , n > 0.

To more closely mimic the case of the differential operator with a vanishing

r=n

boundary condition at 0, in Sections 4.3 and 4.4 we will consider a Jacobi
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operator whose domain consists of those sequences with first component equal
to zero. Unlike in the differential operator situation however, this leads to a
non-densely defined operator. Then, we must make use of linear relations in

order to analyse its extensions.

The remark above serves two purposes: it simultaneously highlights the
difference between the chosen sectorial form and, perhaps, a more natural form
as well as demonstrating the intimate connection between the continuous case.
However, as we have only constructed the Friedrichs extension of S so far, we

devote the next section to finding the Krein extension of the relation Sj.

4.2.2 The Krein Extension of 5

This section aims to construct the Krein extension of the relation S as given at
the beginning of Section 4.2 by means of the definition detailed in Section 3.2.2,

ie.,
-1

Sk = ((S™Hr)

Upon untangling this definition, we see that the first step in constructing the
Krein extension of a given relation S is to find the inverse relation S~'. Then,

for the relation S given by
Si={(z,Jz) e P x * |z €’}
where (Jz), = —A(Axz,_1) for all n > 0, we see that
St ={(Jz,x) e P x * |z € }.

Furthermore, since S7 is sectorial, it is clear that S| Lis too; thus, we may
associate to this relation a well-defined, closable sectorial form. As such, we

introduce the form
sl_1 [Jz, Jy] = (x, Jy), (Jz,x), (Jy,y) € Sl_l, (4.9)

where Q(s7) = D(S;!) = R(J), by means of Lemma 3.2.10. Since this form
is closable, let s 1, be the form with domain Q(s; ) such that slf1 =s;p- In

particular, we have that
SI} [Jz, Jy] = (x, Jy) (4.10)

for Jx, Jy € R(J). Note that this form is not explicitly specified for elements
in Q(syx) \ R(J).

It is difficult to investigate SI}? in its current form since the left-hand side

of equation (4.10) involves Jz and Jy. As such, we aim to show that the
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operator J~! exists on an appropriate domain since the expression SI}; [u, v]
is considerably more manageable.

From Theorem 1.1.20, the Rank-Nullity theorem states that
2 =R(J) @ ker J*

R(J) @ ker J,

since J is a densely defined, self-adjoint operator on ¢2. First, we determine
the kernel of J. From the proof of Lemma 4.1.1, we know that the general
solution to the equation —A(Ax,_1) = 0 is given by x, = ¢1 + con for all
n > 0, where ¢q, co € C. Since 1 remains constant and n grows as n — 0o, we
are forced to choose ¢; = ¢ = 0 in order to ensure that x,, lies in #2. As such,
it is clear that ker J = {0}. Then, as the kernel of J — thus J* — is trivial,
we see that R(J) = £2. In other words, R(.J) is dense in 2

This argument serves multiple purposes once we begin to consider J~! as

the resolvent operator of J at A = 0. In particular, we have
Ro(J)=Jg ' =77,

and so we are able to determine what properties J ! possesses upon referencing
Definition 1.1.11. Immediately we assert that J ! exists as an operator from
R(J) to D(J) since ker J = {0}, where R(J) is dense in ¢2: both (R1) and
(R3) hold. Then, as 0 € o(J), it must be true that (R2) fails, else we arrive
at a contradiction. As such, J~! is an unbounded operator. Furthermore,
since J is a closed operator, J~! is also a closed operator. Then, as J~! is
closed but unbounded, we may invoke the Closed Graph Theorem (see, for
example, [43, Thm. 4.13-2]) to conclude that R(J) is not a closed set in ¢>
and so R(J) # £2.

Now that we have established that J =1 exists on R(J), if Jz = u for some
x € D(J) = % and u € R(J), then we may write x = J lu. In particular,

equation (4.10) can be rewritten as
sipluv] = (J7u), u v e R(J).

In fact, this equality actually holds for all u € R(J) and v € Q(s]}), as we
now show. Let u € R(J) and v € Q(s]§). By Definition 1.2.6, there exist

sequences w, € ¢? such that Jw, — v in ¢? and

sy [u 0] = lim syt fu, Jun] = lim (7', Jw) = (7w, v).
Hence
s;}; [u,v] = <J*1u,v>, ueR(]), ve Q(SI%) (4.11)
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As this representation of the form is more suitable for our analysis, we now
continue by following the construction presented in Section 3.2.2 to find the
Friedrichs extension (S;1)r of S;!. Note that we choose to omit the brackets
in future: (S;1)r = S p-

. . -1 . .
We begin by noting that (Q(s; ). [|- HSI:LF) is a Hilbert space, where |- HsilF

is the norm induced by the inner product given by

(@ y)sr1 =sip .yl +(z,y), @, y€Q(syp)

-1 -1 - . .
Here, we remark that (SLF)Re = 81 f since the closure of a real form is again

1 is clearly real by means of equation (4.9). Next, we introduce the

real — s
new form 8] 1 = s] 5 +1 with domain Q(8] k) = Q(s; p). Then, in accordance
with Theorem 3.2.8, there exists a bounded operator By on Q(SI};) such that

gi;‘ [:U: y] = <B1$7 y)g{i, )

for all z, y € Q(SI},) Upon rewriting this equality, we see that

SI}‘ [l’,y] + <$,y> = <B1xay>

SUE
= Si]]:i‘ [Bl.iE,Z/] + <B1.Z‘, y> 3

and so we may set B; as the identity operator on Q(s;iﬂ)

Now, let k, @ € Q(SI;) and w € ¢? and consider the following equality:

(k,w) = (k@) 1 .

S1F
We hope to determine the relationship between w and @ by expanding both
sides of this equality. In fact, if we specify that k € R(J) C Q(Siiﬂ), then we
may explicitly unravel the right-hand side of this equation. In particular, for
k € R(J), we have

i knty, = i(rlk)n@n + i Enln,
n=0

n=0 n=0
= i (J7'+Dk), @ (4.12)
n=0

Now, introduce a new sequence h such that h = (J~1 + I)k; clearly, h lies in
R((J~1+ 1) | R(J)). Then, as k € R(J), there exists a u € D(J) = ¢? such
that Ju = k. Hence

h=J '+ Dk=J '+ 1)Ju=(J+1)u,
and so h also lies in R(J + I), that is,
R(JY+1) I R(J)) CR(J +1I). (4.13)
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As (J + I) is invertible, we may conclude that (J + I)"'h = u. Then, by
applying J to both sides of this equation, we see that

JJ+Dth=Ju = (J+I-DJ+I)"h=Ju

Hence
(I—(J+D)Hh =k

If we insert this equality into the left-hand side of equation (4.12), we see that

i((f —(J+ D)) h)nton = ih,@n (4.14)
n=0 n=0

for h € R((J~1 + 1) | R(J)). Then, by utilising inner product notation, we
see that

after recalling that J is a self-adjoint operator. By combining this with the

right-hand side of equation (4.14), we may conclude that
(h,(I-(J+D) " w) = (h,a),
implying that (I — (J 4+ 1)~')w =@ if the set X;, where
X1 =R((J 1+ 1) R(J)), (4.15)

is dense in £2. The following lemma will show more than this: we show that

X is, in fact, ¢2.
Lemma 4.2.3. The set X1, as defined by equation (4.15), is equal to /2.

Proof. Firstly, we show that X; = R(J + I). In fact, equation (4.13) shows
that X7 C R(J + I), so we begin by verifying the converse.

Let x € R(J + I). Then, there exists a y € D(J + I) = D(J) such that
= (J+I)y and z = Jy for some z € 2. As such, we have

r=J+Ny=J+DJ 2= +1)z

In fact, as z € R(J), we see that z € R((J~* + 1) | R(J)), as required.
Now, as the spectrum of J + I is simply a shift of o(.J), we assert that
o(J+1)=1[1,5]. In particular, —1 ¢ o(J + I), and so we conclude that the
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resolvent R_1(J) = (J + I)~! is a bounded operator that is defined on a set
that is dense in ¢2. Since (J + I)~! is bounded, it is necessarily a closed
operator, and so D((J + I)™1) = R(J + I) is closed via the Closed Graph
Theorem. As such, R(J + I) = £? since this is the only set that is both dense

and closed, as required. |

Therefore, we are now able to determine the operator A;: ¢2 — Q(SI}?) as

defined through equality Ajw = @. In particular, we have that
Ay=1—-J+D!
With this relationship in mind, we note that the Friedrichs extension 51_, 11; of
Sy 1is given by the set
Si},: {(Alw w—Aw) ‘ w 662}

={({I-(J+D Nww-—T-T+D) Nw) |we*}

={({U-(T+D Nw,(J+1D) 'w) |we?}.
To find S1,x we simply take the inverse of this relation. Hence,

Sip) =Sk ={((J+ D w,I-(J+ D) ) |wer’}.

However, as (J+1)~! is a linear operator that maps into D(J+1) = 2, we may
set (J +I)"lw = z for some sequence = € ¢? and, in particular, w = (J + I).

By making this substitution, we are able to simplify S; x considerably. Then,

Sl,K = {($,(I—(J—|—I) )(J—I—I ) ‘ x 652}
={(z,Jx) |z € 2} =5.
Notably, the Friedrichs extension S7 r and Krein extension Sy i of S7 coincide,

that is:
Si,r=S1,k =51

We conclude by remarking that the arguments presented in Section 4.2
serve as a template for the following section, where we aim to construct both
the Friedrichs extension and the Krein extension of a different, yet similar,

linear relation.

4.3 The Friedrichs Extension of S,

This section exists as a counterpart to Section 4.2.1; we aim to construct the

Friedrichs extension of Sy, where

Sy = {($, Jz) € 1% x (2 ‘ x € 63}, (4.16)
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for the second-order difference operator .J, where (Jz), = —A(Az,_;) and
€2z{x€€2 ‘ moz()}.

Since this section will follow the structure of Section 4.2.1 closely, we must first
verify that this relation is, in fact, sectorial with vertex v = 0 and semi-angle
a € [0, g) Since the arguments remain the same, we present condensed ver-
sions of the proofs when appropriate; however, we endeavour to call attention

to any notable differences between the two sections for maximal insight.

Lemma 4.3.1. The relation S, as defined by equation (4.16), is sectorial

with vertex v = 0 and semi-angle o € [O, g)

Proof. In order to show that S, is sectorial with the required vertex and semi-

angle, we simply need to show that
‘Im <ja:, x>‘ < (tana) Re <j:p, x>

for all (z, jm) € S9. However, we have already shown that this inequality
holds for all elements in S7 during Lemma 4.2.1. Since Ss is a subset of S,
it is then immediate that Sy is a sectorial relation with vertex v = 0 and

semi-angle o € [O, g) [ |

Remark. Once again, we will take o = 0 as this provides the most information:

the numerical range lies exclusively on the positive real axis.

Since S5 is a sectorial relation, we may associate to it a well-defined, clos-
able sectorial form sg by means of Lemma 3.2.10. If we continue by taking
the closure of this form, then we will be in possession of s p — the form
associated to the Friedrichs extension of So. This time, however, the form sg
has form domain Q(s2) = D(S2) = £ and is defined by

sz [x,y] = <j:c, y>

= ZAmnA@m ('CC’ jw)? (ya jy) € Sy,

n=0
after an application of the summation by parts formula. Although the form
domain is different to that of sy, the following lemma proves that sq is also

already closed, that is, s = sa F.
Lemma 4.3.2. The form sy with domain Q(s2) = €% is a closed form.

Proof. Let x € % and let {x,} be a sequence in Q(s2) such that z, —s, =.
As before, we must show that z € Q(s2) and that sg [z, — z,z, — 2] — 0 as

n — oQ.
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Firstly, if z, — x € £2, then it is clear that the first component of x equals
0. As such, it is immediate that € Q(s2). Then, it is easy to verify that

Sg [Tn — x,zy, — 2] — 0 as n — oo by following the proof of Lemma 4.2.2. W

This lemma allows us to conclude that so = sz g and so the maximal
sectorial relation associated to sg F is the Friedrichs extension of S>. This
time, (Q(sz,p), || - [lso) is the Hilbert space of concern to us, where || - [|s, &
is the norm induced by the inner product given by

<$7y>32YF = S2.F [CC, y} + <LU, y> ) T,y € Q(S2,F) - f%

Let 82  be the form such that

~

§2,F =SaF + 1 and Q(Sz’p) = Q(SQ,F) = &2)
This form is bounded in (Q(s2,r), || - [[sox ), S0 there exists a bounded linear
operator By: Q(s2,r) = Q(s2,r) such that
SoF[r,y] = (Box,y)g, ., @,y € Qs2F). (4.17)

Observe that the left-hand side of equation (4.17) can be expressed as

§2,F [1’73/] = S2.F [x7y] + <$,y> )

whilst the right,

<B2$, y>52,F = SZ,F [B2$7 y] + <B2x7 y> .

By comparing these two expressions, it is then clear that we may set By to be
the identity operator on Q(s2 ) = ¢3. Thus, with the operator By in hand, all
that remains is to construct the operator Ao — the unique maximal sectorial
relation associated to sp ¢ may then be obtained from equation (3.7).

Let k, @ € Q(s2¥) and w € £2. As before, we wish to use the equality

(k,w) = (k,w)

S2 F
to express @ in terms of w. Then, Ao will be the operator such that
Agw = By'o = .

Although we will follow the same calculations as before, we must be mindful

and accommodate the additional condition that kg = @wg = 0. As such,

> knton = sar [k, @] + (k, @)

n=1

= [AkyADy + knn]

n=0

=k [~ A(AGy—1) + @]
n=0
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after an application of the summation by parts formula. This alteration com-
plicates the analysis slightly because we are not able to accrue any information

about wg. However, we may still conclude that

wo, n = O7
Wn = —Wn+1 + 3Wn, n=1, (418)

—Wnt1 + 3Wp —Wp—1, N2> 2.

In order to circumvent this issue, we must make use of the fact that Ao is

a linear operator. In particular, we know that

(k,w) = (k,w)

S2.F

= S2.F [k,d)] + (k,d}>
for all k, & € Q(s2¥) and w € 2. Then, by setting k = & we see that
(W, w) = s2F [0, W] + (0, w)
= 1AG P + [l
n=0
If we set w = (1,0,0,...), then it is readily observed that

o0
0= A&+ [l&ll?,

n=0

which can only be consistent if @ = 0. Thus,

1
A = ,
“I 10
and, by linearity,
c 0
A 0 A 0 0 (4.19)
2 0 = CA2 0 - 0 ) .

for ¢ € C. Since we may decompose any sequence w € ¢? into

wo wo 0
w1 0 w1

w = = —|— 5
w2 0 w2
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by linearity, it must be true that

wo wo 0 0

w1 0 w1 w1
Ag = Ay + As = Ay

w2 0 w9 w9

Thus, all that remains is to show how A acts on an element of ¢? whose first
component is equal to zero. Note that we can express the remaining equations

in (4.18) concisely with a Jacobi operator as follows:

0 0 0
-1 w1 w1

| = . (4.20)
-1 3 -1 w2 w2

If we introduce the notation w! = @41, then this system becomes slightly

more familiar:

{ 3w — Wi = wr, n =0, (4.21)

—w), 1+ 3w, —w,_| =Wpt1, n>1
This system of equations is subtly different to the previous case: there is
a shift in indices on the right-hand side of the equation. However, we do not
need to alter our method in solving this system greatly. In fact, we can simply
recycle our previous calculations and read off the solution to the homogeneous

problem. The particular solution will differ slightly, but it is not too difficult

to confirm that
1 n—1 n—1
Wh =N} + el - 1AL S N w1 = A Nwpga|, n>0.
5 r=0 r=0

Since |Ay| > 1, we have to choose the constant ¢; in a manner that ensures
that w’ € £2. As such, we may follow a parallel argument to before to deduce
that ¢; = % Z?io A" wr41. We can then proceed to find ¢p by using the initial
condition given by 3w(, — w] = wi. After some simple calculations we see that

cy = _% > o2 A" wrq1. Therefore, we have that

e o] n—1 n—1
1 1
W o= 7§ A w, DN ) R )\”E A w, fx_b§jxmr
" [\/51"20 +1] ( ! ) \/5 ! r=0 o r=0 e

for n > 0. Upon recalling that w], = &p,11, we may finally claim that

n =20,
S BEC SU M S D3PV >1
V] - —Wr41 — 75 - = _Wr41 _r:() JWr41|, N =1,

(4.22)
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after collecting together powers of Ay and A_.
With @ now expressed in terms of w, we can finally assert that the maximal

sectorial relation Sy p associated to sg g is given by
Sy p = {(Aow,w — Agw) | w e £*},

where Asw = @, as prescribed by equation (4.22).

Although we have constructed the Friedrichs extension Sy of S», the
form it currently takes is not particularly insightful: we are currently unable
to make any direct comparison between S; r and So p. Thus, we conclude this
section by decomposing Sy  into its operator part (Sz,)s and multi-valued
part (52 7)mu — it is then much easier for us to make connections between
the two relations, allowing us to note any differences that may surface.

We begin by determining the multi-valued part (S 7 )mu of S2, 7. Recall
that

(SQ,F)mul = {O} X mul 52,F7

where

mul Sy p = {w — Asw ‘ Aw =0, we EQ}

={wel?| Ayw=0).
{

In other words, mul Sy p = ker As.

Let w € ker Ay. Since As is a linear operator and Asw = @, we must have
that @ = 0. To find As, recall that we solved the system of equations given
by (4.21), i.e.,

/ /
3wy — wp = wi, n =0,
/ / /
—Wpy1 T 3wy — Wy = Wngt, N2 1,

where w), = @,41 for all n > 0. As & = 0, we must have w’ = 0. Hence, from
the system of equations, w, = 0 for all n > 1. As such, wy is free, and so we
may conclude that

mul Sy = ker A2 = span {ep},

where ey = (1,0,0,...). Alternatively, one may immediately observe that

ep € ker Az by means of equation (4.19). Hence,

(SZ,F)mul = {0} x span{eo},

for eg = (1,0,0,...).
Now, we continue by constructing the operator part (S2 r)s of Spp. In

particular, we have

(527}7)5 = {(AQW,P(OJ — Agw)) ‘ w € 62},
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where P projects onto (mul Sz r)+ = (span{ep})* = £3. Since Ay maps into

6(2), we can rewrite the operator part as
(S2,7)s = {(Aow,w — woeg — Agw)) | w € 2},

after noting that the projection of an ¢?-element onto Eg simply sets its first

component to zero. Now, as 2 = (3 @ span {eg}, we see that
(S2,7)s = {(Aow,w — Agw)) | w e G},

since an w of the form w = cey, returns a contribution of (0,0): we may as
well remove such elements from the analysis. As (52 r)s will be the graph of

an operator T, say, we assert that
(S2,p)s = {(Aow,w — Agw)) | w € (G}

={(z,Tz) |z € D(T)}.

We continue by determining this operator 7.

Denote by L the left shift operator, that is,
L ((ug, u1,u2,...)) = (ur,u2,us,...), D(L) = 12,
and R the right shift operator, where
R ((ug, u1,ua,...)) = (0,u1,us, us,...), D(R) = (2.

If w € ¢, then LRw = w, that is LR is the identity on ¢2. Conversely, RL
is not the identity on ¢? as RLw # w — we are unable to recover the first
component wg. However, if w € E% instead, then RLw = LRw = w. Then, by
reintroducing the operator J from Section 4.2, that is, (Jx), = —A(Az,_1)

for n > 0, where € £2, we note that equation (4.20) can be written as
(J+1)Lo = Lw or R(J+I)Lw = w.

Since we are concerned with w and & that lie in #2, both (J + I) and L are

invertible. As such,
&=R(J+I)Lw,

and, in particular, As = R(J + I)"*L on £3. Since R(L [ ¢3) = ¢?> and J + I
is bijective, we see that R(As) = ¢2. Then, for z € R(As), we have
(So,p)s = {(z,R(J+ 1)Lz — z) | z € 6}
={(z,(R(J+I)L— RL)z) | z € (5}
={(z,RJLz) |z € ({},
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showing that the operator T is, in fact, the operator RJL with domain
D(RJL) = (3. With the operator and multi-valued parts of Sy now de-

fined, we may finally conclude that
Sy.r = {(z,RJLx) ’ x € 8(2)} @ ({0} x span{ep}).

The operator part of S r is in some way comparable to that of Si r: they are
both heavily dependent on the operator J, shifts notwithstanding. Addition-
ally, in our closing remark of Section 4.2.1, we mentioned that the operator
to come — that is, J — was not densely defined and that relations would be
critical in any analysis undertaken: hopefully this is apparent with the advent
of a non-trivial multi-valued part!

Now that we are in possession of the Friedrichs extension of Sy, we finally
turn our attention to S g: the Krein extension of So. We aim to follow the
same format as Section 4.2.2, but note that the difference in initial domains

makes the analysis considerably more involved.

4.4 The Krein Extension of S5

As before, we construct the Krein extension Sy g of the sectorial relation Sy

by methodically unravelling the relation ((S;')r)~!. Therefore, the first step

in doing so is to find the inverse relation S5 ! Recall that S is given by
Sy = {(x,jx) € 2 x ’ xeﬁg},

where (Jz), = —A(Az,_;) for n > 0; hence,
Syl = {(j:n,x) €0 x 2 ‘ ze zg}.

Since S is sectorial, S5 l'is also sectorial, and so we may associate to it the

form

1[5, 7] _ 7 7 7 —1

S, [J:U,Jy} = <x, Jy>, (Jz,z), (Jy,y) € S5,
where Q(s3') = D(Sy!) = R(J). As before, we have that s;* is a well-
defined, sectorial and closable form. Let s;% be the form with domain Q(s;i?)

defined as the closure of s, 1 Therefore,

s;}; [j:r,jy} = <x,jy>, (Jx,x), (jy,y) € 52—1_

Note that we have not defined the form explicitly for elements that lie in

Q(syp) \ R(J).
Although we have an expression for the form on certain elements, we are

able to rewrite it in a more useful manner by showing that the inverse of J
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exists on R(J). The following lemma proves this, in addition to showing that
R(J) is, in fact, a dense set in £2.
Lemma 4.4.1. The operator J: (3 — (2, defined by (Jx), = —A(Ax,_1) for
n > 0, has an inverse that is densely defined.
Proof. Tfker J = {0}, then J~! exists as an operator from R(J) to £2. In fact,
we have previously shown that ker J = {0} — we refer to Section 4.2.2 for
more details — and so the kernel of J must also be trivial since J is merely a
restriction of J.

To show that J~! is densely defined, we need to show that R(.J) is a dense
set in ¢2. From the Rank-Nullity theorem, as stated in Theorem 1.1.20, we

are able to decompose £? into
2 = R(J) @ ker J*, (4.23)
since J is certainly densely defined on (2. Then, R(j ) is dense in £2 if and
only if ker J* = {0}.
To find J*: 2 — /2, consider the following equality:
<jx,y> = <a:, j*y> , z € D(J), y e DJ"). (4.24)

Then, as in the proof of Lemma 4.1.1, the left-hand side of this equation can

be expressed as

Z ~A(Az, )7 an ~A(AF,_1)]
= an [_A(Agn—l)] )
n=1

after an application of the summation by parts formula, upon recalling that

xo = 0. Conversely, we may express the right—hand side of equation (4.24) as

By equating these two expressions, we see that (J Wn = —A(Ay,—1) for
n > 1, for any y € £2. Whilst we obtain no information about (j y)o from this

argument, we know that J* maps into E%; then, we are able to conclude that
- 0, n =0,
—A(Ayp—1), n>1,
for 3y € £2. Then, we deduce that ker J* = {0} because there does not exist a
non-zero solution to the equation —A(Ay,_1) = 0 that lies in 2. As such, the

decomposition presented in (4.23) informs us that (2 = R(.J). Hence R(J) is
dense in ¢% and J~': R(J) — £2 is a densely defined operator. [
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Now that we have established that J~! exists, we see that if Jz = u for
z € 2 and u € R(J), then we have that 2 = J~'u instead. As such, we have
that

sg}? [u,v] = <j_1u,v> , weR(J), ve Q(s;iﬂ),

by means of an argument parallel to that of equation (4.11). With this form
in mind we are now able to construct the Friedrichs extension (S5 Yp of Sy !
Note that we will, once again, omit brackets: (S;')r = Sy, P

This time, (Q(s5, F) - g ;1 ) is the Hilbert space of concern to us, where

- ||.~1 is the norm induced by the inner product given by
S2.F
2,

(#.9)g;1 =Syp oy +(@0), 7.y € Qsyp).

Then, we begin to construct the Friedrichs extension S, ; by introducing the

form 8, F = sy + 1 with domain Q(SZF) = Q(sy3)- We then assert that

there exists a bounded linear operator operator Ba: Q(s, iﬂ) — Q(sy }?) such
that

S ]F[xvy] = <B2$7y>55}7

for all z, y € Q(sg}?) In other words,

sy F [4,y] + (2,y) = sy | [Bax, y] + (Baz,y) ,

suggesting that By may be taken to be the identity operator on Q(s5 ]F)
Then, for k, @ € Q(s;i?) and w € £?, we consider the following equality

(k,w) = <k7a]>s—1 ) (4.25)

2,F

where we wish to identify the relationship between w and @ again. In par-
ticular, choose k € R(J). Then, there exists an m € (2 such that Jm = k.
Therefore, we may rewrite the right-hand side of this equality to see that

A~ _ 7—1 = =
(hy@)go1 = Z%u k) niom + z_% kenGom

= Z(jfljm)nan + (Jm)plon
= ((J + Dm)nbon,
n=0
where T: K% — ¢? simply embeds an element of E% into £2. On the other hand,

Z kpton, = Z Jm)nwn.
n=0
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Then,

N (m)wn = 3 ((F + Dym)ulon,
n=0 n=0

form € 03, & € Q(s;};) and w € (2.
We continue by using the summation by parts formula on both the left
and right-hand sides of this equation twice, similar to its use in Lemma 4.1.1.

For the left-hand side, we see that

io:(jm)nwn = - i mnA(Awn—l)y
n=0 n=1

since mg = 0, whilst the right-hand side gives that

S T+ Dm)p@n == maA(ADy_1) + Y Myl
n=0 n=1 n=1

= my [~A(ADp_1) + @n) -
n=1
Hence, for arbitrary m € 2, we have
(m, Jw) = (m, (J + I)w),
demonstrating that
Jw=(J+1)® — aep, (4.26)

for @ € C, where eq is the sequence (1,0,0,...). Since we are looking for
the linear operator Az such that Asw = @, the « in equation (4.26) will be
dependent on w but, crucially, unique. In other words, if we fix w € ¢2, then
there exists precisely one w € Q(s;;) such that the inequality in equation (3.5)
holds.

In order to determine the value that « takes for each w, we continue by
utilising a different decomposition of ¢2 to that given in (4.23); we find that
a does not take the same value for all w € £2, so we must decompose £2 into
distinct parts to accommodate this. In particular, we note that J+Tisa

densely defined operator on £2, so we see that
P =R(J+1)@ker (J+1)",

upon invoking the Rank-Nullity theorem. In fact, upon investigating this

decomposition further we arrive at the following lemma.

Lemma 4.4.2. The space {% can be decomposed into
¢ =R(J +1I)@span{p_},

35
where p_ = (1, A\_,\2,...) € 2, for \_ = T\[
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Proof. To prove this lemma, we begin by showing that R(j +1 ) is a closed
set. Let {v(™} be a sequence in R(J 4 I) such that v(®) — v in 2. Then, we
show that v € R(J + I).

Since v € R(J +1I), there exists a u(® € £2 such that v(™ = (J 4 Iu™.
In fact, if F' denotes the embedding of a sequence of £2 into 2, then it is clear
to see that (™ = (J+1)Eu™. Since J+1 is invertible, (J+1)" o™ = Eu(.
Hence,

Eu™ =(J+ D)™ 5 U+ D v=1a

as n — oo, since (J +1)~! is bounded (see: Lemma 4.2.3). Since u(™ € £2, its
first component, u(()n), is equal to zero, and so %y must equal zero too. Since
ug = 0, there exists a u € 63 such that Eu = @ and, in particular, u(™ — u as

n — oo. Then, we may conclude that

v=(J+DNu=(J+I1)Eu=(J+I)u,

verifying that v € R(J 4 I). Hence R(J 4+ I) = R(J + I).
We continue the proof by calculating the kernel of (J + I)*. First, we note
that J + I: 2 — ¢2 and so (J + I)*: £> — £2. Consider the equation

<(j+f)x,y> = <:z:, (j+f)*y>,

for € D(J +1) = 3 and y € D((J + I)*). Then, upon applying the
summation by parts formula twice to the left-hand side of this equation, we
see that -

ST +D2)nTp =D T [-AAT, 1) +Tn) -

n=0 n=1
This equality clearly holds for all y € ¢2. Then we may compare this to
<:1:, (J + f)*y> to see that ((J + 1)*y)n = —A(Ayn_1) + yp for all n > 1. In
order to determine the first component, we merely recall that (j +1 )* maps

into E%, resulting in
- 0, n =20,
—A(AYn-1) +Yn, n>1,

for y € £2. All that now remains is to determine ker (.J 4+ I)*. In fact, we have

performed these calculations before: the general solution to

_A(Ayn—l) + Yn = 0

_ 3£V5

is given by yn, = 1A} + c2A”, for constants c¢; and cp, where AL = ==
However, we must set ¢; = 0 to ensure that y € ¢2. In fact, we may immedi-

ately conclude that y, = coA™, for n > 0, as there is no additional first row
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condition that must be adhered to. Hence,
ker (J + I)* = span {¢_},

where p_ = (1,A_,\2,...).
This shows that we may decompose £2 into /2 = R(J + I) ®span {p_}, as
required. |

With this decomposition in mind, we may take w in R(.J+1) and span {p_}

separately and determine how A acts on each set individually.

4.4.1 Determining A, on R(J + I)
Note that for any sequence x = (g, x1,x2,...), we may write x = T + xpeq,

where & = (0,21, x2,...) and ey = (1,0,0,...). Hence, for w € R(J + I) and

& € Q(sy7), we have
w =W+ woep and w :(f)+djoeo,
when decomposed as above. Then, equation (4.26) implies that

w=Jw—Jw+ aeg
=J(w—)+ aey

O — &)+ (wg — @o)Jeo + e,

since @, w € 3. If we can show that wy = &g and o = 0, then & = J(© — ©).
This equality is critical upon recalling that R(J) C Q(si};): we will have
found the unique element & € Q(s;};) such that Asw = @, provided that the
following inequality holds:
6l < ol (427)
Let a = 0. Then, Jw = (J + I)& and, in particular, (J + I) " 'Jw = &,
since J 4 I is invertible. Since we have specified that w € R(J + I) and we
know that J 4 I = (J +I) | £2, there exists a v € £3 such that w = (J + I)v.

Therefore,

o=+ w
=(J+ D) NI +T-TDw
—w—(J+IDtw
=w—. (4.28)
As v € E%, this equality shows that we must, in fact, have Wy = wy when-

ever « = 0. With this candidate in mind, all that remains is to verify that
inequality (4.27) holds.
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Since w € R(J),

From equation (4.28), we see that @ = w — v for v € £3. Tt is then immediate
that w — & € 2, and so equation (4.26) implies that & = J(w — @). In fact,
we may invert J and conclude that J & = w — &. Hence,
9122 = (= 2,8) + (2,0)
= (w, )
= (w,w —v)

— ]2 = (w,v).

Since w = (J + I)v, and (J + I) is a positive operator, we may then conclude

that
N2 2
[ollZ-1 = llwl]” = {((J + I)v,v)
2,F
< Jlw|?,

verifying that inequality (4.27) holds for all w € R(J + I) and & € R(J).

Consequently, we are now able to assert that

Apw = (J+1)Jw
= - (J+D) Y, (4.29)

for w e R(J +1I).

4.4.2 Determining A, on span{¢_}

Now that we have established how the operator As is to act on an element
w € R(J +I), we continue by considering w € span {¢_} instead. As before,
we begin by investigating the equality given by equation (4.25), except all
instances of w will be replaced by cp_; in fact, we may look at the case when
the coefficient c is equal to 1 due to the linearity of A;. Then, we immediately

obtain the following relationship from equation (4.26):
Jo_ = (J+I)w — aey. (4.30)

We may rewrite equation (4.30) by noting that Jo_ = (J + I)p_ — p_ and

making use of the following lemma.
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Lemma 4.4.3. The (?>-solution to the equation (J + I)x = eg, where eq =

(1,0,0,...), is given by x, = AL where A_ = 3_2‘/5, e, T =A_p_.

Proof. Solving the equation (J+1I)x = ey is equivalent to solving the following

system of equations:

—x1 + 3x9 = 1, n =20,

—ZTn+1 + 3T, —xp—1 =0, n>1.
Then, the general solution to the equation —x,4+1 + 32, —xp—1 = 0 is given by
Tp = 1AL + c2 A" for constants ci, ¢ € C, where Ay = Lf To ensure that

the solution to the system of equations lies in £?, we must take ¢; = 0. Then,

by substituting our solution z,, into the initial condition —z1 + 3zg = 1, we

obtain

—CoA_ + 3¢y = 1.
Upon rearranging this for ¢y, we see that cy = ﬁ and, in particular,
co = )\jrl = A_. It is then clear that x,, = A1 s the £2-solution to the
equation (J + I)z = ep. [ |

Since © = A_¢_, we note that (J+ 1)z =ey <= A_(J +I)p_ = ep.

Hence, we may rewrite equation (4.30) as
Jo_ =T+ Do —ar_(J+1ep_.

Then, in conjunction with the fact that Jo_ = (J + I)p_ — p_, we may

conclude that
(J+De-—p_=(J+Hw—ar_(J+1)p_
or, in other words,
(J+ D)@ — (@A +1)p_) = —p_.

Since we are trying to uncover the relationship between ¢_ and @, we proceed

by asking whether or not there exists an #?-solution z to the equation
(J+1)zx=—¢p_.

If there does, then z = &—(aA_+1)p_ and, in particular, © = x+(aA_+1)p_.
The following lemma shows that there is, indeed, such a sequence x that solves

this equation.

Lemma 4.4.4. The (?-solution to the equation (J + )z = —p_, where p_ =

(17)\_,A2_,. . ) and A— = 3_2\/5; 18 given by Tn = _A”ii;g_l)'
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Proof. We begin the proof in a manner equivalent to that of Lemma 4.4.3, i.e.,
by noting that (J + I)x = —p_ is equivalent to solving the following system
of equations:

—x1 + 3z9 = —1, n =0, (4.31)
—Zpt1 + 3Ty —Tp—1=—-A", n>1
Furthermore, we know that the general solution to —xp1 + 32y, — xp—1 =0
is given by the sequence z,, = c1 A’} + c2A” for constants c1, c2 € C, where
Ay = % This time, however, we must construct a particular solution to
equation (4.31) before we can determine the constants ¢; and cz. Then, from
the variation of constants formula, we see that the particular solution Z is

given by

1 n—1 n—1
e —— D U 5 U D VAN U 5 L R ()

P+, P—
where o+ = (1, A+, A\1,...) and W (g4, p_) is the Wronskian of the two se-
quences. In particular, we have
AT A"

W((')DJHSO*) = )\i+1 )\CL+1

= (A A)" A = (AL A ) Ay
- ]. . )\7 - 1 . >\+
_

Hence,
1 n—1 n—1
o (e e 5
\/5 [ r=0 r=0

L[, (A —-1 .
=7 Gemr) -]

by noting that the first summation is a geometric series, since |A\2 | < 1. With
this particular solution in mind, we may then assert that the solution z,, is
given by
" I T O | .
$n201)\++02)\_+ﬁ )\+ ﬁ —)\_n ; nZO,
for constants ¢; and co. However, this x,, does not not necessarily lie in 2 or

satisfy the initial condition: we must choose ¢; and ¢y with these conditions

in mind.
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As we require z to lie in £2, we need to choose ¢; appropriately such that
the coefficient of the growing term, A}, vanishes. In fact, we find it more

suitable to rewrite x,, as
A2 n
Tpn=Alaa+———|+AN ca— —=
*(1 \/5()\2_—1)> (2 \/5>
1 n 1
=Nl |lag-——F— |+ N |2——F—=+——"F7—
*(1 \/5(>\2_—1)> (2 V5 \/5(A2_—1)>

_\n )\Jr n n )\Jr
—)\+<Cl+5)+)\<62 \/5 5),

because we may simply read off the value of ¢; that ensures that the growth

of At will not pose an issue. In particular, we may set c¢; = —%.

In order to find ¢y, we make use of the initial row condition —xz1+3x¢ = —1.

Then, we substitute our z,, into this equation to arrive at

Hence, upon rearranging this equation for ¢y, we obtain

A 1 3A
W 1T
GRS

Fortunately, co can be simplified drastically. Indeed, manipulating the right-
hand side of this equation eventually reveals that
R
> B5A, 5
Now that we have obtained the constant ¢y explicitly, we can assert that the

?2-solution of the equation (J + )z = —p_ is given by

P—_”_M]:_W”“) n>0

v

where A_ = 3=Y5, m

With the ¢2-solution of the equation (J + I)z = —@_ now in hand, we
are one step closer to determining the relationship between ¢_ and w. In

particular, if x = @ — (aA_ + 1)p_, then, for n > 0, we have
Wp = Zp + (@A + AT

_ [(m 1 %) - &%} \" (4.32)

For w € R(J 4 I), we were easily able to identify the unique o such that
& € R(J), and so it was clear that & € Q(s;%). Unfortunately, that is not
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possible for w € span{¢_}: there does not exist a sequence y € E(Q) such that
Jy = & — this will be proven shortly. Instead, since sgi‘ is a closed form,
we must construct a sequence f(N) € R(J) such that, for a unique «, the

following two conditions hold:
FN) = & as N — oo in £2 (4.33)
and
Spk [ FO D) g (N) f<M>} S 0as N, M — co. (4.34)

Together, these two conditions ensure that & will lie in Q (s, }?), as expressed in
Definition 1.2.6. Furthermore, for this unique «, we will require an analogous

inequality to (4.27) to hold, i.e., we must have that
6l < ol (4.35)
Then, we begin by proving the following lemma.

Lemma 4.4.5. For any o € C, there does not exist a sequence y € E% such

that jy = w, where @ is the sequence defined by equation (4.32).

Proof. Rather than solve Jy = & for y € £2, note that we may instead solve
the equation Jy = & for y € £2, and then impose the condition yy = 0. Hence,
we are looking for a sequence y € £? such that

—Y1 + 2yo = wo, n =0,
Yo=20 and

~Ynt1 +2Un — Yn—1 =Wy, n>1.

Then, the general solution to —y, 11 + 2yn — Yn—1 = Wy, is given by
n—1 n—1
yn:cl+02n+1-2rc&T—n21-c&r, n >0,
r=0 r=0

after recalling the variation of constants formula presented in Lemma 1.3.4.

Since we have an explicit expression for w, i.e.,

1 n
Wp=|la\+1——) — — |\, n >0,

we can simplify y,, by expanding the summations, after recalling that [A_| < 1.
In particular, we require the following two results: let |z| < 1, then
n—1

Z ., nz"  z("—1)
re’ = —
x—1 (z—1)2

r=0
and
i, 5 . nix"  2nz™tt (2" —1)(z+ Dz
3 a1
o r—1 (z-1)2 (x—1)3



These identities are a consequence of the formula for a geometric series, i.e.,
n—1
T

"o
" =
x—1"

=0

lz] <1,

<

upon differentiating both sides with respect to x, before multiplying by = and
then simplifying.

With the general solution in place, we must now choose the constants c;
and co such that the various conditions are satisfied. Firstly, we choose ¢; and
co such that y € ¢2. Then, with the above results in mind, we simplify the

sequence ¥, as follows:
n—1 n—1
Un=c1+cn+ > 1@ —n Y @
r=0 r=0
1 n—1 1 n—1
=ci4+en+{a_+1—— rAl — — 2"
e (o1 ) S - g3

r=0
n—1 n—1 n—1 n—1
:cl+02n+AZr)\[—BZT2)\C—n AZ)\T_—BZT)\T_],
r=0 r=0 r=0 r=0

where A = aX_ +1— % and B = % Hence,

A" A_(A® =1
yn201+62n+A(n (A2 )>

A —1 (A —1)2

A" 2nA"Th (A — )AL+ 1A
_B<)\_—1_()\_—1)2+ O 1) )

() - ()

after inserting the finite sum results in. Collecting powers of n then yields

. AN LA CBM(A_+1) | BA(A_+1)
S Y O A O N W VE (- —1)3
N LA B! L _Br
T I T D02 T o -2

after observing that the terms involving n? cancel out. We remark that both
{A"} and {nA"} are sequences that lie in 2. Then, to ensure that y € £2, we
must take

AN BA(A+1) A BX_
O-—1F (- T eTT -

Cl = —

ie.,



upon recalling that A =al_ +1— % and B = % Hence, for n > 0,

AXNL O BAMTY (AL 4 1)
(A= —1)? (A= —1)3

B!
(A —1)2

Yn = +n

(Oé)\_ +1-— %) )\71+1 )\E—H()\_ + 1) -_ )\11—1—1
G0 AL —r | VB -1

_ . LY, AN+ nA"

= [( Ao+1 \/5>>‘+\/5(>\1)]+\/5’

is the /2-solution to the equation Jy = &, disregarding the initial condition.

Since y € £2 for any value of o, we need to show that there does not exist
an « such that both yp = 0 and —y; + 2yp = @ hold simultaneously. We
begin by noting that

Yo =¢C1 =

Therefore, if we take

1 1 3v5
o0O=—=—+ —
VBA_ 2 10
then we ensure that yo = 0. Now that we have a candidate value for «, we
must verify that —y; + 2yg = @wo does not hold. By substituting this value of

« into the first row condition, we see that

. 1 3v5
—y1+2y0:—(01+02—wo)+2‘0:—2—;Of—l—wo.

Clearly, —y1 + 2y # @, and so there is no single value of « such that both
conditions are simultaneously satisfied. As such, we may conclude that there

does not exist an E(Z)-solution to the equation Jy = &, as required. |

4.4.3 Constructing an Approximation for @ in R(J)

Now that we have established that there does not exist an £3-solution to the
equation Jy = &, we continue by constructing a sequence f¥) in R(J) that
approximates @. We begin by considering the equation Jz = f for f € E,

where
EO:{:U€£2 | EINENOsuchthatxn:0foralln>N}.

We aim to arrive at general conditions that ensure that both z lies in &2) and

an initial condition is satisfied: crucially, we guarantee that f will lie in R(J).
Then, the general solution to this equation is given by

n—1 n—1
61+2Tfr C2Zfr]-

r=0 r=0

zn=1" +n-
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To ensure that 2 € 2, we must take ¢; = — Y o0 rf, and c2 = Y o0 fr; note

that these expressions are finite since f, = 0 for all r after some N. Then,
00 n—1 00 n—1
_— [—err+zrfr Zfr—Zfr]
r=0 r=0 r=0 r=0
o0 o0
—ore S| e [30]
r=n
oo
=> (n—r)fr (4.36)
r=n

+n-

+n-

r=n

In addition to the above, we must deduce two further conditions: we must
have that zg = 0, i.e, z € 5(2), and we require the first row condition given by
—z1 = fo to be satisfied. These conditions are simple to formulate by virtue
of equation (4.36): we merely require

o0

> rfp=0 and =) (1-71)fr = fo. (4.37)
r=0

r=1
If we rewrite the latter condition as )2 (1 —r)f, = 0 then we may subtract
these conditions from each other to produce two, less complicated expressions.
In particular, the following two conditions are equivalent to those derived
in (4.37):

 fr=0 and > rf.=0. (4.38)
r=0 r=0

Thus, if an f € Ej satisfies both equations given in (4.38), then there exists
a z € (3, where z is defined by equation (4.36), such that Jz = f. Then,
fer().

With these calculations in mind, our candidate sequence f (N) e By will be
of the form
wp, 0<n<N,
Fy, N+4+1<n<2N,

Gy, 2N +1<n<3N,

0, 3N +1 <n,

where Fy and Gy are functions of N to be found. In fact, we may solve both
of the conditions presented in (4.38) simultaneously to obtain these functions.

To begin with, we note that

o] 2N 3N N
Yfr=0= > Fv+ > Gn=-)d
r=0 r=0

r=N+1 r=2N-+1
N
— NFy+ NGy =—) & (4.39)
r=0
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Similarly, the second condition shows that

0o 2N 3N N
Srfr=0= > rFx+ Y 1Gn=-Y 10
r=0 r=N+1 r=2N+1 r=0
N
N3N +1) N(5N +1) A
— Pyt —— Gy =- Z[:)Twr. (4.40)
r=

From equation (4.39), we have NFy = —NGxy —nyzo wr. We may then insert
this into equation (4.40) and isolate Gy. After performing this calculation,

we see that

N
Gy = Z [W] Oy (4.41)

With G now defined, we can use equation (4.39) to conclude that

N

5N +1—-2r]| .

Fy=-> [2]\[2} @y (4.42)
r=0

As such, our candidate for the sequence fN) that approximates & is given by

(‘:)n7 OSTLSN7
N - ~
f(N) — _ZT:O [W] Wr, N+ 1 S n S 2]\[7 (4 43)
' SN BN @, 2N 4+ 1< n <3N,

\

With the sequence f(V) defined, we may also use equation (4.36) to determine

the sequence z(V) that solves JzWN) = fWN) | In particular, we see that

(3N 2N
Z (n—r)Gny + Z (n—r)Fy
r=2N+1 r:N]—l\—[l 0<n< N,
—1—2(71 — )Wy,
3N oN
(N) — 4.44
z .
" Z (n—r)GN—i—Z(n—r)FN, N+1<n<2N, (1.44)
r=2N+1 r=n
3N
> (n=1)Gw, 2N +1 <n <3N,
r=n
0, 3N +1<n.

4.4.4 The Sequence V) Approximates & in (2

Now that we have explicit expressions for Fjy and Gy, we must ask whether

) really does approximate @ in £2, i.e., does fV) — & as N — co? However,
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as we are looking for a unique o € C, we can first find an appropriate value
for o now in order to streamline future calculations.

If Fx and Gy are defined as in equations (4.42) and (4.41), then the
finite nature of the sum allows us to calculate the expressions themselves

explicitly. In particular, define the following in MAPLE:

> W:=(a,n)->(a*L+1-1/sqrt(5)-n/sqrt(5))*L n
> F:=(a,N)->-sum((5*xN+1-2%r) /(2*xN"2)*W(a,r) ,r=0..N)
> G:=(a,N)->sum((3*N+1-2*r)/(2xN~2)*W(a,r) ,r=0..N),

where W, F, G, a and L signify w,,, Fn, Gy, o and A_ respectively. By

using the ‘collect’ command on F and Gy, that is,

> collect(F(a,N),N)
> collect(G(a,N),N),

we can group both expressions in terms of decreasing powers of n. Indeed,

2(9\/5_ 15) (3_72\/5)N+1
e 5(v/5—1)3
1| 2(450v/5 4 26v/5 — 1050 — 60) (372¢5)N+1
TE 5(v/5—1)3
| 2(750v/5 +20v/5 — 1750 — 50)
5(VE—1)
N+1
1 2(350v/5 4 9v/5 — 75 — 25) (3—2\/5>
N 5(v/5 — 1)3
+2(65a\/5 +12/5 — 1450 — 30)
5(V5—1)?
and .
2(3v/5 — 5) (3;«5)
o 5(VE—1)
1 | 2(15av/5 4 12v/5 — 350 — 30) (3—2¢5)N+1
N 5(v5 —1)3
_2(4504\/5 +12v/5 — 105 — 30)
5(v/5—1)3
N+1
1 2(350v/5 + 9v/5 — T5a — 25) (372\/5>
S 5(VE—1)

~ 2(65a/5 +12v/5 — 1450 — 30)
5(v/5 — 1)3 '
Clearly, both Fy and G tend to 0 for any o € C as N — oo, however both

NFy and NGy do not. Then, it is our intention to choose an « such that
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both NFy and NGy tend to zero as N — co. In fact, upon solving both
2(750v/5 + 20v/5 — 1750 — 50)

=0
5(v/5 —1)3
and
_ 2(45a/5 +12v/5 — 10500 — 30) 0
5(v/5 —1)3
simultaneously for «, we obtain one, single candidate: o = —% — ‘1/—05. As such,

all calculations performed during this section will now use this value of .

Remark. It may seem miraculous that the same « ensures that NFy and NGy
both tend to 0, but this is merely a consequence of their form. In particular,

observe that

Fy=—

1
G- L3 w] .
N r=0
Then, we can explicitly calculate Zivz oWy by using the geometric series iden-

tities presented in Lemma 4.4.5. Hence,

N (5- VBN +1) (355)"
&, v ()

r=0

Then, it is clear that Ziv:o &p and + ny:o @, both tend to 0 as N — oco. As
such, the behaviour of N Fx as N — oo coincides precisely with that of NGy

We now continue by proving that f&¥) tends to & in ¢2, that is, we must
show that ||f(™) —&||> = 0 as N — oo. Then,

1FN = @) =D 1N = @l
n=0

2N 3N
= > |Ev—@nP+ D |G —
n=N-+1 n=2N+1
2N 3N
<2 S IRl 2| 3 \GN\2+\wnP],
n=N+1 n=2N+1

since |z —y|? < 2(|z|?+|y|?) for any two complex numbers x and y. Moreover,

S |wn|2]

n=N-+1

3 w] .

n=N-+1

I = @l* < 2N (IFv? + |Gw]?) +2

< 2N (|[Fn* + |GN[?) +2

As both NFy and NGy tend to 0 as N — oo and & € ¢2, the entire expression
must also tend to 0. Thus, we may conclude that f(N) — & as N — oo in £2,

and so the condition given in (4.33) is satisfied.
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4.4.5 The Sequence f) is a Cauchy Sequence in | - ||s;1F

With the condition given in (4.33) now satisfied, we must continue by verifying
that
s;}‘ [f(N) — fOM)p(N) _ f(M)] —+0as N,M — oo,

where f(V) and fM) are sequences defined by equation (4.43). We will assume
that N > M here and in what follows.
Due to our construction of the sequence f), we know that there exists a

2(N) e R(J) such that Jz(N) = f(N) Then, we may rewrite the form as

Syh FON) M) (N) f<M)} _ <j—1 <f(N> _ f(M)) ) f(M)>
— <Z(N> _ () p(N) f<M>> ,

The two sequences z(N) — (M) and f(N) — f(M) that appear in the form above
depend on the relationship between N and M; specifically, there are seven
distinct cases that must be considered individually before we can confirm that

the condition given in (4.34) is, indeed, satisfied.

Case I: M < %

It is prudent to first find expressions that both f(V)— f) and (V) — (M) ake.
In particular, we can use equation (4.43) to determine (f(N) — f(M))n, whilst

(z(N) — z(M))n must be obtained using equation (4.44). Hence, if M < %,

then we have

0, 0<n< M,
wp — Fyy, MA4+1<n<2M,
wp — Gy, 2M+1<n<3M,

(ﬂm—fwwnz o, 3M+1<n<N
Fy, N+1<n<2N
Gn, 2N +1<n <3N,
0, 3N +1<n,

whilst (z(N) - z(M))n is given by equation (B.2) as found in Appendix B. We

can then insert these expressions into the form to obtain

Sﬁ&ﬂm_fwxﬂm_qu:<gm_zwxﬂm_fww

—A+B+C+D+E,
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where

2M 3N 2N N
A= Z [ Z (n—r)GN + Z (n—r)Fy + Z (n—r)w,
n=M+1 Lr=2N+1 r=N+1 r=3M+1
3M 2M
FOY )@ G Y0 )@~ Fan)| (@0 P,
r=2M+1 r=n
3M 3N 2N N
B = Z [ Z (n—7r)Gn + Z (n—r)Fn + Z (n—r)w,
n=2M+1 Lr=2N+1 r=N+1 r=3M+1

3M
+> (n—1)(@r — Gur) | (@n — Gur),

N 3N 2N N
c= Y [ Y (n-rGyt+ Y (n—r)FN+Z(n—r)@r] W,

n=3M+1 Lr=2N+1 r=N+1 r=n
2N 3N 2N
D= Z [ Z (n—r)GN+Z(n—r)FN Fn and
n=N+1 Lr=2N+1 r=n
3N 3N
FE = Z [Z(n—r)GN GN.
n=2N+1 Lr=n

Our aim is to show that as NV and M tend to infinity, all five of these terms
individually tend to 0. If this is indeed the case, then the sequence f&V) is
Cauchy with respect to the form si}, whenever M < %

The strategy that we will employ when proving that the form is Cauchy for
M < % is as follows. Firstly, we need to ensure that the denominator of the
expressions A to E do not approach zero for large N and M; this is necessary
as the form would almost certainly not tend to 0 under this circumstance.
We then compute the summation using MAPLE and analyse the output. In
particular, as N > M, expressions that multiply (3_2—‘/5>N decay faster than

M
both expressions multiplied by (%) and rational functions in N and M

— note that we only experience positive powers of 3_—2‘/5 As such, we may

N
treat anything involving (3;2‘/5) as 0 and inspect the remaining expression.

Then, we can continue by further treating (3_7\/3>M as 0 due to its speed of
decay — terms involving this factor will certainly tend to 0 providing that the
term does not diverge as N — oo. All that then remains is to confirm that
the surviving terms — solely rational functions in N and M — tend to 0 as
N and M tend to infinity.

For optimal clarity, we choose to illustrate the method for a single term:

the first term in the expression A above, i.e.,

2M 3N
T, = Z [ Z (n—1r)GN | (Wn — Far).
n=M+1 Lr=2N+1
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It does not take MAPLE very long to compute this summation: indeed, we
are able to extract the denominator of T3, upon factoring, with relative ease.
In particular, denom (77) = 80N M. Clearly, denom (77) = 0 if and only if
either N or M are equal to 0: this situation is of no concern to us since N
and M are to grow larger.

The calculations show that every term in the expression 77 is of the form

aNbMC)\CiN+eM+f — dNb_lMC_l)\CiN+eM,

8ONM
for some constants a, @ € R and b, ¢, d, e, f € {0,1,...,4}: note that we may

extract any value of f into the coefficient a.
Remark. We stress that not every combination of exponents exists.

Then, all terms with d > 1 vanish as N tends to infinity. In fact, setting

these terms to be zero leaves terms only of the form
e aMeNM
aMeINM or —
with @ € R and ¢, e € {0,1,2}.

Now, we may discard all terms with e = 1 and e = 2 since these terms will
tend to 0. Then, the only the terms remaining are of the form % or %, for
a € R. Clearly, as M and N tend to infinity, these terms tend to 0, verifying
that the entire expression 77 tends to 0. Of course, this is merely one of many
terms: we must ensure that each term tends to 0. Fortunately, this method
is transferable to the other expressions and produces favourable results — we

are then able to conclude that the first case holds as anticipated.

Case II: M = %

Although the strategy remains the same during Case 11, it is easier to prove
that the sequence f(V) is Cauchy with respect to the form when M = % as
the expression is merely in terms of M. Effectively, we must show that the
form tends to 0 as M tends to infinity. In this case, f¥) — f(M) is remarkably
similar to that of Case I; in particular, one of the intervals collapses and we

are left with
0, 0<n< M,
wp —Fyy, MA+1<n<2M,

(f(N)_f(M)> _J@n—Gu, 2M+1sn<h,

" Fy, N +1<n<2N,
Gn, 2N +1<n <3N,
0, 3N +1 < n.
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Note that the sequence z(N) — 2(M) is given by equation (B.3) in Appendix B.

Then, we consider the analogous term to that given in Case I in order to

demonstrate the method more concretely; as M = %, we will analyse
2M 9M
Ty = Z [ Z (n—7r)Gsp | (Wn — Fur),
n=M+1 Lr=6M+1

for the purpose of comparison. In fact, since 7> is an expression only
involving M, it is enough to simply take M to infinity immediately. Indeed,
if we use the MAPLE code expressed earlier in this section for w,, Fiy and
G, in conjunction with the ‘limit’ command, then we see that 75 tends

to 0 as M — oo. In particular, if L denotes A_ and a denotes «, then

> W:=(a,n)->(axL+1-1/sqrt(5)-n/sqrt(5))*L n

> F:=(a,N)->-sum((5xN+1-2*r)/(2*N"2)*W(a,r) ,r=0..N)

> G:=(a,N)->sum((3*%N+1-2*r)/(2*N"2)*W(a,r) ,r=0..N),

> sum(sum((n-r)*G(-1/2-sqrt(5)/10,3*xM), r=6*M+1..9%M)
*
>

(W(-1/2-sqrt(5)/10,n)-F(-1/2-sqrt(5)/10,M)) ,n=M+1. .2*M)
limit(%,M=infinity)

will yield 0 upon setting o = —% — \1/—05, as required.

Case I1I: % <M < %
When % <M< %, the sequence fV) — (M) is such that
0, 0<n<M,

wp —Fy, M4+1<n<2M,
Wp—Gup, 2M+1<n<N,

(PN = 5O0) =S Fy—Gur, N+1<n <3,
Fy, 3M +1<n<2N,
Gy, 2N +1<n<3N
0, 3N +1<n,

whilst 2(N) — 2(M) is given by equation (B.4) in Appendix B.

Since M does not equal some constant multiplied by N, we find ourselves
more in line with Case I. However, if we are to follow the same strategy as
in Case I, then we must be mindful of a minor, yet non-trivial, difference.
Unlike in Case I, M grows at the same rate as N: at no point can we fix a
value of M and take N to infinity. In practice, this simply means that we
must estimate M using the case-inequality after we have let powers of 3_—2‘/5
tend to 0 — we will only be left with rational functions in N and M, so this
is reasonable. In particular, we know that M < % and ﬁ < % so we must

ensure that the numerator of this rational function has a power of N that is
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less than the denominator so that when IV tends to infinity, the function tends
to 0. As such, we consider the analogous expression in this case in order to
demonstrate the difference.

Consider the expression

2M 3N
Ty= Y [ > (n=7)Gn| (&n — Fup).
n=M+1 Lr=2N+1

Again, we observe that denom (75) = 80N M, and so there are no problematic
values of N and M that we must be wary of. Then, if we expand T3 and set
all terms involving AY and A to be 0, we are left with

(3++/5)(5N — 3M)
20N M ‘

Since we have an explicit bound on M in terms of N, if we are to appropriately
estimate this expression by NV, then we observe that the denominator is always
of a greater power of N than the numerator. As such, as N — oo, this
expression will tend to 0, as we require. Again, we must check that all terms
tend to 0 before we can conclude that the sequence is Cauchy with respect to

the form, but it is not too difficult with this process in mind.

Case IV: M = %

The remaining four cases are all similar to a previous case: Cases IV and VI
are similar to Case II, whilst V and VII are similar to III. This is because
the even cases are all special versions of the case before it — identical to the
interplay between Case I and IT — whilst the odd cases all have an M which
is bounded by a multiple of N. As such, we employ the appropriate strategy
when we are to compute the expression s;}? [f(N) — [ p(N) _ f(M)].
However, we only choose to present the sequence f(N) — f(M) here since

there is nothing more to discuss: the method remains the same, and there are

N
2

no surprises that we must draw attention to. As such, when M =
0, 0<n< M,
wn—Fy, M+1<n<N,

(f(N)_f(M)) _JEv=Gu, N+1<n<3M,

no | Fy, 3M +1<n<2N,
Gy, 9N +1<n <3N,
0, 3N +1<n,
whilst z®) — 2(M) ig given by equation (B.5) in Appendix B.
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CaseV:%<M<%

When % <M< %, the sequence f(V) — (M) ig given by

(fuv) _ f(M)> —

n

Case VI: M = %

p
0,

wn — Fr,
Fn — P,
Fy — G,
Fy,

Gn,

0,

0<n< M,
M+1<n<N,
N +1<n<2M,
2M +1<n<3M,
3M +1<n<2N,
2N +1<n <3N,
3N +1<n.

When M = %, the sequence fV) — f(M) ig given by

<f<zv> _ f(M>> _

n

Case VII: 2¥ < M <N

0,

wn — Far,
Fn — Fur,
Fy —Gu,
Gn,

0,

0<n< M,
M+1<n<N,
N+1<n<2M,
2M +1 <n <2N,
2N +1<n <3N,
3N +1<n.

When % < M < N, the sequence f&) — f(M) ig given by

( ) f(M>> _

n

0,

wn — Fr,

Fn — Fu,
Fy — G,
GN — G,
Gn,

0,

0<n< M,
M+1<n<N,
N +1<n<2M,
2M +1<n <2N,
2N +1<n<3M,
3M +1<n <3N,
3N +1 < n.

Note that the sequences z®) — z(M) in Case V, VI and VII can be found in

Appendix B: they are given by equations (B.6), (B.7) and (B.8), respectively.

With all seven cases now explored thoroughly, we may finally conclude

that the sequence f(V) given by equation (4.43) not only approximates @& but
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also is a Cauchy sequence with respect to the form s, iﬂ This is crucial, as it

demonstrates that the two conditions given by (4.33) and (4.34) are satisfied.

4.4.6 The Inequality H@Hsg; < |lp-1lz Holds

We have now proven that fV) — & in ¢2 and that fN) is a Cauchy sequence
with respect to the norm given by the form s, . All that remains is to verify

that the inequality given by (4.35) holds, that is,
6.1, < ol
n
for (p_)p = A" = (3_7\/5) .
To begin with, we first note that
[Gllr, = Jim £V
Then,

N)>

1PNy = sk 705N 4 (501
+ <f(N)7f(N)>

- <j—1f(N)7 f(N)>

= <z<N>, f(N>> + <f<N)7 f(N>> _

We continue by analysing both <z L fW > and < fIN) f(V )> separately. Im-

mediately, we observe that < ), fN )> can be expressed as

N 3N 2N N B
Z[ Z (n—7r)Gn + Z (n—r)FN+Z(n—r)wr] Wn

n=0 Lr= 2N+1 r=N-+1 r=n

3N 2N
+ Z [ Z nfr)GNqLZ(nfr)FN
n=N+1

r=2N+1 r=n

Fy

Gn.

+ Z er:n—rG’N

n=2N+1 Lr=n

By evaluating this expression in MAPLE and taking N to infinity, we see that

lim <Z(N>,f<N>> ~ 0.140498.

N—o00

On the other hand,

2N 3N
(™, f0) lel + Y B+ Y el
n=N+1 n=2N+1

= Z |@nl? + N (F} +G%) -
n=0
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Again, taking the limit of this expression as N goes to infinity yields
lim <f(N>,f<N>> ~ 0.093665.
N—o0

In contrast, we can compute ||o_|[* = 3% |A™|? directly after noting that
this is precisely a geometric series. Then,

00
lo— |2 => A%
n=0
1

T 1o

(4.45)

and so [lp_[* = 1 + f ~ 1.1708203. It is then clear that the inequality
presented in (4.35) holds7 as 0.140498 + 0.093665 < 1.1708203.

4.4.7 The Relation S,

We have now shown that all three conditions hold for the particular, unique,

value of o = —% — 1—‘6, all that remains is to construct So i using

Saie = (Sph) ™ = {(w— Ao, dw) € B x 2 | we ),

where Asw = @ for & € Q(s;};). Note that an arbitrary w € ¢2 may be

expressed as
W=w-—Ccp_ +cp_,
for any constant c¢. Then, we aim to find the unique constant ¢ = ¢,, such that

w=(w—cop-)+ (Cwp-) ,
— —
eR(J+I) €span {¢_}

upon recalling Lemma 4.4.2 — ¢2 may be decomposed into the orthogonal sum

R(J + 1) @ span {¢_}. Indeed, if w — ¢,p_ is orthogonal to c,¢_, then
<w — Cu¥P—, ngp—> = 07
and, in particular,
Cw (W, p—) — cwluw (p— ) = 0.

Hence, if we set
{w, )
o112

Cy =

then w takes the following form:

o= (o=t )+ (ke ) (448)

eR(J+I) €span {¢_}
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With this decomposition in mind, we must now determine how Ay acts on a
general element w € ¢2. Then, we may summarise all of our previous calcula-
tions as follows.

Let w € ¢2. Then, w = p+n for p € R(J + 1) and n € span{p_}:
specifically,

W) I
I lo—11>

where (¢_), = A" = (%)n, by means of equation (4.46). Then, for

and

f=w-—

1€ R(J + 1), equation (4.29) shows that
Agp=[I = (J+ 1) s,

whilst for € span{p_}, i.e., n = cp_, we have

n+1)A"
(Aan), = ¢ ((a)\ + 1A — (\/5)> ,
for a = —2 — Y5 due to equati 4.32). Furth 1l that, b
= —3 o quation (4.32). Furthermore, recall that, by
Lemma 4.4.4, the ¢2-solution to the equation (J + I)x = —@_ is given by
A™ (n+1)
N Hence,

Aon=c((ad_+1)p_+1x).
As A5 is a linear operator, we assert that
Agw = Agp + Agn.
Hence, for a general w € £2, as decomposed in equation (4.46), we have
Aw =[I—-(J+ I)_l] (w—cup—) +cy[(ar_ 4+ 1)p_ + z]
=I-(J+D)w—cop- —co(J+ 1) (=)
+ ¢ [(aA= +1)p_ + 7]

=[I—(J+1) " w—cop- — cor + colar_ + 1)p_ +cux
=[I-(J+D) " w+coarp_.

With the linear mapping As defined, we may now assert that Sp i is the

following relation:
Sox = {(w — Asw, Asw) | w € 52}

<(J + 1) w—cpar_p_,
= wey, (4.47)
I—(J+D) w+ cwa/\_cp_>
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where (p_)p, = A" = (3_2\/5)71’ a=—-1- %’ and ¢, = %.

Whilst equation (4.47) displays a valid representation of Sy g, we are able
to manipulate the relation upon defining u == (J + I)"'w — c,ad_¢_. By
means of Lemma 4.4.3, we note that A_(J + I)¢_ = ep. Then, we readily

observe that

u=(J+I)w—coa(J+1) e
= (J4+ 1) N w — cuaep).

Hence w = (J + I)u + ¢, cep.

Since ¢, = % involves w, we now aim to rewrite c,, strictly in terms of

u. Then, consider the expression (w, p_). Since J + I is self-adjoint, we have

that

(w, o) = ((J + Du, o) + cwr (eo, )
=(u,(J+1Dp-) +cya-1

= — (u,e0) + ey

A
U
= )\70 + CuQ,
and so we may conclude that
uQ Cpx UuQ
Cw = + = Cy = .
Tl e A= ]2 - a)
All of these quantities are known explicitly: A_ = 3*2\/5, o = —% — ‘1/—05 and

lo—|I? = 1_1)\3 by means of equation (4.45). Then, it is easily verified that

Cw = —°2. Hence,

w=(J+ Iu— ugpey
= (J+I)u— <’LL,€0> €0.

With this calculation in mind, we may then declare that, for the appropriate
w and u,

(w— Agw, Agw) = (u,w — u),

where w — wu is such that

w—u=(J+1)u— (u,ep)eg—u

= Ju — (u, ) €.
Hence
Soix = {(u, Ju— (u,e0) e0) | u=(J+1)"" (w—cyaeg) for we (>},
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Given the relationship between w and u, we now ask which space the
sequence v belongs to. In fact, since J + I: ¢? — ¢? is a bijective operator
(see: Lemma 4.2.3), if the operator T: 2 — ¢% such that w — w — cyaeq is
bijective, then we may deduce that u can be an arbitrary element in 2 —
this is clear, upon taking the composition of the two operators. The following

lemma proves that this is, indeed, the case.

Lemma 4.4.6. The operator T': £> — (% such that

s a bijective, linear operator.

Proof. Let z, y € 2> and A € C. Proving that T is linear is easy: we must
simply verify that T'(Ax + y) = ATz + T'y. Indeed,

A _
T(Az+y) =\ +y)— W@eo
VA A<:1:,sa—2> o + 1 — <y,<p—2> oo
lo—]] [l

= Tz + Ty,

confirming that 7T is a linear operator.

To verify that T is bijective, we first note that we may write T as the

(wyp—)
lo—11°
make use of the Neumann series — see, for example, [43, Thm. 7.3-1]. In

particular, if ||S|| < 1, then (I —S)~! = T! exists on the whole of £, and so

operator I — S, for Sw = aeg. Then, to show that T is bijective, we

T is bijective. Indeed,

_ lwllla]
ol

wrpo) ol
ISt] = H < llle—T e
1|2 o112

after an application of the Cauchy-Schwarz inequality. This inequality demon-

strates that

| 2 _laf?
ISl <, or [ISI7< 5
- I
The second inequality above is more useful to us as equation (4.45) gives an
explicit expression for ||p_||?. Additionally, it is easily verified that a? = ’\T*
for Ay = 3+72‘/5 Together, these two expressions show that
Ap(1— A2 Ap — Ao )
jsjp < 2UAD e mAs VB
5 5 5
since AxA_ = 1. As this inequality demonstrates that ||[S| < 1, we may
conclude that T is a bijective, linear operator, as required. |
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Having now discerned that T is bijective, we see that (J + I)T: £2 — ¢?
is also bijective, and so we may conclude that the Krein extension Sy g of So

takes the following form:
Sa i = {(u, Ju— (u,e0) e0) | uel?}.

It is worth noting that this relation does not have a multi-valued part.
Indeed, this is obvious upon setting u = 0: J0O — (0, ep) e9 = 0, and so there
can not exist an element of the form (0,z) € Sy g for z # 0. Consequently,

we can easily express Ju — (u, ep) eg as a Jacobi operator J. In particular,

So.x = {(u, ju) ‘ u e EQ},

where
1 -1 uQ
J Jj . " 4.48
u — (u,eq)eg = Ju = , .
(u, eq) eo 9 " (4.48)

for u = (ug,ur,ua,...) € £2.

Now that we have constructed both the Friedrichs and Krein extension
of S, we conclude this section by remarking that S p does not equal S k.
This differs to S1 quite drastically, as S1 = S1.r = S1 i in that case. Thus,
we continue by asking whether or not there exist other extremal maximal
sectorial extensions of S7 and S3. The next section addresses this question by

means of Theorem 3.2.17.

4.5 Extremal Maximal Sectorial Extensions of 5;
and SQ

During Sections 4.2, 4.3 and 4.4, we constructed the Friedrichs and Krein
extensions of two linear relations S; and Ss. In particular, we constructed
maximal sectorial relations after making use of the association between secto-
rial relations and closed forms. However, in Section 3.2.3, we also described
how one might construct all extremal maximal sectorial extensions by means
of the linear relations U and V expressed in equations (3.16) and (3.17) respec-
tively. This section serves two purposes. On one hand, we aim to characterise
all of the extremal maximal sectorial extensions of S7 and S; by means of
Theorem 3.2.17. Moreover, we aim to explicitly construct the Friedrichs and

Krein extensions of both S; and Sy, verifying that the two methods coincide.
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4.5.1 Extremal Maximal Sectorial Extensions of S,

We begin by recalling that the linear relation S is given by
S1={(z,Ja) e P x * |z €’}

where (Jx), = —A(Az,_1) for all n > 0. The set Ry, as described in equa-
tion (3.11), is fundamental to the construction of the extremal maximal ex-

tensions of S1; in particular,

Ro = {2’ € R(S1) | there exists (x,2") € S) such that (2, z) =0}
= {Ja: } there exists z € £2 such that (Jo,x) = O} .

It is clear that (Jz,z) = 0 if and only if x = 0, and so we readily observe that
R = {0}.

Remark. Alternatively, since mul Sf = mulS; = {0}, it is immediate that

Ro = {0} upon invoking Lemma 3.2.13.

Remark. Since Ry = {0}, the element [Jz| is effectively the same as Jx.
However, we will keep the bracket notation so that there is no ambiguity

between the spaces and inner products that we will work with.

We continue by defining (Hg,, (-, ). ) to be the completion of the inner

S1

product space (R(Sl)/i)%o, (-, -)R(Sl)/%), where

<[$/]7 [y/]>72(51)/%0 - % (<x/,y> + <$,y/>) ) (.T,.TI), (yvy/) S Sl.

Here, [2/] and [y'] denote the equivalence classes containing x’ and y’ respec-

tively. Then, for (z, Jx), (y, Jy) € S1, it is clear that

(7], )y, =

since J is self-adjoint. Alternatively, we note that

([J2], Tyl g, = @ Jy), (2, J2), (y,Jy) € S,

using the symmetry of J.
Let b be the symmetric form with Q(b}) = R(S1)/%Ro defined by

b [[Ja], [Jy]] = %((%Jw - Jz,y), (@ Jx), (y,Jy) € S1.
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In this case, the form b} simplifies significantly. Indeed, for all (z,Jz),

(y, Jy) € S1, we have
by (172, [Jyl) = & (@, Jy) - (T 1)

(z, Jy) — (z, Jy))

| . DO .

S o

)

since J is self-adjoint. By taking the closure of b}, we obtain the closed form
b1, where by is an everywhere defined, bounded symmetric form on Hg, that
is identically equal to 0. Then, there exists a bounded self-adjoint operator

Bg, on Hg, such that

by [[Jz], [Jyl] = (Bs,[J2l, [Tyl g > (2, J2), (v, Jy) € St

Clearly Bg, =0, i.e., Bg, is the zero operator.
Now, define U; to be the linear relation from ¢? to Hg, with

U = {(z,[Jz]) € ¢ x Hg, | (z,Jz) € 51}, (4.49)
and Vj from Hg, to ¢? with
Vi = {([Jz], Jz) € Hg, x * | (z,Jz) € 51 }. (4.50)
With these two linear relations in mind, we are able to determine all extremal
maximal sectorial extensions of S; by means of Theorem 3.2.17. In particular,
if we are in possession of a closed linear operator 1" whose graph satisfies
Ur CG(T) C V', then
S =G(T)*G(I +iBs,)9(T)
=g(T)"¢(T)
is the extremal maximal sectorial extension of S associated to T'. Further-
more, by Theorem 3.2.18, the Friedrichs extension S; r and Krein extension
S1, K of S1 are given by
S1,r=U{G(I +1iBg,) U™
=UyU™
and
= Vl**vl*a
respectively. Then, we must determine the following relations: UY, Uy*, Vi

and V;**. In fact, the following lemma shows that these relations, in this case,

are intimately connected.
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Lemma 4.5.1. Let Uy and Vi be defined as in equations (4.49) and (4.50).
Then Uy = V" = U and Uy = V™.

Proof. The latter equality is immediate provided that U; = V|, so we focus

on proving the former. Then, we begin by noting that V}* is of the form
Vi = {(z, [y]) € £? x Hs, | ([y], [Ja:])Hsl = (z,Jz) for all ([Jz],Jz) € Vl}.

As [y] € Hg,, there exists a sequence [p,] in R(S1)/{0} such that [p,] — [y]
as n — oo in Hg,. In particular, as R(S1) = R(J), there exists a sequence ¢,
in /2 such that [Jg,] — [y]. Then,

(22 J2) = (ly), ) gy, = lim (anl, Uy = lim (Jan,).

n—o0 n—oo

Since J is self-adjoint, we note that (z, Jx) = (Jz,x). As x € ¢? is arbitrary,
Jq, must tend to Jz weakly in £2 for equality to hold: we choose to denote
this by Jg, — Jz. Moreover, for [Jz] € D(V}),

(] = 2L L) g, = (= T2 g
= lim (g0 — J2],[Jal) g,

n—o0

= lim <[J(Qn - Z)]? [Jx]>H51

n—o0

= lim (J(gn — 2),z)

n—o0

= lim (Jg, — Jz,z).

n—o0

As Jgq, — Jz in 02, limy, o (Jq — Jz,2) = 0 for all x € £2. Thus, [y] = [J2].

With this result in mind, we can then assert that

z € (% such that ([Jz],[Jz)) . = (z,Jz)
Vi ={ (2,[J2]) € % x Hg, i
for all ([Jz], Jx) € V}

However, the extra condition required on z € £? is unimportant for our pur-
poses: clearly, V|* C U;. Moreover, from Lemma 3.2.16, we have that V; C U;.
By taking the adjoint of both sides, we readily observe that U;* C V}*. Hence,

U vy CU, CUy™,

since U™ is the closure of Uy. From this string of containments, we conclude

equality. Hence
U, =V =U" and Uy =V,

as required. [
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This lemma has several notable consequences. Firstly, since U; = V¥, there
are no other extremal maximal extensions of S; — there are no additional

choices for graphs that lie in between the two. Furthermore,
Sig =WV =UiVi = U U = Sy,

verifying that the Friedrichs and Krein extension coincide in this example. We
then devote the remainder of this section to the construction of the Friedrichs
extension S r by means of the composition UyU{* = U{U; in order to ensure
that the two methods do, indeed, coincide.

By definition, U7 is of the form
Ui = {(lyl.2) € He, x 2 | (z.2) = {[y), [a]) y,, for all (z, [Ja]) € U1 }.

Then, as [y] € Hg,, there exists a sequence g, in £ such that [Jg,] — [y] as

n — oo in Hg,. Hence,

(z,2) = () V2] g, = lim ([Jgn], [Ja]) g = lim (Jgn, ).

1 n—oo n—oo

As such, we require Jg, — z in ¢? for equality to hold. Then,

. , | there exists a sequence ¢, in 2% such
Ui = (1), 2) € Hs, ¢ e |
that Jg, — z in ¢“ and [Jg,] — [y] in Hg,
Now, in order to find Si r, we simply need to determine the elements in
Uf whose first component is [Jx]. If such an element could be expressed as

([Jz], 2), say, then S; p would consist of the elements (z, 2), for z € ¢*: this is

simply the composition of two linear relations. In other words,

there exists a sequence ¢, in ¢ such
UsU; = 4 (2,2) € 2 x ¢ AHEnEe n
that Jg, — z in £2 and [Jq,] — [Jz] in Hg,
Let y € (2. If we consider the expression (z — Jz,y) for x € ¢? and
z € R(UY), then we see that
(z = Jz,y) = lim (Jgn — Jz,y)

n—oo

= lim (J(gn — x),9)

n—oo

= lim ([J (g2 — 2)], [J9]) g,

n—oo

= lim ([Jgn] = [Jz], [JY]) g, -

n—oo

As [Jqn] — [Jx], we see that lim, oo ([Jgn] — [Jx],[Jy]) = O for all y € ¢2.

Hence, z = Jz, and so,

there exists a sequence ¢, in ¢ such that

UiUy =< (z,Jx) € 02 x 1
Jg, — Jzx in £ and [Jq,] — [Jz] in Hg,
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By choosing ¢, to be z for all n, the limits are trivially satisfied. Thus, it is

clear that there exists a sequence for all x € ¢2. Hence,
S1p=UiUr = {(z,Jz) € * x * | w € 7}
and
Si,r =51k =51

Observe that this result coincides with that of Section 4.2. However, Theo-
rem 3.2.18 unveils more: we can explicitly construct the form s; g associated

to S1,r by means of equation (3.20). In particular, since U** = U, we have

surle,) = (el [y
- <J{1}, y> s

for x, y € ¢2. This form coincides precisely with the form constructed during
Lemma 4.2.2, verifying that the two methods produce identical results for this

example.

4.5.2 Extremal Maximal Sectorial Extensions of S,

With the analysis of S; now complete, we continue by constructing the ex-
tremal maximal sectorial extensions of S5. Recall that the linear relation So
is given by

Sy = {(J:,j:c) €2 x 1 ‘ xeﬁg},

where (Jz), = —A(Ax,_1) for all n > 0. As in Section 4.5.1, the first step in

constructing such extensions is to determine the set Ry, where
Ro = {2’ € R(S2) | there exists (x,2") € 57 such that (2, z) =0}
= {jx ‘ there exists x € 8(2) such that <j:c,x> = O} .

Indeed, Ry = {0}, as <j:v,x> =0 if and only if z = 0.
Then, proceed by defining (Hg,, (-, ) ;.. ) to be the completion of the inner

Sa

product space (R(SQ)/Q:{O; { '>R(52)/m0>, where

<[$/]7 [y/]>72(52)/9%0 - % (<15/7y> + <$,y/>) 3 (SU,CC/), (yvy/) S 82.

In other words,



for (z,Jz), (y,Jy) € Sy since J is a restriction of the self-adjoint operator .J.

Alternatively, we may note that

<[jx], [jy]>HS = <x,jy>, (z,Jz), (y,Jy) € So.
Let b, be the symmetric form with Q(b5) = R(S2)/MRo defined by
b, |:[j$], [jyﬂ = % (<x,jy> - <jx,y>) , (z,Jz), (y,Jy) € Sa.

We may simplify the form bf significantly once again. Indeed, for all (z, Jzx),
(y,Jy) € Sy, we have

. ] =  ((50) - ()

2
5 (@, 7y) = (Ja.9)

=0,
since J is self-adjoint. We continue by taking the closure of b, — this produces

ba, the everywhere defined, bounded symmetric form on Hg,. Then, the

bounded self-adjoint operator Bg, on Hg, such that

by [[a), [70]] = (Bs,lTal. L), . (. T2). (v, Tu) € 5o,

is clearly the zero operator.
Having now determined the operator Bg,, we continue by defining Us to

be the linear relation from ¢2 to Hg, such that

Uy = {(x, [Jz]) € £2 x Hs,

(:E, jx) S SQ} ,
and V3 from Hg, to 02 with
Vo = {([jx],jw) € Hg, x £* ‘ (z,Jx) € SQ}.

We are now in possession of all of the components necessary to construct the
extremal maximal sectorial extensions of Ss, courtesy of Theorem 3.2.17. In
essence, if we are in possession of a closed linear operator T whose graph
satisfies Uy C G(T') C V5, then

S

g(T)*G(I +1iBs,)G(T)
= G(1)"g(T),

is the extremal maximal sectorial relation associated to T'. In addition, we see
that the Friedrichs extension S  and Krein extension So i of S are given

by equations (3.19) and (3.21) respectively, i.e.,
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First, we construct the Friedrichs extension S . We begin by noting that
Us is a closed linear relation, i.e., Us* = Us. Indeed, U; is the graph of an
operator that maps an z in £3 to [Jz] in Hg,; we can show that this operator

is bounded by noting that
12l = (1Ja),[Ta])

(s,

for all € £2. Since A is a bounded operator — in particular, ||Au| < 2|ul|

Hg,

for u € (2 — we see that
(Jz,2) < 4]all?,

after applying the summation by parts formula. Then, as ||[Jz]|| Hs, < 2[7|,
we can conclude that the operator that maps x into [Jx] is bounded, thus the
associated graph is closed.

Now that we have established that Uy* = U, we may conclude that the
Friedrichs extension takes the form Sy p = UjUs instead. Thus, all that
remains is to find the elements of the form ([Jz], z) € Us for x € £2, since the
elements in Sy p will then be of the form (z, z).

Let ([Jz], z) € U. By definition,

Us = {([yLz) € Hs, x 1

(z,u) = <[y], [ju]> for all (u, [Ju]) € UQ} :

Hs,
so we can analyse the inner product in order to discern the possible values of

z. In particular, z € 2 must satisfy
(z,u) = (L Ja],[Tu])

~ ()

for all u € £3. Since 3 is not dense in £, we may only conclude that

Hs,

z = Jx + cep, c e C,

where ¢y = (1,0,0,...). On the other hand, clearly ([Jz], Jz + ceg) € U3
for any ¢ € C — it is not hard to show that the inner product condition is

satisfied. Thus, we assert that S r is of the form
So.Fp = {(x, Jx +ceg) |z €3, ce (C} :

We may then decompose this multi-valued relation into its operator and multi-
valued parts in order to conclude that the method of constructing Sy r detailed

in Section 4.3 coincides with the construction above.
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Since J is a linear operator, it is clear that the multi-valued part of Sa
is given by

(S2,7)mul = {0} X span {eg}.

Conversely, the operator part can be expressed as
(Sa.6)s = { (@, P(Jw + ceq) | w € 43}

where P is the orthogonal projection onto (mulS; )+ = ¢2. In fact, upon
reintroducing the left and right shift operators L and R, respectively, it can
be shown that

P(Jx + ceg) = RJ Lz, x € 0.

Hence
(Sa,p)s = {(z,RJLx) | x € E%} .

As such, the operator and multi-valued parts of Sy g coincide precisely with
those constructed in Section 4.3.

Furthermore, it is worth verifying that the form associated to Sy r, as
defined through equation (3.20), corresponds to that which we are to expect.
Indeed, s2 F is of the form

S2.F [.%', y] = <0**£L‘, U**y> y T,y e D(U**)a

Sa

where U** is the operator associated to (the graph) U**. However, since

U** = U, we note that, for z, y € D(U) = ¢2, we have

s2F [T,y = <U:L’, Uy>HS
2

= (17a]. L))
- (72)

= i Az, Ay,

n=0

Hg,

after an application of the summation by parts formula. In fact, this is pre-
cisely the form as expressed during the beginning of Section 4.3. As such, we
have verified that the two methods in constructing S  coincide precisely.
With the Friedrichs extension of S5 now in hand, we conclude this section
by constructing the Krein extension S i by means of Theorem 3.2.18. In

particular,

Sorc =V5*Vy for Vo= {([jx},jx) € Hg, x * (z,Jz) € Sg}.
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Our first step in constructing Ss i is to find expressions for V5 and V5™

indeed, by definition,

v = {(y, ) € @ x Hg,

<[z}, [j:c]> = (y, Jx) for all ([Jz], Jz) € Vg},

Hg,

whilst
Vs = {(la].b) € Hs, x 2 | (b,y) = ([a],[2]) g, for all (y,[2]) € V&' }.
Abstractly, we know that
Uy CU* CVy and V5" is the graph of an operator.

However, we have previously shown that Sy p does not equal S x and so
it cannot be true that Uy* = V5. In fact, we very specifically have that
Uy = Uj* C V. Then, since D(Uy) = (3, the only way to extend D(V5)
linearly is to additionally consider the span of the sequence ey = (1,0,0,...).

Therefore, there exists [z0] € Hg, such that
v?:{@$kbeﬁxﬂg xe%}

+span { (e L) | (Jel. 1]

:{@¢hbeﬁxﬂg xe%}

1, 17y])

+ span {(eo, [20]) <[20 ;

= <eo,jy> for all ([Jy], Jy) € Vg}
Hs,

= 7, for all ([Jy], Jy) € VQ}

(4.51)

Hs,

Let @ + ceg € D(Vy'), where z € £2 and ¢ € C. Since V5 is the graph of an
operator, [Jx] + c[zo] will be the associated second component in V5. In order
to find Sy i, we must look for elements of the form ([Jz] + c[zo],b) € Vi
So. i will then consist of all pairs (x + cep,b). From the inner product in the

definition of V5™, we see that
(b,y) = (o] + clz], [2])

for all (y, [2]) € V5. However, we have established that elements of V5 are of

the form (u + deg, [Ju] + d[z]) and so we note that

Hg,

(@u+@@:<ﬁﬂ+dmLﬁm+ﬂ%D

Hg,

for all (u+ deg, [Ju] +d[z0]) € V5. Upon unravelling this equation, we see that
e, (1L z0])
+ C<[750]a [jU]>

= <jzv,u> —dry — cuy + CE|HZUH|%IS2>

(b,u) + dby = <[j95]a [ju]> Hs,

+ cd ([0, [20]) 11,

S
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since <[zo], [Jy]>H = —7, for y € /2, as demonstrated by equation (4.51).
S2

Since
(b, ) + dbo = (o, u) — dwy — ciny + d)| 20,

for all (y,[z]) = (u + deo, [Ju] + d[20]) € V5, we can find b by specifying the
element y. Initially, let © =0 and d = 1. Then,

bo = —1 + clllzol s,

= (Ja)o + cl[=0]II3s, - (4.52)

Conversely, let d = 0 and u = e, for k > 1, where (ey),, = 0, — note that

we are unable to set u = eg as u € 2(2). Then

(b,ex) = <j:v,ek> —c(eg)s-

In particular,

by = (Jx); — ¢ when k =1 and by = (Jz); when k > 2.
This, in conjunction with equation (4.52), completely describes the component
b in the element ([Jz] + c[z0],b) € V5. However, we established that Sy rc was
the graph of an operator, and so there exists a T" such that T'(z + ceg) = b for
T € Zg and ¢ € C. In fact, by piecing together the components of b, we see
that

lleollid, 1 c

; T( ) -1 2 -1 T
= T 4+ ceg) =

0 -1 2 -1 9

If we can show that H[Z()]H%{SZ = 1, then the operator T' corresponds precisely
with the Jacobi operator J as presented in equation (4.48), verifying that the
relation we have constructed is, in fact, So r. Fortunately this is, indeed, the

case, as demonstrated in the following lemma.

Lemma 4.5.2. The element [29] € Hg, that satisfies

- 2
<mumb%J—yh y € £, (4.53)
has a norm of 1, i.e., |[20]| Hg, = 1.

Proof. We split the proof of this lemma into two parts: we individually show
that
Izolllms, <1 and  ||[z0]l[rg, =1 (4.54)
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both hold, since we may then conclude that ||[20]||ng, = 1. However, we first
preface the proof with a few useful results.

To begin with, we note that

([z0). [1) s,

[z0lllHs, = sup === sup  [{[z0],[h])
OHs mers,, ]|, h]eHs,, ’ Hs,
[H]£0 (Al 25, 1

via the Riesz Representation Theorem. In fact, since R(.J)/{0} is dense in

Hg, by its very construction, we see that

(k)

[20]|lrs, = sup = = sup [20], [Ty] ;
2 gens,  IJYlllus, [JyleHs,, >HS2
[Ty)0 g, =1
and so
leollms, = swp —20 = qp (4.55)
ets,, ITYllas,  (Fyens,,
[Tyl0 1ulllzg, =1

due to equation (4.53).
Furthermore, we remark that the operator J: £2 — (2 where (Jz), =

—A(Axy,_1), can be expressed as
J=(I-L)(I-R),

where L and R are the left and right shift operators, respectively. Hence, for

y € (3, we have

Isllss, = (1 101),, = {Tvs) = (Tur0)

(I-L)I - R)y,y) = (I - R)y,(I - Ryy) = ||(I - Ry,

since (I —L)* = I — R. With these results in mind, we now continue by proving
that the inequalities in (4.54) are both valid.
Let y € ¢2, then (I — R)y)1 = y1 — yo = y1. Hence,

1l = (I = R)y)1l = VI = Ryy)il? < 1T = R)yll = |[Ty]ll s, -

Then, from equation (4.55), we see that

Izolllms, = sup  |oal < sup  ||[Jylllas, =1,
[Jyl€Hs,, [JyleHs,,
7yl g, =1 1Y)l g, =1

as required.
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Conversely, let ¢ € R with |¢g| < 1 and define y = y(q) € £3 to be the

sequence with

0, n=0,
Yn = Y(@)n =
q", n>1.
Then,
0, n =0,
(I =R)y)n = q, n=1,
" -¢"=q¢""¢-1), n>2

Since H[Jy]HHS |(I — R)yl||?, observe that
I = Ryyl* = Zl (I = R)y

_ q2 + Z q2(n—1) (q _ 1)2
n=2
o0
=+ (-1 ¢
n=1
As |gq| < 1, we are able to compute this sum explicitly as it is a geometric

series. In particular,

q2

II-Ry|*=q*+ (¢ — 1?@

1—¢°+ (g —1)?

1—¢2
_ 2
1+q
If we let g tend to 1 from below, then
~ 2q2
_ 2 _
yy=q—1 and ||UZ/]||HS2 = 1+q—>1.
As such,
G, = swp = WL
letis,, Wllas, — (iyens,, I — R)yll
[Jy]#0 [Jy]#£0
1
> sup 7@1‘ = sup a = sup 7+q =1,

T yee I =Ryl ocg<r  [22 g1 V2
0<\q|<1 +q

ie., [|[z0]llHg, > 1.
Since we have shown that both ||[20]||ms, < 1 and ||[z0][|mg, > 1 hold for

all y € £2, we may conclude that ||[zo]|| Hg, = 1, as required. [
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Now that we have shown that ||[zo]m, = 1, we may finally conclude that
the operator T' corresponds precisely with the Jacobi operator J since the top

left component of J equals 1. In other words,
Sox = {(m,jx) ‘ x € 52},

as expected.
We conclude this section by finding the form sz x associated to the Krein

extension by means of equation (3.22). Indeed, let u, v € D(Vy') = £2. Then,
u=x+cey and v =y+ degy,

for z, y € E% and ¢, d € C. Then, as 172* is the operator associated to V5, we

have

sa.x¢ [u,0] = (V3. VQ*U>HS2 — (1Ja] + clzo], [Ty] + d[z0]>HS2

+d(Jal,[z0]), -+ cd (2], [ g,

Hg,

= <jx,y> — CY; —Eml + cd.

Our objective is to rewrite the right-hand side of this equality in terms of u
and v since u = (¢, z1,x9,...) and v = (d,y1,y2,...). Since zg = yp = 0, we
note that
o0 o0
<Jx,y> = Z —A(Azp—1)Y, = Z Az, Ay,
n=0 n=0
after an application of the summation by parts formula. Now, since

r] — C, n =20,
Au,, =

Uptl — Up = Tptl — Tn = Axy, n>1,

we see that

> Ar Ay, =Y Az, AT, + 217
n=0

n=1

oo
= Z Aun AT, — AugAvy + 217,
n=0

oo
= Z Aun ATy, — (1 — ¢) (Y — d) + 19
n=0

= Z Ay A, + ¢y + dxy — cd.

n=0
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We may then substitute this equality into the expression for s k [u, v]. Thus,

the form associated to the Krein extension is given by,

o0
S2 K [u,v] = Z Au, AT, + cyy +dry —cd| — ¢y — dxy + cd

n=0
[eS)
= E Ay, ATy,
n=0

for u, v € £2. A direct comparison to the form associated to the Friedrichs ex-
tension yields the following: the expression for the forms are identical. Indeed,
the forms only differ in their domain: Q(s2 ) = £3, whilst Q(s2 x) = ¢*. This
is consistent with the work presented in Chapters 1 and 2 — the form domain
of the sp g is minimal, whilst the form domain of sp k is maximal. More-
over, we note that the form spx corresponds precisely with the form that
we claimed ‘seemed more natural’, presented towards the end of Section 2.2.

Finally, we make special note that

Q(s2x) = Q(s2,r) + span{ep}, (4.56)

where span {ep} = mulS;. Indeed, we will revisit this decomposition in the
next, and final, section of the thesis where we discuss this example more

generally and provide an outlook for future work.

4.6 Concluding Remarks

Now that we have constructed all of the extremal maximal sectorial extensions
of both S; and S5, we conclude Chapter 4 — and, indeed, the thesis — with
a few final observations in an effort to provide direction for possible future
works.

Firstly, recall that if T ,;, is a positive, symmetric operator, then the form

domain of the Krein extension is given by

Q(tK) = Q(tF) + ker Tma)m

as described in Theorem 1.2.16. Then, we draw attention back to the decom-
position of the form domain of s x presented in equation (4.56) — note that
the kernel of S5 is trivial. If such a result exists, then this decomposition may
give an indication as to how one might generalise the Krein-Vishik-Birman
theory to linear relations. Indeed, for a sectorial relation S with vertex v =0

and semi-angle a € [0, g), it might seem reasonable to conjecture that
Q(sk) = Q(sr) + ker S* + mul S™.
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Such a decomposition would certainly be true for the graph of an appropriate
operator T, since mul G(T') = {0}, after all.

Finally, we deliver a closing remark in an attempt to generalise the two
examples S; and Sy discussed earlier in this chapter. Although Chapter 4
explicitly considers one specific Jacobi operator, we may extend the theory
to a general second-order difference operator J, provided that we make the

appropriate assumptions. Indeed, let J be the operator such that
(Jz)p = =A(pn_1Azp_1) + quin, =€ D(J) =12

where {p,} and {¢,} are two real sequences with p, > 0 for all n € Ny and
p—1 = 0. Furthermore, we impose that {p,} and {¢,} are bounded sequences.
The consequence of this requirement is clear: if we are to apply the summation

by parts formula to expressions of the form

o0

Z [_A(pn—len—l) + ann] yn7

n=0

then the limiting behaviour of the boundary term will be of no concern to us.
Moreover, this assumption ensures that J is self-adjoint and so we can prove
that the spectrum of J will be contained within a closed interval [a, b]. Note
that it may not be the whole interval — typically, periodic Jacobi matrices
have gaps in the spectrum [36]. Since the operator will have a lower bound
v = a, we may conclude that there exists a principal solution and non-principal
solutions by means of [14, Thm. 2.1]: the former will play the role of ¢_. In
fact, we may shift ¢, in such a way that guarantees a = 0: this ensures that
0€a(J).

We must make one final assumption in order for this method to work
seamlessly: we require ker J = {0}. This assumption is crucial once we recall
the Rank-Nullity theorem: ¢2 = R(J) @ ker J*. Indeed, since J is self-adjoint,
we immediately note that ker J = {0} guarantees that R(J) is dense in £2.
This, in conjunction with the fact that 0 will lie in the spectrum of J after the
shift, gives that R(.J) is dense in £2 but is not £? itself — see Section 4.2.2 for
more details.

Then, under this construction, the graph of J will have precisely one self-
adjoint extension — the Friedrichs extension. Conversely, the graph of J
restricted to £2, considered as a linear relation in £2 x £, possesses two extremal
maximal relations: the Friedrichs extension and the Krein extension. Then,
we finish by remarking that these extensions can be constructed analogously
to the extensions of S; and Sy: the procedures detailed in Sections 4.2, 4.3

and 4.4 detail a comprehensive account of the steps one should follow.
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Appendices

A An Example of Sturm-Liouville Type

In Sections 1.2.2 and 1.2.4, we discussed two methods for constructing the self-
adjoint extensions of a closed, symmetric operator: the von Neumann theory
and the Krein-Vishik-Birman theory, respectively. In this appendix, we apply
the theory to a concrete example in order to demonstrate the two methods
explicitly. Results presented in this appendix may be found in, for example,
3], [7] or [29].

Let L?([0,1]) denote the Hilbert space consisting of square integrable func-

tions over the closed interval [0, 1] whose inner product is given by

1
(f:9) 20y = /O fgdz, [, g€ L*(0,1]),

and consider the expression
1
M, f=—f"+ <y2 — 4) x2f, ve(0,1), (A.1)

over [0,1]. Note that when v = %, the differential expression M /5 reduces to
Myjof =—f".
Remark. The expression M, is of Sturm-Liouville type, i.e., M, f is of the form
— (pf") + qf for functions p and ¢. This can be seen upon taking p(z) = 1
and g(z) = (v* — 1) 272

We may associate to M, the operator T, whose domain is characterised
by those functions f in L?([0, 1]) whose first and second derivative are, again,
in L2([0,1]) and both f and f’ vanish at the endpoints of the interval [0, 1].
For those f € D(T,), define T, f = M, f. Note that we may succinctly express
the domain of T, by

f', f" e L*([0,1]) and
F0)=f(0)=f(1) = f'(1) =0

Remark. We stress that this is a suitable domain to study as 7T, is, in fact, the

D(Tu) =S fE€ LQ([Oa 1])

minimal operator associated to M,. For more details, see [7, Prop. 3.1 (ii)].
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Whilst this notation is sufficient, we find it useful to introduce so-called
Sobolev spaces as a means of being consistent with the literature referenced
throughout the forthcoming sections. In particular, the domains of interest to
us can be expressed explicitly in terms of these spaces. Then, for n € Ny, we
define H™ ([0, 1]) and H{([0,1]) as follows [1]:

H™([0,1]) = {f e 12([0,1]) ‘ F8) e 12(]0,1]) for &k < n} ,
where f®) = 2 ¢ and
H3(0.1]) = {7 € H(0.1)) | F90) = FOQ) =0 for k <n —1}.

Furthermore, H"([0,1]) is a Hilbert space when it is equipped with the inner
product

n

(9 o)) = Z<f(k)’g(k)>p([o,1])

k=0
for elements f, g € H"([0,1]); when n = 0, we see that H°([0,1]) = L*([0, 1]).
We now omit writing the interval with regards to the Sobolev spaces defined
above; in particular, we stress that H" = H"([0,1]) and H] = H{([0,1]),

unless otherwise specified.

Remark. With Sobolev spaces now defined, we may conclude that
D(T,) = H§([0,1]) = H.

Now that we have an explicit characterisation of the minimal operator,
it is only natural to question what form the maximal operator (T}, )max is of
due to its importance within the theory. However, we note that since 7T, is a
closed, symmetric operator, we have that (7}, )max = 7, and so it is sufficient to
construct the adjoint operator T} for use in both the von Neumann theory and
the Krein-Vishik-Birman theory. Then, let f € D(T,) = HZ and g € D(T})
and consider the equality (T, f, g) = (f,T,fg). Formally,

(T, f,9) / —f'g da:+/ <1/2—i) 72 fg dx
fg /f d;v—l—/ <u2—1)x_2fgdx
[fg /fg”d:v—i—/ <1/2—i>x_2fgda;,

after two applications of the integration by parts formula.

Remark. There is a subtlety here that we must draw attention to: functions

f €D(T,) and g € D(T;) are well-behaved in such a way that both boundary
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terms, i.e., [f'ﬁ](l) and [fg’]é, actually vanish. This follows from [7, Lem. 3.3]
and [7, Prop. 3.1], but we will explore this result more thoroughly when the

argument resurfaces later on in this appendix.

Remark. We also note that whenever we are to evaluate a boundary term at
x = 0, we should really consider the limit of the expression as x tends to 0
from the right. This is due to the possibility of certain expressions blowing up

at £ = 0 — this idea will be explored shortly.

We may then conclude that

1
mto) = [ 1|-a 4 (#-7)o%| o sep@) genm),

We do not demand much of an element g € D(T};) for this equality to hold:
we merely require that g and M,g lie in L?([0,1]). Hence, T} is the operator

whose domain is given by
D(T;) = {g € L*((0,1]) | Myg € L*([0,1])},

where T)fg = M, g as described in equation (A.1), with (7, )max = T}

Finally, we note that the operator T, exhibits different characteristics de-
pending on the value of v € (0,1). For any v € (0,1), T, is regular at the
right endpoint = 1. On the other hand, T}, is of limit-circle type for all
Ve (0, %) U (%, 1) at the left endpoint z = 0, and is regular at this endpoint
when v = § — this is because g(z) blows up at z = 0 for v # 1 [29]. Whilst
both of these classifications effectively mean that all solutions of the equation
M, f = 0 belong to L?([0, 1]) near the appropriate endpoint, we must be care-
ful about how we describe any boundary conditions that are imposed. This
appendix will frequently make reference to the extension of T, with Dirichlet
boundary conditions, say (7},)p, so we continue this section by defining this
domain with the above classifications in mind.

In essence, (T,)p consists of all functions that vanish at both endpoints.
Then, when an endpoint is regular, it is safe to simply evaluate a function at
the endpoint as one might expect. For example, T' 5 is regular at both x =0

and x = 1 and so (T} /2) p has a domain that may be written explicitly as

D((Tyj2)p) = {f € L*([0,1]) | Myyaf € L*([0,1]), f(0) =0 and f(1) =0} .

However, when v € ((), %) U (%, 1), we must adapt the condition f(0) = 0

since T, is of limit-circle type at x = 0. We can do so by first introducing the
symplectic form [-,-](*): D((T})max) X D((T})max) X [0, 1] that acts as follows:

[f,9l(x) = f(2)g(x) = f(2)3(x), £, 9 € DT))max)-
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Then, the condition f(0) = 0 must be replaced with [f, xl’*%](O) = 0, where

[,2"73](0) =0 <=  lim [f,2"*2](2) =0

z—0t

1
= lim {(1/ - > x”_%f(x) - f’(x)x”‘*‘é} =0,
z—0+t 2
where the function *2 was chosen because it is the principal solution to
the equation M, f = 0 [29]. This is a believable replacement: when v = 3,
one may observe that [f,z](0) = 0 reduces down to the expected condition.
Indeed,
£2(0)=0 = lim f(z) —2f'(z) =0
x—07F

= li =0
A )

>  f(0)=0,

since T}, is regular. Therefore, whenever v € (0, %) U (%, 1), the domain of the

extension with Dirichlet boundary conditions can be expressed as
M, f € L*([0,1)),

D(T,)p) = { f € L*([0,1 )
(7)) € L(0.1D [f,2"T2](0) = 0 and f(1) =0

Remark. If the operator was of limit-circle type at the right endpoint, then

we would consider the limit as = approaches 1 from the left instead.

Remark. Although this appendix will not be concerned with the case when
v = 0, we note that Ty is of limit-circle type at x = 0 and is regular at x = 1
and so one can expect to apply a similar analysis to all v € [0, %) U (%, 1)
without too much difficulty. However, since the form of the kernel elements
change, this case requires more details than we feel necessary to make entirely
rigorous and hope that the example presented demonstrates the theory in an

approachable yet informative manner.

With the operator T}, and the extension with Dirichlet boundary conditions
(T,)) p now defined, we continue by finding the self-adjoint extensions by means

of the von Neumann theory and the Krein-Vishik-Birman theory.

A.1 via the von Neumann Theory

Recall the von Neumann theory from Section 1.2.2. Here, our objective will
be to explicitly construct the unitary matrix associated to the extension of
T, with Dirichlet boundary conditions, i.e., (T),)p. We will concern ourselves

with v € (O, %) U (%, 1), but we endeavour to draw attention to the case when
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v= % whenever appropriate. Consequently, our calculations will make use of

the following description of the domain of (7},)p:

M, f € L*([0,1]),
D((T,)p) = { f € L*([0,1 .
(T)p) € (0, 1]) [f,z"T2](0) = 0 and f(1) =0

Furthermore, recall that the adjoint operator 7, has domain
D(T;) = {g € L*([0.1]) | Myg € L*([0,1])},

and acts as follows on elements: T,y g = M, g for g € D(1}}).
The von Neumann theory revolves around computing the deficiency spaces
Ny and N_ of the operator T, so we begin by letting f € D(T). Then, we

can compute Ny = ker (T} — iI) by solving the differential equation

—f"+ (VQ—i):n_2f—if:0, ve(0,1).

For v #£ %, the general solution to this equation is given by
f(x) = c1v/x BesselJ (v, Viz) + cov/x BesselY (v, Viz), 1, ¢g € C,

where BesselJ and BesselY denote the Bessel function of the first kind and
second kind respectively. It can be shown that the deficiency spaces of T,

both have dimension 2, i.e.,

and so both linearly independent solutions will lie in L?([0,1]) — see, for

example, [7, Prop. 3.1 (i)]. As such, we may conclude that
Ny = span {\/EBesselJ(v, Viz), vz BesselY (v, \/zm)}

Similarly, for f € D(T}), we can compute N_ = ker (T +¢I) by solving the

differential equation

—f"+ <u2 — le) t2f+if =0, ve(0,1).

This time, the general solution for v # % is given by
f(x) = div/x Bessell (v, v/—ix) + dav/x BesselY (v, v/ —ix), dyi, do € C,
and so the deficiency space N_ may be expressed as
N_ = span {\/EBesselJ(V, V—izx), v/x BesselY (v, \/jzx)}

As the deficiency indices are equal, we are able to construct self-adjoint exten-
sions of T, by investigating isometric maps from one deficiency space to the

other.
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Remark. When v = %, the deficiency spaces can be given by
Ny = span {sin (Vix), cos (\fm)}

and
N_ = span {sin (vV/—iz), cos (—\/;a:)}

instead. If we begin with the differential equation —f” & if = 0, then it
may seem more natural for the basis elements to be in terms of exponential
functions. However, the form expressed above is more consistent here since the

Bessel functions evaluated at v = % reduce down to sine and cosine functions.

With the two deficiency spaces now explicitly realised, we can begin to
investigate isometric maps between the two spaces. In fact, if T: Hy — Hy is
a linear operator where Hi and Ho are Hilbert spaces with dim H; = n < oo
and dim Hy = m < oo, then T can be represented by an m x n matrix U [17].
With this result in mind, we assert that if we are in possession of orthonormal
bases for both N and N_, then an isometric map U: Ny — N_ can be

represented by a 2 X 2 unitary matrix.

Remark. A unitary matrix U is an n X n matrix such that
v =U0"U =1,

where I denotes the n x n identity matrix and U™, the conjugate transpose of
U, ie., U* = (U)T. Critically, unitary matrices are isometric maps. To see

this, let U be a unitary matrix and z € C". Then,
1Uz)? = (Uz,Uz) = (z,U*Uz) = {z,2) = |12,

demonstrating that U is, indeed, distance preserving.

More specifically, we have the following argument: for a self-adjoint exten-

sion T, of T}, we may decompose an element g € D(T ») into

g=g0+ 9+ +Ugy, g0 € D(T,,), g+ € Ny,

for some isometric mapping U: N — N_, after invoking Theorem 1.2.9.
Upon letting {e1, e2} be an orthonormal basis of Ay, we can then express
an element g, € N as gy = aey + Bes for constants a, 8 € C. Likewise,
if {f1, f2} is an orthonormal basis of N_, then an element g_ € N_ can be
expressed as g_ = 7y f1+0 fo for constants v, € C. The 2 x 2 unitary matrix U

will then be the matrix that maps the constants a and 3 to the new constants

(é i) (Z) ) @ / (A2)
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Once we are in possession of the entries of the matrix U, we may then assert
that the domain of a self-adjoint extension T, of T, is given by
- | aer + Bea + (Aa+ BpB) fr
D(T,) =D(1,) + a, peCyp, (A.3)
+ (COZ + Dﬁ)fQ
where {ej, es} forms an orthonormal basis of N} and {f;, fo} forms an or-
thonormal basis of N/_.
As this section is interested in the construction of the unitary matrix as-

sociated to the extension with Dirichlet boundary conditions, we recall that

M, f € L*([0,1]),

B 2
D((T.)p) = 4 f € L7([0,1]) [f,z"72](0) = 0 and f(1) =0

(A.4)
Essentially, we hope to find unique constants A, B, C and D by solving the
boundary condition at both endpoints simultaneously: this will yield the ma-
trix U. Firstly, however, we must construct orthonormal bases for the defi-
ciency spaces N1 and N_.

When we wish to construct an orthonormal basis of a set, it is customary

to use the Gram-Schmidt orthogonalisation process [44]. This process is con-

structive: if {vy,ve,...,v,} forms a basis of an inner product space (V, (-, -)),
then the set {wy,wa, ..., w,}, where
n—1 <’U w >
w; = V1 and Wy, = Uy, — m Tk Wi, n > 2,
=1 <wk7 wk)
forms an orthogonal basis of V. Furthermore, the set {ej,es,...,e,}, where
w
en = T, n =1,
[[wn |

forms an orthonormal basis of V.

Fixv e (O, %) U (%, 1) — the case when v = % may be considered similarly.

To begin with, we have that {v1, vo} forms a basis of Ay, where

v1(z) = vz Bessell(v,Viz) and wvy(x) = /z BesselY (v, Viz).
After applying the Gram-Schmidt process, it is clear that {v1,ve — cjv1} will
form an orthogonal basis of Ny, where

o = (vzwr) _ (vz, 1)
T lwn,wr)  (vg,00)

Upon normalising v; and vy — ¢1v1, we obtain an orthonormal basis {e1, es}

for Ny, where

va(z) — crv1(x)
[vg — crv1 |

ei1(x) = nlz) and eqo(x) =
[[oa]
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Likewise, if {01, 02} forms a basis of N_, where
01(z) = vz BesselJ (v, v/ —iz) and 09(z) = /z BesselY (v, vV —ix),

then {01,092 — d101} forms an orthogonal basis of N_, where

(Ug,w1) (U2, 01)
(w1,01)  (01,01)

Then {fi, fo} forms an orthonormal basis of N_, where

fi@) == and fole) = 62\(\2 - Zigi(\@

With two orthonormal bases now in hand, all that remains is to construct the
2 x 2 unitary matrix (U,)p that corresponds to the extension with Dirichlet
boundary conditions as given in equation (A.4).

As we have established that an element g € D((T,)p) can be decomposed
into

9(z) = go(z) + aei(z) + Bez(x) + vf1(x) + 0 f2(7),

for go € D(T,) and constants «, /3, v, § € C by means of equation (A.3), we
continue by investigating g(x) with reference to the boundary conditions at
both x = 0 and x = 1. Immediately, we note that go(0) = go(1) = 0 since
go € D(T,) = HZ, whilst regularity at the right endpoint ensures that we
may safely evaluate each term at x = 1. At x = 0, however, we must make
use of the limiting condition and so, together, this reduces to solving the two

equations

lim { ( + 1) 2% [aey (@) + Bea(a) + 7/i() + 3 fa(@)

z—07F 2
- [ach(e) + Behte) + 254 (2) + 8 53(0)] 0"} =0
and
0461(1) + 562(1) + ’Yfl(l) + 5f2(1) =0
simultaneously for v and J.

Remark. When v = %, we simply replace the first equation with
ey (0) + Bez(0) +vf1(0) + 6£2(0) = 0,

for appropriate functions e, es, fi and fs, since T, is regular at = = 0.

As v and ¢ will depend on « and [, we are in possession of a system of
two equations with two variables to find. Upon solving this system, we find

that there exists a unique solution where v and § are linear combinations of
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«a and B, say v = aja+ azf8 and § = by + beS. We may then compare this to
equation (A.2) and immediately recognise that the constants line up neatly;

we can construct the matrix (U,)p by reading off the coefficients of o and /3,

that is,
A B
(U)p = = (" "),
C D by by

where the method for finding these constants is detailed explicitly in the sub-
section containing MAPLE calculations below. This matrix (U, )p is then the
2 x 2 unitary matrix that corresponds to the extension Tl, of T,, with Dirichlet

boundary conditions, i.e., (1},)p.

MAPLE Calculations of the Unitary Matrices

This section will detail the method for constructing the unitary matrix associ-
ated to the extension with Dirichlet boundary conditions by means of explicit
calculations in MAPLE. Crucially, after defining el(v,z) and e2(v,z) to be
the orthonormal basis elements of Ny, and f1(v,z) and f2(v,x) to be those
of N_, we set

> V:=(nu,x,alpha,beta)->alpha*el(nu,x)+beta*e2(nu,x)
and

> W:=(nu,x,Gamma,delta)->Gamma*f1(nu,x)+delta*f2(nu,x).
Under this construction, an element g € D((7},)p) can be decomposed into
g(x) =go(z) +V(v,z,, 8) + W(v,x,T,0). We may then create functions
that mimic the boundary conditions, knowing in advance that gg € Hg. In

particular, we define
> Bl:=(nu,alpha,beta,Gamma,delta)-> limit(
(nu+1/2)*x"~ (nu-1/2)*(V(nu,x,alpha,beta)+W(nu, x,Gamma,delta))
-(x~ (nu+1/2)*(diff (V(nu,x,alpha,beta) ,x)
+diff (W(nu,x,Gamma,delta),x))),x=0,right)
and
> B2:=(nu,alpha,beta,Gamma,delta)->
simplify(subs(x=1,evalf (V(nu,x,alpha,beta)
+W(nu,x,Gamma,delta))))

as these functions may be used to simulate [g,x”*é](O) =0and g(1) =0
respectively: the Dirichlet boundary conditions. We now solve the two
functions B1 and B2 equal to 0 simultaneously for I' and ¢ in terms of «

and S using the ‘solve’ command as follows:
> SolSet:=simplify(solve({B1(nu,alpha,beta,Gamma,delta)=0,
B2(nu,alpha,beta,Gamma,delta)=0},{Gamma,delta})) .
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At this point, we would have to specify the value of v € (0, %) U (%, 1) in
order for Maple to return a sensible result. Indeed, for a chosen v, we can

then use the ‘collect’ command, that is,

> Colll:=collect(SolSet[1],{alpha,beta})
> Coll2:=collect(SolSet[2],{alpha,beta}),

and immediately read off the entries of (U,)p as this command endeavours

to express the constants v and § as v = aje; +ases and § = by f1 +bofo. In
A

particular, we see that (U,)p = (C

B
D) where A, B, C and D are given

by the outputs of

> A:= coeff(rhs(Colll),alpha)
> B:= coeff(rhs(Colll) ,beta)
> C:= coeff(rhs(Coll2),alpha)
> D:= coeff(rhs(Coll2) ,beta)

respectively. Rather fortuitously, the matrix (U,)q is diagonal for all v in

the interval (0, %) U (%, 1)! To illustrate this more tangibly, we present the

following few examples:

~0.995 + 0.101i 0
(Uiss)p = e
0 —0.951 + 0.309
U — (0989 0149 0
/3D 0 —0.866 + 0.5i )
W —0.627 — 0.779i 0
D — .
3/4 0 —0.383 + 0.924i

Note that the use of the ‘evalf’ command and rounding makes the entries of

the matrices approximate.

Remark. When v = %, we can apply a similar analysis. After making the
appropriate changes to the MAPLE code — i.e., suitably replacing basis ele-
ments and the initial condition B1 — we see that the matrix (U;/9)p is given
by

—0.327 — 0.945i 0 )

(Ury2)p = < 0 1

We conclude the case when v = % by remarking that the matrix (U; j2)p being
diagonal is a consequence of the initial bases chosen for N\ and N_ — had we

chosen exponential functions instead, then the matrix would not be diagonal.

We have now successfully produced the unitary matrix (U,)p correspond-
ing to the Dirichlet extension of the operator T} by means of the von Neumann

theory, thus concluding this section.
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A.2 via the Krein-Vishik-Birman Theory

In Section A.1, we constructed the extension of the second-order differential
operator T, that possessed Dirichlet boundary conditions. In this section,
we aim to construct the domains of both the Friedrichs extension and Krein
extension of the same operator by using the definitions and results presented
in Section 1.2.3. Furthermore, we construct these extensions explicitly using
the Krein-Vishik-Birman theory.

Recall the expression M, from the beginning of Appendix A, that is,

Muf:_f/+<y2_;>x2f7 VE(Oa]-)'

Then, the operator T}, is such that T, f = M, f for elements f € D(T,) = Hg.

Furthermore, as T, = (T}, )max, We stress that
D((Ty)max) = {f € L*([0,1]) | M, f € L*([0,1])} . (A.5)

Remark. We once again remark that 7, = (7),)min here: the language pre-

sented in Section 1.2.3 remains consistent.

We begin by constructing the form (t,)r associated to the Friedrichs ex-
tension due to its fundamental placement within the theory. By investigating
the expression ((7},)maxf,g), we aim to arrive at an expression that the form
(t,)r may take and an appropriate form domain Q((t,)g) for it to act upon.
Then, for f € D((T))max) and g € Q((t,)F), we have

1 1
(T))maxf,9) = /0 —f"g dx + /0 <v2 - i) 72 fg dx
1
= —[f'gls + /0 9+ <u2 — i) 272 fg dz,

after an application of the integration by parts formula. Due to the association
between operators and forms detailed in Section 1.1.3, we require [ f’y](l) =

so that we may set
! o 1 2
(tl/)F[fag]:/ f/g/—|—<1/ _4>$_ fgd.%’,
0

as this would at least ensure that (t,)p — with an appropriate form domain
— would be a symmetric, sesquilinear form. We now attempt to find this form
domain, i.e., Q((t,)r).
Let
Hi([0,1]) = {f € H([0,1]) | £(0) = f'(0) = 0}.

Unlike HZ([0,1]), this space involves boundary conditions at only the left
endpoint. Although equation (A.5) gives a description of the domain of the
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maximal operator, we find it useful to invoke [7, Prop. 3.1 (iii)] to express
D((T))max) as
D((Ty )max) = H3 ([0, 1]) + span {u, v},

1 o4l
where v = 2”12 and v = 2772, i.e., ker (T}, )max = span{u, v}.

Remark. Although we do not consider the case when v = 0 in our analysis, it is

worth remarking that, when v = 0, we should take u = 22 and v =22 In (x).

From this decomposition, it is clear that we may express an f € D((T},)max)
as f = fo+ au+ Bu for fo € HZ([0,1]). Then, the boundary term [f'g]} may
be evaluated safely since the functions v and v are elements of ker (7, )max.
Then, to ensure that the boundary term vanishes for every f € D((T,)max),
we must impose g(1) = 0. Upon specifying f = v, observe that the boundary
term then becomes [v'g]}, and so we must further impose that g(0) = 0. Then,

as

1
1 _
welsgl = [ 1P+ (7= ) a2l ao

1 1 1,19
:/ g'|* dz + <V2 - ) / ‘g’ dz,
0 4) Jo lx

it is clear that we require that both ¢’ and £ are elements of L?([0,1]) for

these calculations to make sense. In other words,

Q(t)r) = {g € 12(0.1)) | ¢/, £ € £([0, 1)) and g(0) = 9(1) = 0}
={sen} | Ler(p.)}.

is not only a viable domain for the form (t,)g, but also the biggest domain
such that these calculations make sense. In fact, the condition £ € L2([0, 1])

is superfluous: one can show that

Q((tv)r) = Hy

by means of Hardy’s inequality as in the proof of [7, Prop. 3.2 (i)]. Finally,
we note that this domain ensures that (t,)r is a closed form — critical in
associating an operator to it.

With Theorem 1.2.12 in mind, we can immediately construct the Friedrichs
extension. In particular, since D(Tr) = D(Thax) N Q(tr), we readily observe
that

D((L)r) = {f € Hy | Myf € L*([0,1))}

={feL*[0,1]) | f/, M, f € L*([0,1]) and f(0) = f(1) =0}.
(A.6)
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Conversely, we can easily construct the Krein extension (7,)x by means of
Definition 1.2.13. Since

D(Tx) = D(Tmin) + N,

all that remains is to determine N = ker (T}, )max. This is simple: we merely

solve (T, )maxf = 0 and so it is immediate that
N = span {x”"”%, a:_”'%}.
Hence, we may conclude that
D((T,) k) = HE + span {:U”Jr%, x_”+%}. (A.7)

Although we are now in possession of descriptions of both the Friedrichs
extension and the Krein extension, we feel it prudent to illustrate the con-
struction of these extensions through the use of Theorem 1.2.16.

First, we construct the Friedrichs extension; this corresponds to the form
(ty)oo = (t,)F + 00 with form domain Q((t,)e0) = Q((t,)r), since we must
take Np = {0} when b = co. The self-adjoint operator B associated to b = co
is the zero operator (which we choose to denote by oo so that (7))~ makes

sense), so we must define oo [0,0] = 0. Then, the domain of (7)) is given by

3f € L*([0,1]) such that

DUT,)p) =X 2 € H}
(e - (t)F [z, 9] = (f,y) Yy € Hy

For these z, we define f = (T,,)pz. Our aim is to determine (7,)r explicitly
and so we begin by investigating the expression (t,)g [z,y] for z € D((T,)F)
and y € Q((t,)r) = H}. Observe that

1
trlzyl = | 27+ (V2 1 x7 227 dx
4
0
! 1
= [2'7)} —I—/O [—z” + (V2 — 4) x_gz] y dx
! 1
= / [—z” + <1/2 — 4) x_zz] Y dx,
0

since §(0) = y(1) = 0. Then, for those z and y, we have

1
(o) = (&) [2,9] = /0 (M, 2)7 da,

where M,z on the right-hand side of this equality is to be interpreted in the

distributional sense. It then remains to show that M,z lies in L?([0, 1]).
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Using the Riesz Representation Theorem, for an element g € L2([0, 1]), the

norm of g satisfies the following equality:

9,y
lgllz2(oa)) =  sup Lgw)| (A.8)
yer2(o)), 1¥llzzqo.
y#0

This result is critical in the argument to showing that M,z € L%([0,1]); in
particular, we aim we prove that [|[M,z|[12(1) < oo. Thus, we begin by
noting that
| Jo (M,2)g de|
M2l 200y = sup 0"

ver2(oa)),  N¥llzzqon)
y7#0

by means of equation (A.8). Then, as H{ is a dense set in L?([0,1]) with

respect to the L2([0,1]) norm, we have

1 — _
Lo M)y da| | fy (M,2)g da

sup
ver2(oa)),  N¥llzzqo) yerd, Wyllrzqo)
y#0 y#0

For y € H{, we have fol(Ml,z)y dx = (f,y) for some f € L*([0,1]), and so

1 _
wp LT (1)

vert,  Nlz2qon) yerd, 1Yllrzo,1)
y7#0 y#0
[y
sup Li/.0)| = || fll2(o,1))-
ver2(o,1)), 19l 2o
y#0

Since f € L%([0,1]), we may finally conclude that

1Mozl 2 j0,17) = 1 fll 2 (j0,17) < o0,

thus M,z € L?([0,1]) and (T},)pz = M, 2.
Since we have shown that M,z must lie in L2?([0,1]), we may now assert

that the Friedrichs extension has domain
D(T,)r) = {z € Hy | M,z € L*([0,1])}

where (T,)rz = M,z for all z € D((T,)r). It is worth remarking that this
is precisely the domain as given in equation (A.6), i.e., the two constructions
coincide! In fact, we can show more: we can prove that the extension with
Dirichlet boundary conditions as expressed in equation (A.4) coincides with
the Friedrichs extension. However, we first require an alternative description

of D((T,)r). In particular, [7, Prop. 3.2 (ii)] demonstrates that
1

D((T,)r) = H2 + span {az"+2 (x—1), 2%(x — 1)}.
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Remark. If v = 0, then the domain of (7)r may be expressed as
D((Ty)r) = HE + span {IL‘%(ZL‘ - 1), 23 In(z)(z — 1)}

instead.

With this new description of the domain of the Friedrichs extension of T},

in hand, we present the following lemma.

Lemma A.1. The Friedrichs extension of T, and the extension of T, with

Dirichlet boundary conditions coincide.

Proof. For the purposes of this lemma, let
D((T,)r) = H} +span {3 (2~ 1), 2*(@ = 1)},
and recall that

2
D)) = { £ e 20,1 | 7 €L 0D

The first step in proving that the two domains coincide will be to show that
D((T,)r) CD((T,)p). Then, as both D((T,)r) and D((T,,)p) are the domains
of a self-adjoint extension of T;,, they must coincide. To see this, we argue the
following: were they not the same, then (7,)p would be an extension of (7)) .
This cannot be true: a non-trivial extension of a self-adjoint extension is no
longer self-adjoint.

Let z € D((T))r), that is, z = 2o + aii + 0 for 29 € H2, @i = 2”73 (z — 1)
and © = z%(z — 1). Then, we must show that M,z € L?([0,1]) and both
boundary conditions in D((7},)p)) hold. Immediately, we note that

M,z = M,z + « —(2V+1)$V7%} +p [2—6x+ <I/2 - i) (x — 1)] ,

so if we can show that each term individually lies in L2([0, 1]), then M,z must
too. First, observe that if f € HZ, then f’ admits the integral representation
f'(z) =[5 f"(t) di. Therefore, by the Cauchy-Schwarz inequality, we have

@) < ( / 1) dt>2 <o f IO dt = o(1) = ofa),

demonstrating that f'(x) = o(x%). Then, since 29 € Hg, it is true that both
2 € L*([0,1]) and 2 = o(x%); the latter condition ensures that 2§ € L*([0,1])
and so, together, we may conclude that M, 2y € L*([0,1]). The remaining two

terms are immediate: we simply need to ensure that each exponent of x, when
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squared, is greater than —1. This is clear, since 2v —1 > —1 for all v € (0, 1).

Furthermore, it is easy to show that z(1) = 0; indeed,
z1)=2(1)+a-1-0+3-1-0=0,

since z9 € HZ. Then, all that remains is to verify that [z,x”+%](0) =0. We
choose to split the analysis into three parts: we will take z = 29, 2 = @ and
z = ¥ separately.

Consider the expression [z, w”+%](0), ie.,

20,2 72](0) = lim { <u + ;) 2’2 2(z) — zg(x)xv+é} .

x—0t

This limit may be evaluated once we recall that
2 € Hp = 20 = 0(1‘%) and 2z, = o(x%).

Indeed, with these properties in mind, it is clear that
272 20(z) = o(z" ) and zé(w)xwf% = o(z"h),
and so the limits tend to 0 as x tends to 0, proving that [z, x”+%](0) =0.

Next, consider the expression [, z” +%](O) and note that

[@,2772)(0) = [2"*2 (2 — 1),2”+3](0)

It is readily observed that [x”+%,w”+%](0) = 0 since the symplectic form is,

effectively, a Wronskian-type expression. Hence,

[@, 2 +3)(0) = [2+3, 27+2](0).

Then, since a3 = o(:vg), we may conclude that [ﬂ,l’y+%](0) = 0 after mir-
roring the argument for z = zy. Finally, since 2%(z — 1) = O(2?) — and in

particular, z?(z — 1) = o(azg) — it is immediate that
[6,2%5)(0) = [2*(x — 1),2"2](0) = 0.

Therefore, we have proved that an element z € D((T,)r) satisfies all con-
ditions required to lie in D((7,)p), and so we may conclude that the two

domains must actually coincide. |

Next, we wish to construct the Krein extension (7,)x by means of the

Krein-Vishik-Birman theory. In particular, we take b = 0 and
Np =N = span {a:’”r%, x*”%},
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where the self-adjoint operator B associated to b is the 2 x 2 zero matrix.

Then, the domain of (7)) x is given by

3f € L*([0,1]) such that

DU(T)g)=Rz2€ H + N
(L)) s tx [2,y] = (f.y) Vy € Hy + N

and, for those f, we define f = (1)) kz.
Let z € D((T)) k) and y € Q((t,)x) = H} +N and consider the expression
(t,)K [2,y]. We first note that the elements z and y can be decomposed into

z(x) = 20(2) + au(z) + Bu(z) and  y(z) = yo(z) + yu(z) + dv(z),

where 29, yo € Hg and «, 3, 7, § € C. Hence,

1 1 3
(tu)K [2,9] = (t,)F [20, 0] = / Z0Y0 + <V2 - 4> 2207, dr
0

1
1\ _ _
= [2070)} —|—/ [—zé’ + <u2 — 4> x 220] Yo drv
0

1
= / (Myz0)yo du
0
- <MI/Z07yO> )

after noting that yo € HJ. From this equality, we assert that M,z must lie
in L2([0,1]) since we may repeat the argument from the previous example.

Then, it is clear that M,z must also lie in L?([0, 1]) since
M,z = M, (20 + au + pv) = M, 2.

As we are looking for the element f € L?([0,1]) such that (t,)k [z, 9] = (f,v),
we continue by choosing y to be in H&; in particular, we set y = yg, that is,

v =6 = 0. Note that, from the representation theorem, we have
(T)rz2y) =)k 2y,  2€D(Ty)k). y € Hy,
whilst the calculations above show that
(t)k [2,9] = (Myz,.y) = (f,y),  2€D((L)k), y € Hy.

Then, since H{} is dense in L?([0,1]) with respect to the L?-norm, we may

combine these two equalities to conclude that

<(Tu)szy> = <Muzvy> = <f7 Z/), z € D((TV)K)a yE LZ([Ov 1])7

In other words, (T,)xz = M,z, and so the domain of the Krein extension can

be expressed as
D((Ty)) = { € HE+ N | (6) [2,9] = (Mo, y) Wy € HE N} (A9)
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Since this produces a different characterisation of (7),)x to that of equa-
tion (A.7), the following lemma confirms that the two constructions do, indeed,

coincide.

Lemma A.2. The two descriptions of D((T,)x) as given in equations (A.7)
and (A.9) coincide.

Proof. In order to prove that the two descriptions of D((7,)x) are equivalent,
we apply a similar proof to that of Lemma A.1. In particular, we only verify
one containment before noting that (7)) is actually a self-adjoint extension
of T,,. Both domains must then coincide, else we are in possession of a non-
trivial extension — such an extension is no longer self-adjoint, leading to the
desired contradiction.

For brevity, denote by D(K7) the domain of the Krein extension as given

in equation (A.7) and by D(K3), that of equation (A.9), i.e.,
D(Ky) = H{ + N
and

D(Ks) = {z € Hy + N | (t,)x [z,y] = (M,z,y) Vy € Hy + N},

+1

2andv=a""

where N = span {u, v} for u = z¥ +3. In order to prove that
D(K;) C D(K3), we begin by letting 2 € H3 + N. Then, we need to show

that
€ H} +N and  (t,)k [2,y] = (M,z,y) for all y € H} + N.

Immediately, we note that H§ C H} and so the first condition is trivially
satisfied. Then, let y € Hi + N and consider the expression (t,)k [z,y] for
z € H? + N. Since we may decompose z and y into z = zy + au + Sv and
Yy =yo+yu+ov for z € Hg and y € H&, we may recycle previous calculations

without fear. In particular,

1 1 3
(tu)x [2,9] = (t,)F [20, 0] = / 20Y0 + <V2 - 4> 2207, dr
0

1
1
= [2070)} —|—/ [—26' + <V2 — 4> a;on] To dx
0

1
:/ (M, 2)g, dx.
0

Thus, (t,)k [z,y] = (M,z,y) provided that M,z € L%([0,1]). However, this is
clear after applying the argument concerning the distributional derivative, and
so we may conclude that D(K;) C D(K3). Then, as D(K;) and D(K3) are the
domains of a self-adjoint extension of T,,, we must have that D(K;) = D(K3),

as required. |
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We are now in possession of various descriptions of both the Friedrichs
extension (7,)r and the Krein extension (T,)x of T,, and so we choose to
close this appendix by asking one final question: if the Dirichlet boundary
conditions correspond to (7)), then can we find which boundary conditions
correspond to (7,)k instead?

To begin our construction of the Krein extension in terms of boundary

conditions, let z € D((T,) k) where
D(K1) = HZ + span {u, v}
where u = 23 and v = z V3. Then, for zy € H3 and «, 8 € C, we have

z(x) = zo(x) + au(x) + Sv(x)
= zo(x) + az’tz + ﬁx_w'%.
Rearranging this equality gives insight into how we may determine a and 3 in
terms of limits. Indeed,

pu(z) = z(z) — 20(x) —au(zr) = [= lim z(x) — 20(x) — au(w)

0+ v(x)
= [ = lim z(x)x”_%,
z—0t+
since zp = o(a:%). Likewise,
@)= Aol
z—0+ u(x)
2(2) — [limy o+ 2(y)y" "2 | 270
= lim T )
z—0+ VT3

after substituting in our expression for 5.

Next, it is clear that

2 (z) = 2p(x) + o/ (x) + BV (z)
1 1
= z,(z) + (1/ + 2> az’"3 + <—I/ + 2) ﬁxﬂ’*%.
upon differentiating z(x). If we continue by substituting z = 1 into both z
and 2/, then we see that

2()=a+pB and (1) = <u+;>a+ (—I/—l-;)/@’.

Hence, the boundary conditions associated to the Krein extension can be ex-

pressed as

2(w) = [limyor 2(y)y*~F] 27 1
z(1) = lim + lim z(x)z"" 2

1
z—0t rvt3a xz—0t
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1
+ (—l/+ 2> lim z(w)x”*%.

r—0t

We recognise that this result is not particularly illuminating, and so we
conclude this example by setting v = % in the boundary conditions found
above. In particular — once we recall that T}, is regular at both endpoints

— the two conditions above reduce down to

z(x) — [limy_>0+ z(y)]

z(1) = lim + lim z(x)
z—07F x z—0t
z—07t x

and
(1) =1- fim 2 limnysor 2] g 2(z)
z—0t T z—0t
= Z/(0)7

respectively, and so the domain of (7} /2) x may be expressed as

/ /
DTy i) = L = € H2 + span {u, o} M,z € L*([0,1]), 2'(1) = 2/(0) |
and z(1) = 2/(0) + 2(0)
where u =z and v = 1.

We have now completed the intended examples of this section. In particu-
lar, for the operator T}, we have shown that the Friedrichs extension and the
Dirichlet extension coincide precisely and we have determined explicit bound-
ary conditions for the Krein extension. The Krein-Vishik-Birman theory is
fundamental to the thesis and so we hope that this example serves as a prac-

tical introduction to the theory.
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B Sequences 2V) — (M) for the Krein Extension Sa.k
In order to construct the Krein extension Sy x of the relation
Sy = {(z,jx) € 2 x 1 ‘ xeﬂg},

where (Jz), = —A(Az,_1), we need to determine how the linear operator
Ay acts on an arbitrary element w € 2. In Section 4.4, it was shown that if

w € span {p_}, where (p_), = A" and A\_ = 3_2‘/5, then there does not exist

an « such that @ € R(J). As such, we must approximate & by some sequence

f™) in R(J) such that, amongst others, the following condition holds:
sﬁ%ﬂm—fwkww—ﬂm}%O%NﬂW%al (B.1)
We have shown that the sequence f(V) takes the form

Wn, 0<n<N,
féN): Fny, N4+1<n<2N,
Gy, 2N +1<n <3N,

0, 3N+1<n,

whilst z(V) is of the form

3N 2N
Z (n—7r)Gn + Z (n—7r)Fn
r=2N+1 r:N]—{\-fl 0 S n S N,
+Z(n — )W,
r=—n
L(N) 3N 2N
" Z (n—r)GN—i—Z(n—r)FN, N+1<n<2N,
r=2N-+1 r=n
3N
Z(n—r)GN, 2N +1<n <3N,
r—n
0, 3N +1 < n,
\
where
N N
5N +1—2r| SN +1-—-2r]
FN = —Z |:2]V2:| Wy and GN = Z |:2]\72:| Wy
r=0 r=0

In order to show that the condition given in (B.1) holds, we require the ex-
pressions fV) — fM) and (V) — 2(M) explicitly. However, due to the interplay
between N and M in the above intervals, we note that there are seven distinct
cases that must be considered. Since the expressions are large and unwieldy,

N) _ (M)

we choose to display the expressions 2( (M) in this appendix.
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Case I. M < %

The sequence z

(z<N> _

(N)

z<M>) —

r=

r

— z(M) takes the following form when M < %

3N 2N 3M
Z (n—7)Gn + Z (n—r)Fn + Z (n—r)o, + Z (n—r) (o
2N+1 r=N+1 r=3M+1 r=2M+1
2M
+ Z (n—r
r=M+1

3N 2N 3M

Z (n—71)Gn + z (n—r)Fy + Z (n—r)w, + Z (n—r)(@

=2N+1 r=N+1 r=3M+1 r=2M+1

2M

+Z n—r

- Gum)

*FM)a

- Gum)

— Fur),

3N s
Z (n—r)Gny + Z (n—r)Fn + Z n—er—l—Zn—r - Gu),
r=2N+1 r=N+1 r=3M+1
3N 2N N
Z (n—r)Gn + Z (n—r)FN—i—Z(n—r)wr,
r=2N+1 r=N+1 r=n
3N 2N
Z (n—r)GN—l—Z(n—r)FN,
r=2N-+1 r=n
3N

Z(n —7r)Gn,

r=

0,

n

0<n<M

2M +1<n <3M,

N +1<n<2N,

2N +1<n <3N,

3N +1<n.



8LT

Case II: M = g

The sequence zV) — z(M) takes the following form when M = %:
3N 2N N
Y (n=rGn+ Y (n—r)Fx+ > (n—r)(@ —Gu)
r=2N+1 r=N+1 r=2M+1
Y 0<n< M,
+ Y (n—r)(é@r — Fu),
r=M+1
3N 2N N
Y (n=mGx+ > (n—-r)Fv+ > (n—1)(@ —Gu)
r=2N+1 r=N+1 r=2M+1 M41<n<2M,
2M
(200 - 200) — + ) (n =)@ — Fup), (B.3)
n r=—n
3N 2N N
Z (n—1r)GN + Z (n—T)FN+Z(TL—T)(@r—GM), 2M +1<n <N,
r=2N+1 r=N+1 r=n
3N 2N
> (n=1)Gx+Y (n—71)Fy, N +1<n<2N,
r=2N+1 r=n
3N
Z(n—T)GN, 2N +1<n <3N,
r=n
L0, 3N +1<n.
Whilst this case realistically only involves one variable — either M or N depending on which substitution is undertaken — we choose to
display z(V) — z(M) in the form above in order to demonstrate the similarities between it and Case I: essentially, the interval [BM + 1, N]

collapses, since 3M +1 =N + 1.
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Case III: % <M< %

The sequence z(V) — 2(M) takes the following form when % <M < %:

(Z(m _ z<M>)

3N 2N 3M N
o n-rGn+ Y. (n-r)Fv+ > (n—r)FEx-Gu)+ Y. (n—7)(@ —Gun)
r=2N+1 r=3M+1 r=N+1 r=2M+1
oM
+ Z (n—r)(&r — Fup),
r=M+41
3N 2N 3M N
Z (n—r)Gny + Z (n—r)Fy + Z (n—r)(Fn —Gum) + Z (n—r)(&r — Gu)
r=2N-+1 r=3M-+1 r=N-+1 r=2M+1
oM
+ Y (n =)@ — Fu),
3N 2N 3M N "
Y n=nGn+ D>, (n=m)Fy+ > (n—r)(Fy—Gu)+ Y (n—7)(@& — Gu),
r=2N-+1 r=3M+1 r=N+1 r=n
3N 2N 3M
S -Gyt D> (n-r)Fy+ Y (n—1)(Fx —Gu),
r=2N+1 r=3M+1 r=n
3N 2N
Z (n—r)GN—i-Z(n—r)FN,
r=2N+1 r=n
3N
Z(n —r)Gn,

0,

0<n<M,

M+1<n<2M,

2M +1<n<N,

N+1<n<3M,

3M +1<n<2N,

2N +1<n <3N,

3N +1<n.



Case IV: M = %

The sequence 2V

— z(M) takes the following form when M = %:

08I

(3N 2N 3M
Z (n—7r)Gn + Z (n—7r)Fn+ Z (n—7r)(Fn — Gur)
r=2N+1 r=3M+1 r:]]\fv+1 0<n<M,
+ Y (n—r)(@r - Fu),
r=M+1
3N 2N 3M
Y (n=nGyx+ > (n-rFEv+ > (n—r)(Fy—Guy)
r=2N+1 r=3M+1 r:N—Q]—Vl M+1<n<N,
(209 - 200) = + (n—r)(@ — Fu),
n r=—n
3N 2N 3M
Y, n=r)Gy+ Y, (n=r)Fy+)Y (n—r)(Fx—-Gu), N+1<n<3M,
r=2N-+1 r=3M+1 r=n
3N 2N
Y (n—r)Gy+Y (n—1)Fy, 3M +1<n<?2N,
r=2N+1 r=n
3N
Z(n—r)GN, 2N +1<n <3N,
r=n
0, 3N +1<n.




18T

CaseV:%<M<%

The sequence z(V) — 2(M) takes the following form when % <M< %:

(2<N> _ z(M))

3N 2N 3M 2M
S n—r)Gy+ > (n=1Fx+ Y. (n—1)(Fy—Gu)+ Y (n—r)(Fx— Fu)
r=2N+1 r=3M+1 r=2M+1 r=N+1
N
+ Z (n—r)(@r — Fu),
r=M-+1
3N 2N 3M 2M
Z (n—r)Gn + Z (n—r)Fy + Z (n—r)(Fx —Gum) + Z (n—7r)(Fn — Fun)
r=2N-+1 r=3M+1 r=2M+1 r=N+1
N
+ (n=r)(@ — Fu),
3N 2N 3M oM
Yo n-rGy+ >, (n—-nFx+ Y. (n=1)(Fy—Gu)+ Y (n—1)(Fx — Fu),
r=2N+1 r=3M+1 r=2M+1 r=n
3N 2N 3M
Y n-nGyn+ > (n—r)Fx+ Y (n—r)(Fx —Gu),
r=2N+1 r=3M+1 r=n
3N 2N
Z (n—r)GN—|—Z:(71—7“)FN7
r=2N+1 r=n
3N
Z(n —r)Gn,
0,

M+1<n<N,

N+1<n<2M,

oM +1<n<3M,

3M +1<n<2N,

2N +1 <n <3N,

3N +1<n.

(B.6)
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Case VI: M =

2N
3
The sequence Z(N) —

<z<N> _ z(M>)

/

\

2(M) takes the following form when M =

2N
3t

3N 2N 2M
Y (n=rGn+ Y (n—r)(Fn—Gu)+ Y (n—r)(Fy— Fu)
r=2N+1 r=2M+1 r=N+1
N
+ > (n—r)(@r - Fu),
r=M+1
3N 2N 2M
Y (n=rGn+ Y (n—r)(Fn—Gu)+ Y. (n—r)(Fy— Fu)
r=2N-+1 r=2M+1 r=N+1
N
+> (n—r)(@ — Fu),
3N 2N oM
Y n-rGy+ Y. (n—r)(Fx-Gu)+ > (n—r)(Fyx - Fy),
r=2N-+1 r=2M+1 r=n
3N 2N
> (n=r)Gn+> (n—r)(Fy—Gu),
r=2N+1 r=n
3N
Z(n —1)Gn,

0,

0<n<M,

M+1<n<N,

N+1<n<2M,

2M +1 < n < 2N,

2N +1<n<3N,

3N +1<n.



€81

Case VII: 2¥ < M < N

The sequence zV) — z(M) takes the following form when TN <M < N:

(z<N> _ z<M>) —

2

3N 3M 2N

Yo -G+ > (-1 Gy -GCGu)+ Y. (n—1)(Fy—Guy
r=3M+1 r=2N+1 r=2M+1

3N 3M 2N

Z (n—r)Gn + Z (n—r)(Gy —Gunm) + Z (n—r)(Fny — G
r=3M+1 r=2N-+1 r=2M+1

3N 3M 2N

Yo n-rGy+ > (-1 (Gn—-Gu)+ Y. (n—r)(Fx -Gy
r=3M+1 r=2N+1 r=2M+1

3N 3M 2N

Yo n-rGy+ D (1) Gy —Gu)+ Y (n—1)(Fx — Gu),
r=3M+1 r=2N+1 r=n

3N 3M

Y -Gy + D (n—r)(Gy — Gu),
r=3M+1 r=n
3N
Z(n —r)Gn,
0,

With the final expression for z(V) — z(M) now defined, we thus conclude this appendix.

2M

)+ Y (n=r)(Fx—Fu)

r=N+1

N
+ Y (n—r)@r — Fu),
r=M+1

2M

)+ Y (n=r)(Fx — Fu)
r=N-+1
N
+y (n—r) (@ — Fup),
oM
)+ (n—r)(Fy = Fu),

0<n<M,

M+1<n<N,

N+1<n<2M,

2M +1 < n < 2N,

2N +1<n<3M,

3M +1<n <3N,

3N +1<n.

(B.8)



Bibliography

1]

[10]

R. A. Adams and J. J. F. Fournier. Sobolev Spaces, 2nd edition,
Academic Press, Amsterdam, 2003.

N. I. Akhiezer. The Classical Moment Problem and Some Related
Questions in Analysis, Oliver & Boyd, 1965.

N. I. Akhiezer and I. M. Glazman. Theory of Linear Operators in
Hilbert Spaces, Dover Publications Inc., New York, 1994.

M. A. Al-Gwaiz. Sturm-Liouville Theory and its Applications, Springer,
London, 2008.

A. Alonso and B. Simon. The Birman-Krein-Vishik theory of
self-adjoint extensions of semibounded operators, J. Operator Theory,
4(2):251-270, 1980.

W. O. Amrein, A. M. Hinz and D. B. Pearson. Sturm-Liouville Theory
Past and Present, Birkhauser, Basel, 2005.

A. Y. Ananieva and V. S. Budyika. To the spectral theory of the Bessel
operator on finite interval and half-line, J. Math. Sci., 211:624—645,
2015.

T. Ando and K. Nishio. Positive Selfadjoint Extensions of Positive
Symmetric Operators, Tohoku Math. J., 22:65-75, 1970.

G. E. Andrews. Euler’s Pentagonal Number Theorem, Mathematical
Association of America, 56(5):279-284, 1983.

R. Arens. Operational calculus of linear relations, Pacific J. Math.,

11:9-23, 1961.

[11] Y. M. Arlinskii. Extremal Extensions of Sectorial Linear Relations, Mat.

Stud., 7:81-96, 1997.

184



[12]

[13]

[14]

22]

[23]

[24]

[25]

F. V. Atkinson. Discrete and Continuous Boundary Value Problems,
Academic Press, New York, 1964.

J. Behrndt, S. Hassi and H. de Snoo. Boundary Value Problems, Weyl
Functions and Differential Operators, Birkhauser, Cham, 2020.

M. Benammar and W. D. Evans. On the Friedrichs extension of
semi-bounded difference operators, Math. Proc. Cambridge Philo. Soc.,
116(1):167-177, 1994.

C. Bennewitz. Spectral theory for pairs of differential operators, Ark.
Mat., 15:31-61, 1977.

M. S. Birman. On the theory of self-adjoint extensions of positive
definite operators, Mat. Sb. N.S., 38(80):431-450, 1956.

T. S. Blyth and E. F. Robertson. Basic Linear Algebra, 2nd edition,
Springer, London, 2002.

D. Bressoud. Some identities for terminating g-series, Math. Proc.
Cambridge Philos. Soc., 89(2):211-223, 1981.

B. M. Brown and J. S. Christiansen. On the Krein and Friedrichs
extensions of a positive Jacobi operator, Ezpo. Math., 23:179-186, 2005.

B. M. Brown and W. D. Evans. Selfadjoint and m sectorial extensions of
Sturm-Liouville operators, Integr. Equ. Oper. Theory, 85(2):151-166,
2016.

B. M. Brown, W. D. Evans and I. Wood. Positive self-adjoint operator
extensions with applications to differential operators, Integr. Equ. Oper.
Theory, 17 pages, 2019. DOI: 10.1007/s00020-019-2540-4.

T. S. Chihara. An Introduction to Orthogonal Polynomials, Dover
Publications Inc., New York, 2011.

J. S. Christiansen. The moment problem associated with the

Stieltjes-Wigert polynomials, J. Math. Anal. Appl., 277:218-245, 2001.

E. A. Coddington and H. S. V. de Snoo. Positive Selfadjoint Extensions
of Positive Symmetric Subspaces, Math. Z., 159:203-214, 1978.

P. Deift. Orthogonal Polynomials and Random Matrices: A
Riemann-Hilbert Approach, Courant Lecture Notes in Mathematics 3,

Courant Institute, New York, 1999.

185



[26]

[27]

[28]

[29]

[31]

[33]

[34]

A. Dijksma and H. S. V. de Snoo. Self-adjoint extensions of symmetric
subspaces, Pacific. J. Math., 54:71-100, 1974.

D. E. Edmunds and W. D. Evans. Spectral Theory and Differential
Operators, Oxford University Press Inc., New York, 2002.

S. Elaydi. An Introduction to Difference Equations, 3rd edition,
Springer-Verlag, New York, 2005.

W. N. Everitt. A catalogue of Sturm-Liouville differential equations,
Birkhauser, Basel, 2005.

K. O. Friedrichs. Spektraltheorie halbbeschriankter Operatoren und
Anwendung auf die Spektralzerlegung von Differentialoperatoren

(German), Math. Ann., 109:465-487, 1934.

G. Grubb. A characterization of the non-local boundary value problems
associated with an elliptic operator, Ann. Sc. Norm. Super. Pisa CI.
Sci. (3), 22:425-513, 1968.

S. Hassi, A. Sandovici and H. S. V. de Snoo. Factorized sectorial
relations, their maximal sectorial relations, and form sums, Banach J.

Math. Anal., 13(3):538-564, 2019.

S. Hassi, A. Sandovici, H. S. V. de Snoo and H. Winkler. Extremal
maximal sectorial extensions of sectorial relations, Indagationes
Mathematicae, 28(5):1019-1055, 2017.

S. Hassi, H. S. V. de Snoo and F. H. Szafraniec. Componentwise and
Cartesian Decompositions of Linear Relations, Dissertationes Math.,
465:4-58, 2009.

D. B. Hinton and R. T. Lewis. Spectral Analysis of Second Order
Difference Equations, J. Math. Anal. Appl., 63:421-438, 1978.

E. Judge, S. Naboko and I. Wood. Eigenvalues for Perturbed Periodic
Jacobi Matrices by the Wigner-von Neumann Approach, Integr. Equ.
Oper. Theory, 85:427-450, 2016.

T. Kato. Perturbation Theory of Linear Operators, 2nd edition,
Springer-Verlag, Berlin, 1995.

S. Khan and D. B. Pearson. Subordinacy and spectral theory for infinite
matrices, Helv. Phys. Acta, 65:505-527, 1992.

186



[39]

[40]

[41]

[42]

[43]

[44]

[46]

[47]

S. Khrushchev. Orthogonal polynomials and continued fractions: from

Euler’s point of view, Cambridge University Press, Cambridge, 2008.

R. Koekoek, P. A. Lesky and R. F. Swarttouw. Hypergeometric
Orthogonal Polynomials and Their q-Analogues, Springer, Heidelberg,
2002.

M. Krein. The theory of self-adjoint extensions of semi-bounded
Hermitian transformations and its applications I, Rec. Math. [Mat.
Sbornik] N.S., 20(62):431-495, 1947.

M. Krein. The theory of self-adjoint extensions of semi-bounded
Hermitian transformations and its applications II, Rec. Math. [Mat.
Sbornik] N.S., 21(63):365-404, 1947.

E. Kreyszig. Introductory Functional Analysis with Applications, Wiley,
New York, 1989.

S. Lipschutz and M. Lipson. Linear Algebra, 5th edition, McGraw-Hill,
New York, 2013.

V. A. Marchenko. Sturm-Liouville Operators and Applications,
Birkhauser, Basel, 1986.

J. von Neumann. Allgemeine Eigenwerttheorie Hermitescher
Funktionaloperatoren (German), Math. Ann., 102:49-131, 1930.

F. S. Rofe-Beketov. The numerical range of a linear relation and
maximum relations (Russian), Teor. Funktsii Funktsional. Anal. i
Prilozhen., 44:103-112, 1985; English translation: J. Soviet Math.,
48(3):329-336, 1990.

K. Schmiidgen. Unbounded Self-adjoint Operators on Hilbert Space,
Springer, Dordrecht, 2012.

Z. Sebestyén and E. Sikolya. On Krein-von Neumann and Friedrichs
Extensions, Acta Sci. Math. (Szeged), 69:323-336, 2003.

B. Simon. The Classical Moment Problem as a Self-Adjoint Finite
Difference Operator, Adv. Math., 137:82-203, 1998.

G. Stolz and R. Weikard. Seminar on Jacobi Matrices, 2004. Available
at: https://www.uab.edu/cas/mathematics/images/Documents/

Weikard-Jacobi_matrices.pdf

187



[52]

[53]

[54]

G. Szegl. Orthogonal Polynomials, 4th edition, Colloquium
Publications, vol. 23 Amer. Math. Soc., Providence, RI, 1975.

G. Teschl. Jacobi Operators and Completely Integrable Nonlinear
Lattices, Math. Surveys Monogr., 72:1-355, 2000.

M. Vishik. On general boundary conditions for elliptic differential
operators (Russian), Tr. Mosk. Mat. Obs., 1:187-246, 1952; English
translation: Amer. Math. Soc. Transl., 24:107-172, 1963.

H. S. Wall. Analytic theory of continued fractions, Chelsea Pub Co.,
New York, 1973.

Z. Wang and R. Wong. Uniform asymptotics of the Stieltjes-Wigert
polynomials via the Riemann-Hilbert approach, J. Math. Pures Appl.,
85:698-718, 2006.

J. Weidmann. Linear Operations in Hilbert Spaces, Springer-Verlag,
New York, 1980.

188



