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CogTool+: Modeling Human Performance at Large Scale
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Cognitive modeling tools have been widely used by researchers and practitioners to help design, evaluate,
and study computer user interfaces (UIs). Despite their usefulness, large-scale modeling tasks can still be
very challenging due to the amount of manual work needed. To address this scalability challenge, we pro-
pose CogTool+, a new cognitive modeling software framework developed on top of the well-known software
tool CogTool. CogTool+ addresses the scalability problem by supporting the following key features: (1) a
higher level of parameterization and automation; (2) algorithmic components; (3) interfaces for using exter-
nal data; and (4) a clear separation of tasks, which allows programmers and psychologists to define reusable
components (e.g., algorithmic modules and behavioral templates) that can be used by UI/UX researchers and
designers without the need to understand the low-level implementation details of such components. Cog-
Tool+ also supports mixed cognitive models required for many large-scale modeling tasks and provides an
offline analyzer of simulation results. In order to show how CogTool+ can reduce the human effort required
for large-scale modeling, we illustrate how it works using a pedagogical example, and demonstrate its actual
performance by applying it to large-scale modeling tasks of two real-world user-authentication systems.
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1 INTRODUCTION

Cognitive models have been proved to be effective and useful to study and investigate human
behaviors. Among all, those models that allow estimation of human performance of completing a
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particular computer-based task are attracting a lot of interest from both research and commercial
communities. Cognitive models such as Keystroke-Level Model (KLM) [7] and other models
following the Goals, Operators, Methods, and Selection (GOMS) rules [15] are widely used
to evaluate human performance and refine User Interface (UI) designs more efficiently without
prototyping and user testing [9]. A number of software tools (e.g., CogTool [14, 16], SANLab-
CM [25], and Cogulator [37]) have been developed to facilitate and simplify cognitive modeling.

CogTool [14] is one of themost popular, open-source cognitivemodeling tools beingwidely used
by researchers and practitioners. CogTool and its various extensions have been applied to different
domains for both research and industry communities. CogTool, used to model a computer-based
task, consists of the following steps: (1) define the UI including the size and position of all widgets
and their functionalities; and (2) describe how the user would interact with elements of the UI
step by step; this process will be referred to as the user-interaction workflow for the remaining
of the article. Then, CogTool translates its high-level inputs into a low-level model following the
AdaptiveControl of Thought-Rational (ACT-R) architecture [2, 3] written in the common Lisp
programming language [40]. It then uses this model to produce a prediction of human performance
on the UI.
It is convenient to model computer-based tasks using CogTool. However, it could be difficult

and time-consuming to model complex and dynamic tasks or systems such as the challenge-based
user-authentication systems presented in [10, 28, 30, 39], especially for modeling dynamic UIs or
user interactions based on randomly generated challenges or user responses.
These are the challenges to scale and extend CogTool’s capabilities:

(1) To conduct large-scale modeling tasks (semi-)automatically.
(2) To dynamically update/change default values of cognitive modeling operators and parame-

ters such as those related to Fitts’ law whose updating CogTool does not currently support
(3) To build mixed probabilistic models through simple steps.

We discuss these challenges below with greater details.
For the first challenge, let us consider an example of modeling the task of entering a simple

six-digit Personal Identification Number (PIN) to help investigate fine-grained issues such as
differences between individual six-digit PINs, six-digit PIN groups (weak PIN vs. strong PIN), or
inter-keystroke, timing-related cyber attacks [19]. This requires producing up to 106 models to
cover all possible PINs, as entering each six-digit PIN results in a different interaction workflow.
For the second challenge, although CogTool allows the user to change the default values

of some cognitive modeling operators, it does not support their dynamic updates. Previous re-
search [23, 24, 32, 44] also identified some limitations of having fixed values of cognitive modeling
operators, which could potentially affect the accuracy of the predicted user performance time. The
latest version of Cogulator1 allows the user to add new operators, or change the execution time
of existing operators without changing the application source code. However, it still lacks support
for an automated process, and it requires lots of manual work for large-scale modeling.
Finally, for the third challenge, existing cognitive modeling tools allow the user to simulate

different methods to complete a task, however, they do not explicitly support modeling mixed
probabilistic models, and they normally require the user to interact with third-party software tools
to conduct further analyses.
In this article, we propose an approach aimed to address these limitations and to improve cogni-

tive modeling tools such as CogTool. We propose a new cognitive modeling software framework
and a research prototype software tool, both called CogTool+, which extend the widely used tool

1http://cogulator.io/.
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CogTool to solve the above-mentioned scalability problems of existing cognitive modeling tools.
CogTool+ provides UI/User Experience (UX) researchers and designers with a number of useful
key features to model complex, and especially dynamically changing, UI elements and the human
performance of the corresponding complex tasks for which they are used.
CogTool+ is designed for UI/UX researchers, designers, and other practitioners as its main end

users. As a unique feature, it supports a clear separation of tasks, allowing programmers and psy-
chologists to define reusable components that can be easily used by end users without the need
to understand the low-level implementation details of such components. This approach allows
a different level of scalability: programmers, psychologists, and end users of CogTool+ can work
together in an asynchronous but effective manner to support each other on large-scale human per-
formance modeling tasks. Psychologists can define reusable parameterized behavioral templates
based on their theoretical and empirical studies on human cognition, perception, and motion. Pro-
grammers can define general-purpose algorithmic components as reusable software modules, e.g.,
different types of randomization functions that can be used by UI/UX designers and practition-
ers without any programming experience to model dynamic UIs and other algorithmic parts of a
computer system.
The rest of the article is organized as follows. The next section presents related work. Then,

we describe the proposed software framework CogTool+ with implementation details in Section 3,
which is followed by a pedagogical example in Section 4 to illustrate the use of CogTool+ for mod-
eling a simple user-authentication system. The evaluation of CogTool+ is discussed in Section 5,
using two large-scale modeling tasks of two real-world user-authentication systems. Limitations
of our work and future directions are discussed in Section 6 before the final section concludes this
article.

2 RELATEDWORK

Human cognitive modeling has been extensively studied and used in the Human-Computer In-

teraction (HCI) domain. One of the well-established cognitive modeling theories used for design-
ing UIs and predicting human behavior is GOMS rules [9, 15]. A number of variants of GOMS
models such as KLM, CMN-GOMS [8], and CPM-GOMS [15] have been widely used for refining
the task procedure, predicting task completion time, and discovering UI design issues [24]. Despite
their success, there are some limitations and challenges. Previous work [16] reported that HCI in-
terface designers found it relatively difficult to learn and use GOMS-type models in practice. It
also remains a challenge to model complex tasks such as user performance on multi-modal UIs in
a car navigation system [6, 29]. There are several approaches to respond to these limitations and
challenges. The use of software tools to (semi-)automatically facilitate modeling has been the one
that attracts more attention.
A number of open-source software tools such as CogTool [16], SANLab-CM [25], and Cogu-

lator [37] have been developed, and the integration of low-level cognitive architectures such as
ACT-R [1–3] and Soar [18, 33] with these tools makes them capable of modeling more complex
and broader types of human cognitive processes. SANLab-CM and CogTool are the most widely-
used tools in the HCI community. SANLab-CM is specialized in modeling CPM-GOMS which
combines the task decomposition of a GOMS analysis with a model of human resource usage
at the level of cognitive, perceptual, and motor operations. SANLab-CM supports low-level, par-
allel modeling of cognitive processes as well as the prediction of execution time for subtle, over-
lapping patterns of activities by extremely expert users. Similarly, CogTool has the functionality
to simulate the cognitive, perceptual, and motor behavior of humans, and generate predictions
of performance/execution time by skilled users to complete computer tasks [16] based on KLM,
which is implemented using the ACT-R cognitive framework [1–3]. The dedicatedGraphical User
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15:4 H. Yuan et al.

Interface (GUI) of CogTool makes it easier for researchers and designers to annotate design
sketches for prototyping and evaluation. Furthermore, other researchers have built other software
tools on the basis of CogTool. For instance, Feuerstack andWortelen [11] used the front end of Cog-
Tool to develop the Human Efficiency Evaluator (HEE) to predict the distribution of attention
and the average reaction time.
Among all the existing software tools, CogTool has a large number of users, and it has proven

to be a useful tool in various research areas. Luo and John demonstrated that the predicted time
matches the execution time from actual humans in a study investigating hand-held devices [20].
Teo and John used CogTool to model and evaluate a previously published web-based experiment,
and they found that it generated better predictions than any other published tools [36]. More
recently, Gartenberg et al. [13] modeled the use of a mobile-health application with two designs
of UI. The comparison between two UI models was found to be consistent with the findings from
a real human user study.
CogTool is not only the focus of academic research, but also industry. Bellamy et al. [4] compared

the usability of a new parallel programming toolkit built on Eclipse with a traditional command
line programming editor. The comparison revealed that mouse-based interaction is faster than
the programmer-preferred keyboard interaction using command line. In their later work [5], re-
searchers from IBM and Carnegie Mellon University worked together to evaluate the integration
of CogTool into software development teams to improve the communication and usability analysis
within a product team and between a product team and its customers.

Apart from being used in traditional HCI research, CogTool was proven to be useful in cyber
security research. Kim et al. [17] used CogTool to evaluate the usability of a shoulder surfing
resistant mobile user-authentication system, and Sasse et al. [31] combined CogTool with a user
study to estimate the usability of a user-authentication system. More recently, Yuan et al. [44]
used CogTool with eye-tracking data to successfully model a user-authentication system. They
reproduced some human-related security issues, and discovered some UI design flaws, which were
identified in a previous study [26].

In addition, extended versions of CogTool have been developed to support automation and
other advanced features. Swearngin’s CogTool-Helper [34] supports the automatic creation of
frames with no human intervention. However, the automated creation feature works only with
existing OpenOffice or Java Swing applications. Considering that one of the main advantages
of using cognitive modeling software tools such as CogTool is to model prototypes (even with
paper/drawing-based prototypes), CogTool-Helper’s approach has its limitations, which were also
acknowledged by the developers of CogTool-Helperwith the aim of addressing them in their future
works. The most similar work to our proposed approach is Human Performance Regression

Testing (HPRT) built based on CogTool-Helper [35]. HPRT can generate all possible interaction
paths, and evaluate human performance predictions for the same task. However, it is relatively
difficult to use as it requires specific knowledge of CogTool-Helper, CogTool, and a GUI testing
frameworrk [21]. It could cause problems of fragmentation, which is another issue we would like
to address in our proposed approach.
Despite its popularity, CogTool has some limitations. Inherited from the GOMS-type models,

CogTool does not support the prediction of the time required by a learning process (i.e., the time
taken by an individual to go from the novice through the intermediate and the expert stages [24]),
which could be valuable to the design and assessment of UIs. Shankar et al. [32] compared CogTool
simulation time with actual user time from lab studies for an enterprise application in an Agile
environment. The results suggested that there is a positive correlation between the two. However,
they identified that the default “thinking time”(i.e., 1.2 seconds) in CogTool underestimates the
actual “thinking time” for some specific tasks. This is actually a problem known by the developers

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 2, Article 15. Publication date: April 2021.
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of CogTool, so CogTool is designed to allow values of variables such as “thinking time” to be
modified manually by the end user, which is however quite inconvenient to do especially for large-
scale modeling tasks. In addition, it would be too time-consuming when there is the need to model
all possible interaction workflows using CogTool, which could undermine the CogTool’s usability
and its reputation of fast prototyping. Furthermore, Yuan et al. [44] identified the need to use
external data such as eye-tracking data to guide the design of interaction workflows. Although
some default parameters of CogTool such as “Think” and “Look-at” can be edited manually, in
a comparative study to look at the difference between cognitive modeling and user performance
analysis for touch screenmobile interface design, Ocak and Cagiltay [23] suggested that the default
“Think”time should be modified depending on the context of use. They also recommended that the
default “Look-at”time should be adjustable automatically according to the length of the text in a
reading scenario.

3 COGTOOL+: A NEW COGNITIVE MODELING SOFTWARE FRAMEWORK

In this section, we describe the new cognitive modeling software framework CogTool+ and its
implementation, extended from one of the most well-known open source modeling tools, Cog-
Tool [14]. CogTool+2 is effectively a framework extending CogTool to support large-scale human
performance modeling tasks in a more flexible and reconfigurable way. CogTool+ does not change
the low-level cognitive modeling core of CogTool, so it is still based on the KLMmodel. The overall
system architecture of CogTool+ is shown in Figure 1, with the following important key features
helping enhance the scalability of CogTool:

—An enhanced XML schema to design and define modeling tasks to support a higher level of

parameterization and automation especially for UIs with dynamically and algorithmically
changing elements.

—Algorithmic components: Different from existing modeling tools, CogTool+ supports algorith-
mic components that can dynamically change the UI and human cognitive processes. This is
achieved by allowing the software to interface with externally defined executable function,
written in JavaScript code in our current implementation.

—Allowing external data to be incorporated easily as part of a modeling task. Differently from
existing approaches, we designed a flexible way to integrate external data using algorithmic
components to better model human cognitive processes.

—Unlike CogTool, but similar to some other modeling tools, CogTool+ also supports designing
mixed models to reflect the probabilistic nature of many human cognitive processes.

—An offline analyzer for supporting data analysis and visualization.
—A clear separation of tasks so that computer scientists, programmers and psychologists can

provide reusable components to help end users of CogTool+ more easily.

As illustrated in Figure 1, the black icon of the human silhouette and a white board indicates
where human users can be involved in the working flow. Users can use the Model Generator to
design models. Next, theModel Interpreter and theModel Simulator can process the user-generated
model to produce simulation results automatically. Users can supply these results to the Offline

Analyzer to visualize and review the simulation. In addition, users can provide external data to
each component of CogTool+ when necessary.
To use CogTool+, the user does not need to have expertise in programming, but she/he just needs

to be able to use written software modules by following instructions (e.g., how to use a random
function from a GUI). Psychology-informed elements such as “Think” and “Homing”supported by

2Code is available at https://github.com/hyyuan/cogtool_plus.
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Fig. 1. The system architecture of CogTool+ with key components and processes.

CogTool are still supported by CogTool+. In addition, external data such as those from behavioral
studies in experimental psychology (e.g., visual-search behavioral and eye-tracking data and Fitts’s
Law distribution data) and data from previous related literature can be used to interface with
CogTool+ in order to drive and guide the modeling process. In addition, computer scientists and
programmers can package external data and develop reusable algorithmic modules that can form
part of behavioral templates and datasets to add values to CogTool+.
The rest of this section presents more details of the system architecture and provides examples

to facilitate a better understanding of the different features of CogTool+. All the examples used in
this section are parts of a more complicated modeling tasks on six-digit PIN entries, which will be
detailed in Section 5.1.

3.1 Model Generator

The model generator is responsible for the description of the system UI and user-interaction tasks
in the form of simulationmodels, meta models, andmixedmodels, all using a human- andmachine-
readable language.

3.1.1 Simulation Models. One simulation model sets parameters to facilitate the design of one
meta model, and also contains information to configure the simulation process. Composing a sim-
ulation model consists of three steps:

(1) To define the total number of simulations that need to be carried out for a particular task
(i.e., the value defined using <trial> as illustrated in Figure 2).

(2) To configure the simulation setting. This is defined using the <pref-setting> element as
illustrated in Figure 2. There are many options for configuring simulations settings, which
we discuss below.

(3) To define any external variable from external data sources that will be used in a later stage
of the modeling process. As illustrated in Figure 2, 100 random 6-digit PINs saved in the
“PINs.csv”file are defined as an “ArrayList”variable with the ID of “externalPin.”

In addition, we can use external data to drive the generation of <fitts_cof> and
<fitts_min> such as loading predefined values stored in external files.

For instance, we can configure <fitts_cof> and <fitts_min>. These two parameters corre-
spond to the two coefficients in the Fitts Law [12] equation. As shown in Figure 2, having a

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 2, Article 15. Publication date: April 2021.
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Fig. 2. An example of simulation models written in XML.

<type>dynamic</type> setting, <fitts_cof> produces a Gaussian distribution with mean of 50
and standard deviation of 1.0, and <fitts_min> produces a Gaussian distribution with mean of 75
and standard deviation of 1.5. The size of the generated distribution is determined by the number
of trials defined at the beginning of the simulationmodel (i.e., <trial>100</trial>). On the other
hand, a static <type> can be used to assign fixed values to these two parameters (i.e., 48 and 136,
respectively, as shown in the Figure 2). More details about the implementation to achieve these
can be found in Section 3.5.
In addition, other parameters can be configured in step 2. For instance, CogTool has a default

1.2 seconds of thinking time automatically added to the first demonstration step or a first “Look-
At”step.

There are two ways for the designer to modify the value of thinking time using CogTool. One
is to manually change the value when defining the “Thinking”variable the first time. Another one
is to update the value manually in the “Script Step List”from the CogTool interface, where “Script
Step List”is used to let the designers define the interaction workflow. If there are multiple “Think-
ing”variables, it will require the designer to manually update them all one by one. Although it
would be possible to update it/them programmatically and dynamically using CogTool, it would
involve programmers to work with CogTool’s source code to provide additional features. This is
where CogTool+ makes the difference. CogTool+ does it in a programmatic way by using algorith-
mic elements. Designers/users can use the proposed XML language to compose higher-level de-
scriptions of interactionworkflow aswell as defining and ingesting parameters such as “Think”and
“Look-at”dynamically. Parameter definition should be informed by previous research. An example
comes from the psychological literature on visual search showing that individuals’ search times
for a target can occur within 1 second [38, 41].

As shown in Figure 2, the element <imply_think> is used to give users/designers the control
over disabling/enabling the default “Thinking”step. In addition,the <call_back> function can be
added here to allow CogTool+ to dynamically assign values to “Think”step to increase the level of
automation.

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 2, Article 15. Publication date: April 2021.
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Fig. 3. The XML tree structure of a descriptive meta model.

It is worth emphasizing that any changes to the parameters defined at step 2 should be based
on empirical evidence, for example they can be informed by psychological behavioral studies de-
pending on different systems/use cases/scenarios.

3.1.2 Meta Models. A meta model is used to define high-level UIs and interaction workflows.
It consists of two sub-models: a descriptive model and an algorithmic model. Below, we will present
detailed explanations of our implementations with examples.

Descriptive models. A descriptive model is responsible for defining the high-level UI elements
and the high-level user interactions, and it describes the interface to communicate with its asso-
ciated algorithmic model. We designed an XML-based human–machine readable language to con-
struct a descriptive model. As illustrated in Figure 3, a descriptive model consists of three building
blocks: global variable initialization, high-level UI description, and high-level interaction descrip-

tion. The arrows between them indicate the sequential order of building a descriptive model. The
process always starts with global variables initialization, and ends with high-level interaction de-

scription. Each building block has a number of elements with their children elements to support
specific tasks. Elements in green define global variables, elements in yellow and elements in red
describe UI-related components and user-interaction-related components, respectively.

(1) Global variables initialization: In a descriptive model, global variables need to be initialized,
so that they can be referred to at a later stage. A <global_variable> is presented later to
demonstrate its usage.

(2) High-level UI description: For this building block, the user needs to describe the UI in a
relatively abstract way. The global variables defined earlier can be used here to derive a
more detailed description of UI elements when it is parsed to a model interpreter 3.2.
— <design>: This element and its child elements deal with the high-level description of

UIs. <device> indicates the main devices used for the interaction such as mouse or
touch screen. <hand> identifies which hand will be used for the modeling and simula-
tion. <frame_setting> defines the general setting of how to describe UIs at a high level.

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 2, Article 15. Publication date: April 2021.
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Fig. 4. Example of using <global_callback> and <global_variable> to create random six-digit PINs.

<frame_setting> has a list of <frame> defined in <frame_list>, where each frame rep-
resents the graphical representations of a specific UI. <frame_setting> can be set to “dy-
namic”or “static”using its attribute <type>. If it is set to “dynamic,”the model interpreter
can interpret the high-level model of UI defined in the frame, and dynamically and auto-
matically convert it to one or more different low-level descriptions of UI depending on
the user setting. This cannot be achieved using CogTool easily, which requires the user to
define all frames manually. A <frame_setting> is provided later to show the modeling
details using CogTool+ to achieve this.

—<widget_group_list>: It categorizes similar widgets into groups for further use.
(3) High-level interaction description: Coarse user interactions need to be defined in this build-

ing block. Similar to the high-level UI description, global variables and functions in the al-
gorithmic model can be utilized to derive low/atomic level user-interaction steps using a
model interpreter 3.2. A <demonstration_task> contains a <task_setting>, which con-
sists of <session> element and <task_list> element. An interaction workflow is de-
fined in <task_list> including of a number of <task>. Each <task> describes an atomic
interaction action such as “look at,”“mouse click,”or “tap.”Same as the <frame_setting>,
<task_setting> can be “dynamic”if the user needs to model dynamic user interactions. It
should be noticed that in the original CogTool project, such atomic actions could only be
implemented in a single widget. This can be achieved using the “static”<type> attribute in
CogTool+ as well. Unlike CogTool, the user can assign an atomic action to a group of wid-
gets that are defined in <widget_group_list> using CogTool+, which will need to work
together with a dynamic <frame_setting>. In addition, for each <task>, the user can de-
fine some <callback> (i.e., the same as the one used in <global_callback>) interacting
with the algorithmic model to get dynamic inputs. A <task_setting> is presented later to
illustrate the process of defining high-level user interactions.

<global_variable> usage example. Here we present an example of using two approaches to
create 100 6-digit PINs as illustrated in Figure 4.

ACM Transactions on Computer-Human Interaction, Vol. 28, No. 2, Article 15. Publication date: April 2021.
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Thefirst approach is to utilize the <global_callback> function toworkwith the algorithmic
model. A <global_callback> can have multiple child <callback> elements, where each one
describes how to communicate with the accompanying algorithmic model. It has an attribute
<type>, which can be set to either “js”and “csv.”“js”suggests that <callback> will call and
compile a JavaScript function defined in the algorithmic model and return the value, whereas
“csv”indicates that <callback> will read a Comma-Separated Values (CSV) file and return
the value. All values returned from this part are considered as global variables.
As illustrated in Figure 4(a), using <global_callback>, a global variablewith the ID of “pass-

word”is created by calling and compiling a JavaScript function generatedRandomPIN() that is
defined in the AlgorithmicModel.js file. The integers “9”and “0”representing the range of PIN
digits, and the integer “6”representing the length of the PINs are described using <argument>
elements to assign input arguments to the JavaScript function to generate one random six-
digit PIN, where each digit is an integer between 0 to 9. Input with the trial number (i.e.,
<trial>100</trial>) defined in the simulation model (see Figure 2, CogTool+ can automati-
cally generate 100 random 6-digit PINs for further use.

The second approach to generate 100 random 6-digit PINs is to use <global_variable>.
Similar to the definition in any other computer programming languages, global variables de-
fined in this part will be available for use during the entire modeling process. As shown in
Figure 4(b), two global variables are created. One has the ID of “numberFrame”and value of
“Integer”7. Another global variable has the ID of “password.”By setting the ref attribute of
<value> to be “true,”the value of this variable is the “externalPIN”variable created earlier using
the simulation model (see Figure 2), which contains 100 random 6-digit PINs as mentioned in
Section 3.3.

<frame_setting> usage example. Here, we present a simple example as illustrated in Fig-
ure 5 to demonstrate how to use “dynamic”<frame_setting> with the global variable created
in the <global_variable> to describe the UI for a six-digit PIN entry task.
First, the objective is to convert the graphical representation of the UI (i.e., Figure 5(b)) to the

high-level description of UI (i.e., Figure 5(c)) using XML. Figure 5(a) shows snippets of the XML
code. For instance, the highlighted <widget> elements define features such as type, size, and posi-
tion for the buttons “slash”and “minus.”In addition, widgets with similar properties can also be cate-
gorized together using widget_group_list and widget_group elements. As shown in Figure 5(a),
the 0–9 number buttons are grouped as a widget group with the ID of “enter pin”as highlighted.
Then, we can recall the global variable “numberFrame”defined earlier in the <global_variable>.
The attribute type of <frame_setting> is set to be “dynamic.”Together, this allows CogTool+ to
automatically generate low-level descriptions for seven (i.e., “numberFrame”has the value of “In-
teger”7) frames (see Figure 5(c)). Hence, it is possible to conduct fine-grained analyses such as the
inter-keystroke time difference, where each frame corresponds to one step of the user interaction
that could be either pressing a digit key or the <Enter> key.

<task_setting> usage example. As shown in Figure 6, the task_setting is set to be dynamic.
The global variables “numberFrame”and “password”defined in the <global_variable> and the
widget group “enter pin”defined in the <frame_setting> can be referred to in order to facilitate
creating a series of button tapping events (i.e., <type>tap</type>).
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Fig. 5. Example of using “dynamic”<frame_setting> to describe the UI for the PIN entry task.

Fig. 6. XML code example to describe high-level user interactions.

Algorithmic models. In CogTool+, an algorithmic model is written in JavaScript. Such models
make CogTool+’s parameterization and automation of the modeling process possible. Algorithmic
models are “plug-and-play” components that give users/designers the freedom to add external data
to a descriptive model, as shown in Figure 1. For instance, to model more complex conditional
interactive systems, the user can program a JavaScript function, which will be compiled using the
model interpreter to generate a dynamic interaction workflow in a recursive and iterative way,
rather than having to design it manually step by step.
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Fig. 7. The tree-like structure of an example of complex mixed models.

Furthermore, if the user of CogTool+ is not familiar with programming in JavaScript or any
other programming languages, an alternative way is to utilize a data format such as CSV, XML, or
JSON to reconfigure pre-defined algorithmic models that CogTool+ supports. For instance, in our
current implementation, the CSV format is used to store predefined data in a CSV file, and a parser
follows a simple syntax to read the data in the CSV file to define the meta model demonstrated in
the example shown in Section 3.1.2. This approach is just an indicative example and can be easily
generalized to use other data formats or to allow the parser to use such data files in other different
ways. The model interpreter can process it to create dynamic designs.

CogTool+ is designed to be backward-compatible with CogTool. As illustrated in Figure 1, the
generated data from the model interpreter is a series of CogTool compatible cognitive models. Cog-
Tool+ inherits CogTool’s pipeline of converting these cognitive models to low-level Lisp scripts,
simulate, and produce atomic-level predictions. In other words, the powerful predictive ability of
CogTool remains in CogTool+.
In addition, algorithmic models allow more elements/modules to be injected and integrated

with CogTool+ to support large-scale human performance modeling tasks. These added elements
including algorithmic module libraries and behavioral templates database are made transparent to
users who do not need to know the internal functioning of such elements.
We have demonstrated how an algorithmic model written in JavaScript can work together with

the descriptive model to define global variables in Section 1. Later in this article, we will present
more examples to demonstrate how the descriptive, algorithmic, and simulation models work to-
gether.

3.1.3 Mixed Models. A mixed model is a mixed-probabilistic model consisting of a number
of meta models with their own probabilities. Here we present a use case of a mixed model to
explain its concept and illustrate our implementation. The modeling task is to predict the overall
performance of completing a six-digit PIN entry task using the PIN pad as shown in Figure 5(a).
Three different input devices (touch screen, keyboard, and mouse) can be used to complete this
task. It is assumed that 10% of the sampling population is left-handed and 90% is right handed
for both touch screen and mouse users. Also, the percentages of users using three input devices
are assumed to be 40%, 30%, and 30%, respectively. To complete this task using CogTool+, it only
needs to design individualmetamodel for each subset of users, and then build amixed-probabilistic
model consisting of all individual meta models with their probabilities as illustrated in Figure 7.
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Fig. 8. The internal structure of the interpreter worker.

A light blue block in the figure represents ametamodel, a dark blue block represents a sub-mixed
model, and a green block represents a mixedmodel. A sub-mixedmodel can consist of several meta
models, or a number of sub-mixed models, or a mixture of meta models and sub-mixed model. The
mixed model at the top level has the same property as the sub-mixed model, but it is the root
node of the modeling tree. The implementation of a mixed model uses XML. By using such mixed
models, we could better understand the overall average behavior as well as the performance of
any subsets of users. However, it should be noted that the main aim of supporting mixed models
is to provide options for further analysis. Users can still use CogTool+ without defining mixed
models, and users should be aware that more work will be incurred for designing mixed models
and conducting further data analysis.

3.2 Model Interpreter

The model interpreter takes a mixed model or a meta model (which can be seen as a mixed model
with just one meta model) as the input. When a mixed model is the input, the model interpreter
uses a mixed model parser, which is a customized XML parser, to understand the composition and
structure of the mixed model. This is followed by the allocation of the interpreter workers for the
analysis of each individual meta model with its accompanying simulation model. Finally, these
interpreter workers generate a number of CogTool-compatible projects written in XML.
Each interpreter worker consists of an XML parser and a translator as illustrated in Figure 8, and

each XML parser contains a core processor and a dynamic parser. The implementation of the core
parser is similar to a Document Object Model XML parser, which loads the complete contents of
the simulation model and descriptive model, and creates a complete hierarchical tree in memory.
By scanning this, the core processor classifies and redirects the high-level UI description and

high-level user interaction description to the interface descriptor and the dynamic parser, respec-
tively. The interface descriptor processes and translates high-level descriptions to low-level de-
scriptions of UIs such as layout of the UIs, size of widgets, and position of widgets. Then the
dynamic parser reads the algorithmic models, and use different classes to process them based on
the model type (i.e., JavaScript or CSV). As illustrated in Figure 8, external data can also feed into
an algorithmic model.
Figure 9 illustrates how the dynamic parser works at the source code level. Figure 9(a) shows

a few lines of code that reads a CSV file and parse the value based on the defined data type
to the callback object using CogToolPlusCSVParser class. Figure 9(b) demonstrates how to
use an existing Java Class ScriptEngineManager to dynamically compile a function written in
a JavaScript file given a number of arguments (e.g., see <argument_list> in Figure 10(a)) using
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Fig. 9. Selected source code of the dynamic parser that processes algorithmic models written in (a) CSV
format and (b) JavaScript format.

dynamicInvokeFunction, and then return the value to callback object. Finally, the dynamic
parser sends these returned values saved in callback objects with high-level user interaction
description to the task descriptor. Then the task descriptor interprets and converts them to low-
level user interaction description (i.e., atomic-level interaction steps). Next, the linker is used to
integrate the low-level description of UIs and user interactions to produce a number of CogTool
projects written in XML. Each converted CogTool project is stored locally, so that its validity and
modeling details can be independently evaluated and reviewed.

3.3 Model Simulator

The main task of a model simulator is to run computer simulations and collect results of user
performance predictions. As shown in Figure 10, the scheduler arranges the order of processing3

and it sends the schedule to the model converter and the KLM simulator. The model converter
takes a number of CogTool projects/tasks and convert each one into a cognitive model using a
back-end ACT-R framework written in common Lisp [40] programming language. Then the KLM
simulator takes the converted ACT-R models and it runs the simulation to produce the simulation
trace in terms of completion time for each atomic task, which contains detailed information about
the user performance prediction (e.g., overall time and time per operator such as cognition, vision,
and motor). Finally, these simulation results are saved locally in the CSV format.

3.4 Offline Analyzer

According to the specification given in the mixed model, user-defined visualization parameters,
and analyze parameters, the offline analyzer post-processes raw simulation results to produce
high-level simulation results for the user to review. It should be noted that all meta models are

3The current implementation only supports sequential processing, but we will implement parallel processing in a future
version.
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Fig. 10. The flowchart for demonstrating the working pipeline of the model simulator.

interpreted and simulated to produce user performance predictionswithout considering their prob-
abilistic information defined in themixedmodel. In other words, they are independent of themixed
model to some extent. One of the advantages of this approach is that the user can have a certain
freedom to modify the design of the mixed model to post-process raw simulation results without
the risk of re-doing the whole simulation, which offers an easy way to have iterative refinement
and review. This is consistent with the nature of modeling human cognitive processes that involves
iterations of design and simulation. We will present more details of the analysis of simulation re-
sults in Section 5.2.2.

We implemented a stats analyzer and a visualization GUI as the main software modules of the
offline analyzer.

Stats analyzer. The stats analyzer collects raw simulation results, and post-processes these data
by incorporating the analyzer parameters. For instance, the user could adjust the analyzer param-
eters to instruct the stats analyzer to produce predicted time information for a particular atomic
action involving a specific element of the UI. The generated high-level simulation results are stored
locally in the CSV format, and they will be further used to facilitate the data visualization process.

Visualization GUI. The implementation of the visualization GUI combines the use of
JFreeChart [22] and Processing [27], providing an interactive platform to view andmanipulate sim-
ulation results. As demonstrated in Figure 1, visualization parameters are needed to indicate the
type of visualization (e.g., bar chart and/or histogram) and data sources (e.g., which part/element
of the modeled system needs to be visualized). There are two main features of the visualization:
one is to show the tree structures of a given mixed model; another one is to allow users to view a
bar chart and/or histogram of any node in the tree structures based on the user-defined visualiza-
tion parameters. It should be noted that the visualization process is independent of the simulation
and prediction processes, meaning that the change of visualization parameters could not affect any
prior processes although it will produce a different visual content. We will present more details
and examples in Section 5.2.2.

3.5 External Data

One of the key features of CogTool+ is to allow the software to work with external data to guide
and help modeling and simulation. As briefly mentioned in the previous sections, the design of
human- and machine-readable language allows users to use callback in the descriptive model to
link external data generated by either an algorithmic model (via JavaScript or CSV) or direct input.
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Fig. 11. Snippets of code that deals with the modification of Fitts’s Law parameters.

Our implemented research prototype of CogTool+ currently supports three types of exter-
nal data: behavioral templates database, ACT-R parameters, and external simulation parameters.
Previous research [44] has shown that eye-tracking data can reveal human behavioral patterns
that could affect the human cognitive modeling tasks. Such insights extracted from eye-tracking
log data could be programmed as reusable behavioral templates to run within CogTool+ to fa-
cilitate cognitive modeling tasks. The current behavioral templates are described in JavaScript
based on a manual analysis of empirical studies and results from previous relevant research. How-
ever, as part of our future work we will develop methodologies and tools to automatically ex-
tract and construct behavioral templates from experimental data such as eye-tracking and EEG
data.
Some of the ACT-R parameters have fixed values in CogTool. Although some parameters can

be modified by enabling CogTool’s “CogTool Research Commands” option, there are still a num-
ber of limitations as reviewed in Section 2. The design of CogTool+ allows users to have exter-
nal data source to initiate/amend such parameters to better and more flexibly define and model
human cognitive tasks. For instance, the user could conduct empirical experiments to get more
realistic Fitts’s Law parameters, and then use them in the modeling process. As mentioned in Sec-
tion 3.3, this can be achieved using the simulation model to define static and/or dynamic parame-
ters. Figure 11 shows our implementation at the code level to allow the modification of Fitts’s Law
parameters.
ImportSimulationXML.java parses the simulation model, converts all variables, and saves

them to the prefSetting object. The “prefSetting”object saves all configuration parameters for
the modeling and simulation process. As highlighted in ImportSimulationXML.java (see Fig-
ure 11), the function parsePrefSettingStatic() and the function parsePrefSettingDynamic()
are used to parse static preference setting and dynamic preference setting, respectively. The
former allow updating of the Fitts’s Law parameters with fixed values, and the latter assigns
dynamic values such as distribution to Fitts’s Law parameters as mentioned in Section 3.1.1.
As highlighted in ACTRPredictionAlgoCP.java (see Figure 11), a new variable MIN_FITTS is
added to CogToolPrefCP class to link the corresponding element in the ACT-R architecture
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implemented in Lisp and written as min-fitts-time %.3f. As shown in Figure 11, if the value
of CogToolPrefCP.PECK_FITTS_COEEF or the value of CogToolPrefCP.MIN_FITTS is modified,
ACTRPredictionAlgoCP.java can modify them in Lisp at the back end.

In addition, external simulation parameters are allowed to workwith theOffline Analyzer to con-
figure and manipulate post-processed high-level simulation results. We will present more details
of integrating external data with the modeling and simulation processes in Section 5.

4 A PEDAGOGICAL EXAMPLE: MODELLING A SIMPLE GRAPHICAL

USER-AUTHENTICATION SYSTEM

In this section, we present a pedagogical example to illustrate the process and the typical workload
involved when using CogTool+ to model a system. In this example, we will create a mixed model, a
simulation model and two meta models to model 150 different users using a simple graphical user-
authentication system. Half of the 150 users are left-handed, and the other half are right-handed.
This system is a simplified version of an observer-resistant password system named “Under-

cover” [30]. As the main objective here is to demonstrate the model creation process using Cog-
Tool+, we do not present simulation results in this section. We did model the full Undercover
system, and all modeling details and simulation results can be found in Section 5.2.

4.1 Understanding the System

Undercover is developed based on the concept of partially observable challenges. To use Under-
cover [30], the user needs to complete the following tasks:

—To set five secret pictures called “pass-pictures”as the password from a set of images.
—To respond to seven challenge screens, whereby each challenge screen consists of a hidden

challenge and a public challenge:
(1) Given a hidden challenge4, the user needs to obtain a hidden responsewhich is the position

index of the pass-picture in the public challenge (1–4 if present and 5 if absent) to respond
to a challenge screen.

(2) To look for a hidden response in the correct hidden challenge button layout to get a new
position index.

(3) To press the button corresponding to this new position index in the response button panel
as shown in Figure 12(b3).

For instance, one picture identified as the “pass-picture”in Figure 12(a) is at position 2. Then the
track ball sends a “Left”signal to the user’s palm. The user needs to look at the left button layout
in Figure 12(b2), and then work out the position of the index of the “pass-picture” (i.e., number 2),
which is in the fifth position. The final step is to press number 5 in Figure 12(b3). More details and
other security settings can be found in [26, 30].

For this pedagogical example, we decided to use a simplified version of the Undercover sys-
tem as depicted in Figure 12(d) to demonstrate the modeling workflow using CogTool+. The
user interactions to model are simplified as follows: for each challenge, the user needs to iden-
tify whether the “pass-picture”is presented or not, and subsequently complete the challenge ac-
cordingly; if one “pass-picture”is present, the user needs to press one button from position “1”to

4The hidden challenge is transmitted to the user’s palm via a haptic device (a track ball) as shown in Figure 12(b1). Five
different rotation/vibration modes of the track ball represent five different values: “Up,”“Down,”“Left,”“Right,”and “Cen-
ter”(vibrating). Four pictures and a “no pass-picture”icon form a public challenge as shown in Figure 12(a). As demonstrated
in Figure 12(b2), each hidden challenge value corresponds to a specific layout of five response buttons labeled 1–5.
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Fig. 12. The UI of Undercover: (a) the public challenge panel shown on the computer display [30]; (b) a box
composed of the following UI components [30]: (b1) a track ball to transmit the hidden challenge, (b2) the
hidden challenge button layout panel, and (b3) the response button panel; (c) implementation of Undercover
from Perković [26]; and (d) simplified version of the Undercover system for the pedagogical example.

“4”based on the position of the “pass-picture.”If a “pass-picture”is absent, button “5”needs to be
pressed.
Using CogTool to model one person using this system would start by creating a CogTool project

with a CogTool task. Each CogTool task would start by converting the GUI of the system to Cog-
Tool frames, followed by demonstrating the user interaction, where the user needs to click on
each CogTool frame via the CogTool Design interface to produce demonstration scripts. Then
the CogTool can compute and generate the simulation results automatically. Bear in mind that
preparation work such as the selection of “pass-pictures”and the arrangement of the seven chal-
lenge screens needs to be carried out in advance to the hands-on modeling process as mentioned
above.
Different from using CogTool, the first step of using CogTool+ is to have a more in-depth un-

derstanding of how the system works at a higher level. The user needs to look at how to better
include the preparation work as part of the modeling process as well as how to model and simulate
at scale (i.e., 150 users). As depicted in Figure 13, the simulation model can instruct CogTool+ to
model 150 users. Then the mixed model can incorporate the mixed probability information into
the modeling and simulation process. To model each individual user, the meta model deals with
the following four sub-tasks, where sub-task 3 and sub-task 4 need to be carried out for all seven
challenge screen generated by sub-task 2.

—Sub-task 1: Five “pass-pictures”should be selected from 28 pictures.
— Sub-task 2: There are seven challenge screens in total. For five of them, each challenge

screen contains one unique “pass-picture,”while other two challenge screens have no “pass-
picture.”In addition, the decoy pictures for each challenge screen should be different.

— Sub-task 3: As the selection of “pass-pictures”and then arrangement of seven challenge
screens are known, the position of the “pass-picture”for each challenge can be derived.

—Sub-task 4: Given the presence/absence of the “pass-picture,”one button needs to be pressed
from the response panel.
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Fig. 13. Flowchart of CogTool+ models design process.

4.2 Creating a Simulation Model

The requirement is to model 150 users using this system. Hence, we need to produce 150 mod-
els and compile 150 simulations. As illustrated in Figure 14(a), the <trial></trial> is set to be
150. Based on the observations of the eye-tracking study we conducted [44] and other previous
psychological studies that show how visual search times can occur even within 1 second [38, 41],
we argue that the default 1.2 seconds of thinking time might be overestimated depending on the
user task. We believe that the thinking time should be dynamic and follow a distribution of values.
Instead of using the default “Thinking”time, we can thus add customized timing information to
the meta model to better model the system.5 Hence, the <imply_think></imply_think is set to
be false so that the 1.2 seconds “Thinking”step will not be automatically added.
As there is no need to dynamically change the simulation settings, the attribute type of

<pref-setting> is set to be false.

4.3 Creating a Mixed Model

As illustrated in Figure 14(b), the “mixed_model”has two meta models with equal weight of 0.5.
One is named as “Left-Hand-Model,”and another one is named as “Right-Hand-Model.”To define
the preferred hand is straightforward using the descriptive model (see Figure 3) by setting the
value of the <hand> element to “left”or “right.”The offline analyzer further down to the system
architecture (see Figure 1) can utilize the mixed probability information to produce simulation
results accordingly.

5More details can be found in Section 5.2.1, where JavaScript function getScanPath() and getThinkTime() are used to
add dynamic timing information to the modeling process.
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Fig. 14. Example of the simulation model and the mixed model.

Fig. 15. The meta model: the descriptive model and the algorithmic model.

4.4 Creating a Meta Model

Apart from the difference of defining the preferred hand, the rest of the “Left-Hand-Model”meta
model is identical to the rest of the “Right-Hand-Model”meta model. Figure 15 demonstrates the
interaction between the descriptivemodel and the algorithmicmodel of ametamodel. As described
in Section 3.1.2, a descriptive model has three parts: global variable initialization, high-level UI
description, and high-level interaction description.
The global variable initialization completes sub-tasks 1 and 2. The algorithmic model provides

JavaScript functions generatePassPicture() and arrangeChallenge() to support modeling the
dynamic elements. Figure 16 shows the snippets of the XML code.
<global_variable> creates a global variable with ID of “numChallenges”and value of integer

“7.”Then <callback> is used to call the JavaScript function generatePassPicture() from the
algorithmic model and define three input arguments, where 28 represent the maximum integer
value, 1 represents the minimum integer value, and 5 represents five random non-repeated in-
tegers. The model interpreter can call the ScriptEngineManager as described in Figure 9(b) to
evaluate this particular JavaScript function in run time to generate an ArrayList data saved as
another global variable with ID of “passpicture.”Another <callback> is also defined to call the
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Fig. 16. XML code for global variable initialization of the descriptive model.

function arrangeChallenge(). This function requires two “static”input arguments, meaning that
we can use pre-defined global variables as input arguments. As illustrated in Figure 16, “num-
berOfChallenges”and “passpicture”are the two input arguments for this function. The output of
this function is a global variable with ID of “challenges,”which is saved as an ArrayList for later
use.
The high-level UI description and high-level interaction description are developed to complete sub-

tasks 3 and 4. The output of completing objective 2 is the arranged seven challenge screens. For
each challenge screen, the layout of the UI is converted into XML code (i.e., similar to the example
showed in Figure 5(a)).
<task names="t1"> element as illustrated in Figure 17(a) calls the JavaScript function

getPassPictureIdx() as shown in Figure 17(b) from the algorithmic model. This function takes
one challenge screen from the array-list variable “challenges”and one “pass-picture”from the array-
list variable “passPictures”to derive the position of the “pass-picture,”and save it as a variable with
the ID of “passPicIdx.”This variable is later refereed in the <task name="t2"> element as shown
in Figure 17(a) to indicate which button needs to be pressed.
<task name=‘t1’> and <task name=‘t2’> are used together to define the high-level interaction

(i.e., button pressing events). The <widget_group> “photo group”and “button group”represent the
group of widgets to display images at public challenge panel and the group of buttons at the
response panel of the system GUI, respectively.

5 EVALUATION OF COGTOOL+

In this section, we present an evaluation of our implemented prototype of CogTool+ by applying it
to model two real-world user-authentication modeling tasks—modeling six-digit PIN entries and
the graphical password authentication system Undercover [30] already mentioned before.

5.1 Modeling Six-digit PIN Entries

PINs remain one of themostwidely used user-authenticationmethods in everyday life, e.g., authen-
tication on mobile devices and access control to online banking. Several types of inter-keystroke
timing attacks make use of the leaked keystroke timing information to infer a user’s PIN, which
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Fig. 17. Illustration of using a JavaScript function to facilitate describing the high-level interaction
description.

Table 1. Examples of Inter-keystroke Timing Sequences (in ms) for PIN Entry Tasks

PIN k1 → k2 k2 → k3 k3 → k4 k4 → k5 k5 → k6 k6 → <Enter>
777777 202.2 204.0 207.9 204.1 212.8 320.2
530271 229.6 224.9 214.5 245.8 246.2 278.1
603294 241.2 227.4 203.4 239.8 233.1 292.2

can be a serious threat to users relying on such PINs. For instance, Liu et al. [19] proposed a
user-independent inter-keystroke timing attack on PINs that performed significantly better than
random guessing attacks. The attack methodology relies on an inter-keystroke timing dictionary
built from Fitts’s Law, which relies on conducting real human user study to derive parameters of
this model. In this subsection, we demonstrate that CogTool+ is cost-effective and accurate for
modeling 6-digit PIN entries at a relative large scale.

5.1.1 Modeling PIN Entries. A total of 50 different 6-digit PINs were used in the real human
user study conducted by Liu et al. [19]. Each PIN was entered using the number pad as illustrated
in Figure 5(b). Our aim here is to compare the inter-keystroke timing sequences of simulated data
generated using CogTool+ with the real human user data.
As illustrated in Table 1, each row is the timing sequence of entering one PIN. For a six-digit

PIN, six timing intervals are recorded. For instance, ki → kj represents the time interval (in ms)
between pressing the j-th digit key and pressing the i-th digit key, and k6 → <Enter> is the time
between pressing the <Enter> key and the last digit key. The process of modeling 50 6-digit PIN
entries is similar to the examples showed in Section 3. There are three major steps:

(1) A simulation model similar to the example depicted in Figure 2 with static preference setting
added. The <trial></trial> is set to be 50, and a <callback> function is used to link
external data (i.e., “PINs.csv”file that contains 50 PINs. More information about these PINs
can be found in [19]). This dataset is alsomade available to the descriptivemodel as a variable
with the ID of “externalPin.”
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Fig. 18. Comparison of inter-keystroke timing data between human user and simulation, where y-axis is the
performance time in milliseconds, and x-axis is the inter-keystroke time interval, r represents the correlation
coefficient between human data and simulated data.

(2) The descriptivemodel as shown in Figure 5(a) is used to describe the graphical representation
of the UI (i.e., Figure 5(b)) to the high-level description of UI as shown in Figure 5(c) using
XML.

(3) As demonstrated in Figure 6. The simulation model automatically parses one PIN to the
descriptive model, where this PIN is stored as a <global_variable with id of “pass-
word”as highlighted. Given this PIN, the descriptive model automatically generates a series
of pressing button user interactions. The “numberFrame”highlighted is defined as another
<global_variable> in the descriptive model with its attribute “type”of <frame_setting>
set to be “dynamic.”This can allow the model interpreter to automatically generate a low-
level description of seven frames (see Figure 5(d)), where each frame corresponds to either
pressing a digit or pressing the <Enter> key. The time differences between seven frames
forms the inter-keystroke timing sequences.

Finally, the above three-step process is automatically executed until all 50 PIN entry tasks are
modeled (i.e., <trial>50</tiral>). As there is no need to have a mixed probability model for this
task, the mixed model only contains one meta model with weight of 1.

5.1.2 Results. In the real human user study in [19], each participant was asked to enter a ran-
dom 6-digit PIN five times in a training session to familiarise with the given task. These partici-
pants could be considered as skilled users, which made their performance data comparable with
the simulated data produced using CogTool+. Then, each participant was instructed to enter each
PIN 15 times.
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Fig. 19. Comparison of efforts needed to model 6-digit PIN entry tasks using CogTool+ vs. CogTool.

In this evaluation experiment, we used themean value of inter-keystroke timing sequences from
the user study to make a comparison with the simulated data using CogTool+. Figure 18 illustrates
the comparison between the human data and the simulated data for a number of selected PINs.
As shown in Figure 18(a)–(d), the correlation coefficients for PIN 000533, PIN 100086, PIN 990872,
and PIN 443333 are 0.99096, 0.989956, 0.94458, and 0.97311, respectively. In addition, the mean and
standard deviation of correlation coefficient for all 50 PINs are 0.807 and 0.233, suggesting a strong
association between the human timing data and the simulated timing data for all 50 given 6-digit
PINs.

5.1.3 Comparison of Efforts Needed to Model Six-digit PIN Entry Tasks: CogTool+ vs. CogTool.

Here we present more details to elaborate on the efforts needed for this modeling task using Cog-
Tool+, compared with the efforts needed to model the same task using CogTool. Figure 19 shows
the comparison, where the light red color cells and red arrows represent the manual work needed,
and the light green cells and green arrows represent the automated process.
For the preparation of this modeling task, 50 PINs used in this study were provided exter-

nally [19]. We stored them in the CSV format. We manually developed three models for CogTool+:
a meta model, a simulation model, and a mixed model. Using CogTool, the user would need to
create one CogTool project with 50 CogTool tasks to model 50 PIN entry tasks manually. Each
CogTool task consists of one UI design and one demonstration script. As 50 CogTool tasks share
the same UI design, the user would just need to copy and paste the UI design. Although only one
CogTool frame is enough to model the UI for the PIN entry task, the reason to have a number of
CogTool frames for each UI design is to accurately measure the inter-key stroke timing difference
to compare with the real human user study. The user needs to make seven clicks on each Cog-
Tool frame for all CogTool frames to generate one demonstration script. In total, that would be
350 clicks to produce all demonstration scripts. Then the CogTool can utilize the back-end ACT-R
architecture to compile and run the simulation automatically.
Both CogTool+ and CogTool can automatically generate 50 simulations. The model interpreter

of CogTool+ produces 50 intermediatemodels, which are equivalent to 50 CogTool tasks. Aswe can
define simulation parameters in the simulation model and parameters for probabilistic modeling
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in the mixed model, CogTool+ can use these parameters to handle the data collection and analysis
automatically. To do the same task using CogTool would require the user to collect all simulation
results first, and then conduct the analysis manually using other external software tools such as
Microsoft Excel.
Compared with CogTool, the place where CogTool+ can make a significant difference is the use

of the meta model to reduce the workload needed.
For this study, there is no need to design an algorithmic model as a part of the meta model,

thereby the meta model only contains a descriptive model. As illustrated in Figure 3, each descrip-
tive model has the same structure that includes three parts: global variable initialization, high-level
UI description, and high-level interaction description.

—Global variable initialization: as demonstrated in Figure 4, only a simple syntax is needed
to define a global variable, which interfaces with the simulation model to read a PIN.

—High-level UI description: the development of this part starts with the similar approach
that CogTool has to convert the PIN pad UI to one frame written in XML format. Using Cog-
Tool+, only one frame is need to be defined. With the “dynamic”frame setting, the model
interpreter can use the global variable to automatically derive a number of frames with as-
sociated transitions between frames in run-time. With CogTool, although it is not too time
consuming to do the same task using “copy and paste,”it still requires a significant amount
of time to repeat the action 50 times.

—High-level interaction description: the development of this part only requires a user to
define coarse user interactions. As mentioned in Section 3.2, the model interpreter can au-
tomatically generate a number of button pressing events and derive the transition from an
action event to next frame if needed. As mentioned earlier in this section, doing the same
task for all 50 PINs using CogTool would require the user to manually complete 350 clicks.
In addition, the user needs to constantly pay attention to model the correct PIN, which can
increase the mental workload that would potentially slow down the modeling process.

5.2 Modeling Undercover

The details of modeling a simplified version of the “Undercover”system have been presented in Sec-
tion 4. In this part of the article, we present more details on modeling the full “Undercover”system.
In particular, we demonstrate the usefulness of CogTool+ in modeling more complex and dynamic
parts of the “Undercover”system. We also present the simulation results in comparison with the
results of the real human performance data reported in [26].

The brief description of the Undercover system has been introduced in Section 4. There are
several reasons why we chose Undercover to evaluate CogTool+. Undercover is a relative complex
system that involves different cognitive tasks, and it has a combination of static UIs and dynamic
user interactions. It is very difficult to model such a system using CogTool. We aim to prove that
the advantage of achieving parameterization and automation in CogTool+ can allow cyber security
researchers to model complicated systems such as the Undercover system. We also aim to look at
both the estimated prediction using CogTool+ and the real human performance data from a lab-
based user study [26] to evaluate CogTool+.

5.2.1 Modeling Undercover Using CogTool+. To make an adequate comparison with the find-
ings reported by Perković [26], we used CogTool+ to model their implementation of Undercover
(see Figure 12(c)). The main finding from their study is the non-uniform human behaviors which
indicate potential security problems in the use of Undercover. We aimed to find out if we can
automatically detect such insecure behaviors using CogTool+.
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Fig. 20. Modeling the creation of seven challenge screens: (a) the Undercover UI; (b) visualization of the
Undercover UI model for one challenge screen; and (c) visualization of the Undercover UI models for seven
challenge screens.

Using the same approach as the one presented in Section 4, we need to have a comprehensive
understanding of the work flow of using the Undercover system.
Each user needs to select five “pass-pictures,”and complete seven challenge screens. Each chal-

lenge screen has the same graphical representations as shown in Figure 12(c), and we considered
this as one static element to be modeled using a descriptive model. Figures 15 and 16 in Section 4.4
show the modeling process of selecting five “pass-pictures”and for arranging seven challenge
screens, respectively. Here, Figure 20 illustrates more details and the visual representation in addi-
tion to the pedagogical example presented earlier. Figure 20(a) represents the Undercover UI. Then
we converted it into the high-level description of UI as illustrated in Figure 20(b) using XML.

Then we defined a global variable in the descriptive model (i.e., <global_variable>, as high-
lighted in the red rectangle, which indicates the number of challenge screens), and set the attribute
“type”of <frame_setting> to be “dynamic.”The model interpreter can interpret this, and automat-
ically produce a low-level description of the seven challenge screens (see Figure 20(c)).

Similar to the demonstration in Figure 15, there is a number of sub-tasks requiring dynamic
inputs/outputs:
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Fig. 21. The flowchart of modeling the Undercover user authentication process.

—Sub-task 1 (see “Sub-task 1”in Section 4.1)
—Sub-task 2 (see “Sub-task 2”in Section 4.1)
—Sub-task 3 (see “Sub-task 3”in Section 4.1)
—Sub-task 4: Random hidden challenge for each challenge screen: a random hidden challenge

needs to be generated (i.e., one value from “Up,”“Down,”“Left,”“Right,” and “Center”).
—Sub-task 5: Public response for each challenge screen: The hidden challenge is known from

Sub-task 4, then we can derive the specific layout corresponding to the generated hidden
challenge. Also, the position of “pass-picture”is known from Sub-task 3, then the correct
button to press can be derived.

Furthermore, each challenge screen contains the same challenge tasks with different content
repeated seven times, thus suggesting another dimension of the dynamic nature of the modeling
task. We developed an algorithmic model consisting of a few JavaScript functions to handle these
dynamic elements.
As demonstrated in Figure 21, contents in the green rectangles are the JavaScript functions

defined in the algorithmic function. Apart from the functions (i.e., generatePassPicture(),
arrangeChallenge(), and getPassPictureIdx()) already mentioned in Section 4.4, function
getScanPath() is created to model the visual-search process of finding the “pass-picture”among
an array of pictures. A previous study [44] revealed that there are several visual scan paths for
such task. In that study, most of the participants adopted a search strategy of center-left-right (i.e.,
start the search process from the middle, and move left and right), and a minority of participants
simply searched from left to right. Different visual search strategies will result in different visual
search times, getScanPath() can be considered as an example of updating the “Thinking”time
dynamically. As illustrated in Figure 21, this function acts as the interface to add such behavioral
template databases to the algorithmic model to better model the cognitive task.
In addition, the function getHiddenChallenge() generates a random hidden challenge index.

There are five values of hidden challenge, and we used 1–5 to represent each value. An index
to represent the hidden challenge is randomly generated for Sub-task 4. Lastly, Sub-task 5 utilizes
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function getPublicResponse() to take the “pass-picture”position index and the hidden challenge
index to derive the public challenge response (i.e., which button needs to be pressed at the end of
each challenge screen).
The effort to derive the public response needs to be taken into consideration in the modeling

process as each hidden challenge index corresponds to a different hidden challenge button layout
panel as shown in Figure 12(b), which could result in different reaction times. The button layout
for hidden challenge “Up”has the same order of button (i.e., 1, 2, 3, 4, 5) as the response button
panel. We could assume that there is no or minimum effort needed to identify the public challenge
response in this case. However, button layouts corresponding to other hidden challenges have
completely different order of buttons (i.e., “3, 4, 5, 1, 2”for hidden challenge “Left,”“4, 5, 1, 2, 3”for
hidden challenge “Center,”“2, 3, 4, 5, 1”for hidden challenge “Right,”and “5, 1, 2, 3, 4”for hidden
challenge “Down”). We could assume that some effort is needed to derive the public response for
these cases.
Except for hidden challenge “Up,”we treated other cases as a single visual target search problem.

The relationship between the reaction time and the windows size (i.e., the number of images)
is believed to be linear [42, 43]. The reaction time can be predicted using t = 0.583 + 0.0529 ·
w [43], wherew is the number of images.We incorporated this information in a JavaScript function
getThinkTime() to dynamically derive the extra time incurred between Sub-task 4 and Sub-task 5
given a hidden challenge. Similar to the function getScanPath(), getThinkTime() shows another
example of using an algorithmic model to dynamically update the “Thinking”time.
In addition, participants have the tendency to visually confirm the position of the “pass-

picture”before pressing the button. To add this finding to the model, we added another atomic
action “look-at”towards the position of the “pass-picture”before pressing the correct button for
Sub-task 5.
Comparedwith the design of ametamodel for the Undercover system, the design of a simulation

model and a mixed model is simpler and similar to the examples demonstrated in Section 4. We de-
signed a number of individual meta models named CLR-Only (center-left-right without confirma-
tion process), LR-Only (left-right without confirmation process), CLR-Confirm (center-left-right
with confirmation process), and LR-Confirm (left-right with confirmation process) to represent
the different behavior patterns. Then we gave different weights to the different meta models. For
each meta model, an accompanying simulation model was designed to produce 150 predictions. In
total, this mixed model generated 150 × 4 = 600 predictions, whereby each prediction took approx-
imately 1 second to be processed. As all meta models for this study contained the same algorithmic
model, and shared the same simulation setting, only one simulation model and one algorithmic
model were needed.
The behavior patterns andweight used in themodeling process were obtained from our previous

research [44]). These behavior patterns can be written as behavioral templates database for other
users to re-use. By doing this, wewanted to demonstrate the fast prototyping and get some insights
into how CogTool+ works, which can be simplified as: (1) building a simplified GUI even on a
piece of paper; (2) conducting some quick experiments to extract behavior data; and (3) using such
external data to drive the modeling process. This simplified process could be quicker and more
accurate than applying general rules/models.

5.2.2 Results and Visualization. Figure 22 shows a graphical representation of the visualization
GUI. Each rectangle is a node in the mixed-model tree. Four nodes labeled with “CLR-Only,”“CLR-
Confirm,”“LR-Confirm,”and “LR-Only”are representations of the meta models defined earlier. Node
“CLR”represents a mixed-probabilistic model (a.k.a, CLR model) consisting of a “CLR-Only”meta
model and a “CLR-Confirm”meta model, and node “LR”represents a mixed-probabilistic model
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Fig. 22. The visualization of the modeling task on Undercover.

(a.k.a, LR model) consisting of a “LR-Only”meta model and a “LR-Confirm”meta model. Node
“Visual Search”is the overall mixed-probabilistic model for this modeling task. To view the rela-
tionship between the different nodes, a user needs to click on one node. If there are any other
nodes related to the selected node, all of them will be highlighted with a yellow arrow connecting
associated nodes as shown in Figure 22.
In addition, user-defined visualization parameters determine the arrangements of the rounded

corner rectangles in the graph. Each rounded corner rectangle is a representation of a type of
figure that the user wants to see. For this modeling task, we were more interested in the predicted
average response time for each hidden challenge value. As revealed by the previous lab-based user
study [26], real human users responded to hidden challenge “Up”the fastest. Our model produced
similar results (see Figure 23(a) and (b) for our results and results from the user study). To be noted
that Figure 23(a) is the screenshot of the actual figure produced by CogTool+ visualization module,
and Figure 23(b) is the actual figure from the paper [26].

Since CogTool+ predicts performance of skilled users, and data from [26] were obtained from
relatively unskilled individuals, we did not expect that our results could match the results re-
ported in [26] exactly. In addition, there are differences between our experiment and the study
in [26]. For instance, participants in [26] were separated into two groups, one was told to use
the mouse to interact with Undercover, and another group was informed to use keyboard to in-
teract with Undercover. Some degree of discrepancy in the results was therefore anticipated. The
main finding from [26] was that security issues can be discovered by investigating human behav-
iors/performance patterns, in particular the non-uniform time distribution of response time. In
our modeling attempt, we were initially more interested in investigating whether CogTool+ could
discover such behavior patterns rather than establishing a direct comparison to the results by [26].
We did identify similar, non-uniform patterns in the results produced by CogTool+ (i.e., for both
hidden challenge and pass image reaction times, we identified the slowest timing). These results
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Fig. 23. (a) Bar chart produced by CogTool+ showing the predicted average response time per hidden chal-
lenge ch using CogTool+. (b) Average response time per hidden challenge ch using real human data (the error
bars correspond to standard deviation) [26].

suggest that the non-uniform patterns could be predicted even without taking into account the
participants’ skill level, which could explain the outstanding discrepancy between the predicted
vs. real user data. One unanswered question in the original study [26] is to find the cause of these
nonuniform behaviors, and there was no conclusive answer. Thanks to the CogTool’s support to
extract operation information of the ACT-Rmodel, CogTool+ inherits such features and could help
us further investigate this by looking at detailed timing data for each operator.
As shown in Figure 24(a) and (b),6 the “Cognition”operator7 required more time for each task

comparedwith other operators for both CLR and LRmodels, meaning that the “Cognition”operator
could be the major contributor to the shortest reaction time for the “Hidden Up”challenge regard-
less of the visual search strategy. In other words, “Hidden Up”required “Cognition”less than other
challenges did.

5.2.3 Comparison of the Efforts Needed to Model Undercover: CogTool+ vs. CogTool. Here we
explain in more detail the efforts needed to model Undercover system, compared with the efforts
needed using CogTool to complete the same task. As illustrated in Figure 25, light red cells and
red arrows represent the need of manual work, light green cells and green arrows represent the
automated process.
Before building the model using either CogTool+ or CogTool, there is the need to understand

the Undercover system thoroughly as we mentioned in Section 5.2.1, especially for its dynamic
elements.
As shown in Figure 25, using CogTool+, four individual meta models (CLR only, CLR confirm,

LR only, and LR confirm), one simulation model, and one mixed model are needed to complete
600 modeling tasks. Each meta model consists of a descriptive model and an algorithmic model.
As all meta models use the same algorithmic model, there are four (descriptive models) + one
(algorithmic model) + one (simulation model) + one (mixed model) = seven individual models
need to be developed in XML format manually. It is worth noting that we design the algorithmic
model to generate the dynamic data in run-time automatically.

6As there are parallel operations and overlapped timing, the sum of these operations’ time does not equal to the overall
response time reported in other figures.
7The Cognition operator includes the thoughts the model has (i.e., “Think”steps) and other types of cognitive operators that
initiate motor movements and visual attention shifts. (From CogTool user guide, avaiable at https://github.com/cogtool/
documentation/tree/master/end-user/user-guide)
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Fig. 24. Operation timing data of the ACT-R model for different CogTool+ models.

For CogTool, the user would need to manually develop one CogTool project with 150 Cog-
Tool tasks for CLR-only, 150 CogTool tasks for CLR-confirm, 150 CogTool tasks for LR-only, and
150 CogTool tasks for LR-confirm (i.e., 600 CogTool tasks in total). It should be noted that each
single CogTool task needs to consider the dynamic data, and the standard version of CogTool does
not support the automatic generation and integration of such data in run-time. This would require
the user to prepare dynamic data for 600 CogTool tasks manually in advance. It would require the
user to use external software tools to generate such data fairly to avoid any unnecessary bias. In
addition, it can be very time-consuming to convert and integrate such dynamic data using CogTool
at large scale.
It should be noted that the model interpreter of CogTool+ can input the seven individual

models to automatically output 600 intermediate models, which are equivalent to 600 CogTool
projects/tasks. As depicted in Figure 25, both CogTool+ and CogTool can automatically finish
150 × 4 = 600 simulations.
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Fig. 25. Comparison of efforts needed to model Undercover using CogTool+ vs. CogTool.

The parameters defined in the mixed model and simulation parameters can be used to deal with
the data collection and data analysis automatically using CogTool+. By contrast, CogTool would
require the user to do the same task manually.
To support modeling the Undercover system using CogTool+, we spent most of our efforts to

design the algorithmic model and meta models following the approach showed in Section 4 and
Section 5.2.1.

Algorithmic model. The algorithmic model written in JavaScript has seven functions (i.e., see
green highlights in Figure 21). It requires a beginner level of programming knowledge and thor-
ough understanding of the Undercover system to handcraft these functions. We spent more time
understanding the Undercover system and converting the authentication task into a number of
sub-tasks, compared with the time needed to produce the JavaScript functions. The programming
part only requires knowledge to use existing random functions and some basics such as logic,
conditional, and arithmetic operations.
We would like to emphasize that it would require a similar amount of effort to dissect the Un-

dercover system and convert it to computational models regardless of the modeling software tools
used. In other words, to model the algorithmic part of the Undercover system using CogTool would
require the same or even more effort.

Descriptive model. Refer to the Figure 3, each descriptive model has the same structure that
includes the global variable initialization, high-level UI description, and high-level interaction de-
scription. In this experiment, all descriptive models including CLR-only, CLR-confirm, LR-only,
and LR-confirm share the same code-base for global variable initialization and high-level UI
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Fig. 26. Example of using high-level interaction description of the “CLR only”model to generate low-level
interaction description (equivalent to CogTool interaction script). HCBL stands for hidden challenge button
layout (i.e., Figure 12(b2)).

description. There is only a minor difference of high-level interaction description among these
four descriptive models.

—Global variable initialization: As illustrated in Figure 16 and explained in Section 5.2.1,
simple syntax is used to define both <global_variable> and <global_callback>.

—High-level UI description: Similar to the effort needed for modeling PIN entry tasks, the
high-level UI description starts with converting one UI layout to one frame written in XML
format. The dynamic frame setting allows themodel interpreter to utilize the global variables
and call the JavaScript functions in run-time to generate seven frames with corresponding
transitions between frames automatically. This can be done using CogTool, but it requires
lots of manual work to complete the task frame by frame for creating the required 600 Cog-
Tool projects.

—High-level interaction description: For all descriptive models, we need to define coarse
user interactions. The minor difference between different descriptive models depends on
the visual-search strategy to be modeled. Different parameters can be used with function
getScanPath() to assign different visual search strategy dynamically. “CLR confirm”and
“LR confirm”models require one additional interaction step to model the confirmation be-
havior compared with the “CLR only”and “LR only”models. Figure 26 shows one example
of converting high-level interaction description of the “CLR only”model to its low-level in-
teraction description. The low-level interaction description automatically generated using
CogTool+ is equivalent to scripts manually generated using CogTool.
The coarse user interaction includes four steps: (1) find a picture, which consists of deriving

the pass picture position, and selecting the visual search strategy; (2) receive the random
hidden challenge; (3) derive the hidden response; and (4) derive the public response and
action. As illustrated in Figure 26, CogTool+ can automatically generate detailed low-level
interaction descriptions for seven frames, where the red arrows also represent the correct
transitions between frames.
To do the same for a single frame using CogTool will require a user to manually go through

interactions step by step by clicking on the CogTool frame via the CogTool Design interface.
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In the same time, the user needs to pay attention to accurately integrate the dynamic data
into the interaction steps script.

In summary, there are several advantages of using CogTool+ to model Undercover:

—The first one is the modeling part. Undercover has its algorithmic elements including the
selection of pass pictures from an image pool, image arrangement for the public challenge
interface, and generation of randomhidden challenges, that are difficult to capture andmodel
using existing software tools.

—The second one is to allow external data-driven modeling, whereby scholars can use empir-
ically determined patterns extracted from eye-tracking data to interface with the modeling
process. In addition, such external data can be generalized as behavioral patterns/templates
to be used in other modeling tasks.

—The third one is to conduct relatively large modeling tasks (600 simulations) with significant
less effort than existing tools. It should be noted that each simulation has its own param-
eters including the pass picture, the public challenges, and the hidden challenges, that are
automatically generated using the proposed algorithmic model.

—The detection of insecurity behaviors is reflected by looking at the overall human perfor-
mance prediction to observe any anomaly such as non-uniform behavior data. Currently
the offline analyser only supports basic functionality, and the auto-detection will depend on
more advanced analyses such as statistical analyses to offer users more concrete information
on the detection of insecure behaviors. We plan to address this aspect in our future work.

5.3 Additional Remarks

We have used CogTool+ to model two tasks, and we showed that our approach can produce simu-
lated data that are similar to the findings of real human-user studies. In terms of the effort needed
to model these tasks using CogTool+, our approach is considerably more streamlined compared
to the real human-user research, which is often a time-consuming and financially expensive pro-
cess that involves ethics applications, participant recruitment, experiment design and setup, and
data collection. Furthermore, our approach could be considered as an addition or a supplementary
contribution to the CogTool research community to offer alternative ways for large-scale human
performance modeling.
In this article, we have demonstrated that we can use CogTool+ to model the “Under-

cover”system and six-digit PIN entry tasks. The reason for selecting these two examples is not that
they are easy to model using CogTool+. They were selected because: (1) we would like to demon-
strate how to use CogTool+ to model dynamic elements. Although our given examples show some
limited number of dynamic elements, CogTool+ can be easily extended to support more dynamic
elements by adding new algorithmic models. (2) One of the major challenges for cyber security
researchers is to model highly dynamic UIs of cyber security system using existing cognitive mod-
eling software such as CogTool. This actually spurred the development of CogTool+.
We developed and implemented CogTool+ by adopting and extending CogTool with additional

models and interfaces. It inherits CogTool’s full capability to model many different UIs as proved
by its wide use in the HCI community. We believe CogTool+ can only enhance the modeling ca-
pabilities of CogTool rather than limiting it, and we are confident that CogTool+ can be used to
model different UIs in many other application areas. In our future work, we will investigate how
to use CogTool+ to model more complicated UIs and conduct large-scale simulations. In addition,
a similar approach to extending CogTool can be applied to other existing modeling tools to extend
their capabilities but still maintain their valuable features and benefits. Two examples are the sup-
port of parallel modeling and capability to produce results in distribution format to represent the
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individual differences from SANLab-CM, and the support of modeling multi-tasking and working
memory from Cogulator. Last but not least, we plan to work on these extensions to create a larger
system that will allow different tools and models to be incorporated and work together in a single
software framework.

6 LIMITATIONS AND FUTURE WORK

As discussed in the previous section, the use of algorithmic and descriptive models facilitates the
parameterization and automation of the modeling process. JavaScript is the main way to develop
an algorithmic model, which may require the user to have a certain level of programming knowl-
edge. This would potentially affect the usability and bring extra burden to the user when using
this system, and therefore we regard this as one of its possible limitations. To overcome this, we
improved the design to allow the user to use external files in CSV format to achieve the same
objective. However, this cannot fully afford the flexibility and dynamic nature of using JavaScript.
To address this potential issue, we are planing to develop a set of JavaScript utility modules that
would be frequently used in a modeling process to assist the end user. Furthermore, as mentioned
in the previous section, JavaScript behavioral template databases have been added to the algorith-
mic model as external data to assist the modeling process. In addition, we can build behavioral
template databases implemented in JavaScript as part of our future work.
The original CogTool supports modeling through the classical Window, Icons, Menus,

Pointer (WIMP) UI. The ultimate goal is to make CogTool+ fully compatible with CogTool. We
prioritized its development to ensure that the software could model basic interaction tasks such
as “pressing button,”using mouse, or touch screen. There is a number of graphical elements such
as “context menu,”“web link,”and “pull down list”that CogTool can model, but the current version
of CogTool+ is not supporting. However, this system framework has been developed to be flexible
and re-configurable. We are planning to add more software modules to fully support modeling
WIMP UI in our future work.

In addition, the current implementation of CogTool+ only features an easy-to-use GUI for data
analysis and visualization. In future work, we would like to incorporate and extend CogTool GUI
for modeling, design and develop UI/UX designer facing UI for XML editing.
In the present article, we provided evidence that CogTool+ can be used to model cognitive tasks

at large scale. Although we have conducted more evaluations of the system internally within our
research centre, the proposed system CogTool+ has not yet been tested externally. We will make
this software openly accessible and provide a platform so that other scholars and users can provide
their feedback. We would like to see more researchers and practitioners using CogTool+ to test
additional systems for a wider range of topics. We consider this as the first step to move forward,
and possibly contribute to the progress of CogTool.
It is worth mentioning again that our current implementation CogTool+ inherits CogTool’s lim-

itations on what UI elements it can support, and the limitation of using KLM as the underlying
cognitive model. However, CogTool+ has been developed and implemented in a way that has the
flexibility to add software modules/components and external datasets. Based on this design prin-
ciple, we are investigating and extending our research to develop a more general framework with
new software tools that can go beyond CogTool+ by adding/integrating other cognitive models,
UI modeling components and software modules.

7 CONCLUSION

In this article, we propose a new cognitive modeling software framework called CogTool+ that
extends the widely used open-source software tool CogTool to enhance its support on modeling
large-scale human performance tasks. The implemented prototype CogTool+ presents possible
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solutions to address these concerns with capabilities to support parameterization and automated
model generation. Human- and machine-readable language designed in XML format is used to
facilitate the design of the mixed model and the meta model, which allow users to model dynamic
interaction tasks as well as processing and generating large number of cognitive models automat-
ically in a programmatic manner.
We evaluated CogTool+ bymodelling six-digit PIN entry tasks, and reproduce fine-grained inter-

keystroke data similar to real human data obtained from a lab-based user study [19]. In addition, we
took a relative complex user-authentication system, Undercover [30], for evaluation. The results
revealed that we can use CogTool+ to conduct large-scale experiments and reproduce some non-
uniform human behavior patterns which have been identified in a lab-based user study [26].
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