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In power generation industries, boilers are required to be operated under a range of different conditions to 
accommodate demands for fuel randomness and energy fluctuation. Reliable prediction of the combustion 
operation condition is crucial for an in-depth understanding of boiler performance and maintaining high combustion 
efficiency. However, it is difficult to establish an accurate prediction model based on traditional data-driven methods, 
which requires prior expert knowledge and a large number of labeled data. To overcome these limitations, a novel 
prediction method for the combustion operation condition based on flame imaging and hybrid deep neural network 
is proposed. The proposed hybrid model is a combination of convolutional sparse autoencoder (CSAE) and least 
support vector machine (LSSVM), i.e., CSAE-LSSVM, where the convolutional sparse autoencoder with deep 
architectures is utilized to extract the essential features of flame image, and then essential features are input into 
the least support vector machine for operation condition prediction. A comprehensive investigation of optimal 
hyper-parameter and dropout technique is carried out to improve the performance of the CSAE-LSSVM. The 
effectiveness of the proposed model is evaluated by 300MW tangential coal-fired boiler flame images. The 
prediction accuracy of the proposed hybrid model reaches 98.06%, and its prediction time is 3.06 
millisecond/image. It is observed that the proposed model could present a superior performance in comparison to 
other existing neural network models.

coal-fired power plant, combustion operation condition prediction, flame image, convolutional sparse autoencoder, 
least support vector machine
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1  Introduction

With the rapid development of industrialization and 

urbanization, energy demand and environmental 

problems have become increasingly prominent. 

Nowadays, renewable energy, such as wind energy 

and solar energy, has been widely applied in power 

system, but it also brings huge challenges for energy 

planning and electrical energy operation due to its 

stochastic and intermittent nature [1]. To absorb 

large-scale renewable energy for power generation, 

traditional coal-fired generator units are required to 

have the capacities of flexible operation and deep 

peak regulation. In this case, the utility boiler needs to 

operate under frequent and fast variable loads, easily 

causing unstable combustion conditions [2]. Unstable 

combustion will not only reduce energy utilization 

efficiency and increase pollutant emissions (such as 

NOx and SO2) but also cause furnace vibration and 

even safety accidents. Therefore, accurate and 

effective combustion operation condition monitoring is 

necessary, which is beneficial to increase boiler 

operating efficiency and reduce fuel consumption and 

emissions.

A great deal of effort has been devoted to 

developing intelligent methods for combustion 

operation condition monitoring [3, 4]. Compared with 

the traditional sensor methods (such as 

pressure/temperature sensors and flame detectors), 

flame imaging incorporating soft-computing technique 

[5] is considered to be a promising approach, which 

can provide more comprehensive measurement 

information, including temperature distribution, 

oscillation frequency, etc. Generally, these techniques 

involve two main stages, i.e., feature extraction and 

condition identification. Feature extraction methods 

extract low dimensional representative features of 

flame images [6]. For instance, Lin et al. [7] extracted 

first-, second-, third- and fourth-order statistic hue, 

saturation and intensity data of flame images to 

characterize the combustion operation conditions. 

However, these feature extraction methods have 

some deficits, such as (i) feature selection largely 

depends on the prior knowledge of expert experience, 

which is only suitable for specific diagnostic problems; 

(ii) poor generalization ability and (iii) lower prediction 

accuracy and difficulty to process high-dimensional 

data (such as high-resolution flame images). 

Therefore, the traditional feature extraction methods 

need further improvement for better generalization, big 

data processing ability, also to improve computational 

efficiency.

Recently, deep learning (DL) technique has 

attracted considerable attention in combustion 

diagnosis [8, 9]. The DL network learns discriminative 

features from flame images with the aid of multi-layer 

nonlinearity automatically, which not only overcomes 

the deficiency of inferior representative ability of 

Page 2 of 29

http://tech.scichina.com/english

SCIENCE CHINA Technological Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Han Z Z, et al.   Sci China Tech Sci   February (2021) Vol.xx No.x 185

shallow models but also removes the tedious process 

of feature selection. For example, Abdurakipov et al. 

[10] established a convolutional neural network (CNN) 

to predict the combustion regimes in a swirling gas 

burner flame image. Wang et al. [11] proposed a 

modified CNN model to extract representative features 

of flame images and then predict the burning state. 

Although the prediction reliability of the combustion 

operation condition has significantly been improved by 

the DL network, the supervised learning (SL) network 

represented by CNN still has a thorny problem, that is, 

a large amount of labeled data is required during the 

training process whereas the scale and quality of 

labeled data directly determine the predictive 

performance. In practice, the formation of massive 

labeled data is challenging, which orders precise 

experimental devices and manual labeling [12]. This 

issue can only be addressed by an unsupervised 

learning network, which can be trained only using 

unlabeled data, thus reduce the demand for labeled 

data significantly. Akintayo et al. [13] adopted an 

autoencoder (AE) to detect the combustion operation 

condition using unlabeled laboratory-scale swirl 

combustor flame images. Qiu et al. [14] constructed a 

multi-layer AE to classify the combustion operation 

conditions of the pulverized coal furnace. In general, 

the unsupervised learning network usually has 

multi-hidden layers to extract higher-level data 

features. However, this multi-layer structure often 

brings training difficulties such as gradient vanishing 

or gradient explosion, resulting in difficulty to obtain 

the essential information of the input data. Therefore, 

an advanced feature extraction method is still worth 

exploring.

The combustion operation condition can be 

predicted by analyzing the extracted feature of each 

flame image and this is a classification process. 

Artificial neural network (ANN) and support vector 

machine (SVM) based techniques have been 

successfully applied in this process. For instance, Zhu 

et al. [15] introduced a three-layer ANN to classify 

combustion operation conditions of a supersonic 

combustor. However, ANN has some drawbacks, such 

as difficulty in determining the network structure 

(number of hidden layers and hidden neurons) and 

easy to cause overfitting. SVM has advantages 

compared to ANN, such as simple structure and 

strong generalization ability. Truong et al. [16] applied 

SVM for detecting flame conditions by analyzing the 

extracted parameters from the flame image. But the 

conventional SVM has high computational complexity 

and encounter overfitting [17]. The LSSVM converts 

inequality constraints of SVM’s quadratic optimization 

problem into equality constraints in the solving 

process [18]. In this way, the LSSVM not only greatly 

simplifies the calculation process but also possesses 

good fitting accuracy and generalization performance.

This study presents a novel hybrid deep neural 

network (i.e., CASE-LSSVM) to predict combustion 

operation condition through flame images. In this 

model, the CASE with a deep structure is established 

for feature extraction from flame images. Then, the 

extracted features are analyzed by the LSSVM to 

predict the combustion operation condition. A detailed 

description of the hybrid model is discussed. Dropout 

training and performance evaluation metrics are also 

discussed and presented. The effectiveness of the 

proposed model is verified through 300MW tangential 

coal-fired boiler flame images. Experimental results 

and elaborates on the advantages of the proposed 

model compared with other benchmark models are 

also presented. Concluding remarks and future 
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direction of this study are given.

2  Proposed Hybrid Model

The technical strategy of the prediction model is 

shown in Fig. 1. The model consists of two stages: (1) 

model establishment, i.e., a combination of CSAE and 

LSSVM, and (2) model application. Detailed 

descriptions of the hybrid model can be found in 

Sections 2.1 and 2.2.

In the model establishment stage, flame images are 

acquired under different combustion operation 

conditions. Then, each flame image is resized to 

128(H) × 128(V) and normalized to a range of 0 to 1. 

The preprocessed flame images are divided into the 

unlabeled and labeled dataset. The CSAE is 

established through unlabeled images. After that, the 

CSAE is used for feature extraction of labeled images. 

Finally, the LSSVM is established and trained using 

label information and extracted features.

In the model application stage, new unlabeled flame 

images are acquired and then performed data 

preprocessing, including image resize and 

normalization. After that, the CSAE-LSSVM model is 

used successively to perform feature extraction also to 

predict combustion operation condition without further 

training.

2.1  Convolutional sparse autoencoder for feature 

extraction

Autoencoder (AE) is an unsupervised neural network 

with three fully-connected layers, i.e., input layer 

(encoder), hidden layer (encoder vector) and output 

layer (decoder). The encoder is used to transform 

m-dimensional input sample xi into n-dimensional 

encode vector hi, typically m>n. Then, the decoder 

reconstructs the encode vector hi to the m 

-dimensional output sample zi. The AE performs 

training by minimizing the reconstruction error such as 

mean square error (MSE) between inputs and outputs, 

expressed as:

(1)2

1

1 ,M
MSE i ii

L x z
M 

 

An optimal weight matrix and bias vector can be 

obtained by utilizing a gradient descent algorithm. 

Once the AE training is completed, the extracted 

encode vector hi can be regarded as a proper feature 

representation of the input sample.

Although the basic AE reconstructs the input 

information correctly, it is possible that the network 

simply copies the information from the input layer to 

the hidden layer. Then, the extracted features may be 

redundant and invalid. To avoid this, a sparse 

constraint is introduced to the AE, forming the sparse 

autoencoder (SAE). The principle of the SAE is to 

constrain the hidden-layer neurons in an inactive state, 

thereby extracting more representative features. If the 

activation value of the ith hidden neuron is  (i(1,M), j
ih

j(1,N)), where M is the number of training samples; N 
is the number of neurons in the hidden layer. Then, 

the average activation value of the ith hidden neuron 

can be calculated by:

                 (2)
1

1 M j
j ii

p h
M 

 

where pj is the average activation and the expected 

value is closer to zero. To achieve this goal, a penalty 

term Ppenalty is introduced to penalize pj when it 

deviates from the sparse target ptarget. The penalty 

term Ppenalty is defined as:

          (3) arg1

N
penalty t et jj

P KL p p


 
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where KL() is the Kullback–Leibler divergence (KL 

divergence) that can measure the difference 

between ptarget and pj, calculated by:

     (4)
 

 

arg
arg arg

arg
arg

log

1
1 log

1

t et
t et j t et

j

t et
t et

j

p
KL p p p

p
p

p
p

 






If , .Hence, the KL  arg 0t et jKL p p  argt et jp p

divergence is used as the loss function to achieve 

minimization, expressed as:

         (5) arg1

N
Sparse t et jj

L KL p p


 

Figure 1  (Color online) Schematic diagram of the proposed hybrid model.

where  is the sparse rate. However, the 

fully-connected SAE suffers from training difficulties 

due to its numerous network parameters, especially in 

dealing with high-dimensional input data. To solve this 

issue, the convolution operation is utilized to replace 

the fully-connected operation and constructed 

convolutional sparse autoencoder (CSAE). In 

particular, the convolution operation has the 

characteristics of sparse connectivity and weight 

sharing, which can greatly reduce the number of 

network parameters. The architecture of the proposed 

CSAE is shown in Fig. 2.

In the CSAE, the flame image is sent to the input 

layer x, and then processed by five convolutional 

encoders, i.e., e1, e2, …, e5 for feature extraction and 

five convolutional decoders, i.e., d1, d2, …, d5 [refer to 

Fig. 2] for image reconstruction, and finally forming a 

reconstructed image in the output layer (z). The 

detailed configuration of the CSAE can be found in 

Table 1.

In the convolutional encoder, firstly, the input image 

is processed by the convolution layer [C(32@3×3+1)] 

of the encoder e1, which has 32 filters, and each filter 

size is 3×3 and a stride of 1. After 

the convolution layer, the outputs are put through the 

activation function to improve the feature 

representation ability, such as rectified linear unit 

(ReLU) [y() = max(0, ), where  represents hidden 

neuron]. Note that the Sigmoid function [y() = 

1/1+exp(-)] is also used, i.e., d5 operation (5th 

convolutional decoder). The purpose of using the 

ReLU function is to improve the training convergence 

speed, and the Sigmoid function is used to ensure the 

output range 0 to 1 [19]. Followed by the activation 

function, the pooling layer is adopted to reduce the 

dimensionality of the feature maps. The max-pooling 
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strategy [20] with a kernel size of 2×2 and a strider of 

2 is used in this study. Finally, a feature map with a 

dimension of 64×64×16 can be extracted. After a 

series of similar encoder operations, the input image x 
with the dimension of 128×128×3 can be represented 

by the deep feature h with the dimension of 

4×4×1.Afterwards, the extracted h is converted into a 

16- dimensional vector to facilitate subsequent feature 

analysis.

In the convolutional decoder, the deep feature h is 

first sent into the upsampling layer [U(8×8)] of the 

decoder d1 for dimensionality extension, and then 

successive processed by the convolution layer 

[C(4@3×3+1)] and ReLU activation function. After that, 

the feature map with the dimension of 8×8×4 is 

processed by a series of similar decoder operations 

for image reconstruction. Finally, the reconstructed 

image with the dimension of 128×128×3 is generated.

The CSAE training is only performed using 

unlabeled flame images, and the training target is to 

minimize the reconstruction error between the input 

image and the output image. After adding the sparse 

constraint in the CSAE training process, combining Eq. 

(1) and Eq. (5), the established CSAE loss function is 

expressed as:

Figure 2  (Color online) The architecture of the convolutional sparse autoencoder.

Table 1  Structure and parameters of the CSAE

In Table 1, C represents convolution operation; P represents pooling operation; U represents upsampling operation; ‘/’ 

represents no operation. C(R@c×c+g) represents the convolution layer with R filters. Each filter scans the input neurons with a 

fixed size of c×c and a stride of g. P(p×p+r) represents the pooling layer that condenses the feature map by selecting a 

maximum value with a kernel size of p×p and a step of r. U(u×u) represents the upsampling layer to extend the feature 

dimension to u×u.

             (6)CSAE MSE SparseL L L 
The LCSAE is minimized iteratively by using the 

Items Model 
type Upsampling layer Convolution layer Activation

function Pooling layer Output dimension

Input layer / / / / / 128×128×3
e1 / C(32@3×3+1) ReLU P(2×2+2) 64×64×32
e2 / C(16@3×3+1) ReLU P(2×2+2) 32×32×16
e3 / C(8@3×3+1) ReLU P(2×2+2) 16×16×8
e4 / C(4@3×3+1) ReLU P(2×2+2) 8×8×4

Convolutional 
encoder

e5 / C(1@3×3+1) ReLU P(2×2+2) 4×4×1
d1 U(8×8) C(4@3×3+1) ReLU / 8×8×4
d2 U(16×16) C(8@3×3+1) ReLU / 16×16×8
d3 U(32×32) C(16@3×3+1) ReLU / 32×32×16
d4 U(64×64) C(32@3×3+1) ReLU / 64×64×32

Convolutional 
decoder

d5 U(128×128) C(32@3×3+1) Sigmoid / 128×128×3
Output layer / / / / / 128×128×3
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adaptive moment estimation (Adam) algorithm [21]. 

The Adam algorithm has the advantages of high 

computational efficiency and low memory 

consumption.

Besides, overfitting is a common phenomenon in 

deep learning network training with a low training error, 

whereas high testing error. To avoid the occurrence of 

overfitting, the dropout technique [22] is utilized in the 

CSAE training. The main idea of the dropout 

technique is to randomly drop several neurons from 

the neural network with a probability of , thereby 

preventing an excessive co-adaptation between 

hidden neurons.

2.2  Least support vector machine for condition 

prediction

Once the CSAE training is completed, the deep 

features of the flame image are extracted by the 

trained convolutional encoder. These image features 

are then further used to train the LSSVM for 

combustion operation condition prediction. The 

LSSVM is an improved version of SVM, possessing a 

least-squares loss function and equality constraints 

[23]. It is a binary classifier, usually used for two-stage 

classification tasks. A brief review of the LSSVM 

algorithm for classification problems as following.

Assuming an observation dataset {X, Y} of T 

samples, where , , xt denotes the   1

T
t tX x


   1

T
t tY y




tth input sample, and yt denotes the corresponding 

sample label, i.e., yt{-1, +1}. Figure 3 presents a 

geometrical view of the LSSVM.

The LSSVM aims to construct an optimal 

hyperplane as a linear decision boundary that 

separates samples into two categories with maximal 

margin. It mainly solves the following optimization 

problem:

       (7)  2
1, ,

1, ,
2 2

t TT
ttw b

Cmin J w b w w


 


  

subject to:

           (8)  1T
t t ty w x b     

where J(w, b, )  is the structural risk; w and b are 

weight vector and bias, respectively; C(C>0)is 

regularization constant that balances the importance 

between the maximization of the margin width and the 

minimization of the training error; the slack variable t 

is the soft margin error; () denotes the nonlinear 

function mapping input data from the

Figure 3  (Color online) Graphic representation of the LSSVM.
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Figure 4  (Color online) Geometrical view of the nonlinear mapping.

original space into a high-dimensional feature space. 

This nonlinear mapping function is to solve the linear 

inseparable problem in the original space. As shown in 

Fig. 4, the training samples are inseparable in the 

original space (represented by 2-D space) but easy to 

separate in the high-dimensional feature space 

(represented by 3-D space).

By using the Lagrange method [24], the 

optimization problem Eq. (7) can be converted into a 

group of linear equations:

    (9)
   

  1

, , , , ,
t T T

t t t tt

L w b J w b

w x b y

  

  



 

  

where t(t=1,…,T) represents the Lagrange multiplier 

vector. According to the Karush–Kuhn–Tucker (KKT) 

condition [25], the optimal solution of Eq. (9) can be 

determined by:

        (10)

 

 

1

1

0

0 0

0

0

t T
t tt

t M
tt

t t
t

T
t t t

t

L w x
w
L
b
L C

L w x b y

 



 


 



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





By eliminating w, Eq. (10) can be transformed into 

the following matrix equation:

        (11)1

00 T b
C 

     
           

1
1 yI

where I is a T × T identity matrix; y = [y1, y2,…, yT]T is 

the output matrix;  = [1, 2,…, T]T is the Lagrange 

multipliers matrix; 1 = [1, 1,…, 1]T is the unit vector;  

is the T × T kernel matrix and defined as:

      (12)     ,T
t t t ty y x x y yK x x   

where xt and x stand for different input points; K(xt, x) 

is the kernel function. It is worth noting that the kernel 

function defines the feature space of the input data, 

directly affecting the generalization performance of the 

LSSVM. Thus, selecting a proper kernel function is 

very critical. Through combining Eq. (11) and Eq. (12),

 and  can be obtained simultaneously. Then, the 

decision function of the LSSVM for data classification 

can be calculated as:

     (13)   1
,t T

t t tt
x sign y K x x b 


   

where sign(∙) is the sign function, and the sign of the 

decision equation determined the category of the input 

data.

However, the combustion operation condition 

includes multiple categories. For this reason, the 

"one-against-one" approach [26] is considered for 
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performing the multi-class classification problem of the 

binary classifier LSSVM. In this approach, n(n-1)/2 

classifiers are constructed based on every two 

categories, where n is the number of categories. A 

voting strategy is adopted to determine the final 

classification by the maximum number of votes. For 

example, combustion operation condition includes four 

categories: A, B, C and D. In the training process, six 

[4(4-1)/2] classifiers are constructed based on A vs. B, 

A vs. C, A vs. D, B vs. C, B vs. D, and C vs. D, 

respectively. In the testing process, these six 

classifiers perform estimation separately, and the final 

prediction result is determined according to the 

maximum number of votes.

2.3 Model evaluation criteria

To quantitatively evaluate the prediction performance 

of the proposed model, four metrics, including 

accuracy, precision, recall and F1-score, are used. The 

formula for each evaluation metric is expressed as:

           (14)  100%AAccuracy
B

  

            (15)  TPPrecision
TP FP

 


              (16)  TPRecall r
TP FN




              (17)1 2 p rF score
p r


  



where  represents the prediction accuracy; A is the 

number of samples that are predicted correctly; B is 

the number of the testing samples; TP is the number 

of true positives; FP is the number of false positives; 

FN is the number of false negatives. The F1-score is a 

harmonic mean of precision and recall, whose value 

ranges from 0 to 1. The higher value of these four 

evaluation metrics indicates better predictive 

performance.

3  Experiments on a 300MW coal-fired boiler

3.1  Experimental setup

To evaluate the effectiveness of the proposed hybrid 

model (CSAE-LSSVM) for predicting the combustion 

operation condition, experiments were conducted on a 

300MW tangentially coal-fired boiler. This boiler 

adopted a direct-blowing pulverizing system and was 

equipped with five groups of roller mills (A–E). Only 

four groups (A–D) were utilized under the normal 

operation conditions, and the remaining E mill was 

usually on standby in case of accidents. The outlet of 

each mill is connected to four tilting burners, which are 

arranged at four corners of the boiler. The detailed 

structural design of the experimental boiler can be 

found in Ref. [27, 28].

In this study, the combustion operation condition of 

the burner connected with mill C is selected as the 

research object. Figure 5 presents the structure and 

practical implementation of the flame imaging system. 

The flame imaging system is mainly composed of a 

color camera and an optical endoscope. The color 

camera (HIKVISION MV-CA003-50GC) is used to 

record the flame image with a resolution of 640(H) × 

480(V) pixels at 20 f/s (frames per second). The 

optical endoscope can extend into the furnace and 

transmit the combustion flame to the camera through 

a set of lenses. It is equipped with a 90° angle of 

objective view lens, which provides a wider visual 

range and covers the main reaction area (i.e., root 

region) of the flame. Moreover, the front end of the 

endoscope has bent 45° to overcome the limitation of 

the installation position. 
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The flame imaging system is mounted on the 

viewport located on the side of the burner and 

protected by cooling air that ensures that the camera 

operating temperature does not exceed 50°C. The 

temperature is monitored in real-time, with an 

over-temperature alarm function. The pressure of the 

cooling air is always higher than that of the boiler. 

Then, the cooling air can flow into the boiler through 

the front end of the optical endoscope, thus achieving 

a cooling effect. Also, the cooling air is conducive to 

keeping the monitoring windows clean for a long time 

running.

3.2 Flame image acquisition under different operation 

conditions

During the experiment, the coal-fired boiler was 

undergoing a peak shaving process. In this case, the 

boiler will continuously adjust the operational variables 

to meet the demand for energy fluctuations. Table 2 

depicts the flame image dataset obtained from eight 

combustion operation conditions. These operation 

conditions are determined by the coal quantity and air 

volume. For each condition, 1000 RGB (Red, Green, 

and Blue) flame images were collected. Note that the 

coal quality is consistent in this experiment.

Examples of flame images under different operation 

conditions are shown in Fig. 6. Although the size, 

brightness and structure of the flame image are 

different, it is difficult to identify the condition based on 

these physical appearances accurately. In view of this, 

how to predict the operation condition effectively and 

accurately is desirable and yet challenging.

(a) Schematic diagram of the flame image imaging system.                         (b) Practical implementation.

Figure 5  (Color online) The physical implementation of the flame imaging system.

Table 2  Overview of the combustion operation condition used in this study

Condition Coal quantity (t/h) Air volume (km3/h) Total images

C1 62.8 603.8

C2 69.9 620.8

C3 74.6 628.3

C4 87.1 642.2

C5 89.5 667.3

C6 93.6 673.9

1000
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C7 95.2 688.1

C8 96.5 695.9

Figure 6  (Color online) Examples of flame images under eight combustion operation conditions.

Figure 7  (Color online) Overview of the training and testing dataset.

3.3 Dataset and model establishment

To eliminate the influence of different image sizes and 

accelerate the convergence of the prediction model, 

all flame images are resized to 128(H) × 128(V) and 

normalized to 0 to 1 using the min-max scale [29]. 

Especially, the dimension of the input images is 

chosen empirically based on the trade-off between the 

prediction accuracy and prediction time of the model. 

Figure 7 illustrates the overall structure of the flame 

image dataset used for training and testing the 

prediction model. Take Condition 1 (containing 1000 

images) as an example, 80% of the data is randomly 

selected to form training dataset A1 (containing 800 

images), and the remaining 20% is used as testing 

dataset B1 (containing 200 images). Subsequently, 

93% of the dataset A1 is selected to form dataset 

C1(containing 720 images), and the rest of 7% forms 

dataset D1. Considering eight conditions, the dataset 

for unsupervised CSAE training contains 5952 
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unlabeled images, defined as dataset C; the dataset 

for supervised LSSVM training contains 448 labeled 

images, defined as dataset D; and the dataset for the 

CSAE-LSSVM testing contains 1600 labeled images, 

defined as dataset B.

From the dataset structure, a large amount of 

unlabeled data is used for feature extraction network 

CSAE training, and only a small amount of labeled 

data is used for condition identification network 

LSSVM training.

The CSAE-LSSVM training includes two 

independent steps, i.e., unsupervised CSAE training 

and supervised LSSVM training. In the CSAE training 

process, all the weight parameters are initialized by 

Gaussian distribution with a standard deviation of 0.02 

and updated via back-propagation using the Adam 

algorithm [30]. The sparse penalty term is utilized to 

further improve CSAE feature learning ability, where 

the sparse rate  is set to be 0.4, and the sparse 

target ptarget is set to be 0.08. Besides, the dropout 

technique is also introduced in the CSAE training with 

the dropout rate =0.2, which is determined via 

cross-validation compared to other rates such as 0.1, 

0.3, 0.4 and 0.5. The LSSVM training is performed 

based on the CSAE feature and label information of 

the dataset D. Moreover, in comparison with different 

kernel functions such as linear and polynomial, the 

radial basis function (RBF) is selected as the kernel 

function.

All the calculations in this study were implemented 
in the Python programming language with an Intel 
i7-8700K CPU, 64 GB RAM and GeForce GTX 1080 
Ti GPU. For each experimental result, ten trials are 
repeated to reduce particularity, contingency, and 
randomness.

4  Results and discussions

4.1  Image feature visualization

Once the CSAE training is completed, the CSAE is 

used to extract the flame image features. The 

extracted discriminative features can be visualized 

through the t-distributed stochastic neighbor 

embedding (t-SNE) technique [31]. The t-SNE method 

provides an effective solution for high-dimensional 

data visualization, which can convert the extracted 

16-dimensional image features into a 2-dimensional 

(2-D) feature map with maximum preservation of data 

structure. Figure 8 shows the 2-D feature map of the 

flame image in testing dataset B.
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Figure 8  (Color online) Image feature visualization under eight combustion operation conditions.

Figure 9  (Color online) Confusion matrix of classification results of the testing dataset.

It can be seen that the image features in the same 

conditions are clustered automatically, while the image 

features in different conditions are separated well. 

This result shows that even though the original flame 

images are difficult to distinguish intuitively, their 

features have a good separability in the feature space. 

Notably, some mixing points are appeared and mainly 

concentrated in combustion operation conditions 4 

and 5. This confusion reflects some similarities 

between flame images, especially from adjacent 

operation conditions. Nevertheless, most feature 

points can be distinguished, indicating the 

effectiveness of CSAE in image feature extraction.
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4.2 Prediction accuracy

After the CSAE-LSSVM training, the dataset B 

(containing 200 labeled images per condition) is used 

to examine its prediction performance. As shown in 

Fig. 9, the confusion matrix summarizes the 

classification results of the eight combustion operation 

conditions. In the confusion matrix, columns represent 

the actual labels, and rows represent the predicted 

labels. Diagonal cells show the number and accuracy 

of correctly estimated samples, while off-diagonal cells 

display the number of misclassified samples.

It can be seen that conditions 1, 7 and 8 can be fully 

identified with the accuracy of 100%. Especially, the 

prediction accuracy of condition 5 is the lowest with 

the accuracy of 92.50%, where only 185 images are 

correctly classified, and the remaining images are 

mainly misclassified into condition 4. Followed by 

condition 4, the accuracy is only 94.00%, showing the 

appearance of confusion with condition 5. This result 

is consistent with that given in Fig. 8, that is, 

misclassification is prone to occur under condition 4 

and condition 5. Because of this, it can be inferred that 

if the flame images of different conditions cannot be 

completely separated in the feature space, it will 

inevitably affect the prediction accuracy of the 

subsequent classifiers. This suggesting that the 

representative features of flame image play a decisive 

role in high-precision combustion operation condition 

prediction. Although some misclassifications occur, 

most of the testing images can be accurately classified, 

and the average prediction accuracy has reached 

98.06% [refer to Table 3]. This sufficiently confirms 

that the proposed CSAE-LSSVM performed well in 

predicting the combustion operation condition.

4.3 Comparative study and performance analysis

The performance of the hybrid model (CSAE-LSSVM) 

is verified under different hyper-parameter, such as 

dropout rate and kernel functions. Furthermore, to 

verify the superiority of the hybrid model, a 

comprehensive comparative study is performed with 

other typical networks, including different feature 

extraction networks and condition prediction models.

4.3.1 Effect of different dropout rates and kernel 
functions

To tackle the overfitting problem, the dropout 

technique is involved in the CSAE training process. 

Since the dropout rate is a vital hyper-parameter, it is 

meaningful to study its impact on prediction 

performance. Besides, the kernel function has a 

significant influence on the generalization ability of the 

LSSVM. Thus, the LSSVM performance under three 

different kernel functions is also investigated. The 

three kernel functions are specifically expressed as:

(1) Linear function (LF):  ,t tK x x x x 

(2) Polynomial function (PF):    , v
t tK x x x x z  

(3) Radial basis function (RBF): 

 
2

2,
2
i

t

x x
K x x exp



 
  
 
 

where z, v and  are parameters of the kernel function. 

Figure 10 presents the prediction results of the 

CSAE-LSSVM, where the dropout rate is changed 

from 0 to 0.5 with a step size of 0.1.

The result demonstrates that, with the increase of 

the dropout rate, the prediction accuracy of these 

three networks has experienced a process of first 

increasing and then decreasing. The best 

performance was obtained at a dropout rate close to 

0.2. This verifies that the reasonable dropout method 

can improve the CSAE performance, but a high 
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dropout rate may lose important neurons, resulting in 

the degradation of classification performance. The 

result also indicates that the CSAE-LSSVM with PF 

kernel function can achieve the highest prediction 

accuracy in all cases, so it is preferred.

4.3.2 Effect of different feature extraction networks

To verify the superiority of the CSAE feature method, 

a comparative study is carried out with other feature 

extraction methods, such as empirical formula (EF), 

principal component analysis (PCA) and convolutional 

autoencoder (CAE). The EF method uses the 

pre-defined empirical formula to derive various 

statistical features from the flame image. In this study, 

seven different statistical features were considered, 

including geometric parameters (ignition point and 

ignition area) and luminous parameters (luminous 

region, brightness, non-uniformity, mean intensity and 

flame area). The PCA is an effective data 

dimensionality reduction method that can discover the 

principal variables of the flame images. For the CAE, 

its structure is the same as the CSAE, except that 

sparse constraint is not considered. For a fair 

comparison, different types of features are input to the 

same LSSVM to perform prediction. Table 3 

summarizes the prediction accuracy, F1-score and 

prediction time of the neural network established 

based on different feature extraction methods.

The EF-based feature extraction method is at a 

relatively low level in terms of prediction accuracy and 

p r e d i c t i o n  
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Figure 10  (Color online) Performance testing of the CSAE-LSSVM under different dropout rates and kernel functions.

Table 3  Prediction network performance based on different feature extraction methods

Prediction network Accuracy (%) F1-score Prediction time (ms/image)

EF-LSSVM 63.06% 0.63 33.93

PCA-LSSVM 91.75% 0.91 1.15

CAE-LSSVM 96.94% 0.97 2.48

CSAE-LSSVM 98.06% 0.98 3.06
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Figure 11  (Color online) Prediction accuracy of the classifiers under different proportions of labeled images.

time. More importantly, these pre-defined formulas are 

often accompanied by a complicated feature selection 

process, which relies heavily on prior expert 

knowledge. The result also indicates that, although 

PCA-LSSVM achieves the fastest prediction time (i.e., 

1.15 ms/image), its accuracy is lower than the 

CSAE-LSSVM. This is mainly because PCA is a 

simple linear transformation method that cannot 

extract the essential data features.Compared with 

CAE-LSSVM, CSAE-LSSVM achieves a more 

satisfactory performance with an accuracy of 98.06% 

and an F1-score of 0.98, although its consumption time 

is slightly higher (i.e., 3.06 ms/image) due to the 

increased sparse constraint. However, from a practical 

engineering perspective, the prediction time of the 

CSAE-LSSVM is acceptable, satisfying the 

requirement of real-time processing data acquired by 

the color camera with a frame rate of 20 f/s. It can be 

concluded that the CSAE-LSSVM is better than the 

shallow PCA-LSSVM, indicating that the hybrid deep 

learning network can extract more representative 

flame image features. The CSAE-LSSVM is superior 

to the CAE-LSSVM, suggesting that the sparse 

constraint can further enhance feature learning ability. 

In summary, the CSAE is more recommended as an 

optimum feature extraction network for flame images.

4.4.3 Effect of different classifiers and proportions of 
labeled data

After extracting the representative features of the 

flame image, it is critical to select an appropriate 

classifier, which is beneficial to the accurate analysis 

of the features. A trial is carried out to compare the 

LSSVM performance with other typical classifiers, 

such as ANN, random forest (RF), and logistic 

regression (LR). Meanwhile, the prediction of the 

LSSVM under three different kernel functions is also 

considered. Typically, due to the different structures of 

the neural network classifiers, the demand for labeled 

data is also different. It is desirable to adopt an optimal 

classifier that can provide better accuracy with a 

minimum labeled data, which will help reduce the 

burden of preparing high-quality and large-scale 

labeled data. Therefore, the proportion of labeled data 

has also been carefully investigated. In this study, the 

proportion of labeled data refers to the proportion of 

dataset D to dataset A, as shown in Fig. 7. Figure 11 
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shows the prediction accuracy of different classifiers 

based on CSAE features, where the proportion of 

labeled data varies from 1% to 8% with a step size of 

1%. 

The LSSVM with the PF kernel function always 

maintains the highest prediction accuracy in all cases. 

As the proportion increases from 1% to 7%, the 

accuracy of all classifiers increases rapidly. Although 

only 6% of the labeled images are available, the 

minimum prediction accuracy reaches 95% (provided 

by the ANN), which meets the accuracy requirements 

of actual engineering [5]. With the further increase of 

the proportion, the prediction accuracy improves 

slightly but stabilized after 7%. The obtained results 

not only demonstrate the LSSVM with PF kernel 

function achieves the best performance in predicting 

the combustion operation condition but also reflects 

that 7% of the label data can provide a high-precision 

prediction. Therefore, it can be determined that the 

proposed prediction model is suitable for prediction 

tasks with limited labeled data.

5  Conclusion

A novel hybrid deep neural network model 

(CASE-LSSVM) is proposed to predict the combustion 

operation condition. The CASE is used to feature 

extraction of flame images, and the LSSVM is utilized 

to predict the combustion operation condition based 

on the extracted flame features. The proposed model 

overcomes the shortcomings of the traditional 

techniques where prior expert knowledge and massive 

labeled data are required. Experiments were carried 

out on a 300MW tangential coal-fired boiler and 

collected flame images under different operation 

conditions and to evaluate the prediction model. The 

main conclusions of this study can be drawn as 

follows:

(a) Flame structure changes with the combustion 

operation conditions. Although flame images in 

different conditions are difficult to distinguish based on 

their physical appearance, the extracted features can 

be separated accurately. For the examined conditions, 

the established CASE-LSSVM provided 98.06% 

prediction accuracy and 3.06 ms/image prediction time, 

superior to other prediction models.

(b) The CASE can automatically extract the 

representative features of the flame image in an 

unsupervised manner. In comparison with other 

feature extraction methods, the CSAE not only 

achieve good prediction accuracy but also revoke the 

tedious process of feature selection. More importantly, 

practically proved that representative flame features 

are the key factor in obtaining satisfactory prediction 

performance of combustion operation condition.

(c) This study conducts a detailed exploration, 

including the sparse constraint method, reasonable 

selection of kernel function, and the optimum dropout 
rate. Through the cross-validation method, it is 

suggested that the polynomial function is more 

suitable with a dropout rate of 0.2.

(d) Experimental results demonstrate that the 

proposed model performs well in dealing with the 

problem of limited labeled data, which significantly 

reduces the demand for image labels. Consequently, 

the proposed model has a great application prospect 

in combustion operation condition prediction.

Overall, the proposed model can easily be applied 

to other combustion processes such as heavy-oil, 

biomass co-combustion, etc. The future work will be 

focused on tailoring the proposed model for predicting 

combustion operation conditions in more combustion 
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