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Abstract 
 
Triple negative breast cancer (TNBC) is an aggressive, heterogenous, metastatic disease 

characterised by lack of oestrogen, progesterone and human epidermal growth factor 2 receptors. 

Due to the lack of druggable targets, chemotherapy remains the mainstay of treatment. Whilst 

patients initially respond to this therapy, they often relapse due to acquired drug resistance. Given 

the poor outlook, it is evident that an appropriate second line therapy is required following 

chemoresistance, as well as clinically relevant biomarkers to identify when this change of therapy 

is required.  

 
To address this, a panel of six chemotherapeutic agents and 16 inhibitors of the DNA damage 

response and repair (DDR) pathways were evaluated as potential second line therapy options 

against a panel of three chemo-naive and 15 chemo-resistant TNBC cell lines. This showed that the 

PARP inhibitors, olaparib and rucaparib, and the chemotherapeutic agent, doxorubicin, may be 

ineffective as second treatment strategies for chemo-refractory TNBC, whilst inhibitors targeting 

CHK2, RAD51 recombinase and PLK1 may be effective. Analysis of the TNBC cell lines exome 

sequencing data, in combination with data extracted from The Cancer Genome Atlas, identified 70 

genes as candidate biomarkers of chemoresistance. This included a loss of function frameshift 

variant in TOP2A within the doxorubicin resistant cell line, HCC1806rDOX12.5, as a candidate 

biomarker of doxorubicin resistance. SiRNA mediated knockdown of TOP2A in the chemo-naive cell 

line, HCC1806, confirmed a doxorubicin resistance phenotype.  

 
In conclusion, this thesis provides a novel insight into the use of chemotherapeutic agents and DDR 

inhibitors as a potential second line therapy options after the emergence of chemoresistance in 

TNBC. It identified 70 clinically relevant candidate biomarkers of chemoresistance, and provides 

new avenues of research for further exploration of these findings. The work presented in this thesis 

has the potential to advance understanding of chemoresistance in the clinic and improve the 

outcome of patients with chemo-refractory TNBC. 
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1. Introduction 

1.1 Introduction to Cancer 

 
Cancer is a major worldwide public health problem, and is the second leading cause of premature 

death globally after cardiovascular disease (Ma and Yu, 2006; Bray et al., 2018). It was estimated 

that there were 18.1 million new cancer cases and 9.6 million cancer deaths in 2018 with high 

prevalence of lung, female breast, colorectal and prostate cancer (Bray et al., 2018). According to 

Cancer Research UK; it has been predicted that there will be 27.6 million new cases of cancer each 

year by 2040 (Cancer Research UK, 2016). It is therefore clear that a deeper understanding of cancer 

is required for better cancer prevention, detection, diagnosis and treatment worldwide.  

 
Cancer cannot be described as a single disease state, but comprises of over 200 different diseases, 

which commonly demonstrate a phenotype of uncontrolled cell growth and proliferation, which 

can result in invasion of surrounding local tissue, and metastasis to secondary sites. There are 

several theories, which propose an explanation for the progression of cancer. The tissue 

organisation field theory (TOFT) states that cancer arises from the disruption of chemical signals, 

mechanical forces and bioelectric changes of a cell with the adjacent tissue (Baker, 2015). The 

metabolic theory considers cancer to arise as a mitochondrial metabolic disease through 

respiratory insufficiency, whilst the cancer stem cell theory considers cancer to arise as result of 

genomic instability in stem or differentiated cells, termed cancer stem cells (CSCs) (Seyfried, 2015; 

Tomasetti and Vogelstein, 2015; Tran et al., 2016; Afify and Seno, 2019). The most widely accepted 

theory, and the one that is assumed through this thesis, is the somatic mutation theory (SMT). SMT 

states that the development of genetic and epigenetic alterations in a single somatic cell can 

extricate the cells from the homeostatic mechanisms, which control normal cell proliferation, 

resulting in the cancer cell phenotype (Blagosklonny, 2005). 

 
SMT considers the development of cancer as a Darwinian process, whereby the accumulation of 

mutations in the genome over successful clonal expansions result in the mutant oncogenic 

phenotype (Hanahan and Weinberg, 2011). The majority of somatic mutations that occur are 

considered passenger mutations, which have no effect on the cell, whilst driver mutations result in 

an oncogenic progression (Stratton, 2009). Driver mutations are commonly found in oncogenes or 

tumour suppressor genes (TSGs), which can positively or negatively regulate the promotion of 

cancer progression respectively. Proto-oncogenes often obtain activating mutations, such as 

amplification, translocation or missense variants, which are often dominant (Grandér and Grandér, 

1998). An example of an oncogene is EGFR, whereby activating mutations in EGFR results in 
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increased cell proliferation, survival and differentiation (Zandi et al., 2007; Sigismund et al., 2018). 

TSGs  are known to have a role in protecting the genetic integrity of the cell, and deleterious loss of 

function variants in these genes can lead to oncogenesis (Grandér and Grandér, 1998). An example 

of a commonly mutated TSG in cancer is TP53, which has a crucial role in sensing DNA damage and 

halting cell cycle progression. Loss of function mutations in TP53 are found in approximately 50% 

of cancers (Rivlin et al., 2011; Perri, 2016). Genetic aberrations in oncogenes and TSGs affect the 

genomic stability of the cell, which can result in a higher risk of acquiring further genetic aberrations 

(Fletcher and Houlston, 2010).  

 
Both internal and external genotoxic factors such as; reactive oxygen species (ROS), tobacco smoke 

and ultraviolet light, can result in DNA damage (Jackson and Bartek, 2009). Although DNA repair 

mechanisms are in place to repair the generated somatic mutations, if repaired incorrectly before 

cell replication; a permanent alteration is fixed in the DNA, further contributing to oncogenesis 

(Lord and Ashworth, 2012). It has been found that cancer cells often have increased rate of DNA 

damage and genetic aberrations compared to normal cells, which contributes to the development 

of oncogenesis (Negrini, 2010). It is thought that inherited germline mutations in oncogenes, such 

as those in KRAS in non-small cell lung cancer patients, can contribute to the development of 

oncogenesis in combination with somatic mutations (Román et al., 2018). 

 

 
 
Figure 1.1 The hallmarks of cancer 
Schematic diagram highlighting the hallmarks of cancer. Taken from Hanahan and Weinberg 2011.  

 
The sequential development of driver somatic mutations in both oncogenes and TSGs results in an 

oncogenic phenotype that have been defined as traits, and considered to drive the cancer 

progression; termed the hallmarks of cancer (Hanahan and Weinberg, 2011). Initially, six hallmarks 

were identified; with the cancerous cells able to sustain proliferative signalling, evade growth 
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suppressors, activating invasion and metastasis, enabling replicative immortality, inducing 

angiogenesis and resisting cell death (Hanahan and Weinberg, 2000). A reviewed update identified 

two new emerging hallmarks; deregulating cellular energetics and avoiding immune destruction, as 

well as two enabling characteristics; tumour-promoting inflammation and genome instability and 

mutation (Figure 1.1) (Hanahan and Weinberg, 2011). Different therapeutic strategies have been 

developed which target these characteristics of the cancer phenotype. One of the earliest methods 

to be developed, and which is still a frontline treatment for many cancer types, is chemotherapy.  

 
1.2 Chemotherapeutics 

 
Cancer therapy is predominantly dependent upon the use of surgery, radiotherapy and cytotoxic 

chemotherapeutic agents. Whilst both surgery and radiotherapy are still commonly used, these 

methods are reliant on accessibility of the tumour site, and the stage of the tumour. Cytotoxic 

chemotherapy agents were introduced, which can provide an effective broad-acting therapy across 

all tissue types and can be used at any tumour stage. These cytotoxic agents are used to induce 

severe DNA damage, with the rationale that this will result in higher levels of replication stress or 

mitotic catastrophe and activation of apoptosis in the rapidly dividing cancerous cells compared to 

normal cells. There are several classes of chemotherapeutic agents based on their mechanism of 

action, which include, (but not exclusive to); alkylating agents, anti-metabolites, topoisomerase 

inhibitors and anti-mitotic agents, which are considered in the scope of this thesis due to their use 

in the treatment of the cancer investigated here (Huang et al., 2017).  

 
1.2.1 Alkylating agents 

 
Alkylating agents are antineoplastic compounds, which chemically react to biological molecules 

such as; nucleic acids, proteins, amino acids and nucleotides. These agents alter the structure of 

DNA through cross-links, which can lead to DNA fragmentation. Alkylating agents, such as sulphur 

mustard gas, were initially used as chemical warfare in World War I, before nitrogen mustards were 

harnessed for the treatment of cancer. The nitrogen mustard alkylating agents, such as 

chlorambucil, reacts with nucleophilic sites in DNA through its electron deficient alkyl groups, and 

was used for the treatment for chronic lymphocytic leukaemia (Siddik, 2005; Vidal et al., 2016). 

Considered alkylating-like are the platinum analogues; cisplatin and carboplatin, which bind to the 

N7 position of guanine and/or adenine bases in DNA via a platinum atom (Oronsky et al., 2012). 

The platinum agents are commonly used as either single agents, or in combination with another 

drug class for the treatment of cancers of the; breast, testicular, ovarian, cervical, prostate, head 
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and neck, bladder, lung and refractory non-Hodgkin’s lymphomas (Tsimberidou et al., 2009; Dhar 

et al., 2011; Dasari and Bernard Tchounwou, 2014).  

 
Cisplatin introduces both inter-and intra-strand cross-links in the DNA, which require repair (Pascoe 

and Roberts, 1974). This results in the inhibition of DNA synthesis and cell division and the induction 

of apoptotic cell death. Cisplatin has also been found to induce mitochondrial oxidative stress, with 

an increase of ROS, which results in the loss of mitochondrial protein sulfhydryl group, calcium 

uptake inhibition and reduction of mitochondrial membrane potential (Marullo et al., 2013a). 

Furthermore, increased ROS levels in the cell can damage proteins, lipids and further damage DNA 

adding to the induction of apoptosis. 

 
1.2.2 Antimetabolites 

 
Antimetabolites are folic acid, pyrimidine or purine analogues and have a similar structure to 

molecules required for DNA or RNA synthesis. Generally, antimetabolites are incorporated into DNA 

or RNA during S-phase of the cell cycle, or inhibit the enzymes that are required for nucleic acid 

production, resulting in replication stress and the induction of apoptosis (Huang et al., 2017). 

 
One of the first antimetabolites to be developed for solid tumours was 5-Fluorouracil in 1957, and 

it  remains an essential chemotherapeutic agent, both as a single agent and in combinations with 

other drug classes for the treatment of colorectal, breast and head and neck cancers (Heidelberger 

et al., 1957; Arruebo et al., 2011). 5-Fluorouracil is an analogue of uracil, in which a fluorine atom 

has replaced a hydrogen atom at the C-5 position (Rutman, Cantarow and Paschkis, 1954). It enters 

the cell via the same facilitated transport mechanism of uracil, before undergoing intracellular 

conversion into multiple active metabolites, which include; fluorodeoxyuridine monophosphate 

(FdUMP), flurodeoxyuridine triphosphate (FdUTP) and fluorouridine triphosphate (FUTP) 

(Wohlhueter, McIvor and Plagemann, 1980; Miura et al., 2010). FdUMP inhibits thymidylate 

synthase, which is required for the conversion of deoxuridine monophosphate (dUMP) to 

deoxythymidine monophosphate (dTMP), thereby reducing the nucleotide pool of thymidine 

required for DNA synthesis (Longley, Harkin and Johnston, 2003a). The accumulation of dUMP can 

lead to increased levels of deoxyuridine triphosphate (dUTP)(Aherne et al., 1996). Both dUTP and 

the metabolite FdUTP have been found to be misincorporated into DNA resulting in DNA damage. 

Furthermore, FUTP has been found to be incorporated into RNA, which disrupts the normal RNA 

processing and function (Aherne et al., 1996). Together, the active metabolites of 5-Fluorouracil 

induce DNA damage, and replication stress, which results in the induction of apoptosis.  
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Gemcitabine is a pro-drug cytidine analogue, which is commonly used as either a single agent, or in 

combination with another drug class for the treatment of a variety of solid tumours, including; non-

small cell lung, pancreatic, bladder and breast cancer (Toschi et al., 2005). Upon influx via 

nucleoside transporters, gemcitabine undergoes an intracellular conversion to the nucleotides 

gemcitabine diphosphate (dFdCDP) and triphosphate (dFdCTP), which both have downstream 

action inducing gemcitabine cytotoxicity. The nucleotide dFdCTP competes with deoxycytidine 

triphosphate as an inhibitor of DNA polymerase and is incorporated in the DNA. To potentiate this 

effect, the nucleotide dFdCDP inhibits ribonucleotide reductase, which results in the depletion of 

deoxyribonucleotide pools required for DNA synthesis (Mini et al., 2006). Furthermore, it has been 

found that dFdCTP can incorporate into RNA, which can disrupt normal RNA processing, and 

maturation of ribosomal, transfer and messenger RNA, (rRNA, tRNA, mRNA) precursors (Mojardín 

et al., 2013). The incorporation of the cytidine analogue into DNA and the reduction of the 

nucleotide pools results in a disruption of DNA synthesis, increasing replication stress, and the 

induction of apoptosis.  

 
1.2.3 Topoisomerase inhibitors  

 
Topoisomerase inhibitors target either topoisomerase I or II (topo I, topo II), which are well 

characterised enzymes involved in the unwinding of DNA during replication and transcription. 

Chemotherapeutic agents have been developed to target both topoisomerases with camptothecin 

targeting topo I, and etoposide and doxorubicin targeting topo II (Liang et al., 2019).  

 
Doxorubicin is an anthracycline topo II targeted inhibitor, which has been used as a single agent, or 

in a combination therapy with other drug classes for the treatment of several cancers including; 

breast, gastric, lung, ovarian, thyroid, non-Hodgkin’s and Hodgkin’s lymphoma, sarcoma, multiple 

myeloma and paediatric cancers (Thorn et al., 2011). The mechanisms of action associated with 

doxorubicin are multi-factorial, but all lead to increased DNA damage resulting in apoptotic cell 

death. Doxorubicin has been found to intercalate into DNA, which can result in the inhibition of 

DNA replication, and disruption of DNA repair mechanisms, which is believed to be mediated by 

topo II, although the mechanism is not fully known (Yang et al., 2014). Topo II is an ATP-dependent 

enzyme, which consist of two isoforms; TOP2A and TOP2B. Topo II is known to bind to entangled 

DNA and DNA supercoils, before breaking both strands of one DNA duplex, passing the other duplex 

through the gap and resealing the break, in order to reduce torsional stress produced from DNA 

replication and transcription (Pommier et al., 2010; Yang et al., 2014). It has also been found that 

Topo II is required for decatenation of DNA during mitosis, and for normal cytokinesis (Carpenter 
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and Porter, 2004; Yang et al., 2014). It is thought that doxorubicin binds and traps topo II at 

breakage sites, stabilising the DNA cleavage complex and this prevents the resealing of DNA breaks, 

resulting in increased DNA damage (Nitiss, 2009). Furthermore, doxorubicin has also been found to 

oxidize to an unstable metabolite, semiquinone, before being converted back, which releases ROS. 

The ROS in turn can contribute to the DNA damage and result in cell death (Doroshow, 1986; Kim 

et al., 2006; Thorn et al., 2011). In addition, doxorubicin has been found to be associated with 

enhancement of nucleosome turnover around promoter regions, which is thought to be attributed 

to its ability to intercalate DNA (Yang, Kemp and Henikoff, 2013; Taymaz-Nikerel et al., 2018). 

 
1.2.4 Anti-mitotic agents 

 
Anti-mitotic agents target the dynamics of microtubules, which can disrupt spindle formation and 

chromosome orientation resulting in mitotic arrest. Microtubules are predominantly formed during 

interphase and crucial for the completion of mitosis. If the cells remain in a prolonged arrest state, 

this results in a subsequent apoptosis induction or a senescence-like G1 state (Mitchison, 2012). 

Anti-mitotic drugs are divided into two classes based on their mechanism of action; microtubule 

destabilising agents or microtubule stabilising agents (Kavallaris, 2010). 

 
Destabilising agents inhibit the polymerisation of microtubules and include vinca alkaloids such as; 

vincristine, vinorelbine and eribulin, which bind to the vinca domain located at the interface 

between α – and β-tubulin (Jordan and Kamath, 2007; Dumontet and Jordan, 2010; Smith et al., 

2010). Eribulin has been approved for patients with metastatic breast cancer (O’Shaughnessy, 

Kaklamani and Kalinsky, 2019). The binding of eribulin at the vinca domain is selectively at the plus 

ends of microtubules as well as to soluble tubulin subunits. This prevents the addition of new 

subunits without affecting normal subunit loss, and results in net microtubule depolymerisation  

(Natarajan et al., 2012; Lu, Pokharel and Bebawy, 2015). 

 
Stabilising agents promotes the polymerisation of microtubules and include the drug groups; 

taxanes and epothilones, which are found to bind to the inner surface of the microtubule at the 

taxoid-binding site on β-tubulin (Altmann, 2001; Jordan and Kamath, 2007). Paclitaxel, a common 

taxane agent, has been used both as a single agent, or in combination with other drug classes for 

the treatment of breast, ovarian, colorectal, lung, head and neck cancer (Zhu and Chen, 2019). 

Paclitaxel binds to the taxoid binding site on the inner surface of the microtubule lattice, along its 

entire length and promotes microtubule stability and suppression of the microtubule shortening 
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events, which results in net microtubule polymerisation (Derry, Wilson and Jordan, 1995; Snyder et 

al., 2001; Jordan and Wilson, 2004; Jordan et al., 2005). 

 
1.2.5 Problems with chemotherapeutic agents 

 
The use of chemotherapeutic agents for the treatment of cancer does not come without problems. 

For example, the therapeutic window for targeting cancer cells is small, with the assumption that 

increasing DNA damage through chemotherapy in cancerous cells is attributed to their ability to 

rapidly divide. However, some normal cells, such as those found in the mouth, stomach, bowel and 

hair follicles are also rapidly dividing, which can result in undesirable side effects (Falzone, 

Salomone and Libra, 2018). Long term effects, such as cardiotoxicity, have also been identified with 

treatment of chemotherapeutic agents, such as doxorubicin, which is more predominant in children 

and adolescents who receive chemotherapy at a young age (Mancilla, Iskra and Aune, 2019). 

Furthermore, patients can become refractory to the treatment as resistance develops to the 

chemotherapeutic agents resulting in therapy failure and patient relapse.   

 
1.3 Resistance to chemotherapeutic agents 

1.3.1 The challenge of drug resistance 

 
Resistance to chemotherapeutic agents, and to therapies designed to be selective for specific 

molecular targets, remains the biggest challenge to the treatment of cancer in the clinic. Most 

patients with advanced cancer die as the cancer either already exhibits, or develops drug resistance 

to the therapy, and also to other existing therapies through multi-drug resistance (Garraway and 

Jänne, 2012; Konieczkowski et al., 2018). The development of drug resistance can result in an 

increase in tumour mass, invasion of nearby tissues or metastasis to distant tissues, which results 

in patient death. Approximately 90% of failures to chemotherapy are during the invasion and 

metastasis of cancer related to drug resistance (Mansoori et al., 2017a). 

 
Drug resistance can be divided into two categories; intrinsic or acquired. Intrinsic resistance 

indicates that prior to therapy, pre-existing resistance exist in the patient’s tumour cells, rendering 

the therapy ineffective. Acquired resistance develops during drug treatment in tumour cells that 

have previously demonstrated sensitivity to the drug. This can be through genetic or epigenetic 

changes that occur in the tumour cells with the application of drug, or the expansion of a small 

residual population of tumour cells, which are not killed, enabling a regrowth of tumour that no 

longer responds to the drug (Holohan et al., 2013; Cree and Charlton, 2017). The latter is thought 
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to be a result of a high degree of molecular cell heterogeneity often found in tumours, resulting in 

the expansion of resistant minor subpopulations (Swanton, 2012).  

 
Tumour heterogeneity presents a challenge in the study of drug resistance. It has been found that 

cell heterogeneity can be spatial; within a single tumour and amongst multiple metastases, as well 

as temporal; in which it is a result of a selective pressure induced by drug therapy (Konieczkowski 

et al., 2018). It has also been found that simultaneous development of resistance can occur in 

multiple metastases suggesting that the resistant subpopulations may pre-exist before tumour 

dissemination (Wagle et al., 2011; Sanborn et al., 2015; Konieczkowski et al., 2018). 

 
Another challenge is also found in the models used to analyse drug resistance. The use of cell line 

models is still considered a widely accepted method underpinning drug resistance research 

(Garraway and Jänne, 2012). However, whilst these models are derived from patients, they may 

not be entirely chemo-naive. These historically obtained cell lines are often derived from patient 

biopsies with very little information as to what treatment had been received, if any, at the time of 

the biopsy. Investigation of the year of the biopsy and the country it was obtained from, may 

provide some useful insight as to what stand of care treatment was given at the time. However, 

lack of this historical information can hinder the understanding of drug resistance.  

 
A further challenge is that drug resistance is multifactorial. Resistance has been found to develop 

not only though changes in the cancer genome, such as somatic mutations and chromosomal 

rearrangements, but also through non-genetic mechanisms such as protein phosphorylation and 

changes in gene expression. The way in which the resistance effectors develop, or become 

dysregulated can be extensive for any tumour context (Konieczkowski et al., 2018). In order to 

overcome refractory tumour phenotypes, an understanding of the mechanisms driving resistance 

to anti-cancer agents is important.(Garraway and Jänne, 2012). 

 
1.3.2 Mechanisms of drug resistance 

 
Six hallmarks of drug resistance have been proposed to describe common resistance mechanisms, 

which include; drug pumps, alteration of drug targets, detoxification mechanisms, increased DNA 

damage repair, reduced apoptosis and altered proliferation (highlighted in figure 1.2) (Cree and 

Charlton, 2017). These hallmarks, which underly the emergence of drug resistance, can be applied 

to both chemotherapeutic agents and to molecularly targeted drugs, although chemotherapeutic 

agents will be the focus of the discussion in the following subsections.  
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1.3.2.1 Drug pumps 

 
Alterations in drug pumps can result in an increase of drug efflux or a decrease in drug uptake, 

which ultimately leads to an observed drug resistance phenotype. Increased expression of the ABC 

transporter family has shown to efflux drugs from the cell at a rate that exceeds their entry in a 

relatively promiscuous manner. These transporters have been shown to efflux structurally 

unrelated chemotherapeutic agents, small molecule targeted drugs and xenobiotics, which results 

in a multi-drug resistance phenotype. For example, the ABCB1 transporter/multi-drug resistance 

transporter (MDR1) has been found to efflux common chemotherapeutic agents including; 

doxorubicin, eribulin and paclitaxel (Chen et al., 2016; Oba et al., 2016). The ABCG2/ breast cancer 

resistance protein (BCRP), has been found to efflux inhibitors such as irinotecan, gefitinib and 

imatinib (Tsuruoka et al., 2002). Given the problem ABC transporter activity has upon the efficacy 

of a drug, new drug development programmes often screen compounds to determine their 

substrate activity for the transporters before continuing drug development (Montanari and Ecker, 

2015).  

 
The solute carrier superfamily (SLCs) of membrane transporters contain; the organic anion 

transporting polypeptide, organic anion transporters and the organic cation transporters (OCTs). 

Decrease in the expression of SLCs can result in a reduced cellular uptake of chemotherapeutic 

agents resulting in a drug resistance phenotype (Zhou et al., 2017; J. Zhou et al., 2020). For example, 

Gao et al., 2019, showed that the decrease of the organic transporter 2 (OCT2/SLC22A2) results in 

a reduced cellular accumulation of cisplatin. Furthermore, it has been shown that doxorubicin is 

imported into the cell via the solute carrier family 22 member 16 (SLC22A16/OCT6) in a sodium-

independent manner (Okabe et al., 2005a, 2005b; Muley et al., 2020). 
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Figure 1.2 Mechanisms of drug resistance in cancer cells 
Schematic diagram identifying the common mechanisms of drug resistance in cancer cells. This includes increased drug efflux, and 
decreased drug uptake, drug compartmentalisation, changes in drug target or drug target levels, changes in drug metabolism, increased 
resistance to apoptosis and increased DNA damage response and repair. Adapted from (Mansoori et al., 2017). 

 
 
1.3.2.2 Detoxification mechanisms 

 
If uptake of the anti-cancer agents is efficient, there are many detoxification mechanisms that 

reduce the cytotoxicity of anti-cancer agents, which occur within the cell. These mechanisms can 

involve directly changing the drug, prevention of required drug metabolism needed to form active 

metabolites or drug compartmentalisation.  

 

Inactivation of platinum agents have been found associated with conjugate formation between the 

drug and the thiol glutathione (GSH) catalysed by glutathione S-transferase (GSTπ). This has been 

found to result in a detoxification of the molecule and also increases the affinity to ABC transporters 

(Delou et al., 2019) (see sub- section 1.3.2.1 Drug pumps). Upregulation of GSTπ and its activity has 

been implicated as a detoxification resistance mechanism in several cancer types (Cazenave et al., 

1989; T et al., 1992; Di Nicolantonio et al., 2005). Furthermore, GSH can act as an antioxidant, which 

can inhibit oxidative stress, such as ROS, which is found increased during treatment with cisplatin. 

Both cisplatin resistant lung and ovarian cancer cell lines have been shown to have higher levels of 

GSH, counteracting the high levels of ROS induced by cisplatin (Chen and Kuo, 2010; Catanzaro et 

al., 2015, 2018).  
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Some chemotherapy agents, such as gemcitabine and 5-Fluorouracil, undergo complex metabolism 

pathways to form active metabolites, as previously discussed (sub-section 1.2.2 Antimetabolites). 

Altered pathways of drug metabolism can prevent the formation of the active metabolite, 

detoxifying the agent and resulting in an observed resistant phenotype. For example, an increase 

of expression of the 5-Fluorouracil activating enzymes; thymidine phosphorylase (TP), uridine 

phosphorylase (UP), and orotate phosphoribosyl transferase (OPRT), have been associated with 5-

Fluorouracil sensitivity (Houghton and Houghton, 1983; Schwartz et al., 1985; Evrard et al., 1999; 

Longley and Johnston, 2005). Furthermore, 5-Fluorouracil can be catabolised by dihydropyrimidine 

dehydrogenase (DPD) (Longley and Johnston, 2005). Diasio and Harris, 1989, have reported that 

overexpression of DPD in cancer cell lines results in resistance to 5-Fluorouracil, which was also 

confirmed by Takebe et al., 2001, who showed that high levels of DPD mRNA expression in 

colorectal tumours correlated with 5-Fluorouracil resistance.  

 
Sequestration of drugs away from the drug target and into cellular compartments is another 

mechanism that results in drug detoxification. This drug compartmentalisation is often as a result 

of defects in lysosomal and protein trafficking (Vadlapatla et al., 2013). One such example, is where 

cisplatin is sequestered within the vesicle structures of the lysosome, golgi and secretory 

compartments before being effluxed from the cell (Katano et al., 2004; Liang et al., 2005; Safaei et 

al., 2005; Vadlapatla et al., 2013). The ABC transporter, ABCA3, has been implicated in exosome 

biogenesis and the efflux of vesicle structures in a drug resistance context (Safaei et al., 2005; 

Chapuy et al., 2009; Vadlapatla et al., 2013; Overbeck et al., 2017). 

 
1.3.2.3. Alteration of drug targets 

 
Another mechanism of resistance to anti-cancer drugs is alteration of the drug target, which can be 

a result of either a mutation or changes in the expression levels due to epigenetic alterations (Wang, 

Zhang and Chen, 2019). Whilst this mechanism is commonly associated with newer small molecule 

targeted agents, the truism is associated with chemotherapeutic agents too (Cree and Charlton, 

2017). As previously mentioned, part of the cytotoxicity induced by 5-Fluorouracil is the inhibition 

of thymidylate synthase. Increased expression of thymidylate synthase has been implicated as a 

mechanism of resistance to the treatment of 5-Fluorouracil (Longley, Harkin and Johnston, 2003b). 

Mutations in the drug target have been seen in topo I, which results in the inability of camptothecin 

to effectively bind and carry out the intended cytotoxic mechanism, resulting in an observed 

resistance phenotype (Larsen and Skladanowski, 1998).  
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1.3.2.4 Changes in DNA damage repair 

 
Commonly, chemotherapeutic agents introduce DNA damage as their mechanism of action, which 

can ultimately lead to cell death. To circumvent this, a frequent resistance mechanism is to 

upregulate the DNA repair pathways to remove the exogenous DNA damage. This can be through 

either aberrant expression or mutation of DNA repair components or regulators of DNA repair. 

Nucleotide excision repair (NER) is a highly conserved DNA repair pathway that repairs DNA lesions 

such as those introduced by cisplatin. The excision repair cross-complementation group 1 (ERCC1) 

protein plays a key role in NER. Olaussen et al., 2006, showed through an international adjuvant 

lung cancer trial, which retrospectively conducted an immunohistochemical analysis of ERCC1 in 

tumour samples of 761 patients with metastatic lung cancer, that there was a statistically significant 

survival benefit in patients with low levels of ERCC1 when receiving platinum-based chemotherapy, 

compared to those that had high levels of ERCC1. Similar results were seen in retrospective clinical 

trials with ovarian and colorectal cancer (Dabholkar et al., 1992; Metzger et al., 1998; Kang et al., 

2006; Martin, Hamilton and Schilder, 2008). An alternative example is seen when a DNA repair 

pathway is switched off to increase tolerance to exogenous DNA damage. Normally, mismatch 

repair (MMR) pathway recognises cisplatin-induced DNA adducts, which results in successive repair 

cycles that ultimately triggers apoptosis. However, a loss of function in the MMR pathway results 

in reduced recognition of DNA damage, cell death is not efficient, which thereby promotes 

tolerance to cisplatin, and also increases the development of mutations, which can lead to further 

carcinogenic transformation (Povey et al., 2002; S. et al., 2013). This latter example is also a 

common resistance mechanism for 5-Fluorouracil, which has been established in colorectal cancer 

(Mark Meyers et al., 2001). 

 
1.3.2.5 Reduced apoptosis 

 
As mentioned in the previous sub-section, increased DNA damage is seen with the application of 

many chemotherapeutic agents, which ultimately result in cell death via the induction of apoptosis. 

Therefore, another common resistance mechanism is to increase cell pro-survival signalling, and 

reduce signalling through pathways, which result in apoptosis. It must be noted, that other forms 

of cell death can also be triggered by chemotherapeutic agents, which include necrosis, necroptosis 

and autophagy, and changes in these pathways can also lead to a resistant phenotype (Kroemer et 

al., 2009; Cree and Charlton, 2017). One example is the loss of function of a critical tumour 

suppressor gene, TP53, which has multiple downstream targets that can induce apoptosis (Fridman 

and Lowe, 2003). Whilst p53 has been found to be mutated in more than 50% of cancer patients, 
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mutated p53 has also been implicated in driving chemoresistance due to loss of function on 

activating transcription of PUMA,  a key pro-apoptotic protein (Huang et al., 2019). 

 
Another example, is the activation of nuclear factor kappa-light-chain-enhancer of activated B cells 

(NF-κB) pathway, which has been found to rescue cancer cells from the apoptotic pathway, 

promotes survival and proliferation and prevents cell death (Xia et al., 2018; Delou et al., 2019). 

Korber et al., 2016, found a chemoresistance phenotype to 5-Fluorouracil in colonic carcinoma cells 

lines, which was strongly dependent on NF-κB activation. Furthermore, anti-apoptosis proteins 

including Bcl-XL and Bcl-2, have been found upregulated via the activation of NF-κB during the 

emergence of chemoresistance in invasive pancreatic cancer (Greten et al., 2002; Y. Li et al., 2016; 

Li et al., 2018).  

 
1.3.2.6 Altered proliferation  

 
Activation of the phosphatidylinositol 3-kinase (PI3K) / serine/threonine kinase (AKT) pathway can 

result in increased cellular functions including survival, proliferation, migration and differentiation 

(West, Castillo and Dennis, 2002). Upregulation of this pathway, results in increased proliferation 

and has been implicated in resistance to anti-cancer agents including chemotherapeutic agents 

such as doxorubicin (Christowitz et al., 2019). Both in vitro and in vivo studies have shown that 

combination of small molecule inhibitors of PI3K/AKT pathway with a chemotherapeutic agent are 

successful in attenuating chemotherapeutic resistance (West, Castillo and Dennis, 2002). Altered 

proliferation can become a self-perpetuating mechanism, whereby cancer cells with a high rate of 

proliferation are genetically unstable, resulting in the development of further drug resistant 

mechanisms through genetic aberrations (Mansoori et al., 2017c). 

 
1.3.3 Overcoming resistance to chemotherapeutic agents 

 
Given the clinical implications resistance to chemotherapeutic agents have on the outcome of 

patient survival, it is important to consider methods of overcoming resistance. One such approach, 

is to use both a small molecule inhibitor and a chemotherapeutic agent in combination therapy. For 

example, several ABC transporter inhibitors have been developed, such as zosuquidar, which when 

combined with a known substrate chemotherapeutic agent, attenuates the chemotherapeutic 

resistance in cells (Nanayakkara et al., 2018). However, although the use of ABC transporter 

inhibitors has led to success in MDR reversal in preclinical studies, little impact was seen on clinical 

outcome (Falasca and Linton, 2012). Many ABC transporter inhibitors have been clinically tested 

over the last forty years, but the use in the clinic is impeded by severe toxicities, and as such no 
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effective agent has been developed and approved to date (Choi and Yu, 2014; J. M. A. Delou et al., 

2019). However, fourth-generation ABC transporter inhibitors have emerged, which are based on 

either natural or semi-synthetic compounds, and are under investigation (Karthikeyan and Hoti, 

2015; J. M. A. Delou et al., 2019). 

 
Another approach to overcome drug resistance, is to determine an appropriate second line therapy. 

For a second line therapy to be effective, the patient must not demonstrate cross-resistance, and 

to this end, the drugs selected are normally of a different drug class to the first line therapy. Within 

a patient setting, investigation of new drug classes as an appropriate second line therapy is difficult, 

as patients entering clinical trials have often undergone several treatment options before entering 

a clinical trial, often as a last treatment resort. A new drug class of small molecule inhibitors of the 

DNA damage response have been developed, many of which are undergoing clinical trials both as 

monotherapies or in combination with other drugs. However, they have not been investigated as 

an appropriate second line therapy after the development of chemo-resistance.  

 
1.4 DNA damage response 

1.4.1 Signalling in the DNA damage response 

 
In order to preserve genomic integrity after DNA damage through endogenous or exogenous stress, 

the cells must identify and repair the damaged DNA. This is conducted through the DNA damage 

response (DDR), which can be broken down into three integral steps; 1) recognition of the DNA 

lesions 2) downstream cascade of DNA repair signalling and cell cycle arrest and 3)  induction of 

apoptosis if the damage is irreparable (Blackford and Jackson, 2017).  

 
1.4.1.1 Recognition of DNA lesions 

 
The DDR is driven by signal transduction with downstream cascades of protein phosphorylation. 

Initial detection of DNA damage and cellular signalling is predominantly instigated through three 

phosphoinositide 3-kinase (PI3K) related kinases (PIKKs); Ataxia-Telangiectasia Mutated (ATM), 

Ataxia-Telangiectasia and Rad3 related (ATR), and DNA-dependent protein kinase (DNA-PK) 

(Blackford and Jackson, 2017). Both ATM and DNA-PKcs are active in the recognition of DNA double 

strand breaks (DSBs), whilst ATR is predominantly activated by DNA replication stress, or lesions, 

which result in single-stranded DNA (ssDNA). Whilst DNA-PKcs are thought to be limited to the 

repair of DSBs at the site of the lesion, both ATR and ATM have both a local and global cellular 

responses through the phosphorylation of the downstream effectors; checkpoint kinase 1 (CHK1) 

and checkpoint kinase 2 (CHK2) respectively (Blackford and Jackson, 2017). It must be noted that 
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ATM, ATR and DNA-PKcs have overlapping signalling pathways and substrates, and ATR and ATM 

have been found to substitute for each other, suggesting some role redundancy (Brown and 

Baltimore, 2003; Wang et al., 2004). 

 
Each of the DDR kinases are recruited and activated to the site of the damaged DNA through 

individual co-factors dependent on the type of DNA damage that has occurred. The ATR-interacting 

protein (ATRIP) has been found to bind to the heterotrimeric replication protein A (RPA), a protein 

complex that associates with ssDNA, and ATRIP recruits ATR to the site of ssDNA (Cortez et al., 2001; 

Zou and Elledge, 2003). Further protein recruitment to the ssDNA site is required for full ATR 

activation. Ewing’s tumour-associated antigen 1 (ETAA1) is recruited to RPA-coated ssDNA sites, 

where it binds to ATR through the ATR-activation domain, stimulating ATR (Bass et al., 2016; Haahr 

et al., 2016). DNA topoisomerase 2-binding protein 1 (TOPBP1) has also been found to contain an 

ATR-activation domain, and the activation of ATR by TOPBP1 is a crucial step in the initiation of ATR 

dependent signalling, but the recruitment and mechanism are not yet clear (Kumagai et al., 2006; 

Blackford and Stucki, 2020). Both ATM and DNA-PKc are activated through their recruitment to the 

DNA lesions by their co-factors. ATM has been found to be recruited and activated by the MRE11-

RAD50-NBS1 (MRN) complex, which can recognise and bridge broken double stranded DNA 

(dsDNA) ends (Lee and Paull, 2004, 2005). DNA-PKc is known to be recruited and activated to dsDNA 

ends by a heterodimeric complex, Ku, which contains two subunits; Ku70 and Ku80 (Gottlieb and 

Jackson, 1993).  

 
One of the key roles of ATM and ATR during DNA lesion recognition, is the activation of cell cycle 

checkpoints in order to arrest the cells at G1/S or G2/M boundaries to allow for DNA repair (Kastan 

and Bartek, 2004). This is predominantly driven through activating phosphorylation of the cell cycle 

checkpoint proteins; CHK1 and CHK2. Although cross-talk has been identified in these activation 

pathways, the end result is the inhibition of the cyclin -dependent kinase (CDK) activity, which is 

known to drive cell cycle progression (Blackford and Jackson, 2017). Upon recognition of DNA 

damage, ATM/ATR rapidly activate CHK1/CHK2 respectively, which inactivate the cell division cycle 

25 (CDC25) family of phosphatases, which counteracts the inhibitory phosphorylation of cyclin 

dependent kinases (CDKs) by the wee1-like protein kinase (WEE1)(Squire et al., 2005). Furthermore, 

ATM/ATR can both phosphorylate p53, which results in a slower transcription of CDKs by 

p21CIP1/WAF1, which is key for the progression of the G1/S checkpoint (Blackford and Stucki, 2020). 

Activation of CHK1/CHK2 also promotes DNA repair and activate apoptosis pathways (Patil, Pabla 

and Dong, 2013). With the DNA lesion recognised and progression of the cell cycle halted (Figure 

1.3), effective DNA repair can occur.  
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Figure 1.3 DNA lesion recognition and cell cycle halt 
Exogenous or endogenous DNA damage result in the recruitment of the three PIKKs to recognise the DNA lesions. DSBs damage results 
in the recruitment and activation of DNA-PKcs by Ku-bound to DSB ends, and ATM to DSBs by the MRE11-RAD50-NBS1 (MRN) complex. 
ATR is recruited to RPA-coated ssDNA by its binding partner ATRIP after damage, which produces ssDNA such as DNA strand crosslinks 
or stalled replication forks. ATR and ATM activate the downstream CHK1 and CHK2 kinases to halt the cell cycle to prevent entry into the 
S-phase, delay progression through S -phase and stop the cells from entering mitosis. Activation of checkpoint kinases also initiates DNA 
repair and if repair fails or there is prolonged activation of the checkpoints, the kinases trigger apoptosis. Figure adapted from both 
Garrett and Collins, 2011 and Blackford and Jackson, 2017.  
 

 
 

1.4.1.2 DNA repair signalling 

 
There are many different agents that can induce DNA damage, and their mechanisms results in the 

formation of distinct types of damage. Multiple cellular DNA repair mechanisms exist to address 

the damage, and the selection of the appropriate DNA repair pathway is crucial after damage has 

been detected. Table 1.1 outlines a summary of the different repair pathways available for the 

repair of damaged DNA by common DNA damaging agents (adapted from a figure by Chatterjee 

and Walker, 2017). DNA repair pathways are available to repair bulky lesions, or incorrect base 

incorporation, but two of the most common DNA repair mechanisms are the repair of DSBs and 

single strand breaks (SSBs). It must be noted that the selection of the distinct DNA repair pathways 

is often dependent on the stage of the cell cycle (Hustedt and Durocher, 2017).  
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Table 1.1 Summary of repair mechanisms for damaged DNA 

 

 

 
DSBs are commonly repaired through two distinct mechanisms; non-homologous end joining 

(NHEJ) and homologous recombination repair (HRR). Classical NHEJ (cNHEJ; to distinguish from 

alternative end joining, which functions in the absence of cNHEJ proteins), is a rapid high capacity 

pathway, which works to ligate two broken DNA ends without needing a repair template, 

predominantly during G1 phase of the cell cycle (Branzei and Foiani, 2008; Scully et al., 2019). 

Briefly, cNHEJ is initiated by Ku and DNA-PKcs binding to the DSBs, promoting DNA-end tethering 

(Graham, Walter and Loparo, 2016). Subsequently, additional cNHEJ core factors are recruited to 

allow for the ends to be closely aligned and ligated, which includes, XRCC4, XLF and DNA ligase IV, 

and stabilised by PAXX (Blackford and Jackson, 2017). Some DSBs require additional proteins such 

as DNA polymerases and nucleases in order for repair to occur (Blackford and Jackson, 2017). DSBs 

are mostly repaired by cNHEJ, and although it has been previously described as error prone, in 

relation to the development of CRISPR-Cas9 assays, it is also described as efficient and mostly 

accurate (Bétermier, Bertrand and Lopez, 2014; Hsu, Lander and Zhang, 2014; Blackford and 

Jackson, 2017).  

 
The HRR pathway relies on the presence of a homologous donor template and is predominately 

used to repair DSBs at replication forks during the S phase and G2 phase of the cell cycle (Beucher 

et al., 2009; Karanam et al., 2012; Scully et al., 2019). One of the key determinants of the DSB repair 

pathway of choice is DNA-end resection in order to produce ssDNA, a perquisite required for HRR 

(Mladenov et al., 2019; Scully et al., 2019). Briefly, the two blunt ended DSB ends are converted to 

ssDNA tail through the endonuclease activity of MRN, EXO1 and the DNA2-Bloom syndrome protein 

(BLM). The activity of MRN displaces any Ku present, committing to HRR as the repair pathway. 

With available ssDNA overhangs, RPA binds and this activates ATR/ATRIP, which phosphorylates 

CHK1 initiating HRR (Sørensen et al., 2003). RPA is then replaced with recombinase DNA repair 

protein RAD51 homolog 1 (RAD51) (Heyer, Ehmsen and Liu, 2010). RAD51 is loaded onto ssDNA, 
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forming a nucleoprotein filament, which can then form synaptic complexes that contain a three-

stranded DNA helix intermediate supporting the formation of the hetero-duplex DNA. This is 

composed of the invading strand and the complementary strand (Chen, Yang and Pavletich, 2008; 

Scully et al., 2019). If base-pairing is successful, the synapse is stabilised, and the non-base-paired 

strand of the invading molecule is displaced to form the displacement loop (D-loop). A DNA 

polymerase binds to the invading strand to extend the invading strand using the donor DNA 

molecule as a template (Scully et al., 2019).  

 
One ended DSBs are created when a replication fork collapses, or when a replication fork collides 

with a SSB, and requires activation of HRR (Saleh-Gohari et al., 2005). Complex signalling networks 

are required to stabilise the replication fork and to delay cell cycle progression to repair the damage 

(Liao et al., 2018). Briefly, stalled replication forks are protected from degradation by SWI/SNF-

related matrix-associated actin-dependent regulator of chromatin subfamily A-like protein 1 

(SMARCAL1), DNA annealing helicase and endonuclease ZRANB3 (ZRANB3) or HRR factors 

(Schlacher, Wu and Jasin, 2012; Poole and Cortez, 2017). Fork reversal can be mediated by 

poly[ADP-ribose] polymerase 1 (PARP1) to prevent formation of DSBs by protecting the replication 

fork from colliding with SSBs (Liao et al., 2018). PARP1 can also induce the synthesis of poly(ADP-

ribose) chains, which can act as an signal for other DNA repair proteins. If the fork collapses, 

SMARCAL1 will be recruited to RPA-ssDNA at the replication forks to stabilise (Puccetti et al., 2019). 

As before, RPA-ssDNA at stalled replication forks activates the ATR-CHK1 axis. CHK1 is recruited to 

the replication fork where it stabilises the replication fork, regulates the activation of replication 

origins, regulates elongation and delays S-phase progression (Meyer et al., 2020). During the 

stabilisation of the replication forks, CHK1 also activates HRR through an activating phosphorylation 

of RAD51 and BRCA2 (Sørensen et al., 2003).  

 
If replication stress is too high and fork progression is delayed too long, or the DNA damage is not 

resolved, as a last resort, the cells activate the mechanisms, which result in cellular death. This 

programmed cell death is to ensure DNA fidelity is maintained. 

 
1.4.1.3 Induction of apoptosis 

 
Apoptosis is a secondary response to DNA damage with the main goal of protecting a multicellular 

organism against a damaged cell. If DNA damage is too severe to effectively repair, or the cell has 

been arrested for a considerable amount of time, apoptosis is induced (Roos, Thomas and Kaina, 

2016). Apoptosis is a series of coordinated signalling events of programmed cell death which are 
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activated through two major signalling pathways; extrinsic (death receptor) pathway or intrinsic 

(mitochondrial) pathway.  

 
Briefly, the extrinsic pathway is mediated by the activation of cell surface receptors, which transmit 

apoptotic signals after binding with specific ligands, termed; death receptors (Elmore, 2007; 

Nowsheen and Yang, 2012a). Signalling is then mediated by the cytoplasmic part of the death 

receptor, which through the death domain (DD) conserved sequence, can bind with adaptor 

proteins, such as Fas-associated death domain (FADD) protein or Tumour necrosis factor receptor 

type 1-associated DEATH domain (TRADD), forming the death inducing signalling complex (DISC) 

which further disseminates the signal (Elmore, 2007; Nowsheen and Yang, 2012a). FADD also 

contains the death effector domain (DED), which can sequester procaspase-8 to the DISC, resulting 

in an autocatalytic activation due to autoproteolysis, which releases caspase-8 activating the 

effector caspases, and resulting in cell death (Elmore, 2007; Nowsheen and Yang, 2012a). 

 
The intrinsic pathway is predominantly triggered by cellular stress, specifically mitochondrial stress 

caused by DNA damage and heat shock (De Zio, Cianfanelli and Cecconi, 2013). The inner 

mitochondrial transmembrane potential is disrupted, resulting in permeability and the release of 

proapoptotic proteins from the mitochondrial intermembrane space into the cytoplasm (Elmore, 

2007; Nowsheen and Yang, 2012a). This includes cytochrome c, which activates the apoptosome, 

resulting in the activation of the caspase cascade. Activation of caspase-9 and the subsequent 

proteolytic effector procases-3, -6 and -7 cleaves protein substrates which result in both the 

mediation and amplification of the death signal, resulting in cell death (Elmore, 2007; Nowsheen 

and Yang, 2012a). The pathways of DDR and apoptosis are closely regulated and converge 

(Nowsheen and Yang, 2012b). This introduction will only discuss key links of this convergence, 

however there are many other ways cellular death can be triggered, which are beyond this scope.  

The tumour suppressor protein, p53, is a key protein for the mediation of cellular response to stress, 

with its ability to initiate DNA repair, cell-cycle arrest, senescence and apoptosis (Nowsheen and 

Yang, 2012b). It is considered to be the balance between survival and death following DNA damage 

(Roos, Thomas and Kaina, 2016). In the event of DNA repair remaining unresolved, p53 can initiate 

apoptosis by transactivating the pro-apoptotic proteins, including BAX, BID, NOXA and PUMA, 

which results in the permeabilization of the mitochondrial membrane and the release of pro-

apoptotic factors (Fridman and Lowe, 2003). Both the extrinsic or the intrinsic apoptotic pathways 

can be stimulated via p53 induction depending on the DNA damage. Furthermore, p53 has been 

shown to bind to the outer mitochondrial membrane and antagonise the anti-apoptotic functions 

of BCL2 and BCL-XL (Nowsheen and Yang, 2012b). Through transcription, p53 can also control the 
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permeabilization of the mitochondrial membrane by activating the pro-apoptotic protein BAX, or 

neutralising the anti-apoptotic proteins BCL2 and BCL-XL (Nowsheen and Yang, 2012b). 

Importantly, ATM, ATR, CHK1, CHK2 and DNA-PK can phosphorylate p53 on Ser15, Ser37, Thr18 and 

Ser20, which results in the uncoupling of p53 from its inhibitory MDM2 binding partner to carry out 

its role in resolving cellular stress induced by apoptosis (Roos, Thomas and Kaina, 2016).  

 
DNA-PK has also shown to have another role in triggering of apoptosis in response to severe DNA 

damage (Puccetti et al., 2019). DNA-PK can undergo proteasomal degradation during the apoptotic 

process, which results in the suppression of pro-survival signals (Burma and Chen, 2004). The Ku70 

binding partner of DNA-PK has been shown to suppress apoptosis by sequestering BAX from the 

mitochondria, whilst acetylation of Ku70 can disrupt this interaction (Sawada et al., 2003; Cohen et 

al., 2004; Nowsheen and Yang, 2012b). 

 
BRCA1 has been shown to enhance p53-independent apoptosis when present in the cytoplasm (Gu 

et al., 2010). Overexpression of BRCA1 induces apoptosis and it is thought to be linked to BRCA1 

nuclear export during DNA damage events, and to the c-Jun N-terminal kinase pathway (Harkin et 

al., 1999; Nowsheen and Yang, 2012b) . Furthermore, BRCA1 has been found in the mitochondria 

where it can promote BCL2 mediated apoptosis.  This depletes BRCA1 from the nucleus, which 

results in decreased mediated-HRR (Laulier et al., 2011; Nowsheen and Yang, 2012b). ATR has also 

been shown to mediate the phosphorylation of BRCA1 after UV DNA damage, demonstrating a 

convergence of p53 and BRCA1 mediated apoptosis (Deng, 2006).  

 
1.4.2 Targeting the DNA damage response for therapeutic benefit 

 
An early event of cancer progression is the abrogation of the DDR, which can result in further 

increased genomic instability and increased mutation rate, further facilitating cancer progression. 

Many genetic instability disorders, such as Fanconi Anaemia, or Li-Fraumeni syndrome, have a high 

cancer incidence due to mutations in genes involved in the DDR (Martin and Smith, 2007). Further 

to this, as discussed earlier (1.3.2.4), dysregulation of the DDR can promote drug resistance and 

result in patient therapy failure. The rationale of targeting the DDR pathways for therapeutic 

benefit follows the concept that the cancer cells have defects or dysregulation of these pathways, 

and have been shown to demonstrate a greater dependence on the remaining functional DDR 

processes for both cancer progression and drug resistance (Garrett and Collins, 2011). To this end, 

many small-molecule inhibitors targeting the DDR have been developed with the reasoning that in 

combination with DNA-damaging chemotherapeutic agents, inhibition of the remaining DDR 
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pathways will result in an increase of drug induced cytotoxicity (Garrett and Collins, 2011). Evidence 

has also been seen whereby inhibitors of the DDR can also work as a monotherapy, with the 

rationale that pre-existing defects in the DDR in the cancer cells in combination with a DDR inhibitor 

can result in synthetic lethality (Martin and Smith, 2007).  

 
The principle of synthetic lethality is based on the idea that simultaneous perturbation of two 

genes, or in this case DNA repair pathways, results in cellular death (Nijman, 2011). This can be 

achieved through genetic or epigenetic perturbation of one DNA repair pathway in combination 

with an inhibitor of another (Figure 1.4). An example of this scenario, is the combination of a 

deleterious mutation in BRCA1 or BRCA2 gene in combination with a PARP inhibitor. PARP 

inhibitors, such as olaparib and rucaparib, function by trapping PARP on the DNA during the repair 

of SSBs resulting in replication fork stalling and the formation of DSBs. In BRCA1/BRCA2 proficient 

cells, DSB repair occurs via HRR and the replication forks restart, resulting in cell survival. In 

BRCA1/BRCA2 deficient cells, HRR is impaired, which results in DSB accumulation and cellular death 

(Dziadkowiec et al., 2016). Treatment with the PARP inhibitor, olaparib, is now approved for BRCA-

deficient ovarian cancer patients (Montemorano, Michelle and Bixel, 2019).  

 
The concept of synthetic lethality for the development of new drug targets and applications has led 

to high-through-put genome-wide screens using CRISPR-Cas9. Screening of CRISPR-Cas9 gene 

knockouts against panels of drugs have generated new synthetic lethal combinations, and this is  

expected to become a more common place approach as CRISPR-Cas9 gene knockout cell lines 

become more accessible (O’Neil, Bailey and Hieter, 2017). Recently Wang et al., 2019, identified 

through a genome-wide CRISPR screen that deficiency of RNASEH2 is synthetically lethal with the 

inhibition of ATR.  

 

 

 
Figure 1.4 Synthetic lethality of DNA repair pathways 
Schematic representation of synthetic lethality. Two pathways are synthetic lethal only when their simultaneous inactivation results in 
cellular death. In this example, failure of pathway 1 or pathway 2 does not affect viability whereas inactivation of both at the same time 
is lethal. This can occur through genetic and/or epigenetic changes in combination with a small molecular targeted inhibitor.  
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As previously discussed, ATR, ATM and DNA-PK orchestrate the recognition of DNA lesions and 

subsequent DNA repair signalling cascades. Several drugs have been developed in order to target 

and inhibit these proteins to result in increased DNA damage and cell death. Several inhibitors of 

ATR are in clinical trials including M6620, BAY1895344, berzosertib and ceralasertib, and when used 

as a monotherapy can increase levels of DNA replication stress (Mei et al., 2019). Of note, 

ceralasertib is currently in twenty-two trials both as a single agent or in a drug combination. This 

includes a phase II trial in combination with the PARP inhibitor olaparib, as inhibition of ATR and 

PARP have been reported to be synthetically lethal (Turner et al., 2008; Mei et al., 2019; Warren 

and Eastman, 2020). The ATM inhibitor; AZD0156 has shown to exhibit activity, which can be 

potentiated in combination with agents, which induce DSBs, such as chemotherapeutic agents and 

irradiation (Riches et al., 2020). AZD0156 is currently in a phase I study to determine preliminary 

efficacy of ascending doses of the drug either a monotherapy or in combination with 

chemotherapies in patients with advanced malignancies (NCT02588105)(Riches et al., 2020). DNA-

PK inhibitors have also shown to sensitise tumours to DSB inducing agents, such as chemotherapy 

and radiation, and combination phase I clinical trials are currently underway for several DNA-PK 

inhibitors including, M3814 (NCT02516813) and CC-122 (NCT01421524) (Mohiuddin and Kang, 

2019). In addition a dual DNA-PK and mTOR inhibitor has just completed a phase II study 

individualised screening trial of innovative glioblastoma therapy (INSIGhT)(NCT02977780) 

(Alexander et al., 2017; Mohiuddin and Kang, 2019).  

 
Inhibitors have also been developed targeting the ATR/ATM downstream effectors; CHK1 and 

CHK2. Inhibitors of CHK1/CHK2 can modulate the response of the cell to DNA damage, and can lead 

to the abrogation of the cell cycle checkpoints, inhibit DNA repair and change the regulation of 

apoptosis (Garrett and Collins, 2011). Many CHK1 inhibitors have been developed, such as MK-

8776, prexasertib, rabusertib and SRA737, and have shown to kill tumour cells that present high 

levels of replication stress. Of note, prexasertib, which was considered to be a dual CHK1/CHK2 

inhibitor entered phase II studies, but was terminated in April 2019, likely due to a high rate of 

observed toxicity (Warren and Eastman, 2020). The CHK1 inhibitor, SRA737, is the only CHK1 

inhibitor currently undergoing further clinical development and has just completed two phase I/II 

trials, one as a monotherapy and the other in combination with gemcitabine (Banerji et al., 2019; 

Plummer et al., 2019; Warren and Eastman, 2020). Currently, there are no compounds, which target 

only CHK2 in clinical trials. However, Cancer Research UK are looking for a commercial partner for 

the further development of a CHK2 inhibitor, CCT241533, which has shown a good selectivity profile 

for CHK2 and of which has demonstrated activity that potentiates the cytotoxicity of PARP 
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inhibitors. More medicinal chemistry development is required to obtain appropriate 

pharmacological properties based on CCT241533 (Anderson et al., 2011; Caldwell et al., 2011; Chk2 

Inhibitor Programme | Commercial Partnerships | Cancer Research UK, 2020). 

 
Another protein critical for DSB repair through HRR, and critical for DNA replication, is RAD51. 

RAD51 forms nucleoprotein filaments at damaged DNA sites, or stalled replication forks, in order 

to allow for break repair and replication fork start (Mills et al., 2017). A handful of RAD51 inhibitors 

have been developed including B02, CYT01B and CYT-0851 (Huang et al., 2012; Mills et al., 2017). 

Of note, a phase I/II clinical trial is currently recruiting to test CYT-0851 in B-cell malignancies and 

advanced solid tumours (NCT03997968).  

 
WEE1 is another attractive target involved in the DDR and is found down stream of CHK1 where it 

regulates the progression of the cell cycle at the G2/M boundary. WEE1 is a negative regulator of 

CDK1, whereby the inhibitory phosphorylation at tyrosine 15, deactivates CDK1 and prevents 

mitotic entry (De Witt Hamer et al., 2011; Koh et al., 2018). Inhibition of WEE1 has been shown to 

augment the effects of DNA-damaging agents (Rajeshkumar et al., 2011; Kausar et al., 2015). Of 

note, the WEE1 inhibitor, adavosertib, is involved in active phase I/II clinical trials, as well as trials 

that are currently recruiting. Most of the trials are in combination with chemotherapy agents or 

radiotherapy, but it is interesting to note a phase II trial, which is recruiting to use adavosertib as a 

monotherapy in advanced solid tumours that have a mutation in SETD2 (NCT03284385). It has been 

shown that WEE1 selectively kills SETD2 deficient cancers through deoxynucleoside triphosphate 

starvation (Pfister et al., 2015).   

 
Also downstream of CHK1 are the polo and aurora kinases. It has been observed that CHK1  

negatively regulates polo-like kinase 1 (PLK1), which is required for mitotic progression, and CHK1 

contributes to the activation of aurora B at the spindle checkpoint in response to tension-lacking 

kinetochores (Tang, Erikson and Liu, 2006; Yu, 2007). It is also important to note there is interaction 

between polo kinases and aurora kinases, and the pathways have been found to converge. One 

example is that in which PLK1 gets activated through Bora and Aurora A kinase (Chopra et al., 2010). 

With their role in cell cycle progression at the G2/M boundary and within the M phase at the spindle 

checkpoint, inhibitors targeting polo and aurora kinases are also termed second generation mitotic 

drugs, with the first generation being the anti-mitotic agents discussed early in this chapter (1.2.4).  
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Polo kinases play a crucial role in the progression of mitosis, and as such have several functions 

including; activation of CDK1, bipolar spindle formation, regulation of anaphase-promoting 

complex, centrosome maturation, chromosome segregation and execution of cytokinesis (Chopra 

et al., 2010). PLK1 also is known to directly phosphorylate WEE1, which results in its degradation 

and therefore entry of cells into mitosis (Chopra et al., 2010). Inhibition of PLK1 prevents bipolar 

spindle formation, which results in cells arrest and with prolonged arrest, results in apoptosis 

(Chopra et al., 2010). Several polo kinase inhibitors started clinical trials, such as volasertib and 

BI2536, but these showed inhibitory off-target effects, including the death-associated protein 

kinases (DAPKs), which counteracted the cell death induced by PLK inhibition (Raab et al., 2014; 

Abdelfatah et al., 2019). However, a phase I study with the PLK1 inhibitor, CYC140 is currently 

recruiting (NCT03884829) and a phase I trial is underway for CFI-400945, a PLK4 inhibitor 

(NCT01954316) (Moureau et al., 2016; Veitch et al., 2019).  

 
Aurora kinase activity and protein expression are cell cycle regulated, and peak during mitosis in 

order to carry out critical mitotic processes, which includes; chromosome alignment, chromosome 

segregation and cytokinesis (Bavetsias and Linardopoulos, 2015a). Further to this, aurora kinase A 

provides an important link between the DDR and the cell cycle (Figure 1.5). Once HRR machinery is 

active for the repair of DSBs, the cell cycle is halted by the activation of the CHK1 via ATM or ATR. 

Cell cycle arrest is achieved through the regulation of CDC25 phosphatases, by WEE1 and PLK1 

(Bavetsias and Linardopoulos, 2015a). Importantly, two pathways converge to maintain inhibition 

of CDK1 preventing cell cycle progression. During recovery from the DNA damage checkpoint, PLK1 

becomes dominant and stimulates cell cycle progression (Bavetsias and Linardopoulos, 2015a). 

During this late phase and during unperturbed cell cycle, Aurora kinase A is an upstream activator 

of PLK1. Furthermore, Aurora A inhibits RAD51 recruitment to DNA DSBs, decreasing DSB repair by 

HRR (Bavetsias and Linardopoulos, 2015a).  
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Figure 1.5 Schematic representation of Aurora inhibitor targeting both DDR and cell cycle pathways  
Aurora A is directly involved in DNA repair pathways and cell cycle pathways. Inhibition of Aurora A results in increases cellular sensitivity 
to death. Figure adapted from Bavetsias and Linardopoulos, 2015. 
 
Several aurora kinase inhibitors have been through clinical trials including barasertib, alisertib, 

tozasertib, danusertib, AT9283, PF-03814735, and AMG 900, which initially aimed to target solid 

tumours, but were often terminated due to limited efficacy observed in patients (Bavetsias and 

Linardopoulos, 2015a, 2015b; Borisa and Bhatt, 2017). Very few clinical trials are underway using 

aurora kinase inhibitors at present, however there is a phase I study of a combination of MLN0128, 

an mTOR inhibitor, and alisertib in patients with advanced solid tumours and metastatic TNBC 

recruiting (NCT02719691).  

 
In order for each of these drugs to be used successfully in the clinic, patients need to be identified 

in subgroups of those that will be likely to get the greatest benefit from treatment with these 

inhibitors. As with the PARP inhibitor example, patients are selected, which have shown to have 

either a BRCA1 or BRCA2 mutation. In this case, this is considered a predictive biomarker for 

treatment with PARP inhibitors, and as such, more biomarkers are required to be found for patient 

stratification for new drug classes.  
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1.5 Biomarkers of resistance 

 
With the progression of novel drug classes as new therapeutic options, a method is required to 

determine when drug resistance has occurred, which can be indicative of when a change of therapy 

is required. One such method is through the identification of biomarkers, a portmanteau of 

“biological marker”, which was initially, broadly defined by the National institute as “a characteristic 

that is objectively measured and evaluated as an indicator of normal biological processes, 

pathogenic process, or pharmacologic responses to a therapeutic intervention” (Atkinson et al., 

2001; Strimbu and Tavel, 2010). The US Food and Drug Administration (FDA) have called for the 

investigation of fit-for-purpose validated biomarkers in order to evaluate patient response and 

stratification to cancer therapy and drug resistance (Garnett et al., 2012). 

 
1.5.1 Biomarker discovery 

 
One of the most harnessed methods of identifying biomarkers, and a classic paradigm in diagnostic 

pathology, is immunohistochemistry (IHC) (Chae et al., 2017). This method can detect specific 

antigens in histologic specimens through the use of target-specific antibodies with colorimetric or 

fluorescent reagents, allowing for the identification of proteins or phosphoproteins in the sample 

(Chae et al., 2017). This method is commonly used to detect the progesterone receptor (PR) and 

oestrogen receptor (ER) for the diagnosis of breast cancer (Ronchi et al., 2020). Another common 

method is the use of fluorescence in situ hybridization (FISH). FISH uses fluorescently tagged DNA 

probes which can anneal to target sequence genes and be detected through fluorescence 

microscopy, allowing for the detection of genetic aberrations in the DNA sample (Chae et al., 2017). 

FISH is commonly used, alongside IHC, to evaluate the human epidermal growth factor receptor-2 

(HER2) status to determine if the receptor is overexpressed and/or amplified, as a diagnostic tool 

of breast cancer (Chae et al., 2017). 

 
The development of next generation sequencing techniques, such as whole exome sequencing 

(WES), has allowed for the identification of changes in the genomic landscape of cancer cells. 

Measuring changes in DNA and RNA can identify mutations, which may be driving cancer, or drug 

resistance. These mutations can be identified in both pre-clinical models and patient tumour 

samples and can be used to stratify patients for treatment. One such method using WES in the 

clinics is to monitor circulating tumour DNA (ctDNA) or circulating tumour cells (CTCs) in the 

patient’s blood (Chen and Zhao, 2019). This liquid biopsy technology can be used to signal both 

patient relapse and emergence of resistance to the patient’s treatment regime (Chen and Zhao, 
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2019). Although initially, it was hard to detect the ctDNA with enough sensitivity, recent 

advancements in this technology can detect as low as 90-150 base pair of ctDNA fragments, 

increasing the biomarker detection in the patient’s ctDNA (Mouliere and Rosenfeld, 2015; Mouliere 

et al., 2018).  

 
Large-scale efforts have led to the development of patient tumour databases, which can be used 

for the discovery of biomarkers. Large projects have accumulated patient genomic data, which has 

been collected and stored and made publicly available for analysis. The Cancer Genome Atlas 

(TCGA) is one such publicly available database, and includes sequenced patient tumour samples, 

along with gene expression data, and the response of these tumour samples to the treatment of a 

panel of anti-cancer drugs (Weinstein, 2013). The Genomics of Drug Sensitivity in Cancer (GDSC) 

database includes cell lines from the Catalogue of Somatic Mutations in Cancer (COSMIC) database, 

interrogated with a panel of anti-cancer drugs (Yang et al., 2013; Forbes et al., 2017). Also of note 

is the Broad Institutes Cancer Therapeutics Response Portal (CTRP), which screened 130 clinical and 

preclinical drugs against a panel of cancer cell lines (Garnett et al., 2012). Comparison of cancer cell 

lines response to anti-cancer agents, in a known genomic context, can identify biomarkers driving 

cancer, as well as biomarkers, which could be indicative or driving a drug resistant phenotype. 

 
With the vast amount of public data now available, and the rapid changes in molecular technology, 

studies identifying biomarkers are occurring at a high frequency (Henry and Hayes, 2012). However, 

with the overabundance of biomarker information, this is not necessarily translatable, or useful to 

the clinic. The discovery of biomarkers through next generation sequencing techniques must be 

experimentally validated and demonstrate clinical relevance (Figure 1.4) (Goossens et al., 2015). 

 
1.5.2 Experimental validation 

 
Biomarkers identified through next generation sequencing techniques in pre-clinical models, need 

to undergo experimental validation. Investigation of biomarkers associated to drug resistance are 

often conducted in pre-clinical cancer cell models in which a cancer cell line with acquired drug 

resistance is interrogated against the paired drug-sensitive cell line. Gene knockdown studies in the 

drug-sensitive cell line, using siRNA, shRNA or CRISPR methods can identify if the target gene is 

involved in the resistant phenotype. Further evidence can complement this with the introduction 

of the functional gene, or overexpression of the target gene into the resistant cell line to observe 

any re-gain of drug sensitivity.  
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1.5.3 Biomarker clinical relevance and validity 

 
A biomarkers relevance is indicative of its ability to provide clinically relevant information. Cancer 

biomarkers can be broadly classified into three categories based on how they are used; diagnostic, 

prognostic and predictive (Goossens et al., 2015). Diagnostic biomarkers are used to identify 

whether a patient has a specific cancer or disease. One example is elevated levels of 

carcinoembryonic antigen in the tissue or the hormone calcitonin in the serum as a diagnosis of a 

thyroid medullary carcinoma patient  (DeLellis, Wolfe and Rule, 1987; Chatterjee and Zetter, 2005). 

Prognostic biomarkers are not directly linked to or used to make therapeutic decisions, but can 

inform clinicians with regards to the risk of clinical outcomes, such as cancer recurrence or disease 

progression. Mutations in the tumour suppressor gene, Phosphatidylinositol 3,4,5 trisphosphate 3 

phosphates (PTEN), are routinely used as a biomarker of poor patient prognosis in cancers such as 

glioblastoma, malignant melanoma, endometrial, prostate, breast, colorectal and 

pancreatic cancer (Goossens et al., 2015; McCabe, Kennedy and Prise, 2016; Bazzichetto et al., 

2019). Predictive biomarkers can be used for patient stratification as they can be indicative as to 

whether the patient will respond to a given drug. For example, HER2 positive patients have been 

found to respond to the treatment of trastuzumab in breast cancer, whilst KRAS-activating 

mutations in colorectal cancer patients are found to be intrinsically resistant to EGFR inhibitors  

(Slamon et al., 2001; Romond et al., 2005; Van Cutsem et al., 2009; Goossens et al., 2015).  

 
The validity of a biomarker is the measure of its effectiveness or utility. In addition, the use of a 

biomarker must be reproducible and done so with accuracy (Chatterjee and Zetter, 2005). Often, 

cancer biomarkers lack specificity and sensitivity. For example, Alpha Fetoprotein (AFP) is 

considered a gold standard diagnostic biomarker for liver cancer, however it is also known to occur 

in patients with chronic hepatitis infection (Conti et al., 2015; Luo et al., 2018; Lv et al., 2019). Due 

to the heterogenous nature of many cancers, some cancer biomarkers that are reported are 

considered to have low sensitivity in which they are only found in a small subset of patients of a 

much larger cancer group. These biomarkers are not useful for patient screening however, they 

could be useful when detecting cancer recurrence within the subset of patients in which this 

biomarker is detected (Chatterjee and Zetter, 2005). One such example is the biomarker 

carbohydrate antigen -125 (CA-125), which is found in a subset of ovarian cancers. Of that subset, 

postsurgical elevation of CA-125 has been found to been indicative of cancer recurrence (Chatterjee 

and Zetter, 2005; Sharma, 2009). Furthermore, when a biomarker is used to predict a patient’s 

response to a drug, the biomarker must strongly correlate with the resistance or sensitivity 

accordingly.  
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The majority of studies focus on biomarkers, which are indicative of a patients response to a drug, 

but not on biomarkers that indicate when a therapy has stopped working (Michaelis et al., 2020). 

Identification of predictive biomarkers, which can indicate the emergence of drug resistance and 

therapy failure, will be particularly useful in cancers that frequently metastasise and develop 

resistance to the patient’s treatment regime. One such cancer where biomarkers indicating early 

therapy failure would be useful, is the highly aggressive metastatic triple negative breast cancer.  

 
1.6 Triple Negative Breast Cancer 

 
The Global Cancer Observatory (GLOBOCAN), an interactive web-based platform presenting global 

cancer statistics, estimated the worldwide incidence of new breast cancer in 2018 as 2,088,849, 

and was considered the highest incident tumour for women (Bray et al., 2018; da Silva et al., 2020). 

Triple negative breast cancer (TNBC) accounts for approximately 10-15% of all breast cancers, and 

has been found to frequently affect younger patients (< 50 years) and is more prevalent in African-

American women  (Reis-Filho and Tutt, 2008; Lund et al., 2009). TNBC tumours are often larger and 

less differentiated, and are approximately 2.5 fold more likely to metastasize within five years of 

initial diagnosis, compared to other breast cancer sub-types (Dent et al., 2007; Lehmann et al., 

2011; Lee and Djamgoz, 2018).  

 
TNBC is defined by the lack of the oestrogen receptor, progesterone receptor and human epidermal 

growth receptor 2 (Ryu et al., 2011). Due to the lack of these targets, patients with TNBC do not 

benefit from hormonal manipulation, which are commonly used in the treatment of other breast 

cancer subtypes (Wahba and El-Hadaad, 2015). Previously, surgery remained the frontline 

treatment option for TNBC, with Freedman et al., 2009 showing that the local recurrence rate after 

surgery is not high in TNBC compared to other breast cancer sub-types (Wahba and El-Hadaad, 

2015). Radiotherapy is often applied following surgery, although there is controversy on this issue 

(Wahba and El-Hadaad, 2015). However, despite adjuvant treatment, the risk of relapse remains 

high in the first two years (Wahba and El-Hadaad, 2015). More commonly now, clinicians adopt 

neoadjuvant chemotherapy as the risk of systemic relapse is high, and if pathological complete 

response (pCR) is achieved it results in improved long term outcomes (Cortazar and Geyer, 2015; 

Cai et al., 2020). 

 
Clinicians have frequently adopted an intensive chemotherapeutic approach with sequential 

anthracycline and taxane regimes, which was determined after retrospective analyses of clinical 

trials reported prior to 2010 (Bergin and Loi, 2019). Eribulin was FDA-approved in 2010, which 
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showed, through the ‘EMBRACE’ trial, that there was an improvement of overall survival by 4.7 

months in patients with metastatic TNBC, and the use of platinum agents as a neoadjuvant 

treatment have also shown an increase in pCR (Cortes et al., 2011; Von Minckwitz et al., 2014; 

Melinda et al., 2016; Lee and Djamgoz, 2018). Initially, TNBC had been shown to be more sensitive 

to the chemotherapy regime than hormone receptor positive breast cancer, but there is a high risk 

of recurrence in patients that do not achieve a pCR (Carey et al., 2007). Currently, re-challenging 

the recurrent or metastatic TNBC with chemotherapy, remains the predominant treatment 

strategy, but this often results in a poor response, toxicity and multi-drug resistance (Lee and 

Djamgoz, 2018). New therapy approaches are under investigation, which target specific 

characteristics that define TNBC, compared to other breast cancer subtypes.  

 
Immunotherapy has made strong advancements in the last few years, having now been approved 

by the National Institute for Health and Care Excellence (NICE) for the treatment of metastatic 

TNBC. Immune checkpoint inhibitors (ICIs) have been shown to result in durable clinical remissions 

in several metastatic cancers  (Keenan and Tolaney, 2020). Metastatic TNBC has been identified as 

a candidate cancer type to respond to immunotherapy through three key characteristics; 1) TNBC 

has more tumour-infiltrating lymphocytes (TILs) than other breast cancer subtypes which have 

been found to correlate with good response to ICIs, 2) TNBC has higher levels of programmed 

death-ligand 1 (PD-L1) expression on both tumour and immune cells which is a direct target for ICIs, 

and, 3) TNBC has a large number of nonsynonymous mutations, which result in tumour specific 

neoantigens, which activate neoantigen-specific T cells to mount an antitumour immune response, 

strengthening the use of ICIs (Keenan and Tolaney, 2020). Of note are the ICIs, pembrolizumab and 

atezolizumab, which target programmed cell death protein 1 (PD-1) and PD-L1 respectively. 

Pembrolizumab was investigated in the KEYNOTE-173 trial in combination with chemotherapy in a 

neoadjuvant setting, whilst atezolizumab was approved after the Impassion130 trial in combination 

with nab-paclitaxel (Schmid et al., 2018, 2020; Keenan and Tolaney, 2020). However, Impassion131 

phase three trial, a continuation of investigation of atezolizumab and nab-paclitaxel combination, 

showed the combination did not significantly reduce the risk of TNBC progression and death 

compared to a placebo and paclitaxel in a PD-L1 positive population  (FDA alerts health care 

professionals and oncology clinical investigators about efficacy and potential safety concerns with 

atezolizumab in combination with paclitaxel for treatment of breast cancer | FDA, 9/08/2020).  

 
Inhibitors targeting the PI3K/AKT pathway, a regulator of cell growth and glucose metabolism, are 

another therapeutic approach under investigation for the treatment of TNBC. Hormone receptor 

positive (HR+) and HER2+ breast cancers are found commonly to harbour PI3KCA mutations, which 
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are found less commonly (10%) in TNBC (Cantley and Neel, 1999; Koboldt et al., 2012). However, 

TNBC has been shown to have pathological activation of the PI3K/AKT pathway through either the 

loss of PTEN activity, loss of INPP4B or amplification of PI3KCA. Furthermore, TNBC which gain PI3K 

activation through the loss of PTEN have also shown more growth inhibition from PI3K inhibitors 

than with cells with PIK3CA mutations (Stemke-Hale et al., 2008). The combination of the highly 

activated PI3K/AKT pathway, and the susceptibility to PI3K inhibition, through loss of PTEN activity, 

makes treatment with PI3k/AKT inhibitors a candidate therapy for TNBC compared to other breast 

cancer subtypes (Massihnia et al., 2016; McCann, Hurvitz and McAndrew, 2019). The experimental 

AKT inhibitor, ipatasertib, underwent the LOTUS phase II clinical trial, and whilst did not improve 

patient survival compared to the placebo, those with PIK3CA/AKT1/PTEN alterations did show a 

significant 4.1-month increase in survival (McCann, Hurvitz and McAndrew, 2019). A phase II clinical 

trial is currently recruiting, which is investigating the combination of ipatasertib in with an ICI, 

atezolizumab, along with paclitaxel in patients with locally advanced or metastatic TNBC 

(NCT04177108). 

 
Cyclin-dependent kinase (CDK) inhibitors are also under investigation as a novel treatment of a sub-

type of TNBC. CDK 4/6 help tightly regulate the progression of the cell cycle at the G1-S phase 

transition (Lundberg and Weinberg, 1999; McCann, Hurvitz and McAndrew, 2019). For the cell cycle 

to continue, the retinoblastoma protein (Rb) is inactivated through hyperphosphorylation by CDK 

4/6. CDK 4/6 inhibitors block the hyperphosphorylation of RB, which result in the inhibition of 

progression from G1/S phase (Lundberg and Weinberg, 1999; Fry et al., 2004). Cell line studies have 

shown that luminal type, HR+ and HER2- breast cancers are sensitive to growth restriction through 

inhibition of a CDK4/6 inhibitor; Palbociclib (Finn et al., 2009). Luminal cancers have upregulation 

of the Rb pathway, with dependence on the CDK4/cyclin D1/Rb interaction (Matutino, Amaro and 

Verma, 2018). TNBC cell lines of the luminal-androgen (LAR) and mesenchymal-stem like (MSL) 

subsets were sensitive to CDK4/6 inhibitors, whilst those that demonstrated resistance had 

elevated cyclin E1 mRNA and protein levels, or are considered as basal-like TNBC (Asghar et al., 

2017; Matutino, Amaro and Verma, 2018; Niu, Xu and Sun, 2019). There are currently three 

approved CDK inhibitors, palbociclib, ribociclib and abemaciclib for the treatment of HR+ and HER2- 

advanced or metastatic breast cancer (Matutino, Amaro and Verma, 2018)  Clinical trials are 

underway investigating the use of CDK inhibitors in combination with an additional drug class for 

the treatment of TNBC. Of note, is the PAveMenT trial which is investigating the combination of 

palbociclib and an ICI, Avelumab, in metastatic AR+ TNBC (NCT04360941). 
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Finally, as previously mentioned (section 1.4.2), DDR inhibitors are a new drug class, which are also 

being investigated as a new therapeutic option for the treatment of TNBC, and alongside 

chemotherapeutic agents, is the drug class of focus in this thesis. TNBC has been shown to have 

high chromosomal instability, and this has been attributed to defects in DNA repair pathways, 

specifically HRR (Meyer et al., 2020). Importantly, the percentage of TNBC patients with a BRCA1 

mutant is 35%, whilst other diagnosed breast cancer patients have < 10% of BRCA1 or BRCA2 

mutants  (Peshkin, Alabek and Isaacs, 2010). This led to the OlympiAD study that compared the use 

of olaparib versus standard single agent chemotherapy in BRCA-mutated breast cancer patients, 

including TNBC patients (Mehanna et al., 2019; Robson et al., 2019). Often TNBC tumours may not 

have the germline mutation in BRCA1 or BRCA2, but have other defects in genes involved in the 

HRR pathway which result in a similar phenotype, and these are considered as a “BRCAness” type 

(Turner, Tutt and Ashworth, 2004; Peshkin, Alabek and Isaacs, 2010; Mehanna et al., 2019). For 

example, defects in genes such as ATM, ATR, CHK1, CHK2, RAD51, NBS1 and the Fanconi anaemia 

complementation group (FANC) family of genes have all been reported to demonstrate cellular 

sensitivity to PARP inhibitors (Lord and Ashworth, 2016). BRCA1 and BRCA2 mutants are now 

considered a biomarker for treatment with PARP inhibitors, with olaparib now approved for this 

context in ovarian and breast cancers (Montemorano, Michelle and Bixel, 2019). However, given 

the fraction of TNBC patients that harbour the BRCA1/2 mutation, it is evident that more clinical 

biomarkers for drug response need to be determined to identify new targeted treatments, or 

treatments as a second line option after the development of chemotherapy resistance.  

 
1.7 Overview and aims of this thesis 

 
TNBC is an aggressive breast cancer sub-type, in which patients often relapse as a result of the 

development of acquired drug resistance. Given the poor outlook, therapy-refractory TNBC is a 

disease of unmet medical need. An appropriate second line therapy is required after 

chemoresistance has occurred. TNBC has high chromosomal instability, which is attributed to 

defects in the DNA repair mechanisms, specifically in HRR, with many TNBC patients having mutant 

BRCA1/2 or demonstrating a “BRCAness” phenotype. Inhibitors of the DDR are a new drug class 

now entering the clinic, and investigation of their use both as a monotherapy or in combination 

with another drug type is underway. However, their use after therapy failure due to acquired 

resistance to chemotherapeutic agents are yet to be determined. Analysis of DDR inhibitors as a 

second line therapy option after chemotherapeutic resistance, may provide a beneficial therapeutic 

option. Furthermore, early identification of the emergence of chemoresistance in TNBC is crucial in 

identifying when a change of therapy is appropriate. Understanding mechanisms of acquired 
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resistance in TNBC, and identifying biomarkers of resistance that will indicate when a change in 

therapy is required could potentially improve the outcomes of TNBC patients that develop 

chemoresistance.  

 
Previous studies have shown that pre-clinical cell lines models can be used to identify cell response 

to novel drugs, as well as determine candidate biomarkers of resistance. To this end, this project 

uses chemo-naive MDA-MB-468, HCC38 and HCC1806 TNBC cell lines, and chemo-resistant TNBC 

sub-lines acquired from the Resistant Cancer Cell Line (RCCL) collection; a set of more than 1300 

cancer cell lines that can be used to model acquired resistance in cancer (Michaelis, Wass and 

Cinatl, 2019).  These cell lines will be used to consider inhibitors of the DDR as an appropriate next 

line therapy option after chemo-resistance has occurred, and the exome sequencing data of these 

cell lines to identify candidate biomarkers as an indication of chemotherapy failure.  

 
Aims and objectives: 

 

• Characterise chemo-naive and chemo-resistant TNBC cell lines by: 

o Examination of morphological differences between chemo-naive and chemo-

resistant cell lines 

o Cross-resistance profiling to other chemotherapeutic agents 

• Determine viable next-line therapy options by: 

o  Cross-resistance profiling the chemo-naive and chemo-resistant TNBC cell lines 

against DDR inhibitors.  

• Identification of clinically relevant candidate biomarkers or mechanisms of resistance by: 

o Examination of exome variants in chemo-naive and chemo-resistant TNBC cell lines 

o Comparison of identified candidate variants with clinical patient data 
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2.0 Materials and Methods 

2.1 Cell Biology 

2.1.1 Cell lines and cell line nomenclature 

 
Fifteen TNBC cell lines were obtained from the Resistant Cancer Cell Line (RCCL) collection  and 

were comprised of chemo-naive and chemo-resistant cell lines (Table 2.1; 

https://research.kent.ac.uk/industrial-biotechnology-centre/the-resistant-cancer-cell-line-rccl-

collection/; (Michaelis, Wass and Cinatl, 2019). For the purpose of this project, the MDA-MB-468, 

HCC38 and HCC1806 cell lines are assumed to be chemo-naive as historical information (previous 

treatment, year and country sample was taken) was not available. The chemo-resistant cell line 

nomenclature is as follows: chemo-naive cell line its derived from, r (to indicate resistance), 

abbreviation of drug name, concentration of drug cell line is maintained in (ng/mL). Drug 

abbreviations are as follows; Cisplatin = CDDP, Doxorubicin = DOX, Eribulin = ERI, Gemcitabine = 

GEM, Paclitaxel = PCL and 5-Fluorouracil = 5-F. For example, HCC38rCDDP3000 indicates a cisplatin 

resistant sub-line derived from HCC38 and maintained in 3000 ng/mL of cisplatin.  

 
Table 2.1 Panel of chemo-naive and chemo-resistant cell lines 

 

 

 
2.1.2 Maintenance of cell lines 

 
All cell lines were maintained in Iscove’s Modified Dulbecco’s (IMDM; Fisher Scientific, UK) 

containing L-Glutamine and 25 mM HEPES, supplemented with Fetal Bovine Serum (FBS; Sigma-

Aldrich, Germany) and 1% Penicillin-Streptomycin Solution Liquid (Life Technologies, UK; complete 

IMDM), at 37 °C in a humidified 5% C02 incubator. The cells were passaged when the flask was 

approximately 70-80% confluent. Cells in a T25 flask were washed with 2 mL phosphate-buffered 

saline (PBS) preceding detachment with 1 mL Trypsin-EDTA x10 solution (Sigma-Aldrich, Germany). 

The detached cells were resuspended in complete IMDM and split at an appropriate concentration 
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into a new flask. Chemo-resistant cell lines were maintained in the required chemotherapeutic 

agent at concentrations outlined in the cell nomenclature in Table 2.1. Chemotherapeutic agents 

used are outlined in Table 2.2. Prior to plating, a cell sample was treated with trypan blue and 

counted on a haemocytometer.  

 

In order to prevent genetic deviation, cell populations were passaged continuously for no 

longer than 5 months. Fresh stocks were made from the earliest passage possible from a 

subpopulation of each cell line. Cells were grown to approximately 80% in a T75 flask, 

trypsinised and resuspended in complete IMDM before being spun down at 270 x g for five 

minutes at room temperature. Culture medium was aspirated and the cell pellet was 

resuspended in 3 mL of freeze-down media (10% DMSO, 40% FBS, 50% complete IMDM) before 

being aliquoted into three cryovials and cooled in a polystyrene sectioned box in the -80 ˚C 

overnight. Frozen cell stocks were transferred to a cryostat to increase longevity.  For revival, 

freeze-downs were thawed as quickly as possible by warming in a 37 ˚C water bath. Once 

thawed, the cells in the freeze down media were transferred to 9 mL of complete IMDM in a 

T25 flask and incubated as per normal maintenance. Chemo-resistant cell lines were re-

introduced to the chemotherapeutic agent after two successful passages, to maintain 

resistance. 

 

 All cell lines have been tested to ensure they were free from Mycoplasma contamination using 

the VenorGeM® Mycoplasma PCR detection kit (Minerva Labs, UK). 

 
2.1.3 Cell seeding density optimisation 

 
Cells were seeded with five technical replicates in seven 96-well plates in 200 μL complete IMDM 

at cell densities specified. One plate was fixed every 24 hours with 70 μL 10% (w/v) trichloroacetic 

acid (TCA), stained and analysed as described for SRB growth assay (see section 2.1.4). Raw 

absorbances were used to generate growth curves in GraphPad Prism 6 (GraphPad Software Inc, 

USA). The doubling time for each cell line was calculated using the following equation: 

 

𝐷𝑜𝑢𝑏𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 =  
𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (ℎ𝑜𝑢𝑟𝑠)𝑥 log (2)

log(𝑓𝑖𝑛𝑎𝑙 𝑂𝐷) − log (𝑖𝑛𝑖𝑡𝑎𝑙 𝑂𝐷)
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2.1.4 Sulforhodamine growth assay 

 
Sulforhodamine B dye (SRB; Sigma-Aldrich, UK) is a useful tool for measuring proliferation of cells. 

It has been shown that the dye binds to amino acids which provides an estimation of cellular density 

(Skehan et al., 1990). Cells were plated out per well as specified in 200 μL complete IMDM and 

incubated for the stated time. Cells were fixed with 70 μL 10% (w/v) TCA for 30 minutes and washed 

five times with water. The fixed cells were stained with 0.4% (w/v) SRB solubilised in 1% (v/v) acetic 

acid (Fisher Scientific, UK) for 30 minutes, and washed five times with 1% (v/v) acetic acid before 

drying overnight at 37 °C. Bound SRB was solubilised in 100 μL 10 mM Tris base (Sigma-Aldrich, UK). 

Absorbance was read 490 nm wavelength in a Victor X4 Multilabel Plate reader (PerkinElmer Life 

Sciences, USA). The half-maximal growth inhibitory concentration (GI50) of the specified drug was 

determined using GraphPad Prism 6 (GraphPad Software Inc, USA). 

 
2.1.5 MTT assay 

 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT; Universal Biologicals UK) is a 

yellow tetrazole that is metabolically reduced to purple formazan only in living cells. This can be 

used as a quantitative colorimetric assay which allows for the measurement of cytotoxicity and 

proliferation (Mosmann, 1983). Cells were plated out per well as specified in 50 μL complete IMDM. 

When screening for sensitivity to drugs, the desired agents were serially diluted and added to cells 

in 50 μL complete IMDM per well with the concentrations stated (Table 2.2 and Table 2.3 for list of 

drugs). After incubation of 120 hours, 25 μL of MTT reagent was added and cells were incubated 

for 4 hours. The cells were lysed with addition of 100 μL 20% sodium dodecyl sulfate (SDS, Fisher 

Scientific) and incubated overnight. Absorbance was read at 600 nm wavelength in a Victor X4 

Multilabel Plate reader (PerkinElmerLife Sciences, USA). The half-maximal growth inhibitory 

concentration (GI50) of the specified drug was determined using GraphPad Prism 6 (GraphPad 

Software Inc, USA). Structures of each of the chemotherapeutic agents and DNA damage response 

and repair targeted inhibitors are found in Appendix A1.  

 
Table 2.2 List of chemotherapeutic agents 
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Table 2.3 List of DNA damage response and repair targeted inhibitors 

 

 

 

2.2 Biochemistry 

2.2.1 Cell lysis 

 
Cells were plated out into 10cm plates at specified densities and grown for 48 hours, reaching 70% 

confluency. The culture medium was removed prior to the cells being washed twice with ice cold 

PBS. 100 μL of lysis buffer (50 mM HEPES pH7.4, 250 mM NaCl, 0.1% NP40, 1 mM DTT, 1 mM EDTA, 

1 mM NAF, 10 mM β-Glycerophosphate, 0.1 mM sodium orthovanadate and Complete™ protease 

inhibitor cocktail (Roche, Switzerland)) was added and the cells were scraped into cold 

microcentrifuge tubes and incubated on ice for 30 minutes before centrifugation at 13,000 rpm for 

10 minutes at 4 °C to remove insoluble material. The lysate was then transferred to a clean 

microcentrifugation tube and kept on ice (if to be used immediately) or frozen on dry ice and stored 

at -80 °C. 

 
2.2.2 Determination of protein concentration 

 
Bicinchoninic acid (BCA) is a sodium salt which is known to form an intense purple complex with 

cuprous ion in an alkaline environment. Proteins can reduce CU+2 to CU+1, resulting in a purple 

colour formation by BCA. This allows for a colorimetric assay for the determination of the protein 
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concentration from cell lysates (Smith et al., 1985). Cell lysate (as obtained in section 2.4.1) was 

diluted 20-fold in ddH2O and 10 μL was added in duplicate to a 96-well plate. 10 μL of diluted (0.1-

1 μg mL-1) bovine serum albumin (BSA) protein standards (Sigma-Aldrich, USA) and ddH2O blanks 

were included on every plate. At a 1:50 dilution Copper (II) sulfate solution (Sigma-Aldrich, USA) 

was mixed with BCA, and 200 μL was added to each well. Samples were mixed on a plate shaker 

prior to incubation at 37 °C for 30 minutes. Absorbances were read at 570 nm wavelength in a Victor 

X4 Multilabel Plate reader (PerkinElmer Life Sciences, USA). A standard curve was produced from 

the protein standards of known concentration, and sample protein concentration was determined. 

 
2.2.3 SDS-PAGE 

 
In order to determine, in a semi-quantitative manner, the amount of specific proteins within the 

cell lysates, the samples were separated by molecular weight under denaturing conditions using 

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Equal amounts of protein 

sample (15-45 μg) were diluted into lysis buffer and 3x loading buffer (187.5 mM Tris-base pH 6.8, 

6% (w/v) SDS, 30% glycerol, 15% (v/v) β-mercaptoethanol, 0.15% (w/v) bromophenol blue), 

typically at a 1:2 ratio of sample buffer to lysate. Samples were heated at 95 °C for 5 minutes to 

allow for denaturation and reduction of the proteins, and centrifuged at 14,000 xg for 1 minute. 

Samples were loaded onto fixed concentrations gels, as stated in text, with a concentration 

dependent on the protein molecular weight. Precision Plus Protein Standards (BIO-RAD, USA) were 

loaded in a separate lane to allow for an estimation of the protein size. Samples underwent 

electrophoresis through the gel in Tris-glycine running buffer at 150 V for 60-90 minutes. 

 
2.2.4 Western blotting 

 
The proteins separated by SDS-PAGE (section 2.2.3) were transferred to methanol-activated 0.2 μm 

pore Immobilon-P PVDF membrane (Millipore, USA) at 100 V for 90 minutes in transfer buffer (25 

mM Tis-Base, 190 mM glycine, 10% methanol) using the Bio-Rad Mini Transfer Trans-Blot Transfer 

Cell apparatus (Bio-Rad, USA). After transfer, membranes were re-activated in methanol and 

incubated in ponceau S solution (0.1% ponceau S in 5% acetic acid) for five minutes and rinsed in 

ddH20 to determine the quality of transfer. Membranes were appropriately sliced to separate 

proteins of interest for probing in primary antibodies. Subsequently the membranes were blocked 

in Tris Buffered Saline Tween Buffer (TBST; 50 mM Tris pH8.0, 150 nM NaCl, 0.1% Tween-20 (v/v)) 

containing 5% milk. The membranes were then incubated in primary antibody diluted into 5% 

milk/TBST at 4 °C overnight (Table 2.4 for list of antibodies). Membranes were washed with TBST 
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twice for ten minutes before incubation in secondary horseradish peroxidase-conjugated goat, anti-

rabbit or anti-mouse antibody (Bio-Rad, USA; primary antibody dependent) at room temperature 

for one hour. Membranes were washed four times for five minutes in TBST before detection was 

performed with Enhanced Chemiluminescence (ECL) Western Blotting Substrate (Pierce 

Biotechnology, USA). Bands were visualised by exposure to Amersham Hyperfilm ECL (GE 

Healthcare, USA). The film was then scanned on an Epson Expression 1600 (Seiko Epson Inc., Japan) 

and labelled in Microsoft Powerpoint. 

 
Table 2.4 List of antibodies used in western blotting analysis 

 

 
 

2.3 Molecular Biology 

2.3.1 Reverse transcription quantitative polymerase chain reaction (RT-qPCR) 

 
Cells were plated out in 10 cm plates at specified seeding densities and grown for 48 hours, reaching 

70% confluency. The culture medium was removed prior to the cells being washed twice with ice 

cold PBS. RNA was extracted using the QIAGEN RNeasy Mini kit (QIAGEN, Germany) following the 

manufacturer’s instructions. The concentration of RNA was determined using a NanoDrop 2000C 

Spectrophotometer (ThermoFisher, USA). 

 
In order to reverse transcribe RNA into complementary DNA (cDNA), GoScript reverse transcriptase 

(PROMEGA, USA) was used. Purified RNA was mixed with Oligo(dT)ls primer (PROMEGA) and 

incubated at 70 °C for five minutes. The reaction mixture was prepared as follows; 4 μL GoScript 5x 

reaction buffer (PROMEGA), 4 μL MgCl2 (PROMEGA), 1 μL PCR Nucleotide Mix (PROMEGA), 2 μL 



2. Materials and Methods 

 

62 
 

RNasin Ribonuclease inhibitor recombinant (PROMEGA), 1 μL GoScript reverse transcriptase 

(PROMEGA), and 3 μL nuclease free water. The samples were incubated on the following 

programme, 25 °C for five minutes, 42 °C for one hour, 70 °C for 15 minutes and cool to 4 °C until 

ready to use. The cDNA was then diluted in RNAase free water in a ratio of 1 part cDNA, 14 parts 

RNAase free water. 

 
Polymerase chain reaction (PCR) was performed using the cDNA as a template and Sybr Green Real-

Time PCR Master Mixes® (ThermoFisher USA). A 10 μL reaction was set up containing 4.4 μL of 

diluted cDNA, 5 μL Sybr Green Real-Time PCR Master Mixes®, 0.3 μL forward and 0.3 μL reverse 

primer. Primer sequences are shown in Table 2.5. The PCR cycling conditions were 95 °C for 10 

minutes followed by 40 cycles of denaturation at 95 ˚C for 10 seconds and annealing at 58 °C for 15 

seconds, and elongation at 72 °C for 25 seconds. A melting curve was then produced by incubating 

in the following cycle; 95 °C for 15 seconds, 60 °C for one minute and 95 °C for one second. Data 

was analysed in QuantStudio™ Design & Analysis Software v1.4.3 (ThermoFisher, USA). 

 
Table 2.5 PCR and sequencing primers 

 

 

 
2.3.2 Lipid mediated reverse transfection siRNA knockdown 

 
Transient knockdown of target gene expression was achieved using lipid-mediated reverse 

transfection of small interfering RNA (siRNA) oligonucleotides. Lipofectamine (Life Technologies, 

USA) transfection reagent and siRNA oligonucleotides (QIAGEN, USA) were used at final 

concentrations as indicated in the text. Appropriate death and non-targeting control 

oligonucleotides were included to establish transfection efficiency and toxicity. The oligonucleotide 

sequences used to deplete gene expression are listed in Table 2.6. 

 
Oligonucleotide and transfection reagent were complexed in OptiMEM (Life Technologies, USA) by 

incubation at room temperature for 15 minutes. Meanwhile, cells were prepared by trypsinisation 
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and cell counting. For 96-well plates, 50 μL of oligonucleotide/lipid complex was added to each well 

before addition of cells at numbers stated in 50 μL complete IMDM. For analysis of protein 

knockdown levels by western blot, cells were transfected in 6-well plate format with 1.5 mL 

oligonucleotide/lipid mixture and an equal volume of cells at a count stated in the results. After 

incubation for 48 hours, cells were harvested and analysed by western blot as described in section 

2.2.4. 

 
Table 2.6 siRNA target sequences 

 

 

 
 
2.3.3 Whole exome sequencing 

 
Whole exome sequencing (WES) was performed on the TNBC cell lines by the Genomic Core Facility, 

Philipps-University, Marburg, Germany, using a transposase-based method utilising the Illumina 

“Nextera Exome Enrichment Kit”. 50 ng of fragmented and adapter tagged DNA was amplified via 

PCR protocol and sequencing indexes were added. The indexed libraries were pooled, denatured 

to ssDNA before hybridisation to biotin-labelled custom oligonucleotide capture probes, specific to 

targeted regions. Addition of Streptavidin beads, which binds to biotinylated probes, allowed the 

bound DNA fragments to be magnetically pulled down and eluted from solution before 

amplification by PCR. 2 x 100 nucleotide paired end sequences were input into Illumina HisSeq2000 

with an output of 100 nucleotide paired end reads in FASTQ format. The sequencing was performed 

in two lanes providing two sets of FASTQ data per cell line. 
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2.4 Bioinformatics 

2.4.1 Next-generation sequencing variant alignment and annotation pipeline 

2.4.1.1 Quality control of FASTQ files 

FASTQC was used to perform quality control checks on the raw sequence data to identify low-

quality reads and contaminants including duplicates, adapters and PCR primers (Andrews S, 2018). 

Modular set of analyses allowed for identification of problems with per base sequence quality, per 

sequence quality scores, per base sequence content, per base/sequence GC content, per base N 

content, sequence length distribution, sequence duplication levels, overrepresented sequences 

and Kmer content. 

 
2.4.1.2 Trimming 

Trimmomatic was used for the removal of sequencing adaptors from the raw sequence data. 

Parameters for this tool were used as follows: NexteraPE-PE.fa:2:30:10 LEADING:3 TRAILING:3 

SLIDING WINDOW: 4:15 MILEN:36 (Bolger, Lohse and Usadel, 2014).  

 
2.4.1.3 Mapping raw FASTQ reads to reference genome  

The Burrows-Wheeler Alignment (v.0.7.17) was used to align the raw FASTQ files to Genome 

Reference Consortium human reference genome (GRCh37) outputting a Sequence Alignment Map 

(SAM) format, which includes the read-group information (Burrows and Wheeler, 1994; Li et al., 

2009; Church et al., 2011). Parameters were used at the tools default settings; -M -R. Here only 

paired reads were used, and Samtools flagstat used to print statistics throughout each of the 

subsequent steps.  

 
2.4.1.4 Sorting SAM file and conversion to BAM file  

In order to achieve a fast retrieval of alignments in overlapping specified chromosomal regions, the 

SAM files were inputted into Picard tools SortSam (v.2.17.10), where the read alignments were 

sorted by coordinate and converted to a Binary Alignment Map (BAM) format output (Picard 

Toolkit.2019. Broad Institute, GitHub Repository. http://broadinstitute.github.io/picard/; Broad 

Institute). 

 
2.4.1.5 Marking duplicate PCR reads  

In order to mitigate potential biases on variant calling algorithms, Picard Tools MarkDuplicates 

(v2.17.10) was used to tag PCR duplicates, which were subsequently removed. (Picard Toolkit. 2019. 

Broad Institute, GitHub Repository. http://broadinstitute.github.io/picard/; Broad Institute). The 
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output consists of two files; a BAM file containing SAM flags for each of the reads, and another 

identifying the number of duplicates for the paired end reads. 

 
2.4.1.6 Merging BAM files 

As the sequencing was performed in two lanes for each cell line, it was required to merge the two 

BAM files together. The two BAM files were then run together through Picard Tools 

MarkDuplicates, in order to remove any PCR duplicates after merging the files with the output as 

one merged BAM file. 

 
2.4.1.7 Building BAM index 

To ensure a faster search of data through the BAM file, an index of the BAM file was created and 

sorted in coordinate order Picard Tools BuildBamIndex (v2.17.10) to output an indexed BAM file 

(BAMi). 

 
2.4.1.8 Sequence realignment  

Single nucleotide variants (SNVs) may mistakenly be identified in the individual genome with 

respect to the reference genome due to poor local realignment. Insertion or deletion of bases 

(INDELs) increase the number of mismatching reads highlighting the requirement for these regions 

to be realigned. Both the BAM file and the GRCh37 reference genome were input into 

GenomeAnalysisTK-3.7.0 (GATK) with RealingerTargetCreator to create realignment targets. GATK 

IndelRealinger was then used to execute the realignment of the listed targets (McKenna et al., 

2010).  

 
2.4.1.9 Build recalibration model 

The sequencer which estimates the quality score of each base call can have systematic errors. 

GenomeAnalysisTK-3.7.0 was used to perform base score recalibration. It analyses patterns of 

covariation in the sequence datasets, and applies the recalibration to the sequence data (McKenna 

et al., 2010).  

 
2.4.1.10 Variant calling  

SAMtools mpileup was used to generate Binary Variant Call Format (BCF) files from the BAM files 

in order to compute the genotype likelihoods for each read using the default parameters (Li, 2011). 

These were then input into BCFtools to call the SNVs and INDELS to generate a Variant Calling 

Format (VCF) file containing information about the variants position in the genome. 
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2.4.1.11 Variant effect prediction  

The Ensembl Variant Effect Predictor (VEP) was used to annotate the called variants to determine 

which genes, and region of the gene, the variant is located in (i.e. coding, regulatory, non-coding 

regions etc), the prediction of consequence of a called variant (i.e. frameshift, stop-gain, missense 

etc) and if the variant is considered synonymous or non-synonymous. VEP predicts protein function 

of the called variants by labelling with pathogenicity scores by programmes; SIFT, Polyphen and 

ClinVar (Ng and Henikoff, 2003; Landrum et al., 2014; Adzhubei, Jordan and Sunyaev, 2015; 

McLaren et al., 2016).  

 
2.4.2 Variant filtering  

 
Variants called in the individual genome, were filtered to identify high confidence somatic variants. 

Called variants were checked for quality and coverage. Variants were removed if the Phred quality 

score is < 30 or the variants have less than 10 reads supporting the base call. If < 3 reads at the base 

call did not support the variant, these were subsequently removed from the dataset. In order to 

remove common germ-like variants, variants found at a frequency of ≥ 0.001% in the genome 

aggregation database (gnomAD) were removed (Karczewski et al., 2019). However, if variants were 

found to be in ≥ 3 samples in The Cancer Genome Atlas (TCGA), or ≥ 10 samples in Catalogue Of 

Somatic Mutations In Cancer (COSMIC), these were re-added to the called variants list (Bamford et 

al., 2004; Weinstein, 2013; Ghandi et al., 2019). Variants were also removed if they were not found 

in the protein sequence, such as upstream variants, as these are considered outside of the 

confident sequencing scope. This left only high confidence somatic variants in the VCF file.  

 
2.4.3 Computational analysis 

2.4.3.1 Variant comparative studies 

 
Comparative studies of the called variants in VCF files were conducted through the use of scripts 

made in the Python language and graphs and plots were made using GraphPad Prism 6 (GraphPad 

Software Inc, USA). Density plots were made using the online tool DensityPlotter (Spencer, 

Yakymchuk and Ghaznavi, 2017). Mutational patterns, kataegis and mutational signatures were 

analysed using the online tool Mutalisk (Lee et al., 2018).  

 
2.4.3.2 Gene Ontology 

 
Two online tools were used to analyse gene ontology (GO). GO functional enrichment analysis  was 

conducted using G:profiler (Raudvere et al., 2019). This tool maps genes to known functional 
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information sources, such as Ensembl, and identifies statistically significant enriched terms 

(McLaren et al., 2016). KEGG BRITE pathway was used to label the gene lists with biological and 

cellular functions. KEGG BRITE is the reference database for BRITE mapping in KEGG Mapper and is 

a collection of hierarchical classification systems which incorporates different types of relations 

including; genes and proteins, compounds and reactions, drugs, diseases and organisms and cells 

(Kanehisa, 2000; Kanehisa et al., 2019). 

 
2.4.3.3 Variant effect predictions 

 
Three variant effect predictors were used to identify if a missense variant in a gene is to be 

considered damaging to the structure or function of the protein it encodes. SIFT (Sorting intolerant 

from tolerant), is a variant predictor which assess whether an amino acid substitution affects 

protein structure based on sequence homology and the physical properties of amino acids (Ng and 

Henikoff, 2003). PolyPhen (Polymorphism Phenotyping) is a tool which predicts possible impact of 

an amino acid substitution on the structure and function of a protein using both physical and 

comparative considerations. These include analysis of protein secondary structure, including 

surface area, and Phi-psi dihedral angles, sequence alignment and phylogenetic and structural 

information to characterise the variant (Adzhubei, Jordan and Sunyaev, 2015).  Mutational assessor 

predicts the functional impact of amino acid substitutions in proteins through assessments based 

on evolutionary conservation in protein homologs, and identifies if the variant is in binding domains 

required for protein-protein interaction, DNA/RNA or small molecule binding (Reva, Antipin and 

Sander, 2011). 

 
2.4.3.4 Extraction of data from Sanger Genomics of Drug Sensitivity in Cancer (GDSC) 

 
Pan-cancer data was extracted from the GDSC which had CDKN1A expression data available, and a 

response to treatment of the following drugs (measured as area under the curve); cisplatin, 

AZD7762 (CHK1 inhibitor), 681640 (WEE1/CHK1) inhibitor, QL-VIII-58 (ATR/MTOR inhibitor), and 

KU-55933, CP466722 (ATM inhibitors) (Yang et al., 2013). CDKN1A expression data was divided into 

high or low expression based on the mean expression. Box plots were created of the distribution of 

response to the drugs (measured by area under the curve), vs high and low expression using 

GraphPad Prism 6 (GraphPad Software Inc, USA). 
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2.4.3.5 TCGA analysis  

 
Variant data was extracted via the GDSC Data portal and the Bioconductor R package TCGAbiolinks 

was used to obtain clinical data (Colaprico et al., 2016; Grossman et al., 2016). Chromosomal 

locations of patient variants were remapped from GRCh38 to GRCh37 using the NCBI Genome 

Remapping service. Pan-cancer gene expression and survival data was extracted for each 

chemotherapeutic agent. Survival analyses were conducted to determine the response of the 

patient treated with the chemotherapeutic agent for when the gene expression was high or low. 

Cox proportional hazards regression was used to calculate the hazard ratio for cohorts expressing 

high vs low expression levels of the given gene. The ‘surv_cutpoint’ function of the package 

survminer in R allowed for the identification of the optimal expression cut-ff point to give the lowest 

p-value for high vs low expression. The cut-off selected was between the 20th and 80th percentiles 

of gene expression values as previously described by Uhlen et al., 2017. The calculations used 

overall survival as the measure of clinical outcome. Overall survival is defined as days to last medical 

follow up or death as was previously described by Ng et al., 2016. The calculations were performed 

using the R survminer and survival packages. From this Kaplan-Meier survival curves were 

generated using the R package ggsurvplot. Statistical analysis using the Wald test (or log rank 

(Mantel-Cox) test was performed to obtain p-value of significance for each Kaplan-Meier graph. 

Hazard ratios were also calculated which refer to values for “low” (below median) expression for 

each given gene, with values >1 indicative of increased hazard (a reduced overall survival) and 

values < 1 are indicative of decreasing hazard (an increased overall-survival).  
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3. Characterisation of chemo-resistant Triple Negative Breast Cancer cell lines 
 

3.1 Introduction 
 
Resistance to chemotherapy agents is a bottleneck in the treatment of cancer leading to poor drug 

responses and patient survival. Often in breast cancer, this is due to genomic instability which 

facilitates the tumour resistance to cytotoxic therapies (Kalimutho et al., 2019). Understanding the 

underlying mechanisms of both intrinsic and acquired resistance experimentally, can aid in the 

development of therapeutic strategies to overcome drug-resistance in the clinic. Methods of 

investigating drug resistance in patient samples are becoming increasingly popular, especially with 

the development of liquid biopsy technology which has the potential to both confirm mechanisms 

of drug-resistance or identify drug-resistance emerging in a patient. By detecting circulating tumour 

DNA (ctDNA) or circulating tumour cells (CTCs), samples can be measured for changes in 

heterogeneity and can be used to identify emerging biomarkers of drug-resistance (Rolfo et al., 

2014). Tang et al., 2016 showed that ctDNA could be used to monitor clonal evolution during 

routine management of non-small-cell lung cancer (NSCLC), and identified emerging resistance to 

tyrosine kinase inhibitors through observed epidermal growth factor receptor (EGFR) T790M 

mutations. However, although given the wide scope of research liquid biopsy can provide, it is not 

without technological difficulties. For example, the concentration of ctDNA and CTCs depends on 

the localisation of the tumour tissuse, with primary or metastatic brain lesions difficult to assess via 

blood analyses (Heidrich et al., 2020). Due to this, surgical biopsies, to obtain patient tumour 

samples, continue to dominate the clinic. These can facilitate research on samples pre and post-

drug treatment, or between primary and metastatic sites. However, the patient sample material is 

often limited and retrospective, and the samples are commonly fixed in formalin and embedded in 

paraffin which can reduce their usefulness in molecular analysis (Herwig et al., 2011).  

 
The use of cell line models is still a widely accepted method underpinning pre-clinical drug-

resistance research. Cell line models can allow for an understanding of mechanisms driving drug-

resistance before its emergence in the clinic, and to identify ways to overcome this resistance 

phenotype. A number of methods and models have been successfully developed which have 

determined important resistance mediators (Garraway and Jänne, 2012a).  

 
A common way of addressing drug-resistance is through large-scale screening of cancer cell lines 

with known genetic background, to identify biomarkers of intrinsic sensitivity or resistance to 

panels of drugs. One study, which used part of the Cancer Cell Line Encyclopaedia (CCLE), was 

conducted by Barretina et al., 2012 where the genetic background of 479 cell lines was coupled 
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with pharmacological profiles to 24 anticancer drugs. The study confirmed previously established 

activating mutations in BRAF and NRAS as predictors of sensitivity to the treatment of the MEK 

inhibitor; PD-0325901. Further to this, the study found elevated AHR gene expression was identified 

as an additional predictor of sensitivity in cell lines with the NRAS mutation.  

 
Another large-scale screen was conducted by Garnett et al., 2012 describing the response of 600 

cancer cell lines, with a known genetic background, to a panel of 130 inhibitors, which revealed 

markers of resistance that correlated with genetic mutations, or cancer type.  One example 

identified, was Ewing’s sarcoma cells harbouring the EWS-FLI1 gene translocation, which showed 

sensitivity to PARP inhibitors.  A further study went on to combine the data from the studies by 

Barretina and Garnett, conducted by Nichols et al., 2014, which showed, through a head and neck 

squamous cell cancer (HNSCC) specific study, that HNSCC cell lines harbouring PIK3CA mutations 

conferred sensitive to treatment with PI3K inhibitor; AZD6482. This supported the hypothesis that 

PIK3CA can be used as a biomarker for treatment by PI3K inhibitors.  

 
Large scale siRNA or shRNA screens have been useful to determine if knockdown of target genes 

identify genes regulating sensitivity to drugs. An example is seen when Campbell et al., 2016 used 

a series of siRNA screens that identified kinase genetic dependencies in 117 cancer cell lines. 

Examples highlighted in the study, was an increased sensitivity to fibroblast growth factor receptor 

(FGFR) inhibitors in osteosarcoma cell lines, and to mitotic inhibitors in SMAD4 mutant cells.  

Recently, a genome editing approach is being more frequently adopted which uses the bacterial 

CRISPER-Cas9 system, thus avoiding several pitfalls associated with siRNA screens. A large scale 

CRISPR-Cas9 screen was performed by Dev et al., 2018 on BRCA1-deficient breast cancer cells 

treated with PARP inhibitors. Two previously uncharacterised proteins were identified; C20orf196 

and FAM35A, whose inactivation correlated with PARP inhibitor resistance. 

 
Another well-founded method to study drug-resistance in vitro, is to establish a resistant cell line 

by exposing drug-sensitive cells to the drug of interest. This can result in  the generation of resistant 

clones which can undergo extensive characterisation to determine the cause or mechanism of 

resistance (Garraway and Jänne, 2012a). This can be achieved through short-term pulsing of cells 

with a high drug concentration, allowing for recovery in drug-free media, thereby mimicking the 

cycling doses of an intravenously administered drug in a clinical setting. However, resistance in this 

method is often low and transient (McDermott et al., 2014). A preferred method of generating 

resistant cell lines is long-term chronic exposure to the drug. The cells can undergo dose-escalation 

with high concentrations of a compound, or a single high concentration dose of the compound is 
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administered until a resistant population emerges. These methods have been shown to generate 

higher levels of resistance, and a much more stable phenotype than the short-term methods 

(McDermott et al., 2014). The in vitro models with acquired drug resistance has been shown to be 

beneficial in understanding the mechanisms of resistance, as seen in the recent works of Michaelis 

et al.,. Michaelis and colleagues have co-developed a large Resistant Cancer Cell Line (RCCL) 

collection and shown that resistance to nutlin, an MDM2 inhibitor, in neuroblastoma cell lines (UKF-

NB-3) is due to the formation of de novo p53 mutations, which has now been confirmed in clinical 

liposarcoma using liquid biopsy methods (Michaelis et al., 2011, 2012; Jung et al., 2016). 

 
Triple negative breast cancers (TNBC) are highly metastatic aggressive breast cancers which are 

generally susceptible to chemotherapy initially, however, the early complete response does not 

correlate with overall patient survival. Often TNBC patients relapse within three to five years due 

to resistance to the standard chemotherapy treatment being administered, and so there is an 

urgent need for second, or even third line treatments (Lehmann et al., 2011). Extensive studies 

have shown that once drug-resistance has emerged, cross-resistance to several, structurally, and 

functionally unrelated drugs can occur (J. Wang et al., 2017). This multi-drug-resistance (MDR) 

phenotype may be developed through non-drug specific resistance mechanisms, such as the 

expression of drug efflux pumps in the cell membrane that reduce intracellular drug levels to less 

than therapeutic concentrations (Pluchino et al., 2012). This generates a difficult ongoing clinical 

problem that still needs to be overcome. An alternative strategy proposed by Hall et al., 2009, was 

to identify an “Achilles heel” in which the emerged resistance to one drug may have conferred a 

hypersensitivity to another drug. The term “collateral sensitivity”, or acquired vulnerability, was 

coined to described this phenomenon, and the first full report of this was seen in the work of Bech‐

Hansen et al., 1976, where the group used a series of MDR sub-lines derived from the Chinese 

Hamster Ovary (CHO) in increasing concentrations of colchicine to understand cross-resistance. This 

phenomenon can be harnessed for patient treatment in the clinic, and by determining the patterns 

of cross-resistance or acquired vulnerability to clinically relevant drugs, this will help inform 

clinicians on the next line of therapy in treating TNBC. 

  
This chapter characterises a panel of chemo-resistant TNBC cell line models which have acquired 

resistance to the chemotherapeutic agents; cisplatin, doxorubicin, eribulin, gemcitabine, paclitaxel 

and 5-Fluorouracil. The cell line models were obtained from the RCCL collection in which the 

development of acquired drug resistance had been induced through chronic exposure to the drug. 

The chapter also sought to determine any cross-resistance or acquired vulnerability phenotypes to 

the panel of chemotherapeutic agents.  
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3.2 Results 

3.2.1 Growth characteristics of chemo-naive and chemo-resistant TNBC cell lines 

 
A panel of chemo-naive and chemo-resistant TNBC cell lines were selected from the Resistant 

Cancer Cell Line (RCCL) Collection for analysis of chemo-resistant mechanisms. TNBC is known to 

be a heterogeneous cancer type, therefore three chemo-naive cells lines were initially selected to 

reflect a range of tumour location, stage, grade and ethnicity as shown in Table 3.1. 

 
Table 3.1. Origin of chemo-naive TNBC cell lines 

 

 

 
The chemo-resistant cell lines were previously developed through long-term incubation of the 

chemo-naive cells in increasing concentrations of the stated chemotherapeutic agent, as previously 

described by Cinatl et al., 1999. The chemo-resistant cell lines chosen for this project have been 

developed to have a resistant phenotype to chemotherapy agents common or historical to the 

treatment of TNBC. Along-side the three chemo-naive TNBC cell lines, a total of fifteen chemo-

resistant sub-lines were selected for analysis (Table 3.2). 

 
Table 3.2. Chemo-naive and chemo-resistant TNBC cell lines selected from the RCCL 
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First, the morphology of each of the TNBC cell lines was established. Microscopy was used to 

determine differences in shape, structure and form, and images were taken for each of the TNBC 

cell lines (Figure 3.1). 

 
The MDA-MB-468 cell line consisted of small, round, convex cells, grape-like in structure, which 

often grew on top of each other forming chains away from the flask surface. MDA-MB-468rCDDP1000 

looked similar to that of MDA-MB-468, except the formation of chains of cells were more apparent. 

MDA-MB-468rDOX50 were similar to the MDA-MB-468 in morphology. MDA-MB-468rERI50 had a 

mixture of cell morphology, with a sub-population likened to the morphology of MDA-MB-468, and 

another sub-population containing small, elongated, round cells.  MDA-MB-468rPCL20 had a 

morphology distinct from MDA-MB-468. The cells were observed to be elongated, spindly cells, 

which could be considered to be mesenchymal in shape. Furthermore, the cells did not grow on top 

of each, or form chains, but would pack tightly together on the surface of the flask. 

 
HCC38 consisted of large, flat, thin cells, which were almost transparent on certain microscopic 

planes. These were similar in shape to flat endothelial cells, and would often pack tightly together 

on the surface of the flask. There did not appear to be a notable difference between HCC38 and 

HCC38rDOX40, HCC38rPCL2.5 or HCC38rGEM20. Both HCC38rCDDP3000 and HCC38rERI10 showed to be 

slightly smaller than HCC38, and would pack into discrete islands when growing. 

 
HCC1806 consisted of small, polygonal, raised cells, similar to the shape of epithelial cells. These 

cells grew in discrete islands on the flask surface, leaving areas of the flask empty. There was no 

notable difference between the morphology of HCC1806 and the HCC1806 derived chemo-resistant 

cell lines, with the exception to HCC1806rPCL20 and HCC1806r5-F1500, where the cells would grow on 

top of each other in layers.  
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Figure 3.1 Morphology of chemo-naive and chemo-resistant TNBC cell lines 
Morphology of each of the chemo-naive and chemo-resistant TNBC cell lines were analysed using microscopy. Cells were visualised at 
40x magnification, and images taken. Images are representative of ≥ 3 independent experiments.  
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Next, the growth characteristics of each of the chemo-naive and chemo-resistant TNBC cell lines 

were established. In order to determine the optimal conditions for the 120-hour MTT assay, each 

cell line was plated at five different densities across seven 96-well plates in 200 µl complete IMDM. 

Every 24 hours, one plate was fixed and stained as described for the SRB growth assay (Section 

2.1.4). Once all seven were stained, the data was analysed and raw absorbances were used to 

generate growth curves in GraphPad Prism 6. The ideal plating density is considered to be when 

the cells remain in exponential growth during exposure to the drug within the 120 hours of the MTT 

experiment. This allows for consistency between the cell lines in later experiments, while having 

optimal uptake and response to the drug during the assays. Further to selecting the ideal plating 

density, the logarithmic doubling time for each of the TNBC cell lines could be calculated. The 

doubling times was averaged across at least three independent experiments in each cell line, and 

calculated as described in the Materials and Methods (section 2.1.3).  

 
Both MDA-MB-468rDOX50 and MDA-MB-468rERI50 demonstrated an increase in doubling time from 

MDA-MB-468 with 48.49 ± 0.87 and 42.69 ± 7.05 hours respectively (Figure 3.2). MDA-MB-

468rCDDP1000 showed a slightly faster doubling time compared to MDA-MB-468 with 34.87 ± 2.25 

hours, whilst MDA-MB-468rPCL20 showed a much faster doubling time with 31.27 ± 2.9 hours (Figure 

3.2). For each of the cell lines, 12.8 x103 was determined at the optimal plating density, with the 

exception of MDA-MB-468rPCL20, where a lower optimal cell density of 6.4 x103 cells per well was 

chosen. 

 
HCC38rCDDP3000 had a faster doubling time than HCC38 with a time of 36.7 ± 9.19 hours (Figure 

3.3).  HCC38rDOX40, HCC38rERI10, HCC38rGEM20 and HCC38rPCL2.5 all had a slower doubling time 

than HCC38 with times; 45.19 ± 3.37, 45.18 ± 5.52, 42.6 ± 6.80, and 44.72 ± 1.04 respectively (Figure 

3.3). The HCC38 and HCC38 derived chemo-resistant cell lines optimal plating density was 12.8 x103 

with the exception to HCC38rCDDP3000 and HCC38rDOX40 where it was chosen to plate at a higher 

density of 19.2 x103 cells per well (Figure 3.3). 

 
Both HCC1806rDOX12.5 and HCC1806r5-F1500 had a faster doubling time compared to HCC38 with a 

time of 30.35 ± 1.09 and 32.15 ± 0.65 respectively (Figure 3.4). HCC1806rCDDP500, HCC1806rERI50, 

HCC1806rGEM20 and HCC1806rPCL20 had a slower doubling time compared to HCC38 with 39.10 ± 

5.32, 44.45 ± 3.74, 43.09 ± 3 and 39.82 ± 6.43 respectively (Figure 3.4). Each of this set were plated 

at 12.8 x103 cells per well. 
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Figure 3.2. Growth characterisation of MDA-MB-468 and chemo-naive and chemo-resistant cell lines 
Cells were seeded with five technical replicates in seven 96-well plates at the cell number indicated. One plate was fixed every 24 hours 
and analysed by SRB assay. Growth curves A) MDA-MB-468 B) MDA-MB-468rCDDP1000, C) MDA-MB-468rDOX50, D) MDA-MB-468rERI100, 
E) MDA-MB-468rPCL20, were generated using GraphPad Prism 6. Data points represent mean ± SD where graphs are a representation of 
≥3 independent experiments. Dotted line at t120 represents endpoint of MTT assay. Variable y-axis between graphs. F) Table shows 
calculated mean ± SD doubling time from ≥3 independent experiments and the chosen optimal plating density.
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Figure 3.3. Growth characterisation of HCC38 and chemo-naive and chemo-resistant cell lines 
Cells were seeded with five technical replicates in seven 96-well plates at the cell number indicated. One plate was fixed every 24 hours 
and analysed by SRB assay. Growth curves A) HCC38 B) HCC38rCDDP3000, C) HCC38rDOX40, D) HCC38rERI10, E) HCC38rGEM20, F) 
HCC38rPCL2.5, were generated using GraphPad Prism 6. Data points represent mean ± SD where graphs are a representation of ≥3 
independent experiments. Dotted line at t120 represents endpoint of MTT assay. Variable y-axis between graphs. G) Table shows 
calculated mean ± SD doubling time from ≥3 independent experiments and the chosen optimal plating density. 
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Figure 3.4. Growth characterisation of HCC1806 and chemo-naive and chemo-resistant cell lines 
Cells were seeded with five technical replicates in seven 96-well plates at the cell number indicated. One plate was fixed every 24 hours 
and analysed by SRB assay. Growth curves A) HCC1806 B) HCC1806rCDDP500, C) HCC1806rDOX12.5, D) HCC1806rERI50, E) HCC1806rGEM20, 
F) HCC1806rPCL20 G) HCC1806r5-F1500 were generated using GraphPad Prism 6. Data points represent mean ± SD where graphs are a 
representation of ≥3 independent experiments. Dotted line at t120 represents endpoint of MTT assay. Variable y-axis between graphs. H) 
Table shows calculated mean ± SD doubling time from ≥3 independent experiments and the chosen optimal plating density .
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3.2.2 Confirmation of resistant phenotype in chemo-resistant cell lines 

 
Having determined the optimal plating densities for each of the TNBC cell lines, the response of the 

chemo-resistant cell lines to the chemotherapeutic agents they have been adapted to, were 

studied. Dose-response curves were generated to a serial dilution of each compound using a 120-

hour MTT assay allowing for the calculation of the half-maximal growth inhibitory concentration 

(GI50) and a confirmation of the resistant phenotype. The MTT assays were conducted on both the 

chemo-naive cell lines and the chemo-resistant cell lines to allow for the calculation of the 

resistance factor (RF), a ratio of the chemo-resistant cell line GI50 to the chemo-naive cell line GI50. 

The RF is used to define the level of resistance seen in the chemo-resistant cell lines, whereby a RF 

≥ 2 is indicative of a resistance phenotype, whilst an RF ≤ 0.5 is indicative of a sensitive phenotype. 

The RF is calculated as per the following equation: 

 

𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 (𝑅𝐹) =  
𝐶ℎ𝑒𝑚𝑜 − 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 𝑐𝑒𝑙𝑙 𝑙𝑖𝑛𝑒 GI50

𝐶ℎ𝑒𝑚𝑜 − 𝑛𝑎𝑖𝑣𝑒 𝑐𝑒𝑙𝑙 𝑙𝑖𝑛𝑒 𝐺𝐼50
 

 
Analysis of the cisplatin resistant cell lines confirmed a resistance phenotype is seen relative to the 

chemo-naive counterpart (Figure 3.5). MDA-MB-468 demonstrated the most sensitivity to cisplatin, 

compared to the two other chemo-naive cell lines, with a GI50 value of 0.027 µM. The highest RF 

was observed in MDA-MB-468rCDDP1000 with an RF of 319, whilst HCC38rCDDP3000 and 

HCC1806rCDDP500 demonstrated a RF of 8.88 and 7.71 respectively.   

 
Examination of the doxorubicin resistant cell lines confirmed a resistance phenotype is seen relative 

to the chemo-naive counterpart (Figure 3.6). The MDA-MB-468 cell line demonstrated the most 

sensitivity to doxorubicin compared to the two other chemo-naive cell lines with a GI50 value of 

0.00518 µM. HCC1806rDOX12.5 demonstrated the highest RF of 58.7, whilst MDA-MB-468rDOX50 and 

HCC38rDOX40 had RF’s of 31 and 12.9 respectively.  

 
Each of the eribulin resistant cell lines demonstrated a resistance phenotype relative to the chemo-

naive counterpart (Figure 3.7). MDA-MB-468 cell line demonstrated the most sensitivity to eribulin 

compared to the two other chemo-naive cell lines with a GI50 value of 0.000167 µM. It was noted 

that each of the cell lines showed nM sensitivity to eribulin. HCC1806rERI50 had the highest RF of 

5920, whilst MDA-MB-468rERI50 and HCC38rERI10 had RF’s of 314 and 46.9 respectively.  
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Both of the gemcitabine resistant cell lines demonstrated a resistance phenotype compared to the 

chemo-naive counterparts (Figure 3.8). A similar sensitivity to gemcitabine was observed in HCC38 

and HCC1806 with GI50 values of 0.00197 µM and 0.00104 µM respectively. HCC1806rGEM20 

demonstrated the greatest fold resistance with an RF of 99.7, whilst HCC38rGEM20 had an RF of 

44.3.  

 
Analysis of the paclitaxel resistant cell lines confirmed a resistance phenotype is seen relative to 

the chemo-naive counterpart (Figure 3.9). HCC180 demonstrated the most sensitivity to paclitaxel 

compared to the two other chemo-naive cell lines with a GI50 value of 0.0000623 µM. 

HCC1806rPCL20 demonstrated the highest RF, with an RF of 165, whilst MDA-MB-468rPCL20 and 

HCC38rPCL2.5 demonstrated RF’s of 100 and 5.51 respectively.  

 
Only one cell line was selected for the panel which is considered to be resistant to 5-Fluorouracil. 

Analysis of HCC1806r5-F1500 confirmed a resistance phenotype is seen relative to HCC1806 (Figure 

3.10). HCC1806 had a calculated GI50 value of 2.94 µM whilst HCC1806r5-F1500 had a GI50 value of 318 

µM, which calculated to an RF of 108.  

 
 

 

 
Figure 3.5. GI50 value determinations for cisplatin in chemo-naive and cisplatin-resistant TNBC cell lines 
Response of chemo-naive and cisplatin-resistant cell lines to cisplatin were determined by 120-hour MTT assay and analysed using 
GraphPad Prism 6. Dose response curves to A) MDA-MB-468 cell lines, B) HCC38 cell lines, C) HCC1806 cell lines. Data points represent 
mean ± SD where graphs are a representation of ≥3 independent experiments. Broken line on Y-axis indicates half-maximal growth 
inhibition. D) Table summarising the mean ± SD GI50 values when cells were treated with cisplatin and the calculated RF.  
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Figure 3.6. GI50 value determinations for doxorubicin in chemo-naive and doxorubicin-resistant TNBC cell lines 
Response of chemo-naive and doxorubicin-resistant cell lines to doxorubicin were determined by 120-hour MTT assay and analysed 
using GraphPad Prism 6. Dose-response curves to A) MDA-MB-468 cell lines, B) HCC38 cell lines, C) HCC1806 cell lines. Data points 
represent mean ± SD where graphs are a representation of ≥3 independent experiments. Broken line on Y-axis indicates half-maximal 
growth inhibition. D) Table summarising the mean ± SD GI50 values when cells were treated with doxorubicin and calculated the RF.  
 

 
 

 

Figure 3.7. GI50 value determinations for eribulin in chemo-naive and eribulin-resistant TNBC cell lines 
Response of chemo-naive and eribulin-resistant cell lines to eribulin were determined by 120-hour MTT assay and analysed using 
GraphPad Prism 6. Dose-response curves to A) MDA-MB-468 cell lines, B) HCC38 cell lines, C) HCC1806 cell lines.  Data points represent 
mean ± SD where graphs are a representation of ≥3 independent experiments. Broken line on Y-axis indicates half-maximal growth 
inhibition. D) Table summarising the mean ± SD GI50 values when cells were treated with eribulin and the calculated RF.  
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Figure 3.8. GI50 value determinations for gemcitabine in chemo-naive and gemcitabine-resistant TNBC cell lines 
Response of chemo-naive and gemcitabine-resistant cell lines to gemcitabine were determined by 120-hour MTT assay and analysed 
using GraphPad Prism 6. Dose-response curves to A) HCC38 cell lines, B) HCC1806 cell lines. Data points represent mean ± SD where 
graphs are a representation of ≥3 independent experiments. Broken line on Y-axis indicates half-maximal growth inhibition. C) Table 
summarising the mean ± SD GI50 values when cells were treated with gemcitabine and the calculated RF.  
 
 

 

 

Figure 3.9. GI50 value determinations for paclitaxel in chemo-naive and paclitaxel-resistant TNBC cell lines 
The response of chemo-naive and paclitaxel-resistant cell lines to paclitaxel were determined by 120-hour MTT assay and analysed using 
GraphPad Prism 6. Dose-response curves to A) MDA-MB-468 cell lines, B) HCC38 cell lines, C) HCC1806 cell lines.  Data points represent 
mean ± SD where graphs are a representation of ≥3 independent experiments. The broken line on Y-axis indicates half-maximal growth 
inhibition. D) Table summarising the mean ± SD GI50 values when cells were treated with paclitaxel and the calculated RF.  
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Figure 3.10. GI50 value determinations for 5-Fluorouracil in chemo-naive and 5-Fluorouracil-resistant TNBC cell lines 
The response of chemo-naive and 5-Fluorouracil-resistant cell line to 5-Fluorouracil were determined by 120-hour MTT assay and 
analysed using GraphPad Prism 6. Dose-response curves to A) HCC1806 cell lines. Data points represent mean ± SD where graphs are a 
representation of ≥3 independent experiments. The broken line on Y-axis indicates half-maximal growth inhibition. B) Table summarising 
the mean ± SD GI50 values when cells were treated with for 5-Fluorouracil and the calculated RF.  

 

3.2.3 Cross-resistance profiling of chemo-naive and chemo-resistant TNBC cell lines 

 
Having confirmed the resistance phenotype in each of the chemo-resistant cell lines, relative to the 

respective chemo-naive counterpart, each of the chemo-resistant cell lines were checked for cross-

resistance, or acquired vulnerability, to the following chemotherapeutic agents; cisplatin, 

doxorubicin, eribulin, gemcitabine, paclitaxel and 5-Fluorouracil. Dose-response curves were 

generated to a serial dilution of each compound using a 120-hour MTT assay allowing for the 

calculation of the GI50 and RF’s. Cross-resistance is termed whereby a cell line which has developed 

resistance to a given drug, demonstrates a resistance phenotype when treated with a different 

drug. Acquired vulnerability is termed whereby a cell line, which demonstrates resistance to a given 

drug demonstrates a sensitive phenotype, when treated with a different drug compared to the 

chemo-naive counterpart. Here cross-resistance is defined when the calculated RF ≥ 2, and acquired 

vulnerability when the calculated RF ≤ 0.5, and both demonstrated statistical significance using the 

student’s t-test (p ≤ 0.05). Numerical data presented in Appendix A2. 

 
As already seen, the three cisplatin-resistant cell lines show resistance to treatment with cisplatin 

(Figure 3.11). MDA-MB-468rPCL20 demonstrates cross-resistance to treatment with cisplatin with 

an RF of 49.76, which is higher than the RF calculated for HCC38rCDDP3000 and HCC1806rCDDP500. 

HCC38rGEM20 also demonstrates cross-resistance to treatment with cisplatin with an RF of 2.3 

(Figure 3.11). The rest of the chemo-resistant cell lines show no statistically significant change when 

treated with cisplatin relative to their respective chemo-naive counterparts.  
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The three doxorubicin-resistant cell lines show resistance to treatment with doxorubicin (Figure 

3.12). Many cell lines demonstrated cross-resistance to the treatment of doxorubicin, including; 

MDA-MB-468rCDDP1000, MDA-MB-468rERI50, MDA-MB-468rPCL20, HCC38rCDDP3000, HCC38rERI10, 

HCC1806rERI50, HCC1806rGEM20, HCC1806rPCL20 with RF’s of 5.96, 28.39, 2.45, 3.82, 7.88, 10.79, 

and 23.85 respectively (Figure 3.12). Two cell lines demonstrated acquired vulnerability to the 

treatment of doxorubicin; HCC38rGEM20 and HCC38rPCL2.5 with RF’s of 0.36 and 0.382 respectively 

(Figure 3.12). The rest of the chemo-resistant cell lines show no statistically significant change when 

treated with doxorubicin relative to their respective chemo-naive counterparts. 

 
As already seen, the three eribulin-resistant cell lines show resistance to treatment with eribulin 

(Figure 3.13). It was interesting to note that MDA-MB-468rPCL20 and HCC1806rPCL20 demonstrated 

resistance upon treatment with eribulin with RF’s of 2577.57 and 9280.23 respectively, which are 

higher than the RF’s for any of the eribulin resistant cell lines. MDA-MB-468rCDDP1000, HCC38rERI10, 

HCC1806rDOX12.5 and HCC1806rGEM20 also demonstrated cross-resistance to eribulin with RF’s of 

49.91, 7.36, 15.33 and 7.59 respectively.  Acquired vulnerability was observed to treatment with 

eribulin in HCC38rCDDP3000 and HCC38rGEM20 with RF’s of 0.12 and 0.39 respectively. The rest of 

the chemo-resistant cell lines show no statistically significant change when treated with eribulin 

relative to their respective chemo-naive counterparts.  

 
Both of the two gemcitabine-resistant cell lines show resistance to treatment with gemcitabine 

(Figure 3.14). Interestingly, HCC38rCDDP3000 demonstrated cross-resistance to gemcitabine, with an 

RF of 2.04. HCC1806rERI50 demonstrated acquired vulnerability to the treatment of gemcitabine 

with an RF of 0.5. The rest of the chemo-resistant cell lines show no statistically significant change 

when treated with gemcitabine relative to their respective chemo-naive counterparts.  

 
As already seen, the three paclitaxel-resistant cell lines show resistance to treatment with paclitaxel 

(Figure 3.15). The only cell lines which were found to demonstrate cross-resistance to paclitaxel, 

are the three eribulin resistant cell lines; MDA-MB-468rERI50, HCC38rERI10 and HCC1806rERI50 with 

RF’s of 95.91, 5.67 and 24.95 respectively. The rest of the chemo-resistant cell lines show no 

statistically significant change when treated with paclitaxel relative to their respective chemo-naive 

counterparts.  

 
Many cell lines demonstrated cross-resistance to the treatment of 5-Fluorouracil, including; 

HCC38rCDDP3000, HCC38rDOX40, HCC38rGEM20, HCC38rPCL2.5, HCC1806rDOX12.5, HCC1806rGEM20 and 

HCC1806rPCL20 with RF’s of 36.64, 75.86, 7.69, 6.04, 4.67, 2.87 and 4.83 respectively (Figure 3.16). 
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Both MDA-MB-468rPCL20 and HCC1806rCDDP500 demonstrated acquired vulnerability to the 

treatment of 5-Fluorouracil with RF’s of 0.061 and 0.13 respectively. The rest of the chemo-resistant 

cell lines show no statistically significant change when treated with 5-Fluorouracil relative to their 

respective chemo-naive counterparts.  

 
Taken together, patterns of cross-resistance and acquired vulnerability were observed. No fold 

change was observed in the MDA-MB-468 chemo-resistant cell lines to 5-Fluorouracil, with 

exception to MDA-MB-468rPCL20 which demonstrated acquired vulnerability, whilst each of the 

HCC38 chemo-resistant cell lines demonstrated cross-resistance to 5-Fluorouracil. No fold change 

was observed to gemcitabine in the MDA-MB-468 chemo-resistant cell lines, with the exception of 

MDA-MB-468rERI50 which demonstrated acquired vulnerability, and yet all demonstrated cross-

resistance to doxorubicin. It was noted that each of the cell lines, which demonstrate 

resistance/cross-resistance to gemcitabine are cross-resistant to 5-Fluorouracil. Each of the eribulin 

resistant cell lines demonstrated cross-resistance to the treatment of paclitaxel, and each of the 

paclitaxel-resistant cell lines, with the exception of HCC38rPCL2.5, demonstrated cross-resistance to 

eribulin. Unique to the dataset, HCC1806r5-F1500 demonstrated no cross-resistance or acquired 

vulnerability to any of the other chemotherapeutic agents.  

 

 

Figure 3.11. GI50 value determinations and resistance factors for cisplatin in the TNBC cell lines 
The response of TNBC cell lines to cisplatin was determined by 120-hour MTT assay and analysed using GraphPad Prism 6. A) Determined 
GI50 concentrations upon treatment with cisplatin. Each dot represents a single biological repeat from ≥3 independent experiments with 
horizontal line showing standard deviation and vertical line; the mean. B) Sensitivity of the chemo-resistant cell lines relative to the 
respective chemo-naive cell line (RF). Dotted line is at two-fold. Statistical significance calculated using student’s t-test, * P ≤ 0.05, ** p 
≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.00001. Colour indicates resistance status: red = resistant (RF >2, and ≥ * p), blue = acquired vulnerability 
(RF < 0.5 and ≥ * p), white = no change.  Numerical data is presented in Appendix A2. 
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Figure 3.12. GI50 value determinations and resistance factors for doxorubicin in the TNBC cell lines  
The response of TNBC cell lines to doxorubicin was determined by 120-hour MTT assay and analysed using GraphPad Prism 6. A) 
Determined GI50 concentrations upon treatment with doxorubicin. Each dot represents a single biological repeat from ≥3 independent 
experiments with horizontal line showing standard deviation and vertical line; the mean. B) Sensitivity of the drug-resistant cell lines 
relative to the respective chemo-naive line (RF). Dotted line is at two-fold. Statistical significance calculated using student’s t-test, * P ≤ 
0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.00001. Colour indicates resistance status: red = resistant (RF >2, and ≥ * p), blue = acquired 
vulnerability (RF < 0.5 and ≥ * p), white = no change. Numerical data is presented in Appendix A2. 
 
 
 
 

 

Figure 3.13. GI50 value determinations and resistance factors for eribulin in the TNBC cell lines 
The response of TNBC cell lines to eribulin was determined by 120-hour MTT assay and analysed using GraphPad Prism 6. A) Determined 
GI50 concentrations upon treatment with eribulin. Each dot represents a single biological repeat from ≥3 independent experiments with 
horizontal line showing standard deviation and vertical line; the mean. B) Sensitivity of the chemo-resistant cell lines relative to the 
respective chemo-naive cell line (RF). Dotted line is at two-fold. Statistical significance calculated using student’s t-test, * P ≤ 0.05, ** p 
≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.00001. Colour indicates resistance status: red = resistant (RF >2, and ≥ * p), blue = acquired vulnerability 
(RF < 0.5 and ≥ * p), white = no change. Numerical data is presented in Appendix A2. 
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Figure 3.14. GI50 value determinations and resistance factors for gemcitabine in the TNBC cell lines 
The response of TNBC cell lines to gemcitabine was determined by 120-hour MTT assay and analysed using GraphPad Prism 6. A) 
Determined GI50 concentrations upon treatment with gemcitabine. Each dot represents a single biological repeat from ≥3 independent 
experiments with horizontal line showing standard deviation and vertical line; the mean. B) Sensitivity of the chemo-resistant cell lines 
relative to the chemo-naive cell line (RF). Dotted line is at two-fold. Statistical significance calculated using student’s t-test, * P ≤ 0.05, 
** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.00001. Colour indicates resistance status: red = resistant (RF >2, and ≥ * p), blue =  acquired 
vulnerability (RF < 0.5 and ≥ * p), white = no change. Numerical data is presented in Appendix A2. 
 
 
 
 
 

 

Figure 3.15. GI50 value determinations and resistance factors for paclitaxel in the TNBC cell lines 
The response of TNBC cell lines to paclitaxel was determined by 120-hour MTT assay and analysed using GraphPad Prism 6. A) 
Determined GI50 concentrations upon treatment with paclitaxel. Each dot represents a single biological repeat from ≥3 independent 
experiments with horizontal line showing standard deviation and vertical line; the mean. B) Sensitivity of the chemo-resistant cell lines 
relative to the respective chemo-naive cell line (RF). Dotted line is at two-fold. Statistical significance calculated using student’s t-test, * 
P ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.00001. Colour indicates resistance status: red = resistant (RF >2, and ≥ * p), blue = acquired 
vulnerability (RF < 0.5 and ≥ * p), white = no change. Numerical data is presented in Appendix A2. 
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Figure 3.16. GI50 value determinations and resistance factors for 5-Fluorouracil in the TNBC cell lines 
The response of TNBC cell lines to 5-Fluorouracil was determined by 120-hour MTT assay and analysed using GraphPad Prism 6. A) 
Determined GI50 concentrations upon treatment with 5-Fluorouracil. Each dot represents a single biological repeat from ≥3 independent 
experiments with horizontal line showing standard deviation and vertical line; the mean. B) Sensitivity of the chemo-resistant cell lines 
relative to the respective chemo-naive cell line (RF). Dotted line is at two-fold. Statistical significance calculated using student’s t-test, * 
P ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.00001. Colour indicates resistance status: red = resistant (RF >2, and ≥ * p), blue = acquired 
vulnerability (RF < 0.5 and ≥ * p), white = no change. Numerical data is presented in Appendix A2. 
 

 

3.2.4 Investigation of multidrug resistance protein 1 in the TNBC cell lines 

 
Multidrug resistance (MDR) is often a significant contribution to the failure of therapeutic drugs in 

the clinic. As previously discussed, (section 1.3.2.1) the overexpression of active efflux transporters 

pumps, such as the ATP-binding cassette (ABC) transporters, contributes to resistance to multiple 

drugs as the drugs are removed before targeted action has been made (Gottesman, 2002; Türk, 

Dóra & Szakács, 2009). ABCB1 encodes for the p-glycoprotein, or multidrug-resistant protein 1 

(MDR1), which is often upregulated in cells or patient samples that demonstrate a multidrug 

resistant phenotype. Upregulation of MDR1 leads to increased drug export, reducing the available 

intracellular drug, and resulting in a resistance phenotype. Of the tested chemotherapeutic agents 

in this chapter, doxorubicin, eribulin and paclitaxel have all been shown to be substrates of MDR1 

(Chen et al., 2016; Oba et al., 2016). In order to determine if MDR1 is contributing to the observed 

resistance phenotype, the level of MDR1 protein in each cell line was determined through western 

blot analysis (Figure 3.17). A vincristine resistant neuroblastoma cell line (UKF-NB-3rVCR10) from the 

RCCL collection was used as a positive MDR1 control (Michaelis et al., 2009).  

 
The western blot analysis identified MDA-MB-468rERI100, MDA-MB-468rPCL20, HCC1806rERI50 and 

HCC1806rPCL20 to have elevated expression of MDR1 compared to the chemo-naive counterparts. 
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As previously seen in this chapter, these cell lines also demonstrated resistance/cross-resistance 

when treated with doxorubicin, eribulin and paclitaxel, all of which are known substrates of MDR1 

(Chen et al., 2016; Oba et al., 2016). This suggests that the cross-resistance of these cell lines to 

MDR1 substrates is, at least in part, caused by increased ABCB1 levels.  

 

 

 

 
Figure 3.17. Analysis of MDR1 (p-glycoprotein) protein levels in both chemo-naive and chemo-resistant TNBC cell 
Cell lysates were prepared and analysed by western blotting to determine the expression levels of MDR1 in A) MDA-MB-468, B) HCC38, 
C) HCC1806 chemo-naive and chemo-resistant TNBC cell lines. UKF-NB-3rVCR10 from RCCL collection, was used as positive control. Blots 
were probed with antibody against MDR1, with β-tubulin included as a loading control. Blots are representative of ≥3 independent 
experiments. 
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3.3 Discussion 

 
This chapter aimed to characterise a panel of chemo-naive and chemo-resistant TNBC cell lines to 

a panel of chemotherapeutic agents often used for the treatment of TNBC. To this end, eighteen 

cell lines were selected from the RCCL collection which included; three chemo-naive TNBC cell lines 

and fifteen chemo-resistant sublines.  

 
Using microscopy, the morphology of each of the cell lines was examined, as this can be a simple 

technique to identify resistance mechanisms and phenotypes such as epithelial-to-mesenchymal 

transition (EMT), which has been implicated in drug resistance (Beaufort et al., 2014; Du and Shim, 

2016). Each of the chemo-naive TNBC cell lines demonstrated different cell morphology which is 

reflective of the heterogeneous nature of TNBC. A small number of observations were made when 

comparing the chemo-naive to the chemo-resistant sub-types. MDA-MB-468rPCL20 was found to be 

mesenchymal in shape compared to MDA-MB-468, and, when considering the growth rates, was 

also found to grow faster. MDA-MB-468rERI50 was found to have a mix population, with morphology 

likened to MDA-MB-468 and also MDA-MB-468rPCL20. Cells which demonstrate an EMT morphology 

are similar to cancer stems cells (CSCs) which have been implicated in the development of drug 

resistance, and also demonstrate enhanced invasive and migratory phenotypes  (Phi et al., 2018). 

Importantly, both MDA-MB-468rPCL20 and MDA-MB-468rERI50 had elevated MDR1 expression. CSCs 

are known to express ABC transporters, including MDR1, which aids in the EMT cell progression, 

drug efflux and drug resistance (Moitra, 2015; Sugano et al., 2015). It could be speculated that MDA-

MB-468rPCL20 and MDA-MB-468rERI50 are displaying a CSCs phenotype, which is contributing to the 

drug resistant phenotype. 

 
MDR1 was also found to be upregulated in HCC1806rERI50, and HCC1806rPCL20, although no 

significant change in morphology or growth rate, compared to HCC1806, was observed. Each of the 

four cell lines with increased expression of MDR1 also demonstrated resistance/cross-resistance to 

doxorubicin, eribulin and paclitaxel; known substrates of MDR1 (Chen et al., 2016; Oba, Izumi and 

Ito, 2016). Whilst this suggests that the cross-resistance in these cell lines to MDR1 substrates is at 

least in part caused by increased MDR1 levels, further evidence would be required to confirm this. 

One way in which this could be investigated further, is through combinational assays in which the 

substrate of MDR1 is used in combination with zosuquidar, a potent inhibitor of MDR1 

(Nanayakkara et al., 2018). It was also observed that HCC1806rERI50 demonstrated both an elevated 

expression of MDR1 as well as an acquired vulnerability to gemcitabine. Bergman et al., 2003 has 

previously shown that MDR1 overexpression can cause cellular stress, which can result in increased 
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metabolism and sensitivity to gemcitabine, while treatment with verapamil reverses the sensitivity. 

This suggests a direct relation between membrane efflux pumps and gemcitabine sensitivity. The 

observation in the HCC1806rERI50 cell line agrees with the data presented by Bergman et al., 2003, 

although it is noted that acquired vulnerability is not seen in the three other MDR1 expressing cell 

lines.  

 
Although increased expression of MDR1 was not observed in the other eleven chemo-resistant cell 

lines, it cannot be ruled out that increased efflux of the chemotherapeutic agents by another 

transporter is not occurring. For example, other multi-drug resistant transporters include, 

multidrug resistance associated protein (MPR1/ABCC1) and the breast cancer resistance protein 

(BCRP/ABCCG2) which could be driving the resistance phenotype (Natarajan et al., 2012; Lu, 

Pokharel and Bebawy, 2015). 

 
A pattern of cross-resistance was identified with eribulin and paclitaxel in the eribulin and paclitaxel 

resistant cell lines. Each of the eribulin resistant cell lines demonstrated cross-resistance to 

paclitaxel, and each of the paclitaxel resistant cell lines demonstrated cross-resistance to eribulin, 

with the exception of HCC38rPCL2.5, which although had a RF of 11.9, was not found to show 

statistically significant difference compared to HCC38. Arguably, this cross-resistance pattern could 

be a result of increased expression of MDR1 in four of the cases, however, despite not showing 

elevated expression of MDR1, HCC38rERI10 demonstrated cross resistance to paclitaxel. As 

previously described (section 1.2.4), whilst eribulin and paclitaxel are both tubulin-binding agents 

targeting β-tubulin, the binding sites and the mechanism of actions differ. However, the result of 

both of the drugs actions commonly result in mitotic arrest, and if the damage cannot be resolved 

leads to apoptosis (Weaver, 2014; O’Shaughnessy, Kaklamani and Kalinsky, 2019). It could be 

speculated that an additional common resistance mechanism exists for eribulin and paclitaxel, such 

as dysregulation of mitotic arrest, however, none as of yet have been described in literature. Of the 

four cell lines, which demonstrate increased levels of MDR1, it will be important to investigate if 

there is still a level of resistance to eribulin and paclitaxel in the presence of an MDR1 inhibitor.  

 
It was also observed that both of the gemcitabine resistant cell lines, HCC38rGEM20 and 

HCC1806rGEM20, demonstrated cross-resistance to 5-Fluorouracil. The only cell line to demonstrate 

cross-resistance to gemcitabine was HCC38rCDDP3000, which also demonstrated cross-resistance to 

5-Fluorouracil. Gemcitabine and 5-fluorouracil often still remain as first-line therapy for the 

treatment of pancreatic cancer, and as such, many groups have researched cell lines resistant to 

both of these drugs. In 2017, Ghadban et al., showed that heat shock protein 90 (Hsp90) inhibition 
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promotes cancer cell apoptosis in pancreatic cell lines that are resistant to both gemcitabine and 5-

Fluorouracil. It has been established that Hsp90 stabilises proteins of the PI3K/AKT signalling 

pathways, and therefore growth factor signalling may be reliant on functional Hsp90 (Solit et al., 

2002). Further investigation into dysregulation of Hsp90 or PI3K/AKT pathways could show a 

common drug resistance mechanism for gemcitabine and 5-Fluorouracil in these cell lines.  

 
Whilst cross-resistance was seen in the majority of the chemo-resistant cell lines, there was no 

observed cross-resistance or acquired vulnerability to any of the chemotherapeutic agents in 

HCC1806r5-F1500, making this cell line distinct to the dataset. This could suggest that the resistance 

mechanism in this cell line is unique to the uptake or action of 5-Fluorouracil.  

 
In summary, this chapter has addressed changes in morphology and growth between the chemo-

naive and chemo-resistant cell lines, and confirmed resistance to the chemotherapeutic agents in 

the chemo-resistant cell lines. Investigation of expression of MDR1 identified increased expression 

in four cell lines, and drug profiling identified patterns of cross-resistance. The following chapter 

aims to identify patterns of cross-resistance or acquired vulnerability to inhibitors which target the 

DNA damage response and consider these as an option for second line therapy after chemo-

resistance has emerged. 
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Chapter 4 

 

Investigating the response of chemo-resistant TNBC 
to inhibitors of the DNA damage response pathway 
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4. Investigating the response of chemo-resistant TNBC to inhibitors of the DNA 

damage response pathway 

4.1 Introduction 

 
Cancer cells can acquire resistance to chemotherapeutic agents by altering the binding properties 

of drugs, detoxification or drug efflux, or by altering the cell survival mechanisms such as cell cycle 

arrest, apoptosis and DNA damage response and repair (DDR) pathways (see section 1.3) (Cree and 

Charlton, 2017). Many chemotherapy agents induce DNA damage which requires the activation of 

the DDR. The DDR is a process by which DNA damage is effectively and accurately repaired to 

maintain genomic stability, and can be described through several distinct components which 

ultimately determine the outcome of the cell (see section 1.4)(Blackford and Jackson, 2017). These 

DDR pathways are often adapted, either through changes of expression or mutations in genes 

associated with these pathways, which ultimately result in dysregulation and chemo-resistance 

(Housman et al., 2014).  

 
One mechanism of acquired resistance to chemotherapy agents is to upregulate DDR thereby 

increasing DNA repair. For example, cisplatin is known to induce interstrand cross-links (ICL) in the 

DNA, which activates the DDR to remove these bulky lesions. Enhanced capacity to remove cisplatin 

induced ICLs have been observed in cisplatin resistant ovarian cancer cells (Wynne et al., 2007). 

Furthermore, increased expression of Aurora A, has been seen to promote upregulation of 

ATM/CHK2 mediated DNA repair in cisplatin exposed cells. This results in an increase in the rate of 

cell proliferation and cisplatin resistance (H. Sun et al., 2014). 

 
It has also been shown that mutations of genes in the DDR can lead to chemo-resistance. Many 

studies have reported that cells deficient in MMR components, particularly MLH1 and MSH2, 

demonstrate resistance to 5-Fluorouracil in colon cancer. It is thought that induction of MMR 

dependent recognition of 5-Fluorouracil DNA damage initiates apoptosis (Carethers et al., 1999; M. 

Meyers et al., 2001; Meyers et al., 2005).Therefore, reduction of MMR activation to 5-Fluorouracil 

damage subsequently reduces apoptosis activation in the cells. Similar observations have been 

made in respect to cisplatin resistance (Papouli, Cejka and Jiricny, 2004).  

 
Literature shows that chemo-resistant cells can be reliant on the dysregulation of DDR pathways as 

a mechanism of resistance, making these pathways an attractive therapeutic target (see section 

1.3.2.4) (Goldstein and Kastan, 2015). A new class of drugs have been developed which target the 

DDR pathways through small molecule inhibition. Many clinical trials are underway to investigate 
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these compounds both as monotherapies, and also as combinational therapies (Brandsma et al., 

2017). 

 
The DDR inhibitor monotherapies have been found to work particularly well with cancers that 

already demonstrate a mutational defect in a DDR gene. These pre-existing defects in the DDR can 

make the cells reliant on a secondary repair pathway, of which therapeutic inhibition results in 

synthetic lethality (see section 1.4.2). One of the most recent successful monotherapy treatments 

to be registered as an approved drug is olaparib, a PARP inhibitor, for the treatment of ovarian 

cancer. Inhibition of PARP in cell lines with a loss-of-function germline mutation in BRCA1 or BRCA2, 

proteins that are critical for the repair of double strand DNA (dsDNA) breaks, result in a synthetic 

lethal relationship (Lord and Ashworth, 2017). It is evident that more biomarkers of sensitivity need 

to be identified for such monotherapies to be successful.  

 
Research into combined use of DDR inhibitors and chemotherapeutic agents for the treatment of 

cancer are underway. The combinational therapy had been found to not only enhance and augment 

the chemotherapeutic agents, but also overcome drug resistance. One such example, is the 

combination of cisplatin with inhibition of CHK1. A recent publication has found that the CHK1 

inhibitors, Prexasertib and AZD6672, in combination with cisplatin, enhanced cisplatin antitumor 

activity and overcame cisplatin resistance in small cell lung cancer (SCLC) cells (Hsu et al., 2019). 

Another example, is the phase II clinical study underway in advanced solid tumours, with the 

combination of the CHK1 inhibitor, SRA737, with gemcitabine (NCT02797977). 

 
Defects in genes associated to DDR pathways, that may have arisen in the process of acquiring drug 

resistance, may result in a synthetic lethal relationship when a second component on the same or 

alternate DDR pathway is inhibited with targeted drugs. This highlights the potential of DDR 

inhibitors as a second line therapy option. Screening of pre-clinical chemo-resistant cell models with 

inhibitors of the DDR may identify patterns of cross-resistance or acquired vulnerability, which can 

be used to predict the use of these drugs as a second line therapy.  

 
In Chapter 3, the morphology and cross-resistance to chemotherapy agents in both the chemo-

naive and chemo-resistant TNBC cell lines were investigated to identify patterns of cross- resistance 

and vulnerability. This chapter aims to assess the option of DDR inhibitors as a second-line therapy, 

in these chemo-resistant settings. To achieve this, both the chemo-naive and chemo-resistant TNBC 

cell lines will be screened against a panel of DDR inhibitors to identify patterns of cross-resistance 

and acquired vulnerability. 
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4.2 Results 

4.2.1 Drug profiling of DNA damage response inhibitors in TNBC cell lines 

 
In order to determine if any of the chemo-resistant TNBC cell lines demonstrated patterns of cross-

resistance or acquired vulnerability to inhibitors of the DDR, each of the cell lines was treated with 

the inhibitors in Table 4.1. Dose response curves were generated to a serial dilution of the inhibitors 

using a 120-hour MTT assay, and the GI50 and the RF determined, as previously described in Chapter 

3. As stated in Chapter 3, cross-resistance is defined when the calculated RF ≥ 2, and acquired 

vulnerability when the calculated RF is ≤ 0.5, and both demonstrated statistical significance using 

the student’s t-test (p ≤ 0.05). Calculated GI50 and RF’s for each cell line and drug combination are 

in Appendix A3. Cells were plated at their optimal seeding density as established in Chapter 3. 

 

Table 4.1. Panel of inhibitors targeting the DNA damage response and repair pathways 
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4.2.1.1 Drug profiling of CHK1 inhibitors; Rabusertib, MK-8776, SRA737, Prexasertib 

 
The response of each of the TNBC cell lines was determined, when treated with the four structurally 

different CHK1 inhibitors; rabusertib, MK-8776, SRA737 and prexasertib (Figure 4.1). Each of the 

CHK1 inhibitors have demonstrated to be potent inhibitors of CHK1, and are all ATP-competitive 

(Montano et al., 2012; King et al., 2014, 2015; Walton et al., 2015). It was interesting to note that 

the same patterns of cross-resistance in the cell lines were not seen with each of the four CHK1 

inhibitors. This could be a result of differences in the drugs specificity, efficacy, and drug influx or 

efflux.  

 
It was noted that both HCC38 and HCC1806 are sensitive to each of the CHK1 inhibitors, with GI50 

values in the range of and 0.000834 µM – 0.122 µM and 0.0043 µM – 0.465 µM respectively, 

compared to the MDA-MB-468 which demonstrated higher GI50 values in the range of 0.0233 µM – 

4.3 µM. This suggests intrinsic resistance to the CHK1 inhibitors in the MDA-MB-468, compared to 

the two other chemo-naive cell lines.  

 
Only HCC38rCDDP3000 and HCC1806rDOX12.5 demonstrated cross-resistance to all four of the CHK1 

inhibitors with RF’s in the range of 8.42 – 15.34 and 2.15 – 3.67 respectively. HCC38rCDDP3000 had a 

higher RF of 15.34 when treated with rabusertib, compared to the other cell lines which 

demonstrated an RF < 4. MDA-MB-468rPCL20 demonstrated acquired vulnerability to rabusertib (RF 

= 0.5), but cross-resistance to MK-8776 (RF = 3.84). Acquired vulnerability was also seen in MDA-

MB-468rCDDP1000 to prexasertib (RF = 0.23). Both MDA-MB-468rDOX50 and MDA-MB-468rERI50 

demonstrated cross-resistance to SRA737 (RF = 2.57, 2.32 respectively), but only MDA-MB-

468rERI50 demonstrated cross-resistance to prexasertib (RF = 8.99). HCC38rGEM20 demonstrated 

cross-resistance to each of the CHK1 inhibitors except MK-8776. HCC1806rERI50 and HCC1806rPCL20, 

demonstrated cross-resistance to both rabusertib (RF = 3.4, 2.87 respectively) and MK-8776 (RF = 

3.13, 4.62 respectively), but not to the other two CHK1 inhibitors. HCC1806rGEM20 and 

HCC1806rPCL20 also demonstrated cross-resistance to MK-8776 (RF = 3.17, 4.62 respectively). The 

rest of the chemo-resistant cell lines showed no statistically significant fold change to the CHK1 

inhibitors.  
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Figure 4.1 GI50 value determinations and resistance factors upon treatment with CHK1 inhibitors in the TNBC cell lines 
The response of TNBC cell lines to stated CHK1 inhibitors was determined by 120-hour MTT assay and analysed using GraphPad Prism 6. 
A, C, E, G) Determined GI50 concentrations upon treatment with stated CHK1 inhibitors. Dot represents a single biological repeat from 
≥3 independent experiments, horizontal line shows standard deviation and vertical line shows the mean. B, D, F, H) Calculated resistance 
factor (RF) to stated CHK1 inhibitors. Dotted line indicates two-fold RF. Statistical significance calculated using student’s t-test, * P ≤ 0.05, 
** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.00001. Colour indicates resistance status: red = resistant (RF >2, and ≥ * p), blue = acquired 
vulnerability (RF < 0.5 and ≥ * p), white = no change.  Numerical data is presented in Appendix A3. 
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4.2.1.2 Drug profiling of ATR inhibitors; Ceralasertib, Berzosertib, and ATM inhibitor; AZD0156 

 
The response of each of the TNBC cell lines was determined when treated with two structurally 

different ATR inhibitors; ceralasertib, berzosertib, as well as the ATM inhibitor; AZD0156 (Figure 

4.2). ATR is found directly upstream of CHK1, and its activating phosphorylation on CHK1 occurs in 

response to DNA damage. Ceralasertib is a sulfoximine morpholinopyrimidine ATR inhibitor, and 

berzosertib is an aminopyrazine ATR inhibitor. Both are ATP-competitive and selective for ATR 

inhibition (Vendetti et al., 2015; Foote et al., 2018; Gorecki et al., 2020). ATM is found directly 

upstream of CHK2, but has also been found to be implicated in phosphorylation and activation of 

CHK1. AZD0156 is a potent, selective inhibitor of ATM (Pike et al., 2018). 

 
It was observed that HCC38 and HCC1806 are more sensitive to both of the ATR inhibitors (Figure 

4.2 A-D), with GI50 values in the range of and 0.0631 µM – 0.216 µM and 0.0.888 µM – 0.34 µM 

respectively, compared to MDA-MB-468, which has higher GI50 values in the range of 0.1793 µM – 

0.651 µM. This pattern of sensitivity is the same as the response to CHK1 inhibitors (section 4.2.1.1). 

Each of the chemo-naive cell lines are more sensitive to berzosertib than to ceralasertib. The cell 

lines; HCC38rCDDP3000, HCC1806rDOX12.5, HCC1806rGEM20 and HCC1806rPCL20 all show cross-

resistance to both ceralasertib (RF = 7.32, 3.31, 3.70 and 6.96 respectively) and berzosertib (RF = 

4.56, 2.61, 2.43, 2.78). MDA-MB-468rDOX50, HCC38rGEM20, HCC1806rCDDP500, HCC1806rERI50 all 

demonstrate cross-resistance to ceralasertib (RF = 2.17, 3.99, 1.99, and 2.91 respectively), but not 

to berzosertib. It was noted that HCC38rCDDP3000 and HCC1806rDOX12.5, which demonstrated cross-

resistance to all four of the CHK1 inhibitors, both demonstrated cross-resistance to the ATR 

inhibitors (section 4.2.1.1). The rest of the chemo-resistant cell lines showed no statistically 

significant fold change to the ATR inhibitors.  

 
When the TNBC cells were treated with the ATM inhibitor; AZD0156 (Figure 4.2 E-F), MDA-MB-468 

and HCC1806 had GI50 values of 1.6 µM and 0.637 µM respectively, whilst HCC38 demonstrated a 

higher GI50 value of 4.01 µM. MDA-MB-468rCDDP1000, MDA-MB-468rDOX50, MDA-MB-468rERI50 and 

HCC38rCDDP3000 all showed acquired vulnerability to AZD0156 (RF = 0.40, 0.43, 0.18, 0.35 

respectively). HCC1806rDOX12.5, HCC1806rERI50, HCC1806rGEM20 and HCC1806rPCL20 all showed 

cross-resistance to treatment with AZD0156 (RF = 3.66, 2.16, 2.93, 7.70 respectively). The rest of 

the chemo-resistant cell lines showed no statistically significant fold change to the ATM inhibitors. 
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Figure 4.2 GI50 value determinations and resistance factors upon treatment with ATR/ATM inhibitors in the TNBC cell lines 
The response of TNBC cell lines to stated ATR/ATM inhibitors was determined by 120-hour MTT assay and analysed using GraphPad 
Prism 6. A, C, E) Determined GI50 concentrations upon treatment with stated ATR/ATM inhibitors. Dot represents a single biological 
repeat from ≥3 independent experiments, horizontal line shows standard deviation and vertical line shows the mean. B, D, F) Calculated 
resistance factor (RF) to stated ATR/ATM inhibitors. Dotted line indicates two-fold RF. Statistical significance calculated using student’s 
t-test, * P ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.00001. Colour indicates resistance status: red = resistant (RF >2, and ≥ * p), blue 
= acquired vulnerability (RF < 0.5 and ≥ * p), white = no change. Numerical data is presented in Appendix A3. 

 
 
 
 
 



4. Investigating the response of chemo-resistant TNBC to inhibitors of the DNA damage response pathway 

 

102 
 

4.2.1.3 Drug profiling of WEE1 inhibitors; Adavosertib, and CHK2 inhibitor; CCT241533 
 
WEE1 is a serine/threonine kinase known to be downstream of CHK1, with important roles in cell 

cycle regulation, such as its key role in inhibitory phosphorylation of CDK1 (Russell and Nurse, 1987). 

Adavosertib has been shown to be a potent ATP-competitive selective inhibitor of WEE1 (Guertin 

et al., 2013; Yuan et al., 2018). Upon treatment with adavosertib, HCC38 and HCC1806 show GI50 

values of 0.0489 µM and 0.0651 µM, whilst MDA-MB-468 has a much higher GI50 value of 0.207 

µM, approximately 3-4-fold greater (Figure 4.3 A-B). This pattern of sensitivity is the same as the 

response to CHK1 inhibitors (section 4.2.1.1), and the ATR inhibitors (section 4.2.1.2). MDA-MB-

468rERI50, HCC38rCDDP3000, HCC1806rDOX12.5, HCC1806rERI50 and HCC1806rPCL20 all demonstrate 

cross-resistance upon treatment with adavosertib (RF = 5.40, 4.88, 2.16, 3.30, 2.92 respectively). 

MDA-MB-468rCDDP1000 demonstrated acquired vulnerability to adavosertib with an RF = 0.35. It 

was noted that also MDA-MB-468rCDDP1000 also demonstrated acquired vulnerability to prexasertib 

and AZD0156, and showed no cross-resistance to any of the CHK1 or ATR inhibitors (section 4.2.1.1, 

4.2.1.2). HCC38rCDDP3000 and HCC1806rDOX12.5, which demonstrated cross-resistance to all four of 

the CHK1 inhibitors, and both ATR inhibitors, also demonstrated cross-resistance to Adavosertib 

(section 4.2.1.1, 4.2.1.2). The rest of the chemo-resistant cell lines showed no statistically significant 

fold change to adavosertib.  

 
CHK2, is a serine/threonine kinase known to be phosphorylated by ATM upon dsDNA damage. 

CCT241533 is an ATP-competitive, selective inhibitor of CHK2 (Anderson et al., 2011b). Upon 

treatment with CCT241533, it was observed that the chemo-naive cell lines; MDA-MB-468, HCC38, 

HCC1806, had very similar GI50 values of 1.39µM, 1.03 µM and 2.27 µM respectively (Figure 4.3 C-

D). The chemo-resistant cell lines demonstrated no statistically significant fold change in response 

to CCT241533, with an exception of MDA-MB-468rPCL20, which demonstrated cross-resistance (RF 

= 2.42), and HCC1806r5-F1500, which demonstrated acquired vulnerability (RF = 0.422).  
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Figure 4.3 GI50 value determinations and resistance factors upon treatment with WEE1/CHK2 inhibitors in the TNBC cell lines 
The response of TNBC cell lines to stated WEE1/CHK2 inhibitors was determined by 120-hour MTT assay and analysed using GraphPad 
Prism 6. A, C, E, G) Determined GI50 concentrations upon treatment with stated WEE1/CHK2 inhibitors. Dot represents a single biological 
repeat from ≥3 independent experiments, horizontal line shows standard deviation and vertical line shows the mean. B, D, F, H) 
Calculated resistance factor (RF) to stated WEE1/CHK2 inhibitors. Dotted line indicates two-fold RF. Statistical significance calculated 
using student’s t-test, * P ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.00001. Colour indicates resistance status: red = resistant (RF >2, 
and ≥ * p), blue = acquired vulnerability (RF < 0.5 and ≥ * p), white = no change. Numerical data is presented in Appendix A3. 
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4.2.1.4 Drug profiling of Rad51 inhibitor; B02 and PARP inhibitors; Olaparib, Rucaparib 

 
RAD51 is a key enzyme which plays an important role in homologous strand exchange, a crucial 

step in HRR (section 1.4.1.2). B02 has been identified as a RAD51 specific inhibitor, inhibiting the 

development of RAD51 foci formation (Huang and Mazin, 2011; Huang et al., 2012). Upon 

treatment with B02, MDA-MB-468 and HCC1806 show a similar sensitivity with GI50 values of 4.5 

µM and 5.56 µM respectively. A higher GI50 was observed in HCC38 with a value of 11.5 µM, 

approximately two-fold greater than MDA-MB-468 and HCC1806 (Figure 4.4A). Only HCC1806rPCL20 

demonstrated cross-resistance to B02 with an RF value of 2.64 (Figure 4.4A, B). No other statistically 

significant fold changes were identified when the chemo-resistant cell lines were treated with B02. 

 
PARP proteins are associated with the repair of dsDNA break, and the polymerised chains can act 

as a signal for other DNA repair proteins (section 1.4.1.2). Both PARP inhibitors target the PARP 

proteins but are structurally different, with olaparib inhibiting PARP 1/2/3, whilst rucaparib is more 

promiscuous in its binding to the PARP proteins (Thomas et al., 2007; Wahlberg et al., 2012). The 

response of each of the TNBC cell lines was determined, when treated with the two structurally 

different PARP inhibitors; olaparib and rucaparib (Figure 4.4C-F). MDA-MB-468 is the most sensitive 

out of the chemo-naive cell line with a GI50 value of 1.02 µM and 1.77 µM to olaparib and rucaparib 

respectively. Higher GI50 values are seen in HCC38 and HCC1806 which demonstrate 4.36 µM and 

3.7 µM to olaparib respectively, and 5.39 µM and 5.36 µM to rucaparib respectively. Each cell line 

that demonstrates cross-resistance to rucaparib (MDA-MB-468rCDDP1000; RF = 4.27, MDA-MB-

468rERI50; RF = 5.18 , MDA-MB-468rPCL20; RF = 7.97, HCC38rCDDP3000; RF = 3.19, HCC38rDOX40; RF = 

4.10, HCC38rPCL2.5; RF =2.57 , HCC1806rCDDP500; RF = 2.36, HCC1806rDOX12.5; RF =3.72, 

HCC1806rERI50; RF =2.74, HCC1806rPCL20; RF = 4.40) also demonstrates cross-resistance to olaparib 

(MDA-MB-468rCDDP1000; RF = 7.14, MDA-MB-468rERI50; RF = 21.4, MDA-MB-468rPCL20; RF = 21.50, 

HCC38rCDDP3000; RF = 3.04, HCC38rDOX40; RF = 3.812, HCC38rPCL2.5; RF = 3.7, HCC1806rCDDP500; RF 

= 6.42, HCC1806rDOX12.5; RF = 4.06, HCC1806rERI50; RF = 3.51, HCC1806rPCL20; RF = 9.35). 

HCC1806rGEM20 and MDA-MB-468rDOX50 only demonstrate cross-resistance to olaparib and not to 

rucaparib (RF = 2.11, 4.82 respectively). HCC38rERI10, HCC38rGEM20 and HCC1806r5-F1500 show no 

statistically significant change to both of the PARP inhibitors.  
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Figure 4.4 GI50 value determinations and resistance factors upon treatment with RAD51/PARP inhibitors in the TNBC cell lines 
The response of TNBC cell lines to stated RAD51/PARP inhibitors was determined by 120-hour MTT assay and analysed using GraphPad 
Prism 6. A, C, E, G) Determined GI50 concentrations upon treatment with stated RAD51/PARP inhibitors. Dot represents a single biological 
repeat from ≥3 independent experiments, horizontal line shows standard deviation and vertical line shows the mean. B, D, F, H) 
Calculated resistance factor (RF) to stated RAD51/PARP inhibitors. Dotted line indicates two-fold RF. Statistical significance calculated 
using student’s t-test, * P ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.00001. Colour indicates resistance status: red = res istant (RF >2, 
and ≥ * p), blue = acquired vulnerability (RF < 0.5 and ≥ * p), white = no change. Numerical data is presented in Appendix A3. 
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4.2.1.5 Drug profiling of Polo kinase inhibitors; BI2536, SBE13 and Aurora Kinase inhibitors; 

Alisertib, Tozasertib 

 
The final four drugs analysed in this drug profiling, are second-generation mitotic drugs, targeting 

polo kinases (PLK) and aurora kinases (AURK). Both PLK, and AURK have integral roles in cell cycle 

progression, mitotic spindle assembly and are activated during the DDR (section 1.4.2). BI2536 is a 

potent, selective PLK1 inhibitor, but has some weaker activity against PLK2, PLK3, and 

bromodomain 4 (BRD4) (Steegmaier et al., 2007; Gohda et al., 2018). SBE13 inhibits both PLK1 and 

PLK2, with weaker activity against PLK3 and tyrosine-protein kinase BTK (Kumar and Kim, 2015). 

 
When treated with BI2536, MDA-MB-468, HCC38 and HCC1806 showed little difference in 

sensitivity with GI50 values of 2.01 nM, 3.2 nM and 1.16 nM. A greater difference was seen when 

treated with SBE13. MDA-MB-468 was more sensitive, with a GI50 value of 4.97 µM, compared to 

HCC38 and HCC1806 which showed similar GI50 values of 47.6 µM and 31.6 µM respectively. Overall, 

the chemo-naive cell lines demonstrated more sensitivity to BI2536 compared to SBE13 (Figure 

4.5A, C). Cross-resistance was seen in MDA-MB-468rERI50, MDA-MB-468rPCL20, HCC38rERI10, 

HCC1806rDOX12.5, HCC1806rERI50, HCC1806rGEM20 and HCC1806rPCL20 upon treatment with BI2536 

(RF = 13.68, 24.17, 9665.57, 3.24, 1.99, 15.03 respectively). Only MDA-MB-468rPCL20 demonstrated 

cross-resistance to SBE13 (RF = 4.48), and HCC38rCDDP3000 and HCC1806r5-F1500 demonstrated an 

acquired vulnerability to SBE 13 (RF = 0.366, 0.45 respectively) (Figure 4.5 B, D). The rest of the 

chemo-resistant cell lines showed no statistically significant fold change to BI2536 and SBE13. 

 
Alisertib is a selective, potent inhibitor of AURKA, and is structurally different from tozasertib which 

inhibits both AURKA and AURKB (Bebbington et al., 2009; Manfredi et al., 2011). When treated with 

alisertib both MDA-MB-468 and HCC1806 showed similar GI50 of 5.05 µM and 6.41 µM, whilst 

HCC38 had a higher GI50 of 10.9 µM (Figure 4.5E). This was not seen when the chemo-naive cell 

lines were treated with tozasertib, as both MDA-MB-468 and HCC38 have GI50 values of 0.0139 µM 

and 0.0329 µM, whilst HCC1806 had a higher GI50 value of 0.268 µM (Figure 4.5G). The chemo-naive 

cell lines demonstrated a greater sensitivity to tozasertib than alisertib. MDA-MB-468rPCL20 

demonstrated cross-resistant to both alisertib and tozasertib (RF = 8.74 and 29.28 respectively). 

HCC38rERI10 only demonstrated cross-resistance to alisertib (RF = 3.56), and MDA-MB-

468rCDDP1000, MDA-MB-468rDOX50, MDA-MB-468rERI50 and HCC1806rDOX12.5 demonstrated cross-

resistance only to tozasertib (RF = 3.42, 2.64, 21.16, 49.63). It was noted that MDA-MB-468rPCL20 

had demonstrated a strong cross-resistance to each of the second-generation mitotic drugs tested 

here (Figure 4.5 F, H).  
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Figure 4.5 GI50 value determinations and resistance factors upon treatment with Polo/Aurora kinase inhibitors in the TNBC cell lines 
The response of TNBC cell lines to stated Polo/Aurora kinase inhibitors was determined by 120-hour MTT assay and analysed using 
GraphPad Prism 6. A, C, E, G) Determined GI50 concentrations upon treatment with stated Polo/Aurora kinase inhibitors. Dot represents 
a single biological repeat from ≥3 independent experiments, horizontal line shows standard deviation and vertical line shows the mean. 
B, D, F, H) Calculated resistance factor (RF) to stated Polo/Aurora kinase inhibitors. Dotted line indicates two-fold RF. Statistical 
significance calculated using student’s t-test, * P ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.00001. Colour indicates resistance status: 
red = resistant (RF >2, and ≥ * p), blue = acquired vulnerability (RF < 0.5 and ≥ * p) , white = no change. Numerical data is presented in 
Appendix A3. 
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4.2.2 Intrinsic resistance and cross-resistance patterns 

 
TNBC is highly heterogenic, harbouring different genetic mutations, which can result in cell lines 

demonstrating a different predisposition to certain drugs. The chemo-naive cell lines in this panel 

were selected to reflect this heterogenic nature (Table 3.1). The measurement of cross-resistance 

in the chemo-resistant TNBC cell lines, are relative to the respective chemo-naive, and does not 

reflect an absolute measure of drug activity. Consideration of patterns of intrinsic drug resistance 

was conducted in the chemo-naive cell lines, to understand if this had an outcome on the cross-

resistance patterns seen in the chemo-resistant cell lines (Figure 4.6). 

 
MDA-MB-468 showed intrinsic resistance to three of the CHK1 inhibitors; rabusertib, SRA737, MK-

8776 (Figure 4.6). It was noted that very few MDA-MB-468 chemo-resistant cell lines demonstrated 

cross-resistance to these drugs, all be it, that the GI50 values were higher than any of the HCC38 and 

HCC1806 chemo-naive and chemo-resistant cell lines (Figure 4.1). HCC38 demonstrated intrinsic 

resistance to both AZD0156 and B02 inhibitors, compared to MDA-MB-468 and HCC1806. MDA-

MB-468 showed acquired vulnerability to AZD0156 compared to the other chemo-naive cell lines, 

although the GI50 values were similar to HCC1806 chemo-resistant cell lines, which demonstrated 

cross-resistance (Figure 4.2). No statistically significant fold changes were seen with inhibition of 

B02, with an exception to HCC1806rPCL20, which demonstrated cross-resistance. Finally, both 

HCC38 and HCC1806 demonstrated intrinsic resistance to cisplatin and SBE13 compared to MDA-

MB-468 (Figure 4.6). HCC38rCDDP3000 demonstrated acquired vulnerability to SBE13, although the 

GI50 value was higher than the MDA-MB-468 cell lines, with an exception to MDA-MB-468rPCL20 

(Figure 4.5). Although MDA-MB-468rPCL20 demonstrated cross-resistance to SBE13 the GI50 value 

was lower than the HCC38 and HCC1806 cell lines (Figure 4.5). 
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Figure 4.6 GI50 value determinations of chemo-naive cell lines to panel of drugs 
The response of chemo-naive TNBC cell lines to stated drugs was determined by 120-hour MTT assay and analysed using GraphPad Prism 
6. Each dot represents a single biological repeat from ≥3 independent experiments, horizontal line shows standard deviation and vertical 
line shows the mean. Numerical data is presented in Appendix A1, A2.  

 
Heatmaps were generated to visualise patterns of cross-resistance and acquired vulnerability in the 

chemo-resistant cell lines, in relation to the chemo-naive counterpart (Figure 4.7). Chemo-resistant 

MDA-MB-468 all demonstrated cross-resistance to doxorubicin, tozasertib, olaparib, and the 

majority to eribulin and rucaparib. All showed either acquired vulnerability, or no change, in 

response to AZD0156, rabusertib, berzosertib and B02, and most to CCT241533 and adavosertib 

(Figure 4.7A). Chemo-resistant HCC38 cell lines showed almost all to be cross-resistant to 5-

Fluorouracil, but no other significant cross-resistant patterns. All chemo-resistant HCC38 cell lines 

showed acquired vulnerability or no change to AZD0156, CCT241533, SBE13, and almost all to 

BI2536, alisertib and tozasertib (Figure 4.7B). Most of the chemo-resistant HCC1806 cell lines 

showed cross-resistance to 5-Fluorouacil, eribulin, doxorubicin, olaparib, rucaparib, alisertib, MK-

8776, rabusertib, ceralasertib and AZD015, whilst most showed acquired vulnerability or no change 

to CCT241533, SRA737, cisplatin, SBE13, B02 and tozasertib (Figure 4.7C). 

 
Taken together, these data suggests that patterns of cross-resistance or acquired vulnerability seen 

in the chemo-resistant cell lines can be a result of intrinsic resistance or vulnerability in the chemo-

naive cell line. This could be due to genetic mutations present in the chemo-naive cell line which 

can pre-dispose the cell lines to certain drugs. 
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Figure 4.7 Heatmap showing cross-resistance and acquired vulnerability after drug profiling analysis in chemo-resistant TNBC cell lines 
Cross-resistance and acquired vulnerability were determined from the calculated resistance factor (RF)  in the chemo-resistant cells lines 
derived from A) MDA-MB-468, B) HCC38, C) HCC1806. Statistical significance and 2-fold RF indicate resistance status whereby; red = 
resistant (RF >2, and ≥ * p), blue = acquired vulnerability (RF < 0.5 and ≥ * p), white = no change relative to the respective chemo-naïve 
cell line. Numerical data is presented in Appendix A1, A2. 
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4.2.3 Patterns of cross-resistance in cell lines adapted to the same drug 

 
Next, chemo-resistant TNBC cell lines adapted to have chemo-resistance to the same drug, were 

compared to each other, in order to identify any similar patterns of cross-resistance or acquired 

vulnerability. Volcano plots were generated to consider the GI50 fold change in relation to the p 

value calculated using the students t-test generated earlier in this chapter.  

 
All three cisplatin resistant cell lines showed cross-resistant to olaparib and rucaparib, whilst all 

showed no change or acquired vulnerability to paclitaxel, AZD0156, CCT241533, B02, BI2536, SBE13 

and alisertib (Figure 4.8). It was noted that HCC38rCDDP3000 showed cross-resistance to all CHK1, 

ATR and WEE1 inhibitors, and this was seen at a greater RF than to cisplatin itself (Figure 4.8). This 

pattern of cross-resistance was not seen in the other two cisplatin resistant cell lines. Both MDA-

MB-468rCDDP1000 and HCC1806rCDDP500 demonstrated cross-resistance to eribulin, but 

HCC38rCDDP3000 demonstrated acquired vulnerability (Figure 4.8).  

 
All three doxorubicin resistant cell lines showed cross-resistance to olaparib, whilst all showed 

either no change or acquired vulnerability to cisplatin, gemcitabine, paclitaxel, CCT241533, B02 and 

SBE13. HCC1806rDOX12.5 showed cross-resistance to all CHK1, ATR, WEE1 and ATM inhibitors. MDA-

MB-468rDOX50 demonstrated cross-resistance to only SRA737 and ceralasertib and acquired 

vulnerability to AZD0156, whilst HCC38rDOX40 demonstrated no change to the CHK1, ATR, WEE1 

and ATM inhibitors (Figure 4.9).  

 
Each of the eribulin resistant cell lines demonstrated cross-resistance to paclitaxel, doxorubicin and 

BI2536, whilst all showed no change or acquired vulnerability to 5-Fluorouracil, cisplatin, 

berzosertib, CCT241533, B02, SB13 (Figure 4.10). HCC38rERI10 demonstrated a greater RF to BI2536, 

than to eribulin itself. 

 
All three paclitaxel resistant cell lines demonstrated cross-resistance to olaparib and rucaparib, and 

showed no change or acquired vulnerability to gemcitabine and prexasertib (Figure 4.11). MDA-

MB-468rPCL20 and HCC1806rPCL20 demonstrated cross-resistance to eribulin, and with a greater RF 

than to paclitaxel itself. Both of these cell lines also exhibited cross-resistance to BI2536 and 

doxorubicin. This pattern of cross-resistance to BI2536, doxorubicin and eribulin was not seen in 

HCC38rPCL2.5 (Figure 4.11).  
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Both of the gemcitabine resistant cell lines only demonstrated cross-resistance to 5-Fluorouracil, 

and showed no change or acquired vulnerability to paclitaxel, adavosertib, CCT241533, B02, 

BI2536, SBE13, tozasertib and rucaparib (Figure 4.12). HCC38rGEM20 demonstrated acquired 

vulnerability to doxorubicin and eribulin with an RF of 0.36 and 0.39 respectively, whilst 

HCC1806rGEM20 demonstrated cross-resistance to doxorubicin and eribulin with an RF of 10.79 and 

7.59 respectively.  

 
There was only one 5-Fluorouracil resistant cell line in this data set; HCC1806r5-F1500. HCC1806r5-

F1500 did not demonstrate any cross-resistance to any of the drugs in the panel (Figure 4.13). 

However, other cells lines had demonstrated cross-resistance to 5-Fluorouracil (Figure 3.16). 

Acquired vulnerability was seen in HCC1806r5-F1500 to two drugs; CCT241533 (RF = 0.42) and SBE13 

(RF = 0.45).  

 

 

 

 

 
Figure 4.8 Volcano plot and heatmap of drug profiling analysis of cisplatin resistant TNBC cell lines 
Analysis of cross-resistance and acquired vulnerability in the cisplatin resistant cell lines. Volcano plot shows calculated resistance factor 
(RF) against calculated p value from student t-test. Each dot represents a drug from the panel tested against a cisplatin resistant cell line. 
Blue dots have a ≥ 2-fold RF, black dots are < 2-fold RF. Dotted line indicates * p < 0.05. Heat map shows cross-resistance and acquired 
vulnerability in cisplatin resistant cell lines. Statistical significance and 2-fold RF indicate resistance status whereby; red = resistant (RF 
>2, and ≥ * p), blue = acquired vulnerability (RF < 0.5 and ≥ * p), white = no change relative to the respective chemo-naive. Numerical 
data is presented in Appendix A1, A2. 

 



4. Investigating the response of chemo-resistant TNBC to inhibitors of the DNA damage response pathway 

 

113 
 

 

 
Figure 4.9 Volcano plot and heatmap of drug profiling analysis of doxorubicin resistant TNBC cell lines  
Analysis of cross-resistance and acquired vulnerability in the doxorubicin resistant cell lines. Volcano plot shows calculated resistance 
factor (RF) against calculated p value from student t-test. Each dot represents a drug from the panel tested against a doxorubicin resistant 
cell line. Blue dots have a ≥ 2-fold RF, black dots are < 2-fold RF. Dotted line indicates * p < 0.05. Heat map shows cross-resistance and 
acquired vulnerability in doxorubicin resistant cell lines. Statistical significance and 2-fold RF indicate resistance status whereby; red = 
resistant (RF >2, and ≥ * p), blue = acquired vulnerability (RF < 0.5 and ≥ * p), white = no change relative to the respectiv e chemo-naive. 
Numerical data is presented in Appendix A1, A2. 
 
 

 

 
Figure 4.10 Volcano plot and heatmap of drug profiling analysis of eribulin resistant TNBC cell lines 
Analysis of cross-resistance and acquired vulnerability in the eribulin resistant cell lines. Volcano plot shows calculated resistance factor 
(RF) against calculated p value from student t-test. Each dot represents a drug from the panel tested against an eribulin resistant cell 
line. Blue dots have a ≥ 2-fold RF, black dots are < 2-fold RF. Dotted line indicates * p < 0.05. Heat map shows cross-resistance and 
acquired vulnerability in eribulin resistant cell lines. Statistical significance and 2-fold RF indicate resistance status whereby; red = 
resistant (RF >2, and ≥ * p), blue = acquired vulnerability (RF < 0.5 and ≥ * p), white = no change relative to the respectiv e chemo-naive. 
Numerical data is presented in Appendix A1, A2. 
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Figure 4.11 Volcano plot and heatmap of drug profiling analysis of paclitaxel resistant TNBC cell lines 
Analysis of cross-resistance and acquired vulnerability in the paclitaxel resistant cell lines. Volcano plot shows calculated resistance factor 
(RF) against calculated p value from student t-test. Each dot represents a drug from the panel tested against a paclitaxel resistant cell 
line. Blue dots have a ≥ 2-fold RF, black dots are < 2-fold RF. Dotted line indicates * p < 0.05. Heat map shows cross-resistance and 
acquired vulnerability in paclitaxel resistant cell lines. Statistical significance and 2-fold RF indicate resistance status whereby; red = 
resistant (RF >2, and ≥ * p), blue = acquired vulnerability (RF < 0.5 and ≥ * p), white = no change relative to the res pective chemo-naive. 
Numerical data is presented in Appendix A1, A2. 
 

 

 
Figure 4.12 Volcano plot and heatmap of drug profiling analysis of gemcitabine resistant TNBC cell lines 
Analysis of cross-resistance and acquired vulnerability in the gemcitabine resistant cell lines. Volcano plot shows calculated resistance 
factor (RF) against calculated p value from student t-test. Each dot represents a drug from the panel tested against a gemcitabine 
resistant cell line. Blue dots have a ≥ 2-fold RF, black dots are < 2-fold RF. Dotted line indicates * p < 0.05. Heat map shows cross-
resistance and acquired vulnerability in gemcitabine resistant cell lines. Statistical significance and 2-fold RF indicate resistance status 
whereby; red = resistant (RF >2, and ≥ * p), blue = acquired vulnerability (RF < 0.5 and ≥ * p), white = no change relative to the respective 
chemo-naive. Numerical data is presented in Appendix A1, A2. 
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Figure 4.13 Volcano plot and heatmap of drug profiling analysis of 5-fluorouracil resistant TNBC cell line 
Analysis of cross-resistance and acquired vulnerability in the 5-flurouracil resistant cell line. Volcano plot shows calculated resistance 
factor (RF) against calculated p value from student t-test. Each dot represents a drug from the panel tested against the 5-flurouracil 
resistant cell line. Blue dots have a ≥ 2-fold RF, black dots are < 2-fold RF. Dotted line indicates * p < 0.05. Heat map shows cross-
resistance and acquired vulnerability in 5-flurouracil resistant cell line. Statistical significance and 2-fold RF indicate resistance status 
whereby; red = resistant (RF >2, and ≥ * p), blue = acquired vulnerability (RF < 0.5 and ≥ * p), white = no change relative to the respective 
chemo-naive. Numerical data is presented in Appendix A1, A2. 

 

4.2.4 Overall cross-resistance 

 
Given the need to determine viable second-line therapies after acquired drug resistance has occurred, it was 

important to divide the drugs based on their response in the cell lines. The chemo-resistant cell lines were 

divided into two groups based on the calculated RF for each drug; 1. resistant/ cross-resistant, 2. acquired 

vulnerability/ no statistically significant change (Figure 4.14).  

 
Out of the fifteen chemo-resistant cell lines; twelve and ten cell lines demonstrated cross-resistance to 

olaparib and rucaparib respectively. Eleven demonstrated resistance/cross-resistance to doxorubicin. One 

cell line showed cross-resistance to CCT214533, B02 and SBE13, with the rest demonstrating either acquired 

vulnerability/ no statistically significant change. Also, only one cell line demonstrated cross-resistance to 

gemcitabine, with the other two counted having been generated to have acquired chemo-resistance.  Taken 

together, these data suggest that it is common to develop cross-resistance to olaparib, rucaparib and 

doxorubicin in cell lines with resistance to chemotherapy agents, whilst it is uncommon for these cell lines to 

develop cross-resistance to gemcitabine CCT241533, B02, alisertib and SBE13.  
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Figure 4.14 Summary of cross-resistance and acquired vulnerability of each drug across the drug-resistant TNBC cell lines 
Each of the fifteen chemo-resistant cell lines were considered for cross-resistance or acquired vulnerability/no change to each drug 
tested in the panel (as stated). Red indicates the number of cell lines showing resistance/cross-resistance to stated drug, and blue 
indicates the number of cell lines showing acquired vulnerability/ no change to stated drug.  

 
 

4.2.5 ∆ method to identify differential effects of drug activity profiles in TNBC cell lines 

 
Earlier in this chapter, patterns of cross-resistance were defined in the chemo-resistant cell lines, 

which considers the development of cross-resistance relative to the chemo-naive counterpart, but 

does not reflect an absolute measure of drug activity in the cell lines. The next analysis aimed to 

consider the drug activity profiles across the cell line panel. The ∆ (delta) method was developed 

by the National Cancer Institute (NCI), and can be used in order to emphasise differential effects of 

the panel of drugs against the chemo-naive and chemo-resistant TNBC cell lines (Bracht et al., 

2006). The GI50 values previously obtained in this chapter and Chapter 3 were transformed to ∆GI50 

values using the following equation: 

 

∆GI50 = log (average GI50 in drug over all cell lines) – log (individual GI50 in drug for each cell line) 

 
Linear regression analysis of ∆GI50X versus ∆GI50Y where X and Y represent two different drugs from 

the panel, were performed. The Pearson correlation coefficient (r) was used to establish the level 
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of significance in a two tailed test with (n-2) degrees of freedom, where p ≤ 0.05 was considered 

significant. This analysis was performed on each combination of drugs from the drug panel. Table 

4.2 shows the summary of the analysis, whereby the value in the table are the (r) values and the 

heatmap indicates the level of statistical significance (p values). 

 
Strong positive correlation between the activities of the CHK1 inhibitors was found where r = 0.8495 

– 0.9423, p ≤ 0.0001.  A strong positive correlation was also found between the two ATR inhibitors 

where r = 0.9282, p ≤ 0.0001, and between the two PARP inhibitors where r = 0.9433, p ≤ 0.0001. 

Given that the drugs here target the same protein, this was not unexpected. 

 
A strong positive correlation was found between eribulin and paclitaxel, where r = 0.9316, p ≤ 

0.0001. Doxorubicin positively correlated with eribulin (r = 0.491, p ≤ 0.05), and both doxorubicin 

and eribulin positively correlated with alisertib (r = 0.548, p ≤ 0.05 and r = 0.5302, p ≤ 0.05 

respectively) and tozasertib (r = 0.7.374, p ≤ 0.001 and r = 0.5732, p ≤ 0.05 respectively). Paclitaxel 

only positively correlated with the tozasertib (r = 0.575, p ≤ 0.05). Eribulin was also found to 

positively correlate with BI2536 (r = 0.484, p ≤ 0.05), although this was not seen with paclitaxel. 

Further to this, both eribulin and paclitaxel positively correlate with olaparib, alisertib (r = 0.488, p 

≤ 0.05 and r = 0.5048, p ≤ 0.05 respectively). Doxorubicin was also found to positively correlate with 

both PARP inhibitors; olaparib and rucaparib (r = 0.5101 p ≤ 0.05 and r = 0.6071 p ≤ 0.01 

respectively).  

 
It was also interesting to note a positive correlation in the drug activity profiles of eribulin and 

paclitaxel to the CHK1 inhibitor; MK-8776 (r = 0.5057, p ≤ 0.05 and r = 0.5044, p ≤ 0.05 respectively). 

Figure 4.1D shows that HCC1806rERI50, MDA-MB-468rPCL20 and HCC1806rPCL20 each demonstrate 

cross-resistance to MK-8776. The activity to other CHK1 inhibitors differed whereby these cell lines 

showed no change in response to SRA737 and Prexasertib compared to the respective chemo-

naive, and treatment with rabusertib showed acquired vulnerability in MDA-MB-468rPCL20 (RF = 

0.50) and cross-resistance in HCC1806rERI50 and HCC1806rPCL20 (RF = 3.4 and 2.87 respectively) 

(Figure 4.1).  

 
A positive correlation was seen between the drug activity profiles of CHK1, ATR, WEE1 and CHK2 

inhibitors, whilst all demonstrated a negative correlation with the PLK1/2 inhibitor SBE13 (r = - 

0.4767 to - 0.8533 p ≤ 0.0001 to 0.05). The CHK1 inhibitors, with the exception to Prexasertib, all 

demonstrated a negative correlation with ATM inhibitor; AZD0156 (r = -0.5751 to -0.6483 p ≤ 0.01-

0.05), and SRA737 and Prexasertib demonstrated a negative correlation with the RAD51 inhibitor; 



4. Investigating the response of chemo-resistant TNBC to inhibitors of the DNA damage response pathway 

 

118 
 

B02 (r = -0.4938 p ≤ 0.05 and r = -0.481 p ≤ 0.05 respectively). Opposite to this pattern, cisplatin 

demonstrated a negative correlation with the CHK1 inhibitors (r = -0.4702 to -0.6388 p ≤ 0.05 – 

0.01), but a positive correlation with both B02 and SBE13 (r = 0.5292 p ≤ 0.05 and r = 0.5312 p ≤ 

0.05 respectively). AZD0156 demonstrated a positive correlation with both B02 and SBE13 (r = 

0.6437 p ≤ 0.05 and r = 0.7096 p ≤ 0.001 respectively). Taken together, an inverse relationship is 

seen between the drug activity of CHK1, ATR, WEE1 and CHK2 inhibitors, to cisplatin, ATM, RAD51 

and PLK1/2 inhibitors.  
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Table 4.2: Summary of Pearson correlation coefficients and two-tailed test obtained from ∆ method analysis 
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4.2.6 Validation of p21CIP1/WAF1 as a mechanism of drug resistance in HCC38rCDDP3000 

 
Whilst the drug activity profiles of cisplatin negatively correlated with the CHK1 inhibitors (section 

4.2.5), cross-resistance profiling identified that HCC38rCDDP3000 demonstrated a very strong cross-

resistance to each of the CHK1 inhibitors (4.2.1.1), the ATR inhibitors (4.2.1.2) and the WEE1 

inhibitor (4.2.1.3). This contradiction between the drug activity profiles and cross-resistance 

profiling warranted further investigation.  

  
Briefly, cisplatin is known to induce S-phase cell cycle arrest, which is reliant on the activation of 

the DDR pathways through CHK1 (Zhang et al., 2008; Wagner and Karnitz, 2009; Barr et al., 2017). 

CHK1 activity leads to the inhibition of CDC25 and prevents activation of CDK1/2, required for the 

cell to enter G2 (Thompson and Eastman, 2013). It was found that a subset of cancer cell lines were 

sensitive to CHK1 inhibitor, MK-8776, as a monotherapy due to CHK1 requirement for CDK2 

activation in S phase, and those that showed resistance had increased activation of CDK2 in S phase 

(Sakurikar et al., 2016). Further to this, it has also been seen that p21CIP1/WAF1 induction inhibited 

endoreduplication through direct cyclin E/CDK2, and high p21CIP1/WAF1 levels mediate G1 arrest via 

CDK inhibition (Stewart and Leach, 1999). Here it was hypothesised that by-pass of S-G2/M 

checkpoint resulted in increased p21CIP1/WAF1, due to accumulation of DNA damage in S phase, 

leading to inhibition of cyclin E/CDK2 in G1 to allow for cisplatin induced DNA repair. To this end, 

p21CIP1/WAF1 expression was investigated as a potential biomarker of cisplatin/ CHK1 resistance. 

 
4.2.6.1 Protein and gene expression of p21CIP1/WAF1 /CDKN1A in HCC38rCDDP3000 

 
In order to compare the level of p21CIP1/WAF1 protein between HCC38 and HCC38rCDDP3000, western 

blot analysis was conducted. Heavily implicated in the cell cycle and growth arrest, p21CIP1/WAF1 has 

also been shown to be involved in cell contact inhibition (Gartel, 2006). Cells were seeded at 

different stated densities and grown for 72 hours, before lysate proteins obtained for western blot 

analysis. p21CIP1/WAF1 protein expression is elevated, and cyclin E1 is decreased in HCC38rCDDP3000 

compared to HCC38 (Figure 14B). Further to this, no change was observed in p21CIP1/WAF1 expression 

at different seeding densities which suggests in these cell lines that p21CIP1/WAF1 expression is not 

affected by contact inhibition (Figure 14A-B). The seeding density of two million cells was used for 

the next experiment, which aimed to determine if dosing with increasing concentration of cisplatin 

induced p21CIP1/WAF1 expression. The highest dose of cisplatin (40 µM) showed a p21CIP1/WAF1 

induction in HCC38, but a decrease was observed in HCC38rCDDP3000 (Figure 4.15C). 
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Figure 4.15 p21CIP1/WAF1 and cyclin E1 protein levels in HCC38 and HCC38rCDDP3000 cell lines 
Cells were plated at 0.5, 1 or 2x106 in 10cm tissue culture dishes and incubated at normal growth conditions for 72 hours. A) Cells were 
visualised at x40 magnification, and images taken. B) Cell lysates were prepared and analysed by western blotting to determine the 
expression levels of p21CIP1/WAF1 and cyclin E1. C) Cells plated at 2x106 in 10cm tissue culture dishes and incubated at normal growth 
conditions for 24 hours before dosing with stated concentration of cisplatin and incubating for a further 48 hours. Cell lysates were 
prepared and analysed by western blotting to determine the expression levels of p21CIP1/WAF1. B and C) β-actin was used as a loading 
control. All data are representative of ≥3 independent experiments.  
 

 
As protein expression of p21CIP1/WAF1 was increased at basal levels in HCC38rCDDP3000 compared to 

HCC38, investigation into the levels of CDKN1A gene expression was conducted in order to 

determine if increased protein expression is the result of elevated gene expression. Briefly, RNA 

was extracted, and purified from both HCC38 and HCC38rCDDP3000, and normalised to an equal 

concentration. Using the enzyme reverse transcriptase, cDNA was generated through reverse 

transcription. Qualitative polymerase chain reaction was then performed with the cDNA and two 

sets of primers; which have previously demonstrated successful amplification of CDKN1A in past 

publications (Al-Haj, Blackshear and Khabar, 2012; He et al., 2017). The primers are termed Primer 

set 1 and Primer set 2, and their targets are indicated on Figure 4.16A. The amplification of CDKN1A 

was measured in each cell line, and normalised to the housekeeping gene GAPDH. From this, the 
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fold change in CDKN1A amplification for the two primers can be calculated in HCC38rCDDP3000 

relative to HCC38 (Figure 4.16B). Both primer sets demonstrated increased amplification of CDKN1A 

in HCC38rCDDP3000 versus HCC38, with a mean fold change of 34.62 and 25.89 in Primer set 1 and 

Primer set 2 respectively. This suggests that there is a higher expression of CDKN1A in 

HCC38rCDDP3000 compared to HCC38, which could result in the higher observed p21CIP1/WAF1 levels 

(Figure 4.15). Taken together, these data (Figure 4.15 and Figure 4.16) show that both gene and 

protein expression of CDKN1A/p21CIP1/WAF1 are elevated in HCC38rCDDP3000 compared to HCC38.  

 

 

 
Figure 4.16 RT-qPCR analysis of CDKN1A in HCC38 and HCC38rCDDP3000 cell lines 
Analysis of CDKN1A expression conducted using reverse transcription - quantitative polymerase chain reaction (qPCR). A) Schematic of 
the regions of CDKN1A mRNA where the primers; Primer set 1 and Primer set 2, target. RNA extracted from HCC38 and HCC38rCDDP3000 

and reverse transcribed to obtain cDNA. Normalised cDNA from HCC38 and HCC38rCDDP3000 underwent RT-qPCR with Primer set 1 and 
Primer Set 2. GAPDH used as housekeeping gene. B) Calculated fold change of CDKN1A amplification in HCC38rCDDP3000 compared to 
HCC38 when using each primer set. Data is of 3 biological independent experiments.  
 

 

4.2.6.2 Investigation of elevated expression of CDKN1A as a mechanism of resistance using RNA 

interference 

 
With HCC38rCDDP3000 demonstrating both increased gene and protein expression of 

CDKN1A/p21CIP1/WAF1, and cross-resistance to CHK1 inhibitors compared to HCC38, it was 

hypothesised that knockdown of p21CIP1/WAF1, through small interfering RNA (siRNA), will sensitise 

the cells to both cisplatin and CHK1 inhibitors. In order for efficient protein knockdown by siRNA, 

the transfection conditions must be optimised for oligonucleotide delivery. Lipofectamine 2000, a 

common cationic lipid-based transfection reagent, was selected and optimisation experiments was 

conducted to determine the conditions, which enabled the greatest transfection efficiency and the 

lowest transfection reagent toxicity. HCC38rCDDP3000 cells were plated in a 96-well plate and reverse 
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transfected with 0.025 - 0.1 % Lipofectamine 2000, which was either combined with non-targeting 

siRNA (NT, nonspecific siRNA to measure knockdown levels versus background) or death control 

siRNA (a pooled selection of siRNA’s which are known to target genes required for cell survival).The 

death siRNA was used at two different concentrations; 5 nM or 25 nM. A mock transfection control 

was also used, which did not contain siRNA. Both the mock and NT transfections were used to assess 

transfection reagent toxicity, whilst the death siRNA was used to assess the transfection efficiency. 

This was carried out over two seeding densities of the HCC38rCDDP3000 cells; 12800 19200 cells per 

well. After reverse transfection, the cells were left to grow in standard growth conditions for four-

days, after which cell viability was measured by SRB assay. 

 
Both death controls (5 nM, 25 nM) reduced cell viability at both cell densities (12800, 19200), but 

demonstrated a greater loss of cell viability, and therefore transfection effciency, at 12,800 

cells/well (Figure 4.17). Both mock and NT controls showed a concentration dependent reduction 

in cell viability, demonstrating transfection reagent toxicity at both cell densities. It was also noted 

that a higher concentration of Lipofectamine 2000 was required for efficient transfection in the 

higher cell density (Figure 4.17B). The greatest window of transfection efficiency and minimal 

transfection regent toxicity was observed with the conditions; 0.05% Lipofectamine 2000 at 12800 

cells/well.  

 

 
 
 
Figure 4.17 Determination of optimal conditions for siRNA knockdown studies in HCC38rCDDP3000 

HCC38rCDDP3000 cells plated at A) 12800 or B) 19200 cells per well and reverse transfected with Lipofectamine 2000 at the concentrations 
indicated, with RNAse free water (mock), 25 nM non-targeting Allstar negative control oligonucleotide (NT), or 5 or 25 nM Allstar positive 
control oligonucleotide (Death). Incubated at normal growth conditions for 96 hours before cells were fixed and analysed using the SRB 
cell viability assay. Data normalised to untreated cells and analysed using GraphPad Prism 6.  

 

With the optimal siRNA transfection conditions identified, p21CIP1/WAF1 siRNA knockdown was 

performed in HCC38rCDDP3000 to investigate if the loss of p21CIP1/WAF1 alone can sensitise the cells to 

cisplatin and/or an inhibitor of CHK1. Four p21CIP1/WAF1 targeting oligonucleotides were tested for 

their ability to knockdown p21CIP1/WAF1 levels after 48 hours. The oligonucleotides from Dharmacon 
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were 5, 6, 7, and 9 and targeted the mRNA (Figure 4.18A). The oligonucleotides were selected as 

successful p21CIP1/WAF1 siRNA knockdown was previously observed (Di Stefano et al., 2011). The 

optimised reverse transfection conditions were scaled up from 96 well, to 6 well plates in order to 

obtain sufficient protein for western blotting. Mock and NT did not reduce levels of p21CIP1/WAF1, 

which shows that Lipofectamine 2000 and transfected NT does not reduce p21CIP1/WAF1 levels (Figure 

4.18). Both 5 and 9 showed some reduction of p21CIP1/WAF1 levels, although the effciency was not as 

good as 7 and 6, which both demonstrated the greatest reduction (Figure 4.18).  

 

 

 

Figure 4.18 Optimisation of p21CIP1/WAF1 oligonucleotide knockdown 
A) Schematic of the regions of p21 mRNA where the p21CIP1/WAF1 oligonucleotides; 5, 6, 7, and 9 targets. B) Western blot analysis of 
p21CIP1/WAF1 knockdown with p21CIP1/WAF1 oligonucleotides. HCC38rCDDP3000 were reverse transfected with RNAse free water (mock; M), 
25 nM non-targeting Allstar negative control oligonucleotide (NT), or 10 nM of p21 oligonucleotides (5, 6, 7, 9). Reverse transfection was 
performed using 0.05% Lipofectamine 2000 in 6-well plates and incubated for 48 hours. Cells were lysed and analysed by western 
blotting. Lysate proteins were separated by SDS-PAGE, transferred to PVDF membranes and probed with antibodies (indicated) against 
proteins and developed. β-actin was used as a loading control.   

 

To determine if loss of p21CIP1/WAF1 expression can induce sensitivity to cisplatin and a CHK1 inhibitor 

(rabusertib), a knockdown and dose response was performed. HCC38rCDDP3000 demonstrated the 

highest RF to Rabusertib, compared to the four CHK1 inhibitors, and was therefore selected for this 

assay (Figure 4.1). p21CIP1/WAF1 knockdown was performed in 96 well plates with HCC38rCDDP3000 

cells, as per the optimal conditions previously established, and treated with either cisplatin or 

rabusertib, in a dose response manner, and incubated for an additional 72 hours, before cell 

viability was assessed with an SRB assay (Figure 4.19B-C). Simultaneously, HCC38rCDDP3000 cells 

were plated into 6 well plates, without drug treatment, in order to observe knockdown at several 

time points throughout the assay (Figure 4.19A).  

 
NT transfection was not observed to reduce p21CIP1/WAF1 levels across all time points, and both the 

mock and NT demonstrated consistent p21CIP1/WAF1 levels compared to HCC38rCDDP3000 cells used as 

a positive control (Figure 4.19A). Successful knockdown of p21CIP1/WAF1 was observed with 

transfection of 6 and 7 oligonucleotides across the full 96-hour period, demonstrating that 
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knockdown occurred during the 72-hour drug incubation period (Figure4.19A). Despite the 

successful knockdown of p21CIP1/WAF1, no significant change was observed between the mock and 

the transfected oligonucleotides when treated with either cisplatin or rabusertib (Figure B-D). 

Knockdown of p21CIP1/WAF1 did not induce sensitivity in HCC38rCDDP3000 to either cisplatin or 

rabusertib. This suggests that p21CIP1/WAF1 alone is not a sufficient biomarker of resistance to either 

cisplatin or the CHK1 inhibitor rabusertib.  

 

 

 
Figure 4.19 p21CIP1/WAF1 siRNA knockdown in HCC38rCDDP3000 and response to Cisplatin or Rabusertib 
HCC38rCDDP3000 cells were reverse-transfected in 96 well plates with RNAse free water (mock; M), 25 nM non-targeting Allstar negative 
control oligonucleotide (NT), or 10 nM of p21CIP1/WAF1 oligonucleotides (6; CDKN1A_6, 7; CDKN1A_7) using 0.05% Lipofectamine 2000. 24 
hours after transfection, cells were treated with either a serial dilution of Cisplatin or Rabusertib. A) HCC38rCDDP3000 cells were reverse-
transfected as above in 6-well dishes simultaneously with 96 well plate transfection as knockdown effciency controls. Plates were 
incubated for 24, 48, 96 hours as indicated. Cells were used and analysed by western blotting as per Figure4.18. β-actin was used as a 
loading control. Dose response curves generated and half-maximal growth inhibition concentrations (GI50) were calculated using 
GraphPad Prism 6 for treatment with B) Cisplatin or C) Rabusertib. Growth curves were normalised to untreat ed control, for each 
transfection condition. Dotted line indicates the GI50. D) Summary of GI50 values for Cisplatin and Rabusertib transfected HCC38rCDDP3000 

cells. Data representative of two independent experiments. RF = resistance factor. 
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4.2.6.3 Clinical relevance of CDKN1A expression and drug response 
 
Given the aim of this thesis is to identify biomarkers of resistance and potential second-line 

therapies, it was imperative to obtain a clinical relevance when investigating these. A 

computational analysis using data from the Sanger Genomics of Drug Sensitivity in Cancer (GDSC), 

was run simultaneously alongside the wet-lab validation of p21CIP1/WAF1 as a biomarker for cisplatin 

and CHK1 drug resistance. The GDSC is a resource in which >1000 genetically characterised human 

cancer cell lines were screened with anti-cancer therapeutics (Yang et al., 2013). Sensitivity patterns 

of cell lines to drugs can be correlated with regards to genomic and expression data to identify 

cancer biomarkers.  

 
CDKN1A expression data was extracted from GDSC alongside the response to the drugs; cisplatin, 

AZD7762 (CHK1 inhibitor), 681640 (WEE1/CHK1 inhibitor), QL-VIII-58 (ATR/MTOR inhibitor), and 

KU-55933, CP466722 (ATM inhibitors). The data extracted was pan-cancer cell lines, as restricting 

the analysis to breast cancer cell lines result in a small data set which resulted in unattainable 

statistical analysis. The number of cell lines which had both drug data and CDKN1A expression data 

differed in the GDSC dataset. The same 88 cell lines were analysed upon treatment with cisplatin 

and AZD77632. For the ATM inhibitors, KU-55933 and CP466722, 93 and 103 cell lines were 

analysed respectively, and for the ATR inhibitor (QL-V111-58), and the WEE1/CHK1 inhibitor 

(681640), 55 and 86 cell lines were analysed respectively. The response of the drugs was measured 

as area under the curve, a method which takes into account percentage of cells killed, which is not 

reflected in GI50 values. The CDKN1A expression data was divided into two categories based on the 

mean, whereby higher than the mean is considered high expression, and lower than the mean is 

considered low expression. Box plots were created of the distribution of response to the drugs, vs 

high and low expression, and a student t-test conducted (Figure 4.20). 

 
It was observed that the response of patients in this data set to cisplatin is not perturbed in relation 

to CDKN1A expression (Figure 4.20A). It also shows that the response of the patients to inhibition 

of CHK1, WEE1, ATR or ATM is not divergent when CDKN1A expression is high or low (Figure 4.20B-

F). Taken together this data shows that no significant difference was seen in the response to each 

of the drugs considered when CDKN1A expression was high or low.  
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Figure 4.20 Drug response of patients with high or low CDKN1A expression using Genomics of drug sensitivity in canc er (GDSC) 
database 
Pan-cancer patient data extracted from GDSC to identify correlation between high or low expression of CDKN1A and response to stat ed 
drugs. High and low CDKN1A expression determined by dividing the mean. Area under the curve determined by dose-response to stated 
drug, Box plots show area under the curve when patient are treated with drug; A) Cisplatin, B) AZD7762 (CHK1 inhibitor), C) 681640 
(WEE1/CHK1 inhibitor), D) QL-VIII-58 (ATR/mTOR inhibitor), E) KU-55933 (ATM inhibitor), F) CP46672 (ATM inhibitor). Statistical 
significance calculated using Students t-test. ns = not significant.  
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4.3 Discussion 

 
The primary aim of this chapter was to investigate the effect of a set of DDR inhibitors on the cell 

viability of a panel of chemo-naive and chemo-resistant TNBC cell lines. The output of this study 

would allow the identification of patterns of cross-resistance or acquired vulnerability and assess 

the options of the DDR inhibitors as a second line therapy. Identification of a pattern of cross-

resistance to inhibitors of the ATR-CHK1-WEE1 axis in a cisplatin resistant cell line, warranted an 

investigation of p21CIP1/WAF1 as a mechanism of drug resistance, establishing a secondary aim of this 

chapter.  

 
4.3.1 Drug profiling to determine cross-resistance and acquired vulnerability patterns to DNA 

damage response inhibitors  

 
Drug profiling provided a broad overview of the variability in the response of each of the cell lines 

to the panel of drugs, and identified patterns of cross-resistance and acquired vulnerability in the 

chemo-resistant cell lines. It was observed that cross-resistance profiles differed between drugs 

that target the same protein. These differences in drug profiles could be a result of different drug 

uptake mechanisms, activity of efflux transporters, or the specificity and efficacy of the drug. 

 
For example, the ∆ method identified a positive correlation between eribulin and paclitaxel to MK-

8776 (Table 4.2). Cross-resistance to MK-8776 was observed in HCC1806rERI50, MDA-MB-468rPCL20 

and HCC1806rPCL20, which differed to the observed response to the other CHK1 inhibitors, and each 

of these cell lines demonstrated increased MDR1 expression (Figure 4.1D, Figure 3.17). It has 

previously been shown that MK-8776 can restore sensitivity of chemotherapeutics that are 

substrates of MDR1 in cells overexpressing MDR1 (Cui et al., 2019). It does this by binding to high 

expressing MDR1, stimulating the ATPase activity of the transporter, which has been hypothesised 

to competitively limit the uptake of substrates of MDR1 leading to the inhibition of efflux function 

(Cui et al., 2019). Literature also shows that substrates of MDR1 can stimulate the ATPase activity 

of MDR1 transporter, therefore, MK-8776 could be predicted to be a substrate of MDR1. 

 

Alternatively, tariquidar, a third-generation MDR1 inhibitor, has been found to stimulate the MDR1 

ATPase activity, but not be transported (Loo et al., 2012).  Further investigation as to whether MK-

8776 is effluxed by MDR1 would need to be conducted to elucidate the role of MDR1 in MK-8776 

resistance. This can be investigated through a combinational assay of MK-8776 and a MDR1 

inhibitor, such as zosuquidar, to determine if the cells are sensitised to MK-8776 activity, or through 
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the use of a UIC2 shift assay (Park et al., 2003). If sensitisation is observed, increased expression of 

MDR1 could be a candidate biomarker for MK-8776 resistance. If true, this could explain the 

difference in cross-resistance patterns seen between MK-8776 and the other CHK1 inhibitors 

investigated here. 

 
It was found that intrinsic resistance to DDR inhibitors in the chemo-naive cell lines had an impact 

on whether the chemo-resistant cell lines was considered drug-resistant. For example, MDA-MB-

468 demonstrated intrinsic resistance to the CHK1 inhibitors, and although the GI50 values, 

determined in the MDA-MB-468 chemo-resistant cell lines to the CHK1 inhibitors, were higher than 

the other cell lines in the panel, these were not classed as cross-resistant (Figure 4.6, 4.1). These 

differences can be explained as a result of the heterogenetic nature of TNBC, as certain genetic 

phenotypes can result in different levels of intrinsic drug resistance.  To address this, the absolute 

drug activity profiles of the cell lines were investigated using the ∆ method (section 4.2.5). Within 

context of the chemo-naive cell lines they were derived from, these pre-clinical models can be used 

to determine the emergence of resistance through consideration of changes of variants within the 

cell populations, a method addressed in chapter 5.  

 
Consideration of the absolute drug activity profiles using the ∆ method, identified correlations that 

could indicate whether a drug could be considered as an appropriate second line therapy. A strong 

positive correlation was identified between the drug activity profiles of eribulin and paclitaxel 

(Table 4.2). Whilst cross-resistance was seen between the eribulin and paclitaxel resistant cell lines 

to these drugs, the strong positive correlation indicates that this trend goes beyond these cell lines 

(Figure 3.13, 3.15, Table 4.2). These data suggest that as resistance in the cell lines increases to 

treatment with eribulin, there is an observed increase in resistance to the treatment of paclitaxel, 

and vice versa, indicating that these would not be an appropriate second line therapy following the 

development of resistance to each other. 

 
It must be noted that some significant positive correlations were also seen between the drugs that 

are considered to be substrates of MDR1 which included; BI2536, eribulin, doxorubicin, olaparib, 

paclitaxel, rucaparib and tozasertib (Wu, 2013; Michaelis et al., 2014; Vaidyanathan et al., 2016). 

Whilst high expression of MDR1 may be responsible for cross-resistance patterns seen in some of 

the cell lines, this correlation may go beyond MDR1 efflux. For example, HCC38rERI10 demonstrated 

cross-resistance to BI2536, with a higher RF than to eribulin itself, despite not demonstrating 

increased expression of MDR1 compared to HCC38. The statistically significant positive correlations 

identified, in combination with the cross-resistance patterns, show that as resistance increases to 
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one, resistance increases to the other, suggesting that each of these would be poor choice as a 

second line therapy after resistance has developed to the aforementioned. 

 
The ∆ method analysis also identified an inverse relationship between the drug activity profiles of 

CHK1 (rabusertib, MK-8776, SRA737, Prexasertib), ATR (ceralasertib, berzosertib), WEE1 

(adavosertib) and CHK2 (CCT241533) inhibitors versus cisplatin and the ATM (AZD0156), 

RAD51(B02) and PLK1/2 (SBE13) inhibitors (Table 4.2). It indicates that as resistance increases to 

CHK1, ATR, WEE1 or CHK2 inhibitors, resistance also increases to each other, but decreases to 

cisplatin, and the ATM, RAD51 and PLK1/2 inhibitors. These data suggest that after resistance has 

occurred to either inhibitors of CHK1, ATR, WEE1 and CHK2, sequential treatment with the 

aforementioned would not be an appropriate second line therapy. However, after resistance has 

developed to these inhibitors, it suggests that treatment with either cisplatin or the inhibitors of 

ATM, RAD51 or PLK1/2 may prove to beneficial.  It was odd to note that the activity of the CHK2 

inhibitor negatively correlated with the activity of the ATM inhibitor, as ATM is known to directly 

phosphorylate CHK2, and is required for CHK2 activation. This polarity in drug activity could be 

explained through the differences in the known downstream targets of ATM and CHK2.  

 
Additionally, it was noted that cisplatin demonstrated a positive correlation with the activity profile 

of RAD51 (B02) and PLK1/2 (SBE13) inhibitors, indicating that as resistance occurred to one, 

resistance was observed in the other (Table 4.2). This suggests that RAD51 and PLK1/2 inhibitors 

would not be an appropriate second line therapy following cisplatin resistance, and vice versa. 

Furthermore, the data shows an inverse relationship between the drug activity profiles of cisplatin 

and the CHK1 inhibitors (Table 4.2). It is interesting to note that cisplatin resistance positively 

correlates with resistance to the RAD51 inhibitor and negatively correlates with CHK1 inhibitors. As 

previously mentioned, RAD51 is required for the repair of dsDNA breaks, specifically through HRR, 

whilst CHK1 is predominantly required for the repair of ssDNA breaks and at stalled replication forks 

(section 1.4). However, repair of dsDNA using ssDNA as a template, a method commonly used in 

CRISPR/Cas9-mediated gene editing, is RAD51-independent (Gallagher et al., 2020). It could suggest 

that resistant mechanisms induced during cisplatin resistance can make cell more reliant on 

additional repair pathways, other than those that repair dsDNA. Furthermore, cisplatin induces ICLs 

which can trigger stalling of replication in S-phase. CHK1 is known to have a role at stalled 

replication forks during S-Phase, and can induce the DDR. This data is consistent with literature in 

which CHK1 inhibitors have been shown to enhance cisplatin antitumor activity, and overcame 

cisplatin resistance in SCLC preclinical models (Hsu et al., 2019).  
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Figure 4.21 Drug activity profiles of Cisplatin and CHK1 inhibitors (CHK1i) 
Pearson correlation of statistical significance calculated via the ∆ method for cisplatin, CHK1i, SBE13 and B02. Plus (+) ind icates a positive 
correlation and minus (–) indicates negative correlation between the drug activity profiles of stated drugs. Red indicates poor choice; 
green indicates good choice prediction of second-line therapy following drug resistance to the drugs on the left of the table.  

 
Some of the most interesting observations were made when considering the development of cross-

resistance to the DDR inhibitors within context of the chemo-naive cell line the chemo-resistant cell 

lines were derived from. It was found that the majority of the chemo-resistant cell lines 

demonstrated cross-resistance to the PARP inhibitors; olaparib and rucaparib, as well as to the 

chemotherapeutic agent; doxorubicin (4.14). Whilst resistance to these three drugs have been 

linked to high expression of MDR1, only four cell lines in the panel demonstrated an increased 

expression of MDR1 (Figure 3.17) (Vaidyanathan et al., 2016). Furthermore, as mentioned, the ∆ 

method identified a positive correlation between each of the drug activity profiles for doxorubicin, 

olaparib and rucaparib (Table 4.2). Taken together, these data suggest that olaparib, rucaparib and 

doxorubicin would be a poor choice as a second-line therapy either after the emergence of chemo-

resistance, or sequentially following each other, regardless of the patients MDR1 status. This is an 

important observation because, as previously mentioned, anthracyclines such as doxorubicin are 

still often routinely used in the clinic as a first line treatment for TNBC (section 1.6)(Bergin and Loi, 

2019). Furthermore, with PARP inhibitors in clinical trials for the treatment of TNBC, and approved 

for other cancer types (ovarian), it is important to understand both how resistance occurs, and an 

appropriate second line therapy to these agents (Mehanna et al., 2019; Robson et al., 2019). Here 

we have shown in pre-clinical cell line models that doxorubicin, olaparib and rucaparib will not be 

appropriate secondary therapies following the development of chemo-resistance.  

 
The majority of the chemo-resistant cell lines demonstrated either acquired vulnerability, or no 

statistically significant fold change to the treatment with CHK2 (CCT241533), RAD51 (B02) or a 

PLK1/2 (SBE13). However, each of these drugs are currently not in clinical trials. As previously 

mentioned CCT241533 demonstrated a good selectively profile for CHK2, but required further 

medicinal chemistry development to obtain a compound with appropriate pharmacological 

properties (section 1.4.2) (Anderson et al., 2011; Caldwell et al., 2011; Chk2 Inhibitor Programme | 

Commercial Partnerships | Cancer Research UK, 2020). Whilst B02 has been shown to effectively 

inhibit DSB induced HRR in human cells, and supress ionizing radiation induced RAD51 foci 

formation, it has not progressed into clinical trials (Budke et al., 2016). Finally, SBE13 is still 

considered to be in the preclinical development stage and has also not progressed to clinical trials 



4. Investigating the response of chemo-resistant TNBC to inhibitors of the DNA damage response pathway 

 

132 
 

(Keppner et al., 2009; Eckerdt, 2011). Whilst these drugs are not in clinical trials, the inhibition of 

these targets could provide some therapeutic benefit as an appropriate second-line therapy after 

chemoresistance has emerged.  

 
Whilst the observations in this chapter hypothesise as to whether a drug may be an appropriate 

second line therapy after chemo-resistance has occurred, this has only been observed in a small set 

of TNBC pre-clinical cell lines models. These must be validated if they are to become useful for 

application in the clinic. One such method of validation is to obtain TNBC patient tumour samples 

pre-and post-relapse after chemotherapy treatment. From this, the response to the drug in 

question can be determined to assess if the drug is suitable as a second line therapy treatment. 

 

4.3.2 Validation of p21CIP1/WAF1 as a mechanism of drug resistance to CHK1 inhibitors and 

cisplatin in HCC38rCDDP3000.  

 
The cisplatin resistant cell line, HCC38rCDDP3000, had been found to demonstrate strong cross-

resistance to each of the CHK1 inhibitors (rabusertib, MK-8776, SRA737 and prexasertib), as well as 

to both the ATR inhibitors (ceralasertib and berzosertib), and the WEE1 inhibitor (adavosertib), but 

acquired vulnerability to the ATM inhibitor (AZD0156) (Figure 4.1 -4.3). In contrast to this, the 

Pearson correlations generated from the ∆ method, identified that cisplatin and CHK1, ATR, WEE1 

inhibitors to have a negative correlation. Given this juxtaposition, further investigation was 

warranted. 

 
Cisplatin is known to induce S-phase cell cycle arrest, which is reliant on the activation of the DDR 

pathways through CHK1 (Zhang et al., 2008; Wagner and Karnitz, 2009; Barr et al., 2017). CHK1 

activity leads to the inhibition of CDC25 and prevents activation of CDK1/2, required for the cell to 

enter G2 (Thompson and Eastman, 2013). It was found that a subset of cancer cell lines was 

sensitive to CHK1 inhibitor, MK-8776, as a monotherapy due to CHK1 requirement for CDK2 

activation in S phase, and those that showed resistance had increased activation of CDK2 in S phase 

(Sakurikar et al., 2016). Further to this, it has also been seen that p21CIP1/WAF1 induction inhibited 

endoreduplication through direct cyclin E/CDK2, and high p21CIP1/WAF1 levels mediate G1 arrest via 

CDK inhibition (Stewart and Leach, 1999). Here it was hypothesised that by-pass of S-G2/M 

checkpoint resulted in increased p21CIP1/WAF1, due to accumulation of DNA damage in S phase, 

leading to inhibition of cyclin E/CDK2 in G1 to allow for cisplatin induced DNA repair. To this end, 

p21CIP1/WAF1 expression was validated as a mechanism of cisplatin/ CHK1 resistance. 
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Initial studies showed that both p21CIP1/WAF1 protein expression and amplification of p21CIP1/WAF1 

through western blot and RT-qPCR respectively, were seen in HCC38rCDDP3000 compared to HCC38 

(figure 4.15, 4.16). This suggested that increased transcription of the CDKN1A gene resulted in 

higher protein expression found in HCC38rCDDP3000 compared to HCC38. To validate the importance 

of elevated expression of p21CIP1/WAF1 as a resistance mechanism, p21CIP1/WAF1 activity was reduced 

in HCC38rCDDP3000 via siRNA knockdown to determine if this reduced resistance to the treatment 

of cisplatin or a CHK1 inhibitor; rabusertib. Knockdown of p21CIP1/WAF1 in HCC38rCDDP3000 cells did 

not reduce resistance to cisplatin or rabusertib (Figure 4.19). This may suggest that p21CIP1/WAF1 

knockdown alone was not sufficient alone to reduce resistance to cisplatin or to rabusertib, but 

additional resistance drivers may also play a part in the mechanism of resistance. Genomic and 

transcriptome characterisation of HCC38rCDDP3000 through exome sequencing or RNA sequencing 

(RNA-seq) analysis; could identify additional resistance drivers and provide an insight which may be 

context dependent and multi-factorial.  

 
There were several limitations to the experiment which may have influenced the result. 

Simultaneous siRNA knockdown in cells in both 6 well and 96 well formats were conducted to 

visualise if sufficient knockdown had occurred in the dose response. Scaling up the siRNA 

knockdown into 6-well plates was required in order to yield sufficient detectable protein. This may 

have been problematic, as knockdown may not have necessarily occurred in both 6-well and 96-

well plates as per the assumption taken. One way in which this could be overcome would be to 

develop a p21CIP1/WAF1 -specific cell-based enzyme-linked immunosorbent assay (ELISA) to confirm 

knockdown in a 96-well plate format. Further to this, the use of siRNA is only a short-term 

knockdown of a target protein, and can be dependent on protein turnover. The turnover of the 

protein may affect the duration and efficiency of the knockdown. The turnover of p21CIP1/WAF1 could 

have been measured using a cycloheximide chase assay in both the HCC38 and HCC38rCDDP3000 cell 

lines to 1) to determine p21CIP1/WAF1 stability in each of the cell lines and 2) and compare differences 

in the rate of protein degradation. Stable knockouts may have been a more appropriate method 

for this experiment, either using short hairpin RNA (shRNA), or a complete knockout using the 

clustered regularly interspaced short palindromic repeats – associated protein 9 (CRISPR-cas9) 

system.  

 
To investigate clinical relevance of increased p21CIP1/WAF1 expression, the response of cancer 

patients cell lines to cisplatin, and inhibitors of CHK1, ATR, WEE1, when CDKN1A expression was 

high or low, was investigated using the publicly available data in the GDSC database. No significant 

difference was seen with the response of the patient derived cell lines to any of the drugs when 
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CDKN1A expression was high or low (Figure 4.20). Nevertheless, there were many limitations in the 

analysis performed here. Firstly, what was considered high or low CDKN1A expression was arbitrary 

and based only on the data available for cell lines which also had drug response data. Further to 

this, not every cancer cell line had a combination of both CDKN1A expression data and each of the 

drugs, so linking the data of a cell line across each of the drugs was not possible. Additionally, the 

cancer cell lines do not have acquired drug resistance. Whilst some may have demonstrated 

intrinsic resistance to the drug, the window of response to the drug was small, and cannot be 

likened to cell lines with acquired drug resistance. Lastly, the data set of cell lines with CDKN1A 

expression and a matching response to the drugs was too small to only consider human breast 

cancer cell lines, and the analysis was performed using pan-cancer patient derived cell lines. This 

analysis may not have been appropriate as cancers, and tumour types differ in the development of 

drug resistance, as this can be context specific.  

 
In summary, the data presented in this chapter has addressed whether a panel of DDR inhibitors 

are an appropriate second line therapy after acquired resistance has occurred to chemotherapy 

agents in these cell line models. Both patterns of cross-resistance and absolute drug activity profiles 

were considered in this analysis. The chapter also validated that p21CIP1/WAF1 alone is not involved in 

a mechanism of drug resistance to cisplatin or rabusertib. Pre-clinical models can be used to 

determine genomic changes that occur in the emergence of drug resistance. Chapter 5 will analyse 

the exomic landscape of the chemo-resistant cell lines to identify variants that could be driving drug 

resistance.  
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5. Identification of candidate drivers of drug resistance using whole exome 

sequencing 

5.1 Introduction 

 
Resistance to chemotherapy agents can occur through a number of mechanisms such as; changes 

in drug target or drug target levels, changes in drug metabolism, drug compartmentalisation, 

increased drug efflux, decrease in drug uptake, increased resistance to apoptosis and increased 

DNA damage repair (section 1.3). Often, these mechanisms are a result of genetic aberrations, such 

as structural alterations of the genome, or variants in genes which impact the encoded protein 

sequence structure and function. It was therefore reasoned that drug resistance in the chemo-

resistant TNBC cell lines may be a result of the introduction of variants in the cell line models.  

Next-generation sequencing techniques, such as whole genome and whole exome sequencing, 

have allowed for the identification of changes in the genomic landscape of cancer cells, including 

cancer cells demonstrating resistance to drugs. Whilst whole genome sequencing (WGS) captures 

the full genome, a more cost-effective approach lies with whole exome sequencing (WES). The 

exons make up approximately 1% of the entire human genome, and WES captures these coding 

sequences, which includes approximately 22,000 genes and their flanking regions (Meyerson, 

Gabriel and Getz, 2010; Suwinski et al., 2019). Analysis of WES covers actionable areas of the 

genome whereby variants can be identified, which could be predicted to affect protein function 

and demonstrate a disease-causing phenotype. 

WES has successfully been used to identify mediators of acquired resistance to cancer drugs in 

patients. For example, WES was used to detect clonal selection and outgrowth of patient melanoma 

tumour samples with acquired resistance to anti-programmed death 1 (PD-1) blockade 

immunotherapy (Zaretsky et al., 2016). This identified resistance associated loss of function variants 

in the genes which encode for interferon-receptor-associated Janus kinase 1 (JAK1) or Janus kinase 

2 (JAK2). It was found that these truncating variants resulted in a lack of response to interferon 

gamma, including an insensitivity to its antiproliferative effects on cancer cells (Zaretsky et al., 

2016). Clinical trials have also adopted WES as a technique to understand biological context for the 

use of a candidate drug. For example, in a phase 2 clinical trial, it was questioned in 50 patients with 

metastatic, castration-resistant prostate cancer, if they would respond to the PARP inhibitor 

Olaparib (NCT01682772). Exome sequencing identified that patients which had defects in DNA-

repair genes led to a higher response rate to PARP inhibition (Weinstein, 2013). WES has also been 

used to further understand heterogeneity of patient tumour samples and the contribution this has 



5. Identification of candidate drivers of drug resistance using whole exome sequencing 

 

137 
 

to a drug resistant phenotype. For example, a single cell DNA exome sequencing of 20 TNBC 

patients, during neoadjuvant chemotherapy (NAC), identified that resistant genotypes were pre-

existing and adaptively selected for by NAC (Kim et al., 2018).   

Moreover, WES has been used to identify resistance mechanisms in cell line models which have 

been developed to have acquired drug resistance. Beauchamp et al., 2014, used WES to analyse 

645 genes in lung squamous cell carcinoma models resistant to dasatinib. Here they identified that 

a variant in the discoidin domain containing receptor-2 (DDR2), as well as a loss of function splice 

site variant in neurofibromin (NF1) gene as drivers of a resistance mechanism to dasatinib.  

WES has also developed to become a powerful tool for identifying genomic changes, or unique 

molecular signatures, termed biomarkers, which can be used to stratify patient populations and 

inform therapeutic decisions regarding candidate drugs for treatment (section 1.5).  WES analysis 

can allow for molecular characterisation of cancer cells, prognostics and monitoring (Johannessen 

and Boehm, 2017).  

Now routinely used in the clinic, biomarkers can be used in a diagnostic and prognostic fashion as 

well as predictive for response to drugs. For example, Osteopontin, an extracellular structural 

protein, has been found to be overexpressed in tumours and serum of ovarian cancer patients and 

acts as a diagnostic biomarker for the progression of ovarian cancer (Brakora et al., 2004; Song et 

al., 2008). Recently, the drug Larotrectinib, was approved by the Food and Drug Administration 

(FDA), as the first molecularly targeted therapeutic drug based on the tumour biomarker of a 

chromosomal translocation of the NTRK genes. This is the first drug to be based on an array of 

cancer types, not just the tumour origin in the body (FDA Approves First Targeted Therapeutic Based 

on Tumor Biomarker, Not Tumor Origin - American Association for Cancer Research (AACR); Drilon 

et al., 2018). Variants in phosphatase and tensin homolog (PTEN), a tumour suppressor gene, are 

routinely identified as a biomarker of poor patient prognosis (McCabe, Kennedy and Prise, 2016). 

There are also many drug predictive biomarkers such as; BRCA1/BRCA2 mutants as good indicators 

of response to PARP inhibitors (Olaparib), and ALK mutants as good indicators of response to ALK 

targeted drugs (Crizotinib, Cetitinib, Alectinib and Brigatinib) (Michels et al., 2014; Ahmadzada et 

al., 2018).  

Large scale efforts to analyse patient clinical tumour samples for molecular aberration’s in DNA, 

RNA, protein and epigenetic levels have been curated in open-source databases. One of the first to 

do so were The Cancer Genome Atlas (TCGA) pan-cancer analysis project, whilst more recently in 

combination with this project, and the International Cancer Genome Consortium (ICGC), was the 

Pan-Cancer Analysis of Whole Genomes (PCWAG) (Group, 2010; Weinstein, 2013; Campbell et al., 
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2020). These databases can be used to evaluate drivers of cancer and also mediate the investigation 

of drug resistance in patient tumour samples. Using these databases, experimentally identified 

biomarkers can be considered in the context of known clinically obtained patient variants and gene 

expression. Therefore, WES is a powerful tool for identifying resistance mechanisms and 

biomarkers in both preclinical models and in patients which have developed acquired drug 

resistance. 

In the previous chapters, cross-resistance to both chemotherapeutic agents and DDR inhibitors in 

the chemo-resistant cell lines have been discussed. The aim of this chapter was to identify exomic 

alterations in the chemo-resistant TNBC cell lines which could be driving the resistant phenotype. 

Here, it was aimed to further characterise each chemo-resistant cell line in respect to the chemo-

naive cell line it was derived from, but also to compare between cell lines which have been 

developed to have resistance to the same chemotherapeutic agent. Identified candidate 

biomarkers were compared to the TCGA to identify those that have clinical relevance. This analysis 

using WES data led to the identification of clinically relevant candidate resistance biomarkers, or 

drivers of a drug resistance phenotype, which could be taken forward for further experimental 

validation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5. Identification of candidate drivers of drug resistance using whole exome sequencing 

 

139 
 

5.2 Results 

5.2.1 Identification and characterisation of variants in chemo-naive and chemo-

resistant TNBC cell lines 

 
5.2.1.1 Identification of variants using exome sequencing in the chemo-naive and chem-

resistant TNBC cell lines 

 
To identify variants in genes which could be driving resistance in the chemo-resistant population, 

each cell line in the panel underwent WES using the transposase-based method by Illumina.  

Illumina HisSeq2000 was used with an input of nucleotide paired end sequences with an output of 

nucleotide paired ends reads in FASTQ format. This step was performed by the Genomics Core 

Facility, Philipps-University, Marburg, Germany.  Each cell line was sequenced in two separate lanes, 

and the data combined. The FASTQ output from the sequencing is a FASTA file which includes the 

sequence of bases, termed reads, for overlapping loci as well as quality control for the sequencing 

performed. The total number of reads identified for each cell line is outlined in Figure 5.1 (numerical 

data in Appendix A4). Both MDA-MB-468 and HCC1806 chemo-naive and chemo-resistant cell lines 

had a similar number of reads across the groups, whilst the HCC38 cell lines showed some 

variability. Both HCC38rCDDP3000 and HCC38rDOX40 had a lower number of reads compared to both 

HCC38 and the MDA-MB-468 and HCC1806 cell lines, whilst HCC38rGEM20 had a higher number of 

reads.  
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Figure 5.1 Number of reads identified from exome sequencing for chemo-naive and chemo-resistant TNBC cell lines 
Number of paired-end reads identified in FASTQ file after exome sequencing was performed on each of the chemo-naive and chemo-
resistant cell lines A) MDA-MB-468, B) HCC38, C) HCC1806. Numerical data in Appendix A4. 
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An in-house variant calling pipeline was partly written and designed by a previous PhD student; 

Miguel Julia, a current PhD student; Magdalena Antczak, as well as contribution from the work in 

this chapter. The steps for the calling of variants are outlined in Figure 5.2. Briefly, the FASTQ files 

were analysed using FASTQC for quality control. The reads length for each cell line ranged from 35-

101 bases with a percentage GC content of 46-47%, and none were flagged as poor quality 

(Appendix A4). The reads then underwent trimming to remove any present sequencing adaptors 

using Trimmomatic, before the reads were mapped and aligned to the genome reference 

consortium human build 37 (GRCh37) using the Burrows-Wheeler Alignment Tool (v.0.7.12) and 

Picard tools SortSam (v.1.112)(Burrows and Wheeler, 1994; Li et al., 2009; Church et al., 2011; 

Bolger, Lohse and Usadel, 2014). Reads that had identical chromosome start and end, termed PCR 

duplicates, were marked and removed to reduce biased variant calling using Picard Tools 

MarkDuplicates. The two files from the two separate lanes for each cell lines were then merged, 

and PCR duplication removal repeated again. The reads then under-went realignment and base 

score recalibration to ensure insertions and deletions (INDELs) were correctly positioned using 

Picard Tools BuildBamIndex. From this, the single nucleotides variants (SNVs) and INDELs were 

identified and annotated with a Variant Effect Predictor (VEP)(McLaren et al., 2016). Using the 

coordinates of the variants and nucleotide changes, VEP was used to determine the genes and 

transcripts affected, the location of the variant, the consequence of a variant, if the variant is 

already known in databases, as well as a variant severity prediction score from programmes 

including SIFT and PolyPhen-2 (Ng and Henikoff, 2003; Adzhubei, Jordan and Sunyaev, 2015). The 

final file contained the identified annotated variants in a Variant Calling Format (VCF) file.  
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Figure 5.2 Variant calling pipeline 

Steps in the in-house built computational pipeline to call variants in the chemo-naive and chemo-resistant TNBC cell lines. Input is the 
FASTQ file containing reads from exome sequencing analysis, with the output of called variants with variant effect predictor annotation 
in a VCF file for each of the chemo-naive and chemo-resistant cell lines. Each step is annotated with action performed and the tools 
used. 
 
 

 

The total number of variants for each cell line is shown in Figure 5.3 (numerical data in Appendix 

A5). A low number of variants are called in HCC38rCDDP3000 and HCC38rDOX40, 192393 and 188481 

respectively, compared to the other cell lines in the panel, which have variants in the range of 

291386 – 398522 called. An exception was also seen in HCC38rGEM20, which had the highest 

number of variants (630942 variants). The pattern of the number of variants called was observed 

to be the same as the number of reads available (Figure 5.1). Normalising the variants called against 

the number of reads available showed that between 3.07% and 4.14% of the number of reads 

resulted in called variants. This suggests that the calling of variants is dependent on the number of 

reads available.  
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Figure 5.3 Number of variants called in the chemo-naive and chemo-resistant TNBC cell lines 
 
Number of variants called after reads from exome sequencing are aligned against the reference genome (GRCh37), and percentage of 
called variants normalised against the number of identified reads in in each of the chemo-naive and chemo-resistant cell line A-B) MDA-
MB-468, C-D) HCC38, E-F) HCC1806 respectively.  
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5.2.1.2 Filtering for high confidence variants in the chemo-naive and chemo-resistant TNBC cell 

lines 

 
Having called the variants in each of the chemo-naive and chemo-resistant TNBC cell lines, the 

variants next underwent a filtering process in order to identify high confidence somatic variants, as 

explained below. An in-house variant filtering pipeline was written and partly designed by PhD 

student Magdalena Antczak, as well as contribution from the work in this chapter. The steps for the 

filtering of variants are outlined in Figure 5.4.  

 
First, each of the called variants (SNVs and INDELs) are checked for quality or coverage. Step one 

removed variants with a base call accuracy below 99.9 %, corresponding to a Phred quality score of 

30. The Phred quality score is assigned to a given variant during the sequencing process, which is a 

probability estimate of that base call being a true nucleotide. The likelihood of the accuracy of the 

base call is then reflected in the Phred Score. Further to this, variants which have less than 10 reads 

supporting the base call were removed, and of those remaining, variants which have less than three 

reads supporting the variant call were removed. Step two removed common, germ-like variants in 

order to obtain somatic variants in the cell lines. This was done by removing variants present at a 

frequency ≥ 0.001% in the genome aggregation database (gnomAD), a variant data set of 125, 748 

exome sequences, and 15,708 whole-genome sequences of unrelated individuals (Karczewski et al., 

2019). Often, variants which are considered common in the human population, may have a role in 

cancer. Following the work of Ghandi et al 2019, if any variant which was identified to a frequency 

of ≥ 0.001% and were seen in either a) The Cancer Genome Atlas (TCGA) database in at least three 

samples or b) the Catalogue Of Somatic Mutations In Cancer (COSMIC) database in at least ten 

samples, these were added back to the list of variants called in the cells lines (Bamford et al., 2004; 

Weinstein, 2013; Ghandi et al., 2019). Finally, step three removed variants which were not found 

in the protein sequence, such as upstream variants, as these are outside of the confident 

sequencing scope. This identified the high confidence somatic variants which were taken forward 

for analysis.  

 

 

 

 

 

 



5. Identification of candidate drivers of drug resistance using whole exome sequencing 

 

145 
 

 

 

 

 
 
Figure 5.4 Variant filtering pipeline 
Steps in the in-house built computational pipeline to filter variants in the chemo-naive and chemo-resistant TNBC cell lines. Input is the 
called variants with variant effect predictor annotation and the output are high confidence somatic variants for each of the chemo-naive 
and chemo-resistant cell lines in VCF files. 

 

 

The removal of the variants as they were processed through the variant filtering is shown in Figure 

5.5 (numerical data in Appendix A5). The removal of variants is uniform between MDA-MB-468 and 

HCC1806 chemo-naive and chemo-resistant cell lines. The HCC38 chemo-naive and chemo-resistant 

cell lines show a less uniformed filtering, with HCC38rCDDP3000 and HCC38rDOX40 showing a steeper 

decrease in variants lost during removal for step one; poor quality and step two; base and variant 

coverage (Figure 5.5B).  
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Figure 5.5 Number of variants called at each step of the variant filtering pipeline for chemo-naive and chemo-resistant TNBC cell lines 
Number of variants called at each step of the variant filtering pipeline. Step 0 indicates called variant input, step 1; after filtering low 
quality and low coverage variants, step 2; after filtering out germline variants, step 3; after filtering out consequences not within the 
sequencing remit. Variants called in step 3 are considered to be high confidence somatic variants. A) MDA-MB-468 cell lines B) HCC38 
cell lines C) HCC1806 cell lines, whereby colours indicate if cell line is chemo-naive or chemotherapeutic agent – R indicates resistance 
to stated chemotherapeutic agent. Numerical data in Appendix A5. 
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Having applied the filtering steps to the called variants, high confidence somatic variants in each of 

the chemo-naive and chemo-resistant cell lines had been established (Appendix A6 – A23). Variants 

in which a base change results in an amino acid substitution are termed non-synonymous, whilst 

variants in which a base change does not result in an amino acid substitution are termed 

synonymous. It was noted that non-synonymous variants were more prevalent in each of the cell 

lines compared to synonymous variants.  

 
Considering the MDA-MB-468 derived cell lines, MDA-MB-468 and MDA-MB-468rCDDP1000 had the 

most variants called with 525 and 588 respectively. MDA-MB-468rDOX50 and MDA-MB-468rERI50 

had a similar number of variants called with 433 and 435 respectively. MDA-MB-468rPCL20 only had 

402 variants called (Figure 5.6A, Appendix A5). Considering the HCC1806 derived cell lines, HCC1806 

and HCC1806rPCL20 had a similar number of variants called with 414 and 413 respectively. 

HCC1806rCDDP500, HCC1806rDOX12.5, HCC1806rERI50, HCC1806rGEM20 and HCC1806r5-F1500 all had a 

similar number of variants called with 539, 505, 523, 452 and 503 respectively (Figure 5.6A, 

Appendix A5). The HCC38 derived cell lines, HCC38, HCC38rERI10 and HCC38rPCL2.5 had a similar 

number of variants called with 495, 528 and 436 respectively. Very few variants were called in 

HCC38rCDDP3000 and HCC38rDOX40, 247 and 186 respectively, whilst 742 variants were called in 

HCC38rGEM20 (Figure 5.6A, Appendix A5). This pattern of low number of variants called in 

HCC38rCDDP3000 and HCC38rDOX40, and high number of variants called in HCC38rGEM20 was also 

seen before the variant filtering step, as well as in the number of reads input before alignment to 

the reference genome (Figure 5.1B, 5.3B and 5.5B). This suggests that the quality of the sequencing 

was lower for both HCC38rCDDP3000 and HCC38rDOX40, whilst higher depth coverage was achieved 

when sequencing HCC38rGEM20 compared to any of the other cell lines in the panel.  

 
Next, using the established high confidence somatic variants, the cell line mutation burden could 

be calculated. This is defined by the number of somatic mutations (including both SNVs and INDELs) 

in the coding region per mega base. As to be expected, the pattern of cell line mutation burden for 

both synonymous and non-synonymous variants in the cell lines reflected that of the number of 

variants called (Figure 5.6B, Appendix 5A). Finally, the number of genes which contain the called 

variants were identified; termed mutated genes (Figure 5.6C, Appendix 5A). It was noted that each 

of the cell lines showed an unequal number of mutated genes to the number of variants called. This 

shows that multiple variants were identified within the same genes. Of note, MDA-MB-468rPCL20 

had 402 variants called but these were found to only be present in 246 different genes, and 

HCC38rPCL2.5 had 436 variants called and these were found to only be in 258 different genes. 
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Figure 5.6 Characterisation of high confidence somatic variants in chemo-naive and chemo-resistant cell lines 
Basic characterisation of high confidence somatic variants in chemo-naive and chemo-resistant cell lines. A) number of synonymous and 
non-synonymous variants called in each TNBC cell line. B) Calculated cell line mutation burden (Mutations / Mb) for synonymous and 
non-synonymous variants in each TNBC cell line. C) Number of genes which contain either synonymous variants or both synonymous 
and non-synonymous variants (mutated genes) in each TNBC cell line. Numerical data in Appendix A5.  
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5.2.1.3 Characterisation of variants in the chemo-naive and chemo-resistant TNBC cell lines 

 
Having established the high confidence somatic variants in each of the cell lines, the variants 

underwent basic characterisation. The number of different variant consequences for each of the 

cell lines in the panel was calculated (Figure 5.7, Appendix A24). The most common type of 

consequence in each of the cell lines was missense variants, followed by synonymous variants. 

Missense variants are considered under the umbrella of non-synonymous variants, whereby a base 

change results in the single substitution of an amino acid. The next most common consequences 

seen in each of the cell lines were INDELs and frameshifts. INDELs describe variants which have 

either the addition or removal of bases in the multiples of three, which results in the insertion or 

deletion of amino acids within the reading frame. Frameshifts describe variants which have an 

addition or removal of bases, not as a multiple of three, resulting in a change of the reading frame. 

Frameshifts are considered more damaging than INDELS, as a shift in the reading frame can result 

in an altered protein-coding sequence downstream. The consequences; splice acceptor variant or 

splice donor variants, were found in fewer frequency in the cell lines. These variants are found at 

the boundary of an exon and intron site, termed the splice site. These can disrupt RNA splicing, 

resulting in the loss of exons or the inclusion of introns, thereby altering the protein-coding 

sequence, and consequently, are considered to be very damaging. The two consequences seen the 

least, are arguably two of the most severe. Very few stop-gain variants were identified in the cell 

lines, in a range of 3 – 16 stop-gain variants. Stop-gain variants result from a change in a base which 

introduces a premature stop codon, consequently terminating the protein-coding sequence early, 

leading to a truncated protein. It must be noted that frameshift variants often result in subsequent 

stop-gain variants.  Finally, stop-lost variants were seen the least in the cell line panel, with none 

being identified in the MDA-MB-468 and MDA-MB-468 derived chemo-resistant cell lines and 

HCC38rCDDP3000, and the rest of the cell lines were found to have 1-2 variants of this consequence. 

Stop-lost variants are a result of a base change within a stop codon, which leads to elongation of 

the protein-coding sequence.   
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Figure 5.7 Consequence of high confidence somatic variants called in chemo-naive and chemo-resistant TNBC cell lines 
Number of variants considered to be the consequences; missense, synonymous, frameshift, inframe insertion, inframe deletion, stop 
gain, splice acceptor or splice donor in the A) MDA-MB-468, B) HCC38, C) HCC1806 chemo-naive and chemo-resistant TNBC cell lines. 
Numerical data in Appendix A24.  
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Next the variants called in the chemo-resistant cell lines were compared to the variants called in 

the respective chemo-naive cell lines (Figure 5.8, numerical data in Appendix 25). To do this, the 

first VCF files, which included all called variants prior to filtering, were considered alongside the 

final VCF files containing high confidence somatic variants.  

 
De novo variants are variants which are called in high confidence in the chemo-resistant cell line, 

but are never called, even in low confidence, in the respective chemo-naive cell line. MDA-MB-

468rCDDP1000, MDA-MB-468rPCL20 and HCC38rGEM20 all showed to have the highest number of de 

novo variants called with 213, 225 and 203 respectively (Figure 5.A). Even giving the low number of 

total variants called in HCC38rCDDP3000 and HCC38rDOX40, 98 and 31 variants were found to be de 

novo (Figure 5.8A).  

 
Variants which were called in high confidence in the chemo-resistant cell line, and evidence of the 

variant exists at low confidence in the respective chemo-naive cell line are considered gained 

variants. MDA-MB-468rCDDP1000, MDA-MB-468rPCL20 and HCC38rGEM20, have the highest number 

of gained variants called with 286, 276 and 381 (Figure 5.8B). Only 223 gained variants were called 

in HCC38rDOX40 (Figure 5.8B).  

 
Next, variants which were called in high confidence in the chemo-naive cell lines, but are never 

called, even in low confidence, in the respective chemo-resistant cell line were termed as not called 

variants. MDA-MB-468rPCL20 showed the highest number, 345, of not called variants (Figure 5.8C). 

The second highest number of not called variants were seen in both HCC38rCDDP3000 and 

HCC38rDOX40 with 162 not called variants each (Figure 5.8C). 

 
Lost variants are called in the chemo-naive cell line, but evidence is found of the variant in low 

confidence in the respective chemo-resistant cell line. A high number of variants called as lost were 

seen in MDA-MB-468rPCL20, HCC38rCDDP3000 and HCC38rDOX40 with 398, 362 and 355 variants 

respectively (Figure 5.8D). It was also noted that out of the 129 lost variants called in HCC38rGEM20, 

only four were synonymous (Figure 5.8D). 

 
Finally, the remaining variants to be considered are the number of variants that are shared between 

the chemo-naive and chemo-resistant cell lines. Shared variants are variants that are called in high 

confidence in both the chemo-naive and chemo-resistant cell lines. HCC338 GEM had the highest 

number of shared variants with HCC38 (368 variants; Figure 5.8E). MDA-MB-468rPCL20, 

HCC38rCDDP3000 and HCC38rDOX40 each had the least shared variants 128, 135 and 142 respectively 

(Figure 5.8E).  
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Figure 5.8 Comparison of chemo-resistant cell lines to respective chemo-naive cell lines 
Number of synonymous and non-synonymous variants found to be A) de novo, B) gained, C) not called and D) lost in the chemo-resistant 
cell lines compared to respective chemo-naive cell line. E) Number of synonymous and non-synonymous variants found to be shared 
between chemo-naive and chemo-resistant TNBC cell lines. Numerical data in Appendix A25.  
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Analysis of the proportion of variant reads, out of the total number of reads at a given locus, can 

allow for the calculation of the variant allele frequency (VAF). The VAF gives an indication of the 

prevalence of a called variant within the cell population. For example, a VAF equal to 0 or 1 would 

be indicative of homozygous to reference or variant respectively, whereas a VAF equal of 0.5 would 

be indicative of a heterozygous variant in the cell population. Given the heterogeneous population 

of these cell lines, the latter could indicate either a) each cell in the population are heterozygous 

for the variant, or b) half the cell population are homozygous for the variant (VAF equal to 1), whilst 

the other half of the cell population do not have the variant at all (VAF equal to 0).  

 
In order to see a shift in the heterogeneity of the cell population, the VAF of variants shown to be 

shared between a chemo-resistant cell line with the respective chemo-naive cell line were used to 

calculate a fold shift. A fold shift is the ratio of chemo-resistant cell line VAF to the respective 

chemo-naive cell line VAF. The log of the VAF fold shift, and the frequency could be plotted in a 

density plot to visualise VAF shifts (Figure 5.9-5.12). Plots were made using the online tool 

DensityPlotter (Spencer, Yakymchuk and Ghaznavi, 2017). A log(VAF fold shift) equal to one is 

indicative of an two-fold increase of VAF in the chemo-resistant cell line compared to the respective 

chemo-naive cell line, whilst a log(VAF fold shift) equal to negative one is indicative of a two-fold 

decrease of VAF in the chemo-resistant cell line compared to the respective chemo-naive cell line.  

 
MDA-MB-468rDOX50 and MDA-MB-468rPCL20 both had a normal distribution of variants that 

demonstrated an increase or decrease in VAF (Figure 5.9). Given that not many variants were found 

to be de novo or gained (compared to other cell lines in the panel) in MDA-MB-468rDOX50, it’s 

interesting to note that significant shifts in VAF were not seen. MDA-MB-468rERI50 distribution was 

skewed towards a higher number of variants, which demonstrated an increase in VAF, whilst MDA-

MB-468rCDDP1000 distribution was skewed towards variants that had a decrease in VAF. This 

suggests that of the variants shared with MDA-MB-468, the frequency was decreased in the 

heterogenous population in MDA-MB-468rCDDP1000. This is interesting to note, as earlier in this 

chapter, MDA-MB-468rCDDP1000 was one of the cell lines to demonstrate the highest number of de 

novo and gained variants. HCC38rCDDP3000 had an almost normal distribution with the number of 

variants with an increase of decrease in VAF (Figure 5.10). HCC38rDOX40, which had few variants 

shared with HCC38, had variants with an increase in VAF. The distribution of both HCC38rGEM20 and 

HCC38rPCL2.5 are both skewed towards a higher number of variants which demonstrated an 

increase in VAF. The distribution for HCC38rERI10 shows a slight increase in variants which have a 

decrease in VAF (Figure 5.10). There was no notably significant shift in the VAF of variants between 

HCC1806 and the respective chemo-resistant cell lines (Figure 5.11).  
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Figure 5.9 Shift in variant allele frequency of variants shared between MDA-MB-468 and MDA-MB-468 derived chemo-resistant cell 
lines 
The variant allele frequency (VAF) was calculated for each variant as the frequency of alternative reads against total reads for each 
variant. Shift in VAF in variants shared between MDA-MB-468 and MDA-MB-468 derived chemo-resistant cell lines were then calculated 
by determining fold change in VAF. Density plots created of VAF fold shift for A) MDA-MB-468rCDDP1000 B) MDA-MB-468rDOX50 C) MDA-
MB-468rERI50 D) MDA-MB-468rPCL20 
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Figure 5.10 Shift in variant allele frequency of variants shared between HCC38 and HCC38 derived chemo-resistant cell lines 
The variant allele frequency (VAF) was calculated for each variant as the frequency of alternative reads against total reads for each 
variant. Shift in VAF in variants shared between HCC38 and HCC38 derived chemo-resistant cell lines were then calculated by determining 
fold change in VAF. Density plots created of VAF fold shift for A) HCC38rCDDP3000 B) HCC38rDOX40C) HCC38rERI10 D) HCC38rGEM20 E) 
HCC38rPCL2.5 
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Figure 5.11 Shift in variant allele frequency of variants shared between HCC1806 and HCC1806 derived chemo-resistant cell lines 
The variant allele frequency (VAF) was calculated for each variant as the frequency of alternative reads against total reads for each 
variant. Shift in VAF in variants shared between HCC1806 and HCC1806 derived chemo-resistant cell lines were then calculated by 
determining fold change in VAF. Density plots created of VAF fold shift for A) HCC1806rCDDP500 B) HCC1806rDOX12.5 C) HCC1806rERI50 D) 
HCC1806rGEM20 E) HCC1806rPCL20 F) HCC1806r5-F1500 
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5.2.1.4 Mutational patterns and signatures 

 
Somatic variants in cancer genomes can leave mutational profiles. These profiles are mutation 

patterns which can then be associated to a mutational signature. There are six substitution 

subtypes; C > A, C > G, C > T, T > A, T > C and T > G. Each of these can also be examined on sequence 

context by incorporating the bases immediately at 5 prime (5‘) and 3 prime (3’) of each mutated 

base generating 96 different possible mutation sub-types, whereby; six types of substitution * four 

types of 5’ base * four types of 3’ base. In order to analyse the base changes, high confidence 

somatic variants were submitted to the online tool Mutalisk in a VCF (Lee et al., 2018). Mutalisk 

allowed for the analysis of the identified variants in context of the GRCh37 reference build to 

identify mutational patterns as a relative proportion of observed trinucleotide frequency.  

 
Across each of the MDA-MB-468 chemo-naive and chemo-resistant cell lines, C > T base changes 

are the most common, with the least common observed as either T > A or T > G base changes (Figure 

5.12). MDA-MB-468rCDDP100 has an increase in variants with the base change 5’ C, C > T, C 3’, 5’ C, 

C > T, T 3’, and 5’ G, C > A, C 3’ compared to MDA-MB-468. MDA-MB-468rDOX50 had an increase in 

variants with the base change 5’ G, C>A, A 3’ compared to MDA-MB-468. MDA-MB-468rPCL20 had 

an increase in variants which have 5’ A, C > T, G 3’ and 5’ C, C > T, G 3’ base changes compared to 

MDA-MB-468. No significant changes were seen in the MDA-MB-468rERI50 cell line compared to 

MDA-MB-468.  

 
Across each of the HCC38 chemo-naive and chemo-resistant cell lines C > T base changes are the 

most common, whilst T > A are the least common (Figure 5.13). A small increase in variants with 

the base change 5’ G, C > T, T 3’ was seen in both HCC38rERI10 and HCC38rPCL2.5 cell lines compared 

to HCC38. MDA-MB-468rERI50 had less variants with the base change 5’ C, T > C, C 3’ compared to 

HCC38. Given the low number of variants called in HCC38rCDDP3000 and HCC38rDOX40, it was not 

surprising to see that in each case there were often no variants called for an observed context. Even 

though a disparity in the number of variants called in HCC38rCDDP3000, HCC38rDOX40 and 

HCC38rGEM20 the high percentage of C > T and lowest percentage of T > A, T > G base changes 

remained the same. Both HCC38rCDDP3000 and HCC38rDOX40 demonstrated a higher percentage of 

variants called which were related to bases changes C > A, (19.5% and 15.1% respectively) 

compared to the other HCC38 and HCC38 derived chemo-resistant cell lines. 

 
Across the HCC1806 chemo-naive and chemo-resistant cell lines, C > T and T > C base changes are 

the most common, with T > A the least common (Figure 5.14). HCC1806rCDDP500 had an increase in 

variants with the base changes; 5’ A, C > A, C 3’, 5’ G, C > A, C 3’, and 5’ G, T > C, C 3’ compared to 
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HCC1806. HCC1806rDOX12.5 had an increase in variants with the base change 5’ C, T > C, T 3’ 

compared to HCC1806. HCC1806rERI50 had an increase in variants with the base changes; 5’ T, C > 

A, A 3’ and 5’ G, T > C, G 3’ compared to HCC1806. HCC1806rPCL20 also demonstrated an increase in 

variants with a base change 5’ G, T > C, G 3’, 5’ G, C > T, T 3’ compared to HCC1806. HCC1806rGEM20 

and HCC1806r5-F1500 both had an increase in variants with the base changes; 5’ T, C > G, A 3’, 5’ A, 

T > C, G 3’ and 5’ G, T > C, G 3’ compared to HCC1806.  

 
Taken together this data show that C > T base changes are the most common across each of the 

chemo-naive and chemo-resistant cell lines. When considering mutation patterns between cell lines 

which were developed to have resistance to the same chemotherapeutic agent, no similarity was 

seen. 

 

 

 
Figure 5.12 Mutational patterns in MDA-MB-468 and MDA-MB-468 derived chemo-resistant cell lines 
Frequency of variant base changes and the trinucleotide context based on alignment to human genome reference build GRCh37 for A) 
MDA-MB-468 B) MDA-MB-468rCDDP1000 C) MDA-MB-468rDOX50 D) MDA-MB-468rERI50 E) MDA-MB-468rPCL20. Mutational patterns 
calculated using Mutalisk tool. 
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Figure 5.13 Mutational patterns in HCC38 and HCC38 derived chemo-resistant cell lines 
Frequency of variant base changes and the trinucleotide context based on alignment to human genome reference build GRCh37 for A) 
HCC38 B) HCC38rCDDP3000 C) HCC38rDOX40D) HCC38rERI10 E) HCC38rGEM20 F) HCC38rPCL2.5. Mutational patterns calculated using Mutalisk 
tool. 
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Figure 5.14 Mutational patterns in HCC1806 and HCC1806 derived chemo-resistant cell lines 
Frequency of variant base changes and the trinucleotide context based on alignment to human genome reference build GRCh37 for A) 
HCC1806 B) HCC1806rCDDP500 C) HCC1806rDOX12.5 D) HCC1806rERI50 E) HCC1806rGEM20 F) HCC1806rPCL20 G) HCC1806r5-F1500. Mutational 
patterns calculated using Mutalisk tool. 
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Having established the mutational patterns in each of the cell lines, a kataegis analysis can be 

performed. Kataegis describes the phenomenon in which a large number of highly-patterned base 

pair variants occur in a small region of DNA. This analysis was first used by the Wellcome Trust 

Sanger institute in order to describe the observations of breast cancer cells by mapping variant 

clusters across the genome through a rainfall plot to identify clustering patterns of kataegis (Nik-

Zainal et al., 2012). It is expected that variants should be evenly dispersed throughout a genome, 

and so most variants should have approximately one mega base distance between them. In order 

to perform this analysis, the high confidence somatic variants called in each cell line, were 

submitted to the online tool Mutalisk in a VCF. This tool produces a rainfall plot in which 

intermutation distance, i.e., the distance between each somatic variant, and the variant 

immediately before it, is plotted for each variant. This allows the identification of “mutation 

showers”, which are the base changes that show to have shorter distances (Figure 5.15).  

 
Kataegis is observed in the MDA-MB-468 chemo-naive and chemo-resistant cell lines in 

chromosomes 3, and 11. MDA-MB-468 also demonstrated kataegis at chromosome 7, 13 and 14. 

MDA-MB-468rCDDP1000 demonstrated kataegis at chromosome 7 and 14, like MDA-MB-468, but 

also at chromosome 9, 12 in addition. MDA-MB-468rDOX50 demonstrated kataegis at chromosome 

7, 13 and 14, like MDA-MB-468, but also at chromosome 9. MDA-MB-468rERI50 demonstrated 

kataegis at chromosome 13, like MDA-MB-468. MDA-MB-468rPCL20 did not have any further 

observed kataegis than already stated. Kataegis is observed in the HCC38 chemo-naive and chemo-

resistant cell lines in chromosome 3, 11 and 12. HCC38 and HCC38rERI10, HCC38rGEM20 and 

HCC38rPCL2.5 also all demonstrated kataegis at chromosome 7. In addition, kataegis is observed at 

in chromosome 8 in HCC38rERI10, chromosome 17 in HCC38rGEM20 and in chromosome 18 in 

HCC38rPCL2.5. In the HCC1806 chemo-naive and chemo-resistant cell lines, kataegis is observed in 

chromosome 3 and 11. In addition, HCC1806rCDDP500 demonstrated kataegis in chromosome 8, and 

both HCC1806rCDDP500 and HCC1806r5-F1500 demonstrated kataegis in chromosome 7. Kataegis was 

demonstrated in chromosome 12 in HCC1806rDOX12.5 and HCC1806rERI50, and HCC1806rERI50 also 

demonstrated kataegis in chromosome 13. Observed kataegis was also seen in chromosome 13 in 

HCC1806rGEM20 and HCC1806rPCL20.  

 
Taking this data together, it can be seen kataegis was observed at both chromosome 3 and 11 in 

each of the chemo-naive and chemo-resistant TNBC cell lines, suggesting that this may be 

associated to TNBC, rather than driving drug-resistance. When considering the cell lines which have 

been developed to have resistant to the same chemotherapeutic agent, no pattern of kataegis was 

observed. 
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Figure 5.15 Kataegis of each chemo-naive and chemo-resistant TNBC cell line.  
Continued on next page 
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Figure 5.15 Kataegis of each chemo-naive and chemo-resistant TNBC cell line.  
Continued on next page 
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Figure 5.15 Kataegis of each chemo-naive and chemo-resistant TNBC cell line.  
Continued on next page 
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Figure 5.15 Kataegis of each chemo-naive and chemo-resistant TNBC cell line.  
Kataegis patterns for each of the chemo-naive and chemo-resistant TNBC cell lines calculated through intermutation distance between 
each somatic variant and visualised as a rainfall plot. Kataegis calculated using Mutalisk tool with high confidence somatic variant VCF 
as input.  
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The Mutalisk tool also allowed for the investigation of known mutational signatures, as described 

in the work of Alexandrov et al., 2020. Variants may be a consequence of multiple mutational 

processes including; as a result of infidelity of DNA replication machinery, exogenous or 

endogenous mutagen exposures (such as chemotherapeutic agents), and the modification of 

enzymes associated with DNA repair. The mutational signatures were extracted from the 2,780 

whole genome variant calls produced by the International Cancer Genome Consortium 

(ICGC)/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) network (International Cancer 

Genome Consortium, 2010; Weinstein, 2013; Campbell et al., 2020). The signatures are divided into 

three categories; Single Base Substitution (SBS), Doublet base substitution (DBS) and Small Insertion 

and Deletion (ID) signatures. Each signature has a proposed aetiology, although some signatures 

are currently unknown or speculated upon, and these require further evidence, through 

investigation, to establish the aetiology. Mutalisk identifies seven decomposition models based on 

SBS, with the best fit based on the ranking by the Bayesian Information Criterion (BIC), which 

identifies which mutational signatures the cell line being analysed relates to the most. Here the 

lowest BIC value indicates the best model, and this model was used to identify the mutational 

signatures each of the TNBC cell lines showed a similarity. The percentage of similarity to the 

mutational signatures was determined in each TNBC cell line (Figure 5.16). 

 
Many of the identified signatures were associated with defects in the ability of the cells to repair 

DNA. All of the cell lines, with the exception of HCC38rGEM20, HCC1806rCDDP500 and HCC1806r5-

F1500 demonstrated a similarity to SBS1. The signature SBS1 is thought to be a result of an 

endogenous mutational process which leads to the deamination of the 5-methylcytosine to 

generate thymine, consequently generating G:T mismatches in dsDNA. It is thought that the 

inability to remove the mismatch before DNA replication results in fixation of the T substitution for 

C. The signature SBS1 is often found correlated with the signature SBS5. Only MDA-MB-468, MDA-

MB-468rCDDP1000, MDA-MB-468rDOX50, MDA-MB-468rERI50, HCC38, HCC38rPCL2.5 and 

HCC1806rDOX12.5 demonstrated a similarity to SBS5. The aetiology of SBS5 is unknown, although it 

has been found to be increased in bladder cancer samples which harbour mutations in the DNA 

excision repair protein ERCC6, and also in cancers as a result of tobacco smoking. A similarity to the 

signature SBS3 is found in all of the chemo-naive and chemo-resistant cell lines with the exception 

of MDA-MB-468rCDDP1000, HCC38, HCC1806rDOX12.5 and HCC1806rERI50. SBS3 is associated with 

defective HRR. This is identified through small INDELs and genome rearrangements due to 

abnormal dsDNA repair or base substitution. Similarity to the signature SBS6, which is associated 

with defective DNA MMR, was seen in HCC38rGEM20, HCC1806rCDDP500 and HCC1806r5-F1500. Only 
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HCC38rDOX40 demonstrated similarity to the signature, SBS15, which is also associated with 

defective DNA MMR. 

 
Two signatures associated to the activity of the AID/APOBEC family were identified in the cell lines. 

The cell lines; MDA-MB-468, MDA-MB-468rCDDP1000, MDA-MB-468rDOX50, MDA-MB-468rERI50, 

HCC1806rCDDP500 and HCC1806r5-F1500 demonstrated a similarity to the signature SBS13. SBS13 is 

thought to be as a result of the activity of AID/APOBEC family of cytidine deaminases due to the 

similar sequence context of cytosine mutations caused by APOBEC found in experimental models. 

The mutations may be generated directly by DNA replication across uracil or by error prone 

polymerases, such as REV1 (a deoxycytidyl transferase in DNA repair), in replicating across abasic 

sites which are generated BER. It was found that the signature SBS13 is closely related to SBS2. The 

signature SBS2 is attributed to same activity as SBS13, although only HCC1806rGEM20 showed a 

similarity to the SBS2 signature.    

 
Three signatures were identified which have been shown to be associated with treatment of drug 

agents. The cell lines MDA-MB-468rCDDP1000, and HCC38rCDDP3000 had similarity to the signature 

SBS31 which has been associated with prior chemotherapy treatment with platinum drugs. 

Importantly both MDA-MB-468rCDDP1000 and HCC38rCDDP3000 were developed to have resistance 

to a platinum drug, cisplatin, although it was noted that although HCC1806rCDDP500 also had 

developed resistance to cisplatin, no similarity to SBS31 was seen, even when checking models with 

a lower BIC value. The cell lines MDA-MB-468rPCL20, HCC38 and HCC38rERI10 demonstrated a 

similarity to the signature SBS11 which has been related to a mutational pattern associated to 

alkylating agents. It was shown the SBS11 mutations were found associated to previous treatment 

with the alkylating agent, temozolomide, when considering patient histories. MDA-MB-

468rCDDP1000, MDA-MB-468rPCL20 and HCC38rDOX40 demonstrated a similarity to the signature 

SBS24, which has been associated to the exposure of aflatoxin, which are a family of toxins 

produced by certain fungi found in agricultural crops.  

  
Some signatures found to be associated to the TNBC cell lines are identified only through patterns 

found in particular cancers. The two cell lines HCC38rGEM20 and HCC1806rCDDP500 demonstrated a 

similarity to the signature SBS29 which have been found in cancer samples from individuals with a 

tobacco chewing habit. Three cell lines were found associated to SBS7. SBS7 is divided into four 

categories; SBS7a, SBS7b SBS7c and SBS7d. All four have been previously found in skin cancers as a 

result of sun exposure. It is predicted that they may be the consequence of pyrimidine dimers or 6-

4 photoproducts, but there is no evidence of this hypothesis and it is unclear which may be 
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responsible for the SBS7(a-d) mutational signatures. MDA-MB-468rDOX50 demonstrated a similarity 

to SBS7a, whilst HCC38rDOX40 and HCC1806rCDDP500 demonstrated a similarity to SBS7b. It was 

interesting to note that two out of the three doxorubicin resistant cell lines in the panel, showed a 

similarity to SBS7, and neither of them demonstrate cross-resistance to cisplatin. However, 

HCC1806rCDDP500 has been shown to demonstrate cross-resistance to doxorubicin. This may 

suggest that the mutational signatures associated to SBS7 may be linked with doxorubicin 

resistance.  

 
Many of the identified signatures in the TNBC cell lines had no known aetiology. HCC38, 

HCC38rDOX40, HCC38rERI10, HCC38rPCL2.5, HCC38rGEM20, HCC1806rDOX12.5, HCC1806rERI50 and 

HCC1806rPCL20 all showed similarity to the signature SBS39, although aetiology is unknown. 

HCC38rERI10 and HCC38rPCL2.5 show similarity to the signature SBS19, and MDA-MB-468rCDDP1000 

and HCC1806rERI50 show similarity to SBS40, although the aetiology of these signatures is also 

unknown. Finally, MDA-MB-468rDOX50, HCC1806rDOX12.5, HCC1806rERI50 and HCC1806rGEM20 show 

similarity to the signature SBS23, although the aetiology is unknown. Interestingly each of the latter 

cell lines all demonstrate resistance or cross-resistance to doxorubicin.  

 
Lastly, three of the signatures identified in the TNBC cell lines are thought to be as a consequence 

of sequencing artefacts. Similarity to the signature, SBS43, is found in HCC1806, and whilst the 

aetiology is unknown, it is predicted to be a sequencing artefact. Similarity to the signature SBS46 

was found in MDA-MB-468rERI50, MDA-MB-468rPCL20, HCC38, HCC38rDOX40, HCC38rERI10, 

HCC38rPCL2.5, HCC38rGEM20, HCC1806rCDDP500, HCC1806rDOX12.5, HCC1806rERI50 HCC1806rGEM20 

and HCC1806r5-F1500. SBS46 is considered to be a sequencing artefact, but has been found 

commonly in colorectal cancers in early releases of the TCGA database. Finally, similarity to the 

signature SBS54 was seen in MDA-MB-468, MDA-MB-468rCDDP1000, MDA-MB-468rDOX50, MDA-MB-

468rPCL20, HCC38rERI10, HCC1806 and all of the HCC1806 derived chemo-resistant cell lines. SBS54 

is considered as a sequencing artefact which may be as a result of contamination with germline 

variants. 
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Figure 5.16 Similarity of mutational signatures in the chemo-naive and chemo-resistant TNBC cell lines 
Identification of the chemo-naive and chemo-resistant TNBC cell lines similarity to Single Base Substitution (SBS) mutational signatures 
identified as part of the pan-cancer analysis of whole genomes (PCWAG) network. Similarity of mutational signatures calculated using 
Mutalisk tool and shown as a percentage similarity. Lowest BIC value identified best fit model selected for each cell line. Colours 
indicative of an individual signature to allow for cross-comparison between cell lines.  
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5.2.1.5 Comparison of variants in chemo-resistant cell lines resistant to the same drug 

 
In order to identify variants which may have developed, or been selected for in the chemo-resistant 

cell lines, cell lines made resistant to the same chemotherapeutic agent were compared. This 

analysis aimed to identify both exact variants called, which are shared between the chemo-resistant 

cell lines, and also genes which contain variants (mutated genes). This distinction was made, as 

although an exact variant may not be shared between the cell lines, a variant in the same gene may 

have the same or a similar consequence. The number of variants and mutated genes that are shared 

between chemo-resistant cell lines developed to have resistant to the same chemotherapeutic 

agent were identified (Figure 5.17, variant and mutated gene data in Appendix A26-A30).  

 
 

 

 
Figure 5.17 Number of variants and mutated genes shared between chemo-resistant cell lines developed to have resistance to the 
same chemotherapeutic agent 
Identification of all exact variants and mutated genes shared between each of the chemo-resistant cell lines developed to have resistance 
to the same chemotherapeutic agent. A) total number of variants shared between chemo-resistant cell lines B) total number of mutated 
genes shared between chemo-resistant cell lines C) table summarises the total number of exact variants where S are synonymous, NS 
are non-synonymous variants and total variants are the sum of S and NS. Total genes are the total number of mutated genes shared 
between the chemo-resistant cell lines. Exact variant and mutated gene data in Appendix A26-A30.  
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The cisplatin and doxorubicin resistant cell lines were seen to share the smallest total number of 

exact variants (40 and 41 respectively), whilst the gemcitabine resistant cell shared the greatest 

total number of exact variants (169). This is reflective of the number of variants called in the 

HCC38rCDDP3000, HCC38rDOX40 and HCC38rGEM20 cell lines. The paclitaxel resistant cell lines showed 

the highest number of variants shared between MDA-MB-468rPCL20 and HCC38rPCL2.5, as well as 

MDA-MB-468rPCL20 and HCC1806rPCL20, with 168 and 147 variants respectively. MDA-MB-468rPCL20 

had previously been shown to have very few variants shared with the chemo-naive cell line it was 

derived from.  

 
The number of exact variants which were seen to be shared across each of the resistant sub-types, 

with the exception to doxorubicin resistant cell lines, were higher than the total number of mutated 

genes shared. This shows that in many cases multiple variants are present in the mutated genes. It 

must be noted that this does not necessarily mean every cell in the resistant population has multiple 

variants in this gene. A sub-population of the resistant cell line may harbour one variant in the gene, 

whilst another sub-population may harbour a different variant in the same gene.  

 
Table 5.1 shows the genes in which exact variants were found to be shared between all of the cell 

lines which are resistant to the same chemotherapeutic agent, as well as the mutated genes. Taking 

the shared mutated genes identified, gene ontology (GO) functional enrichment analysis was 

conducted using G:profiler (Raudvere et al., 2019). The tool maps genes to known functional 

information sources, such as Ensembl, and identifies statistically significant enriched terms. The GO 

hierarchy is divided into three sub-ontologies; Biological Process, Cellular Component and 

Molecular function, and each of the identified enriched GO terms are associated to one of these 

sub-ontologies.  

 
All of the mutated genes sets demonstrated an enrichment in the following GO terms; O-glycan 

processing (GO:0016266), NADH dehydrogenase activity (GO:0003954), mitochondrial ATP 

synthesis coupled electron transport (GO:0042775), oxidative phosphorylation (GO:0006119), ATP 

synthesis coupled electron transport (GO:0042773), regulation of production of miRNAs involved 

in gene silencing by RNA (GO:0070920), and regulation of production of small RNA involved in gene 

silencing by RNA (GO:0070920). The mutated genes identified to be shared in the doxorubicin 

resistant cell lines and in the gemcitabine resistant cell lines were found to be enriched in the GO 

terms; supramolecular polymer (GO:0099081), supramolecular fibre (GO:0099512), 

supramolecular complex (GO:0099080), keratin filament (GO:0045095) and polymeric cytoskeletal 

fibre (GO:0099513). The mutated genes found in the gemcitabine resistant cells were also enriched 
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in the GO terms; DNA binding (GO:0003677) and negative regulation of production of miRNAs 

involved in gene silencing by miRNA (GO:1903799). The mutated genes shared between the eribulin 

resistant cell lines were also found to be enriched in the GO term; enzyme binding (GO:0019899). 

No other statistically significant GO terms were found to be associated with the mutated genes 

shared between the cisplatin resistant cell lines, or paclitaxel resistant cell lines. 

 

 

Table 5.1. Summary of shared genes with exact variants and shared mutated genes between chemo-resistant cell lines 
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Having established the total number of variants and mutated genes shared between the resistant 

cell lines made resistant to the same chemotherapeutic agents, the analysis next focused on the de 

novo variants that are shared (Table 5.2).  

 
No de novo variants were found to be shared between resistant cell lines derived from each of the 

three chemo-naive cell lines. The two gemcitabine resistant cell lines; HCC38rGEM20 and 

HCC1806rGEM20 shared a de novo variant in DDX11, an ATP-dependent DNA helicase, although the 

VAF was low (0.086 and 0.176 respectively). Several de novo variants in CDK2AP2 were identified 

to be shared between HCC38rDOX40 and HCC1806rDOX12.5, and several de novo variants were 

identified in PABPC3 shared between MDA-MB-468rERI50 and HCC1806rERI50. MDA-MB-468rERI50 

and HCC38rERI10 were shown to share non-synonymous de novo variants in RGPD3 and RGPD4 

which encode RanBP2-like and GRIP domain-containing protein 3 and RanBP2-like and GRIP 

domain-containing protein 4. Both RGPD3 and RGPD4 are one of the eight copies of RANBP2 

clustered close to the chromosome 2 centromere. RANBP2 is a E3 SUMO-protein ligase which has 

a role in facilitating SUMO1 and SUMO2 conjugation by UBE2I (Pichler et al., 2002; Reverter and 

Lima, 2005; Gareau, Reverter and Lima, 2012). Many cell lines were seen to share de novo variants 

in MUC related genes.  

 
Next, genes which were only found to be mutated in the chemo-resistant cell lines, not in the 

chemo-naive (de novo mutated genes), were compared to see if any of these are shared between 

chemo-resistant cell lines developed to have resistance to the same drug. No de novo mutated 

genes were found to be shared.  

 
The analysis next focused on variants which were not called in the chemo-resistant cell lines, and 

compared these to chemo-resistant cell lines made resistant to the same chemotherapeutic agents 

(Table 5.3). Many variants identified are associated with MUC genes.  

 
Next, taking the genes which were only found to be mutated in the chemo-naive cell lines, not in 

the chemo-resistant cell lines (not called mutated genes), these were compared to see if any of 

these are shared between chemo-resistant cell lines developed to have resistance to the same drug. 

No not called mutated genes were found to be shared.  

 
Taken together, these analyses have shown that the variants which may be driving resistance are 

different in each of the chemo-resistant cell lines, even when made resistant to the same 

chemotherapeutic agent.
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Table 5.2. Summary of shared de novo variants between chemo-resistant cell lines 

 

 

        

Key: Chromosome, variant position, reference base > alternative base, NS/S (non-synonymous/synonymous), VAF MDA-MB-468 = a, HCC38 = b, HCC1806 = c  
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Table 5.3. Summary of shared not called variants between chemo-resistant cell lines 

 

 

 Key: Chromosome, variant position, reference base > alternative base, NS/S (non-synonymous/synonymous), VAF MDA-MB-468 = a, HCC38 = b, HCC1806 = c  
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5.2.2 Candidate approach 

 
As established in chapter 4, dysregulation of the DDR pathways is a common resistance mechanism 

for chemotherapeutic agents. Further to this, dysregulation of the way in which drugs are 

transported or metabolised can also result in chemo-resistance (section 1.3, chapter 4). Here, a 

candidate approach was taken to analyse variants in genes associated with DDR and drug transport 

and metabolism in each of the chemo-naive and chemo-resistant cell lines. Five lists of genes with 

GO terms associated to; Cellular response to DNA damage stimulus (747 genes), DNA repair (469 

genes), Cell cycle (1658 genes), Drug transport (208 genes) and Drug metabolic Process (532 genes), 

were created. These lists were compared to the mutated genes in each of the chemo-naive and 

chemo-resistant cell lines to identify variants in these pathways. As the severity outcome of 

synonymous variants is difficult to predict, only non-synonymous variants were used in this analysis. 

The number of genes with only de novo variants were also calculated in the chemo-resistance TNBC 

cell lines for each category.  

  
The total number of mutated genes for each cell line associated with the five described categories 

was identified (Figure 5.18A-E). The genes in the DNA damage stimulus and DNA repair categories 

were considerably overlapping, as many of the proteins derived from the genes have promiscuous 

roles across these cross-talking pathways. Here, the same number of mutated genes are the same 

to both of these categories in all of the chemo-naive and chemo-resistant cell lines, with an 

exception to HCC38rERI10 which identified an extra mutated gene associated to DNA repair, and 

MDA-MB-468rPCL20, HCC38 and HCC38rCDDP3000 which identified an extra mutated gene associated 

to DNA damage stimulus. All of the HCC1806 derived chemo-resistant cell lines showed an increase 

in mutated genes associated to the cell cycle compared to HCC1806. HCC38rGEM20 had the most 

mutated genes associated to the cell cycle across all of the cell lines in the panel. MDA-MB-

468rCDDP1000 had the highest increase in mutated genes associated to the cell cycle compared to 

other MDA-MB-468 derived cell lines. Very few mutated genes were found in the chemo-resistant 

cell lines associated to the GO terms; drug transport or drug metabolic process. Both MDA-MB-

468rCDDP1000 and HCC1806rCDDP500 had an increase in mutated genes associated to drug metabolic 

process, compared to the respective chemo-naive cell line.  
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The genes which contain de novo variants for each of the categories in the chemo-resistant TNBC 

cell lines were identified (Figure 5.18F). Both the gemcitabine resistant cell lines (HCC38rGEM20 and 

HCC1806rGEM20) had many de novo variants in genes associated with the cell cycle. All three 

cisplatin resistant cell lines (MDA-MB-468rCDDP1000, HCC38rCDDP3000 and HCC1806rCDDP500) had 

the most de novo variants in genes associated to drug metabolic processes. Each of the de novo 

variants for each category are summarised with respect to the overlapping GO terms, including the 

VAF, in Appendix A32.  

 
In order to determine how damaging the de novo variants were, several approaches were taken. 

Those variants which are considered to be protein truncating variants (PTV), such as; frameshifts, 

stop gains, splice accepter and splice donor variants, were considered to have sudden protein 

termination, or incorrect protein folding, or chain composition due to changes in the reading frame. 

This would result in a protein that is predicted to be either; completely no-functional in the cell, 

ultimately undergoing rapid degradation, or have heavily dysregulated activity. Taking these 

assumptions, these variants were considered to have loss of function (LOF). Those variants which 

are considered to be missense variants underwent further analysis using three variant predictors; 

SIFT, Polyphen and mutational assessor (section 2.4.3.3). The scores obtained from the missense 

variant predictors do not give any indication as to whether the missense variant could be a gain of 

function (GOF), or a LOF. For the following analysis, only the variants which are considered to be 

damaging by at least two out of three predictors are addressed in full.  
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Figure 5.18 Summary of mutated genes identified in the candidate approach 
Number of mutated genes in the chemo-naive and chemo-resistant cell lines which are described by the gene ontology terms A) Cellular 
response to DNA damage stimulus, B) DNA repair, C) Cell cycle, D) Drug transport, E) Drug metabolic processes. F) Identification of genes 
under the aforementioned gene ontology terms which contain only de novo variants in the chemo-resistant cell lines.  
 

 

5.2.2.1 De novo variants in cisplatin resistant cell lines 
 
Across the three cisplatin resistant cell lines, 33 de novo variants in this candidate approach were 

identified which may be driving cisplatin resistance in the genes; EEPD1, SMARCAL1, BRD7, EPB41, 

FER, HNRNPU, KLF11, TERT, SLC25A19, ADH7, DNM2, EPAS1, IDO1, FANCM, IGF1R, MICAL3, 

SLC16A1, TDRD9, ZBTB17, CYP27B1, GCH1, GCSH, CLOCK, DDX11, NCOA6, RAD23B, PTGS2, RAE1, 

SDCCAG8, ATP5O and SDHA (Appendix-A31) Table 5.4 shows the results of the missense variant 

predictors analysis.  
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Table 5.4. Summary of cisplatin resistant missense variants effect predictor results 

 

 

 
A stop gain variant in SMARCAL1 was identified in MDA-MB-468rCDDP1000 cell line at W277* with a 

VAF of 0.124. SMARCAL1 (SWI/SNF-related matrix-associated-actin-dependent regulator of 

chromatin subfamily A-like protein 1), is an ATP-dependent annealing helicase that binds selectively 

to DNA, and is involved in fork reversal activity. Depletion of SMARCAL1 restores fork protection in 

BRCA1 or BRCA2 depleted cells, and increased drug resistance to both cisplatin and PARP inhibitors 
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(Cantor and Calvo, 2017; Kolinjivadi et al., 2017; Taglialatela et al., 2017). It could be predicted the 

stop gain variant leads to LOF of SMARCAL1, prevention of fork reversal, restoring fork protection 

and appropriate DNA repair to overcome cisplatin lesions.  

 
MDA-MB-468rCDDP100 harbours a splice acceptor variant in BRD7 with a VAF of 0.23. BRD7 interacts 

and negatively regulates YB-1 phosphorylation level. YB-1 has been found to be implicated in 

response to multiple drugs such as cisplatin (Niu et al., 2020). It has been shown that YB-1 is 

overexpressed in human cancer cell lines which are resistant to cisplatin, and YB-1 can function as 

a recognition protein for cisplatin intercalated-DNA (Ohga et al., 1996; Tomoko et al., 1999). It could 

be predicted that a splice acceptor variant leads to LOF of BRD7, preventing negative regulation of 

YB-1, and allowing YB-1 to respond and promote DNA repair to cisplatin lesions.  

 
A missense variant in HNRNPU was identified in MDA-MB-468rCDDP100 at F299Y. HNRNPU 

(heterogenous nuclear ribonucleoprotein U) has many roles associated with nuclear chromatin 

organisation and mitotic cell progression to name but a few. HNRNPU has been shown to enhance 

cisplatin-induced apoptosis through up-regulation of GADD45A, which functions to stimulate DNA 

excision repair and inhibits entry of cells into S phase (Li et al., 2017). SIFT predicts this variant to 

be deleterious, Polyphen; probably damaging and mutational assessor; medium (Table 5.4). The 

variant was identified to be in the B30.2/SPRY domain, which is predicted to function through 

protein-protein interaction, and are normally highly conserved domains (Woo et al., 2006).  It could 

be predicted that a LOF in HNRNPU, preventing cisplatin induced apoptosis, which could result in 

cisplatin resistance.  

 
A splice donor variant in IDO1 was identified in MDA-MB-468rCDDP100. IDO1 (Indoleamine 2,3-

dioxygenase 1) is found in the kynurenine pathway, and catalyses the first and rate limiting step of 

the catabolism of the amino acid tryptophan (Metz et al., 2007). Cisplatin resistant lung cancer cells 

have been shown to activate the kynurenine pathway to cope with excessive reactive oxygen 

species, and increased IDO1 activities are found in these cisplatin resistant cells. The group also 

established that shRNA knockout of IDO1 in cisplatin resistant cells resulted in a significant growth 

inhibitory effect (Nguyen et al., 2020). Here predictions of LOF variant in IDO1 as a mechanism of 

cisplatin resistance contradict what has previously been found. This mechanism may be context 

specific. 

 
A de novo missense variant was found in GCH1 (G108S) in HCC38rCDDP3000 with a VAF of 0.2. GCH1 

(GTP cyclohydrolase 1), has been found to positively regulated nitric oxide (NO) synthesis. Increased 

NO production has previously been implicated in cisplatin drug resistance through regulation of Bcl-



5. Identification of candidate drivers of drug resistance using whole exome sequencing 

 

181 
 

2, and cisplatin treatment of rats reported a beneficial effect of blockade of NO pathways during 

cisplatin chemotherapy (Srivastava et al., 1996; Chanvorachote et al., 2006). All three variant 

predictors identify the variant in GCH1 to be damaging, and mutation assessor identifies it to be in 

a protein binding site, and next to a known conserved site (Table 5.4). The variant could be a GOF 

variant which leads to increase in NO resulting in cisplatin resistance.  

 
A de novo missense variant was found in PTGS2 (G512E) in HCC1806rCDDP500 with a VAF of 0.3. 

PTGS2 (prostaglandin G/H synthase 2), is involved in prostanoid synthesis. Upregulation of PTGS2 

has been associated to cell adhesion and resistance to apoptosis through the production of 

prostaglandin E2. Drugbank, a bioinformatics tool for drug target discovery and drug docking, has 

shown that cisplatin binds to PTGS2 (Wishart, 2006). It has also been shown that transactivation of 

PTGS, by PAX5 signalling, potentiates cisplatin resistance (Dong et al., 2018). All three variant 

predictors identify the variant to be damaging in PTGS2, with mutation assessor identifying the 

variant to be in a small molecule binding site (Table 5.4). 

 
A de novo missense variant was found in SDHA (A449V) in HCC1806rCDDP500 with a VAF of 0.3. SDHA 

(succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial) is a protein involved 

in complex II of the mitochondrial electron transport chain (Burnichon et al., 2010). Cisplatin is 

known to induce a mitochondrial ROS response, of which contributes to the cytotoxicity of the drug 

(Marullo et al., 2013b). The three variant predictors identified this to be damaging, with mutational 

assessor identifying the variant to be in a protein binding site (Table 5.4). This variant may reduce 

the damage of the ROS in the mitochondria, resulting in reduced DNA damage and reduced cell 

death as a possible cisplatin resistance mechanism.  

 
Several de novo missense variants, which are predicted to be damaging, were also identified in the 

cisplatin resistant cells lines, of which the resistance mechanism could not be hypothesised. MDA-

MB-468rCDDP100 was identified to have a stop gain variant in FER (W20*) and KLF11 (S442*). FER 

(tyrosine-protein kinase FER), is a cytoplasmic tyrosine protein kinase that acts downstream of cell 

surface receptors. KLF11 (krueppel-like factor 11) is a transcription factor which can repress 

transcription of SMAD7, antagonist of TGF-beta signalling.  

 
A de novo missense variant was identified in LIN54 (P448T) in HCC38rCDDP3000 with a VAF of 0.5. 

LIN54 (protein lin-54 homolog), is a key component of the DREAM complex, a complex which acts 

as a coordinator of cell-cycle-dependent gene expression, either as an activator or a repressor 

depending on the context (Litovchick et al., 2007; Schmit et al., 2007; Sadasivam and DeCaprio, 

2013). Two of the variant predictors consider it to be a damaging variant, although the variant is 
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not present in any known domains (Table 5.4). The DREAM complex is part of the p53-p21-DREAM-

E2F/CHR pathway. It is known that p21CIP1/WAF1 is required for the activation of the DREAM complex 

(Engeland, 2018).The HCC38rCDDP3000 cell line was previously investigated in chapter 3 and it was 

found to have elevated p21CIP1/WAF1 expression at both gene and protein level. However, the link 

between the elevated p21CIP1/WAF1 levels in HCC38rCDDP3000 and the de novo missense variant in 

LIN54 and the implication in cisplatin resistance remains unknown.  

 
Interestingly, another de novo variant identified in HCC38rCDDP3000, has been found to have a role 

implicated with p21CIP1/WAF1. A de novo missense variant was found in ZBTB17 (T439P) in 

HCC38rCDDP3000 with a VAF of 0.2. ZBTB17 (zinc finger and BTB domain -containing protein 17), is a 

transcription factor which can act as both an activator or repressor and targets negative regulators 

of cell cycle progression, including inducing transcription of p21CIP1/WAF1 /CDKN1A and the 

retinoblastoma gene RB1 upon exposure to genotoxic stress (Jeon et al., 2014). All three variant 

predictors consider the variant to be damaging, and mutation assessor predicted the variant to be 

located in a protein and a DNA/RNA binding site, of which is identified to be in a zinc finger (C2H2-

type 5) (Table 5.4). It could be predicted that this variant could result in higher transcription of 

p21CIP1/WAF1 /CDKN1A, resulting in the higher expression levels of p21CIP1/WAF1 seen experimentally in 

HCC38rCDDP3000, although the implication of the de novo missense variant in ZBTB17 role in cisplatin 

resistance is unknown.  

 
A de novo missense variant was found in TDRD9 (L273H) in HCC38rCDDP3000 with a VAF of 0.4. TDRD9 

(ATP-dependent RNA helicase TDRD), is predominantly associated with meiotic nuclear division. 

The variant is considered to be damaging by all three variant predictors, and can be found to be in 

the helicase ATP-binding domain (Table 5.4). Its implication in cisplatin resistance is unknown.  

 
A de novo variant was found in RAE1 (P228T) in HCC1806rCDDP500 with a VAF equal of 0.3. RAE1 

(mRNA export factor) is known to have a role in the mitotic bipolar spindle formation (Wong, Blobel 

and Coutavas, 2006). All three variant predictors identify this variant as damaging, and it is 

identified to be directly next to a threonine residue at position 229, which is known to be 

phosphorylated (Table 5.4). Its implication in cisplatin resistance is unknown.  

 
A missense variant in ADH7 was identified in MDA-MB-468rCDDP100 at G129V. ADH7 (all-trans 

retinol dehydrogenase) catalyses the NAD-dependent oxidation of all transoretinol, alcohol, and 

omega-hydroxy fatty acids and their derivatives. SIFT predicted the variant to be deleterious, 

Polyphen; probably damaging and mutational assessor; low (Table 5.4). Its implication in response 

to cisplatin is unknown.  
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5.2.2.2 De novo variants in doxorubicin resistant cell lines 
 
Across the three doxorubicin resistant cell lines, 10 de novo variants in this candidate approach 

were identified which may be driving doxorubicin resistance in the genes; CHEK2, MTA1, XRN2, 

MTRR, CSNK1D, TOR1A, CLOCK, TOP2A, CDK2AP2 and SOX2 (Appendix-A31). Table 5.5 shows the 

results of the missense variant predictors analysis.  

 
Table 5.5. Summary of doxorubicin resistant missense variants effect predictor results 

 

 

 
HCC1806rDOX12.5 carried a frameshift mutation in TOP2A with a VAF of 0.8. TOP2A (topoisomerase 

2 alpha) is a known target of doxorubicin and its dysregulation is known to play a role in doxorubicin 

resistance (Burgess et al., 2008). The frameshift occurs at PI843-844PIYX, introducing an early 

nonsense mutation, resulting in the loss of sites associated with the interaction of TOP2A with DNA, 

and many protein translation modification sites (Wendorff, Timothy J.; Schmidt, Bryan H.; Heslop, 

Pauline; Austin, Caroline A.; Berger, 2012). Loss of the drug target reduces the way in which 

doxorubicin cytotoxicity can occur. It can be predicted that the de novo frameshift variant in TOP2A 

directly results in doxorubicin resistance.  

 
 A frameshift variant in SOX2 (LL131-132X) was also identified in HCC1806rDOX12.5. SOX2, is a 

transcription factor which, through a functional study, was shown to be a target for TOP2A 

(Lachmann et al., 2010). It has been further implicated to be a target for TOP2A through a 

multidimensional protein identification technology (MudPIT) analysis (Gao et al., 2012). Here it 

could be predicted that the identified frameshift in SOX2 could result in a LOF phenotype, resulting 

in reduced transcription of TOP2A. This could result in a reduction of available target for 

doxorubicin binding, resulting in doxorubicin resistance.  
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HCC38rDOX40 has a missense variant S101N in CSNK1D with a VAF of 0.6. CSNK1D (casein kinase 1, 

delta), an essential serine/threonine protein kinase, and a central component of the circadian clock, 

has been shown to phosphorylates TOP2A at S1106 which enhances TOP2A activity and results in 

sensitivity to Topo II – targeted drugs in vivo (Chikamori et al., 2003; Grozav et al., 2009). The 

missense variant changes a serine, to an asparagine, and although not previously identified as a site 

of phosphorylation, the variant was identified to be in a protein binding site by mutation assessor 

(Table 5.5). It could be hypothesised that the missense variant in CSNK1D, could lead to a 

downregulation in CSNK1D activity, or reduction of protein-protein-interaction, resulting in the 

hypophosphorylation of TOP2A, and ultimately resistance to doxorubicin.  

 
Given the role of CSNK1D in the circadian clock, it was interesting to find a de novo missense variant, 

E165A, in HCC1806rDOX12.5 in the gene; CLOCK. CLOCK (circadian locomotor output cycles kaput), is 

a transcriptional activator which forms a core component of the circadian clock, to the best of 

knowledge has not be implicated in doxorubicin resistance. Two of the variant predictors identify 

this variant to be damaging (Table 5.5). Further to this, a de novo missense variant in MTA1, H614N, 

in MDA-MB-468rDOX50 was identified. MTA1 (metastasis associated 1), is a transcriptional 

coregulator, and has been found to recruit CLOCK-BMAL1 heterodimer to its promotors to promote 

transcription (Li et al., 2013). However, each of the variant predictors identified the variant to be 

tolerated/benign/neutral.  

 
A de novo missense variant was also identified in XRN2 (R362G) in MDA-MB-468rDOX50. XRN2 (5’-

3’ exoribonuclease 2) has been implicated in promotion of the termination of transcription by RNA 

polymerase II (West, Gromak and Proudfoot, 2004). The missense variant has been predicted to be 

damaging by all variant predictors (Table 5.5), but its role in doxorubicin resistance is yet to be 

determined. 

 
As dysregulation of TOP2A has been established in literature as a mechanism of resistance of TOP2A 

targeted inhibitors, western blotting analysis of TOP2A was conducted in HCC1806 and 

HCC1806rDOX12.5 (Burgess et al., 2008). TOP2A protein expression was reduced in HCC1806rDOX12.5 

cell compared to HCC1806 at basal levels (Appendix A32, Figure A32.1). In order to investigate if 

reduced protein expression of TOP2A results in doxorubicin resistance, TOP2A targeted siRNA was 

reverse transfected into HCC1806. The conditions for transfection were optimised for HCC1086, as 

before in section 4.2.6.2 (Appendix A32, Figure A32.2). Here it was determined that a concentration 

of 0.05% lipofectamine 2000 is required for transfection, and cells are to be plated at 12800 

cells/well (Appendix A32, Figure A32.2). Under these conditions, four TOP2A targeted siRNA’s were 
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reverse transfected into HCC1806. Oligonucleotides 3 and 4 showed knockdown of TOP2A, and 

these were taken forward for further investigation (Appendix A32, Figure A32.3). 

 
To determine if loss of TOP2A expression can induce resistance to doxorubicin in these cell lines, a 

siRNA knockdown and dose response was performed. TOP2A knockdown was performed in 96 well 

plates with HCC1806, as per the optimal conditions previously established, and treated with 

doxorubicin, in a dose response manner, and incubated for an additional 72 hours before cell 

viability was assessed with an SRB assay (Figure 5.19A-B). Simultaneously, HCC1806 cells were 

plated into 6-well plates, without drug treatment, in order to observe knockdown at several time 

point throughout the assay (Figure 5.19C).  

 
NT transfection was not observed to reduce TOP2A levels across all time points, and both the mock 

and NT demonstrated consistent TOP2A levels compared to HC1806 cells used as a positive control 

(Figure 5.19C). Successful knockdown of TOP2A was observed with transfection of 3 and 4 

oligonucleotides across the full 96-hour period, demonstrating that knockdown occurred during the 

72-hour drug incubation period (Figure 5.19C). Knockdown of TOP2A, with siRNA 3 (TOP2A_3), 

showed an almost two-fold RF to the treatment of doxorubicin (Figure 5.19A). An unpaired t test 

was performed which showed a statistically significant difference between the GI50 values obtained 

across the biological repeat for both Mock and TOP2A_3 (Figure 5.19D). These data show that 

siRNA-mediated knockdown of TOP2A can induce a resistance phenotype in HCC1806 when treated 

with doxorubicin.  
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Figure 5.19 TOP2A siRNA knockdown in HCC1806 and response to doxorubicin 
HCC1806 cells were reverse-transfected in 96 well plates with RNAse free water (mock; M), 25 nM non-targeting Allstar negative control 
oligonucleotide (NT), or 10 nM of TOP2A oligonucleotides (3; TOP2A_3, 4; TOP2A_4) using 0.05% Lipofectamine 2000. 24 hours after 
transfection, cells were treated with either a serial dilution of doxorubicin. A-C) HCC1806 cells were reverse-transfected as above in 6-
well dishes simultaneously with 96 well plate transfection as knockdown effciency controls. Plates were incubated for 24, 48,  96 hours 
as indicated. Cells were used and analysed by western blotting as per Figure 4.18. GAPDH was used as a loading control. Dose response 
curves generated and half-maximal growth inhibition concentrations (GI50) were calculated using GraphPad Prism 6 for treatment with 
doxorubicin. Growth curves were normalised to untreated control, for each transfection condition. Dotted line indicates the GI50. A) 
Summary of GI50 values for response to doxorubicin in transfected HCC1806 cells. Data representative of ≥ 3 independent experiments. 
RF = resistance factor. D) unpaired t test of Mock an TOP2A_3 GI50 values across independent experiments performed in GraphPad Prism 
6. *** indicates P ≤ 0.0001. 

 
 
 
 
5.2.2.3 De novo variants in gemcitabine resistant cell lines 
 
Across the two gemcitabine resistant cell lines, 20 de novo variants in this candidate approach were 

identified which may be driving gemcitabine resistance in the genes; BCLAF1, ERCC6, TDG, APPL2, 

CSNK1D, MYOCD, PARD3, SMAD3, SMC1B, TUBB3, ABCC1, DSE1, CLOCK, DDX11, EGLN3, WDR76, 

CDK2AP2, CEP152, MAPK7 and RB1 (Appendix A31). Table 5.6 shows the results of the missense 

variant predictors analysis. 
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Table 5.6. Summary of gemcitabine resistant missense variants effect predictor results 

 

 

 
A de novo frameshift variant has been identified in CEP152 (EQV372EX) in HCC1806rGEM20 with a 

VAF of 0.129. CEP152 (centrosomal protein 152 kDa), is an essential protein required for 

centrosome duplication. In complex with CEP63, CDK5RAP2 and WDR62 at the centrosome, it 

recruits CDK2 for centriole duplication (Kodani et al., 2015). The mechanism in which it may be 

linked to gemcitabine resistance is not understood.  

 
A de novo missense variant has been identified in WDR76 in (H578Y) in HCC1806rGEM20 with a VAF 

of 5.6. WDR76 (WD repeat-containing protein 76) specifically binds 5-Hydroxymethylcytosine, a 

DNA pyrimidine nitrogen base derived from cytosine. It has also been shown to be a RAS binding 

protein that functions as a tumour suppressor through RAS degradation (Jeong et al., 2019). All 



5. Identification of candidate drivers of drug resistance using whole exome sequencing 

 

188 
 

three variant predictors identify this variant as damaging, and the variant is located between 

repeated parts of the protein (WD 6 and WD 7) (Table 5.6). The role of this variant in gemcitabine 

resistance is unclear.  

 
HCC38rGEM20 harbours a de novo missense variant in BCLAF1 (E603G) with a VAF of 0.25. BCLAF1 

(Bcl-2-associated transcription factor 1), is a death-promoting transcriptional repressor, with a role 

in cyclin-D1/CCND1 mRNA stability (Bracken et al., 2009). The variant in BCLAF1 is predicted to be 

damaging by all three variant impact predictors, although is not located in any known binding sites 

(Table 5.6). The role of this variant in BCLAF1 is unclear in gemcitabine resistance. 

 
Taking this data together, the gemcitabine resistant cell lines did not have high VAF de novo variants 

that are considered to be damaging associated to the five categories investigated. This may suggest 

that the resistance mechanism to gemcitabine does not lie in DDR pathways or drug transport and 

metabolism.  

 
5.2.2.4 De novo variants in eribulin resistant cell lines 
 
Across the three eribulin resistant cell lines, 15 de novo variants in this candidate approach were 

identified which may be driving eribulin resistance in the genes; C2CD3, KIF2C, MIS18BP1, MYH9, 

RDX, CX3CR1, NT5E, ERCC6, HERC2, NIN, DSEL, WDR35, CLOCK, FANCD2 and CDK2AP2 (Appendix 

A31). It is first important to note that the six genes highlighted in bold have been identified from 

the GO Cell cycle category and have a direct role in either; centriole elongation/cohesion, 

attachment of mitotic spindle microtubules to the kinetochore, regulation of the mitotic cell cycle 

or cytoskeleton organisation. Table 5.7 shows the results of the missense variant predictors 

analysis.  
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Table 5.7. Summary of eribulin resistant missense variants effect predictor results 

 

 

 
MDA-MB-468rERI100 carried a stop gain mutation at Q556* in C2CD3, with a VAF of 0.2. C2CD3, C2 

calcium-dependent domain containing 3, promotes centriole elongation (Thauvin-Robinet et al., 

2014). It has been found that overly long centrioles form over-active centrosomes that nucleate 

more microtubules and perturb chromosome segregation (Marteil et al., 2018). Therefore, the LOF 

variant in C2CD3 could result in a reduction of centriole elongation, and reduced nucleation of 

microtubules. This seems counterintuitive given the depolymerising activity of eribulin and the role 

of C2CD3 in eribulin resistance is unknown.  

 
Also identified in MDA-MB-468rERI100 is a de novo missense variant in KIF2C with a VAF of 0.5. KIF2C, 

kinesin family member 2C, when in complex with KIF18B (kinesin-like protein KIF18B), constitutes 

the major microtubule plus end depolymerising activity in mitotic cells (Tanenbaum et al., 2011). 

The variant, E238Q, is found in the 207-238 region which has been identified for negative regulator 

of microtubule binding (by similarity in Uniprot). The variant has only been considered to be 

deleterious with the variant predictor SIFT, but not damaging by Polyphen or mutation assessor 

(Table 5.7). It could be predicted that the missense variant KIF2C prevent depolymerising activity, 

reducing the net depolymerising activity induced by eribulin.  

 
Also found in MDA-MB-468rERI100 is a missense variant in NT5E at N333D, a site which normally 

undergoes N-linked (GlcNAc) asparagine glycosylation with a VAF of 0.14. NT5E (5-nucleotidase, 

alternative name CD73) has been shown to hydrolyse extracellular nucleotides into membrane 

permeable nucleosides, and have a role in adenosine biosynthetic process (Tanenbaum et al., 

2011). Through its role associated with adenosine, it has been shown that a knockout of NT5E/CD73 
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correlates with higher levels of detyrosinated microtubules in mice, which is consistent with a role 

for endogenous adenosine in reducing microtubule stability (Fassett et al., 2009). Only SIFT 

predicted this variant to be damaging (Table 5.7). It could be predicted that the variant prevents 

glycosylation at the site N333, which may be regulating the protein. It could potentially lead to 

higher levels of detyrosinated microtubules, resulting in stabilised microtubules and thereby 

overcoming the de-stabilising effect of eribulin.   

 
HCC38rERI10 harboured a missense variant in NIN E616Q with a VAF of 0.363. NIN (Ninein) is a 

centrosomal protein required for microtubule organisation, anchoring at the centrioles and 

microtubule nucleation. It has been shown that overexpression of NIN leads to a mislocalisation of 

γ-tubulin, recruiting it to ectopic sites which are not active in nucleating microtubules (Stillwell, 

Zhou and Joshi, 2004). All three variant predictors have identified it as damaging, however its 

implication in eribulin resistance cannot be predicted (Table 5.7) 

 
Two de novo variants were identified in ERCC6 (L610R, I611F) in HCC38rERI10, both with a VAF of 

0.2. ERCC6 (DNA excision repair protein ERCC-6) is an essential factor involved in transcription-

coupled nucleotide excision repair. Both variants are predicted to be deleterious and damaging by 

SIFT and Polyphen respectively, although it has a predicted low functional impact when considered 

with mutational assessor (Table 5.7). The variants are both present in the helicase ATP-binding 

domain of the protein, however the implications of these variants in ERCC6 for eribulin resistance 

cannot be predicted. 

 
5.2.2.5 De novo variants in paclitaxel resistant cell lines 

 
Across the three paclitaxel resistant cell lines, 18 de novo variants in this candidate approach were 

identified which may be driving paclitaxel resistance in the genes; FZR1, MLK1, SMARCAL1, THOC, 

INHBA, PTPN3, PTPRC, SPECC1L, TSC1, FXR1, HERC2, HTT, IGF1R, PPP1R12, SIRPA, TDG, CDK2AP2 

and LRP2 (Appendix A31).  The 15 genes highlighted in bold have been identified from the GO Cell 

cycle category and have a direct role in either; regulation or arrest of the cell cycle and regulation 

of DNA damage checkpoints. Table 5.8 shows the results of the missense variant predictors analysis. 
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Table 5.8. Summary of paclitaxel resistant missense variants effect predictor results 

 

 

 

MDA-MB-468rPCL20 harbours a missense variant in FZR1 at R7G with a VAF of 0.3. FZR1 (fizzy and 

cell division cycle 20 related 1) is a substrate-specific adapter for the anaphase promoting 

complex/cyclosome (APC/C). FZR1 associates with APC/C in late mitosis, and activates it during 

anaphase and telophase (Fang, Hongtao and Kirschner, 1998). FZR1 has also been implicated in 

promoting NHEJ repair over RBBP8 mediated HRR through its regulation of RBBP8/CtIP turnover 

(Lafranchi et al., 2014). The variant has been predicted to be deleterious and to have a medium 

functional impact by SIFT and mutational assessor respectively (Table 5.8). It could be predicted 

that misregulation of the of the cell cycle checkpoints through FZR1 may be implicated in paclitaxel 

resistance.  
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MDA-MB-468rPCL20 also harbours a missense variant in SPECC1L. The variant, K195T, is within a 

coiled coil region of the protein, and has a VAF of 0.5. SPECC1L (cytospin-A), is involved in 

microtubule stabilisation and has shown to be a cross-linking protein which interacts with both 

microtubules and the actin cytoskeleton (Saadi et al., 2011). The variant has been predicted to be 

damaging by all three of the variant predictors (Table 5.8). It could be predicted that a damaging 

variant in SPECC1L may lead to destabilising of the microtubules, overcoming the stabilising effect 

of paclitaxel.  

 
A de novo stop gain variant was identified in INHBA (Q325*) in MDA-MB-468rPCL20 with a VAF of 

0.5. INHBA (inhibin beta A chain) is a TGF-beta superfamily member that have roles in reproduction 

and development (Brown et al., 2000). It has been shown to be translationally regulated by TGFβ 

(Brown et al., 2000). The TGFβ signalling pathway is a key inducer of the epithelial-to-mesenhymal 

transition process (EMT). Having not been implicated with paclitaxel resistance, this could be a 

novel biomarker for paclitaxel resistance.  

 
A de novo missense variant was also identified in PTPN3 (Q574H) in MDA-MB-468rPCL20 with a VAF 

equal to 0.5. PTPN3 (Tyrosine-protein phosphatase non-receptor type 3) has been shown to have 

tyrosine phosphatase activity at junctions between the membrane and the cytoskeleton. All three 

variant predictors identified the variant as damaging, with mutation assessor also predicting the 

variant to be present in a protein binding site (Table 5.8). The variant was found to be in the PDZ 

domain, a domain that plays a key role in anchoring receptor proteins in the membrane to 

cytoskeletal components. Interestingly, PTPN3 has been found to be overexpressed in cell lines 

which demonstrate resistant to cisplatin and doxorubicin, of which MDA-MB-468rPCL20  has shown 

(Chapter 3), although the variant implications in paclitaxel resistance cannot be predicted (S. Li et 

al., 2016).  

 
HCC38rPCL2.5 carried a missense variant in HERC2 at S280I with a VAF equal to 0.4. HERC2 (E3 

ubiquitin-protein ligase HERC2) is a E3 ubiquitin protein ligase that regulates ubiquitin dependent 

retention of repair proteins on damaged chromosomes (Bekker-Jensen et al., 2010). HERC2 has 

been shown to regulate the insulin-like growth factor receptor signalling pathway with its essential 

role in insulin-like growth factor 1 receptor (IGF1R) ubiquitination for degradation (Osorio et al., 

2016). Interestingly, HCC38rPCL2.5 also harbours a missense variant in IGF1R at N819Y with a VAF 

equal to 0.3. The variant in IGF1R has been considered damaging by all three variant predictors. 

The variant is located extracellularly, and is part of the ligand binding site, fibronectin type III3 

(Table 5.8). Importantly, it has been shown that inhibition of IGF1R sensitises non-small cell lung 
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cancer cells to Paclitaxel (Spiliotaki et al., 2011). The implications of the variants present in HERC2 

and IGFR cannot be predicted.  

 
HCC38rPCL2.5 carried a de novo inframe deletion (18DelQQQ ) in HTT with a VAF of 1. HTT 

(huntingtin) plays a role in microtubule-mediated transport, and has been shown to interact with 

β-tubulin (Hoffner, Kahlem and Djian, 2002). Mutant HTT is implicated in Huntington’s disease, and 

has been shown to result in microtubule destabilisation (Trushina et al., 2003). HCC1806rPCL20 had 

a gained insertion variant (44InsPPP) in HTT with a VAF of 0.4. It could be predicted that these 

variants in HTT may lead to destabilisation to counteract the stabilising effect of paclitaxel.  

 
5.2.2.6 De novo variants in 5-Fluorouracil resistant cell lines 
 
Across the 5-fluorouracil resistant cell lines, 4 de novo variants in this candidate approach were 

identified which may be driving 5-fluorouracil resistance in the genes; ANP32B, ARG2 and TLR5 

Appendix A31). Table 5.9 shows the results of the missense variant predictors analysis. 

 
Table 5.9. Summary of 5-Fluorouracil resistant missense variants effect predictor results 

 

 

 
ANP32B (acidic leucine-rich nuclear phosphoprotein 32 family member B), is a multifunctional 

protein required for the progression from the G1 to the S phase of the cell cycle (Tochio et al., 2010; 

Yang et al., 2016). ANP32B mRNA has also be shown to be translationally upregulated in HCT-116 

colorectal carcinoma cells upon treatment with 5-Fluorouracil (Bash-Imam et al., 2017). HCC1806r5-

F1500 has two de novo missense variants in ANP32B, G234S and G235R with VAF of 0.3 each, with 

the second predicted to be damaging by all three variant predictors (Table 5.9). The variants are 

not predicted to be in any known functional domains, and the implication in 5-fluorouracil 

resistance cannot be predicted.  

 
A de novo missense variant in ASRG2 was identified in HCC1806r5-F1500 S91L with a VAF of 0.4. ARG2 

(arginase type II) catalyses the hydrolysis of l-arginine to ornithine and urea, reducing l-arginine 

availability. L-arginine is a vital precursor for the synthesis of polyamines, creatine, proline, 
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ornithine and nitric oxide (NO). NO is a key modulator of many key processes, and high 

concentrations can result in cell cycle arrest, mitochondrial respiration and apoptosis (Lunt and 

Vander Heiden, 2011; Napoli et al., 2013; Ma et al., 2015). Combined treatment of L-arginine and 

5-Fluorouracil led to increased concentration of NO resulting in apoptosis (Jahani et al., 2017). The 

variant has been identified to be damaging by Polyphen, and predicted to be in a protein binding 

site (Table 5.9). It could be predicted that the missense variant in ARG2 as a GOF, which leads to 

the reduction in the availability of L-arginine, decreasing the pool of NO and ultimately preventing 

cell cycle arrest and apoptosis.  

 
A de novo missense variant in TLR5 was identified in HCC1806r5-F1500 K844N with a VAF of 0.33. 

TLR5 (toll-like receptor 5) is a pattern recognition receptor on the cell surface which plays an 

important role in the activation of innate immunity (Hayashi et al., 2001). It has been shown that 

an agonist of TLR5, entolimod, broadens the therapeutic window of 5-Fluorouracil by reducing its 

toxicity to normal tissues in mice (Kojouharov et al., 2014). The variant has been identified to be 

damaging by Polyphen (Table 5.9). 

 

5.3.2 Beneficially selected variants vs not beneficially selected in heterogenous population 

 
Having established that very few variants, or mutated genes, are seen to be shared between the 

chemo-resistant cell lines made resistant to the same drug, the next analysis aimed to identify shifts 

in the heterogeneity of each resistant cell line population. Here variants which were either selected 

for, or developed, in the chemo-resistant cell line were considered to be beneficially selected for 

resistance, whilst variants which are not called or are at a lower VAF are considered to be not 

beneficially selected for resistance. Those variants which are considered to be beneficially selected 

include; de novo and gained variants and also variants which are seen to be shared between the 

chemo-naive and chemo-resistant cell line of which demonstrate a two-fold increase in VAF in the 

chemo-resistant cell line. Those considered to be not beneficially selected include; not called and 

lost variants, as well as variants which are seen to be shared between the chemo-naive and chemo-

resistant cell line of which demonstrate a two-fold decrease in VAF in the chemo-resistant cell line. 

Table 5.10 summarises the variants allocation in the two lists. 
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Table 5.10. Allocation of variants beneficially selected or not beneficially selected lists 

 

 

 
The de novo, gained, not called and lost variants and the calculated VAF had already been 

established in this chapter (Section 5.2.1.3). From the VAF fold shift analysis, variants were selected 

for the beneficially selected list when the VAF fold shift ≥ 2 and variants were selected for the not 

beneficially selected list when the VAF fold shift ≤ 0.5. Identification of these variants can be seen 

when the VAF of the chemo-naive cell line is plotted against the VAF of the chemo-resistant cell 

line.  

 
When considering the MDA-MB-468 derived chemo-resistant cell lines, it can be seen that a linear 

relationship was found between the VAF of the variants in the MDA-MB-468 to the chemo-resistant 

(Figure 5.2.20). MDA-MB-468rCDDP1000 and MDA-MB-468rERI50 had many variants which 

demonstrated both a two-fold increase and decrease. MDA-MB-468rPCL20, had very few variants 

shared with MDA-MB468, and of those that were shared a significant drop in VAF was observed. 

Several variants which are seen to have a VAF equal to 1 in the MDA-MB-468 cell line are seen to 

be < 0.5 VAF in MDA-MB-468rPCL20.  
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Figure 5.20 Scatter plots of variant allele frequency of shared variants between MDA-MB-468 and MDA-MB-468 derived chemo-
resistant cell lines 
Variant allele frequency (VAF) was calculated for each shared variant, as the frequency of alternative reads against total reads for each 
variant. Plots show the VAF for all variants shared between MDA-MB-468 and A) MDA-MB-468rCDDP1000, B) MDA-MB-468rDOX50, C) 
MDA-MB-468rERI50 and D) MDA-MB-468rPCL20. Black dots indicate ≤ two-fold shift in VAF, grey dots indicate ≥ two-fold increase in VAF 
in chemo-resistant cell line, open grey dots indicate ≥ two-fold decrease in VAF in chemo-resistant cell line. 

 

A linear relationship was found between the VAF of the variants in HCC38 to the HCC38 derived 

chemo-resistant cell lines (Figure 5.21). Both HCC38rCDDP3000 and HCC38rDOX40 had very few 

variants shared with HCC38, but it was observed that many had a two-fold increase in VAF. 

HCC38rGEM20 had the most variants shared with HCC38, and although a linear relationship was 

found, the majority of the shared variants had a very low VAF in both cell lines. Very few variants 

were observed to show a decrease in VAF in HCC38rPCL2.5. 
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Figure 5.21 Scatter plots of variant allele frequency of shared variants between HCC38 and HCC38 derived chemo-resistant cell lines 
Variant allele frequency (VAF) was calculated for each shared variant, as the frequency of alternative reads against total reads for each 
variant. Plots show the VAF for all variants shared between HCC38 and A) HCC38rCDDP3000, B) HCC38rDOX40, C) HCC38rERI10, D) 
HCC38rGEM20 and E) HCC38rPCL2.5. Black dots indicate ≤ two-fold shift in VAF, grey dots indicate ≥ two-fold increase in VAF in chemo-
resistant cell line, open grey dots indicate ≥ two-fold decrease in VAF in chemo-resistant cell line. 

 

 

A linear relationship was found between the VAF of the variants in HCC1806 to the HCC1806 derived 

chemo-resistant cell lines, although here the relationship is much tighter compared to the others 

in the panel (Figure 5.22). Very few variants demonstrated either a two-fold increase or decrease 

in VAF in HCC1806rPCL20, showing that very few changes are seen in the frequency of variants which 

are shared with HCC1806. 
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Figure 5.22 Scatter plots of variant allele frequency of shared variants between HCC1806 and HCC1806 derived chemo-resistant cell 
lines 
Variant allele frequency (VAF) was calculated for each shared variant, as the frequency of alternative reads against total reads f or each 
variant. Plots show the VAF for all variants shared between HCC1806 and A) HCC1806rCDDP500, B) HCC1806rDOX12.5, C) HCC1806rERI50, 
D) HCC1806rGEM20, E) HCC1806rPCL20 and F) HCC1806r5-F1500. Black dots indicate ≤ two-fold shift in VAF, grey dots indicate ≥ two-fold 
increase in VAF in chemo-resistant cell line, open grey dots indicate ≥ two-fold decrease in VAF in chemo-resistant cell line. 
 
 

The total number of variants, and mutated genes which were determined to be beneficially 

selected, and not beneficially selected for each of the chemo-resistant cell lines is summarised in 

Figure 5.23. Mutated genes are summarised in Appendix A33, A34. Many variants were observed 

within the same gene. This could indicate that multiple variants are present in the gene in the cell 

population, or that several sub-populations of the cell population have a different variant in the 

same gene.   
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Figure 5.23 Number of variants and mutated genes in beneficially selected or not beneficially selected heterogenous populations of 
chemo-resistant cell lines 
Analysis of changes in the heterogenous populations of the chemo-resistant cell lines in which A) variants and B) mutated genes are 
beneficially selected for chemo-resistance, whilst C) variants and D) mutated genes are not beneficially selected for chemo-resistance.  
 

Having established both the beneficially selected and not beneficially selected lists, two separate 

GO analyses were conducted to understand the function of the mutated genes associated in the 

shifts of heterogeneity in the chemo-resistant cell lines. Firstly, KEGG BRITE pathway was used to 

label the gene lists with biological and cellular functions. KEGG BRITE is a collection of hierarchical 

classification systems which incorporates different types of relationships including; genes and 

proteins, compounds and reactions, drugs, diseases and organisms and cells. KEGG BRITE is the 

reference database for BRITE mapping in KEGG Mapper (Kanehisa, 2000; Kanehisa et al., 2019). 

Here each gene list was considered to determine changes in the identified classifications between 

beneficially selected and not beneficially selected groups. Secondly, analysis using g:profiler was 

conducted, as per the description earlier in this chapter, to identify enriched GO terms (Raudvere 

et al., 2019). Beneficially selected and not beneficially selected are termed (+) and (-) respectively.  
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First, the KEGG BRITE analysis of MDA-MB-468 derived chemo-resistant cell lines were considered 

(Figure 5.24). Analysis of MDA-MB-468rCDDP1000 showed changes in the terms; ubiquitin systems 

(+12/-5), transcription factors (+11/-5), membrane trafficking (+26/-9), exosomes (+18/-9), 

spliceosome (+9/-16) and chromosome associated proteins (+18/-12) (Figure 5.24A). Analysis of 

MDA-MB-468rDOX50 showed changes in the terms; transcription factors (+9/-7), chromosomal and 

associated proteins (+18/-8), messenger RNA biogenesis (+4/-8) and DNA replication (0/-4) (Figure 

5.24B). Analysis of MDA-MB-468rERI50 showed changes in the terms; g-protein coupled receptors 

(+2/-10), ion channels (+5/-3), exosome (+9/-12) and transcription factors (0/-6) (Figure 5.24C). 

Analysis of MDA-MB-468rPCL20 demonstrated a change in the terms; Cytochrome P450 (+4/-1), 

Ubiquitin system (+5/-11), Cytoskeleton proteins (+19/-13), exosome (+13/-18), transporters (+5/-

10) and ion channels (+6/-5) (Figure 5.24D). 

 
Next, using G: profiler, enriched GO terms were identified in both the beneficially selected and not 

beneficially gene lists for MDA-MB-468 derived chemo-resistant cell lines (Table 5.11). MDA-MB-

468rCDDP1000 demonstrated to be enriched in GO terms associated to extracellular matrix in the 

beneficially selected list, whilst MDA-MB-468rDOX50 not beneficially selected gene list was enriched 

in GO terms associated with NADH dehydrogenase activity. It was noted that MDA-MB-468rPCL20 

had the longest enriched GO term list for both beneficially selected and not beneficially selected 

terms, and several of the same enriched GO terms that were seen in both gene lists.   
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Figure 5.24 KEGG BRITE pathway analysis for MDA-MB-468 derived chemo-resistant TNBC cell lines 
KEGG BRITE hierarchical classification of mutated genes considered to beneficially selected or not beneficially selected in t he MDA-MB-
468 chemo-resistant derived cell lines; A) MDA-MB-468rCDDP1000, B) MDA-MB-468rDOX50, C) MDA-MB-468rERI50 and D) MDA-MB-
468rPCL20 
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Table 5.11. G:profiler analysis of beneficially selected or not beneficially selected variants in chemo-resistant MDA-
MB-468 derived cell lines  
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Next, the KEGG BRITE analysis of HCC38 derived chemo-resistant cell lines were considered (Figure 

5.25). Analysis of HCC38rCDDP3000 demonstrated changes in the terms; exosome (+12/-11), 

chromosome and associated proteins (+3/-17), messenger RNA biogenesis (0/-6), DNA repair and 

recombination proteins (+2/-7), ubiquitin system (+4/-9) (Figure 5.25A). Analysis of HCC38rDOX40 

demonstrated a change in the terms; ubiquitin system (+1/-7), DNA repair and recombination 

proteins (0/-9), messenger RNA biogenesis (0/-8), membrane trafficking (+4/-26), transcription 

factors (+2/-15) (Figure 5.25B). Analysis of HCC38rERI10 demonstrated a change in the terms; 

cytoskeleton proteins (+11/-7), proteasome (+1/-1), cytochrome P450 (+2/0), ion channels (+5/0), 

mitochondrial biogenesis (+5/0), transporters (+6/-6) (Figure 5.25C). Analysis of HCC38rGEM20 

demonstrated a change in the terms; chromosomal; and associated proteins (+22/-9), transcription 

factors (+20/-6), DNA repair and recombination proteins (+8/-6), ubiquitin system (+6/-3), ion 

channels (+8/-10), glycosaminoglycan binding proteins (+4/0) (Figure 5.25D). Analysis of 

HCC38rPCL2.5 demonstrated a change in the terms; ubiquitin system, (+5/-6), DNA repair and 

recombination proteins (+3/-7), transcription factors (+6/-8), chromosome and associated proteins 

(+6/-14), cytoskeleton proteins (+6/-11) (Figure 5.25E).  

 
Next, using G: profiler, enriched GO terms were identified in both the beneficially selected and not 

beneficially gene lists for HCC38 derived chemo-resistant cell lines (Table 5.12). It was noted that 

the GO terms found associated with the beneficially selected gene lists for HCC38rCDDP3000 were 

large umbrella terms, and not very specific. Many of the same GO terms were identified to be 

enriched in both beneficially selected and not beneficially selected gene lists for HCC38rERI10.  
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Figure 5.25 KEGG BRITE pathway analysis for HCC38 derived chemo-resistant TNBC cell lines 
KEGG BRITE hierarchical classification of mutated genes considered to beneficially selected or not beneficially selected in the HCC38 
chemo-resistant derived cell lines; A) HCC38rCDDP3000, B) HCC38rDOX40, C) HCC38rERI10, D) HCC38rGEM20 and E) HCC38rPCL2.5 
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Table 5.12. G:profiler analysis of beneficially selected or not beneficially selected variants in chemo-resistant HCC38 
derived cell lines 
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Next, the KEGG BRITE analysis of HCC1806 derived chemo-resistant cell lines were considered 

(Figure 5.26). Analysis of HCC1806rCDDP500 demonstrated a change in the terms; ubiquitin system 

(+8/-9), ion channels (+6/-2), transporters (+7/ -7), chromosome and associated proteins (+20/-11), 

ribosome (+3/0), exosome (+9/-5) (Figure 5.26A). Analysis of HCC1806rDOX12.5 demonstrated a 

change in the terms; transcription factors (+15/-5), transporters (+5/-7), messenger RNA biogenesis 

(+3/-7), DNA repair and recombination proteins (+4/-2), ubiquitin system (+8/-6) (Figure 5.26B). 

Analysis of HCC1806rERI50 demonstrated a change in the terms; membrane trafficking (+19/-9), 

cytoskeleton proteins (+5/-3), transporters (+9/-7), ubiquitin system (+6/-7) (Figure 5.26C). Analysis 

of HCC1806rGEM20 demonstrated a change in the terms; transcription factors (+12/-8), ubiquitin 

system (+3/-8), transporters (+3/-8), chromosome and associated proteins (+14/-15) (Figure 5.26D). 

Analysis of HCC1806rPCL20 demonstrated a change in the terms; membrane trafficking (+18/-12), 

transcription factors (+4/-9), mitochondrial biogenesis (+6/-4) (Figure 5.26E). Analysis of 

HCC1806r5-F1500 demonstrated a change in the terms; ubiquitin system (+8/-7), messenger RNA 

biogenesis (+7/-4), exosome (+12/-5), membrane trafficking (+17/-11) (Figure 5.26F).  

 
Finally, using G: profiler, enriched GO terms were identified in both the beneficially selected and 

not beneficially gene lists for HCC1806 derived chemo-resistant cell lines (Table 5.13). Of note, 

HCC1806rGEM20 had very few GO terms found enriched in the beneficially selected list, but many 

GO terms were found enriched in the not beneficially selected list. It was also observed that very 

few GO terms were enriched in the gene lists derived from HCC1806r5-F1500, and of those identified, 

were often the same GO term in each list.  
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Figure 5.26 KEGG BRITE pathway analysis for HCC1806 derived chemo-resistant TNBC cell lines 
KEGG BRITE hierarchical classification of mutated genes considered to beneficially selected or not beneficially selected in the HCC1806 
chemo-resistant derived cell lines; A) HCC1806rCDDP500, B) HCC1806rDOX12.5, C) HCC1806rERI50, D) HCC1806rGEM20, E) HCC1806rPCL20 

and F) HCC1806r5-F1500 
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Table 5.13. G:profiler analysis of beneficially selected or not beneficially selected variants in chemo-resistant 
HCC1806 derived cell lines  
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5.3.3 Identification of candidate biomarkers of resistance using TCGA database 

 
The TCGA is a cancer genomics program which has molecularly characterised over 20,000 primary 

cancers across thirty-three cancer types (Weinstein, 2013). The majority of the data is publicly 

available for analysis. Briefly, variant data was extracted via the GDC Data portal and the 

Bioconductor R package TCGAbiolinks was used to obtain clinical data (Colaprico et al., 2016; 

Grossman et al., 2016). Chromosomal locations of patient variants were remapped from GRCh38 

to GRCh37 using the NCBI Genome Remapping service to allow for direct comparison between 

TCGA variants and variants called in the chemo-resistant cell lines. 

 
To further understand how a variant may be related to patient response to the chemotherapeutic 

agents, analysis of gene expression when patients were treated with the chemotherapeutic agent 

was conducted. Gene expression and survival data was available for 772 patients treated with 

cisplatin, 614 patients treated with doxorubicin, 458 patients treated with gemcitabine, 903 

patients treated with paclitaxel and 467 patients treated with 5-Fluorouracil. No gene expression 

data was available for eribulin treated patients. This analysis was conducted using pan-cancer types 

as there was not enough data available to consider only breast invasive carcinoma alone.  

 
For each gene containing a PTV in a chemo-resistant cell line; survival analyses were conducted to 

determine the response of the patient treated with the chemotherapeutic agent for when the gene 

expression was high or low. Cox proportional hazards regression was used to calculate the hazard 

ratio for cohorts expressing high vs low expression levels of the given gene. The ‘surv_cutpoint’ 

function of the package survminer in R allowed for the identification of the optimal expression cut-

off point to give the lowest p-value for high vs low expression. The cut-off selected was between 

the 20th and 80th percentiles of gene expression values as previously described by Uhlen et al., 2017. 

The calculations used overall survival as the measure of clinical outcome. Overall survival is defined 

as days to last medical follow up or death as was previously described by Ng et al., 2016. The 

calculations were performed using the R survminer and survival packages. From this, Kaplan-Meier 

survival curves were generated using the R package ggsurvplot. Statistical analysis using the Wald 

test (or log rank (Mantel-Cox) test) was performed to obtain p-value of significance for each Kaplan-

Meier graph. Hazard ratios were also calculated which refer to values for “low” (below median) 

expression for each given gene, with values >1 indicative of increased hazard (a reduced overall 

survival) and values < 1 are indicative of decreasing hazard (an increased overall-survival).  
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5.3.3.1 Comparison of beneficially selected variants to variants in the TCGA 

 
The first analysis aimed to identify if selected variants are present in the TCGA database. The 

variants considered were those which have been determined to be beneficially selected in the 

chemo-resistant cell lines earlier in this chapter (section 5.3.2). Two types of variants were 

considered; exact variants and same consequence variants. Exact variants are variants which 

demonstrate the same chromosomal position and base change to those in the TCGA database. 

Same consequence variants are variants which demonstrated the same chromosomal position, with 

a different base change, but which resulted in the same variant consequence as those seen in the 

TCGA database, i.e., both are indicative of a missense variant. For the identified variants, expression 

data was obtained for the genes in relation to the chemotherapeutic agent the cell line is resistant 

to. These were then filtered based on statistical significance whereby p ≤ 0.05 is considered 

significant, as well as those which demonstrated ≤ 0.2 false discovery rate (FDR). For the resulting 

variants, Kaplan-Meir graphs were produced and considered significant if p ≤ 0.05. Exact or same 

consequence data along with filtering by statistical significance is summarised in Appendix A35.  

 
It could be reasoned that low gene expression demonstrates a similarity to that of a LOF variant, 

whereby loss of available protein or loss of functional protein can result in a similar phenotype. It 

could also be reasoned that high gene expression demonstrates a similarity to that of a GOF variant, 

whereby gain of available protein, or a hyper-functional protein can result in a similar phenotype. 

Both scenarios can be a mechanism of drug resistance, and this would be indicative of a poor 

patient outcome upon treatment with the drug. Figure 5.27 summaries this concept.  

 
 

 

 

 

 

 

 

 

 

 

 

 



5. Identification of candidate drivers of drug resistance using whole exome sequencing 

 

211 
 

 

 
Figure 5.27 Loss of function variant or gain of function variant can lead to drug resistance in the same way as low and high gene 
expression 
Low gene expression results in reduced availability of functional protein to carry out mechanisms of action, just as a loss o f function 
variant in the protein is unable to carry out mechanism of action. This can result in drug r esistance and poor patient outcome when 
treated with drug. High gene expression results in increased availability of protein to carry out mechanism of action, just as a gain of 
function variant in the protein could become hyper-functional. This can result in drug resistance and poor patient outcome when treated 
with drug. Red circle indicates variant on protein.  

 
 
Analysis of the cisplatin resistant cell lines identified 22 variants; nine as exact variants, and thirteen 

same consequence variants. Of those 22, 17 of the genes had gene expression data available. 13 

genes had a p-value of < 0.05, with 12 genes showing FDR (0.05) significance, and one gene showing 

FDR (0.2) significance. Kaplan Meier graphs were created for the 13 remaining genes when patients 

were treated with cisplatin, and eight of the genes had a p-value < 0.05 (Figure 5.28, Appendix A35). 

Four genes showed that low gene expression resulted in patient death when patient is treated with 

cisplatin; COL22A1, EPB41, HUWE1 and RGS9 (Figure 5.28A-D) It could be predicted that these 

genes harbour a LOF variant which may lead to cisplatin resistance.  

 
COL22A1 encodes the collagen type XXII alpha 1 chain, which has a predominant role in extracellular 

matrix organisation. Veskimäe et al., 2018 found that mRNA from COL222A1 in platinum sensitive 

patients was upregulated compared to platinum resistant patients. When COL22A1 expression is 

low, there is poor patient response when treated with cisplatin with a statistical significance of p = 

0.013 (Figure 5.28A). It could be predicted that the missense variant in COL22A1 in 

HCC1806rCDDP500 may be a LOF variant, agreeing with the literature.  
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EPB41 encodes the protein 4.1, which is known as a major structural element of erythrocyte 

membrane skeleton. When EPB41 expression is low, there is poor patient response when treated 

with cisplatin with a statistical significance of p = 0.027 (Figure 5.28B). It could be predicted that 

the missense variant in EPB41 in MDA-MB-468rCDDP1000 may be a LOF variant, although its role in 

cisplatin resistance is unknown.  

 
HUWE1 encodes the E3 ubiquitin-protein ligase HUWE1, which been implicated in the regulation 

of CDC6 after DNA damage by marking CDC6 for proteasomal degradation and also mediates the 

ubiquitination of DNA polymerase β (POLB) playing a role in BER (Hall et al., 2007; Parsons et al., 

2009). When HUWE1 expression is low, there is poor patient response when treated with cisplatin 

with a statistical significance of p < 0.0001 (Figure 5.28C). It could be predicted that the missense 

variant in HUWE1 in HCC1806rCDDP500 may be a LOF variant. However, in contradiction to the data 

shown here, deletion of HUWE1 in colorectal cancer results in sensitivity to cisplatin (Myant et al., 

2017). The role of HUWE1 in cisplatin resistance or sensitivity is unknown, but may be context or 

tumour type specific.  

 
RGS9 encodes the protein regulator of G-protein signalling 9, which is known to inhibit signal 

transduction through the increase of GTPase activity of the G protein α subunits, thereby increasing 

the inactive GDP-bound form. The canonical phototransduction pathway of which RGS9 belongs to 

has been found to be differentially expressed in cisplatin resistant ovarian cancer (Jeyshka et al., 

2020). Here it can be seen that when the RGS9 expression is low, there is poor patient response 

when treated with cisplatin with a statistical significance of p = 0.012 (Figure 5.28D). It could be 

predicted that the splice site variant in RGS9 in HCC1806rCDDP500 may be a LOF variant, although its 

role in cisplatin resistance is unknown.  

 
Four genes showed that high expression of the gene resulted in patient death when patient is 

treated with cisplatin; FKBP7, KCND2, SLC2A12 and OGN (Figure 5.28E-H). It could be predicted that 

these genes harbour a GOF variant which could result in cisplatin resistance.  

 
FKBP7 encodes a peptidyl-prolyl cis-trans isomerase, which are known to accelerate the folding of 

proteins during protein synthesis. FKBP7 has been seen to be overexpressed in taxane resistant 

prostate and ovarian cancer, but this has not been observed with the DNA-damaging agents, such 

as cisplatin (N. K. Sun et al., 2014; Garrido et al., 2019). Interestingly none of the cisplatin resistant 

cell lines demonstrated cross-resistance to the taxane drug; paclitaxel (Chapter 3). Here it can be 

seen that when the FKBP7 expression is high, there is poor patient response when treated with 

cisplatin with a statistical significance of p < 0.0001 (Figure 5.28E). It could be predicted that the 
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missense variant in RGS9 in HCC1806rCDDP500 may be a GOF variant, although its role in cisplatin 

resistance is unknown. 

 
KCND2 encodes the potassium voltage-gated channel subfamily D member 2, which is a voltage-

gated potassium channel (Zhu et al., 1999). When KCND2 expression is high, there is poor patient 

response when treated with cisplatin with a statistical significance of p = 0.00011 (Figure 5.28F). It 

could be predicted that the missense variant in KCND2 in HCC1806rCDDP500 may be a GOF variant, 

although its role in cisplatin resistance is unknown. 

 
SLC2A12 encodes the solute carrier family 2, facilitated glucose transporter member, an  insulin-

independent facilitative glucose transporter, also known as GLUT12 (Waller et al., 2013). Cisplatin 

has been previously reported to supress glucose uptake, and that early reduction of glucose uptake 

after treatment with cisplatin is a marker of cisplatin sensitivity in ovarian cancer (Egawa-Takata et 

al., 2010). When SLC2A12 expression is high, there is poor patient response when treated with 

cisplatin with a statistical significance of p = 0.00071 (Figure 5.28G). It could be predicted that the 

missense variant in SLC2A12 in MDA-MB-468rCDDP1000 may be a GOF variant, with a role consistent 

with the literature.  

 
OGN encodes mimecan, which has been found to have growth factor activity inducing bone 

formation in conjunction with TGFβ1 or TGFβ2 (Funderburgh et al., 2001). When OGN expression 

is high, there is poor patient response when treated with cisplatin with a statistical significance of 

p = 0.0005 (Figure 5.28H). It could be predicted that the missense variant in OGN in HCC38rCDDP3000 

may be a GOF variant, although its role in cisplatin resistance is unknown. 
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Figure 5.28 Patient survival analysis of mutated genes associated with cisplatin resistance 
Variants identified as beneficially selected in the cisplatin resistant TNBC cell lines were compared to the TCGA data to determine exact 
or similar consequence variants. Filtered for statistical significance, p < 0.05 and false discovery rate < 0.2, the survival probability of the 
final mutated genes for when gene expression was high or low and the patient treated with cisplatin was calculated and repres ented in 
Kaplan-Meier graphs.  
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Analysis of the doxorubicin resistant cell lines identified nine variants; three as exact variants, and 

six same consequence variants. All nine variants had gene expression data available with a p-value 

of < 0.05 and showing an FDR (0.05) significance. Kaplan Meier graphs were created for all nine 

genes when patients were treated with doxorubicin, and all nine had a p-value < 0.05 (Figure 5.29, 

Appendix A35). Eight genes showed that low gene expression resulted in patient death when 

patient is treated with doxorubicin; ADNP, C11orf80(TOP6BL), C5orf42, GXYLT1, RNF213, USH2A, 

NCOR1 and TRPM7 (Figure 5.29A-H). It could be predicted that these genes harbour a LOF variant 

which may lead to doxorubicin resistance.  

 
ADNP encodes the activity-dependent neuroprotector homeobox protein, which is predicted to be 

a potential transcription factor due to the zinc finger domain in its structure (UniProtKB, Q9H2P0). 

When ADNP expression is low, there is poor patient response when treated with doxorubicin with 

a statistical significance of p < 0.0001 (Figure 5.29A). It could be predicted that the missense variant 

in ADNP in HCC1806rDOX12.5 may be a LOF variant, although its role in doxorubicin resistance is 

unknown.  

 
The gene C11orf80, also known as TOP6BL, encodes for the type 2 DNA topoisomerase VIB-like 

protein. In combination with SPO11, it mediates DNA cleavage that forms the dsDNA breaks that 

initiate meiotic recombination. This complex promotes relaxation of negative and positive 

supercoiled DNA and DNA decatenation through cleavage and ligation cycles (Robert et al., 2016). 

When C11orf80 expression is low, there is poor patient response when treated with doxorubicin 

with a statistical significance of p = 0.0047 (Figure 5.29B). It could be predicted that the inframe 

insertion variant in C11orf80 in HCC1806rDOX12.5 may be a LOF variant, although its role in 

doxorubicin resistance is unknown. 

 
The gene C5orf42, also known as CPLANE1, encodes for the callogenesis and planar polarity effector 

1 protein, which is involved in the establishment of cell polarity required for directional cell 

migration (Damerla et al., 2015). When C5orf42 expression is low, there is poor patient response 

when treated with doxorubicin with a statistical significance of p < 0.0001 (Figure 5.29C). It could 

be predicted that the missense variant in C5orf42 in HCC1806rDOX12.5 may be a LOF variant, 

although its role in doxorubicin resistance is unknown. 

 
GXYLT1 encodes for glucoside xylosyltransferase 1, which is required to elongate O-linked glucose 

attached to EGF-like repeats in the extracellular domain of Notch proteins (Sethi et al., 2010). When 

GXYLT1 expression is low, there is poor patient response when treated with doxorubicin with a 

statistical significance of p < 0.0001 (Figure 5.29D). It could be predicted that the missense variant 
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in GXYLT1 in HCC1806rDOX12.5 may be a LOF variant, although its role in doxorubicin resistance is 

unknown. 

 
RNF213 encodes for an E3 ubiquitin-protein ligase involved in angiogenesis and the non-canonical 

Wnt signalling pathway (Liu et al., 2011; Scholz et al., 2016). When RNF213 expression is low, there 

is poor patient response when treated with doxorubicin with a statistical significance of p < 0.0001 

(Figure 5.29E). It could be predicted that the missense variant in RNF213 in MDA-MB-468rDOX50 

may be a LOF variant, although its role in doxorubicin resistance is unknown. 

 
USH2A encodes for the protein Usherin, which is known to be involved in hearing and vision as the 

USH2 complex (UniProtKB, O75445). When USH2A expression is low, there is poor patient response 

when treated with doxorubicin with a statistical significance of p = 0.0026 (Figure 5.29F). It could 

be predicted that the missense variant in USH2A in MDA-MB-468rDOX50 may be a LOF variant, 

although its role in doxorubicin resistance is unknown. 

 
NCOR1 encodes for nuclear receptor corepressor 1 protein which mediates transcriptional 

repression through certain nuclear receptors (Cui et al., 2011). When NCOR1 expression is low, 

there is poor patient response when treated with doxorubicin with a statistical significance of p < 

0.0001 (Figure 5.29G). It could be predicted that the missense variant in NCOR1 in HCC38rDOX40 

may be a LOF variant, although its role in doxorubicin resistance is unknown. 

 
TRPM7 encodes for the transient receptor potential cation channel subfamily M member 7 protein, 

an essential ion channel known to be permeable to calcium and magnesium (Schmitz et al., 2003). 

Interestingly Cazzaniga et al., 2017 has shown that downregulation of TRPM7 results in a 

doxorubicin resistant phenotype in colon carcinoma. When TRPM7 expression is low, there is poor 

patient response when treated with doxorubicin with a statistical significance of p < 0.0001 (Figure 

5.29H). It could be predicted that the missense variant in TRPM7 in HCC38rDOX40 may be a LOF 

variant, which is consistent with the literature.   

 
Three genes showed that high expression of the gene resulted in patient death when patient is 

treated with doxorubicin; C20orf27, GBGT1, and KCND2 (Figure 5.29I-K). 

 
C20orf27 encodes for an uncategorised protein in a predicted open reading frame. When C20orf27 

expression is high, there is poor patient response when treated with doxorubicin with a statistical 

significance of p = 0.0005 (Figure 5.29I). It could be predicted that the stop gain variant in C20orf27 

in HCC1806rDOX12.5 may be a GOF variant, although its role in doxorubicin resistance is unknown. 
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GBGT1 encodes the globoside α-1,3-N-acetylgalactosaminyltransferase 1 protein which is thought 

to catalyse the formation of glycolipid (UniProtKB, Q8N5D6). When GBGT1 expression is high, there 

is poor patient response when treated with doxorubicin with a statistical significance of p = 0.034, 

although the final outcome is not that dissimilar (Figure 5.29J). It could be predicted that the 

missense variant in GBGT1 in MDA-MB-468rDOX50 may be a GOF variant, although its role in 

doxorubicin resistance is unknown. 

 
KCND2 encodes for a voltage-gated potassium channel, and as previously seen was identified as a 

significant variant in HCC1806rCDDP500. Interestingly,  Lyu et al., 2006, found that topoisomerase 

2β has a direct role in the expression of KCND2. When KCND2 expression is high, there is also poor 

patient response when treated with doxorubicin with a statistical significance of p < 0.0001, 

although the final outcome is not that dissimilar (Figure 5.29K). It could be predicted that the 

missense variant in KCND2 in HCC1806rDOX12.5 may be a GOF variant, although its role in 

doxorubicin resistance is unknown. 

 

 
 
Figure 5.29 Patient survival analysis of mutated genes associated with doxorubicin resistance 
Figure continued on next page 
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Figure 5.29 Patient survival analysis of mutated genes associated with doxorubicin resistance  
Variants identified as beneficially selected in the doxorubicin resistant TNBC cell lines were compared to the TCGA data to determine 
exact or similar consequence variants. Filtered for statistical significance, p < 0.05 and false discovery rate < 0.2, the survival probability 
of the final mutated genes for when gene expression was high or low and the patient treated with doxorubicin was calculated and 
represented in Kaplan-Meier graphs.  
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Analysis of the gemcitabine resistant cell lines identified 16 variants; eight exact variant, and eight 

same consequence variants. Of the 16 variants, only 15 had gene expression data, and only five had 

a p-value of < 0.05 with three showing an FDR (0.005) significance and two showing an FDR (0.2) 

significance. Kaplan Meier graphs were created the five gene when patients were treated with 

gemcitabine, and all five had a p-value < 0.05 (Figure 5.30, Appendix A35). Four genes showed that 

low gene expression resulted in patient death when patient is treated with gemcitabine; ADNP, 

ABCB10, ANK2 and TBC1D9 (Figure 5.30A-D). It could be predicted that these genes harbour a LOF 

variant which may lead to gemcitabine resistance.  

 
The gene ADNP was seen to have low gene expression which resulted in patient death. As previously 

mentioned, the gene ADNP is predicted to be a potential transcription factor and was shown earlier 

that when ADNP expression is low there is a poor outcome when patients are treated with 

doxorubicin. When ADNP expression is low, there is also poor patient response when treated with 

gemcitabine with a statistical significance of p = 0.022 (Figure 5.30A). It could be predicted that the 

missense variant in ADNP in HCC1806rGEM20 may be a LOF variant, although its role in gemcitabine 

resistance in unknown.  

 
The gene ABCB10 encodes for the ATP-binding cassette sub-family B member 10 protein which has 

been predicted to mediate critical mitochondrial transport functions and protection of 

mitochondria against oxidative stress (Shintre et al., 2013). When ABCB10 expression is low, there 

is poor patient response when treated with gemcitabine with a statistical significance of p = 0.0094 

(Figure 5.30B). It could be predicted that the missense variant in ABCB10 in HCC38rGEM20 may be a 

LOF variant, although its role in gemcitabine resistance is unknown. 

 
The gene ANK2 encodes for the Ankyrin-2 protein which has an essential role in the localisation and 

membrane stabilisation of ion transporters and ion channels (Cunha and Mohler, 2011). When 

ANK2 expression is low, there is poor patient response when treated with gemcitabine with a 

statistical significance of p = 0.0057 (Figure 5.30C). It could be predicted that the missense variant 

in ANK2 in HCC38rGEM20 may be a LOF variant, although its role in gemcitabine resistance is 

unknown. 

 
The gene TBC1D9 encodes for the TBC1 domain family member 9 protein, which is predicted to act 

as a GTPase-activating protein for Rab family proteins (UniProtKB, Q6ZT07) (Nakamura et al., 2015). 

When TBC1D9 expression is low, there is poor patient response when treated with gemcitabine 

with a statistical significance of p = 0.023 (Figure 5.30D). It could be predicted that the missense 
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variant in TBC1D9 in HCC38rGEM20 may be a LOF variant, although its role in gemcitabine resistance 

is unknown. 

 
Only FGF14 showed that high expression of the gene resulted in patient death when patient is 

treated with gemcitabine. FGF14 encodes for the fibroblast growth factor 14, a member of the 

fibroblast growth factor (FGF) family, which is predicted to be involved in nervous system 

development and function (UniProtKB, Q92915). Although nothing is known specifically about 

FGF14 and gemcitabine resistance, FGF receptors (FGFR) have been implicated in chemo-

resistance. Specifically, FGFR3 has been implicated in gemcitabine resistance in urothelial cancer 

(Y. Zhou et al., 2020). When FGF14 expression is high, there is poor patient response when treated 

with gemcitabine with a statistical significance of p = 0.00061, although the final patient outcome 

is not that different (Figure 5.30E). It could be predicted that the missense variant in FGF14 in 

HCC38rGEM20 may be a GOF variant, although its role in gemcitabine resistance is unknown. 

 

 

 
Figure 5.30 Patient survival analysis of mutated genes associated with gemcitabine resistance 
Figure continued on next page 
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Figure 5.30 Patient survival analysis of mutated genes associated with gemcitabine resistance 
Variants identified as beneficially selected in the gemcitabine resistant TNBC cell lines were compared to the TCGA data to determine 
exact or similar consequence variants. Filtered for statistical significance, p < 0.05 and false discovery rate < 0.2, the survival probability 
of the final mutated genes for when gene expression was high or low and the patient treated with gemcitabine was calculated and 
represented in Kaplan-Meier graphs.  
 
Analysis of the paclitaxel resistant cell lines identified 12 variants; five as exact variants, and seven 

same consequence variants. Of those 12, 9 of the genes had gene expression data available. All nine 

variants had gene expression data available with a p-value of < 0.05 and showing an FDR (0.05) 

significance. Kaplan Meier graphs were created for the nine genes when patients were treated with 

paclitaxel, and eight of the genes had a p-value < 0.05 (Figure 5.31, Appendix A35). Seven genes 

showed that low gene expression resulted in patient death when patient is treated with paclitaxel; 

ADNP, DNAJC13, FAT4, GXYLT1, MSK1 (RPS6KAS), NCOR1 and PHFT (Figure 5.31A-G). It could be 

predicted that these genes harbour a LOF variant which may lead to paclitaxel resistance.  

 
ADNP is predicted to be a potential transcription factor and was shown earlier that when ADNP 

expression is low there is a poor outcome when patients are treated with doxorubicin and 

gemcitabine. Interestingly, NAP, a neuroprotective peptide, is derived from ADNP. NAP has been 

shown to modulate tubulin pools (Oz, Ivashko-Pachima and Gozes, 2012). When ADNP expression 

is low, there is poor patient response when treated with paclitaxel with a statistical significance of 

p < 0.0001 (Figure 5.31A). It could be predicted that the missense variant in ADNP in HCC1806rPCL20 

may be a LOF variant, although its role in paclitaxel resistance is unknown. 

 
DNAJC13 encodes for DnaJ homolog subfamily C member 13 protein, also called RME-8, which has 

been shown to involved in membrane trafficking through early endosomes (Fujibayashi et al., 

2008). When DNAJC13 expression is low, there is poor patient response when treated with 

paclitaxel with a statistical significance of p < 0.0001 (Figure 5.31B). It could be predicted that the 

missense variant in DNAJC13 in HCC38rPCL2.5 may be a LOF variant, although its role in paclitaxel 

resistance is unknown. 
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FAT4 encodes for protocadherin Fat 4 protein which are cell adhesion proteins. It has been found 

that FAT4 silenced cells show less sensitivity to paclitaxel, as we all as 5-Fluorouracil, cisplatin and 

oxaliplatin compared to the control cells (Ma et al., 2016). HCC38rPCL2.5, which contains the FAT4 

variant demonstrates cross-resistance to 5-Fluoruoracil, but not to cisplatin. When FAT4 expression 

is low, there is poor patient response when treated with paclitaxel with a statistical significance of 

p = 0.00018 (Figure 5.31C). It could be predicted that the missense variant in FAT4 in HCC38rPCL2.5 

may be a LOF variant, although its role in paclitaxel resistance is unknown. 

 
GXYLT1 a protein which is required to elongate O-linked glucose to extracellular domain of Notch 

proteins and was shown earlier that when GXYLT1 expression is low there is a poor outcome when 

patients are treated with doxorubicin. When GXYLT1 expression is low, there is poor patient 

response when treated with paclitaxel with a statistical significance of p < 0.0001 (Figure 5.31D). It 

could be predicted that the missense variant in GXYLT1 in MDA-MB-468rPCL20 may be a LOF variant, 

although its role in paclitaxel resistance is unknown. 

 
MSK1, also known as RPS6KAS, encodes for ribosomal protein S6-inase α5, which is a 

serine/threonine protein kinase required for the phosphorylation and regulation of transcription 

factors (Ahn et al., 2018). When MSK1 expression is low, there is poor patient response when 

treated with paclitaxel with a statistical significance of p < 0.0001 (Figure 5.31E), although the final 

patient outcome shows very little difference. It could be predicted that the missense variant in 

MSK1 in MDA-MB-468rPCL20 may be a LOF variant. In contradiction to the data here, Fujita et al., 

2010 showed that MSK1 knockdown reduced paclitaxel resistance in prostate epithelial cells. The 

role of MSK1 in paclitaxel resistance or sensitivity is unknown, but may be context or tumour type 

specific.  

 
NCOR1 is predicted to be a potential transcription factor and was shown earlier that when NCOR1 

expression is low there is a poor outcome when patients are treated with doxorubicin. When 

NCOR1 expression is low, there is poor patient response when treated with paclitaxel with a 

statistical significance of p < 0.0001 (Figure 5.31F). It could be predicted that the missense variant 

in NCOR1 in HCC1806rPCL20 may be a LOF variant, although its role in paclitaxel resistance is 

unknown. 

 
The gene PHF2 encodes for the Lysine-specific demethylase PHF2 protein, which has a known role 

in demethylating both histones and non-histone proteins once activated by protein kinase A (PKA) 

(Baba et al., 2011). It has been shown that increase of PKA induces mesenchymal-to-epithelial 

transition (MET) via through PHF2 which relieves H3K9me2/3 -mediated repression of epithelial 
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genes, and MET induced differentiation is accompanied by a loss of stem-like properties which 

results in a sensitivity to chemotherapeutic drugs such as doxorubicin and paclitaxel (Pattabiraman 

et al., 2016). When PHF2 expression is low, there is poor patient response when treated with 

paclitaxel with a statistical significance of p < 0.0001 (Figure 5.31G). It could be predicted that the 

inframe insertion variant in PHF2 in MDA-MB-468rPCL20 may be a LOF variant and it was interesting 

to note the MDA-MB-468rPCL20 demonstrated cross-resistance to doxorubicin. Here it could be 

predicted that a LOF of PHF2, prevents activation of MET induced differentiation, thereby 

preventing cellular sensitivity to both paclitaxel and doxorubicin.  

 
Two genes showed that high expression of the gene resulted in patient death when patient is 

treated with paclitaxel; EXT1 and ITGB4 (Figure 5.31H-I). EXT1 encodes for the exostosin-1 protein, 

which is a glycosyltransferase required for the biosynthesis of heparan-sulphate. When EXT1 

expression is high, there is poor patient response when treated with paclitaxel with a statistical 

significance of p < 0.0001 (Figure 5.31H). It could be predicted that the frameshift variant in EXT1 

in HCC1806rPCL20 may be a GOF variant, although its role in paclitaxel resistance is unknown. 

 
ITGB4 encodes for the integrin β-4 protein, is known as a receptor for lamin, and important for IGF1 

signalling (Fujita et al., 2012). Interestingly, proteomic analysis conducted by Kawakami et al., 2015 

showed ITGB4 to be upregulated in exosomes derived from taxane-resistant prostate cancer. When 

ITGB4 expression is high, there is poor patient response when treated with paclitaxel with a 

statistical significance of p < 0.0001 (Figure 5.31I). It could be predicted that the frameshift variant 

in ITGB4 in HCC38rPCL2.5 may be a GOF variant. Although its role in paclitaxel resistance is unknown, 

ITGB4 has been previously implicated.  

 

 

Figure 5.31 Patient survival analysis of mutated genes associated with paclitaxel resistance 
Figure continued on next page 
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Figure 5.31 Patient survival analysis of mutated genes associated with paclitaxel resistance 
Variants identified as beneficially selected in the paclitaxel resistant TNBC cell lines were compared to the TCGA data to determine exact 
or similar consequence variants. Filtered for statistical significance, p < 0.05 and false discovery rate < 0.2, the survival  probability of the 
final mutated genes for when gene expression was high or low and the patient treated with paclitaxel was calculated and represented 
in Kaplan-Meier graphs.  
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Analysis of the 5-Fluorouracil resistant cell line, HCC1806r5-F1500 identified eight variants; two as 

exact variants, and six same consequence variants. All eight of the genes had gene expression data 

available. Five genes had a p-value of < 0.05, with one gene showing FDR (0.05) significance, and 

four genes showing FDR (0.2) significance. Kaplan Meier graphs were created for the five remaining 

genes when patients were treated with 5-Fluorouracil, and all five of the genes had a p-value < 0.05 

(Figure 5.32, Appendix A35). Two genes showed that low gene expression resulted in patient death 

when patient is treated with 5-Fluorouracil; ADNP and C11orf80(TOP6BL) (Figure 5.32A-B). It could 

be predicted that these genes harbour a LOF variant which may lead to 5-Fluorouracil resistance.  

 
ADNP is predicted to encode for a potential transcription factor and was shown earlier that when 

ADNP expression is low there is a poor outcome when patients are treated with doxorubicin, 

gemcitabine and paclitaxel. When ADNP expression is low, there is poor patient response when 

treated with 5-Fluorouracil with a statistical significance of p = 0.00012 (Figure 5.32A). It could be 

predicted that the missense variant in ADNP in HCC1806r5-F1500 may be a LOF variant although its 

role in 5-Fluorouracil resistance is unknown. 

 
C11orf80 (TOP6B) is known to encode for the type 2 DNA topoisomerase VIB-like protein. Here it 

can be seen that when the C11orf80 expression is low, there is poor patient response when treated 

with 5-Fluorouracil with a statistical significance of p = 0.034 (Figure 5.32B). It could be predicted 

that the inframe insertion variant in C11orf80 in HCC1806r5-F1500 may be a LOF variant although its 

role in 5-Fluorouracil resistance is unknown. 

 
Three genes showed that high expression of the gene resulted in patient death when patient is 

treated with 5-Fluorouracil; CHST11, FLG and PIK3C2B (Figure 5.32C-E). It could be predicted that 

these genes harbour a GOF variant which may lead to 5-Fluorouracil resistance. CHST11 encodes 

for the carbohydrate sulfotransferase 11 protein, which catalyses the transfer of sulphate to 

acetylgalactosamine (GalNAc) residue of chondroitin (Okuda et al., 2000). When CHST11 expression 

is high, there is poor patient response when treated with 5-Fluorouracil with a statistical 

significance of p = 0.0012 (Figure 5.32C). It could be predicted that the missense variant in CHST1 

in HCC1806r5-F1500 may be a gain of function, although its implication in 5-Fluorouracil resistance is 

unknown.  

 
FLG encodes for the protein Filaggrin which aggregates keratin intermediate filaments (UniProtKB, 

P20930). When FLG expression is high, there is poor patient response when treated with 5-

Fluorouracil with a statistical significance of p < 0.0001 (Figure 5.32D). It could be predicted that 
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the missense variant in FLG in HCC1806r5-F1500 may be a gain of function, although its implication in 

5-Fluorouracil resistance is unknown. 

 
PIK3C2B encodes for a phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit β 

protein, which may be involved in EGF and PDGF signalling cascades (Arcaro et al., 2000).  When 

PIK3C2B expression is high, there is poor patient response when treated with 5-Fluorouracil with a 

statistical significance of p =0.029 (Figure 5.32E). It could be predicted that the missense variant in 

PIK3C2B in HCC1806r5-F1500 may be a gain of function, although its implication in 5-Fluorouracil 

resistance is unknown. 

 

 

Figure 5.32 Patient survival analysis of mutated genes associated with 5-Fluorouracil resistance 
Variants identified as beneficially selected in the 5-Fluorouracil resistant TNBC cell lines were compared to the TCGA data to determine 
exact or similar consequence variants. Filtered for statistical significance, p < 0.05 and false discovery rate < 0.2, the survival probability 
of the final mutated genes for when gene expression was high or low and the patient treated with 5-Fluorouracil was calculated and 
represented in Kaplan-Meier graphs.  
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5.3.3.2 Comparison of protein truncating variants to gene expression in the TCGA 
 
As previously established earlier in this chapter, PTV’s are the most damaging type of variants which 

often lead to a LOF of the protein. This next analysis aimed to consider all genes which contain PTVs 

in the chemo-resistant cell lines regardless of the VAF in the cell populations, and only removed 

those from the dataset which are seen in high confidence in the respective chemo-naive cell line. 

Variants were selected if they had a similar consequence to the variants in the TCGA, i.e a 

frameshift. Whilst these variants are not at the exact same chromosomal position, they may result 

in the loss of a similar length of protein. If no similar variant or consequence was seen in the TCGA 

dataset, the variant was removed from the list. Next the patient response to a drug when these 

genes were seen in high or low expression was determined using the TCGA dataset as before 

(section 5.3.3.1). Given that a PTV would most likely give a LOF protein, those which showed a high 

gene expression and high patient mortality were removed from the list. As in the previous analysis, 

no gene expression data is available in the TCGA for when a patient is treated with eribulin, and so 

the eribulin resistant cell lines cannot be considered. The final gene set was also checked to 

determine if they are found in the cancer gene census or are considered to be a hallmark. The full 

list of variants, along with the filtering by statistical significance is summarised in Appendix A36. 

 
When considering the cisplatin resistant cell lines, 78 PTVs were identified. After filtering out PTVs 

found in the chemo-naive cell lines, 30 were found only in the cisplatin resistant cell lines, and 11 

were found in both the cisplatin resistant cell lines and in low confidence in the chemo-naive cell 

lines. Of the 41 variants, 34 had available expression data for the affected gene and the patient’s 

response when treated with cisplatin. Of the 34 variants, 29 were found to have similar 

consequences. When considering the expression data of the genes associated to the 29 variants, 

29 had a p-value of < 0.05, with 16 showing an FDR (0.05) significance and 2 showing an FDR (0.2) 

significance. Kaplan-Meier graphs were created for the remaining 18 genes. Six showed that when 

patient had low expression of the gene, this resulted in patient death with a p-value < 0.05. None 

of the genes were identified to be in the cancer gene census, nor considered as a hallmark of cancer. 

The identified genes included; BRD7, HSD17B3, IDO1, RGS9, KLF11 and PRLR (Figure 5.33A-F, 

Appendix A36). 

 
The variant in BRD7 was already identified in the MDA-MB-468rCDDP1000 during the candidate 

approach analysis (section 5.2.2).  When BRD7 expression is low, there is poor patient response 

when treated with cisplatin with a statistical significance of p < 0.0001. (Figure 5.3A). This is 

consistent with the predicted LOF splice acceptor variant identified in BRD7 in the cisplatin resistant 

cell line.   
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The gene HSD17B3 encodes for the testosterone 17-β-dehydrogenase 3 protein, which allows for 

the reduction of androstenedione to (Engeli et al., 2016). When HSD17B3 expression is low, there 

is a poorer patient response when treated with cisplatin, with a statistical significance of p = 0.048 

(Figure 5.33B). This is not a strong difference in patient response, and the implication of HSD17B3 

in cisplatin resistance is unknown.  

 
The variant in IDO1 was already identified in MDA-MB-468rCDDP1000 during the candidate approach 

analysis (section 5.2.2). When IDO1 expression is low, there is poor patient response when treated 

with cisplatin with a statistical significance of p < 0.0001 (Figure 5.33C). This is consistent with the 

predicted LOF splice acceptor variant identified in IDO1 in the cisplatin resistant cell line.  

 
The variant in KLF11 was also already identified in the MDA-MB-468rCDDP1000 during the candidate 

approach analysis (section 5.2.2).  Here it can be seen that when the KLF11 expression is low, there 

is poor patient response when treated with cisplatin with a statistical significance of p = 0.005 

(Figure 5.33D). This is consistent with the predicted LOF stop gain variant identified in KLF11 in the 

cisplatin resistant cell line 

 
The final two genes which were identified in this analysis are RGS9 and PRLR. The Kaplan-Meier 

graphs a statistical p-value equal to 0.012 and 0.011 respectively, although little difference is seen 

between the final patient response (Figure 5.33-E-F). The gene RGS9 was already identified during 

the candidate approach analysis (section 5.2.2), and was seen to show that low expression was 

associated to poorer patient response upon treatment with cisplatin. PRLR encodes for the 

prolactin receptor protein, which is a receptor for the anterior pituitary hormone prolactin (Trott 

et al., 2003). It was interesting to find that Asad et al., 2019 has shown that activation of the PRLR 

pathway enhances proliferation, migration and cisplatin resistance in glioblastoma cells. 
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Figure 5.33 Patient survival analysis of genes containing protein truncated variants associated with cisplatin resistance  
All protein truncating variants found in the cisplatin resistant TNBC cell lines were selected, with the exception of those seen in high 
confidence in the chemo-naive cell lines. Gene expression data for the gene was selected from the TCGA and filtered for statistical 
significance, p < 0.05 and false discovery rate < 0.2. Resulting mutated genes were selected if low gene expression showed higher patient 
mortality. Survival probability for the final mutated genes for when gene expression was high or low and the patient treated with cisplatin 
was calculated and represented in Kaplan-Meier graphs. 
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When considering the doxorubicin resistant cell lines, 59 PTVs were identified. After filtering out 

PTVs found in the chemo-naive cell lines, 16 were found only in the doxorubicin resistant cell lines, 

and 5 were found in both the doxorubicin resistant cell lines and in low confidence in the chemo-

naive cell lines. Of the 16 variants, 14 had available expression data for the affected gene and the 

patient’s response when treated with cisplatin. Of the 14 variants, all were found to have similar 

consequences. When considering the expression data of the genes associated to the 14 variants, 

14 had a p-value of < 0.05, showing an FDR (0.05) significance. Kaplan-Meier graphs were created 

for the remaining 14 genes. Seven showed that when patient had low expression of the gene, and 

were treated with doxorubicin, this resulted in patient death with a p-value < 0.05. None of the 

genes were identified to be in the cancer gene census, nor considered as a hallmark of cancer. The 

identified genes included; SLC22A23, CDON, CES2, ZKSCAN3, ABCA8, TOP2A, and ZNF442 (Figure 

5.34, Appendix A36).   

 
SLC22A23 encodes for the solute carrier family 22-member 23 protein, which is known for 

transmembrane transporter activity. In the same family, the transporter SLC22A16 has been found 

to mediate the uptake of doxorubicin in cancer cells, although the implication of SLC22A23 in 

doxorubicin resistance is unknown (Okabe et al., 2005a).Here when SLC22A23 expression is 

considered, there is a statistically significant p value of < 0.0001 difference in patient response when 

treated with doxorubicin, although very little difference between the final outcome (Figure 5.34A).  

 
CDON encodes for the cell adhesion molecule-related/down regulated by oncogenes protein. CDON 

is a component of a cell-surface receptor complex that can mediate cell-cell interactions. When 

CDON expression is low, there is poor patient response when treated with doxorubicin with a 

statistical significance of p = 0.036. (Figure 5.34B), although its implication in doxorubicin resistance 

is unknown.  

 
CES2 encodes for cocaine esterase, which is involved in the detoxification of xenobiotics as well as 

the activation of ester and amide prodrugs (Zhu et al., 1999). Interestingly, the pro-drug, PPD, is 

cleaved by CES2 to obtain doxazolidine, which then rapidly hydrolyses to doxorubicin  (Koch, no 

date; Post et al., 2005; Barthel et al., 2009). When CES2 expression is low, there is poor patient 

response when treated with doxorubicin with a statistical significance of p = 0.0018. (Figure 5.34C), 

which is consistent with the LOF stop gain variant found in CES2 in HCC1806rDOX12.5.  

 
ZKSCAN3 encodes for the zinc finger protein with KRAB and SCAN domains 3 which is a 

transcriptional factor, which upon binding to a consensus sequence acts as a repressor for 

autophagy(Yang et al., 2008). When ZKSCAN3 expression is low, there is poor patient response 
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when treated with doxorubicin with a statistical significance of p = 0.0013, although the final 

outcome does not show much difference in patient survival (Figure 5.34D). The role of ZKSCAN3 in 

doxorubicin resistance is unknown.  

 
ABCA8 encodes for the ATP-binding cassette sub-family A member 8 protein, which is an ATP-

dependent lipophilic drug transporter (Tsuruoka et al., 2002). When ABCA8 expression is low, there 

is poor patient response when treated with doxorubicin with a statistical significance of p = 0.0001 

(Figure 5.34E). This is consistent with the hypothesis that the frameshift variant in ABCA8 in 

HCC1806rDOX12.5 is a LOF variant. However, this result is in contradiction to the work of Tsuruoka 

et al., 2002, which stated that doxorubicin was not accumulated when investigating the transport 

capacity of ABCA8. The role of ABCA8 in doxorubicin resistance or sensitivity is unknown, but may 

be context or tumour type specific. 

 
The frameshift variant found in TOP2A was already identified in the HCC1806rDOX12.5 during the 

candidate approach analysis (section 5.2.2).  When TOP2A expression is low, there is poor patient 

response when treated with doxorubicin with a statistical significance of p = 0.00043. (Figure 5.34F). 

This is consistent with the predicted LOF frameshift variant identified in TOP2A in the doxorubicin 

resistant cell line.  

 
ZNF442 encodes for the zinc finger protein 442, which is thought to be involved in transcriptional 

regulation (UniProtKB – Q9H7R0). When ZNF442 expression is low, there is poor patient response 

when treated with doxorubicin with a statistical significance of p = 0.00073 (Figure 5.34G), although 

its implication in doxorubicin resistance is unknown.  
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Figure 5.34 Patient survival analysis of genes containing protein truncated variants associated with doxorubicin resistance 
All protein truncating variants found in the doxorubicin resistant TNBC cell lines were selected, with the exception of those seen in high 
confidence in the chemo-naive cell lines. Gene expression data for the gene was selected from the TCGA and filtered for statistical 
significance, p < 0.05 and false discovery rate < 0.2. Resulting mutated genes were selected if low gene expression showed higher patient 
mortality. Survival probability for the final mutated genes for when gene expression was high or low and the patient treated with 
doxorubicin was calculated and represented in Kaplan-Meier graphs. 
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When considering the gemcitabine resistant cell lines, 74 PTVs were identified. After filtering out 

PTVs found in the chemo-naive cell lines, 32 were found in the gemcitabine resistant cell lines. Of 

the 32 variants, 22 had available expression data for the affected gene and the patient’s response 

when treated with gemcitabine. It was found that 21 variants were found to have similar 

consequences. When considering the expression data of the genes associated to the 21 variants, 

only four had a p-value of < 0.05, with nine showing an FDR (0.05) significance and the other 

showing an FDR (0.2) significance. Kaplan-Meier graphs were created for the remaining 13 genes. 

Kaplan-Meier graphs were created for the remaining 13 genes. Six showed that low expression of 

the gene resulted in patient death with a p-value of <0.05, although it was important to note that 

very little difference in the final outcome of low expressing and high expressing patient response 

was seen (Figure 5.35, Appendix A6). One of the genes were identified to be in the cancer gene 

census, but none are considered to be a hallmark of cancer. The identified genes included; AGAP6, 

MSH2, MTCH2, SMC1B, SYNGR1, and TYK2.  

 
AGAP6 encodes for the Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 6, 

which is predicted to be a putative GTPase-activating protein (UniProtKB, Q5VW22). When AGAP6 

expression is low, there is poor patient response when treated with gemcitabine with a statistical 

significance of p = 0.01 (Figure 5.35A), although its implication in gemcitabine resistance is 

unknown.  

 
MSH2 encodes for the DNA mismatch repair protein Msh2, which is a major component of the DNA 

MMR pathway, and has been identified in the cancer gene census  (Li, 2008).  When MSH2 

expression is low, there is poor patient response when treated with gemcitabine with a statistical 

significance of p = 0.025 (Figure 5.35B). This is consistent with the predicted LOF splice variant found 

in HCC38rGEM20. However, this pattern is in contradiction with the work by Cloyd et al., 2017, who 

showed that down-regulation of MSH2 enhances cytotoxicity induced by gemcitabine in human 

lung adenocarcinoma cells, and  Dong et al., 2009, who showed defects in MMR sensitises 

pancreatic cancer to gemcitabine. Also, as previously mentioned, defects in MMR have been 

associated with cisplatin and 5-Fluorouracil resistance. HCC38rGEM20 does demonstrate cross-

resistance to both cisplatin and 5-Fluororuacil (Figure 3.11, Figure 3.16).  

 
The gene MTCH2 encodes for the mitochondrial carrier homolog 2 protein, although the substrate 

in which it transports is not yet known (UniProtKB, Q9Y6C9). When MTCH2 expression is low, there 

is poor patient response when treated with gemcitabine with a statistical significance of p = 0.018 
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(Figure 5.35C) which is consistent with the predicted LOF stop gain variant identified in 

HCC38rGEM20. The implication of MTCH2 in gemcitabine resistance is unknown.  

 
The frameshift variant found in SMC1B was already identified in the HCC38rGEM20 during the 

candidate approach analysis (section 5.2.2), although was not discussed due to the low VAF = 0.1. 

SMC1B encodes for the structural maintenance of chromosomes protein 1B, which has been 

implicated in being a meiosis-specific component of cohesion complex   (Mannini et al., 2015). 

When SMC1B expression is low, there is poor patient response when treated with gemcitabine with 

a statistical significance of p = 0.019 (Figure 5.35D), although its implication in gemcitabine 

resistance is unknown.  

 
SYNGR1 encodes for the synaptogyrin-1 protein which has been predicted to play a role in the 

regulation of exocytosis (UniProtHB, O43759). When SYNGR1 expression is low, there is poor 

patient response when treated with gemcitabine with a statistical significance of p = 0.021 (Figure 

5.35E), although its implication in gemcitabine resistance is unknown. 

 
Finally, the gene TYK2 encodes the non-receptor tyrosine-protein kinase TYK2, which has been 

found to phosphorylate interferon-α/β receptor chains during interferon signalling (Colamonici et 

al., 1994). When TYK2 expression is low, there is poor patient response when treated with 

gemcitabine with a statistical significance of p = 0.012 (Figure 5.35F), although its implication in 

gemcitabine resistance is unknown.  

 

 

 

Figure 5.35 Patient survival analysis of genes containing protein truncated variants associated with gemcitabine resistance 
Figure continued on next page 
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Figure 5.35 Patient survival analysis of genes containing protein truncated variants associated with gemcitabine resistance  
All protein truncating variants found in the gemcitabine resistant TNBC cell lines were selected, with the exception of those seen in high 
confidence in the chemo-naive cell lines. Gene expression data for the gene was selected from the TCGA and filtered for statistical 
significance, p < 0.05 and false discovery rate < 0.2. Resulting mutated genes were selected if low gene expression showed higher patient 
mortality. Survival probability for the final mutated genes for when gene expression was high or low and the patient treated with 
gemcitabine was calculated and represented in Kaplan-Meier graphs. 
 

 

When considering the paclitaxel resistant cell lines, 57 PTVs were identified. After filtering out PTVs 

found in the chemo-naive cell lines, 23 were found in the paclitaxel resistant cell lines. Of the 23 

variants, 14 had available expression data for the affected gene and the patient’s response when 

treated with paclitaxel. Of the 14 variants, 12 were found to have similar consequences. When 

considering the expression data of the genes associated to the 12 variants, all 12 had a p-value of < 

0.05, and had an FDR (0.05) significance. Kaplan-Meier graphs were created for the remaining 12 

genes. Seven showed that when patient had low expression of the gene, and were treated with 

paclitaxel, this resulted in patient death with a p-value < 0.05. None of the genes were identified to 

be in the cancer gene census, nor considered as a hallmark of cancer. The identified genes included; 

ACIN1, SETX, SLC24A1, CUBN, DNAH5, INHBA, and KIAA0586 (Figure 5.36, Appendix A36).  

 
The gene ACIN1 encodes the apoptotic chromatic condensation inducer in the nucleus protein 

which has been found to a component of the splicing-dependent exon junction complex found at 
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splice junction on mRNAs (Schwerk et al., 2003). When ACIN1 expression is low, there is poor 

patient response when treated with paclitaxel with a statistical significance of p = 0.00015, which 

is consistent with the predicted LOF frameshift variant in MDA-MB-468rPCL20 (Figure 5.36A). The 

role of ACIN1 in paclitaxel resistance is unknown.  

 
The gene SETX encodes the RNA/DNA helicase senataxin protein which has been found to have 

roles in RNA metabolism, transcription regulation, as well as genomic integrity (Suraweera et al., 

2009). When SETX expression is low, there is poor patient response when treated with paclitaxel 

with a statistical significance of p < 0.0001, which is consistent with the predicted LOF frameshift 

variant in MDA-MB-468rPCL20 (Figure 5.36B). The role of SETX in paclitaxel resistance is unknown.   

 
SLC24A1 encodes for the sodium/potassium/calcium exchanger 1 which has been shown to be a 

component of the visual transduction cascade (McKiernan and Friedlander, 1999). When SLC24A1 

expression is low, there is poor patient response when treated with paclitaxel with a statistical 

significance of p < 0.0001, which is consistent with the predicted LOF frameshift variant in MDA-

MB-468rPCL20 (Figure 5.36C). The role of the variant in SLC24A1 in paclitaxel resistance is unknown.  

 
CUBN encodes for cubilin, which is an endocytic receptor, which have roles in lipoprotein, iron and 

vitamin metabolism by facilitating their uptake into the cell (Kozyraki et al., 1999, 2001; Nykjaer et 

al., 2001; Fyfe et al., 2004). When CUBN expression is low, there is poor patient response when 

treated with paclitaxel with a statistical significance of p < 0.0001, which is consistent with the 

predicted LOF stop gain variant in HCC1806rPCL20 (Figure 5.36D). The role of CUBN in paclitaxel 

resistance is unknown.  

 
DNAH5 encodes the dynein heavy chain 5, which has been found to be the force generating protein 

in cilia, where it produces force towards the minus ends of microtubules (Oltean et al., 2018). When 

DNAH5 expression is low, there is poor patient response when treated with paclitaxel with a 

statistical significance of p < 0.0001, which is consistent with the predicted LOF stop gain variant in 

MDA-MB-468rPCL20 (Figure 5.36E). The role of DNAH5 in paclitaxel resistance is unknown.  

 
The stop gain variant found in INHBA was already identified in MDA-MB-468rPCL20 during the 

candidate approach analysis (section 5.2.2). When INHBA expression is low, there is poor patient 

response when treated with paclitaxel with a statistical significance of p < 0.0001. (Figure 5.36F). 

This is consistent with the predicted LOF stop gain variant identified in INHBA in MDA-MB-

468rPCL20, although the role of INHBA in paclitaxel resistance is unknown.  
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KIAA0586 encodes the protein TALPID3, which is known for ciliogenesis and hedgehog/SHH 

signalling. When KIAA0586 expression is low, there is poor patient response when treated with 

paclitaxel with a statistical significance of p < 0.0001. (Figure 5.36G). This is consistent with the 

predicted LOF stop gain variant identified in KIAA0586 in MDA-MB-468rPCL20, although the role of 

KIAA0586 in paclitaxel resistance is unknown.  

 

 

 
Figure 5.36 Patient survival analysis of genes containing protein truncated variants associated with paclitaxel resistance  

Figure continued on next page 
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Figure 5.36 Patient survival analysis of genes containing protein truncated variants associated with paclitaxel resistance 

All protein truncating variants found in the paclitaxel resistant TNBC cell lines were selected, with the exception of those seen in high 
confidence in the chemo-naive cell lines. Gene expression data for the gene was selected from the TCGA and filtered for statistical 
significance, p < 0.05 and false discovery rate < 0.2. Resulting mutated genes were selected if low gene expression showed higher patient 
mortality. Survival probability for the final mutated genes for when gene expression was high or low and the patient treated with 
paclitaxel was calculated and represented in Kaplan-Meier graphs. 
 

 
When considering the 5-Fluorouracil resistant cell line, HCC1806r5-F1500, 31 PTVs were identified. 

After filtering out PTVs found in HCC1806, 17 was found in HCC1806r5-F1500. Of the 17 variants, 15 

had available expression data for the affected gene and the patient’s response when treated with 

5-Fluorouracil. Of the 15 variants, 14 were found to have similar consequences. When considering 

the expression data of the genes associated to the 14 variants, 11 had a p-value of < 0.05, and all 

had an FDR (0.05). Kaplan-Meier graphs were created for the remaining 11 genes. Six showed that 

when patient had low expression of the gene, and were treated with 5-Fluorouracil, this resulted 

in patient death with a p-value < 0.05. None of the genes were identified to be in the cancer gene 

census, nor considered as a hallmark of cancer. The identified genes included; CEBPZ, CNEP1R1, 

COG6, RPL14, EFCAB6, and SLC4A8 (Figure 5.37, Appendix A36). 

 
CEBPZ encodes the CCAAT/enhancer-binding protein ζ, which has been found to stimulate 

transcription from the HSP70 promoter (UniProtKB, Q03701). When CEBPZ expression is low, there 

is poor patient response when treated with 5-Fluorouracil with a statistical significance of p = 

0.0004, which is consistent with the predicted LOF splice variant in HCC1806r5-F1500 (Figure 5.37A). 

The role of CEBPZ in 5-Fluorouracil resistance is unknown.  

 
CNEP1R1 encodes the nuclear envelop phosphatase-regulatory subunit 1 protein which has been 

found to have a role in lipid metabolic processes. It has been found to form an active complex with 

CTDNEP1, which together can dephosphorylate and activate LPIN1 and LPIN2 which are required 

for the conversion of phosphatidic acid to diacylglycerol and control metabolism of fatty acids (Han 
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et al., 2012).  When CNEP1R1 expression is low, there is poor patient response when treated with 

5-Fluorouracil with a statistical significance of p = 0.01, which is consistent with the predicted LOF 

splice variant in HCC1806r5-F1500 (Figure 5.37B). The role of CNEP1R1 in 5-Fluorouracil resistance is 

unknown.  

 
COG6 encodes for the conserved oligomeric golgi complex subunit 6 protein, which has been 

identified to be required for normal golgi function (UniProtKB, Q9Y2V7). When the COG6 expression 

is low, there is poor patient response when treated with 5-Fluorouracil with a statistical significance 

of p = 0.0043, although the final patient outcome is not that different. This is consistent with the 

predicted LOF frameshift variant in HCC1806r5-F1500 (Figure 5.37C). The role of COG6 in 5-

Fluorouracil resistance is unknown. 

 
RPL14 encodes for the 60S ribosomal protein L14, which is a component of the large ribosomal 

subunit (Odintsova et al., 2003). A transcriptional profiling study was conducted with biopsy 

samples from metastatic gastric cancer patients, which had developed acquired resistance to 

combinational therapy of cisplatin and 5-Fluorouracil. Here, Kim et al., 2011 found that the most 

highly represented functional category in the acquired resistance signature was Protein Synthesis, 

which included RPL14. When RPL14 expression is low, there is poor patient response when treated 

with 5-Fluorouracil with a statistical significance of p < 0.0001, which is consistent with the 

predicted LOF frameshift variant in HCC1806r5-F1500 (Figure 5.37D). Although the role of RPL14 in 5-

Fluorouracil resistance is unknown, it has been previously implicated.  

 
EFCAB6 encodes for the EF-hand calcium-binding domain-containing protein 6, which has been 

found to negatively regulate the androgen receptor through the recruiting of the histone 

deacetylase complex (Takahashi et al., 2001). Mehta et al., 2015, found that in the presence of 5α-

dihydrotestosterone (DHT), a known androgen hormone, 5-Fluorouracil induced apoptosis is 

reversed. This chemo-preventive nature of the androgen DHT was reversed with the introduction 

of bicalutamide, an inhibitor of androgen action by binding to cytosol androgen receptors. When 

EFCAB6 expression is low, there is poor patient response when treated with 5-Fluorouracil with a 

statistical significance of p = 0.0098, which is consistent with the predicted LOF stop gain variant in 

HCC1806r5-F1500 (Figure 5.37E). It could be predicted that the LOF function variant in EFCAB6 can 

prevent its negative regulation on the androgen receptor, increasing androgen activity and 

preventing 5-Fluorouracil induced apoptosis. 

 
SLC4A8 encodes for the electroneutral sodium bicarbonate exchanger 1, which is known to mediate 

the electroneutral sodium- and carbonate dependent exchange. It is thought to be involved in cell 
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pH regulation, and has been found to mediate lithium dependent HCO3
- transport (Amlal, Burnham 

and Soleimani, 1999; Grichtchenko et al., 2001). Although 5-Fluorouracil has not been implicated 

in direct transport with SLC4A8, Sijens, Baldwin and Ng, 1991, has shown that 5-Fluorouacil uptake 

is pH dependent, and the acidification seems to induce local retention of 5-Fluororuacil which 

suggests the existence of active transport. When SLC4A8 expression is low, there is poor patient 

response when treated with 5-Fluorouracil with a statistical significance of p = 0.00045, which is 

consistent with the predicted LOF stop gain variant in HCC1806r5-F1500 (Figure 5.37F). It could be 

predicted that the LOF function variant in SLC4A8 leads to decreased facilitated transport of 5-

Fluorouracil into the cell, thereby preventing 5-Fluorouracil from inducing its cytotoxic damage.  

 

 

 

 

Figure 5.37 Patient survival analysis of genes containing protein truncated variants associated with 5-Fluorouracil resistance 

Figure continued on next page 
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Figure 5.37 Patient survival analysis of genes containing protein truncated variants associated with 5-Fluorouracil resistance 

All protein truncating variants found in the 5-Fluorouracil resistant TNBC cell lines were selected, with the exception of those seen in 
high confidence in the chemo-naive cell lines. Gene expression data for the gene was selected from the TCGA and filtered for statistical 
significance, p < 0.05 and false discovery rate < 0.2. Resulting mutated genes were selected if low gene expression showed higher patient 
mortality. Survival probability for the final mutated genes for when gene expression was high or low and the patient  treated with 5-
Fluorouracil was calculated and represented in Kaplan-Meier graphs. 
 
 
5.3.3.3 Summary of TCGA analysis 

 
Taking each of the TCGA analysis together (section 5.3.3.1 – 5.3.3.2), several genes have been 

identified which could be considered as potential biomarkers of resistance. Table 5.11 summarises 

each of the identified genes with consideration of the drug. Further validation is required to confirm 

if the variants in these genes result in the predicted drug resistance phenotype.  

 
Table 5.14. Predicted biomarkers of chemo-resistance with clinical significance 
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5.3 Discussion 

 
In the previous chapters, the chemo-resistant TNBC cell lines have each demonstrated distinct 

resistance profiles to a panel of chemotherapeutic agents and to DDR targeted inhibitors. The aim 

of this chapter was to further characterise the chemo-resistant cell lines with consideration to their 

mutational profiles in order to hypothesise chemo-resistance mechanisms and identify clinically 

relevant candidate biomarkers driving resistance. To this end, WES was performed and analysed to 

identify genomic alterations in each of the chemo-naive and chemo-resistant TNBC cell lines in this 

panel.  

 
5.3.1 Overview of exomic characterisation of chemo-naive and chemo-resistant TNBC cell lines 

 
Upon receiving the exome sequencing files, the reads had to be aligned correctly against a 

reference genome and filtered in order to identify high confidence somatic variants. The two 

computational pipelines (Figure 5.2, 5.4) aimed to reduce the calling of false positive variants found 

from reads which harboured sequencing errors, mis-mapped short reads, PCR duplicates as well as 

mis-aligned INDELs to ensure veracity; the confidence or trust ability in the WES data (Robasky, 

Lewis and Church, 2014). However, a major shortcoming of WES is the uneven coverage of 

sequence reads over exome targets. This can contribute to low coverage regions, which therefore 

affects the downstream analysis and hinders accurate variant calling (Q. Wang et al., 2017). Uneven 

coverage was observed in HCC38rCDDP3000, HCC38rDOX40 and HCC38rGEM20, which impacted both 

the number of high confidence somatic variants that were called in these cell lines, and the analysis 

which considered the shift in VAF between the chemo-naive and chemo-resistant populations.  

 
Analysis of the variants showed that there were often fewer variants present in the chemo-resistant 

cell lines compared to the respective chemo-naive cell line (Figure 5.6A, Appendix A5). Whilst it 

could be thought that new variants are introduced to the chemo-resistant cell lines through the 

process of developing a resistance phenotype, it seems paradoxical that less variants are observed 

overall. Importantly, the cell lines are not clonal, and are heterogenous in nature. By forcing the cell 

line to grow in a chemotherapeutic agent, the distribution of variants in the cell population will 

change, and some variants, such as those with a low VAF or not considered beneficial for the 

resistance mechanism, will be lost. Alternatively, the variant may still be present in the chemo-

naive cell line, but at a level that no longer passes the stringent filtering requirements of three reads 

required to support the variant call. Furthermore, a variant may not be called as a result of an 

artefact of sequencing. 
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It was found that the number of variants called was significantly higher than the number of mutated 

genes (Figure5.6). This could suggest that multiple variants are present in the same gene, i.e. variant 

‘X’ and ‘Y’ are present in gene ‘Z’. In this scenario, whilst variant ‘X’ may be damaging alone, when 

present with variant ‘Y’, variant ‘Y’ could be compensatory for the damage occurring from ‘X’. 

Alternatively, both ‘X’ and ‘Y’ variants can be damaging, causing disruption to the proteins structure 

and/or function. 

 
However, given that the cells populations are heterogenous, it is more likely to indicate that a sub-

population has variant ‘X’ in gene ‘Z’ whilst another sub-population has variant ‘Y’ in gene ‘Z’. This 

is further supported by the fact that often there are differences in the VAF for each of the variants 

in the gene. This observation can indicate that a variant in gene ‘Z’ is beneficial for the progression 

of cancer, or drug resistance across the cell population, regardless of the position within the gene. 

The TNBC cell lines tested in this thesis were generated as polyclonal populations. To determine 

this if this is the case, subcloning can be performed to isolate resistant colonies and analyse the 

variants in gene in the clonal population. This is an established method for determining strong 

candidate resistance mechanisms or biomarkers, however not all resistance mechanisms can be 

isolated in this manner. For example, resistant mechanisms which have co-evolved together and 

rely on co-dependence (Burrell and Swanton, 2014).  

 
It was also observed that there were more high confidence somatic non-synonymous variants called 

than there were high confidence somatic synonymous variants. This result was surprising as 

synonymous variants are normally more prevalent than non-synonymous variants in cancer genes 

(Chu and Wei, 2019). It could be predicted that synonymous variants are more prevalent as 

germline variants in these cell lines, or that it may be in part due to the lack of overall discovery 

power, hence the removal from the final call set (Lawrence et al., 2014).  

It is important to note, that whilst synonymous variants are identified in each of the TNBC cell lines, 

the prediction of the phenotypic outcome for gene/protein affected in the cell population 

harbouring these variants, are difficult to estimate. Previously, synonymous variants were 

intuitively thought to be functionally silent and evolutionary neutral, however, this is now known 

not to be the case. Synonymous variants can disrupt processes such as transcription, splicing, co-

translational folding and mRNA stability (Fyfe et al., 2004; Pagani, Raponi and Baralle, 2005; 

Pechmann and Frydman, 2013; Stergachis et al., 2013; Presnyak et al., 2015). Although there are 

some tools which claim to be synonymous effect-predictors, there are currently no publicly 

available, large collection of synonymous variants, which have experimentally validated effect 

annotations, that can be used to build a gold standard data test set for a successful effect-predictor 
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(Adzhubei, Jordan and Sunyaev, 2015). To this end, although synonymous variants are identified 

here, these were not taken into account in the larger analyses conducted in this chapter, including 

the candidate approach and comparison to the TCGA.  

 
It was observed that each of the TNBC cell lines harboured several variants in mucin (MUC) genes. 

Large genes, such as TTN and MUC-genes, have a higher probability of harbouring variants due to 

their size (Shyr et al., 2014). MUC-gene variants were observed in both chemo-naive and chemo-

resistant cell lines, and in de novo and not called gene lists. When GO analysis was performed, the 

cell lines would be enriched with terms such as; O-glycan processing (GO:0016266), extracellular 

matrix structural constituent (GO:0005201), extracellular matrix constituent, lubricant activity 

(GO:0030197), extracellular matrix (GO:0031012), as a result of the different mutated MUC genes. 

These genes have been found to be commonly mutated or dysregulated in cancer, including breast 

cancer (Ringel and Löhr, 2003; Mukhopadhyay et al., 2011). Therefore, the fluctuation of MUC-

genes in the TNBC cell lines are not thought to be driving drug resistance, but are predicted to be 

related to cancer development and progression.  

 
GO analysis of the called variants in the TNBC cell lines, also identified an enrichment in terms 

associated with mitochondrial ATP, NADH dehydrogenase, and electron transport chains. These 

terms were attributed to mitochondrial genes, such as MT-ND1. It has been found that genomic 

alterations in mitochondrial genes can be a result of the close proximity of ROS formed during 

metabolic events, increasing the risk of mitochondrial DNA perturbation and instability 

(Giampazolias and Tait, 2016; Hertweck and Dasgupta, 2017). It is thought that the combination of 

ROS and dysregulated DDR mechanisms, could result in a higher mitochondrial DNA mutation rate 

with an order of magnitude higher than the nuclear genome (Khrapko et al., 1997). It is therefore 

unsurprising to find these genes commonly mutated across the cell lines, and like the MUC-genes, 

are not thought to be driving drug resistance but are implicated in cancer development and 

progression. 

 
The KEGG BRITE analysis showed that genes were associated to the same terms in both beneficially 

selected or not beneficially selected groups. No real significant changes were seen when 

considering a single term. This could be a result of positive and negative regulators associated to 

pathways. For example, if a resistance mechanism requires pathway ‘X’ to be upregulated; 1. There 

could be LOF variants in negative regulators of pathway ‘X’ beneficially selected for, which result in 

an upregulation of the pathway 2. There could be a reduction of LOF variants which are positive 

regulators of pathway ‘X’ which are not beneficially selected for, which also results in upregulation 
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of the pathway.  To this end, the KEGG BRITE analysis demonstrated that simplification of GO 

analysis is not useful here.  

 
There are further limitations when considering functionally enriched GO terms. Firstly, the input 

gene sets were small as the mutated genes had been focused down to ones that are considered 

interesting in the population. This leads to low calculated p-values by the tool, which means that 

only umbrella GO terms are statistically significant, such as “extracellular matrix”, which does not 

provide much useful information. 

 
Secondly, functional enrichment is based on known functions of the genes/proteins. Many proteins 

are promiscuous in their intracellular functions, and signalling pathways have been found to cross-

talk to large extents. Although functional gene enrichment can provide an idea of affected 

functions, it is not extensive, and can be context dependent. Further to this, the functional 

enrichment does not give any indication of how significant a variant in a gene may be. For example, 

an input of genes A, B, C, D, E could lead to the identification of statistically significant enriched 

term X which is attributed to the genes A, B and C. However, A, B, C may not have damaging 

variants, whilst D and E, not assigned to any enriched terms, have significantly damaging variants. 

 
An interesting find in this chapter was that very few variants, or mutated genes were found to be 

shared between chemo-resistant cell lines which were developed to have resistance to the same 

drug. Even less so when the de novo or not called variants are considered, and those identified were 

often variants in the MUC-genes. It can be speculated that this finding may be a consequence of 

two things: 

 
1. The heterogeneity nature of the chemo-naive cell line from which the chemo-resistant cell lines 

are derived. The chemo-naive population harbours a collection of cells with distinct molecular 

signatures and have been shown to have differential levels of sensitivity to treatment with both 

chemotherapeutic agents and DDR targeted drugs (Figure 4.6). This different biological context 

can result in genetically distinct subpopulations when undergoing genetic changes when forced 

to grow in drug.  

 
2. Several mechanisms of drug resistance can occur to any given drug. Multiple drug resistant 

mechanisms can exist in any given heterogenous population, which means there are multiple 

ways in which a cell can develop resistance to these agents (Fodale et al., 2011). 
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5.3.2 Predicted mechanisms of chemo-resistance 

5.3.2.1 Cancer stem cell like properties in MDA-MB-468rPCL20 

 
MDA-MB-468rPCL20 has been observed to show distinct differences compared to MDA-MB-468. It 

was observed in chapter 3 that the cell line underwent a morphological change, resulting in a cell 

population with elongated mesenchymal shapes (Figure 3.1). This chapter identified that whilst 

MDA-MB-468rPCL20 and MDA-MB-468 had a similar number of variants called, there were very few 

shared between them, and MDA-MB-468rPCL20 had many variants which are considered not called 

or de novo (Figure 5.8). Together, this data supports the idea that MDA-MB-468rPCL20 has drifted 

from MDA-MB-468 as a result of a sub-population of the heterogenous cell population surviving 

after growth in a paclitaxel created genetic bottle neck.  

 
As previously mentioned, changes in cancer cells driven through EMT have been identified as 

properties of cancer stem cells (CSCs) (Phi et al., 2018). The CSC concept postulates that a sub-

population of cells with stem-cell properties can serve as a critical driver of tumour progression, 

with the phenotype of CSCs to be attributed to epigenetic changes caused by the activation of the 

EMT programme (Shibue and Weinberg, 2017a). CSCs are known to express ABC transporters, 

including MDR1, which can result in drug efflux and drug resistance (Moitra, 2015; Sugano et al., 

2015). Evidence that MDR1 is upregulated in MDA-MB-468rPCL20, compared to MDA-MB-468, was 

seen in chapter 3 (Figure 3.17), and supported by the observed cross-resistance patterns to known 

MDR1 substrates in chapter 3 and 4. Further evidence supporting the hypothesis of changes in EMT 

was seen in this chapter with the identification of variants linked to this pathway. 

 
A de novo stop gain variant was identified in INHBA, and analysis of this variant using the TCGA 

database predicted that a LOF variant may lead to paclitaxel resistance, as patients with low INHBA 

expression had a poorer outcome when treated with paclitaxel with p < 0.0001 (Figure 5.36F). 

INHBA is a subunit of both activin and inhibin, which are two closely related glycoproteins but with 

opposing biological effects. Both belong to the TGF-β family, which is responsible for the control of 

EMT (Kahata, Dadras and Moustakas, 2018). Additionally, an inframe insertion variant was 

identified in PHF2, and analysis of this variant using the TCGA database predicted that a LOF variant 

may lead to paclitaxel resistance, as patients with low PHF2 expression had a poorer outcome when 

treated with paclitaxel with p < 0.0001 (Figure 5.31G). PHF2 has a role in demethylating both 

histones and non-histone proteins once activated by PKA (Baba et al., 2011). It has been shown that 

increase of PKA induces MET (mesenchymal – epithelial transition) through PHF2 which relieves 

H3K9me2/3 -mediated repression of epithelial genes, and MET induced differentiation is 
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accompanied by a loss of stem-like properties which results in a sensitivity to chemotherapeutic 

drugs such as doxorubicin and paclitaxel (Pattabiraman et al., 2016).  

 
Both of these LOF variants demonstrate clinical significance to the response of paclitaxel, and both 

of the affected genes are implicated in EMT. Taking the data together, it could be hypothesised that 

changes in EMT, and the development of a CSC population, result in the observed resistance 

phenotype. Further experimental validation will be required to determine if a CSC population is 

observed in this cell line, and if the variants are contributing towards the resistance mechanism. 

Detection of CSC markers, such as CD133 and CD44, through western blot analysis, as well as the 

identification of Hoechst isolated side populations through flow cytometry can be used to 

determine the first, whilst gene knockdown studies in MDA-MB-468 and stable transfection studies 

in MDA-MB-468rPCL20 , can confirm the latter.  (Wang, Wang and Zhong, 2015). 

 
5.3.2.2 Candidate cisplatin resistance mechanisms  

 
Analysis of the cisplatin resistant cell lines identified both variants and mutational signatures which 

have been previously implicated in cisplatin resistance. MDA-MB-468rCDDP1000 and HCC38rCDDP3000 

demonstrated a similarity to the mutational signature SBS31, which has been associated with prior 

chemotherapy treatment with platinum drugs (Figure 5.16). This highlights the usefulness of the 

chemo-resistant cell lines as appropriate models to investigate chemo-resistance.  

 
A stop gain variant was identified in SMARCAL1, in MDA-MB-468rCDDP1000, whose role is known to 

be involved in fork reversal during DNA repair. It has been shown that depletion of SMARCAL1 

restores fork protection in BRCA1/2 depleted cells and this increased drug resistance to cisplatin 

and PARP inhibitors (Cantor and Calvo, 2017; Kolinjivadi et al., 2017; Taglialatela et al., 2017). 

Interestingly, whilst MDA-MB-468rCDDP1000 did not harbour any high confidence somatic variants 

in BRCA1/2, it did demonstrate cross-resistance to PARP inhibitors (FIGURE 4.4). This suggests that 

SMARCAL1 may be implicated in cisplatin and PARP inhibitor resistance, although the context of 

BRCA1/2 may be independent.  

 
A splice acceptor variant in BRD7 was identified in MDA-MB-468rCDDP1000 and analysis of this 

variant using the TCGA database predicted that a LOF variant may lead to cisplatin resistance, as 

patients with low BRD7 expression had a poorer outcome when treated with cisplatin with p < 

0.0001 (Figure 5.33A). BRD7 interacts and negatively regulates YB-1 phosphorylation levels, and YB-

1 has been implicated in response to drugs such as cisplatin, and also has been found to be 

overexpressed in cisplatin resistant cancer cell lines (Ohga et al., 1996; Tomoko et al., 1999; Niu et 
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al., 2020). It could be predicted that a LOF variant in BRD7 prevents the negative regulation of YB-

1, resulting in overexpressed of YB-1, resulting in cisplatin resistance.  

 
Also identified in MDA-MB-468rCDDP1000 was a de novo splice donor variant in IDO1. Analysis using 

the TCGA database predicted that a LOF variant may lead to cisplatin resistance, as patients with 

low IDO1 expression had a poorer outcome when treated with cisplatin with p < 0.0001 (Figure 

5.33C). However, whilst IDO1 has been previously implicated in cisplatin resistance, it in 

contradiction to the two observations made in this thesis. Nguyen et al., 2020, has shown that 

increased expression of IDO1 results in cisplatin resistance in lung cancer. The TCGA analysis 

addressed pan-cancer samples, the cell lines used here, TNBC cell lines, whilst Nguyen et al., 2020, 

used two cisplatin resistant NSCLC models. Therefore, whilst IDO1 has been observed to be 

implicated in cisplatin resistance in each case, this contradiction in predicted roles may be as a 

result of the context of the cancer type. Further investigation is required to determine the role of 

IDO1 in cisplatin resistance. 

 
With these genes already shown to be implicated in cisplatin resistance in literature, it gives 

confidence that their dysregulation is involved in the cisplatin resistant mechanism within these cell 

lines. However, further evidence is required to predict their success as a predictive biomarker of 

cisplatin resistance. Gene knockdown studies in MDA-MB-468 and exogenous expression of a wild 

type version of the gene into MDA-MB-468rCDDP1000 may be used to determine the resistance, or 

sensitive phenotype respectively.  

 
5.3.2.3 Dysregulation of TOP2A driving doxorubicin resistance 

 
When considering the doxorubicin resistant cell lines, it was interesting to find that they harboured 

variants, which either directly or indirectly affected the target of doxorubicin; TOP2A. 

 
A predicted LOF frameshift variant was identified in SOX2 in HCC1806rDOX12.5. SOX2, a transcription 

factor, has been shown to be a target for TOP2A (Lachmann et al., 2010). It could be predicted that 

loss of SOX2 results in reduced transcription of TOP2A, thereby reducing the amount of available 

TOP2A for doxorubicin to bind to. A missense variant was identified in CSNK1D in HCC38rDOX40. 

CSNK1D has been shown to phosphorylate TOP2A at  serine 1106 which enhances TOP2A activity 

and results in sensitivity to Topo II – targeted drugs in vivo (Chikamori et al., 2003; Grozav et al., 

2009). It could be predicted that missense variant in CSNK1D, could lead to a downregulation in 

CSNK1D activity, or reduction of protein-protein-interaction, resulting in the hypophosphorylation 

of TOP2A and ultimately resistance to doxorubicin. A frameshift variant was also identified in TOP2A 
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itself, with a VAF equal to 0.8 in HCC1806rDOX12.5 cell line. Analysis using the TCGA database 

predicted that a LOF variant may lead to doxorubicin resistance, as patients with low TOP2A 

expression had a poorer outcome when treated with doxorubicin with p < 0.0001 (Figure 5.34A). It 

was predicted that the LOF variant in TOP2A in HCC1806rDOX12.5, was driving doxorubicin 

resistance. 

 
 Western blotting analysis confirmed decreased protein expression of TOP2A in HCC1806rDOX12.5 

compared to HCC1806, and TOP2A targeted siRNA knockdown in HCC1806 resulted in a doxorubicin 

resistant phenotype (Appendix A32, Figure 5.19). These data show that doxorubicin resistance was 

achieved in HCC1806 through siRNA mediated TOP2A knockdown, suggesting that reduced TOP2A 

is driving the resistance mechanism in these cell lines context. Expression of wild type TOP2A into 

HCC1806rDOX12.5 to determine if sensitivity to doxorubicin is observed would provide further 

evidence that doxorubicin resistance is a result of the LOF variant in TOP2A.  

 
Taken together, these data suggest that LOF variants, or reduced expression of TOP2A could act as 

a predictive biomarker of doxorubicin resistance. Furthermore, genetic perturbations in genes, 

which encode proteins that regulate TOP2A could also be candidate biomarkers for prediction of 

doxorubicin sensitivity. Use of these biomarkers in the clinic could inform clinicians of when 

resistance has developed to doxorubicin, and when a change in treatment is required.  

 
5.3.3 Identification of clinically relevant biomarkers of chemo-resistance 

 
It was reasoned that in order to identify relevant biomarkers of chemo-resistance, the identified 

variants need to be translational to clinical data. To this end, the publicly available clinical data from 

the TCGA was used to identify clinically relevant biomarkers of chemo-resistance.  

 
Two analyses were performed using data from; 1. Beneficially selected gene set and 2. Protein 

truncating variants, in order to identify LOF and GOF biomarkers of chemo-resistance. Whilst data 

was not available in the TCGA for eribulin, variant and gene expression data was available for the 

rest of the chemotherapeutic agents addressed in this thesis. By comparing the variant data sets 

from this thesis and the TCGA, and combining statistically significant gene expression data to 

produce Kaplan Meir graphs, 70 candidate biomarkers of chemo-resistance were identified.  

 
The identified candidate biomarkers have been implicated in chemo-resistance, not only in the cell 

line models tested in this thesis, but have now been predicted to be implicated in resistance in 

primary cancer cell lines. The candidate biomarkers must undergo validation to determine if they 
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can effectively predict drug resistance in the clinic. If successfully validated, these biomarkers may 

be useful in identifying when drug resistance has occurred in a patient, and be indicative of when a 

change of therapy is required.  

 
There are some limitations of comparing the variants identified in the chemo-resistant cell lines to 

the data extracted from the TCGA. Patient data was not available for all of the chemotherapeutic 

agents investigated in this thesis, which meant that the clinical relevance of variants identified in 

eribulin resistant cell lines could not be determined. Furthermore, the analysis was conducted using 

pan-cancer data due to the limited availability of breast cancer/TNBC specific data, which means 

that the calculated mortality is not disease specific. This may have resulted in the removal of data 

which was not statistically significant when considering the pan-cancer data sets, but may have 

been important for resistance mechanisms in a TNBC disease context. Alternatively, data may have 

been included which may not be appropriate when considering the context of TNBC. Additionally, 

whilst analysis of the Kaplan-Meier graphs showed statistically significant differences between the 

high and low gene expression data, the final patient outcome may have not shown much of a 

difference. The longer the time-line, the higher the chance of an increase in mortality as patients 

can die of other complications or diseases.  

 
In summary, the data presented in this chapter has identified unique exome phenotypes in each of 

the chemo-resistant TNBC cell lines. This was investigated through the analysis of exome 

sequencing data from each of the chemo-naive and chemo-resistant TNBC cell lines. This data has 

shown that chemo-resistance has not been developed in the same way in cell lines developed to 

have chemo-resistance to the same chemotherapeutic agent. This chapter identifies chemo-

resistant mechanisms, and predicts potentially 70 clinically relevant biomarkers of resistance which 

warrant further investigation to validate these candidate targets. 
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6. General Discussion 

6.1 Introduction 

 
TNBC is an aggressive metastatic breast cancer commonly identified through the lack of the 

oestrogen receptor, progesterone receptor and human epidermal growth receptor 2 (Ryu et al., 

2011). Although initial patient response is good with chemotherapy treatment, patients often 

relapse as a result of acquired drug resistance (Carey et al., 2007).  It is evident that new treatment 

options are required for TNBC patients, as well as early identification of emergence of drug 

resistance to inform clinicians that a change of therapy is required.  

 
Inhibitors targeting the DNA damage response and repair (DDR) pathway are entering the clinic. 

These drugs are under investigation both as a monotherapy, or in combination with a DNA 

damaging agent (Topatana et al., 2020). The agents are used in cancer types with high replication 

stress, or in cancers that harbour genetic mutations, which will result in a synthetic lethal 

relationship when combined with the drug. Often, mechanisms of chemoresistance arise through 

the dysregulation of DDR pathways, which provides a synthetically lethal opportunity to combine 

with DDR targeted drugs. However, the use of DDR inhibitors as a second line therapy option after 

the emergence of chemoresistance has not been investigated.  Furthermore, recognition that 

chemoresistance has occurred is important to inform clinicians that a second line therapy is 

required. Identification of genetic changes in the tumour cells can provide biomarkers to indicate 

therapy refractory TNBC.  

 
Previous studies have shown that cell line models can be successfully used in order to identify 

clinically relevant biomarkers or mechanisms of drug resistance (Garraway and Jänne, 2012b). 

Studies using cell line models can consider patterns of cross-resistance, or acquired vulnerability, 

and analyse genetic changes to identify new therapeutic strategies for refractory TNBC. To this end, 

both chemo-naive and chemo-resistant TNBC cell lines were selected from the Resistant Cancer Cell 

Line (RCCL) collection and underwent cross-resistance profiling and exomic sequencing (Michaelis, 

Wass and Cinatl, 2019). The work presented in this thesis identified strong patterns of cross-

resistance and acquired vulnerability to a panel of chemotherapeutic agents and DDR inhibitors. 

Furthermore, candidate biomarkers were identified for each chemotherapeutic agent analysed 

here, which may prove useful in identifying when a TNBC patient has developed chemo-resistance. 

These findings may assist clinicians in determining a therapeutic strategy, personalising the 

treatment of TNBC patients. This chapter discusses the key findings of this thesis, and the wider 

implications of these findings on the treatment of chemo-resistant TNBC, as well as suggestions for 
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future work that may help improve understanding of drug resistance in an heterogenous cancer 

type.  

 
6.2 Summary of main findings and future work 

6.2.1 Cell line heterogeneity drives development of different acquired drug resistance 

mechanisms 

 
In this thesis, it was observed that chemo-resistant cell lines which have acquired resistance to the 

same chemotherapeutic agent demonstrated different cross-resistance patterns during drug 

profiling and also developed different de novo and gained variants. It is well documented that 

acquired drug resistance is driven, in part, by intra-tumour heterogeneity which gives rise to 

phenotypic diversity (Lim and Ma, 2019). Intra-tumour heterogeneity can exist at genetic, 

transcriptomic and proteomic levels. Several factors can influence heterogeneity including genomic 

instability, drug exposure, microenvironment interactions and extrinsic factors including pH, 

hypoxia and paracrine signalling (Burrell and Swanton, 2014). It is clear that the heterogenous 

nature of the chemo-naive cells line had an effect on the way in which acquired resistance to the 

chemotherapeutic agents was developed. Furthermore, due to the polyclonal nature of the cell 

lines, chemoresistance may be driven by more than one resistance mechanism within that cell 

population. This is also true of tumours, where it has been shown polyclonal resistance within a 

tumour is a result of multiple clonal populations. For example, it has been reported that 17/24 

colorectal cancer patients with acquired resistance to panitumumab or cetuximab developed de 

novo mutations within the EGFR pathway, whilst the other therapy refractory patients did not 

(Bettegowda et al., 2014). The observation that the TNBC chemo-resistant cell lines have developed 

resistance in multiple-ways is important to emphasise as tumour heterogeneity must be taken into 

account when determining an appropriate therapy for a patient.  

 
6.2.2 Hypothesised drug resistance mechanisms 

6.2.2.1 Cancer stem cell like properties driving paclitaxel resistance 

 
This thesis proposes that an observed resistance mechanism identified in MDA-MB-468rPCL20 is a 

result of the population of cancer cells being driven through an epithelial-to-mesenchymal 

transition (EMT), resulting in the cancer cell population having properties of cancer stem cells 

(CSCs). Evidence was seen in changes in morphology, MDR1 expression and variant distribution in 

MDA-MB-468rPCL20 compared to MDA-MB-468, as well as the identification of high confidence 

damaging somatic variant in the genes INHBA and PHF2 whose roles are implicated in EMT (section 
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5.3.2). The latter variants were also supported by data extracted from the TCGA, suggesting that 

LOF of these variants could result in paclitaxel resistance.  

 
It has been observed in both pre-clinical and clinical samples that chemotherapy and/or 

radiotherapy eliminates the bulk of non-CSCs, whilst leaving behind a sub-population of CSCs which 

are resistant to the therapy (Shibue and Weinberg, 2017b). This resistance is thought to be a result 

of several factors including; increased expression of ABC transporters (including MDR1), elevated 

expression of antiapoptotic proteins and the slow proliferation rate of stem cells (Shibue and 

Weinberg, 2017b). The identification of the EMT phenotype in MDA-MB-468rPCL20 supports the 

evidence in literature, however further investigation is required. Analysis of CSC markers, such as 

CD133 and CD44, as well as antiapoptotic proteins in MDA-MB-468rPCL20 can provide further 

supporting evidence. However, it should be noted that the scientific community are still struggling 

to identify reliable markers to be used for the confirmation of the CSC phenotype (Shibue and 

Weinberg, 2017b).  

 
This observation in MDA-MB-468rPCL20 highlights the significance of monitoring for changes in EMT 

and distribution of non-CSCs and CSCs in patient tumour samples in the clinic, which can be used 

to inform clinicians on the development of a resistance phenotype. Targeting the EMT programme 

to eliminate CSCs offers a promising avenue for the treatment of drug resistant cancer, but a further 

understanding of the mechanistic link between EMT and CSCs is required. There have been several 

approaches proposed, which target EMT for therapeutic benefit, including; prevention of EMT 

induction, reversing the process of EMT and selective targeting of cells that have undergone EMT 

(Shibue and Weinberg, 2017b). However, there is still very little consensus on how to recreate a 

tumour microenvironment to induce EMT in vitro, preventing the testing of agents which can treat 

EMT for therapeutic benefit. Further research into EMT is required in order to target CSCs for 

reversal of chemotherapeutic resistance.  

 
6.2.2.2 High MDR1 expression is implicated in MK-8776 resistance 

 
This thesis proposes that high expression of MDR1 is associated with observed resistance to MK-

8776. The evidence of this comes from the fact that three of the MDR1 expressing cell lines 

demonstrate cross-resistance to MK-8776, and MDA-MB-468rPCL20, only demonstrates cross-

resistance to MK-8776 out of the four CHK1 inhibitors tested here (Figure 4.1D, Figure 3.17).  

 
As previously explained, it has been shown that MK-8776 can restore sensitivity to 

chemotherapeutics that are substrates of MDR1 in cells overexpressing MDR1, by binding to high 
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expressing MDR1, stimulating the ATPase activity of the transporter, which has been hypothesised 

to competitively limit the uptake of substrates of MDR1 leading to the inhibition of efflux function 

(Cui et al., 2019). However, literature has also shown that substrates of MDR1 can stimulate the 

ATPase activity of MDR1 transporter, which would support cross-resistance observation in this 

thesis. However, tariquidar, a third-generation MDR1 inhibitor, has been found to stimulate the 

MDR1 ATPase activity, but not be transported, which leaves the question if this is the same 

behaviour being observed with MK-8776 (Loo et al., 2012).  

 
Whilst MK-8776 is no longer in clinical trials, elucidation of this resistance mechanism may provide 

useful information on the stimulation of ATPase activity, and highlights the need for patient MDR1 

status to be determined prior to treatment with MDR1 substrates. The role of MDR1 in MK-8776 

resistance can be further investigated through a combinational assay of MK-8776 and a MDR1 

inhibitor, such as zosuquidar, to determine if the cells are sensitised to MK-8776 activity, or through 

the use of a UIC2 shift assay (Park et al., 2003).  

 
6.2.3 Consideration of appropriate second line therapies after emergence of chemo-resistance 

 
Analysis of the cross-resistance profiling identified some significant patterns, which, whilst they 

require further investigation, have the potential to provide clinical benefit. Importantly, it was 

found that the majority of the chemo-resistant cell lines demonstrated cross-resistance to 

doxorubicin and the two PARP inhibitors; olaparib and rucaparib (Figure 4.14). These data suggest 

that after chemo-resistance has emerged to any of these drugs, none of them would be an 

appropriate second line therapy for the other, which was further supported by data identified when 

considering the absolute measure of drug activity using the ∆ method (section 4.2.5). This is a 

significant observation, as four PARP inhibitors; olaparib, niraparib, rucaparib and talazoparib, are 

now FDA approved for the treatment of breast, pancreatic, prostate and ovarian cancer (Topatana 

et al., 2020). Understanding how resistance occurs is important for clinical decisions.  

 
With PARP inhibitors being used in the clinic, it has been reported that cancers develop resistance 

which can be acquired or inherent and is multifactorial (Topatana et al., 2020). One of the most 

widely accepted mechanisms is the restoration of the HRR pathway through secondary reversion 

mutations (Bitler et al., 2017). Studies have also shown that BRCA-mutated tumours can develop 

resistance to PARP inhibitors, and also DNA damaging agents, such as platinum-based 

chemotherapies, through reversion or secondary BRCA mutations, which restores the HRR pathway 

(Norquist et al., 2011; Barber et al., 2013; Bitler et al., 2017). Furthermore, independent of BRCA1/2 
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reversion mutations, increased stabilisation of replication forks can give rise to both PARP inhibitor 

and cisplatin resistance (Chaudhuri et al., 2016; Topatana et al., 2020). These resistance 

mechanisms can therefore result in both PARP and platinum-based chemotherapy resistance, such 

as cisplatin, and it could be speculated that this is driving the cross-resistance phenotype in all three 

of the cisplatin resistant TNBC cell lines in the panel. These date supports the idea that PARP 

inhibitors should not be given following the development of platinum-based therapy.  

 
As previously explained, another common resistance mechanism is drug efflux via upregulation of 

transporters such as MDR1. Both olaparib and rucaparib are known substrates of MDR1, and so it 

was not surprising to find cross-resistance of these drugs were seen in the four cell lines (MDA-MB-

468rERI50, MDA-MB-468rPCL20, HCC1806rERI50 and HCC1806rPCL20) which demonstrated elevated 

MDR1 expression (section 3.2.4). Several chemotherapeutic agents (including doxorubicin, eribulin 

and paclitaxel) are substrates for MDR1, which suggests that prior to secondary treatment with 

olaparib and rucaparib, the status of MDR1 in the patient’s tumour should be considered. Targeting 

of MDR1 in the context of PARP inhibitor resistance could be an effective approach to manage the 

resistant disease, but further research is required. Furthermore, whilst MDR1 is a common 

resistance mechanism to doxorubicin, olaparib and rucaparib, neither of the doxorubicin resistant 

TNBC cell lines tested here demonstrated increased MDR1 expression. This hints at a further 

undiscovered common resistance mechanism, independent of MDR1 expression, which has not 

been established in literature. 

 
Importantly, it was found that very few of the chemo-resistant cell lines demonstrated cross-

resistance to the compounds; CCT241533, B02, and SBE13, which inhibit; CHK2, RAD51 and PLK1 

respectively. Given the previous observation that the majority of cell lines demonstrated cross-

resistance to PARP inhibitors, which could be a result of increased HRR capacity or a dependence 

on HRR, it could result in sensitivity to inhibitors targeting proteins of the HRR pathway, such as B02 

(RAD51 recombinase) and CCT241533 (CHK2). RAD51 has been shown to promote chemoresistance 

by facilitating HRR for the efficient repair of chemotherapy-induced DNA breaks (Wiegmans et al., 

2014; Harris, Rabellino and Khanna, 2018). It could be hypothesised that if the cell lines are reliant 

on HRR due to a “BRCAness” phenotype, or an increased HRR capacity, that inhibition of RAD51 will 

result in cellular death. These data suggest that inhibition of RAD51 and CHK2 may be an 

appropriate second line therapy after chemo-resistance has emerged. It is important to note that 

whilst B02 and CCT241533 are highly specific for their protein targets, these compounds have not 

entered clinical trials (Anderson et al., 2011b; Huang et al., 2012). 
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Only one cell line (MDA-MB-468rPCL20) was identified to demonstrate cross-resistance to the polo 

kinase inhibitor, SBE13, whilst seven demonstrated cross-resistance to the polo kinase inhibitor 

BI2536. SBE13 is a more selective drug targeting PLK1 than BI2536, which has been shown to also 

inhibit PLK2 and PLK3 at low concentrations (Bhullar et al., 2018). It has been found that the two 

drugs also have a different response in primary cells, with SBE13 demonstrating a transient G0/G1 

arrest whilst inhibition with BI2536 results in a stable G2/M arrest (Eckerdt, 2011). Whilst inhibition 

using SBE13 may be an appropriate second line therapy option after chemoresistance has emerged, 

the question remains whether inhibition of PLK1 is a therapeutic strategy. There is a lot of debate 

in the scientific community as to whether PLKs are good drug targets. Whilst a large number of PLK 

inhibitors have entered preclinical and clinical development, the majority exhibit dose-limiting 

toxicity, which ultimately narrows the therapeutic window for treatment (Lee et al., 2015).  

 
It was also found that, aside from the two cell lines developed to have resistance to gemcitabine, 

only one cell line (HCC38rCDDP3000) demonstrated cross-resistance to gemcitabine. This suggests 

that gemcitabine may be an appropriate drug to use after chemo-resistance has developed. As 

gemcitabine is already a clinically registered drug, this could be a good drug of choice, that is already 

readily available, for clinicians to use as a second line treatment.   

 
Further investigation into appropriate second line therapies was conducted by considering the 

differential effects of the drug activity profiles using the ∆ method, previously established by the 

National Cancer Institute (Bracht et al., 2006). This analysis identified interesting drug profile 

correlations which could be speculated upon the inhibitor’s usefulness as appropriate second line 

therapies to each other. Strong positive correlations were found between inhibitors which target 

CHK1, ATR, WEE1 and CHK2. This would suggest that as resistance increases to one of the inhibitors 

of the stated target, that resistance is also seen to the other. Importantly, this suggests that the 

inhibitors would not be an appropriate second line therapy after resistance has occurred to the 

other. Similar observations have been found recently in literature, where prexasertib resistant 

ovarian cancer cells demonstrated cross-resistance to the CHK1 inhibitor AZD7762 and the ATR 

inhibitor AZD6738 (Nair et al., 2020).  

 
Negative correlations were seen with the aforementioned inhibitors against inhibitors targeting 

ATM, RAD51 and PLK1/2, as well as cisplatin, indicating that treatment with these will be beneficial. 

With drugs targeting the ATR-CHK1 and ATM-CHK2 axis in investigation and in clinical trials, further 

investigation to this should be considered, as this could provide possibilities to clinically manage 

drug resistant TNBC. However, the question as to whether these drug profile correlations exist 
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irrespective of the chemo-resistant model is yet to be conclusively answered. While the research 

carried out and presented in this thesis demonstrates some strong correlations, further work is 

required to confirm this observation.  

 
6.2.5 Identification of candidate biomarkers of chemo-resistance 

 
Through analysis of the cell line panel exome data, variants which are considered to be beneficially 

selected for in the chemo-resistant cell lines were identified. These variants were then compared 

to both variant and gene expression data from The Cancer Genome Atlas (TCGA) database 

(Weinstein, 2013). Kaplan-Meir graphs were produced to identify the consequence of high or low 

gene expression data on patient’s survival upon treatment with a stated chemotherapeutic agent. 

Statistical significance and false discovery rate were taken into account, and candidate biomarkers 

were identified for each chemotherapeutic agent considered. Importantly, these identified 

candidate biomarkers that have clinical relevance as the data extracted from the TCGA are patient 

derived samples from the clinic. This not only highlights the usefulness of cell line models for initial 

studies, but implicates the clinical relevance of these candidate biomarkers.  

 
Experimental validation of a candidate biomarker can be conducted in the cell line models to 

determine if the variant is driving the resistance phenotype. This can be approached in two ways; 

firstly, through exogenous expression of the wild type gene in the chemo-resistant cell line to 

determine an observable reduction in chemoresistance, and secondly, through gene knockdown or 

deletion (through shRNA, siRNA or CRISPR) in the respective chemo-naive cell line to determine if 

a resistance phenotype is observed. The latter experiment was conducted in HCC1806 to determine 

if siRNA knockdown of TOP2A results in doxorubicin resistance. A resistance phenotype to 

doxorubicin was observed through successful knockdown of TOP2A in HCC1806, which suggests 

that the frameshift variant in HCC1806rDOX12.5 may be driving the resistance to doxorubicin (section 

5.2.2.2). This is a key observation, as resistance to inhibitors of topoisomerase II have been reported 

in a number of tumour model systems and is also prevalent in clinically refractory tumours 

(Ganapathi and Ganapathi, 2013). This observation suggests that LOF variants in TOP2A may result 

in doxorubicin resistance in patients, and could be indicative of intrinsic or acquired resistance to 

doxorubicin. 

 
This thesis has identified 14, 18, 11, 16 and 11 candidate biomarkers of resistance to cisplatin, 

doxorubicin, gemcitabine, paclitaxel and 5-Fluorouracil respectively. This opens up new avenues of 

investigation, not only to experimentally validate the candidate biomarkers, but to analyse their 



6. General Discussion 

259 
 

usefulness in the clinic. If successfully validated, these candidate biomarkers have the potential to 

inform clinicians that a change in therapy is required, furthering the development of precision 

oncology.  

 
6.3 Future studies 

 
The majority of the future work that has been considered in this chapter has been predominantly 

focused on answering questions that have arisen throughout this work, which have not been 

satisfactorily addressed. This section will focus on asking new questions regarding the analysis of 

the emergence of drug resistance in the clinic and how the understanding of this can be beneficial 

for clinical decision making.  

 
Cancer, and in particular TNBC, demonstrate a strong heterogeneity phenotype whereby the 

tumours have distinct molecular signatures, differential levels of sensitivity and non-uniform 

genetically distinct tumour cell populations (Dagogo-Jack and Shaw, 2018). This tumour 

heterogeneity can result in the emergence of complex drug resistance, and to this end, future 

studies need further address the problem of the heterogeneity nature of cancer. Whilst tumour 

biopsies can provide genetic information, it is only a snapshot of the tumour at a fixed time. The 

tumour evolutionary history can provide information useful for the progression of the tumour 

growth and treatment that may be required (Dagogo-Jack and Shaw, 2018). A serial longitudinal 

tissue biopsy can track the tumours development under therapy progression, and identify the 

emergence of sub-clones which may drive drug resistance in the patient, resulting in refractory 

therapy. Multi-region, single cell signalling can provide evidence of clones and liquid biopsies can 

be used to trace drug resistance emergence in patience early (Lim and Ma, 2019).  

 
Through analysis of the exome sequencing data, certain biases were taken in order to focus the 

research conducted. This leaves open questions as to how the non-analysed variants may be 

contributing towards chemoresistance. For example, the work conducted in this thesis focused on 

somatic variants, using the GNOMAD database to remove variants present at the frequency of ≥ 

0.001% in the GNOMAD database (Karczewski et al., 2019). However, germline variants can affect 

cancer prognosis, response to treatment and therapy outcome. Chatrath et al., 2020 recently 

identified 79 germline variants in individual cancers, and 112 germline variants in groups of cancers 

which can be used for prognosis. Furthermore, it can be the combination of a germline and somatic 

variant which results in the observed resistance phenotype, rather than just a somatic variant alone. 

There is not yet a comprehensive analysis of germline genome sequencing data that can be used 
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for the treatment of cancer. Understanding the impact of the germline genome, alone, or in 

combination with somatic variants may provide insight into new treatment options (Lin et al., 

2019). 

 
Further to this, whilst this thesis focuses predominantly on non-synonymous variants, synonymous 

variants are now known to disrupt process such as transcription, splicing, co-translational folding 

and mRNA stability (Fyfe et al., 2004; Pagani, Raponi and Baralle, 2005; Pechmann and Frydman, 

2013; Stergachis et al., 2013; Presnyak et al., 2015). New predictor tools are required to analyse 

synonymous variants and their link to cancer progression and drug resistance. Additionally, analysis 

of variants outside of the protein coding region, can also be associated as somatic drivers of cancer, 

and drivers of drug resistance. Recently, a large scale project through the PCAWG focused on the 

analysis of non-coding somatic variants in cancer whole genomes, which showed that whilst point 

mutations and structural variants are less frequent in non-coding genes, they are drivers of cancers 

(Rheinbay et al., 2020). More drivers in non-coding regions will be identified when more cancer 

genomes become available. Whole genome sequencing analysis outside of protein-coding regions 

may therefore identify both drivers of cancer initiation and progression, as well as cancer drug 

resistance.  

 
One outstanding question of this thesis is: are the candidate biomarkers identified in this thesis 

relevant to TNBC? Currently, the number of datasets of TNBC patient samples available for analysis 

are low compared to other cancer disease types. This means that comparison to datasets, such as 

those available in the TCGA and GDSC, are often done as pan-cancer or breast cancer, as it was in 

this thesis. Whilst some interesting data may be identified, this is not disease specific. Analysis of 

disease specific data sets will provide more useful information for the treatment of TNBC. To this 

end, an increase in the collection and analysis of TNBC patient samples needs to be achieved.  

 
In order to determine if the candidate biomarkers are found in refractory TNBC patients, 

investigation into clinical samples must be conducted. Whilst it is more common place for databases 

and clinical publications to have both matched normal tissue and tumour tissue for the investigation 

of cancer drivers, it is less common to find matched pre- and post-drug therapy tumour tissues. The 

curation of databases with analysis of pre- and post-drug therapy tumour tissues will allow for 

identification of changes in genomic alterations and help understand the role of inherited genomic 

variation in shaping the onset of drug resistance and drivers of drug resistance mechanisms.  

Furthermore, the creation of tissue banks with patient tumour samples pre- and post-drug therapy 

can allow for validation assays to confirm predicted candidate biomarkers of drug resistance. 
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Importantly, with the expansion of these databases, and large-scale genomics projects, an 

important question remains as to what sequencing hundreds of tumours may reveal. It is currently 

not clear if identified cancer-critical somatic alterations are found recurrently in specific genes, or 

if the combination of recurrent and other variants defines the cancer genome as a whole, and 

therefore the therapy required (Mardis and Wilson, 2009).  

 
6.4 Clinical implications of these findings 

 
The data presented in this work has assessed DDR inhibitors as an appropriate second line therapy 

option after the emergence of chemo-resistance in TNBC, and identified both potential resistance 

mechanisms and candidate biomarkers of chemoresistance. To this end, the data in this study may 

have several clinical implications including; 1) Identification of the emergence of chemoresistance 

and 2) Alteration of patient treatment strategies.  

 
It can be predicted that cross-resistance to PARP inhibitors after the emergence of chemo-

resistance in the clinic is probable. This may be especially notable after platinum-based therapy, 

such as cisplatin, as common resistance mechanisms to these agents, such as restoration or 

upregulation of the HRR pathway, have been previously identified in literature. Therefore, the data 

from this thesis suggests that PARP inhibitors would be an inappropriate second line therapy 

following cisplatin resistance, and vice versa. This observation is particularly important to note in 

the treatment of TNBC, as platinum-agents are often given as the first line therapy (after surgery). 

Furthermore, it is predicted that cross-resistance to doxorubicin may also be observed after the 

emergence of chemoresistance in the clinic. This work identifies that potential use of drugs 

targeting CHK2, Rad51 recombinase and PLK may be useful in the clinic after the emergence of 

chemoresistance in TNBC patients. Whilst more fit for purpose drugs are required to be developed, 

which inhibit these targets, the potential use of them in the clinic opens new possibilities to 

clinically manage chemo-resistant TNBC. These findings, therefore, may provide an insight into 

effective and ineffective secondary treatment strategies. 

 
This work supports the idea that ABC transporters and EMT should be monitored routinely in the 

clinic in order to identify the emergence of chemo-resistance early. These resistance mechanisms 

have been found to result in a multi-drug resistance phenotype in both pre-clinical, as seen in this 

work, and also in clinical samples, as seen the literature. Early detection of markers associated to 

these resistance mechanisms would be beneficial in informing clinicians when a new therapeutic 

strategy needs to be adopted.  



6. General Discussion 

262 
 

Finally, this work has identified 70 candidate biomarkers, which are predicted to be indicative of 

chemoresistance. Whilst these have been identified in pre-clinical models, the evidence is 

supported by data of patient tumour samples from the TCGA database. Of particular note, the loss 

of function, or down regulation of TOP2A is predicted as a candidate biomarker for doxorubicin 

resistance. These biomarkers could be indicative of when acquired resistance to chemotherapeutic 

agents has occurred, informing clinicians of the relapse of the patient and the requirement of a 

therapy change. By examining tumour samples prior to treatment and after relapse, these 

biomarkers can contribute towards evaluating the most appropriate second line treatment.  

 
6.5 Concluding remarks 

 
TNBC is an aggressive, heterogenous, metastatic cancer, lacking known druggable targets. As a 

consequence of this, acquired drug resistance emerges, which results in patient relapse and therapy 

failure. It is evident that an appropriate second line therapy is required following chemo-resistance, 

and that there is also a need for clinically relevant biomarkers to identify when this change of 

therapy is required. 

 
In this thesis, a panel of six chemotherapeutic agents and 16 DDR inhibitors are considered as 

appropriate second line therapy options against a panel of three chemo-naive and 15 chemo-

resistant TNBC cell lines. This work identified that cross-resistance to the PARP inhibitors olaparib 

and rucaparib, as well as the chemotherapeutic agent doxorubicin, was seen in the chemo-resistant 

TNBC cell lines. This suggests that these drugs would be a poor choice as a second line treatment 

after the emergence of chemo-resistance. However, little cross-resistance was seen to inhibitors 

which target CHK2, RAD51 recombinase and PLK1, suggesting that after the emergence of chemo-

resistance, these would be an appropriate second line therapy option. Therefore, these findings 

provide a beneficial insight into effective and ineffective second treatment strategies for refractory 

TNBC.  

 
Using the TNBC cell lines exome sequencing data, as well as exome sequencing and gene expression 

data of patient samples extracted from the TCGA, 70 clinically relevant candidate biomarkers were 

identified, which may be used to predict when chemo-resistance has occurred. Importantly, a loss 

of function frameshift in TOP2A was predicted to result in doxorubicin resistance. Validation 

experiments in the cell lines supported this observation, suggesting that loss of function variants, 

or down regulation of TOP2A is a biomarker of doxorubicin resistance. As such, this work provides 
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a promising basis for future studies required to validate the 70 candidate biomarkers in both cell 

lines and patient tumour samples.  

 
In conclusion, this thesis provides an insight into the use of chemotherapeutic agents and DDR 

inhibitors as an appropriate second line therapy option after the emergence of chemo-resistance. 

It also has identified 70 clinically relevant candidate biomarkers which are predicted to be indicative 

of chemo-resistance, and provides new avenues of research for further exploration of these 

findings. Therefore, the work presented in this thesis could help advance understanding of 

chemoresistance in the clinic, and potentially improve the outcomes of TNBC patients that develop 

chemoresistance.  
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Appendix list 
 
A1. Drug chemical structures. Chemical structures of each of the chemotherapeutic agents and 

DNA damage response and repair inhibitor used.  

 
A2. Cross-resistance profiling to chemotherapeutic agents. GI50 values and resistance factor for 

each of the chemo-naive and chemo-resistant cell lines when treated with the chemotherapeutic 

agents.  

 
A3. Cross-resistance profiling to DNA damage response and repair inhibitors. GI50 values and 

resistance factor for each of the chemo-naive and chemo-resistant cell lines when treated with the 

DNA damage response and repair inhibitors.  

 
A4. Basic FASTQC report. Total number of reads, sequence length and GC % for each cell line across 

the multiple sequencing lanes for each chemo-naive and chemo-resistant TNBC cell line 

 
A5. Filtering of called variants. Numbers of called variants at each step through the variant filtering 

pipeline to obtain the final high confidence somatic variants for each chemo-naive and chemo-

resistant TNBC cell line.  

 
A6. High confidence somatic variants called in MDA-MB-468. Chromosome position, base change 

from the reference genome to variant alternative and gene affected for all high confidence somatic 

variants called in MDA-MB-468. 

 
A7. High confidence somatic variants called in MDA-MB-468rCDDP1000. Chromosome position, 

base change from the reference genome to variant alternative and gene affected for all high 

confidence somatic variants called in MDA-MB-468rCDDP1000. 

 
A8. High confidence somatic variants called in MDA-MB-468rDOX50. Chromosome position, base 

change from the reference genome to variant alternative and gene affected for all high confidence 

somatic variants called in MDA-MB-468rDOX50. 

 
A9. High confidence somatic variants called in MDA-MB-468rERI50. Chromosome position, base 

change from the reference genome to variant alternative and gene affected for all high confidence 

somatic variants called in MDA-MB-468rERI50. 
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A10. High confidence somatic variants called in MDA-MB-468rPCL20. Chromosome position, base 

change from the reference genome to variant alternative and gene affected for all high confidence 

somatic variants called in MDA-MB-468rPCL20. 

 
A11. High confidence somatic variants called in HCC38. Chromosome position, base change from 

the reference genome to variant alternative and gene affected for all high confidence somatic 

variants called in HCC38. 

 
A12. High confidence somatic variants called in HCC38rCDDP3000. Chromosome position, base 

change from the reference genome to variant alternative and gene affected for all high confidence 

somatic variants called in HCC38rCDDP3000. 

 
A13. High confidence somatic variants called in HCC38rDOX40. Chromosome position, base change 

from the reference genome to variant alternative and gene affected for all high confidence somatic 

variants called in HCC38rDOX40. 

 
A14. High confidence somatic variants called in HCC38rERI10. Chromosome position, base change 

from the reference genome to variant alternative and gene affected for all high confidence somatic 

variants called in HCC38rERI10. 

 
A15. High confidence somatic variants called in HCC38rGEM20. Chromosome position, base change 

from the reference genome to variant alternative and gene affected for all high confidence somatic 

variants called in HCC38rGEM20. 

 
A16. High confidence somatic variants called in HCC38rPCL2.5. Chromosome position, base change 

from the reference genome to variant alternative and gene affected for all high confidence somatic 

variants called in HCC38rPCL2.5. 

 
A17. High confidence somatic variants called in HCC1806. Chromosome position, base change 

from the reference genome to variant alternative and gene affected for all high confidence somatic 

variants called in HCC1806. 

 
A18. High confidence somatic variants called in HCC1806rCDDP500. Chromosome position, base 

change from the reference genome to variant alternative and gene affected for all high confidence 

somatic variants called in HCC1806rCDDP500. 
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A19. High confidence somatic variants called in HCC1806rDOX12.5. Chromosome position, base 

change from the reference genome to variant alternative and gene affected for all high confidence 

somatic variants called in HCC1806rDOX12.5. 

 

A20. High confidence somatic variants called in HCC1806rERI50. Chromosome position, base 

change from the reference genome to variant alternative and gene affected for all high confidence 

somatic variants called in HCC1806rERI50. 

 
A21. High confidence somatic variants called in HCC1806rGEM20. Chromosome position, base 

change from the reference genome to variant alternative and gene affected for all high confidence 

somatic variants called in HCC1806rGEM20. 

 
A22. High confidence somatic variants called in HCC1806rPCL20. Chromosome position, base 

change from the reference genome to variant alternative and gene affected for all high confidence 

somatic variants called in HCC1806rPCL20. 

 
A23. High confidence somatic variants called in HCC1806r5-F1500. Chromosome position, base 

change from the reference genome to variant alternative and gene affected for all high confidence 

somatic variants called in HCC1806r5-F1500. 

 
A24. Consequence of variants. The number of the variants for the different consequences for each 

the chemo-naive and chemo-resistant cell lines  

 
A25. Comparison of variants in chemo-resistant cell line compared to the chemo-naive cell line 

they are derived. Comparison of variants considered to be de novo, gained, not called, lost or 

shared between the chemo-resistant cell line and the chemo-naive cell they are derived from.  

 
A26. Exact variants and mutated genes shared between the cisplatin resistant cell lines. Exact 

variants and mutated genes shared between each of the three cisplatin resistant cell lines.  

 
A27. Exact variants and mutated genes shared between the doxorubicin resistant cell lines. Exact 

variants and mutated genes shared between each of the three doxorubicin resistant cell lines.  

 
A28. Exact variants and mutated genes shared between the eribulin resistant cell lines. Exact 

variants and mutated genes shared between each of the three eribulin resistant cell lines.  
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A29. Exact variants and mutated genes shared between the gemcitabine resistant cell lines. Exact 

variants and mutated genes shared between each of the two gemcitabine resistant cell lines.  

 
A30. Exact variants and mutated genes shared between the paclitaxel resistant cell lines. Exact 

variants and mutated genes shared between each of the three paclitaxel resistant cell lines.  

 
A31. Identified de novo variants identified in chemo-resistant cell lines in the candidate approach. 

Each of the de novo variants for each category in the candidate approach. Contains the variant, the 

overlapping GO terms and the VAF for each of the chemo-resistant cell lines.  

 
A32. Western blot analysis and siRNA knockdown optimisation of TOP2A. Analysis of TOP2A 

expression in HCC1806 and HCC1806rDOX12.5. Optimisation of reverse transfected TOP2A targeted 

siRNA in HCC1806.  

 
A33. Mutated genes beneficially selected in the chemo-resistant cell lines. All mutated genes 

which are found to be beneficially selected in the chemo-resistant cell lines. Includes, de novo and 

gained variants, as well as shared variants with a two-fold increase in VAF.   

 
A34. Mutated genes not beneficially selected in the chemo-resistant cell lines. All mutated genes 

which are found to be not beneficially selected in the chemo-resistant cell lines. Includes, not called 

and lost variants, as well as shared variants with a two-fold decrease in VAF.  

 
A35. Comparison of beneficially selected variants to variants in the TCGA. Matched exact or same 

consequence variants identified as beneficially selected in the chemo-resistant cell lines to variants 

in the TCGA database. Includes gene expression data, statistical significance and Kaplan Meier 

analysis. 

 
A36. Comparison of protein truncating variants to the TCGA. Matched exact or same consequence 

variants identified protein truncating in the chemo-resistant cell lines to variants in the TCGA 

database. Includes gene expression data, statistical significance and Kaplan Meier analysis.    
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