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Abstract: Flame temperature measurement through a light field camera shows an attractive 
research interest due to its capabilities of obtaining spatial and angular rays’ information by a 
single exposure. However, the sampling information collected by the light field camera is vast 
and most of them are redundant. The reconstruction process occupies a larger computing 
memory and time-consuming. We propose a novel approach i.e., feature rays under-sampling 
(FRUS) to reduce the light field sampling redundancy and thus improve the reconstruction 
efficiency. The proposed approach is evaluated through numerical and experimental studies. 
Effects of under-sampling methods, flame dividing voxels, noise levels and light field camera 
parameters are investigated. It has been observed that the proposed approach provides better 
anti-noise ability and reconstruction efficiency. It can be valuable not only for the flame 
temperature reconstruction but also for other applications such as particle image velocimetry 
and light field microscope. 

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction  
Radiative imaging techniques have become attractive tools in the field of combustion 
diagnostics [1-3]. Various parameters of flame such as temperature, species concentration, 
velocity and pressure can be measured through these techniques. Compared with the intrusive 
techniques such as thermocouples [4] and laser-based imaging techniques (i.e., Tunable Diode 
Laser Absorption Spectroscopy [5], Planar Laser-induced Fluorescence [6], and Laser-Induced 
Incandescence [7]), the radiative imaging techniques are non-intrusive, easy to setup and cost-
effective. These techniques have also been recognized as effective and accurate techniques for 
flame temperature measurement. Various radiative imaging techniques have been developed 
based on conventional Charge Coupled Device (CCD)/Complementary Metal Oxide 
Semiconductor (CMOS) camera [8], optic imaging fibers [9] and light field cameras [10-12] 
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for combustion diagnostics. The conventional CCD camera captures a 2D flame image from a 
certain perspective which is considered as a projection. Typically, multiple cameras are required 
to collect flame images from different perspectives to reconstruct flame parameters accurately. 
However, the number of cameras lead to a complicated system setup and demands an 
appropriate synchronization mechanism [13]. Optical imaging fibers based system offers 
excellent flexibility and transferability of the system [14]. However, still requires a proper 
synchronization mechanism and provides lower resolution images. 

A light field camera equips a microlens array (MLA) between the main lens and photosensor, 
and therefore both spatial and angular information can be achieved by a single exposure [15]. 
This technique overcomes the limitations of multi-camera based radiative imaging techniques. 
In recent years, light field camera-based techniques have been used for flame temperature 
measurement. For example, Sun et al. used a single light field camera to reconstruct 3D flame 
temperature distribution [16]. Kelly et al. studied a multi-band plenoptic pyrometer to 
reconstruct flame temperature in a solid rocket strand burner plume [17]. Zhao et al. 
reconstructed candle flame temperature through a combination of optical sectioning 
tomography and light field camera techniques [18]. Multi-light field camera systems are also 
developed to reconstruct complex flame temperature distribution. For instance, Qi et al. 
proposed a multi-plenoptic camera system to collect flame images from different perspectives 
to retrieve the flame temperature field [19]. The aforementioned works represent the state-of-
the-art of light field imaging for flame temperature diagnostics.  

Despite these various developments, the light field camera is not flawless. Because the 
microlens separates detection rays on the imaging plane of the main lens in the light field 
camera, the limitation of this camera structure is that the ray’s angle separated by a microlens 
varies a little. For instance, a microlens covers about 200 pixels, however, the angles of rays 
detected by pixels under a microlens only differ from 21.5° to 23.5°, thus there is little 
difference between adjacent rays [20]. These rays provide similar sampling information. As a 
result, most of the radiative information recorded by the light field camera is redundant and 
thus creates an overdetermined problem for the flame temperature reconstruction. Meanwhile, 
the number of the voxel that each ray crosses through is far less than the total number of voxels, 
so the reconstruction is also an ill-condition and ill-posed problem. Therefore, the 
reconstruction process requires large computing resources for large matrix storage and time-
consuming, especially the reconstruction of a high-resolution temperature field or simultaneous 
reconstruction of multiple flame radiative properties [21].  

To address the problems, various studies have been conducted to improve the light field 
sampling quality. For instance, Wei et al. introduced sample irregularities and lens aberrations 
into light field camera design to improve the quality and usability of light field cameras [22]. 
Schedl et al. used a compressed sensing reconstruction technique to upsample a sparse light 
field to a dense light field to improve the resolution of the light fields [23]. Park et al. presented 



an electrically fast-switching virtual-moving array to enhance the light field spatial resolution 
[24]. Huang et al. proposed a systematic approach to model and analyze the ray position 
sampling issue and characterized the effects of ray position sampling on the visual response 
[25]. Zhu et al. presented a spectral analysis for sampling the light field signal using a Fourier 
transform [26] . Although these methods improve the light field sampling quality, the problem 
of light field ray’s redundancy is not investigated. Sampling characteristics of the light field 
cameras for flame temperature measurement has also been investigated. For instance, Liu et al. 
reported that the sampling characteristics depend on light field camera parameters such as focal 
length and magnification of both the main lens and microlens [27]. Sun et al. studied the 
sampling characteristics among different light field cameras such as traditional and focused 
light field cameras [28]. The sampling characteristics and the effects of camera parameters on 
sampling properties were not studied to reduce the light field sampling redundancy. Therefore, 
it is crucial to investigate an approach to reduce the light field sampling redundancy for flame 
temperature reconstruction. 

In this study, a novel feature rays under-sampling approach is proposed to reduce the light 
field sampling redundancy and thus improve the reconstruction efficiency. According to the 
ray’s distribution and angle characteristics, the proposed approach performs ray and azimuthal 
angle clustering to obtain representative feature rays. The flame temperature is then 
reconstructed using these feature rays. The proposed approach is systematically evaluated 
through numerical studies under different under-sampling methods, flame dividing voxels, 
noise levels and light field camera parameters. Experimental studies were also conducted to 
reconstruct the ethylene diffusion flames temperature to verify the applicability of the approach. 
The results obtained from numerical and experimental studies are presented and discussed.  

2. Methodology 

2.1 Light field imaging model 

The light field camera captures the spatial and angular information of the ray by a single 
exposure. This information is known as light field sampling [29, 30]. The light field camera 
mainly consists of a main lens, MLA and a photosensor. The parameters of the light field camera 
are shown in Table 1. Fig. 1 shows the principal architecture of the light field imaging model. 
The imaging model is divided into two parts such as (1) imaging by the main lens and (2) 
imaging by the MLA. Since the cone angle of a ray detected by the pixel is so small (i.e., 
<0.015°), the ray which passes through the pixel and the center of its corresponding microlens 
is used to represent the beam. This ray is called the corresponding ray of the pixel [16]. It must 
be traced from the photosensor pixel to the flame to obtain the spatial and angular information.  



 

Fig. 1. The principal architecture of the light field imaging model.  

Table 1. The parameters of the light field camera. 

Symbol Unit Description 

f  mm the focal length of the main 

fm  mm the focal length of the microlens 

dp  mm length of the pixel 

Lmm  mm the distance between the main lens and MLA 

Lmp  mm the distance between the MLA and photosensor 

Lom  mm the distance between the flame centerline and main lens 

Lim  mm the distance between the virtual image plane and MLA 

Lmi  mm the distance between the main lens and virtual image plane  

Nm  number of microlenses 

Np  number of pixels covered by each microlens  

The light field camera can be divided into traditional and focused light field cameras based 
on the distance between the photosensor and the MLA [28]. For the focused light field camera, 
the Lmm is not equal to the fm of the microlens, (i.e., Lmm ≠ fm). The flame centerline is in the 
object plane of the light field camera to ensure that the light field camera focuses the flame 
accurately. Therefore, the object plane is the conjugate plane of the virtual image plane for the 
main lens, and the photosensor is the conjugate plane of the virtual image plane for the MLA. 
For the traditional light field camera i.e., Lmm = fm, the object plane and MLA are conjugated to 
the main lens. At this time, the virtual image plane is the plane where the MLA is located. 
Therefore, the spatial and angular information of rays can be achieved by the following Eqs. 
(1-6). 
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where (xP, yP, zP) is the coordinate of point P on the photosensor; (xM, yM, zM) is the coordinate 
of point M; (xC, yC, zC) is the central coordinate of the main lens; (xS, yS, zS) is the coordinate of 
the S; (xO, yO, zO) is the coordinate at which the ray intersects the center line of the flame; θ and 
Ψ are the polar and azimuthal angles of the ray’s direction, respectively.  

2.2 Feature rays under-sampling approach 

The light field camera collects a huge number of rays and these rays are separated by the MLA. 
The angle difference between these rays is so small and thus most of these rays are redundant 
and provide similar light field information. Without reducing the redundancy information, the 
flame reconstruction process requires a larger computing memory space for matrix storage also 
time-consuming. Therefore, it is crucial to reduce redundant sampling information and optimize 
light field sampling. In practice, the dimension of flame height is much larger than the radial 
dimension [31, 32]. So, the variation of ray in the polar angle is much greater than the azimuthal 
angle. In this study, we proposed a feature rays under-sampling (FRUS) approach to reduce the 
light field sampling redundancy. This approach is based on the characteristics of the ray’s angle 
and the Douglas–Peucker (DP) algorithm. The DP algorithm is a common curve vector data 



resampling technique that is often used to simplify the vector features in geographic systems 
[33]. It requires at least three points to represent a line.  

Fig. 2 shows an example of optimized light field sampling which is achieved by the 
proposed approach. In this example, the flame is divided into Nz×Nr×Nφ = 6×8×10 voxels and 
the light field camera parameters used are listed in Table 2. A total of 518400 pixels on the 
photosensor can be seen in Fig. 2(a) where one pixel corresponds to one ray as described in 
Section 2.1 and thus in total 518400 rays are traced from the photosensor to flame. Fig. 2(a) 
demonstrates the effective rays (i.e., the rays that pass through a flame) and their corresponding 
pixels [highlighted as red box]. The rest of the rays are invalid and their corresponding pixels 
are black. There are in total 28867 effective rays pass through the flame voxels and their 
corresponding pixels are marked as the same color (refer to 1st and 2nd rays in Fig. 1). For 
example, in Fig. 2(b) the pixels marked as green, their corresponding rays pass through the 
same flame voxels. A vast number of rays are traced and most of them pass through the same 
flame voxels and most of them are redundant. The final feature rays and their corresponding 
pixels of 5070 are achieved by the proposed approach as shown in Fig. 2(c). The redundant rays 
are significantly reduced and thus optimized the light field sampling. Fig. 3 shows the 
implementation procedures of the FRUS approach.  

Table 2. Key parameter values of the light field camera. 

Lom Lmm Lmp(fm) Lmi Lim f fm Nm Np dp 

505  53.1  0.8  55.5 -2.4 50  0.6 60 12 0.008  

 

 
Fig. 2. A process of optimizing light field sampling through the proposed FRUS approach.  

 



 

Fig. 3. Implementation approach of the proposed FRUS method. 

The detailed procedures of the FRUS approach are described in Steps 1-6.  

Step 1. Ray tracing: According to the light field imaging model, as proposed in Section 2.1, the 
ray corresponding to each pixel traces from the photosensor to flame.  
Step 2. Identify effective ray: If the ray passing through the flame, define this ray as an effective 
ray and then record the angle θ, Ψ, and the voxel number of the effective, then go to Step 3. 
Otherwise, it is an invalid ray and deletes it. 
Step 3. Ray clustering: Classify the effective rays into one category that are passing through 
the same flame voxels.  
Step 4. Azimuthal angle Ψ clustering: The azimuthal angle Ψ clustering is carried out based on 
the distribution of the azimuthal angles Ψ. Classify the rays with the same azimuthal angles Ψ 
into one bunch and obtain the distribution of polar angle θ of each bunch. 
Step 5. Feature ray’s selection: Firstly, three feature polar angles θ i.e., maximum, minimum, 
and closest value to the average of each bunch can be selected. Secondly, feature rays 
corresponding to these feature polar angles can be obtained. 
Step 6. Obtain all feature rays: Go through all the bunches using Step 5 and acquire the final 
feature rays. 



2.3 Flame radiative transfer model 

The optimize spatial, angular and intensity information of light field flame images can be 
obtained through the proposed FRUS approach, as discussed in Section 2.2 [31]. The outgoing 
radiative intensity at the boundary surface of a flame is the accumulation of radiative intensity 
of all object points along the propagation path. The radiative transfer process within the flame 
can be described by the Radiative Transfer Eq. (RTE) [34]: 
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where Iλ (r, Ω) represents the spectral radiative intensity at position r and direction Ω, 
[W/(m2∙μm∙sr)]; Ibλ (r) is the spectral blackbody radiative intensity at position r, [W/(m2∙μm∙sr)]; 
βλ (r), κaλ (r), σsλ (r) are the extinction, absorption and scattering coefficient, respectively, [m-1]; 
Φ(Ω′, Ω) represents the scattering phase function of the incident in Ω′ direction and scattering 
in the Ω direction. 

In this study, the ambient radiation is ignored because the flame temperature is higher than 
the environmental temperature. Since the soot particles are absorptive, the scattering 
contribution of the soot particles within flame is neglected [35]. If the propagation path is 
divided into n parts and each path is kept at a nearly uniformed temperature, the radiative 
intensity at the boundary of flame in Ω direction can be obtained through the discretized 
solution as follows: 
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where τλ is the optical thickness of the voxel. The outgoing radiative intensity distribution at the 
boundary of flame can be obtained by integrating the radiative transfer process along with 
different directions. It can be expressed in a matrix format and described as follows: 
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where M and N are the total numbers of detection rays and voxels. 
It is necessary to solve Eq. (9) for obtaining Ibλ in each voxel. Then, the temperature T in 

each voxel can be solved by Planck’s law [36]. 



3. Numerical simulation 

3.1 Simulation setup 

To investigate the performance of the proposed FRUS approach, numerical simulations were 
carried out. The simulations were performed on a server with Intel(R) Core (TM) i9-9900K 
CPU @ 3.60GHz. In this study, a cylindrical simulated flame is considered in the simulation. 
The radius (R) and axial length (Z) of the simulated flame are set to 0.0066 m and 0.025 m, 
respectively. The simulated flame is divided into circumferential (Nz)×radial (Nr)×axial (Nφ) 
voxels. Fig. 4 illustrates the example of flame division voxels. The temperature distribution of 
two different flame structures named unimodal and bimodal is generated through Eqs. (10) and 
(11). Their temperature distributions are shown in Fig. 5. A Non-Negative Least Squares (NNLS) 
algorithm [37] is used to reconstruct the flame temperature. The absorption coefficient of 
ethylene flame is set to 10 m-1 [38].  
 

 

Fig. 4. Example of flame divisions voxels. 
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where x, y, z and r are the coordinates of the cylindrical flame, respectively. 



 

 

Fig. 5. The simulated flame temperature distributions.  

The impacts of under-sampling methods, noise levels, flame dividing voxels and light field 
camera parameters on the temperature reconstruction are investigated. To evaluate the 
reconstruction performance, relative errors of the reconstructed temperature ΔT at ith voxel and 
mean relative error ΔTmean are calculated by Eqs. (12) and (13).  
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where Trst,i is the reconstructed temperature at ith voxel, Tori,i is the original temperature at ith 
voxel, N is the total number of voxels. 

3.2 Anti-noise ability of the FRUS approach 

To examine the anti-noise ability of the FRUS approach, various noises (γ) were added to both 
original and FURS optimized sampling of bimodal flame radiative intensity (refer to Eq. 11) 
through the Eqs. (14 -16):  

 (1 )mea exaI Iσζ= +  (14) 

where Imea is the measured outgoing radiative intensity at exiting boundaries of flame, ζ is a 



standard normal distribution random variable. The standard deviations of measured 
transmittance and reflectance σ for a γ at 99% confidence are determined as: 

 
γ

2.576
exaI

σ
×

=  (15) 

 
( )

( )

2

1
10 2

1

10 log

k
i
exa

i
k

i i
mea exa

i

I
SNR

I I

=

=

 
 
 =
 −  




 (16) 

The noises γ = 1%, 3% and 5% are considered and their corresponding signal-to-noise ratios 
(SNRs) of 48 dB, 38 dB and 34 dB are defined by Eq. (16). The flame is divided into Nz×Nr×Nφ 
= 6×8×10 voxels. The reconstructed flame temperature and their relative errors under different 
noise levels obtained by the optimized and original samplings are shown in Figs. 6 and 7. It can 
be seen that the proposed optimized sampling reconstructs the flame temperature successfully 
even with the maximum noise. A small relative error between the original and optimized 
samplings was found, as shown in Fig. 7.  

  

Fig. 6. The reconstructed flame temperature under different noise levels. 



 

Fig. 7. The relative error of flame temperature under different noise levels. 

Table 3 demonstrates the reconstruction time, mean and maximum relative errors with and 
without noises. The maximum and mean relative errors are increases with the increasing of 
noises. There is a small difference of maximum and mean relative errors between the original 
and optimized samplings under different noises. However, the reconstruction time is 
significantly reduced with the optimized sampling obtained by the FRUS approach compared 
to the original sampling, such as the reconstruction time with original sampling is 205.0 s, 
nevertheless 31s is required for the optimized samplings under γ = 1%. It is also evident that 
the proposed FRUS approach has excellent capability to reconstruct flame temperature with 
noisy flame data. 

Table 3. The reconstruction time, mean and maximum relative errors under different noise levels. 

Noise levels  

Reconstruction Time/s Relative Error 

Original 

sampling 

FRUS 

 

Maximum Mean 

Original FRUS Original FRUS 

No noise 323.0 31.0 1.63E-09 1.63E-09 9.64E-10 9.53E-10 

γ = 1% 205.0 20.0 0.595 0.541 0.067 0.067 

γ = 3% 178.0 15.0 0.743 0.667 0.089 0.090 

γ = 5% 150.0 14.0 0.742 0.683 0.105 0.101 

3.3 Effects of flame dividing voxel  

The flame dividing voxel (Nz×Nr×Nφ) has a significant influence on the light field sampling 



thus in the reconstruction accuracy. In this study, six different cases of flame dividing voxel are 
considered to investigate the performance of the optimized sampling of the FRUS approach. 
Table 4 presents an overview of the sampling performance under different flame dividing voxels. 
The proposed FRUS approach optimizes the light field samplings in each case. Fig. 8 shows 
the results of ray tracing obtained under the six different cases. Since the camera parameters are 
fixed [refer to Table 2], the angular information of each ray is invariable. When the flame voxel 
is divided sparsely, a large number of detection rays pass through the same voxels, thus a higher 
redundancy of rays can be observed. When the number of flames dividing voxels is increased, 
the number of rays that pass through the same voxels are decreased. Therefore, the results 
indicate that the number of optimized rays is smaller and more redundant when the flame voxels 
are divided sparsely compared to the densely divided. As the number of flame dividing voxels 
rises, the redundancy of rays decreases and the number of optimized rays increases.  

Table 4. The number of feature rays and reconstruction time. 

Case Dividing voxel 

Number of feature rays Reconstruction time/s 

Original sampling 
FRUS 

(optimize) 
Original reconstricion  

FRUS 

( Optimized 

reconstruction) 

1 3×4×5 28867 2751 11.8 0.3 

2 4×5×6 28867 3331 23.0 0.7 

3 5×6×8 28867 4279 58.0 4.1 

4 6×8×10 28867 5070 205.6 20.0 

5 8×9×10 28867 6321 818.0 94.3 

6 8×10×12 28867 6343 1806.0 218.0 

 



 

Fig. 8. Ray tracing results under different flame dividing voxels. 

The reconstruction performance of the flame temperature is also investigated for both 
original and optimized samplings by using a bimodal flame structure [Fig. 5b]. Noise γ = 1% is 
considered. The corresponding reconstruction error and time are shown in Fig. 9 and Table 4. 
It can be seen that the flame temperature field is reconstructed accurately with the proposed 
optimized sampling, and a small difference of maximum and mean relative errors can be found 
between the original and optimized samplings. However, a significant difference can be seen in 
reconstruction time for both original and optimized samplings. For example, when the flame 
voxel is Nz×Nr×Nφ = 8×10×12, the reconstruction time with original sampling is 1806.0 s, whilst 
218.0 s is needed for the optimized samplings. The reconstruction time is very short with sparse 
voxels such as 0.3 s for Case 1 and 0.7 s for Case 2. Which is expected to be used in the real-
time reconstruction of flame temperature. Therefore, it is suggested that the FRUS approach 
can optimize the light field sampling effectively even with the different flame dividing voxels 
and thus improve the reconstruction time and accuracy. 



 
Fig. 9. Reconstruction error and time under different flame dividing voxels for original and optimized sampling. 

3.4 Effects of different light field cameras 

Based on the distance between the microlens array and photosensor, the light field camera can 
be divided into traditional (Lmp = 1.0fm) and focused light field camera (Lmp ≠ 1.0fm). To 
investigate the sampling characteristics of the different light field cameras, numerical 
simulations were carried out. The input parameters used in the simulation are listed in Table 5. 
The sampling characteristics of different light field cameras obtained under the flame dividing 
voxels Nz×Nr×Nφ = 6×8×10 are shown in Fig. 10. It indicates that different light field cameras 
have different samplings characteristics. For the traditional light field camera, almost all rays 
under a microlens pass through the same flame voxels. Whereas the opposite trend can be seen 
for the focused light field cameras. The distribution of effective rays is also different which is 
more dispersed for the focused light field camera and denser for the traditional camera as shown 
in Fig. 10(c) and (d). The FRUS approach is used to optimize the samplings for the different 
light field cameras. Table 5 illustrates the number of original and optimized rays. 



 

Fig. 10. The sampling characteristics of different light field cameras. 

Table 5. Parameters of the light field camera. 

Lom Lmm Lmp(fm) Lmi Lim f fm Nm Np dp 

Number of rays 

Original 

sampling 

FRUS 

(optimize) 

505 53.1 0.8 55.5 -2.4 50 0.6 60 12 0.008 28867 5070 

505 50.1 0.9 55.5 -5.4 50 0.6 60 12 0.008 33670 4603 

505 55.5 1.0 55.5 0.0 50 0.6 60 12 0.008 52816 9085 

505 62.1 1.1 55.5 6.6 50 0.6 60 12 0.008 51690 7680 

505 59.1 1.2 55.5 3.6 50 0.6 60 12 0.008 35328 5823 

The reconstruction performance is also verified for the different light field cameras using 
the original and optimized samplings with noise γ = 1%. The bimodal flame is considered for 
this verification. The reconstruction results are shown in Fig. 11. It can be seen that the flame 
temperature can be reconstructed through optimized sampling successfully. The focused light 
field cameras with Lmp = 0.8, 0.9, and 1.2fm perform better in the reconstruction. A slight 
difference of mean and maximum relative errors can be observed between the original and 
optimized samplings. The reconstruction time is shorter for the optimized sampling which is 
1/10 of the original sampling. It is suggested that the FRUS approach optimizes the sampling 
of different light field cameras successfully and reduces the reconstruction time.  

 



 

Fig. 11. Reconstruction error and time of different light field cameras. 

3.5 Effects of under-sampling methods   

It is crucial to investigate the reconstruction performance under different under-sampling 
methods. Because different under-sampling methods can result in diverse precision of flame 
temperature reconstruction. The random under-sampling (RUS) method is used to reconstruct 
the flame temperature and compared with the proposed FRUS approach. The reconstruction 
was carried out under the unimodal and bimodal simulated flames and the flame is divided into 
Nz×Nr×Nφ = 6×8×10 voxels. The parameters of the light field camera are utilized in this 
investigation as shown in Table 2. A total of 5070 feature rays are used for the reconstruction 
using the FRUS approach. To compare the reconstruction results, the RUS method is also used 
to select the same number of rays randomly for reconstruction. The reconstructed flame 
temperature distribution under different sampling methods with noise γ = 1% is shown in Fig. 
12. It can be seen that the proposed FRUS approach reconstructs the flame temperature 
successfully.  

 



  

Fig. 12. The reconstructed temperature distributions of different simulated flames obtained under the FRUS and 

RUS methods. 

To verify the performance of the RUS and FRUS approaches, the reconstruction without 
noise was repeated ten times and their maximum and mean relative errors are plotted in Fig. 13. 
It can be seen that the relative errors are varied significantly between the RUS and FRUS 
approach. An accurate and stable reconstruction performance can be seen for the FRUS 
samplings. Whereas a poor reconstruction quality is observed for the RUS. Therefore, it is 
suggested that the FRUS approach can optimize light field sampling effectively. 
 



 

Fig. 13. The relative errors of reconstructed temperature under different sampling methods. 

4. Experimental results and discussion 

To demonstrate the performance of the proposed FRUS approach, experiments were carried out 
to reconstruct the temperature distributions of ethylene (C2H4) diffusion flames. Fig. 14 
illustrates the experimental setup of the cage type light field imaging system. The setup mainly 
consists of a light field camera, a co-flow burner and a data acquisition system that used to 
collect light field flame images. The focal length of the main lens is 50 mm. The size of the 
microlens is 100×100 μm and f# = 4.2, respectively. The light field camera sensor has a 
resolution of 3312 (H)×2488 (V) with a pixel size of 5.5 μm. The detailed structure of the light 
field camera can be found in Ref. [19]. The camera is placed on a supporting plate that can be 



lifted and rotated. The exposure time of the camera is set to 170 μs to ensure the captured flame 
images are not too dark and not saturated. The light field flame images are captured under three 
combustion operation conditions (i.e., air to fuel equivalence ratio, λ), they are shown in Table 
6. The λ is defined as the ratio of the actual air/fuel ratio to the stoichiometric air/fuel ratio [28]. 
Fig. 15 shows the captured flame images under three different equivalence ratios. It can be seen 
that the flame height becomes larger when the fuel flow rates are increased. 

Table 6. Combustion operation conditions. 

λ Fuel (L/min) Air (L/min) 

23.39 0.08  

3.00 

 

8.64 0.10 

5.76 0.12 

 
The captured flame is divided into Nz×Nr×Nφ = 10×10×15 voxels. The proposed FRUS 

approach is employed to obtain optimized light field samplings. The reconstructed temperature 
distributions under original sampling, RUS sampling and FRUS sampling are shown in Fig. 16. 
It can be seen that the reconstructed flame temperature varies from 800 K to 2100 K, which is 
agreed with the results obtained by Santoro et al. [39]. For each condition, it can be seen that 
the flame temperature increases and then decreases from the inner to the edge of the flame. The 
temperature also increases with the ethylene flow rate due to the greater heat release during the 
combustion reaction. Comparing Fig. 16 (a) with (b) and (c), it can be seen that there is a small 
difference between the original and FRUS optimized samplings under different equivalent 
ratios. However, the differences between original and RUS samplings are quite obvious. 
Meanwhile, the reconstruction times for each condition are recorded as 209 s, 285 s and 327 s 
with FRUS sampling, respectively. Therefore, it is evident that the FRUS approach is effective 
for optimizing light field sampling, which does not only reduce the sampling’s redundancy but 
also improves the reconstruction efficiency. 



 

Fig. 14. Experimental setup of the cage type light field imaging system. 

 

 

Fig. 15. Example of light filed flame images captured under different equivalent ratios. 



 

Fig. 16. The reconstructed temperature distributions over cross-section of ethylene diffusion flames  

under different equivalent ratios. 

5. Conclusions 

A novel feature rays under-sampling approach is proposed to reduce the light field sampling’s 



redundancy and improve the reconstruction efficiency. Effects of light field under-sampling 
methods, noise levels, flame dividing voxels and light field camera parameters are investigated. 
Experiments were conducted to verify the efficiency and applicability of the proposed approach. 
The concluding remarks obtained from this study are summarized as follows. 
• The proposed approach has excellent performance under different noise levels and light 

field camera parameters, a small difference of maximum and mean relative errors were 
found between the original and optimized samplings. 

• It has been observed that the number of optimized rays is smaller and more redundant when 
the flame voxels are divided sparsely compared to the densely divided. An accurate and 
stable reconstruction performance is found for the FRUS sampling compared to the RUS.  

• The reconstruction time is significantly reduced by the FRUS approach compared to the 
original sampling. It is suggested that the FRUS approach can optimize light field sampling 
effectively. 

 
Further work will focus on the optimization of a light field imaging system based on the 
proposed approach. 
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