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Summary

The aim of this thesis is to investigate financial solutions for improving the quality of life

for retired seniors. The main pillars of research are associated with equity release mortgages

(ERMs) and dividend payments, as a cash-flow related solution which can boost pensioners

income.

This thesis investigates: i) international evidence of the dividend volatility puzzle with

empirical focus on understanding dividend and stock price volatility issues in the present

value relation by examining the variance bound inequality introduced by Shiller (1981) and

LeRoy & Porter (1981); ii) variance bound inequality by examining implied dividend volatil-

ity estimated from novel data emanating from index dividend future options and stock index

options respectively. iii) pricing mechanism for non-negative equity guarantee (NNEG) clause

in ERM contracts with detailed analysis on the model risk sensitivity, parameter estimate

sensitivities, and borrower characteristics. iv) from a portfolio viewpoint, the joint dynamics

of funding cost, long term effect of house price risk, and property impairment characterising

NNEG valuation.

Chapter 2, contributes to the emerging debate on stock-dividend volatility by providing

a multi-national assessment on the long-run behaviour of dividend volatility within financial

markets in developed economies. This was done vis-a-vis equity market volatility, utilising

stock-index data spanning from 1800s to December 2018. An examination of Robert Shiller’s

stock-dividend volatility puzzle was conducted by replicating his argument within extended

financial market data on the S&P index spanning January 1871- December 2018. The

purpose was to capture Shiller’s procedure for forecasting long-run dividend growth and

subsequently compare the performance of the replicated study under newly improved long-

run regression-based methods. This allows for an examination of the consistency of the

stock-dividend volatility puzzle across different market indices in various financial markets.

The findings support the continuance of the puzzle; however, the magnitude of volatility
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violation showed a significant decrease over the long-run.

Chapter 3, provides new evidence on the stock-dividend volatility puzzle by exploring

implied volatilities on stock and dividend markets in novel financial derivative products.

There was a comparison of information on the implied volatility surface of stock-index to

the corresponding implied volatility surface of index dividend futures on the stock index. The

thesis outlined a computational procedure for aggregating implied volatility estimates based

on the Black-Scholes, Black model, and the model-free approach. Our findings illustrate how

implied volatility term-structure of STOXX 50 with time-to-maturity exceeding 9-months

moves enough to be justified by subsequent dividend fluctuations. Options with maturities

between 1-9 months lead to implied volatilities that move too much to be justified by forward-

looking changes in dividends. The implied volatility term structure of stock consistently

exceeds that of index dividend futures thereby confirming Shiller’s dividend puzzle under

novel financial data and instruments. However, the magnitude of excess implied volatility

declines with long-dated time-to-maturity, suggesting that discrepancies between the two are

influenced by the investment horizon. Further, the thesis designed a set of trading strategies

using implied volatility and the ratio of implied volatilities as a trading signal that proves

to be successful for STOXX50 equity space.

Chapter 4 focuses on understanding the issues associated with the pricing mechanisms

for the non-negative equity guarantee (NNEG) clause in ERM contracts, taking a detailed

look at model risk. More specifically, this chapter compared the NNEG valuation principles

under the Black-Scholes model that is recommended by the regulations in the UK with a more

academic approach based on time-series modelling for gauging the underlying house price

risk. The chapter also investigates parameter sensitivities under both models and further

determine the conditions under which the two models can produce similar outcomes. Our

preliminary findings on NNEG valuation in both loan-by-loan and portfolio viewpoints show

that the GBM model consistently overestimates the NNEG cost. The rental-yield parameter

turns out to be the key risk driver in the NNEG valuation.
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Chapter 5 extends the context of the NNEG cost pricing study by investigating the

fundamental effect of idiosyncratic or dilapidation risk of the collateral house in the ERM

contracts. The chapter specifically investigates the characteristics of the NNEG values under

the requisite and well-known empirical features of UK house price data that are often absent

in perfectly rational models. The thesis focuses on the cash flow implications of the two

models introduced and discussed in chapter 4. The final sections of the chapter are dedicated

to analysing and parameterising property impairment that the loan issuer automatically

inherits via the ERM loan contract. The model for the impairment to collateral house uses a

value compressing factor that adjusts the market value of the underlying house prices for the

impact of dereliction/dilapidation of property maintenance. This allows the loan issuer to

isolate and analyse the resulting pool of impaired collateral properties. Shiller & Weiss (2000)

attributes this potential reduction in property to lack of maintenance by the ERM borrower

who may face a lessened financial interest in the collateral house. Modelling the impairment

factor allows us to further investigate the issue of hefty discounting applied to home values

as mentioned in Warshawsky & Zohrabyan (2016). The findings are indicative of a positive

relationship between implied volatility and the impairment factor in ERM portfolios. Also,

house price pathways under the GBM model display more variability compared to that of

the ARMA-EGARCH model; thereby suggesting a higher likelihood for house prices to be

overall lower at long term horizons. The loan issuer’s earnings at risk are larger under the

GBM model, leading to higher reserve liabilities for loan contracts. The time series model

seems to provide an opportunity for the loan issuer to capture extreme tail observations in

the earnings at risk, thereby allowing us to closely observe the long term effect of collateral

house price idiosyncratic risk.

Chapter 6 outlines final discussions that conclude the thesis, and point towards new

directions in which this research might take to fill the existing gaps in the literature. The

Appendices at the end of the thesis presents further results and materials which are separated

from the main text.
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CHAPTER 1

Introduction

Global economies are beset with challenges posed by population longevity and ageing. Population projections

by the UK Office of National Statistics (2016) and the US Census Bureau (2014) suggest rapid aging as the

size of senior population category increases, due to life expectancy improvement. The ageing-population

phenomenon in these two countries may be attributed to their respective age structures, where baby-boom1

live births are entering older ages, along with lower birthrates. The UK senior population (i.e. age 65 and

over) accounts for 17.7% of the total population, and it is expected to have a 6.6 percentage point increase

by 2039 (UK Office of National Statistics, 2016). A demographic study by Ortman et al. (2014) showed that

more than 20% of US residents will be aged 65 and over by 2030; compared with 13% in 2010 and 9.8% in

1970.

Population growth, ageing structure and longevity are a critical concern when few within the econom-

ically active age need to support a larger than expected number of seniors. An emphasised finding in the

2016 UK national statistics report is the anticipated decline in the traditional working-age population al-

though it has remained stable over the last 40 years. According to the March 2019 labour force survey report

by the office of national statistics, UK’s employment rate comprises of labour force aged years from 16 to

64 years in paid work. In the European Statistical Office (Eurostat) population projections Muszyńska &

Rau (2012) used a working age range of 15 - 64. The working age has generally remained unchanged for

a many countries. Extending the working age to 70 or 75 years results in long working years and lower

pension/retirement period thereby shortchanging labour force of the country since they enjoy less periods of

11960 in the case of UK / 1950 in the case of the US. According to Rouzet et al. (2019), the working-age
population is projected to shrink by about 25 million people in Japan, 12 million people in Germany, and
300 million people in China. Population growth projections for OECD countries show that the population
aged over 80 years will grow from 4% of total population in 2010 to 10% of total population by 2050 (OECD
2011).
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pension benefits (see Smeaton & McKay 2003, Barnes et al. 2004).

Longevity challenges may persist even when the retirement age is extended through parametric2 pension

reforms. Increasing the retirement age suggests longer working period and shorter retirement period. On this

basis, people with age-at-death below the average life expectancy would have worked to their grave without

any retirement benefit. Households can improve their work-life financial planning horizon when retirement

age is extended. Increasing retirement age may also amplify incentives to explore other viable post-retirement

funding solutions. Feasibility of such a policy may result in lower demand for home equity release in the long

term. On the other hand, the cost implications of an extended retirement age also needs some consideration.

Health complications of old age may result in high premiums for workers compensation benefit plans. The

quality of living standards of working and retired population may eventually be undermined when retirement

age extension is not feasible.

The narrative is no different in the global socioeconomic space, with an illustration of how the ageing

population is more profound in Asia in Figure 1.1. Another general observation relates to the increasing

size of the old-age group and the resulting loss of the pyramidal shape that depicts a positive interaction

between fertility, mortality and variations in migration. The ageing population-effect is profound in Japan

and China compared to the US and the UK with other regions of the world gradually move towards ageing

societies.

The management of longevity risk poses critical challenges to lifetime income funding around the world.

The imbalance between longevity, fertility and socio-economic advancement within a given population ul-

timately beset adverse social, economic, and political challenges on policy-makers (Von Weizsäcker 1996,

Davis 1997a, Faruqee & Mühleisen 2003). Policy options on long-term care, retirement programs and other

government welfare systems designed for the ageing population ultimately face funding complications; cost

explosion; thereby becoming stifled in the long term. Studies by Mitchell & Piggott (2004), Scholz et al.

(2006), Munnell et al. (2008), Bingzheng et al. (2014), Alai et al. (2014), and Boyer et al. (2019) have ex-

pressed collective fears about the sustainability of social security frameworks and the adequacy of retirement

income replacement cash flows in the face of the ageing population. In a recent study that builds on public

statistics across fourteen (14) European countries, Defau & De Moor (2020) reported that pension funds face

additional costs which emanate from inactive participants. This expresses the tendency of seniors receiving

lifetime income to outlive expectations, thereby becoming an extra burden. This scenario also characterises

the mismanagement of longevity risk, that deteriorates finances, creates bankruptcy and exposes retired

individuals to the risk of losing lifetime incomes (Antolin & Mosher 2014). Possible solutions aimed at

mitigating such complex challenges are discussed in Vogel et al. (2017); they include: increasing retirement

2Parametric pension reforms involve altering parameter values of a country’s pensions program.
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(a) UK (b) US

(c) Japan (d) China

Figure 1.1: Age distribution of population for UK, US, Japan and China in 2019.

Source: United Nations, Department of Economic and Social Affairs, Population Division. World Population
Prospects: The 2019 Revision. (Medium variant)
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age, investing in foreign markets, and targeting endogenous human capital formation. Unfortunately, the

outcome and impact of these recommendations are not short-term while being cost intensive.

(a) OECD selected countries

(b) Countries from other jurisdictions

Figure 1.2: Annual real investment rates of return (in %) of funded and private pension
plans, net of investment expenses, 2018.

Notes: All the annual returns are computed over the period December 2017 - December 2018 with an
exception to Australia (June 2017 - June 2018). Source: OECD Global Pension Statistics.

Pension funds and pension plans across the world have experienced investment losses. The OECD

(2019), report on pension markets shows a decline in real investment rates of return by an average of �3.2%

in OECD countries in their 2017-2018 year review. Figure 1.2 illustrates how 26 out of the 31 sampled OECD

countries experienced losses in real investment rates of return. The report mainly attributed these losses to
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bearish equity market events that occurred around the last quarter of 2018. Hennecke et al. (2017) outlined

instances when return on retirement savings are subdued by low interest rates on capital markets. This

threat is further heightened as retired seniors live longer. The joint effect of impaired investment returns

and mortality improvement creates adverse impact on pension funding patterns. A direct impact of longevity

is captured in the 2017 World Economic Forum (WEF) report, where the retirement savings gap is expected

to grow by five percent (5%) each year by 2050. World Economic Forum (2017) also reported that the United

States (US) retirement savings gap was at $70 trillion, being 1.5 times larger than the annual GDP recorded

across 7 countries3

So far, these observed statistics characterise the state of global retirement systems prior to the COVID-

19 pandemic in 2020. The financial environment has experienced significant dislocations from the norm.

The impact of the COVID-19 pandemic has been severe on global economies in 2020 with a recession despite

extensive fiscal measures to contain its negative impact across the global economy (see Mogaji 2020). The

outbreak can potentially lead to prolonged incidence of long-term unemployment, increase in government

debt levels, lower growth rates, decline in capital market values, and larger number of unemployed labour

force (see OECD 2020). The uncertainty surrounding time-to-recovery from negative impact of COVID-19

is further worsened by non-existent vaccines and lack of reliable treatment. Jordà et al. (2020) critically

analyses reasons why the long-run effects of the pandemic is expected to last approximately 40 years with

economic environments characterised by substantially low real rates of return. The resulting long-term

challenges faced by governments include among many, rising ageing-related spending on pensions, health

care cost, and long-term care. It is unclear, how governments around the world will fund stimulus efforts

to avoid recession. Tackling population morbidity remains an active part of government strategy to fight

COVID-19 related mortality however, Muszyńska & Rau (2012) demonstrated how health improvements and

progressive prevention of disability will not by themselves compensate for the ageing of the labour force.

The short-term impact of the COVID-19 pandemic on pension systems can be associated with the

United States equity market crash in February 24, 2020 which preceded a $20 trillion global equity market

loss (see Mitchell 2020). Amidst the substantially low real rate of return environment, Jordà et al. (2020)

and Mitchell (2020) predict increases in real wage rates in labour markets. Meanwhile, the pensions market

space is not fully protected from the negative impact of the pandemic and pre-COVID-19 complications

still persist with a tendency to worsen over time. Mitchell (2020) discusses how funding rate for the Dutch

retirement plan has decreased from 105% (before pandemic) to below 70%. Discussions in Mitchell (2020)

also suggest defined benefit (DB) pension schemes will face substantial under-funding complications. Early

3The countries studied in the 2017 World Economic Forum report are Australia, Canada, China, India,
Japan, Netherlands, United Kingdom, and United States. included in the survey.
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or voluntary retirement may also increase if unemployment persists for long. The direct impact of the

pandemic on country-specific funding rate is not immediately observed as various countries rely on regulatory-

based valuation methods of pension liabilities. Defined contribution (DC) pension plans are expected to be

impacted by the pandemic as level of joblessness increases in the near-term.

It has consequently become necessary to work towards ensuring retirement protection for senior popu-

lation groups. Key to this step are efforts made toward the preservation and improvement of the economic

well-being of pensioners while ensuring uninterrupted funding frameworks for social security (Choua et al.

2004).

Among other critical ageing needs, the seniors struggle with insufficient incomes & retirement savings

and larger debt4 (La Grange & Lock 2002, Chou et al. 2006, Twomey 2015, Boyer et al. 2019). This results

from the use of leverage in financing daily living, against the need for capital preservation, further income

generation, and longevity. Reliable funding for post-retirement income liquidity is a growing concern for

both senior population and public policy-makers. Proposed solutions to retirement liquidity constraints

traditionally explore the use of state pensions, retirement plan annuities, personal savings/liquid assets and

other alternative discretionary wealth e.g. sale of homes, renting or downsizing homes, etc. Recent past

events show how the senior population is at risk of losing significant value in their pension plans, home

equity, and depreciation in assets (Bhuyan 2010). According to Hennecke et al. (2017), alternative forms

of housing equity liquidation impose much higher financial and psychological burden on the elderly; some

of these alternatives include sale of one’s home or renting out, and downsizing (moving to smaller homes).

Currently, equity release mortgages (ERM) constitute private savings that; boost retirement income security,

provide a viable medium for smoothing lifetime income, and support alleviation of challenges presented by

ageing population on public budgets (see Fornero et al. 2016).

Equity Release Mortgages (ERM) as they are known in the US or reverse mortgages (RM) in the

UK, are collateralised loans that allow senior borrowers to convert equity that is locked in their houses

into lifetime income while ageing-in-place; thereby retaining the “possession-value” of the house. ERMs

fall under a special class of lifetime mortgages with common identifiable features which include; (i) sale to

senior population members typically aged 62 and older Equity Release Council (2017) although Boehm &

Ehrhardt (1994) sets average borrower age at 75 years, (ii) embedded with non-negative equity guarantees

4Per the 2014 income distribution study by the UK Department of Work & Pensions, the oldest pensioner
age group in the UK is most likely to be in relatively low income (i.e. before housing cost) group. Such
individuals may also be exposed to rising healthcare costs and difficulties in maintaining financial indepen-
dence usually relying on credit cards to cover basic living expenses. Employers’ inclination to shift from
defined-benefit (guaranteeing retirement benefits) to defined-contribution plans (match employee contribu-
tion) primarily transfers the retirement savings responsibility and associated risks solely to the employee,
thereby inflicting retiring households with massive inadequate savings (Chatterjee 2016).
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and non-recourse clauses (in the UK), (iii) contract duration is not fixed-term, (iv) issued loans demand no

regular repayments from borrowers. As a lifetime loan contract on the borrower’s house repayment of the

accumulated loan becomes due when the borrower dies, prepays early, or moves into permanent long-term

care.

This doctoral thesis focuses on providing a comprehensive study on sustainable lifetime income as

pertains to the retired senior population within worldwide economic systems. The pillars of this research

study are impinged on volatility relations in stocks, dividends and equity release mortgages as cash-flow

related solutions that can boost volatility management in lifetime income and help fund recurring out-of-

pocket costs for retired seniors aged over 55 years.

Dividend investments fall under discretionary financial wealth available to the retired senior. They

are payouts from company earnings which also provide a medium through which market participants can

focus on fundamentals that drive the value of equities. This feature of dividend investment enables fund

managers to diversify against risk associated with pure equity exposure. Interestingly, dividends also provide

substantial hedge against inflationary pressures. According to LeRoy & Porter (1981), Shiller (1981), Engel

(2005), LeRoy (2010), Van Binsbergen et al. (2012) and Lansing (2016) dividends exhibit lower volatility

when compared with equities. Currently, dividend derivative contracts are offered over long-dated horizon

thereby providing substantial upside benefits from both dividends cycle and dividends market as a whole.

Investment in dividend derivatives5 serve as a safe bet on the future of company earnings where

profit/loss can be determined independent of the market context. This is in contrast with equity investments

where profits are exposed to the company’s financial health, earnings, and market risk factors.
5The Eurex exchange introduced option contracts on the EURO STOXX 50® DVP (dividend points

index) during the second quarter of 2010. These contracts settle in cash into the realized dividends
that is paid during their respective settlement periods. Thus, the final settlement value is the sum of
all paid gross dividends in the settlement period. The futures contracts are completely collateralised
by the index notional with interest that accrue at the EONIA. By the third-quarter of 2017, the Eu-
rex exchange recorded high liquidity with an open interest of about 1.1 million contracts and an aver-
age daily volume of at least 3100 contracts (see, https://www.eurexchange.com/resource/blob/81092/
196052c5bdb64477f2dda5d608f5ad55/data/factsheet_eurex_index-dividend-futures.pdf). Both
single stock and equity index dividend futures are traded on the Eurex, allowing market participants to
target specific stocks. There is also, index dividend futures option contracts which are written on the index
dividend futures. These products altogether provide tools for managing and hedging dividend exposures.
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Figure 1.3: Distribution of global dividend yields across a sample of 22 economies

Recent market data on dividends across international markets also provide evidence of dividend yield

stability. Figure 1.3 illustrates the market outlook for dividend yields across 22 selected economies around

the world. About half of these countries have average dividend yield that exceed the global average of 3.23%

as at December 25, 2019. Figure 1.4 presents the historical evolution of dividend yield across 10 globally

selected economies i.e. Australia, China, India, United States (US), Canada, France, United Kingdom (UK),

Germany, Japan, and Spain. The dividend yield time series is quarterly, starting from Q4-2015 and ending

Q4-2019. Australia, Spain and the UK reported dividend yield levels above the 3.23% global average.

I also present the distribution of excess dividend yield over the yield to maturities (YTMs) of long-term

government bonds in figure 1.5. More than half of the countries reported positive excess dividend yields

over the YTMs of their respective 10-year government bonds; thereby confirming that dividend yields have

a tendency to do better compared with medium to long term risk-free returns.
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Figure 1.4: Dividend yield trends across selected economies.

Figure 1.5: Distribution of cross-country excess dividend yield over 10-year sovereign bond
yield to maturities

While focusing on funding adequacy and high dividend yield in long-run horizon simulations, Fong
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(2016) found evidence that dividend investment strategies significantly outperform diversified equity portfo-

lios. Minbatiwala (2012) also argued for the need to consider growth in dividend payment rather than high

dividend yields, when investigating high income generating tendencies over lengthy horizons. This has to do

with the fact that capital preservation is a key consideration when analysing lifetime income. The slightest

misconception on volatility has the potential to create a wide distribution in the final values of the retire-

ment portfolios. Despite this, there is a widely held notion that dividends inherently have lower exposures

to risk (volatility) while contributing to the expected total return. This alludes to the low dividend volatility

concept that academics and practitioners hold (see LeRoy & Porter 1981, Shiller 1981, Gilles & LeRoy 1991,

Bulkley & Tonks 1992, Engel 2005, Lansing & LeRoy 2014, Lansing 2016).

In relation to equity prices, Shiller (1981) and LeRoy & Porter (1981) observed that when actual prices

pt at any given time t are determined as the discounted value of future dividends p�t , the variance of pt is

at least 5 that of p�t thereby suggesting V arpptq ¥ V arpp�t q, an inequality that was alternatively termed the

variance bound puzzle. Other variations of the variance bounds relation can be found in the works of West

(1988b), Kleidon (1986), Marsh & Merton (1986),Bulkley & Tonks (1989), LeRoy & Parke (1992), Bulkley

& Tonks (1992), Engel (2005), and Lansing (2016).

The first segment of the thesis, looks at international evidence of excess volatility puzzle using fifty (50)

globally selected financial markets. There is dearth in existing literature investigating the empirical evidence

for the puzzle on such a large scale. The analysis took a critical look at variance bound inequalities as

proposed by Shiller (1981), West (1988b), LeRoy & Parke (1992), and Engel (2005); using realised volatility

that was estimated from historical equity index data over long-range datasets. The simple notion that

rational investors determine current stock prices as the sum of future expected dividends has attracted

attention in empirical literature. The seminal Shiller (1981) study, in particular, has sparked lively debates

on whether the higher volatility of realized prices relative to prices computed as the sum of discounted

future dividends can be used as evidence to reject the hypothesis of investor rationality. Given that previous

literature focused almost exclusively on the US, the thesis provides a maiden study of excess volatility puzzle

in an international context.

The thesis goes a step further to explore whether the observed excess volatilities provided enough

evidence to reject the hypothesis of weak form rationality in terms of allowing for exploitable profit opportu-

nities. The objective is to test whether the observed excess volatility in realized prices can be attributed to

revisions in the parameters of the dividend model selected by market participants. Bulkley & Tonks (1992)

argued that rational investors are inclined to use unbiased methodologies when forming their expectations

about future dividend growth. This goes to suggests that investors dynamically revise the parameters of

their unbiased models thereby resulting in some excess volatility of realized prices relative to that of expected
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prices based on future discounted dividends. The test is based on a simple ”buy low - sell high” trading

strategy that uses currently available data to set the parameters of the trading rule. Shiller (1981), Ackley

(1983) and Bulkley & Tonks (1992) discussed cases where large volatility of stock returns would suggest the

existence of trading rules that may dominate the classical buy-and-hold strategy.

The findings in the first chapter of the thesis confirm the commonly reported observation in the US

of realized price volatility exceeding the volatility of ex-post rational prices also applies to an international

sample of 50 countries. Although excess volatility in realized prices was confirmed across sampled countries,

its magnitude appeared to be substantially higher in developing countries compared to their developed

counterparts. The thesis presents evidence that the observed difference is most likely driven by the length

of available data in each country rather than a reflection of the fundamental relationship between excess

volatility and a country’s state of economic development. The trading strategy is second order dominant

over the buy-and-hold rule across all countries, suggesting that the observed excess volatility is driven by

the dividend process used by the investor.

Another striking finding is the sensitivity of variance bounds test results to the specification utilized to

obtain expectations of future dividends. For instance, using mixed-frequency regressions to obtain a measure

of expected dividend growth results in substantially less pronounced excess volatility on average; compared

to the standard Shiller (1981) approach of obtaining a price trend via regression against time. Though the

magnitude of the effect varies, all measures of ex-post rational prices consistently result in excess volatility

across the vast majority of sampled countries.

The results further provides empirical support for the argument that evaluation of stock market ratio-

nality is heavily dependent on the test’s specific assumptions about the dividend process. In similarity to

previous findings from the US market, the chapter documents that variance bounds tests are characterized

by the same challenges and nuances with respect to dividend stationarity when applied to other countries. In

pursuance to this, inferences about stock market rationality will ultimately depend on the assumptions that

one is willing to make about the underlying dividend process. Further research should consider replacing

variance tests with model-free or model-based orthogonality tests that have higher power than the bench-

mark returns test and circumvent the nuisance parameter problem as described by LeRoy & Steigerwald

(1995).

The second part of the research sought to examine whether the observed variance bound relation

associated with realized volatility retain its features and arguments when estimated with implied volatility

(IV). Currently, financial market professionals pricing dividend derivative contracts rely on a forward-looking

view on the total sum of dividends likely to be paid by leading companies. The adopted approach in the

second segment of the research study focused on the analysis of the relationship between the implied volatility
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of stocks and the implied dividend volatility using data on index stock options and index dividend futures

(IDF) options. Subsequent upon emerging findings on empirical evidence of the variance bounds theory, the

research proceeded to setup and optimize potential trading strategies for pension funds while focusing on

the capital preservation for sustainable a lifetime income.

The approach illustrates how implied volatility term structure of options contracts with time-to-maturity

exceeding “9-months” are justified by subsequent fluctuations in dividends. However, stock and dividend

volatility is far apart in options contracts with time-to-maturities around “1-month”, “1-3 months” and “3-9

months”. Such periods coincide with dividend announcement dates of index constituents, hence associated

with lower levels of dividend uncertainties. This phenomenon clearly makes the dividend puzzle effect more

prominent when IVs for corresponding stock-index options and IDF options do not decrease together.

The analysis showed IV of stock index options consistently exceeded that of IDF, thus confirming

previous criticism about novel financial data and instruments. The magnitude of excess implied volatilities

declines with long-dated time-to-maturity, suggesting that the discrepancy between the two IV is sensitive

to the investment horizon. This result holds in both model-free and model-based cases. The evidence for the

dividend puzzle inferred from expectations on future realizable dividends has a term-structure feature, being

almost negligible in the long-run and strongly evident in the short horizons. This implies that inferences

about the dividend puzzle for forward-looking purposes, cannot be directly obtained from that observed from

historical data without reference to the investment horizon.

For the first time in literature, the thesis constructs an implied volatility index for STOXX 50 dividend

futures contracts and further, add to knowledge about the dividend puzzle by using data from both stock and

dividend derivative markets. The evolution of this index clearly showed that in recent years there has been

a lot more volatility on dividend markets. The trading strategy results also showed that market participants

can improve returns by combining a bet on the relationship of implied index dividend volatility and implied

volatility of the index rather than using a directional bet on the underlying asset. Both model-free and

model-based implied volatility differences (IVD) trading signals outperformed the long-only trading baseline

model portfolio.

The final part of the research is directed towards providing a comprehensive appraisal of equity release

mortgages. As highlighted, there is a need to study a unified model that integrates regulatory, provider

and borrower dimensions of ERM. This will provide a good platform to decide on the best methodological

approach for the non-negative equity guarantee (NNEG) that is still hotly debated between regulators and

practitioners. Under the research conceptualization theme, the various design products existing in the ERM

market space were studied to design an optimal solution for borrowers, loan providers and regulators to create

a useful debt instrument capable of solving cash-flow related problems in retirement. Relevant literature in
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sustainable finance and pensions planning point towards retirement cash flow enhancement through equity

release mortgages (Hancock 2000, Reed & Gibler 2003, Weber & Chang 2006, Rowlingson 2006, Chou et al.

2006, Dilnot 2011, Sacks & Sacks 2012, Pfeiffer & Harold Evensky CFP 2012, Andrews & Oberoi 2015,

Cocco & Lopes 2015, Hanewald et al. 2016, 2020). Surveys on the ERM product market space show how

demand is driven by changing debt attitudes, mortality improvement and decreasing savings rates among

the population (Luiz & Stobie 2010, Hanewald et al. 2020).

Andrews (2009), Chou et al. (2006), and Gibb et al. (2007) suggested that ERM cash flows have the

potential to improve the sustainability of retirement income cash flows, ease financial burdens on government

and decrease government pension liabilities. Bodie et al. (2007) considered ERM as an efficient channel

which helps with the transfer of inter-generational wealth in a hassle-free way for seniors. Its potential to

improve poverty among senior homeowners in the US is also well accounted for with Kutty (1998) empirically

estimating a 3 percentage point decrease in poverty among elderly homeowners in the US by use of ERM

plans. In a recent study, Han et al. (2017) argues that ERM potentially provide for stable funds6 for living

expenses among borrowers until maturity or termination of the contract.

The thesis is organized as follows: the first section of this chapter is dedicated to literature review on

dividend volatility and the second section reviews literature on ERM and NNEG. The study on dividend

volatility is in two parts. Chapter 2 is on international evidence of the dividend volatility puzzle. The

empirical study focuses on understanding the issues around stock price and dividend volatility in the present

value relation by looking in detail at their variance bound inequalities. Chapter 3 presents the second part

of the dividend research which extends the variance bound inequality tests by looking at implied dividend

volatility which is estimated from novel data from index dividend future options and that of stock index

options. Chapter 4 focuses on understanding the issues associated with the pricing mechanisms for the

NNEG clause in ERM contracts, with specifics on model risk sensitivity, parameter estimate sensitivities,

and borrower characteristic sensitivities in detail. Chapter 5 extends the context of the NNEG cost pricing

study by investigating the fundamental effect of idiosyncratic house price risk on ERM contracts. The

chapter specifically investigates the characteristics of the NNEG values under the requisite and well-known

empirical features of UK house price data that are often absent in perfectly rational models. The thesis

focuses on the cash flow implications of the two models introduced and discussed in the previous chapter.

The final section of the chapter are dedicated to analysing and parameterising property impairment that

the loan issuer automatically inherits via the ERM loan contract. This allows the loan issuer to isolate and
6Pfau (2015) argued that the non-linear nature of ERM cash flows potentially allows borrowers to spend

more on their home values; this is attributable to the observed synergies emerging from reduced termination
risk with deferred loan repayment and the embedded non-recourse clauses which potentially allow a borrower
to spend more than their home value.
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analyse the resulting pool of impaired collateral properties. Each chapter of the thesis has an introduction,

the methodology applied to address the research question we pose, and the findings of the empirical analysis

before concluding. Chapter 6 outlines final discussions that conclude the thesis, and point towards new

directions in which this research might take to fill the existing gaps in the literature. The Appendices at the

end of each thesis chapter presents supplementary results and materials which are separated from the main

text.
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CHAPTER 2

Variance Bounds Test of Stocks & Div-

idends

2.1 Introduction

Not very many topics in finance and economics have attracted as much attention as the question of what

determines stock prices and, in particular, whether or not stock prices reflect the fundamental value of the

underlying firms. The debate surrounding this question has run the full spectrum from Keynes’ views about

stock markets operating as Casinos for the lucky to the Efficient Market Hypothesis of Fama and Samuelson.

One specific approach that has been adopted to examine the rationality, or otherwise, of stock markets refers

to the variance bounds tests that were first introduced by LeRoy & Porter (1981) and Shiller (1981).

This chapter of the thesis, contributes to the ongoing debate about stock market rationality and variance

bounds tests by expanding the analysis to an international sample of 50 countries. The payment of dividends

are noted to have in-built seasonality with peak activities around the periods of April-June. This chapter

develops a new methodology for testing the excess volatility puzzle, accounting for intra-year seasonality

through a mixed-frequency data sampling (MIDAS) regression setting. Under this new modelling approach,

the chapter provides evidence that stock markets with a short history are inefficient but, as the sample size

increases, the volatility ratio which is the basis of variance bound tests approaches a threshold level of 1 that

is consistent with market efficiency.

The chapter contributes to the debate on the excess volatility puzzle primarily by shifting the focus

from the US to a large sample of international stock markets. The previous literature on variance bounds
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tests of stock market rationality has focused exclusively on the US stock market.1 While the emphasis on

the US is certainly understandable, we believe that expanding the analysis in an international context can

provide valuable insights into the existence and general character of the excess volatility puzzle. To this

end, we perform a set of variance bounds tests using data on stock index prices and dividends across 50

countries. In order to understand the general applicability of the excess volatility puzzle, we examined a mix

of sample countries that is quite disperse, in terms of both geographical location as well as state of economic

development. To the best of our knowledge, this is the first study on the excess volatility puzzle and stock

market rationality across multiple international markets.

Variance bounds tests are based on the simple theoretical concept that the current price of a stock

represents the consensus forecast among rational investors of the discounted sum of its expected dividends.

Assuming that dividends follow a stationary process, Shiller (1981) shows that the variance of observed stock

prices cannot, in theory, exceed the variance of the object that it forecasts, i.e. the variance of the discounted

sum of expected dividends. Focusing on the S&P 500 index, Shiller (1981) reports a substantial violation

of this variance upper bound, with the volatility of realized stock index prices exceeding the volatility of

subsequent discounted dividend payments by a ratio of 5 to 1, while LeRoy & Porter (1981) report a similar

finding with respect to a small sample of individual US stocks. Shiller (1981) and LeRoy & Porter (1981)

further argued that these empirical violations of the upper bound of realized price variance constitute strong

evidence of investor irrationality in the US stock market. This finding of realized prices exhibiting much

higher volatility than what would have been expected from the volatility of dividends has been often referred

to as the excess volatility puzzle, and it has led to the emergence of a substantial literature that attempts to

resolve it.

Subsequent studies have expressed concerns about the suitability of the upper bounds test to detect

violations of market rationality. For instance, Flavin (1983) examines the properties of the test in small

samples and demonstrates that it is biased towards detecting violations of the variance’s upper bound,

resulting in unreasonably frequent rejections of the hypothesis of efficient markets. Kleidon (1986) and West

(1988b) make a similar argument about the test’s small sample bias and suggest that the violation of US

stock market rationality reported in the Shiller (1981) seminal study could be affected by this limitation

of the test, although the magnitude of the gross excess volatility on the US stock market is too high to be

accounted for only by small sample bias West (1988a). In addition, both Flavin (1983) and Kleidon (1986)

provided examples of stochastic processes for which violation of the variance inequalities is likely but extreme

violations are unlikely.
1A notable exception is Bulkley & Tonks (1989) who retested the variance bound tests proposed in Shiller

(1981) and some new ones they introduced for the UK market.
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Another feature of the original variance bounds test that has been called into question is the assumption

of stationary dividends. On this issue, Marsh & Merton (1986) argued that dividends are most likely non-

stationary because of the general tendency of firms to smooth dividends over time.

Shiller (1986) refuted those arguments and pointed out to several examples where violations of variance

inequalities persisted even of stationarity of dividends was not imposed. Furthermore, Dejong & Whiteman

(1991) use Bayesian analysis to show that dividends and prices are more likely to be trend-stationary than

integrated and, thus, provides support in favor of the approach presented in Shiller (1981).

The first generation variance bounds test proposed by Shiller (1981) were further improved into a number

of alternative second generation variance bounds tests. First, Mankiw et al. (1985) relaxed the assumption of

dividend stationarity and demonstrated that their alternative variance bounds test does not suffer from small

sample bias. Other researchers pointed out deficiencies of the simple present value model of stock prices and

the variance bound tests as proof of market inefficiency. Joerding (1988) showed by testing a Euler equation

for more than one iteration that the present value model is misspecified but could not identify the source of

misspecification. West (1988b) further extends the analysis on non-stationary dividends and derives an upper

bounds test with respect to the variance of innovations in the stock price, which theoretically must be lower

than the variance of innovations in the corresponding dividends. In a similar manner, Engel (2005) derived

a bounds test on the variance of first differences in prices, allowing for dividends to follow a stationary or a

unit-root process, the arithmetic price-change variance is a monotonically decreasing function of investors’

information on future dividends and showing that the excess variance inequality could be in fact reversed.

However, Lansing & LeRoy (2014) proved that when investors are risk averse log return variance is not a

monotonic decreasing function of investors’ information on future dividends. Lansing (2016) modified the

framework of Engel (2005) regarding investors’ risk preferences and information about future dividends to

provide an alternative bounds test on the variance of first differences in prices.

One line of research identified the importance of learning about the model parameters as more data

becomes available. Bulkley & Tonks (1989) focused on testing the weak form of market efficiency and

proposed a modified test using expectations computed from a model estimated using only data available

up to the time of expectation. They identified a simple trading rule providing positive excess return which

can be interpreted as evidence rejecting the weak efficient market hypothesis. Focusing on a simple learning

model for dividends, Timmermann (1993) showed that the distribution of the variance ratio is modified

substantially when learning is accounted for into the model.

The reluctance of managers to decrease dividend payments to avoid sending bad signals to shareholders

has a stabilising effect to smooth dividends thereby making its volatility low. Negative information still tends

to be incorporated into prices via channels other than dividend announcements. Observed stock prices there-
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fore appear more volatility compared to dividends. Some relevant studies Chang et al. (2006), Bharath et al.

(2009), and Leary & Roberts (2010), directly attribute managers equity decisions to asymmetric informa-

tion. Management decision and asymmetric information may constitute another paradigm to explain equity

price and dividend variations. Chen et al. (2012) discussed how dividend smoothing tends to bury dividend

predictability. Using net payout and earnings, alternative measures less subject to dividend smoothing the

study showed how cash flow news impacts price variations more than news on discount rate. There is also

empirical evidence to show how dividend smoothing makes dividend yield more persistent Cochrane (2008).

Dividend smoothing can however be mitigated in finitely long samples thereby making it difficult to assess

the extent to which dividend policy with varying degrees of smoothing affects price and dividend variations

(see Chen et al. 2012).

The impact of dividend signal in literature has been mixed. The dividend indifference proposition

of Modigliani & Miller (1959) explains how dividend policy has no impact on firm discount rate or firm

value, ceteris paribus. Grullon et al. (2005) discussed instances where changes in future profitability of

companies are not signalled by dividend changes. Empirical studies on the information content of dividends

present instances where negative market reactions are driven by dividend omissions and decreases and vice

versa (see Elfakhani 1998, McCluskey et al. 2006). Miller & Modigliani (1961) rationalised the effect of

dividend changes on stock returns via new information that signal future cash flow. Similarly, the risk

information hypothesis of Howatt et al. (2009) characterises the signalling of earnings risk through dividend

policy. According to Howatt et al. (2009) positive changes in the average real Earnings Per Share (REPS)

are associated with positive changes in dividends and significant changes in the variance of REPS occur after

change in dividend. The concept describes the potential stickiness of increases and decreases in dividend in

relation to corporate earnings. The impact of dividend signalling is mainly driven by management efforts

to control size of dividend increase to avoid sending bad signals to shareholders in future; this practice may

increase variability in future earnings when dividends are gradually raised within a financial environment

characterised by variable earnings. The dividend signalling concept however constitute an empirical question

that is beyond the focus of my thesis.

Drawing a conclusion on the stock market’s rationality, or lack of it, will naturally depend on the specific

test used to examine this hypothesis and, in particular, on the assumptions that a given test is based on.

As such, empirical studies of US stock market rationality via variance bounds tests have produced mixed

results. West (1988a), Gilles & LeRoy (1991), Shiller (2003) and LeRoy (2010) provided a comprehensive

review of the econometric problems related to variance bounds tests of market efficiency.

Empirical studies have tended to fall in one of two camps. For instance, Mankiw et al. (1985), Campbell

& Shiller (1987a), West (1988b), Shiller (1988), Bulkley & Tonks (1989), Cochrane (1991), Dejong & White-
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man (1991), LeRoy & Parke (1992) and Timmermann (1993) argued that results from variance bounds tests

are indicative of stock market irrationality, while Kleidon (1986), Shea (1989), Ackert & Smith (1993), and

Lansing (2016) suggested that their empirical findings are compatible with the hypothesis of stock market

efficiency. Cochrane (1992) appeared to hold the relative middle ground by concluding that, even though

his empirical results do not directly reject the present-value model for stock prices, the discount rates used

in the tests “must possess some unusual characteristics” in order to be compatible with the hypothesis of

stock market efficiency.

The chapter also contribute to the literature by exploring two alternative approaches for obtaining

expectations of dividend growth. Given the present value model’s prediction that realized stock prices reflect

investors’ expectations about future dividends, the choice of a specific approach to construct the time-series

of expected dividends (by determining a value for expected dividend growth) is likely to have an impact on

the results of variance bounds tests. Starting from the seminal Shiller (1981) study subsequent papers have

explored different ways of producing more accurate expectations of dividend growth (see Cochrane 1992, for

a more detailed discussion). I contribute to this debate by applying relatively more recent techniques from

the literature on dividend predictability. More specifically, we obtain dividend trend factors via regressions

of realized dividend growth against the lagged dividend-price ratio, either in a simple time-series regression

setting (as in Cochrane 2008) or in a mixed-frequency regression setting (as in Asimakopoulos et al. 2017).

I find strong evidence of excess volatility in our sample of international stock markets when using first

generation variance bounds tests, consistent with the excess volatility puzzle in the US. More specifically,

the volatility of realized prices exceeds the volatility of ex-post rational prices computed from the subsequent

dividends in all sample countries, with only one exception. Furthermore, in the majority of cases, the ratio of

realized price volatility over the volatility of ex-post rational prices exceeds the value of 5:1 that was reported

in the original Shiller (1981) study for the US market, suggesting that deviations from the hypothesis of

market rationality could potentially be even more pronounced when examined in an international context.

The chapter also document that the magnitude of excess volatility varies in a non-random way across

our sample. Countries with developing economies and shorter time-series of available data are consistently

found to be characterized by larger volatility ratios (realized over ex-post rational prices) compared to

developed countries with longer available datasets. While it might be intuitively appealing to conclude from

this relationship that stock markets in developing countries tend to deviate from investor rationality more

significantly compared to their developed counterparts, we actually find evidence that the differences in

volatility ratios are most likely driven by the length of the available data series rather than the countries’

particular state of economic development. This finding is compatible with the small sample bias of the first

generation variance bounds test discussed in Flavin (1983), Kleidon (1986), and West (1988b). Nevertheless,
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the fact that we ultimately detect substantial excess volatility even in countries with particularly long series

of available data suggests that small sample bias is unlikely to explain away the presence of excess volatility

in our sample, even though it is likely to have an impact on its reported magnitude. An interesting case is

Spain, where the estimated volatility ratio is less than unity.

The results suggest that volatility ratios are sensitive to the specific approach adopted for computing ex-

post rational prices, even though the qualitative conclusion of excess volatility does not change. In particular,

we find that two alternative approaches to obtaining trend factors produce lower volatility ratios compared

to the ones obtained under the original Shiller (1981) approach. Following the Cochrane (2008) approach

of obtaining expected dividend growth via simple time-series regressions of realized dividend growth against

the lagged dividend yield gives lower volatility ratios, while estimating these regressions in a mixed-frequency

setting (following Asimakopoulos et al. 2017) results in substantially lower volatility ratios. In any case, the

volatility of realized prices consistently exceeds what would have been expected based on the subsequent

dividends across all three approaches, suggesting that the excess volatility that we observe is robust to several

approaches used to infer ex-post rational prices.

Finally, the chapter reports evidence of dividends deviating significantly from stationarity in the vast

majority of our sample countries. I adjust our analysis for non-stationarity by performing the variance

bounds test proposed in Engel (2005). In contrast to our previous results, the volatility ratios that are com-

puted based on this second generation test support the hypothesis of market rationality across all countries,

irrespective of the approach adopted to compute ex-post rational prices. Although a comprehensive exami-

nation of how to model best the dividend process lies outside the scope of this chapter, the results suggest

that the ongoing debate on the use of alternative variance bounds test in the US market also applies in an

international context. In this sense, we provide evidence from a large sample of countries that, similarly to

existing evidence from the US, any conclusion about the hypothesis of stock market rationality will depend

on the specific assumptions made about the nature of the dividend process.

The remaining of the chapter is organized as follows. Section 2.3 discusses the data used in the empirical

analysis and the construction of the main variables of interest. Section 2.4 presents the empirical results of

the first generation variance bounds tests, while Section 2.5 reports the results under alternative approaches

of obtaining trend factors. Section 2.6 discusses the issue of dividend stationarity and presents the results

of second generation variance bounds tests, while Section 2.8 concludes.
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2.2 Literature Review

This section presents a detailed review of relevant literature that back the research study on the international

evidence of the variance bounds test. The review of literature starts by defining and contextualising the

concept of variance bounds tests for equity index prices and dividend payments. The discussion sheds more

light on the empirical and theoretical aspects of the relationship between price and dividend volatilities.

More specifically, we explore both the empirical and theoretical underpinnings on the subject by surveying

relevant literature that well identified with the variance bounds tests; tracing the history right from its first

generation Shiller (1981) and LeRoy & Porter (1981), and the second generation discussions in Mankiw et al.

(1985), Marsh & Merton (1986), Merton (1986), West (1988b), Mankiw et al. (1991), LeRoy & Parke (1992),

Engel (2005), and more recently Lansing (2016). This allows us to position the contribution we make to the

important discussion of variance bounds theory and empirical studies.

Asset prices dynamics has been the focus of most research in finance. Gordon (1962), Shiller (1981),

LeRoy & Porter (1981), Van Binsbergen et al. (2012) and many others who study the prices of aggregate

stock market, determine price as the sum of discounted future dividend payments. However, Van Binsbergen

et al. (2012) differs from the other studies when they rather characterise the dynamics of the individual

components that are in the sum of discounted dividends of the index. They show that the volatilities of

the individual components are higher than that of the total sum they are taken from. This implies that,

market practitioners and academics stand the risk of underestimating volatility when they determine prices

by taking a forward-looking market view on total sum of expected dividends likely to be paid by leading

index constituents.

Ang & Liu (2007) provide an excellent characterisation of the joint dynamics of dividends, expected

returns, prices, and stochastic volatility. More specifically, they describe the restrictions on the dynamics

of prices, expected return and stochastic volatility by specifying the dividend process. Since the stock price

returns is equal to the sum of the dividend yield and capital gains, there exist a relationship between price

and dividend when the process that drives expected return is specified.

I can establish a link between stock price fluctuations and that of dividends when prices are determined

as the present value of current and expected future dividends. Shiller (1981),LeRoy & Porter (1981),West

(1988b), Kleidon (1986),LeRoy & Parke (1992), and Engel (2005) derive a volatility relation between actual

stock prices and that of ex-post2 rational prices. These studies differ by the assumptions on whether div-

idend is stationary or nonstationary. Brealey et al. (2011) also discusses conditions where the stock price

2The ex-post rational prices is defined as the realised present value of current and future dividends.
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fluctuations are driven by changes in the expected discount present value of dividends.

2.2.1 Variance bounds tests

The variance bound debate in literature has mainly been econometric in nature. Most research studies use

empirical and simulation methods to demonstrate results, when analytical issues need clarification. The

estimation of volatility may take two forms; It is either directly calculated as “realised volatility” of the

underlying assets or as the “implied volatility” that is estimated from some innovations in the asset or from

some subset of the market’s information set. For any given asset, the term structure of volatility provides an

efficient reflection of the market expectations across different horizons. As these expectations vary of over

time, so will dynamics of asset prices and its associated returns also change.

The question on what drives equity price dynamics, including subsequent information contained within

observed fluctuations has been widely investigated. On this subject matter, most discussions in the literature

typically seek to explain why aggregate stock prices, a highly volatile series turns out to be the expected

present value of a corresponding dividend series that is much smoother. Some notable works include those

of Lewis & Whiteman (2006), Binsbergen & Koijen (2010), Lacerda & Santa-Clara (2010), Van Binsbergen

& Koijen (2011), Van Binsbergen et al. (2012), Chen et al. (2012), Rangvid et al. (2014), and Jagannathan

& Liu (2019). These studies are linked by the present-value relation, which typically plays a key role in

valuation of financial assets.

In its generalized form, the simple present-value relation, equates the time t realisation of a dependent

variable time series xt to the present-value of discounted expected value of tytu, given currently known

information It. This is written as

xt �
ņ

k�0
αkEpyt�k|Itq (2.1)

where, tytu is a scalar3 time-series and information on yt and xt is available up until, and including time t.

α is the scalar α   1.

The present value relation has been extensively applied4 in varied research studies Grossman & Shiller

(1981), Shiller (1981), LeRoy & Porter (1981), LeRoy & Parke (1992), Campbell et al. (1998), Cochrane

(2008), Binsbergen & Koijen (2010), Golez & Koudijs (2018), and Jagannathan & Liu (2019). There is

3 tytu is a scalar time-series jointly generated with another time-series vector tvtu, as an independent
stationary linear bivariate or multivariate stochastic process. With this outline, the independent bivariate
series i.e.tyt, vtu take their distributions exogenously.

4(2.1) depicts the expectations theory of term structure when yt is short-term interest rate and xt is
long-term interest rate. Likewise, permanent income hypothesis results when yt is short-term income and xt
is long-term average income

22



also strong empirical base supporting the explanatory power of the dividend yield effect in depicting the

true economic value of stocks in efficient markets. Current extensions of (2.1) captures the role of market

anticipation of future economic variables in stock price dynamics Cochrane (2008), Van Binsbergen et al.

(2012), Li & Yang (2013), Lansing (2016), Golez & Koudijs (2018), and Jagannathan & Liu (2019). Using

a latent variable model for dividends within present-value relations, Van Binsbergen & Koijen (2011) finds

improved dividend growth predictability. Jagannathan & Liu (2019) also shows further improvement in

dividend predictability when the effects of learning on dividend dynamics is captured in the (2.1) for long-

run risk models.

Shiller (1981), LeRoy & Porter (1981), Mankiw et al. (1985), Marsh & Merton (1986), and Kleidon

(1986) present evidence where aggregate stock prices are more volatile than implied by the present-value

relation. In Shiller’s model-free variance bound test, stocks are at least 5 times more volatile than their cor-

responding dividends. This constitutes the volatility puzzle that has received a lot of attention in literature.

The first-generation method in Shiller (1981) and LeRoy & Porter (1981) does not, investigate the statistical

significance of its point estimates due to the lack of a dividend model in the specification. The model-based

alternatives proposed by LeRoy & Porter (1981), Campbell & Shiller (1987b, 1989) seek to reconcile several

critical distinctions that, although present in the model-free, were not emphasized adequately or developed

there.

A lot of studies attempt to rationalise and resolve the excess volatility associated with stock prices. In

line with Shiller’s variance bounds test, Gilles & LeRoy (1991) argues for the need to account for market

frictions by parameterising preferences of market participants that are more general compared to what has

already been done. Perhaps, the approach can help researchers to adequately explore the volatility puzzle

and further engage formal statistical tests to assertions when working with model specifications that link

expected returns, return volatility and the price-dividend ratio.

The basic idea of the volatility puzzle is to test whether the variance relations of pay-offs conform to

bounds derived from the present value relation. It is sometimes mentioned hand in hand with orthogonality

tests, which has to do with testing whether actual prices and their ex-post counterpart are related just as

implied by the present value equation. LeRoy & Parke (1992) discusses the difference between the two; in

that, orthogonality tests focuses on validating the equality implication of the present value relation while

the bounds test seeks to determine the validity of the present value inequality relation.

The variance bounds test presented in Shiller (1981) has seen a good number of criticisms, starting with

Flavin (1983), West (1988b), Kleidon (1986) and more recently Engel (2005) and Lansing (2016). Flavin

points to the sample variance being a biased5 estimate of the population variance, thereby affecting the test
5Baised estimates result form the fact that the correction for degrees of freedom is insufficient.
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results. Stock price time series in the bounds test requires a trend adjustment of the time series in order to

attain stationarity; Kleidon (1986) shows that the trend-adjusted series in Shiller’s paper is non-stationary.

Kleidon’s assertion, opened up a new issue that underlie subsequent enquiries on the variance bounds theory.

This has to do with whether prices are stationary6 after applying first generation detrending procedure7.

A number of studies attempt to bypass the trend-adjustment procedure in varied ways. For instance,

LeRoy & Parke (1992) suggest using the dividend-price ratio series rather than actual prices themselves,

hence deriving the variance bounds relation in terms of price-dividend ratio instead. In their specification,

ex-post rational price of the stock is defined as p�t � βdt�1 � β2dt�2 � � � � where β denotes the discount

factor. From the present value relation, actual prices of the stock is written as pt � Epp�t |Itq where It is the

available information up to time t. The approach described in LeRoy & Parke (1992) presents an alternative

specification of the variance bounds test using the dividend price ratio. Here, pt{dt � Epp�t {dt|Itq with a

variance bound relation written in the form V arppt{dtq ¤ V arpp�t {dtq. The final results are largely in the

same direction as that of the first generation variance bounds test, and the estimated volatilities also remain

in the same order of magnitude. Campbell & Shiller (1988) and Cochrane (2008) also suggest other corrective

methods for trend adjustments. One also comes across a model-free variance bounds and orthogonality test

in LeRoy & Parke (1992), where an argument is made for the need to specify an appropriate dividend

forecasting model.

There has also been discussions on developing appropriate formal tests for the variance bounds theory.

This argument is found in discussions introduced by Flavin (1983), and they are based on the fact that the

underlying distribution that drives the sample variance in the bounds tests is unknown. Such a model-based

test is important and LeRoy & Parke (1992) attest to this, but also express concerns about the implication

of its results. For instance, rejecting the null will suggest a rejection of the present-value relation. However,

failure to reject the null could be driven by a case of misspecified dividend model.

2.2.2 Objectives of the chapter

In order to contribute to the excess volatility puzzle debate, the thesis shifts the focus from the US to a larger

sample of globally selected stock markets. This allows us to add to previous literature on variance bounds

tests of stock market rationality that has exclusively focused on the US stock market. This chapter of the
6If stationarity is not achieved, the variance of the prices will be time-varying.
7Detrending is done by fitting a loglinear trend to stock prices. Shiller (1981) uses the regression coefficient

to calculate the growth rate of the prices series which is used to detrend the prices. LeRoy & Porter (1981)
also assumes that the trend in prices is attributed to inflation and retained earnings and proceed to reverse
the effects of these factors on the stock prices.
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thesis performs a set of variance bounds tests using prices of stock indices and their corresponding dividends

across 50 countries. This provides an essential support structure to understand the general applicability of

the excess volatility puzzle. The 50 sampled countries are at different states of economic development thereby

allowing for a robust investigation of the theoretical concepts outlined in relevant literature. This is the first

research study on the excess volatility puzzle and stock market rationality across multiple international

markets which seeks to:

i) address the analysis of the variance bounds puzzle in an international context,

ii) investigate valuable new insights on its existence, and explore the generalizability of the excess volatil-

ity puzzle.

iii) analyse the impact of recent approaches for obtaining expectations of dividend growth on results of

variance bounds test.

2.2.3 Research questions

Given the present value model’s prediction that realized stock prices reflect investors’ expectations about

future dividends, the choice of a specific approach to construct the time-series of expected dividends (by

determining a value for expected dividend growth) is likely to have an impact on the results of variance bounds

tests. Starting from the seminal Shiller (1981) study, where expected dividend growth is essentially obtained

via a simple regression of prices against time, subsequent papers have explored different ways of producing

more accurate expectations of dividend growth; Cochrane (1991) provides more detailed discussion. The

contribution to this debate is by applying relatively more recent techniques from the literature on dividend

predictability. I obtained dividend trend factors via regressions of realized dividend growth against the

lagged dividend-price ratio, either in a simple time-series regression setting as in Cochrane (2008) or in a

mixed-frequency regression setting (as in Asimakopoulos et al. 2017). More specifically, the research focuses

on the first and second generation variance bounds tests and intends to answer the following questions:

i) Is there a strong international evidence of excess volatility to support the conclusions of variance

bounds tests?

ii) Can the first generation variance bounds test be improved with a robust approach for obtaining

expectations of dividend growth?

iii) Are the results from variance bounds tests indicative of stock market irrationality or of stock market

efficiency?
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2.3 Data sources and main variables

I obtain international data from the Global Financial Database (GFD). The dataset covers 50 countries and

it includes monthly observations for the nominal index price, index dividend, the Consumer Price Index

(CPI), and the risk-free rate for each sample country. The overall sample period runs from January 1840

to December 2018, for a total of 179 years (2,148 months). However, given that coverage in GFD begins

at different times for different countries, the number of available observations varies across the sample

countries. For example, data for the French equity market is available from 1840 while, at the other end

of the spectrum, coverage for Bulgaria only begins in 2001. Some countries had individual stock price data

but started calculating and publishing stock price index late. For instance, Canada started calculating and

publishing their stock price index about a century before the United Kingdom. Section 2.6.2 of the Appendix

presents summary metadata on the FTSE100 index from the Global Financial Database (GFD).
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Figure 2.1: Data coverage

Notes: This figure plots the number of countries with available stock index price, and dividend data from
1840 to 2018. Categorisation into developing and developed countries is based on the International Monetary
Fund, from 2018.

I use Pt and Dt to denote the index price level and the level of index dividends, respectively, for a given

country at time t at an annual frequency. I use the lower case variables pt and dt to denote the corresponding

logarithmic prices and dividends, respectively. Then, we compute the annual log dividend growth rate gt,
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log index returns rt, and the log dividend yield yt at time t as follows

gt � lnpDtq � lnpDt�1q � dt � dt�1 (2.2)

rt � ln

�
Pt �Dt

Pt�1



(2.3)

yt � ln

�
Dt

Pt



� dt � pt (2.4)

For each country, we obtain annual observations by aggregating monthly dividends and by using end-

of-year prices. More specifically, we construct the time-series of annual dividends Dt as the sum of the 12

monthly dividends that were paid during a particular year, while the time-series of annual index prices Pt

refers to the prices observed on the last day of December in each year. Finally, we compute real annual

prices and dividends by deflating the nominal time-series by the respective CPI8.

The aggregation of monthly dividends in Dt and the use of end-of-year prices in Pt naturally results in

some loss of information, since the resulting dividend-price ratio yt will not take into account any variation in

prices or dividends that occurred within a particular year. In order to address this concern, we also employ

a mixed-frequency data sampling (MIDAS) technique which allows us to use information from prices and

dividends at a higher (monthly) frequency, similarly to Asimakopoulos et al. (2017). To this end, we use

the monthly quoted variables Pmt,k and Dm
t,k, which denote the price levels and dividend levels, respectively,

observed in year t and on month k, as well as the corresponding logarithmic variables pmt,k, dmt,k, and ymt,k.

Table 2.1 reports descriptive statistics for the time-series of annual log index returns rt, log dividend

growth gt, and the dividend yield yt in each country, with the sample countries sorted in ascending order

according to the number of available observations. Unsurprisingly, mean dividend growth has been positive

in all countries, with the only exception of Egypt which experienced a -0.015 mean log-change in annual

dividends during the sample period. Despite its almost universally positive sign, mean dividend growth

varies substantially across different countries, ranging from a minimum of 0.013 (Japan) to a maximum of

0.465 (Argentina). Interestingly, countries with shorter available data series generally have a higher mean

and standard deviation of dividend growth compared to countries with more available data. For example,

the highest standard deviation of dividend growth is exhibited by Bulgaria (0.994) which only has 17 years

of data in our sample. Similarly, the mean log return also seems to be negatively related to the number

of available observations across countries, and it remains predominantly positive (with the exception of

8I follow the approach in Shiller (1981) to deflate nominal variables. More specifically, we use the mean
annual CPI to deflate monthly variables for observations before 1900, while we use the monthly CPI to
deflate observations after 1900.
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Portugal).

Table 2.1: Descriptive statistics

Return (r) Dividends (d) Dividend Yield (y)
Country t0 n Mean St.Dev. Mean St.Dev. Mean St.Dev.

BGR 2001 17 0.094 0.508 0.126 0.994 0.278 0.426
ROU 1999 19 0.146 0.402 0.229 0.575 0.486 0.378
RUS 1998 20 0.219 0.501 0.315 0.483 0.281 0.200
TUN 1997 21 0.094 0.147 0.107 0.187 0.398 0.131
BRA 1996 22 0.143 0.330 0.152 0.200 0.427 0.097
CZE 1995 23 0.035 0.246 0.107 0.640 0.523 0.277
HUN 1995 23 0.125 0.344 0.119 0.246 0.264 0.129
POL 1995 23 0.045 0.275 0.053 0.322 0.297 0.157
ISR 1994 24 0.078 0.255 0.083 0.279 0.338 0.118

EGY 1993 25 0.154 0.465 -0.015 0.445 0.928 1.256
CHN 1991 27 0.079 0.418 0.110 0.444 0.269 0.135
IDN 1991 27 0.119 0.339 0.198 0.342 0.238 0.076
IRL 1991 27 0.051 0.300 0.049 0.270 0.259 0.158
PRT 1987 31 -0.003 0.266 0.041 0.180 0.395 0.165
COL 1986 32 0.178 0.357 0.163 0.463 0.371 0.172
NGA 1986 32 0.164 0.309 0.159 0.277 0.604 0.181
TWN 1986 32 0.070 0.373 0.101 0.422 0.273 0.180
TUR 1986 32 0.340 0.653 0.318 0.275 0.358 0.278
KEN 1984 34 0.059 0.290 0.032 0.363 0.912 0.465
MAR 1984 34 0.099 0.178 0.076 0.110 0.505 0.269
PHL 1982 36 0.105 0.390 0.049 0.349 0.335 0.432
JOR 1979 39 0.041 0.224 0.053 0.271 0.404 0.161
GRC 1977 41 0.047 0.407 0.013 0.400 0.698 0.657
THA 1976 42 0.070 0.369 0.050 0.287 0.496 0.291
CHL 1974 44 0.272 0.443 0.270 0.490 0.476 0.220
MYS 1974 44 0.076 0.271 0.067 0.157 0.308 0.087
SGP 1973 45 0.060 0.277 0.076 0.095 0.287 0.112
NOR 1970 48 0.059 0.273 0.073 0.178 0.378 0.156
HKG 1965 53 0.109 0.368 0.099 0.245 0.420 0.164
ZAF 1964 54 0.113 0.201 0.113 0.159 0.402 0.131
KOR 1963 55 0.108 0.294 0.071 0.239 0.764 0.776
FIN 1962 56 0.082 0.292 0.079 0.181 0.516 0.222
ARG 1947 71 0.473 0.852 0.465 1.039 0.381 0.222
GBR 1934 84 0.057 0.204 0.061 0.076 0.530 0.159
NZL 1927 91 0.045 0.201 0.040 0.223 0.603 0.166
AUT 1925 93 0.053 0.277 0.047 0.214 0.376 0.136
ITA 1925 93 0.064 0.269 0.058 0.620 0.443 0.203
IND 1921 97 0.061 0.223 0.043 0.269 0.641 0.442
CHE 1919 99 0.040 0.197 0.032 0.209 0.352 0.187
SWE 1902 116 0.059 0.215 0.059 0.179 0.483 0.146
JPN 1901 117 0.024 0.318 0.013 0.221 0.543 0.425
ESP 1900 118 0.036 0.203 0.036 0.141 0.546 0.276
NLD 1892 126 0.030 0.193 0.027 0.215 0.559 0.236
DNK 1874 144 0.034 0.170 0.035 0.150 0.553 0.242
BEL 1871 147 0.031 0.192 0.032 0.306 0.452 0.172
USA 1871 147 0.043 0.179 0.036 0.101 0.519 0.216
DEU 1870 148 0.022 0.330 0.017 0.256 0.495 0.222
AUS 1862 156 0.042 0.147 0.041 0.127 0.671 0.158
FRA 1840 178 0.053 0.192 0.052 0.134 0.476 0.170
CAN 1831 187 0.037 0.161 0.039 0.252 0.486 0.191

Notes: This Table presents a set of descriptive statistics for the main variables of interest, namely stock
index returns (r), index dividends (d), and the dividend yield (y). All variables are annualized. The Table
reports the mean and standard deviation of each time-series, as well as the first year of available observations
(t0) and the total number of observations in years (n). Statistics are tabulated separately for each country,
across 50 countries in total. Countries are sorted in ascending order based on the number of years with
available data (n).
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Figure 2.2 plots the time-evolution of the index price levels and the corresponding dividends for four

developed economies, namely the France, Japan, US, and UK. Consistent with the positive means reported

in Table 2.1, Figure 2.2 depicts an upward trend in the index price and the associated dividends, with the a

significant degree of co-movement between the two time-series.9

(a) France (b) Spain

(c) UK (d) US

Figure 2.2: Time-evolution of index level and dividends

Notes: This Figure plots the time-series of index price levels and index dividends for a subsample of four
countries, namely France, Japan, UK and US.

2.4 Variance bounds tests

The log dividend yield can be expressed as the difference between expected stock returns and the expected

dividend growth plus a constant (Campbell & Shiller 1988)

9Albeit unreported to conserve space, the respective plots for the remaining 46 sample countries reveal
similar patterns to the ones reported in Figure 2.2.
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yt � α� Etr
8̧

j�0
ρj�1rt�1�js � Etr

8̧

j�0
ρj�1∆gt�1�js (2.5)

where ρ denotes an autoregressive parameter vector. I follow Cochrane (2008) and estimate ρ via a Vector

Autoregressive (VAR) specification based on the changes in dividend growth ∆gt, stock returns rt, and the

dividend yield yt. This specification can serve as a reasonable starting point which allows us to obtain ex-post

rational prices by using the dividend yield and expected dividend growth. While the dividend yield is readily

observable at time t, we still need a meaningful measure of expected dividend growth based on information

available at t. Hence, the empirical analysis starts by following the standard approach of estimating the

growth trend via a regression of price levels against time, as was originally proposed in Shiller (1981). More

specifically, in order to compute the de-trended real log price p̃t and dividend d̃t, we begin by regressing the

real log price pt against a deterministic trend

pt � α� βt� εt (2.6)

The long-run exponential growth rate that is used to de-trend the price and dividend series is λ � exppβq.
Thus, the real de-trended time-series are given by

p̃t � pt
λt�T

(2.7)

d̃t � dt
λt�1�T (2.8)

Finally, similarly to Shiller (1981), we compute the de-trended ex-post rational price p̃�t recursively from

the terminal date T using the equation

p̃�t � γ̄pp̃�t�1 � d̃tq (2.9)

where γ̄ � λp1 � rq is a discount factor and r denotes the one-year risk-free rate of interest. In order to

solve the recursive problem in (2.9), we set the terminal value p̃�T of the ex-post rational price p̃�t equal to

the average de-trended realized price over the sample period, i.e p̃�T � 1
T

°T
t�1 p̃t.

The efficient markets model implies that, since rational investors determine current stock prices by

discounting future dividends, p̃t represents an optimal forecast of p̃�t , in other words p̃t � Etrp̃�t s. Then it

follows that the forecast error ut � p̃�t � p̃t must be uncorrelated with the forecast itself. This means that

varpp̃�t q � varpp̃t � utq � varpp̃tq � varputq. Since variances are obviously non-negative, this relationship

results in the following expression for the standard bounds test of Shiller (1981) and LeRoy & Porter (1981)
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σpp̃tq ¤ σpp̃�t q (2.10)

The excess volatility puzzle refers to the commonly reported empirical finding of the volatility of realized

stock prices exceeding substantially the volatility of expected stock prices that are based on expected dividend

payments. In order to get a preliminary idea about the magnitude of the excess volatility puzzle across

different markets, we begin by plotting in Figure 2.3 the historical evolution of the de-trended stock price

p̃t and the corresponding ex-post rational price p̃�t for a subset of four developed countries, namely France,

Spain, US and UK. The resulting plots are consistent with the hypothesis of excess volatility in the time-

series of realized prices compared to that of dividend-based expected prices, as evidenced by p̃�t consistently

plotting as a much smoother and more stable series compared to that of its respective p̃t. In this sense,

Figure 2.3 provides some preliminary evidence against the rational expectations hypothesis.

(a) France (b) Spain

(c) UK (d) US

Figure 2.3: Time-evolution of realized price and ex-post rational price

Notes: This Figure plots the time-series of de-trended realized prices p̃t and de-trended ex-post rational
prices p̃�t for a subsample of four countries, namely France, Spain, UK and US.

Next, the chapter explores the magnitude of the puzzle across all markets by plotting the volatility of
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the realized price σpp̃tq against the volatility of the ex-post rational price σpp̃�t q for each of the 50 sample

countries. The first thing to notice on Figure 2.4 is that, in all cases, σpp̃tq is indeed higher than the

volatility σpp̃�t q that would have been expected conditional on dividends, confirming the existence of the

excess volatility puzzle across all of our sample countries. The magnitude of the puzzle in many countries

appears to be considerably higher compared to the commonly quoted ratio of 5:1 in the US market that was

reported in the seminal Shiller (1981) study.

Figure 2.4: Volatility of realized vs ex-post rational prices

Notes: This Figure plots the realized stock price volatility σppq against the volatility of the ex-post rational
price σpp�q, across a sample of 50 countries.

As can be seen from the first column of Table 2.2, the volatility ratio σpp̃tq
σpp̃�t q

ranges from a minimum of

0.5 (Spain) to a maximum of 22.7 (Malaysia), with a mean (median) value of 7.5 (6.0). Overall, in addition

to the ratio exceeding one (i.e. σpp̃tq exceeding σpp̃�t q) across almost all countries, the volatility ratio exceeds

the value of 5 for the majority of sample countries (27 out of 50).
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Table 2.2: Variance bounds tests

Full sample Subsamples formed on time-series length
L   30 30   L   60 60   L

mean 7.5 12.5 9.2 2.4
median 6.0 11.7 8.8 2.3

min 0.5 3.1 1.1 0.5
max 22.7 22.3 22.7 3.9
n ¡ 5 27 12 15 0
n 50 13 18 19

Notes: This Table presents the results of standard Shiller (1981) variance bounds tests. Each volatility ratio
σpp̃tq
σpp̃�t q

is computed separately for each sample country, across 50 countries in total. The Table reports the
mean, median, minimum, and maximum values of each ratio across the 50 sample countries, the number of
cases where the ratio exceeds the value of 5:1 reported in Shiller (1981), and the number of countries n. The
first column reports the results across the full sample of 50 countries, while the last three columns report the
results from subsamples that have been formed based on the countries’ number of years of available data L.

Importantly, the magnitude of the puzzle seems to be inversely related to the length of the available time-

series. To get a better idea about the magnitude of this relationship, Figure 2.5 plots the σpp̃tq
σpp̃�t q

ratio against

the number of available years in the dataset, while the last three columns of Table 2.2 report descriptives for

the volatility ratio separately for three subsamples of countries where the length of the available time-series

is either below 30, between 30 and 60, or above 60 years. Both Figure 2.5 and Table 2.2 show that countries

with the shortest available time-series tend to have markedly higher volatility ratios compared to countries

with longer available time-series. For instance, countries with time-series that are shorter than 30 years have

a mean volatility ratio of 12.5, compared to a mean ratio of only 2.4 for countries with time-series that are

longer than 60 years. Furthermore, 12 out of 13 countries in the first subsample (sample size   30) have

a volatility ratio that is higher than 5, compared to 15 out of 18 countries in the second subsample (30  
sample size   60) and to 0 out of 19 countries in the last subsample (60   sample size).

In addition to the upper bound of the variance of stock prices that is described in (2.10), Shiller (1981)

also derives the maximum value of the variance of changes in price for a given variance of dividends. Assuming

that dividends are stationary, it is shown that

σp∆p̃q ¤ σpd̃q?
2r

(2.11)

The main intuition behind the proof of the inequality in (2.11) is that the variance of changes in price is

larger when information about future dividends is revealed more smoothly across time, as opposed to future

dividends being known either many years before or just before they are paid10.
10Shiller (1981) uses a standard first-order autoregressive specification for future dividends to derive the
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Figure 2.5: Volatility ratios and sample period length

Notes: This Figure plots the ratio σpp̃tq
σpp̃�t q

of the volatility of the realized price by the volatility of the ex-post
rational price, across a sample of 50 countries. The volatility ratios have been ordered (on the horizontal
axis) in ascending order based on the number of years of available data for each country. See summary
description on data availability in Appendix 2.6.2

Finally, we also examine a slightly different version of the variance inequality that was also introduced

in Shiller (1981)

σp∆p̃� d̃t�1 � rp̃t�1q ¤ σpd̃q?
2r

(2.12)

Table 2.3 reports descriptive statistics for the volatility ratios that relate to inequalities (2.11) and (2.12)

in Panels A and B, respectively. These results confirm the hypothesis of excess volatility across all sample

countries, although the alternative volatility ratios are now closer to 5, with their mean values in the full

sample equal to 5.8 and 5.6 under inequalities (2.11) and (2.12), respectively. Interestingly, the volatility

ratios that are based on price changes are not monotonically decreasing across the three size-based country

groups. Nevertheless, a clear difference is still found between the volatility ratios of countries with the longest

time-series (on average 6.9 and 6.8 for inequalities (2.11) and (2.12), respectively) and those of countries

maximum value for the variance of changes in price. I drop the time subscripts from the variance inequality
in (2.11) because the unconditional co-variance between d̃t and any information variable will depend on k
but not on t.
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with the shortest time-series (2.9 and 2.8, respectively).

Table 2.3: Upper bounds tests of price change variance

Panel A: σp∆p̃q
σpd̃q?

2r̄

Full sample Subsamples formed on time-series length
L   30 30   L   60 60   L

mean 5.8 6.9 8.0 2.9
median 5.1 6.4 7.3 2.8

min 1.0 3.3 1.8 1.0
max 18.9 12.9 18.9 5.4
n ¡ 5 26 9 15 2
n 50 13 18 19

Panel B: σp∆p̃�d̃t�1�r̄d̃t�1q
σpd̃q?
r̄2

Full sample Subsamples formed on time-series length
L   30 30   L   60 60   L

mean 5.6 6.8 7.8 2.8
median 5.0 6.3 7.2 2.8

min 0.5 3.1 1.7 0.5
max 18.5 12.8 18.5 5.3
n ¡ 5 25 10 14 1
n 50 13 18 19

Notes: This Table presents the results of variance bounds tests on the variance of price changes (Shiller 1981).
Each volatility ratio is computed separately for each sample country, across 50 countries in total. The Table
reports the mean, median, minimum, and maximum values of each ratio across the 50 sample countries,
the number of cases where the ratio exceeds the value of 5:1 reported in Shiller (1981), and the number of
countries n. The first column of each panel reports the results across the full sample of 50 countries, while
the last three columns report the results from subsamples that have been formed based on the countries’
number of years of available data L.

This general tendency of developing countries having higher volatility ratios than developed countries

could conceivably reflect a fundamental difference among countries at different stages of development. How-

ever, the negative relationship between volatility ratios and sample length could simply be a statistical

artefact caused by computing volatility ratios over small vs large samples, unrelated to any fundamental

characteristics of the countries in question. On this particular issue, Flavin (1983), Kleidon (1986) and West

(1988b) argue that, in small samples, the variance bounds test developed by Shiller (1981) is biased towards

finding realized price volatility exceeding that of ex-post rational prices. Data from the Global Financial

Database (GFD) is quite exhaustive since it is aggregated form varied sources. I checked for completeness to

eliminate all forms of truncation. The data in Chapter 2 are based on availability with the GFD database and

it is impossible to re-compute the missing stock price indices for countries with “short” data. The last date
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for the sample period is December 31, 2018 for all samples although the start data varies across countries.

Empirical analysis to explore the statistical artifact by including country specific features/characteristics as

dummy variables is beyond the variance bounds test analysis.

Table 2.4: Variance bounds tests -Capped data length

Panel A: Data length capped at 100 years
Full sample Subsamples formed on original time-series length

L   30 30   L   60 60   L
mean 8.0 12.5 8.9 3.7

median 6.5 11.7 8.8 3.3
min 1.1 3.1 1.1 1.4
max 22.7 22.3 22.7 16.8
n ¡ 5 28 12 15 1
n 50 13 18 19

Panel B: Data length capped at 60 years
Full sample Subsamples formed on original time-series length

L   30 30   L   60 60   L
mean 8.6 12.5 8.9 5.5

median 7.7 11.7 8.8 5.1
min 1.1 3.1 1.1 1.6
max 22.7 22.3 22.7 10.5
n ¡ 5 36 12 15 9
n 50 13 18 19

Panel C: Data length capped at 30 years
Full sample Subsamples formed on original time-series length

L   30 30   L   60 60   L
mean 13.6 12.5 11.8 16.2

median 11.6 11.7 10.3 13.5
min 1.9 3.1 1.9 7.3
max 54.2 22.3 29.5 54.2
n ¡ 5 48 12 18 18
n 50 13 18 19

Notes: This Table presents the results of variance bounds tests when the time-series length has been capped
to the100, 60, and 30 most recent years (in Panels A, B, and C, respectively). Each volatility ratio σpp̃tq

σpp̃�t q
is computed separately for each sample country, across 50 countries in total. The Table reports the mean,
median, minimum, and maximum values of the volatility ratio across the 50 sample countries, the number of
cases where the ratio exceeds the value of 5:1 reported in Shiller (1981), and the number of countries n. The
first column reports the results across the full sample of 50 countries, while the last three columns report the
results from subsamples that have been formed based on the countries’ original number of years of available
data L.

I explore whether small sample bias is affecting our previous results of variance bounds tests in the

following way. First, we cap all countries’ datasets at 100, 60, and 30 years (most recent ones), and then we
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re-compute the volatility ratio σpp̃tq
σpp̃�t q

for the capped time-series. As can be seen from Table 2.4, the results

are indeed consistent with a small sample bias affecting the variance bounds test results. This bias towards

rejecting stock market efficiency is evident from the fact that volatility ratios tend to increase the more

strictly we cap a country’s data length. For instance, simply capping the data length to 100 years results in

a mean volatility ratio of 3.7 across countries with the longest original data length (60   L), compared to a

mean of 2.4 when no cap was imposed (Table 2.2). When we apply a stricter cap of 30 years, these countries

with the longest original data length experience an even more dramatic increase of volatility ratios, with

their mean ratio now being equal to 16.2. Furthermore, when we focus on the extreme case of capping data

length at 30 years (Panel C of Table 2.4), the previously reported strong negative relationship between the

magnitude of excess volatility and the length of the original dataset can no longer be observed. Somewhat

surprisingly, countries with the shortest original data length actually have a lower mean volatility ratio than

that of countries with the longest original data length (12.5 compared to 16.2, respectively).

2.5 Expected dividend growth

2.5.1 Dividend predictability regressions

Since rationally expected future dividends are unobservable by nature it is important to use an appropriate

rate of expected dividend growth when we compute the rational stock price as the discounted value of future

dividends. Our previous empirical results were based on following the original approach in Shiller (1981),

where the expected growth rate for stock prices (and, by extension, for dividends) is given by the trend factor

from regressing stock prices against time (equation (2.6)). More recent studies on dividend predictability

suggest that alternative measures of expected dividend growth might be better suited to forecast future

dividends and, hence, could provide a more efficient ex-post rational price. To this end, we explore the

predictability of dividend growth and, more specifically, the extent to which it can be forecasted using the

dividend-price ratio (Cochrane 2008, Binsbergen & Koijen 2010, Asimakopoulos et al. 2017, Golez & Koudijs

2018). For each country in our sample, we run separately a time-series regression of dividend growth on the

previous period’s dividend-price ratio

∆gt�1 � β0,g � β1,gyt � εg,t�1 (2.13)

where the subscript t denotes time at an annual frequency. Following Cochrane (2008), the standard errors

are GMM-corrected for heteroscedasticity. Similarly to Ang & Bekaert (2007), we begin by estimating
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these time-series regressions using aggregated annual data, ignoring seasonality issues. Our objective in

this exercise is to obtain an improved de-trending factor λ � exppβq, with the slope from equation (2.13)

replacing the β that was originally obtained via regressing stock prices against time in equation (2.6).

A potential concern at this point is that the aggregation procedure involved in computing annual prices

and dividends will lead to some loss of within-year information. I address this concern by employing a mixed-

frequency regression framework MIDAS, where the lower-frequency (annual) dependent variable ∆gt�1 is

regressed against a higher-frequency (monthly) independent variable ymt . The main aspects of the MIDAS

framework are discussed in the following section.

2.5.2 MIDAS Regressions

The MIDAS approach was introduced in Ghysels et al. (2004), Ghysels et al. (2005), and Ghysels et al. (2006)

as a framework to estimate regression specifications where the dependent and the independent variables are

sampled at different frequencies. Subsequent empirical studies have used the MIDAS approach in a variery

of applications where the dependent variable is typically quoted at a lower frequency compared to the

independent variables. For example, Forsberg & Ghysels (2006) estimate a MIDAS regression specification

in the context of forecasting index volatility at longer horizons using absolute daily returns, while Clements

& Galvão (2008) use monthly macroeconomic and financial indicators to forecast quarterly GDP growth.

Our use of the MIDAS approach is more closely related to Asimakopoulos et al. (2017) who explore the

predictive ability of the monthly dividend-price ratio over subsequent annual dividend growth.

In our study, the MIDAS framework is applied to estimate the effect of the higher frequency data of

the log dividend yield ymt (monthly, i.e. m � 12) on the lower frequency data of the log dividend growth

rate ∆gt�1 (annual). The regression model can be written as

∆gt�1 � pβ0,g � pβ1,gBpL1{m; θqymt � pεg,t�1 (2.14)

for t � 1, . . . , T , where L1{m denotes the lag operator of the log dividend yield data. The term BpL1{m; θq �°K�1
k�0 ωkpθqLk{m denotes a known polynomial function of L1{m whose coefficients depend on a small dimen-

sional vector of parameters θ, while Lk{m is the lag operator of ymt for k{m periods. The maximum length of

the polynomial function is K � 1. In this setting, the overall impact of the lagged ymt on ∆gt�1 is given by

the coefficient pβ1,g, which can be obtained by normalizing the weights ωkpθq so that they sum up to one11.

The general form equation (2.14) can be rewritten as

11See Ghysels et al. (2006) for a more detailed discussion on the benefits of weight normalization in MIDAS
applications.
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∆gt�1 � pβ0,g � pβ1,gωpymt � pεg,t�1 (2.15)

where ωpymt � °11
k�0 ωky

m
t,k. Equation (2.15) can be thought of as a projection of the annual dividend growth

variable ∆gt�1 onto the monthly log dividend yield variable ymt using up to K � 1 monthly lags (i.e. 11 lags

in our case).

The specific shape of the weighting scheme ω will depend on the chosen specification for the polynomial

function. On this issue, Ghysels et al. (2007) discuss a number of alternative weighting schemes. In this

study, we consider four alternative specifications for the polynomial function, each of which will result in a

different weighting scheme and, by extension, a different effect of ymt on ∆gt�1. More specifically, our pool

of candidate weighting schemes consists of a polynomial with a step-function, an exponential Almon lag

polynomial, a normalized beta lag polynomial, and an Almon lag polynomial of order P . Instead of selecting

a single weighting scheme universally across time and different countries, we adopt a more flexible approach

where we dynamically select the optimal weighting scheme at each time t and separately for each country i.

The first specification is a polynomial with a step-function. Under this alternative, a regressor Xt can

be expressed as the partial sum of the higher frequency xm, so that XtpK,mq �
°K
j�1 x

m
t� j

m

. Then, the

MIDAS regression with M steps can be estimated as a simple Ordinary Least Squares (OLS) regression of

the lower-frequency dependent variable against the regressor XtpKi,mq, where K1   � � �   KM . The impact

of xm on the dependent variable can be measured by the sum of all coefficients in the OLS regression (i.e.°M
i�1 βi), since it appears in all the partial sums. A more detailed discussion of MIDAS with step-functions

can be found in Forsberg & Ghysels (2006).

The second specification is an exponential Almon lag polynomial, which has also been used in by

Asimakopoulos et al. (2017). Interestingly, Ghysels et al. (2007) argue that this scheme can be thought

of as the most general weighting scheme, as it has the most flexible shape. In its unrestricted version, the

exponential Almon lag polynomial is fully determined by its two parameters θ1 and θ2, with the corresponding

weights computed as

ωkpθ1, θ2q � eθ1k�θ2k
2°K

k�1 e
θ1k�θ2k2

(2.16)

The third specification is a normalized beta lag polynomial. Based on the beta function, this polynomial

is fully determined by the three parameters θ1, θ2 and θ3. The beta function is very flexible, as it allows for

weights that can take a variety of different shapes. For instance, Ghysels et al. (2007) show that larger values

of θ2 result in faster declining weights, with the rate of weight decline essentially determining how many lags

will be included in the MIDAS specification. The weights under the normalized beta lag polynomial can be
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computed as

ωkpθ1, θ2, θ3q � hθ1�1
k p1� hkqθ2�1°K

k�1 h
θ1�1
k p1� hkqθ2�1

� θ3 (2.17)

where hk � pk � 1q{pK � 1q. In addition to its unrestricted version above, we also consider a restricted

version where the last lag is set to zero, i.e. ωkpθ1, θ2, 0q.
The final specification is the non-normalized Almon lag polynomial of order P , first introduced in Almon

(1965). The corresponding weights for each lag k can be computed as

ωkpθ0, . . . , θP q �
P̧

p�0
θpk

p (2.18)

The weights in (2.18) are obtained via a non-linear least squares estimation, where the optimal lag

order is selected using the AIC/BIC of the least squares estimation (for more details, see Ghysels et al.

2007). This approach assumes that the successive weights lie on a polynomial, estimating a few points on

the curve as regression coefficients and then using polynomial interpolation to interpolate between them for

the remaining points.

I allow the specification of ωk to be determined endogenously by identifying the optimal scheme dy-

namically from this pool of four schemes. Our dynamic selection of the the optimal weighting scheme is

based on an out-of-sample evaluation of the forecasts produced by the candidate schemes. For each sample

country, we begin by constructing a 2-year validation period at the beginning of the available data series,

in order to produce an one-month ahead forecast of dividend growth under each candidate scheme (similar

to Andreou et al. 2013). Then, we continue producing one-month ahead forecasts of dividend growth based

on a recursive validation period, with each country’s first sample month as the fixed starting point of the

expanding validation window. This approach results in the construction of four time-series of one-month

ahead forecasts (i.e. one time-series per candidate scheme) for each country. Finally, we dynamically select

the optimal scheme at time t, separately for each sample country, as the one that produces the lowest Root

Mean Squared Error (RMSE).

Overall, one significant advantage of the MIDAS approach is its flexibility in that it does not impose

any particular assumptions about the effect of different lags. Instead, the optimal weighting scheme is driven

entirely by the data. Asimakopoulos et al. (2017) further highlight that the use of non-linear lag polynomials

under a MIDAS regression results in a more parsimonious estimation with a lower sensitivity to specification

errors, compared to the alternatives of state-space models or mixed-frequency vector autoregression (VAR)
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models. Finally, the MIDAS approach avoids the issue of parameter proliferation, which could have more

pronounced consequences in some of our sample countries with relatively small datasets.

2.5.3 Empirical Evidence

Table 2.5 reports the regression results from the three alternative approaches to obtaining measures of

expected dividend growth, namely via regressions of stock prices against time as in Shiller (1981), regressions

of changes in dividend growth against the lagged dividend-price ratio at an annual frequency in Cochrane

(2008) and then as well, MIDAS regressions of changes in dividend growth against the lagged dividend-price

ratio similarly in Asimakopoulos et al. (2017). Estimating the standard Shiller-type regressions of log-price

against time in (2.6) results in universally positive slopes across all sample countries, with all 50 coefficients

being statistically significant at the 1% level. Moreover, the magnitude of these slopes is generally lower

for developed countries with longer time-series relative to developing countries with shorter time-series. For

instance, Japan has 117 years of available data and it is found to have the lowest slope (β � 0.03), compared

to Romania which has only 19 years of data and the highest slope (β � 0.64). This relationship suggests that,

unsurprisingly, developed countries experience on average a lower stock price growth compared to developing

countries.

Regressing changes in dividend growth against the lagged dividend-price ratio produces predominantly

positive slope coefficients. More specifically, when we use annual dividend and price figures to estimate the

regression specification in (2.13), 35 out of 50 countries are found to have a positive β̃1,g, with 11 of these

cases being statistically significant at the 5% level. By comparison, out of the 15 negative slopes, only 3

are found to be statistically significant at the 5% level (namely for Austria, Finland, and Japan). When

we account for intra-year seasonality by estimating the MIDAS specification in (2.15), the resulting slope

coefficients of the dividend-price ratio are now universally positive, with 15 out of 50 positive slopes also

being statistically significant at the 5% level.

In terms of in-sample predictability, accounting for seasonality by using a mixed frequency regression

setting seems to improve the measure of expected dividend growth considerably relative to using annually-

aggregated values. In particular, the goodness-of-fit of the MIDAS regressions in (2.15) is substantially

higher relative to that of the Cochrane-type regressions in (2.13), with a mean R-square of 55% in the

former compared to only 4% in the latter. Based on this difference in predictive power, we would expect the

de-trending factor λ � eβ to be more accurate when β is proxied by the slopes from the MIDAS regressions

compared to those from the Cochrane-type regressions. Interestingly, regressing stock prices against time

also results in a very high in-sample fit, with a mean R-square of 53%. Nevertheless, these R-square values
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Table 2.5: Predictive regressions of dividend growth on the dividend yield

Shiller-type regressions Cochrane-type regressions MIDAS regressions
Country n slope R2 slope R2 slope R2

BGR 17 0.51*** 0.50 0.42*** 0.14 0.09 0.90
ROU 19 0.64*** 0.53 0.21* 0.09 0.07 0.85
RUS 20 0.58*** 0.56 0.01 0.00 0.06 0.78
TUN 21 0.57*** 0.55 0.13 0.04 0.05 0.74
BRA 22 0.64*** 0.56 0.10 0.01 0.05 0.53
CZE 23 0.44*** 0.51 0.31** 0.15 0.05 0.96
HUN 23 0.54*** 0.52 -0.09* 0.03 0.02 0.55
POL 23 0.48*** 0.50 0.06 0.01 0.06 0.88
ISR 24 0.4*** 0.57 0.21 0.07 0.08 0.70

EGY 25 0.36*** 0.58 0.03 0.02 0.04 0.86
CHN 27 0.41*** 0.55 -0.02 0.00 0.07 0.35
IDN 27 0.43*** 0.52 -0.25 0.05 0.08 0.75
IRL 27 0.45*** 0.52 0.01 0.00 0.05 0.67
PRT 31 0.41*** 0.48 -0.05 0.01 0.04** 0.44
COL 32 0.40*** 0.58 0.21* 0.04 0.07 0.64
NGA 32 0.49*** 0.51 0.40** 0.20 0.05** 0.49
TWM 32 0.40*** 0.52 0.13 0.06 0.07 0.72
TUR 32 0.51*** 0.52 0.15** 0.10 0.03*** 0.44
KEN 34 0.38*** 0.45 0.16** 0.06 0.07* 0.58
MAR 34 0.41*** 0.59 -0.04 0.03 0.01 0.31
PHL 36 0.34*** 0.53 0.02 0.00 0.06 0.45
JOR 39 0.31*** 0.52 0.16* 0.06 0.06 0.68
GRC 41 0.26*** 0.49 0.13** 0.08 0.05 0.62
THA 42 0.24*** 0.53 0.08 0.02 0.06 0.56
CHL 44 0.31*** 0.65 0.29** 0.06 0.10*** 0.36
MYS 44 0.24*** 0.56 0.03 0.00 0.03 0.32
SGP 45 0.25*** 0.57 0.05** 0.05 0.02 0.23
NOR 48 0.17*** 0.58 0.08* 0.04 0.04 0.60
HKG 53 0.26*** 0.60 0.15** 0.06 0.05 0.49
ZAF 54 0.27*** 0.55 0.06 0.01 0.03 0.37
KOR 55 0.19*** 0.58 0.05* 0.04 0.06*** 0.54
FIN 56 0.22*** 0.61 -0.09** 0.07 0.02** 0.66
ARG 71 0.26*** 0.50 0.01 0.00 0.06 0.45
GBR 84 0.14*** 0.55 0.06** 0.04 0.01* 0.16
NZL 91 0.11*** 0.49 0.08 0.01 0.06*** 0.64
AUT 93 0.10*** 0.53 -0.10** 0.04 0.04 0.16
ITA 93 0.12*** 0.45 0.15 0.04 0.08*** 0.92
IND 97 0.14*** 0.52 -0.02 0.00 0.06*** 0.65
CHE 99 0.08*** 0.61 -0.07 0.02 0.08 0.58
SWE 116 0.05*** 0.64 -0.10* 0.04 0.05* 0.62
JPN 117 0.03*** 0.33 -0.05** 0.05 0.02* 0.09
ESP 118 0.08*** 0.45 -0.02 0.00 0.02* 0.16
NLD 126 0.07*** 0.50 0.01 0.00 0.06** 0.58
DNK 144 0.05*** 0.45 -0.03 0.01 0.05*** 0.52
BEL 147 0.09*** 0.43 0.09* 0.02 0.07** 0.74
USA 147 0.06*** 0.63 -0.03* 0.02 0.03** 0.25
DEU 148 0.08*** 0.20 -0.08 0.02 0.07 0.31
AUS 156 0.08*** 0.58 0.00 0.00 0.05** 0.39
FRA 178 0.06*** 0.48 -0.02 0.00 0.04** 0.34
CAN 187 0.07*** 0.61 0.12** 0.04 0.07* 0.73

Notes: This Table presents the results from predictive least squares regressions of dividend growth. The Table
reports the estimated intercept and slope coefficients, and the regressions’ R-square. Statistical significance
at the 1%, 5%, and 10% levels is denoted by ***, **, and *, respectively. The first panel reports the
results from regressing stock prices against time, as in Shiller (1981). The second panel reports the results
from regressing dividend growth against the lagged dividend-price ratio at an annual frequency, (Cochrane
2008). The third panel reports the results from mixed-frequency data sampling (MIDAS) regressions of
dividend growth against the lagged dividend-price ratio. The second column tabulates the total number of
observations in years (n). Results are tabulated separately for each country, across 50 countries in total.
Countries are sorted in ascending order based on the number of years with available data (n).
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are not directly comparable to those obtained when estimating the predictive regressions in (2.13) and (2.15),

since they refer to regressions with different dependent variables.

Tables 2.6 and 2.7 report the results of variance bounds tests when expected dividend growth is obtained

via Cochrane-type regressions and MIDAS regressions, respectively, while Figure 2.6 plots the volatility ratios
σppq
σpp�q under the Shiller, Cochrane and MIDAS approaches to computing the de-trending factor. As can be

seen from Table 2.6, when we obtain the de-trending factor via Cochrane-style regressions instead of Shiller-

type regressions, our results on the excess volatility puzzle remain largely the same. The mean volatility

ratio σppq
σpp�q across all 50 countries is somewhat lower than the one presented in Table 2.2 (6.0 compared

to 7.5), but it is still higher than the value of 5. Furthermore, the magnitude of excess volatility is still

found to be negatively related to the length of the available time-series, as countries with the shortest series

of available data (less than 30 years) have the highest mean volatility ratio (9.1) and countries with the

longest time-series (more than 60 years) have the lowest mean volatility ratio (3.7). The results for the two

additional volatility ratios σp∆p̃q
σpd̃q?

2r̄

and σp∆p̃�d̃t�1�r̄d̃t�1q
σpd̃q?
r̄2

(Table 2.6, Panels B and C) are qualitatively the same

as those reported in Table 2.2.
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Figure 2.6: Volatility ratios under alternative expected growth measures

Notes: This Figure plots the ratio of the volatility of the realized price against the volatility of the ex-post
rational price, across a sample of 50 countries. The upper graph plots the volatility ratios when the expected
dividend growth is obtained via regressions of the stock price against time. The bottom-left graph plots the
respective volatility ratios when expected dividend growth is obtained via standard regressions of changes
in dividend growth against the lagged dividend yield at an annual frequency. The bottom-right graph plots
the respective volatility ratios when expected dividend growth is obtained via MIDAS regressions of changes
in dividend growth against the lagged dividend yield.

In contrast, the empirical results are noticeably different when expected dividend growth is obtained

via the MIDAS regressions in (2.15). Even though the σppq ¤ σpp�q inequality is violated in almost all

sample countries (with the only exception of Russia), the volatility ratio σppq
σpp�q exceeds the value of five in

only 4 out of 50 countries (namely Argentina, Czech Republic, Poland and Portugal). By comparison, the

volatility ratio exceeded the value of five in 26 and 23 countries under the Shiller and Cochrane frameworks,

respectively. Moreover, under the MIDAS-based de-trending factor, the mean volatility ratio is now equal

to 1.9 in the full sample, which is lower than the mean ratios under the Shiller and Cochrane approaches

(7.5 and 6.0, respectively) but still supports the volatility puzzle. Finally, the magnitude of excess volatility

is again found to be negatively related to the length of the available time-series, but the differences among

subsamples of different length are less pronounced compared to our previous results.
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Table 2.6: Upper bounds tests - Expected growth via Cochrane-type regressions

Panel A: σppq
σpp�q

Full sample Subsamples formed on time-series length
L   30 30   L   60 60   L

mean 6.0 9.1 6.0 3.7
median 4.7 8.6 5.2 3.5

min 1.2 4.0 3.4 1.2
max 16.2 16.2 13.1 10.6
n ¡ 5 23 11 10 2
n 50 13 18 19

Panel B: σp∆p̃q
σpd̃q?

2r̄

Full sample Subsamples formed on time-series length
L   30 30   L   60 60   L

mean 2.8 2.8 3.5 2.0
median 2.2 2.6 2.6 1.8

min 1.0 1.5 1.3 1.0
max 12.6 6.5 12.6 4.7
n ¡ 5 3 1 2 0
n 50 13 18 19

Panel C: σp∆p̃�d̃t�1�r̄d̃t�1q
σpd̃q?
r̄2

Full sample Subsamples formed on time-series length
L   30 30   L   60 60   L

mean 2.7 2.8 3.4 2.0
median 2.2 2.5 2.6 1.8

min 0.9 1.4 1.3 0.9
max 12.4 6.4 12.4 4.7
n ¡ 5 3 1 2 0
n 50 13 18 19

Notes: This Table presents the results of variance bounds tests when expected dividend growth is obtained
via Cochrane-type regressions of changes in dividend growth against the lagged dividend-price ratio at an
annual frequency. Each volatility ratio is computed separately for each sample country, across 50 countries
in total. The Table reports the mean, median, minimum, and maximum values of each ratio across the 50
sample countries, the number of cases where the ratio exceeds the value of 5:1 reported in Shiller (1981),
and the number of countries n. The first column of each panel reports the results across the full sample of
50 countries, while the last three columns report the results from subsamples that have been formed based
on the countries’ number of years of available data L.
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Table 2.7: Upper bounds tests - Expected growth via MIDAS regressions

Panel A: σppq
σpp�q

Full sample Subsamples formed on time-series length
L   30 30   L   60 60   L

mean 1.9 2.9 1.6 1.4
median 1.2 1.8 1.3 1.1

min 0.9 0.9 1.1 1.0
max 9.8 9.8 5.8 5.7
n ¡ 5 4 2 1 1
n 50 13 18 19

Panel B: σp∆p̃q
σpd̃q?

2r̄

Full sample Subsamples formed on time-series length
L   30 30   L   60 60   L

mean 1.4 1.2 2.0 0.8
median 1.0 1.0 1.1 0.7

min 0.4 0.6 0.5 0.4
max 8.0 2.4 8.0 1.5
n ¡ 5 2 0 2 0
n 50 13 18 19

Panel C: σp∆p̃�d̃t�1�r̄d̃t�1q
σpd̃q?
r̄2

Full sample Subsamples formed on time-series length
L   30 30   L   60 60   L

mean 1.0 1.0 1.5 0.6
median 0.8 0.9 1.0 0.5

min 0.2 0.4 0.4 0.2
max 6.6 1.8 6.6 1.4
n ¡ 5 1 0 1 0
n 50 13 18 19

Notes: This Table presents the results of variance bounds tests when expected dividend growth is obtained
via MIDAS regressions of changes in dividend growth against the lagged dividend-price ratio. Each volatility
ratio is computed separately for each sample country, across 50 countries in total. The Table reports the
mean, median, minimum, and maximum values of each ratio across the 50 sample countries, the number
of cases where the ratio exceeds the value of 5:1 reported in Shiller (1981), and the number of countries n.
The first column of each panel reports the results across the full sample of 50 countries, while the last three
columns report the results from subsamples that have been formed based on the countries’ number of years
of available data L.
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2.6 Variance bounds tests and stationarity of dividends

The theoretical variance inequality in (2.10) was proposed by Shiller (1981) based on the assumption that

dividends follow a stationary process. Consequently, if dividends deviate from stationarity, then observing

that the variance of the realized price exceeds the variance of the ex-post rational price does not necessarily

imply a violation of the efficient market hypothesis. Rather, such violations of the upper variance bound

could be driven by dividends simply following a non-stationary process.

In order to account for the common empirical finding of dividends deviating from stationarity, Mankiw

et al. (1985) and West (1988b) propose alternative variance bounds tests to evaluate stock market efficiency.

More specifically, West (1988b) shows that, under relatively weak assumptions including potential non-

stationarity in dividends, the variance of innovations in the stock price must be lower than the variance

of innovations in the corresponding dividend.12 Engel (2005) further extends the analysis deriving a new

variance bound on the first difference of stock prices, under the assumption that dividends are stationary

or that they follow a unit-root process.13 Working with prices expressed in first differences, Engel (2005)

argues that the excess volatility inequality (2.10) is reversed to

varp∆p̃tq ¥ varp∆p̃�t q (2.19)

where ∆p̃t � p̃t � p̃t�1 and ∆p̃�t � p̃�t � p̃�t�1.

In order to understand whether the previous results of the variance bounds tests are driven by persistence

in dividends, we perform a number of stationarity and unit-root tests on our main variables of interest.

More specifically, we run the Augmented Dickey-Fuller (ADF) test, the Phillips-Perron (PP) test, and the

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test, with the results reported in Table 2.8. Our results are

consistent with those reported in previous studies about dividends deviating from stationarity, with the

KPSS test rejecting the null hypothesis of dividends following an Ip0q process across all 50 countries at the

10% level, while the null of stationarity is rejected at the 5% level in 34 countries. Moreover, the results
12West (1988b) computes innovations, i.e. unexpected changes, in the stock price and the corresponding

dividend series as the residuals from fitting ARIMA pq, s, rq specifications on these series. In addition to
relaxing the assumption of stationarity of dividends, the variance inequality proposed in West (1988b) also
attempts to address the issue of small sample bias that has been attributed to the Shiller (1981) variance
bounds test (see also Flavin 1983, Kleidon 1986, Marsh & Merton 1986).

13Lansing (2016) expands the analysis further by deriving alternative variance bounds for changes in
stock prices by allowing for various degrees of information available to investors about future dividends.
The framework proposed by Lansing (2016) allows for ex-dividend stock prices and risk-averse investors, in
contrast to cum-dividend stock prices and risk-neutral investors that are assumed under the Engel (2005)
framework.
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of the ADF test suggest that dividends generally follow an Ip1q process, with the null of a unit root being

rejected at the 5% level in only 4 countries (Chile, Malaysia, Italy, and Canada). The PP test results are

very similar, with the null of a unit root being rejected at the 5% level in only 5 out of 50 countries (Taiwan,

New Zealand, Italy, Australia, and Canada).

Since dividends seem to follow a unit root process in the majority of our sample countries, we proceed by

evaluating the Engel (2005) bounds test on the variance of first differences in prices, given in inequality (2.19).

Table 2.9 reports a set of summary statistics of the Engel (2005) volatility ratio σpp̃t�p̃t�1q
σpp̃�t �p̃�t�1q

, computed

separately under each of the three previously discussed approaches of obtaining a measure of expected

dividend growth. When we focus on the relationship between the variance of first differences in realized and

ex-post rational prices, as opposed to the variance of price levels, the empirical evidence in fact strongly

supports the hypothesis of market efficiency. Irrespective of the specific measure of expected dividend growth

used, the volatility ratio exceeds unity across all sample countries (with the single exception of the Czech

Republic, where the volatility ratio takes the fairly borderline value of 0.97 when expected dividend growth

is computed via MIDAS regressions). In other words, the volatility of first differences in realized prices

consistently exceeds that of first differences in ex-post rational prices, in line with the reversed inequality

in Engel (2005) and, ultimately, in support of market efficiency. Interestingly, the volatility ratios that are

based on first differences in prices are substantially higher than the corresponding ratios that are based

on price levels. For example, the mean ratio σpp̃t�p̃t�1q
σpp̃�t �p̃�t�1q

, is equal to 25.1, compared to a mean ratio σpp̃tq
σpp̃�t q

of 7.5 (under Shiller-type regressions for expected dividend growth). Furthermore, the specific approach

used to obtain expected dividend growth has a substantial impact on the magnitude of the volatility ratio,

with Shiller-type regressions resulting in the highest volatility ratios and MIDAS regressions resulting in the

lowest one (mean ratios are 25.1 and 2.8, respectively). Finally, the relationship between the magnitude of

the volatility ratio and the length of the available dataset is not as clear as the strong negative relationship

that was observed in our previous analysis of the standard Shiller (1981) volatility ratio. For instance, when

we estimate the Engel (2005) volatility ratio, it is the middle group of countries with dataset lengths between

30 and 60 years that is found to have the highest mean volatility ratio (under the Shiller- and MIDAS-based

measures of expected dividend growth), rather than the group of countries with the shortest datasets as was

the case with the Shiller (1981) volatility ratio.

Clearly, assumptions about the dividend process directly affect how the respective variance bounds

test is formulated and, by extension, they will have a substantial impact on whether the test is likely to

support or reject the hypothesis of stock market rationality. In the case of stationary dividends, Shiller

(1981) demonstrates that the variance of dividends provides an upper bound for the variance of stock prices

and that of stock price innovations, described in inequalities (2.11) and (2.12), respectively. However, when
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Table 2.8: Unit root and stationarity tests

d̃t p̃t
Country n ADF test PP test KPSS ADF test PP test KPSS

H0 : Ip1q H0 : Ip1q H0 : Ip0q H0 : Ip1q H0 : Ip1q H0 : Ip0q
BGR 17 -1.881 -3.016 0.091* -2.537 -2.089 0.104*
ROU 19 -2.419 -3.441* 0.075* -2.34 -2.086 0.112*
RUS 20 -2.384 -2.332 0.147** -1.541 -2.402 0.185**
TUN 21 -3.611* -2.865 0.053* -1.504 -2.000 0.098*
BRA 22 -1.413 -1.851 0.206** -1.325 -1.997 0.173**
CZE 23 -1.617 -2.911 0.147** -2.224 -2.283 0.100*
HUN 23 -1.588 -1.351 0.193** -3.005 -3.692** 0.125*
POL 23 -2.275 -1.676 0.107* -2.597 -3.359* 0.072*
ISR 24 -0.209 -1.074 0.197** -2.859 -4.947*** 0.086*

EGY 25 -2.364 -2.499 0.096* -2.737 -2.501 0.093*
CHN 27 -2.807 -3.502* 0.077* -2.465 -4.745*** 0.132*
IDN 27 -3.081 -3.579* 0.075* -1.267 -2.152 0.200**
IRL 27 -2.236 -1.831 0.154** -2.534 -2.141 0.151**
PRT 31 -2.835 -2.341 0.145* -2.460 -2.570 0.140*
COL 32 -2.784 -2.744 0.106* -2.479 -2.487 0.075*
NGA 32 -3.525* -2.482 0.181** -1.259 -2.180 0.208**
TUR 32 -1.752 -1.431 0.222*** -3.571** -6.787*** 0.076*
TWN 32 -2.880 -4.195** 0.106* -6.568*** -4.708*** 0.092*
KEN 34 -2.761 -2.832 0.196** -2.819 -2.610 0.146*
MAR 34 -2.426 -2.524 0.159** -2.082 -1.600 0.219***
PHL 36 -2.238 -2.760 0.289*** -2.335 -2.411 0.125*
JOR 39 -1.712 -2.154 0.267*** -2.556 -2.036 0.148**
GRC 41 -1.851 -1.921 0.187** -2.086 -1.980 0.186**
THA 42 -2.380 -2.111 0.136* -2.517 -2.252 0.112*
CHL 44 -3.607** -3.128 0.222*** -3.518* -2.149 0.222***
MYS 44 -3.692** -2.816 0.055* -2.581 -2.967 0.158**
SGP 45 -2.500 -2.129 0.141* -1.979 -4.226*** 0.232***
NOR 48 -1.689 -1.975 0.387*** -2.885 -2.981 0.183**
HKG 53 -1.630 -3.482* 0.289*** -3.294* -4.176*** 0.147**
ZAF 54 -1.876 -2.180 0.326*** -2.508 -3.029 0.305***
KOR 55 -1.626 -1.483 0.208** -3.465* -3.033 0.101*
FIN 56 -2.232 -2.003 0.323*** -2.772 -2.634 0.180**
ARG 71 -2.038 -2.514 0.424*** -1.280 -1.553 0.564***
GBR 84 -2.252 -2.345 0.251*** -2.731 -2.787 0.284***
NZL 91 -2.925 -3.937** 0.085* -3.539** -3.817** 0.048*
AUT 93 -3.235* -2.519 0.297*** -3.057 -3.029 0.307***
ITA 93 -3.595** -3.511** 0.138* -2.683 -2.731 0.207**
IND 97 -1.617 -2.185 0.425*** -1.180 -1.370 0.703***
CHE 99 -2.019 -2.479 0.371*** -2.594 -2.830 0.236***
SWE 116 -1.028 -0.978 0.814*** -1.349 -1.450 0.805***
JPN 117 -1.930 -1.668 0.563*** -2.036 -1.925 0.577***
ESP 118 -2.824 -2.227 0.495*** -3.087 -2.609 0.377***
NLD 126 -1.712 -1.753 0.84*** -1.737 -1.638 0.775***
DNK 144 -0.728 -1.12 0.456*** 0.357 -0.014 0.898***
BEL 147 -2.952 -2.779 0.808*** -1.382 -1.529 0.932***
USA 147 -2.774 -3.105 0.269*** -1.883 -2.217 0.569***
DEU 148 -1.255 -1.177 0.789*** -1.321 -1.167 0.773***
AUS 156 -3.284* -3.647** 0.425*** -3.289* -3.783** 0.263***
FRA 178 -2.644 -2.06 0.565*** -2.691 -2.634 0.537***
CAN 187 -4.628*** -4.806*** 0.341*** -4.610*** -6.430 0.163**

Notes: This Table presents the results from a set of unit root and stationarity tests on the time-series of
dividends d̃t and stock prices p̃t. The Table reports the test statistics computed in the Augmented Dickey
Fuller (ADF) test, the Phillips-Perron (PP) test, and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test.
The null hypothesis in the ADF test and the PP test is that the respective time-series contains a unit root,
while the null hypothesis in the KPSS test is that the time-series is stationary. Statistical significance at the
1%, 5%, and 10% levels is denoted by ***, **, and *, respectively. The second column tabulates the total
number of observations in years (n). Results are tabulated separately for each country, across 50 countries
in total. Countries are sorted in ascending order based on the number of years with available data (n).
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Table 2.9: Variance bounds tests - Engel volatility ratio

Panel A: Expected growth via Shiller-type regressions
Full sample Subsamples formed on time-series length

L   30 30   L   60 60   L
mean 25.1 31.3 32.6 12.6

median 20.4 29.1 29.5 11.9
min 6.1 10.4 6.3 6.1
max 78.4 63.6 78.4 21.7
n ¡ 1 50 13 18 19
n 50 13 18 19

Panel B: Expected growth via Cochrane-type regressions
Full sample Subsamples formed on time-series length

L   30 30   L   60 60   L
mean 14.1 15.3 15.0 12.4

median 10.5 10.5 11.6 9.2
min 4.7 4.7 5.5 4.7
max 60.2 32.9 58.1 60.2
n ¡ 1 50 13 18 19
n 50 13 18 19

Panel C: Expected growth via MIDAS regressions
Full sample Subsamples formed on time-series length

L   30 30   L   60 60   L
mean 2.8 2.3 3.6 2.2

median 2.2 2.4 2.8 1.7
min 1.0 1.0 1.2 1.0
max 14.5 4.4 14.5 9.0
n ¡ 1 49 12 18 19
n 50 13 18 19

Notes: This Table presents the results of computing the Engel (2005) volatility ratio σp∆p̃tq
σp∆p̃�t q

. Panel A
reports the results when expected dividend growth is obtained via Shiller-type regressions of price against
time. Panel B reports the results when expected dividend growth is obtained via Cochrane-type regressions
of changes in dividend growth against the lagged dividend-price ratio, while Panel C reports the results
when expected dividend growth is obtained via MIDAS regressions of changes in dividend growth against
the lagged dividend-price ratio. Each volatility ratio is computed separately for each sample country, across
50 countries in total. The Table reports the mean, median, minimum, and maximum values of each ratio
across the 50 sample countries, the number of cases where the ratio exceeds the value of 1, and the number
of countries n. The first column of each panel reports the results across the full sample of 50 countries, while
the last three columns report the results from subsamples that have been formed based on the countries’
number of years of available data L.
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dividends are non-stationary, the same variance of dividends results in a lower bound for the variance of

stock price changes, described in inequality (2.19).

Overall, our empirical results are representative of the debate in the literature about the sensitivity of

market efficiency tests to the underlying assumptions about the dividend process. Under the assumption

of dividend stationarity, the “first generation” variance bounds tests proposed by Shiller (1981) consistently

reject the hypothesis of market efficiency across 50 international stock markets, independent of the particular

framework used to produce expectations about future dividend growth. However, allowing for non-stationary

dividends, the “second generation” test proposed by Engel (2005) in fact provides support for the hypothesis

of efficient markets where stock price changes are driven by investors’ rational expectations about future

dividends. In the end, any conclusion on the question of stock market efficiency will ultimately depend on

one’s views about the likelihood of dividends following a stationary process. While a comprehensive analysis

of the most appropriate way to model the dividend process remains outside the scope of this chapter, our

empirical evidence of dividends’ significant deviations from stationarity in the majority of sample countries

appear to cast some doubt on the common rejection of market efficiency when using the original upper

variance bounds test proposed by Shiller (1981).

2.7 Trading strategy

Our empirical results thus far are consistent with significant violations of the conventional variance bounds

across multiple international markets. I now proceed to investigate whether this excess volatility of realized

prices relative to expected prices constitutes evidence to reject the hypothesis of weak form rationality in

terms of allowing for exploitable profit opportunities.

Bulkley & Tonks (1992) argue that some part of realized prices’ excess volatility can be attributed

to revisions in the parameters of the model that market participants use for the dividend process. In

this setting, investors are rational and they use unbiased techniques when forming their expectations about

future dividend growth. However, the fact that investors dynamically revise the parameters of their unbiased

model will result in some excess volatility of realized prices relative to that of expected prices based on future

disocunted dividends. Motivated by this argument, we explore whether the relatively high volatility of p

could potentially be attributed to market participants revising the parameters of their unbiased structural

model for dividends. To this end, we construct a simple “buy low - sell high” trading strategy that uses

currently available data to set the parameters of the trading rule.14

14Shiller (1981), Ackley (1983) and Bulkley & Tonks (1992) discuss cases where large excess volatility of
stock returns would suggest the existence of trading rules that may dominate the standard buy-and-hold
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Our strategy is based on the simple trading rule adopted in Bulkley & Tonks (1992). More specifically,

we consider an investor who can choose to invest either in the index or in a risk-free bond. At any point

in time t, the investor will decide how to invest by comparing the actual index price p against the perfect-

foresight price p�. If the realized price of the index is at least ∆% higher compared to the expected price,

then the investor will choose to sell the index and buy the risk-free bond. The bond is then held until the

realized price falls at least ∆% below the expected price, at which point the investor will buy back into the

index. The investor receives dividend payments when holding the index and the 1-year risk-free rate when

holding the bond, reinvesting all returns.

Under this simple trading rule, the investor will sell overpriced shares when their price exceeds the

present value of future dividends (i.e when p ¡ p� � p1 � ∆q) and buy them back when they become

underpriced in terms of their price falling below the present value of expected dividends (i.e. when p  
p��p1�∆q). If markets are efficient, then deviations of realized prices from their expected values would not

be large enough for this trading rule to dominate a simple buy-and-hold strategy, especially considering the

unavoidable model error around expected prices and the low rate of return of the risk-free asset (consistent

with the well-documented equity premium puzzle discussed in Mehra 2003). Bulkley & Tonks (1992) provide

a comprehensive discussion of the rationale behind this trading rule.

The investor starts with an initial wealth of $100 across any sample country, and the decision to switch

in or out of the index is taken on December 31st of each year. I adopt a dynamic threshold ∆t for the

investor’s choice to switch between the index and the risk-free bond. In particular, at each time t we select

a value for ∆t that would have ex post maximized the investor’s profits from the trading strategy during the

period p0, t� 1q.
Table 2.10 presents the performance of this trading strategy against that of the simple buy-and-hold

benchmark.15 The Table reports a set of measures that reflect each strategy’s performance, separately for

each of the 50 sample countries. More specifically, we report each strategy’s annual volatility, mean annual

return, Sharpe Ratio, Treynor Ratio, Sortino Ratio, and the 5% Value-at-Risk (computed parametrically).

In addition to these measures, we report the p-value from the Linton et al. (2005) second order stochastic

dominance (SSD) test of the trading strategy against the buy-and-hold benchmark. The null hypothesis of the

SSD test is that the trading strategy TS stochastically dominates the buy-and-hold BH (i.e. H0 : TS ¡2 BH

), which represents the case where every risk-averse investor would prefer TS over BH, irrespective of the

strategy.
15Expected prices p� are computed via the MIDAS regressions approach. For robustness, we have repli-

cated this exercise with expected prices that have been obtained via Shiller-type and Cochrane-type regres-
sions. The results are qualitatively similar, and thus unreported for brevity, but they are available upon
request.
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specifics of their risk preferences. Therefore, a rejection of the null hypothesis would constitute evidence

in favor of market efficiency, since the trading strategy based on excess volatility would not lead to a

performance that is universally preferred by every investor, with the ordering of TS relative to BH being

instead dependent on individual investors’ particular utility functions.

As can be seen from Table 2.10, the buy-and-hold benchmark offers annual returns that are on average

higher (46 out of 50 countries) and have a higher level of volatility (all 50 countries) relative to the trading

strategy. This finding is unsurprising, since the trading strategy involves some periods where the investor

switches from risky stocks to holding risk-free bonds that offer lower returns. In terms of risk-adjusted

performance measures, which would be more meaningful when comparing the two strategies, the results

are somewhat mixed. For instance, the trading strategy offers a Sharpe Ratio that exceeds that of the

benchmark in 20 out of 50 countries, suggesting that the trade-off between mean returns and volatility tends

to generally be better under the simple buy-and-hold strategy. Performance is more balanced between the

trading strategy and the benchmark when measured in terms of the Treynor Ratio and the Sortino Ratio,

with the trading strategy outperforming the buy-and-hold in 22 and 24 countries, respectively. Finally,

the trading strategy loads consistently less on downside risk, as evidenced by a lower VaR relative to the

benchmark across all 50 countries. Similarly to the lower levels of volatility, a lower VaR is also to be

expected given that the trading strategy substitutes bonds for riskier stocks during some periods.

Importantly, the SSD test fails to reject the null of the trading strategy dominating the buy-and-

hold benchmark in almost every sample country (with the only exception of Argentina). These results

suggest that any risk-averse investor in almost every country would prefer trading based on the difference

between realized prices and expected prices, compared to simply buying and holding the index, irrespective

of their specific utility function. In other words, the excess volatility of realized prices consistently results in

profitable investment opportunities that dominate the buy-and-hold strategy. Therefore, investors revising

the parameters of their unbiased model for dividends seems to be an unlikely explanation for the magnitude of

excess volatility that is observed across multiple countries, given the extent of the trading strategy’s stochastic

dominance over the benchmark. Overall, while risk-adjusted performance measures provide relatively mixed

results, the SSD test provides strong evidence against the hypothesis of efficient markets, consistent with

the arguments in Shiller (1981) and Bulkley & Tonks (1992).
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Table 2.10: Trading strategy performance

Country Volatility Return Sharpe Ratio Treynor Ratio Sortino Ratio VaR SSD Test
TS BH TS BH TS BH TS BH TS BH TS BH TS¡2BH

ARG 1.41 6.72 0.34 1.82 0.23 0.47 0.24 0.49 5.37 9.32 -0.37 -0.83 0.00
AUS 0.09 0.14 0.05 0.05 -0.05 -0.08 -0.05 -0.08 -0.59 -0.79 -0.09 -0.18 0.78
AUT 0.02 0.32 0.06 0.09 -0.07 -0.04 -0.15 -0.04 -0.22 -0.35 0.03 -0.38 0.77
BEL 0.06 0.22 0.06 0.05 0.05 -0.09 0.05 -0.09 0.61 -1.02 -0.04 -0.29 0.79
BRA 0.08 0.34 0.18 0.21 -0.09 -0.05 -0.11 -0.05 -0.17 -0.30 0.06 -0.31 0.73
BGR 0.18 0.44 0.09 0.23 0.22 0.13 0.23 0.13 2.84 0.20 -0.14 -0.76 0.51
CAN 0.11 0.17 0.05 0.05 -0.08 -0.10 -0.08 -0.10 -0.95 -1.12 -0.14 -0.23 0.79
CHL 0.01 0.20 0.06 0.11 -0.05 0.20 -0.05 0.20 -0.03 0.64 0.04 -0.21 0.42
CHN 0.01 0.35 0.04 0.08 -0.29 -0.05 -0.18 -0.05 -0.12 -0.10 0.03 -0.57 0.62
COL 0.03 0.45 0.09 0.20 0.06 0.15 0.08 0.16 0.09 0.84 0.04 -0.40 0.37
CZE 0.02 0.25 0.03 0.09 0.12 0.10 0.24 0.10 0.28 0.31 0.01 -0.35 0.59
DNK 0.08 0.19 0.04 0.05 -0.28 -0.14 -0.31 -0.14 -3.52 -2.02 -0.09 -0.23 0.77
EGY 0.01 0.64 0.16 0.32 -1.00 0.06 -0.57 0.07 -0.11 0.11 0.13 -0.62 0.47
FIN 0.07 0.35 0.09 0.14 0.09 0.04 0.09 0.04 0.54 0.25 -0.03 -0.39 0.62
FRA 0.09 0.21 0.05 0.07 0.00 0.02 0.00 0.02 -0.05 0.27 -0.08 -0.25 0.53
DEU 0.04 0.48 0.05 0.08 -0.10 -0.08 -0.11 -0.08 -0.69 -0.74 -0.02 -0.53 0.77
GRC 0.09 0.42 0.14 0.14 -0.05 -0.19 -0.06 -0.18 -0.23 -0.82 0.00 -0.57 0.72
HKG 0.03 0.27 0.04 0.08 0.06 0.02 0.11 0.02 0.20 0.06 0.00 -0.40 0.69
HUN 0.02 0.29 0.07 0.11 0.06 0.02 0.08 0.01 0.06 0.06 0.04 -0.39 0.64
IND 0.05 0.27 0.06 0.09 -0.13 -0.03 -0.14 -0.03 -0.86 -0.27 -0.03 -0.31 0.72
IDN 0.02 0.14 0.08 0.13 0.09 0.37 0.06 0.35 0.04 0.68 0.05 -0.10 0.31
IRL 0.03 0.25 0.05 0.10 0.07 0.06 0.10 0.06 0.16 0.14 0.01 -0.40 0.51
ISR 0.02 0.27 0.05 0.11 -0.01 0.14 -0.01 0.14 -0.02 0.63 0.02 -0.30 0.37
ITA 0.07 0.35 0.06 0.11 -0.20 -0.02 -0.24 -0.02 -1.51 -0.19 -0.05 -0.38 0.51
JPN 0.18 0.30 0.05 0.07 -0.10 -0.09 -0.10 -0.09 -0.88 -0.73 -0.25 -0.48 0.73
JOR 0.02 0.27 0.06 0.08 -0.12 -0.06 -0.21 -0.06 -0.17 -0.43 0.03 -0.33 0.78
KEN 0.03 0.25 0.13 0.05 -0.46 -0.46 -0.31 -0.43 -0.22 -1.03 0.09 -0.40 0.63
KOR 0.09 0.32 0.07 0.15 -0.20 0.07 -0.20 0.07 -1.44 0.63 -0.08 -0.32 0.26
MYS 0.21 0.28 0.08 0.10 0.00 0.00 0.00 0.00 0.01 0.02 -0.25 -0.36 0.72
MAR 0.01 0.21 0.05 0.08 0.09 0.09 0.19 0.09 0.08 0.28 0.03 -0.26 0.45
NLD 0.05 0.19 0.04 0.05 -0.15 -0.09 -0.15 -0.08 -1.41 -0.76 -0.04 -0.26 0.77
NZL 0.08 0.22 0.06 0.06 -0.09 -0.09 -0.10 -0.09 -0.81 -0.84 -0.06 -0.26 0.75
NGA 0.15 0.35 0.20 0.25 0.28 0.10 0.31 0.10 1.45 0.39 -0.02 -0.36 0.71
NOR 0.04 0.30 0.07 0.11 -0.06 0.00 -0.19 0.00 -0.24 -0.02 0.01 -0.39 0.74
PHL 0.05 0.28 0.10 0.08 -0.04 -0.18 -0.07 -0.17 -0.11 -0.71 0.01 -0.41 0.70
POL 0.09 0.31 0.10 0.11 0.05 -0.09 0.14 -0.09 0.35 -0.38 -0.03 -0.41 0.67
PRT 0.05 0.31 0.08 0.06 0.01 -0.18 0.01 -0.17 0.03 -0.83 0.00 -0.44 0.74
ROU 0.06 0.54 0.09 0.27 0.18 0.17 0.34 0.17 0.47 0.26 0.00 -0.62 0.49
RUS 0.08 1.05 0.11 0.45 -0.09 0.19 -0.07 0.19 -0.27 1.07 0.00 -0.67 0.25
SGP 0.01 0.27 0.03 0.08 0.09 0.09 0.11 0.09 0.11 0.25 0.01 -0.37 0.52
ZAF 0.14 0.23 0.13 0.15 0.07 0.04 0.07 0.04 0.57 0.28 -0.08 -0.21 0.81
ESP 0.04 0.22 0.06 0.06 -0.10 -0.14 -0.18 -0.14 -0.70 -1.41 0.00 -0.29 0.77
SWE 0.12 0.23 0.06 0.09 0.01 0.03 0.01 0.03 0.06 0.24 -0.13 -0.28 0.54
CHE 0.06 0.20 0.03 0.06 -0.20 0.00 -0.20 0.00 -1.25 0.03 -0.09 -0.28 0.35
TWN 0.02 0.29 0.03 0.06 0.10 -0.01 0.30 -0.01 0.47 -0.03 0.00 -0.43 0.68
THA 0.25 0.32 0.12 0.12 0.09 -0.02 0.09 -0.02 0.50 -0.11 -0.25 -0.42 0.76
TUN 0.01 0.20 0.07 0.12 -0.06 0.20 -0.10 0.20 -0.03 1.53 0.05 -0.17 0.23
TUR 0.19 1.68 0.38 0.84 -0.39 -0.01 -0.73 -0.01 -1.04 -0.14 0.08 -0.72 0.49
GBR 0.09 0.17 0.07 0.07 0.03 -0.03 0.03 -0.03 0.27 -0.19 -0.07 -0.21 0.80
USA 0.15 0.17 0.05 0.06 -0.03 0.00 -0.03 0.00 -0.25 -0.04 -0.20 -0.24 0.54

Notes: This Table reports the performance of a trading strategy that is based on the difference between
realized prices p and and expected prices p�, with the latter estimated via MIDAS regressions of dividend
growth against the lagged dividend-price ratio. The performance of the trading strategy TS is compared
against that of the simple buy-and-hold benchmark BH. The Table reports several measures of performance
for each strategy, namely annual Volatility (in %), mean annual Return (in %), Sharpe Ratio, Treynor Ratio,
Sortino Ratio, and 5% Value-at-Risk (VaR). The last column of the Table reports the p-value of the Linton
et al. (2005) second order stochastic dominance (SSD) test. The null hypothesis of the SSD test is that the
trading strategy stochastically dominates the buy-and-hold benchmark (i.e. H0 : TS ¡2 BH). The results
are reported separately for each sample country, across 50 countries in total.
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2.8 Chapter Summary

The simple notion that rational investors determine current stock prices as the sum of future expected

dividends has attracted a lot of attention in the empirical literature. The seminal Shiller (1981) study, in

particular, has sparked a lively debate on whether the higher volatility of realized prices relative to that of

prices computed as the sum of discounted future dividends can be used as evidence to reject the hypothesis

of investor rationality. Given that the previous literature has focused almost exclusively on the US, the

current article provides the first study of this excess volatility puzzle in an international context.

I confirm that the commonly reported finding in the US of realized price volatility exceeding the volatility

of ex-post rational prices also applies to a large international sample of 50 countries. Although excess

volatility in realized prices is confirmed across almost every sample country, its magnitude appears to be

substantially higher in developing countries compared to their developed counterparts. However, we present

evidence that this difference is most likely driven by the length of available data in each country rather than

reflecting a fundamental relationship between excess volatility and a country’s state of economic development.

Another important finding refers to the sensitivity of variance bounds test results to the specification

used in order to obtain expectations of future dividends. For instance, using mixed-frequency regressions

to obtain a measure of expected dividend growth results in substantially less pronounced excess volatility

on average compared to that observed when using the standard Shiller (1981) approach of obtaining a price

trend via regressions against time. Nevertheless, even though the magnitude of the effect varies, all measures

of ex-post rational prices consistently result in excess volatility across the vast majority of sample countries.

Finally, our results provide further empirical support for the argument that evaluating stock market

rationality is heavily dependent on the test’s specific assumptions about the dividend process. Similarly to

previous findings from the US market, we document that variance bounds tests are characterized by the

same challenges and nuances with respect to dividend stationarity when applied to other countries as well.

Consequently, inferences about stock market rationality will ultimately depend on the assumptions that one

is willing to make about the underlying dividend process. A promising line of further research would be to

consider replacing variance tests with model-free or model-based orthogonality tests that have higher power

than the benchmark returns test and circumvent the nuisance parameter problem as described by LeRoy &

Steigerwald (1995).
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APPENDIX A

Additional Material for Chapter 2

A.1 Variance Bounds Determination

This section begins with a replication of the Shiller (1981) simple efficient markets model. Within this model,

earnings serves as an indicator for future dividends see (see also Shiller 2015).

A.1.1 The volatility puzzle

A widely held viewpoint concerns the fact that; pt � Etpp�t q where p�t is optimally forecast such that it

provides a representation of all available information at time t. Suppose an observable forecast error εt can

be defined as;

εt � p�t � pt

where covpεt, ptq � 0 indicates no correlation between forecasted values and forecast error, then the uncon-

ditional variance of the p�; varpp�q � varpεq � varppq for which varppq ¤ varpp�q since we strictly expect

varpεq ¥ 0.

σppq ¤ σpp�q (A.1)

Relating to inequality (A.1), the theory explores varied related theoretical questions as well as other

inequalities which impose a lower and an upper bound on σpδtq and σp∆pq. With respect to σppq, it

is argued that σppq attains its highest with smooth dividend information announcement and dips to its

minimum otherwise; the series also attains high kurtosis with irregular dividend information.
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A.1.2 A limit on the innovations and the first difference in price

Here, the thesis closely follow Shiller (1981) and outline the theoretical framework of the volatility puzzle

relation. I discuss how the first-generation formulation differ from other versions suggest by Kleidon (1986),

West (1988b), LeRoy & Parke (1992) and Engel (2005). In what immediately follows, the study presents a

breakdown of the variance bound theory in steps i.e.

Step 1a (An expression for Pt): Shiller (1981)’s simple efficient market model estimates real share

price Pt using the relation;

Pt �
8̧

k�0
γk�1EtDt�k (A.2)

where 0   γ   1, (refer to table 1.1 for the definition of terms). Information at time t generally include Pt

and Dt, their lags, and all other necessary variables.

Step 1b An expression for the holding-period return1 Ht): The one-period holding period return

for any given period of time t to t� 1 under the simple efficient market model is equivalent to Pt�1�Pt�Dt
Pt

.

Step 1c (An expression for pt): Using the long-run growth factor λt�T � p1 � gqt�T , the real

detrended stock price pt and real detrended dividends dt series are realisable as; pt � Pt{λpt�T q and dt �
Dt{λpt�1�T q. The growth factor λ � exppβq, where β is from the regression lnpptq � α� βpTimeq.

Suppose we proceed with a trivial modification of model (A.2) i.e. dividing both sides by λt�T ;

Pt
λt�T

�
°8
k�0 γ

k�1EtDt�k
λt�T

� λk�1

λk�1

pt �
°8
k�0pλγqk�1EtDt�k
λpt�kq�1�T

since dt�k � Dt�k
λt�k�1�T

pt �
8̧

k�0
pλγqk�1Etdt�k

and the real discount factor2 for the detrended series is λγ � 1�g
1�r � γ̄

pt �
8̧

k�0
pγ̄qk�1Etdt�k (A.3)

I require g   r to obtain finite stock prices thus, γ̄ � λγ   1. A necessary assumption is that; dt is
1Under the model expressed in 1.2, EtpHtq � r.
2r̄ is defined by γ̄ � 1

1�r̄ . An appropriate discount rate for pt and dt
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jointly stationary with information. varppq can be expressed without time subscripts when the unconditional

covariance between dt and any information variable zt depends only on k and not t. Given this assumption

and taking the unconditional expectation across model (A.3) results in;

Epptq � E

� 8̧

k�0
pγ̄qk�1Etdt�k

�
� Eppq � Epdq

� 8̧

k�0
pγ̄qk�1

�

Eppq � Epdq
�

γ̄

1� γ̄

�

Substituting γ̄ � 1{p1 � r̄q and solving for r̄ shows clearly that the discount rate is equivalent to the

ratio of Epdq and Eppq.
Step 1d (An expression for p�t ): Shiller (1981) expresses the ex-post rational price p�t as the expected

present value of actual future dividends:

pt � Etpp�t q (A.4)

where p�t �
°8
k�0 γ̄

k�1dt�k. According to Shiller (1981), p�t is approximately observable (within some error

margin) when available dividend series are long enough. If the terminal value is known, the p�t series is

recursively estimable by the relation;

p�t � γ̄pp�t�1 � dtq (A.5)

In his 1981 study, Shiller (1981) arbitrarily sets the terminal-value of p�t to Eppq. Any corresponding

assumption made on the estimated terminal-value will mandate adjustment p� for exponential trend.

Step 2a (Deriving the limits on δppq and ∆ppq): I define a necessary innovation operator δ i.e.

change in conditional expectation made in response to new information arriving between t � 1 to t is such

that;

δtpt � pt � pt�1 � dt � r̄pt�1

According to Shiller (1981) found that δtpt � ∆pt and δtpt is observable, contrary Samuelson (1973),

Granger (1975) suggestion that ∆pt by efficient markets is unforecastable (empirical results confirm the

equivalence). Based on this, the relation between price and dividend in terms innovations3 is can be expressed

as

δtpt �
8̧

k�0
γ̄k�1δtdt�k (A.6)

Assumptions are required to be made on the nature of accrual of dividend information pattern in order to
3δtdt�k denotes the time when dividends are announced publicly. This term is clearly not directly

unobservable
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derive inequalities on δtpt. Under perfect positive correlation of time t innovations in equation (A.5), the

σ2pδtptq attains its maximum and σ2pδpq �
�°8

k�0 γ̄
k�1σk

	2
.

Step 2b (Deriving the limits on δppq and ∆ppq): The next relation we review is:

dt � Epdq �
8̧

k�0
δt�kdt (A.7)

Comparing (A.6) to (A.7) suggests that @t ¥ 0, dt in 1.7 represent varied linear combinations of dividend

innovations as given in equation 1.5. A relation between σ2pδpq and σ2pdq is established such that:

σ2pdq �
8̧

k�0
σ2pδdkq �

� 8̧

k�0
σ2
k

	
(A.8)

σ2, pδt�kdtq, σ2pδdk), and σ2
k remain in equivalence under stationarity assumption. With no autocorrelation

in the innovation series, forecasted dividend series maintain an ARIMA form making it possible to maximize

σ2pdpq. Equation (A.7) can be rewritten as:

dt � Epdq �
8̧

k�0
δt�kdt

Hence,

dt � Epdq � d̂t �
8̧

k�0
δt�kdt �

8̧

k�0
akεt�k

εt � δtdt.

Step 2b (The limit on σp∆ptq): This concerns the upper bound behaviour of σp∆pq given σpdq.
Recall that:

∆pt � δtpt � r̄pt�1 � dt�1

with which we can have the first-difference4 in real detrended stock price index;

∆pt �
� 8̧

k�0
γ̄k�1δtdt�k � r̄

8̧

j�1
δt�j

8̧

k�0
γ̄k�1dt�k�1 �

8̧

j�1
δt�jdt�1

�
(A.9)

with all order-conditions satisfied for maximisation, we find a slightly different inequality:

σp∆pq ¤ σpdq?
2r̄

(A.10)

4innovations at time t in d are perfectly correlated while those of different times are necessarily uncor-
related. This allows us to express forecasted dividend process as ARIMA process. Futher, the upper limit
is obtained form an optimally forecasted first-order autoregressive dividend when δ̂t � p1� r̄qδ̂t�1 � εt and
Etdt�k � p1� r̄qkdt.
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is realised at the maximum point.

A.2 Parameter estimation process

Step 1: Generating the real share price Pt and real dividend Dt. The following necessary adjustments were

made using the Bureau of Labor Statistics whole price index (WPI):

For real price Pt series5 starting 1900:

Ppt¥1900,T�1979q �
pNominal Share Priceqt
pWPI for Januaryqt � pWPIqT (A.11)

For real price Pt series prior to 1900:

Ppt 1900,T�1979q �
pNominal Share Priceqt
pAnnual Average WPIqt � pWPIqT (A.12)

For real dividend series Dt:

Dpall t,T�1979q �
pNominal Dividendqt

pAnnual Average WPIqt � pWPIqT (A.13)

Step 2: Generate Ht, the holding period returns using the relation

Ht � Pt�1 � Pt �Dt

Pt

Step 3: Estimate the long-run exponential growth rate λ � p1� gq i.e. the trend factor for detrending

Pt and Dt. Shiller (1981) estimates this through the following process:

lnpPtq � α� βpTimeq

β � lnλ
5The data used for the empirical analysis and replication of Shiller (1981) study is obtained from (Shiller

1992, chp.26)6. The set comprises monthly actual dividend payment and price series on the S&P500 index
spanning 1871 to 1979. The replication process directly adopts calculations and descriptions provided by
Robert Shiller. The required adjustment to generate Pt and Dt from the nominal price and dividend series
is outlined in “Step 1a”. See appendix A for respective proofs. I use S&P500 index price and dividend
data series covering 1871-2017 to verify whether Shiller’s prior findings still hold. Then, we extend the
verification study to test for consistency in the case of fifty (50) globally selected financial stock markets.
The dataset consist of monthly index price and actual dividend payment series from Global Financial Data
https://www.globalfinancialdata.com/
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λ � exppβq (A.14)

Step 4 Estimate the real detrended stock price pt and real detrended dividend dt

pt � Pt
λt�T

(A.15) dt � Dt

λt�1�T (A.16)

Step 5 Estimate the ex-post rational stock price index p�t by setting the terminal value p�T � Epptq i.e.

average over the entire sample. The series is generated using equation 1.5 and λ̄ � 1{p1� r̄q.

A.3 Model-free variance bounds test

The rationale of the Model-free variance bounds is to produce a methodology that will enable us explore and

determine whether the rejection of the present-value relation is statistically significant (see LeRoy & Parke

1992).

The procedure follows the following steps

1. The geometric random walk is used to simulate the actual ex-post rational stock prices.

dt�1 � dtεt�1

where ε is IID with mean µ and variance σ2. This suggest that model-free test is model-free only in

the sense that the test statistic is constructed without specifying a dividends model. The choice of

dividend model does not affect the size of the rejection region.

Suppose dividends evolve through time according to the model (see alos in Kleidon 1986, Froot &

Obstfeld 1991, LeRoy & Parke 1992)

lnDt�1 � µ� lnDt � σεt�1

where εt�1 is a Gaussian white-noise process with Epεtq � Erε2t s � 0.

2. The Monte Carlo experiments are implemented the parameters of the geometric random walk has

parameters estimated from real-world data.
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A.4 Economic history of Spain

Eizaguirre et al. (2004) considered the Spanish economic and financial history with a focus on the volatility

of the stock markets, over the period 1941:01 to 2001:12. They suggest that there were several distinctive

periods in the Spanish economy that influenced that volatility on their stock market. The first period in their

study covers the autarhic behaviour imposed by the Civil War and World War 2, up to the “Stabilization

Plan” of 1959 when the economy opened up to foreign investment.

The second period (1973-1985) was marked by oil crises hit and the intense instability of the 1970s

and 1980s. The third period (1986-2001) of their study is associated with the integration in the European

environment. The analysis in Eizaguirre et al. (2004) point out to a change in behaviour of Spanish stock

market volatility which happened in the 1970s based on the economic development and the end of Franco’s

dictatorship and not in the 1980s when financial development occurred. Inn more recent times, Spanish

economy has become more internationally integrated and therefore international instability is transmitted

to Spain. There were also periods of abnormally high volatility in the 1987, 1991 and 1999 and the volatility

after the breaks was less persistent.

The evolution of the stock prices in the post-war era is in stark contrast with the behaviour of stock

markets in Spain prior to 1945. Figure A.1 shows the evolution of the real stock prices between 1900 and

2018, on a log scale. The poor performance of stock prices in Spain for the first half of this period can be

attributed to the fact that there were several stock exchanges in Spain distributed geographically and b)

the introduction of the regulation of stock markets by transfer of French legislation in 1830 that created a

stock market environment where French style stock markets coexisted with Anglo-Saxon style free markets

and other small traditional systems, the existence in parallel of different institutional settings generating

significant distortions on Spanish financial markets (see Cagigal 2008, for more details).

The historical evolution of the Spanish economy is strongly connected to its social and political struc-

tures. Figure A.1 attempts to present a periodization of Spanish history and the evolution of real stock price

and dividend time series. This provides a good basis to partially investigate and rationalize observed lower

values for Spain in relation to the phases of development experienced by her economy. Harrison (1990),

Casares et al. (2000), and Vives (2015) provide excellent panoramic view on the Spanish economy. More

specifically, we highlight the six unique phases of Spain’s economy discussed in Vives (2015). First the prim-

itive colonial economy which characterises the beginning of Hispanic economy amidst colonization by the

Eastern Mediterranean people. This period is centred on control of trade routes for metals when the Hispanic

economy was in close association with the Mediterranean world. The second is feudal and Seigniorial econ-
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omy-8th to 12th century where the collapse of mercantile and monetary economy ushers in the family-type

economy in Christian Spain with economic activities based on wheat and sheep. Commercial trading per-

sisted within the Muslim Spain. Third, is the commercial expansion of the Bourgeois patriciate-12th century;

here urban development led to new economic systems and living standards. Barcelona became the economic

hub of Spain from the 12th to the 15the century. Gold, spices, slaves and clothing manufacturing became the

main commodities of trade. The fourth is the Mercantile period - 16th to 17th century when the discovery of

the new world and more importantly the inception of the Spanish monarchy. According to Vives (2015), the

monarchy era was characterised by survival economic mentality and openness to the American market which

was experiencing substantial growth. Arrival of the Mexican and Peruvian silver led to capitalism as the old

veil of feudal system broke apart. Efforts to maintain a large army against limited resources led to a financial

collapse in 1680. Economic transformation phase - 18th to 19th century is fifth. This phase is characterised

by economic activities and a new reformation agenda where Spain aligned with the rest of Europe. This led

to the establishment of commercial enterprise and large-scale capital ideology. Development came speedily

as Spain opened to commerce and industry, thereby attaining her share of industrial revolution in the 19th

century as industrialisation from England spilled over into the region. The sixth and final economic period

discussed by Vives (2015) is the contemporary economy phase -beginning in 1917. The social and political

space faced contentions between views on socialism and capitalism. The most important decision in this

phase is based on how the economy balanced agricultural, industrial and technological revolution against

notable failures as Spain worked match her development to that of the western world (see also Harrison

1990, Casares et al. 2000). I do acknowledge that economic progress around these periods are slow within

the social and political structures that evolve over time.
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Figure A.1: Spain Real Stock Prices 1900-2018

Notes: This Figure plots the log values of real stock index prices for the Spanish stock market since 1900.
The interwar and civil unrest price series illustrates how real stock prices decline by more than one-half from
1900 to 1960.Real stock price values started to pickup after the second world war.

A.5 International evidence of dividend volatility

A.5.1 Cross-country dividend data structure

Data used for our empirical analysis and replication study is from the Global Financial Database (GFD). I

have a sample of fifty (50) stock markets spread globally. Specifically, we use data from Argentina, Australia,

Austria, Belgium, Brazil, Bulgaria, Canada, Chile, China, Colombia, Ecuador, Czech Republic, Denmark,

Egypt, Finland, France, Germany, Greece, Hong Kong, Hungary, India, Indonesia, Ireland, Israel, Italy,

Japan, Jordan, Kenya, Korea, Malaysia, Morocco, Netherlands, New Zealand, Nigeria, Norway, Philippines,

Poland, Portugal, Romania, Russia, Singapore, South Africa, Spain, Sweden, Switzerland, Taiwan, Thailand,

Tunisia, Turkey, United Kingdom, and United States.

The GFD datasets are monthly nominal index prices, the aggregate nominal dividends paid by index

constituents and the consumer price index for each sampled country. The last date for the sample period is

December 31, 2018 for all samples although the start data varies across countries.
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A.6 Base Year Effect on Variance Bounds

Table A.1: Base Year Effect on Dividend Puzzle

σppq
σpp�q

σp∆pq
σpdq{?2r̄

σp∆p�dt�1�r̄pt�1q
σpdq{?r̄2

Country No. of Obs Base Yr: 2002 Base Yr: 2018 Base Yr: 2002 Base Yr: 2018 Base Yr: 2002 Base Yr: 2018

BGR 17 13.56 22.85 3.81 5.04 3.94 5.13
ROU 19 4.93 11.81 3.60 5.37 3.42 5.27
RUS 20 5.07 20.77 5.68 11.12 5.39 10.99
TUN 21 8.49 16.20 5.11 6.99 4.93 6.87
BRA 22 5.02 11.66 5.00 7.85 4.64 7.63
CZE 23 3.99 5.33 3.50 4.00 3.29 3.82
HUN 23 7.28 11.62 5.00 6.40 4.92 6.33
POL 23 4.74 6.41 3.89 4.54 3.84 4.50
ISR 24 8.28 8.86 7.13 7.38 6.91 7.17
EGY 25 0.91 3.05 2.01 3.30 1.37 3.12
CHN 27 11.66 17.27 10.69 12.93 10.49 12.77
IDN 27 5.61 15.59 5.71 9.14 5.39 8.95
IRL 27 9.24 11.50 5.35 5.96 5.29 5.91
PRT 31 7.34 9.45 6.73 7.64 6.60 7.53
COL 32 10.15 20.25 6.71 9.41 6.37 9.18
NGA 32 2.59 7.68 4.54 9.03 3.52 8.67
TWN 32 7.41 8.86 9.16 9.96 8.97 9.79
TUR 32 2.11 7.53 5.71 10.98 5.10 10.70
KEN 34 0.81 1.68 1.58 2.59 1.13 2.46
MAR 34 8.60 11.05 4.53 5.11 4.38 4.98
PHL 36 4.69 8.11 2.83 3.84 2.72 3.77
JOR 39 5.92 9.58 5.68 7.40 5.50 7.27
GRC 41 6.88 9.03 4.77 5.43 4.65 5.33
THA 42 6.29 8.75 5.76 6.80 5.56 6.64
CHL 44 2.50 3.75 2.49 3.10 2.30 2.96
MYS 44 15.27 22.72 10.82 13.05 10.54 12.82
SGP 45 9.09 12.09 11.64 13.32 11.36 13.08
NOR 48 4.32 5.59 6.18 7.17 6.02 7.04
HKG 53 8.15 10.79 16.11 18.92 15.66 18.54
ZAF 54 2.32 4.71 3.85 5.81 3.69 5.72
KOR 55 0.81 1.07 1.51 1.78 1.40 1.71
FIN 56 5.48 6.59 5.54 6.15 5.41 6.03
ARG 71 1.32 3.90 1.43 3.08 0.96 2.99
GBR 84 2.74 3.50 4.59 5.39 4.41 5.25
NZL 91 2.68 3.25 4.36 5.10 4.23 4.99
AUT 93 2.89 3.65 3.30 3.79 3.22 3.73
ITA 93 2.83 3.47 2.86 3.24 2.79 3.18
IND 97 1.23 2.02 1.67 2.63 1.53 2.59
CHE 99 2.41 2.53 2.68 2.75 2.63 2.70
SWE 116 2.36 2.65 2.20 2.41 2.17 2.37
JPN 117 1.18 1.38 1.95 2.18 1.89 2.14
ESP 118 2.69 3.18 2.67 3.06 2.61 3.00
NLD 126 1.68 1.97 1.72 1.94 1.70 1.93
DNK 144 1.99 2.26 1.90 2.15 1.93 2.18
BEL 147 2.02 2.38 2.39 2.77 2.37 2.75
USA 147 1.63 1.91 2.81 3.29 2.74 3.24
DEU 148 2.02 2.28 1.60 1.77 1.55 1.72
AUS 156 1.60 1.85 2.69 3.21 2.56 3.11
FRA 178 1.56 1.73 2.66 2.94 2.57 2.86
CAN 187 1.40 1.58 2.53 2.89 2.44 2.81

Notes: This table reports and compares the results of the volatility bounds test which are estimated form
different base year consumer price index (CPI). I compare the impact of changing the base year from 2018
to 2002 when calculating the real stock index price and dividends series. The dividend puzzle still exist, but
at different magnitudes across countries.

66



2.6.1 Additional stationarity test results

Table 2.2: Stationarity test on transformed price and dividend series

Pt{Dt pt{dt rpt{ rdt
Country PP KPSS ADF PP KPSS ADF PP KPSS ADF
ARG -8.009*** 0.116* -3.757** -5.491*** 0.088* -3.87** -8.009*** 0.116* -3.757**
AUS -5.594*** 0.251*** -3.761** -5.549*** 0.219*** -3.791** -5.594*** 0.251*** -3.761**
AUT -4.444*** 0.154** -3.162* -4.657*** 0.143* -3.233* -4.444*** 0.154** -3.162*
BEL -6.746*** 0.137* -4.923*** -4.605*** 0.176** -4.556*** -6.746*** 0.137* -4.923***
BRA -4.384** 0.072* -3.199 -4.838*** 0.07* -3.869** -4.384** 0.072* -3.199
BGR -3.764** 0.079* -2.849 -2.968 0.075* -2.837 -3.764** 0.079* -2.849
CAN -5.918*** 0.504*** -3.97** -5.184*** 0.506*** -3.677** -5.918*** 0.504*** -3.97**
CHL -4.321*** 0.088* -3.161 -3.944** 0.097* -2.844 -4.321*** 0.088* -3.161
CHN -2.968 0.102* -2.426 -2.795 0.101* -2.284 -2.968 0.102* -2.426
COL -4.322*** 0.099* -3.069 -4.083** 0.124* -2.949 -4.322*** 0.099* -3.069
CZE -4.754*** 0.109* -2.128 -3.614* 0.113* -2.051 -4.754*** 0.109* -2.128
DNK -3.665** 0.796*** -2.63 -3.431* 0.836*** -2.631 -3.665** 0.796*** -2.63
EGY -4.459*** 0.094* -1.517 -2.263 0.079* -2.325 -4.459*** 0.094* -1.517
FIN -3.045 0.245*** -2.306 -2.485 0.258*** -2.006 -3.045 0.245*** -2.306
FRA -4.177*** 0.209** -5.561*** -4.192*** 0.227*** -4.606*** -4.177*** 0.209** -5.561***
DEU -12.145*** 0.071* -6.979*** -9.579*** 0.107* -6.294*** -12.145*** 0.071* -6.979***
GRC -4.442*** 0.073* -3.691** -3.841** 0.064* -3.404* -4.442*** 0.073* -3.691**
HKG -5.601*** 0.067* -3.157 -5.498*** 0.056* -3.462* -5.601*** 0.067* -3.157
HUN -3.16 0.104* -2.191 -3.189 0.109* -1.902 -3.16 0.104* -2.191
IND -3.687** 0.457*** -3.463** -2.722 0.556*** -2.342 -3.687** 0.457*** -3.463**
IDN -23.003*** 0.15** -1.938 -6.222*** 0.178** -1.699 -23.003*** 0.15** -1.938
IRL -2.977 0.077* -2.528 -3.182 0.078* -2.645 -2.977 0.077* -2.528
ISR -2.736 0.192** -2.014 -2.346 0.182** -1.572 -2.736 0.192** -2.014
ITA -9.458*** 0.049* -5.527*** -4.694*** 0.07* -4.283*** -9.458*** 0.049* -5.527***
JPN -2.32 0.254*** -2.661 -2.043 0.36*** -1.707 -2.32 0.254*** -2.661
JOR -2.876 0.128* -2.987 -2.888 0.136* -2.428 -2.876 0.128* -2.987
KEN -4.81*** 0.105* -1.901 -3.734** 0.097* -2.663 -4.81*** 0.105* -1.901
KOR -2.138 0.211** -1.827 -1.768 0.266*** -1.431 -2.138 0.211** -1.827
MYS -3.489* 0.225*** -1.882 -3.536** 0.23*** -1.831 -3.489* 0.225*** -1.882
MAR -1.81 0.216*** -1.951 -1.636 0.243*** -1.972 -1.81 0.216*** -1.951
NLD -3.549** 0.189** -2.767 -3.542** 0.199** -2.5 -3.549** 0.189** -2.767
NZL -6.449*** 0.092* -3.558** -5.745*** 0.099* -3.45* -6.449*** 0.092* -3.558**
NGA -3.443* 0.12* -1.722 -3.291* 0.113* -2.357 -3.443* 0.12* -1.722
NOR -2.596 0.235*** -1.659 -2.367 0.235*** -1.595 -2.596 0.235*** -1.659
PHL -2.325 0.198** -2.049 -2.073 0.243*** -2.053 -2.325 0.198** -2.049
POL -2.514 0.092* -2.093 -2.307 0.107* -1.473 -2.514 0.092* -2.093
PRT -4.53*** 0.056* -3.963** -3.694** 0.073* -3.024 -4.53*** 0.056* -3.963**
ROU -2.876 0.082* -2.761 -2.747 0.109* -2.287 -2.876 0.082* -2.761
RUS -3.532* 0.063* -2.824 -3.135 0.081* -2.146 -3.532* 0.063* -2.824
SGP -4.177** 0.242*** -1.687 -3.393* 0.279*** -1.577 -4.177** 0.242*** -1.687
ZAF -3.98** 0.117* -2.66 -3.667** 0.117* -2.544 -3.98** 0.117* -2.66
ESP -3.319* 0.117* -3.616** -3.185* 0.141* -3.381* -3.319* 0.117* -3.616**
SWE -4.596*** 0.199** -3.39* -4.484*** 0.208** -3.392* -4.596*** 0.199** -3.39*
CHE -2.563 0.261*** -1.883 -2.501 0.355*** -1.913 -2.563 0.261*** -1.883
TWN -5.441*** 0.059* -4.236** -3.845** 0.089* -4.201** -5.441*** 0.059* -4.236**
THA -2.621 0.211** -2.31 -2.235 0.248*** -1.903 -2.621 0.211** -2.31
TUN -2.649 0.097* -1.824 -2.555 0.093* -2.054 -2.649 0.097* -1.824
TUR -2.823 0.191** -2.015 -3.632** 0.252*** -1.248 -2.823 0.191** -2.015
GBR -3.993** 0.202** -3.375* -4.095*** 0.215** -3.484** -3.993** 0.202** -3.375*
USA -2.772 0.531*** -2.467 -3.103 0.549*** -2.399 -2.772 0.531*** -2.467
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Table 2.3: Variance bounds test with sample size limited to 30

Country MIDAS Cochrane-type First Gen.

n
σppq
σpp�q

σp∆p̃q
σpd̃q?

2r̄

σp∆p̃�d̃t�1�r̄d̃t�1q
σpd̃q?
r̄2

σppq
σpp�q

σp∆p̃q
σpd̃q?

2r̄

σp∆p̃�d̃t�1�r̄d̃t�1q
σpd̃q?
r̄2

σppq
σpp�q

σp∆p̃q
σpd̃q?

2r̄

σp∆p̃�d̃t�1�r̄d̃t�1q
σpd̃q?
r̄2

ARG 30 4.84 1.35 1.39 16.82 4.82 4.84 9.00 5.81 5.71
AUS 30 1.92 0.71 0.58 4.98 1.69 1.66 11.41 8.17 8.00
AUT 30 1.38 2.30 1.99 8.54 2.75 2.72 15.07 10.70 10.59
BEL 30 1.28 1.28 1.05 7.34 2.13 2.10 14.27 6.33 6.27
BRA 22 2.16 1.05 0.92 8.60 3.27 3.23 11.66 7.85 7.63
BGR 17 2.34 1.13 1.46 11.80 3.98 3.89 22.85 5.04 5.13
CAN 30 1.01 1.15 0.94 6.75 1.52 1.49 7.31 6.09 6.03
CHL 30 2.23 1.15 1.02 7.67 2.66 2.63 10.28 4.93 4.78
CHN 27 1.71 1.04 0.86 7.04 2.44 2.39 17.27 12.93 12.77
COL 30 2.37 1.09 0.97 6.88 2.97 2.94 18.89 9.07 8.87
CZE 23 1.19 0.82 0.38 3.98 1.54 1.45 5.33 4.00 3.82
DNK 30 1.61 1.18 1.01 11.42 2.02 2.00 22.20 10.30 10.19
EGY 25 1.03 2.36 1.34 12.29 6.53 6.43 3.05 3.30 3.12
FIN 30 1.34 2.07 1.66 5.92 2.03 1.99 15.03 10.77 10.63
FRA 30 1.55 2.16 1.69 6.51 1.80 1.76 20.80 14.17 13.93
DEU 30 2.06 0.86 0.76 7.82 1.96 1.94 22.73 11.16 11.01
GRC 30 1.55 1.50 1.33 9.79 5.55 5.48 11.09 7.18 7.07
HKG 30 1.46 1.08 0.92 7.48 3.36 3.31 15.73 15.50 15.16
HUN 23 2.03 1.00 0.92 12.88 3.38 3.36 11.62 6.40 6.33
IND 30 1.95 1.32 1.20 17.84 5.12 5.07 54.20 17.85 17.65
IDN 27 1.36 2.32 1.81 10.06 2.94 2.91 15.59 9.14 8.95
IRL 27 2.79 0.97 0.94 16.21 3.28 3.27 11.50 5.96 5.91
ISR 24 1.08 1.69 1.22 9.00 2.01 1.97 8.86 7.38 7.17
ITA 30 1.95 0.85 0.69 6.39 2.39 2.35 7.33 4.64 4.63
JPN 30 2.75 3.22 2.78 36.74 11.43 11.32 10.82 5.22 5.16
JOR 30 1.40 1.94 1.44 4.66 1.42 1.38 14.40 7.55 7.42
KEN 30 0.82 0.89 0.41 13.39 5.95 5.73 1.94 2.94 2.80
KOR 30 2.50 1.02 0.94 13.99 2.39 2.37 19.80 9.35 9.25
MYS 30 1.26 0.60 0.44 6.01 2.64 2.58 9.84 9.71 9.53
MAR 30 1.26 1.19 0.88 5.41 1.65 1.61 29.53 9.22 9.00
NLD 30 1.99 0.74 0.69 8.71 2.10 2.09 12.78 7.75 7.64
NZL 30 1.84 1.59 1.17 6.24 2.94 2.85 9.65 5.86 5.74
NGA 30 2.61 4.73 2.91 3.93 4.47 4.26 8.93 9.71 9.33
NOR 30 0.98 0.77 0.53 4.42 2.25 2.21 5.23 6.43 6.34
PHL 30 1.28 1.61 1.31 11.28 3.18 3.13 13.61 8.64 8.53
POL 23 1.38 0.86 0.72 8.30 2.56 2.53 6.41 4.54 4.50
PRT 30 1.75 0.82 0.60 4.62 1.86 1.80 9.74 7.00 6.88
ROU 19 1.49 0.92 0.44 4.04 1.54 1.44 11.81 5.37 5.27
RUS 20 1.75 0.62 0.47 6.04 1.56 1.49 20.77 11.12 10.99
SGP 30 0.94 0.99 0.72 4.81 3.25 3.19 5.36 6.28 6.19
ZAF 30 1.26 0.74 0.62 7.37 2.31 2.28 8.58 6.43 6.34
ESP 30 1.25 0.63 0.43 4.28 1.53 1.49 9.71 6.71 6.63
SWE 30 2.14 0.79 0.67 6.09 1.84 1.81 10.97 6.87 6.78
CHE 30 1.22 0.62 0.41 6.45 1.85 1.80 17.99 10.55 10.45
TWN 30 3.09 6.82 5.64 5.47 1.78 1.73 5.52 7.37 7.23
THA 30 1.90 0.87 0.75 7.17 3.92 3.82 10.62 7.00 6.83
TUN 21 1.88 1.32 0.96 7.64 1.93 1.88 16.20 6.99 6.87
TUR 30 1.72 3.85 3.02 9.56 12.84 12.58 9.56 12.47 12.21
GBR 30 2.15 4.03 2.71 11.92 7.09 6.90 15.39 11.16 10.85
USA 30 1.84 1.22 1.00 16.43 5.36 5.28 19.16 9.22 9.04
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Table 2.4: Variance bounds test with sample size limited to 60

Country MIDAS Cochrane-type First Gen.

n
σppq
σpp�q

σp∆p̃q
σpd̃q?

2r̄

σp∆p̃�d̃t�1�r̄d̃t�1q
σpd̃q?
r̄2

σppq
σpp�q

σp∆p̃q
σpd̃q?

2r̄

σp∆p̃�d̃t�1�r̄d̃t�1q
σpd̃q?
r̄2

σppq
σpp�q

σp∆p̃q
σpd̃q?

2r̄

σp∆p̃�d̃t�1�r̄d̃t�1q
σpd̃q?
r̄2

ARG 60 4.43 1.33 1.38 11.76 4.76 4.77 3.31 2.21 2.14
AUS 60 1.39 0.47 0.37 2.89 1.19 1.16 2.83 4.03 3.90
AUT 60 1.57 2.06 1.71 4.74 2.47 2.43 4.98 5.11 5.03
BEL 60 1.49 1.21 0.95 4.46 1.58 1.57 6.83 5.00 4.94
BRA 22 2.16 1.05 0.92 8.60 3.27 3.23 11.66 7.85 7.63
BGR 17 2.34 1.13 1.46 11.80 3.98 3.89 22.85 5.04 5.13
CAN 60 1.41 1.72 1.33 4.03 1.40 1.37 3.45 4.37 4.32
CHL 44 1.81 1.58 1.04 3.65 3.05 2.91 3.75 3.10 2.96
CHN 27 1.71 1.04 0.86 7.04 2.44 2.39 17.27 12.93 12.77
COL 32 2.16 1.03 0.92 6.14 2.56 2.54 20.25 9.41 9.18
CZE 23 1.19 0.82 0.38 3.98 1.54 1.45 5.33 4.00 3.82
DNK 60 1.99 1.38 1.09 6.92 1.89 1.87 2.38 2.09 2.07
EGY 25 1.03 2.36 1.34 12.29 6.53 6.43 3.05 3.30 3.12
FIN 56 1.28 1.53 1.20 3.55 1.57 1.54 6.59 6.15 6.03
FRA 60 1.46 1.62 1.23 3.52 1.63 1.60 9.71 7.96 7.82
DEU 60 1.62 0.65 0.56 4.40 1.75 1.73 9.93 9.23 9.09
GRC 41 1.31 1.37 1.20 6.81 4.43 4.39 9.03 5.43 5.33
HKG 53 2.20 1.07 0.97 5.61 3.08 3.05 10.79 18.92 18.54
HUN 23 2.03 1.00 0.92 12.88 3.38 3.36 11.62 6.40 6.33
IND 60 1.64 1.11 1.02 8.90 3.64 3.61 1.63 1.26 1.23
IDN 27 1.36 2.32 1.81 10.06 2.94 2.91 15.59 9.14 8.95
IRL 27 2.79 0.97 0.94 16.21 3.28 3.27 11.50 5.96 5.91
ISR 24 1.08 1.69 1.22 9.00 2.01 1.97 8.86 7.38 7.17
ITA 60 1.10 1.29 1.00 4.18 2.18 2.14 4.06 3.88 3.83
JPN 60 2.59 3.11 2.57 8.26 4.15 4.11 7.77 5.80 5.72
JOR 39 1.34 1.77 1.31 3.96 1.31 1.27 9.58 7.40 7.27
KEN 34 0.83 0.90 0.42 5.30 4.30 4.11 1.68 2.59 2.46
KOR 55 2.63 1.52 1.11 13.06 3.98 3.97 1.07 1.78 1.71
MYS 44 1.43 0.50 0.43 4.61 2.32 2.27 22.72 13.05 12.82
MAR 34 1.33 1.14 0.83 4.90 1.67 1.62 11.05 5.11 4.98
NLD 60 1.41 0.58 0.54 4.08 1.93 1.92 10.51 6.66 6.56
NZL 60 1.48 1.32 1.02 4.97 2.79 2.71 5.41 5.51 5.40
NGA 32 2.61 4.59 2.82 7.91 9.18 8.82 7.68 9.03 8.67
NOR 48 0.92 1.07 0.79 3.37 1.45 1.41 5.59 7.17 7.04
PHL 36 1.71 0.86 0.77 10.28 2.73 2.70 8.11 3.84 3.77
POL 23 1.38 0.86 0.72 8.30 2.56 2.53 6.41 4.54 4.50
PRT 31 1.69 2.90 2.28 4.45 1.85 1.79 9.45 7.64 7.53
ROU 19 1.49 0.92 0.44 4.04 1.54 1.44 11.81 5.37 5.27
RUS 20 1.75 0.62 0.47 6.04 1.56 1.49 20.77 11.12 10.99
SGP 45 1.01 0.82 0.59 4.12 2.61 2.56 12.09 13.32 13.08
ZAF 54 1.30 0.76 0.63 4.83 1.79 1.77 4.71 5.81 5.72
ESP 60 1.09 0.62 0.41 2.66 1.52 1.48 4.86 4.84 4.73
SWE 60 1.88 0.68 0.58 4.14 1.70 1.68 4.63 4.73 4.66
CHE 60 1.28 0.55 0.39 3.99 1.65 1.62 6.34 5.78 5.70
TWN 32 4.09 7.95 6.65 5.19 1.76 1.70 8.86 9.96 9.79
THA 42 1.54 0.75 0.61 6.44 3.55 3.47 8.75 6.80 6.64
TUN 21 1.88 1.32 0.96 7.64 1.93 1.88 16.20 6.99 6.87
TUR 32 1.79 5.13 3.86 10.00 12.64 12.36 7.53 10.98 10.70
GBR 60 1.78 1.68 1.11 3.76 2.36 2.30 5.42 4.83 4.68
USA 60 1.64 0.81 0.70 6.76 2.56 2.54 5.14 4.34 4.26
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Table 2.5: Variance bounds test with sample size limited to 100

Country MIDAS Cochrane-type First Gen.

n
σppq
σpp�q

σp∆p̃q
σpd̃q?

2r̄

σp∆p̃�d̃t�1�r̄d̃t�1q
σpd̃q?
r̄2

σppq
σpp�q

σp∆p̃q
σpd̃q?

2r̄

σp∆p̃�d̃t�1�r̄d̃t�1q
σpd̃q?
r̄2

σppq
σpp�q

σp∆p̃q
σpd̃q?

2r̄

σp∆p̃�d̃t�1�r̄d̃t�1q
σpd̃q?
r̄2

ARG 71 4.03 1.31 1.37 10.55 4.72 4.74 3.90 3.08 2.99
AUS 100 1.46 1.33 0.86 2.71 1.28 1.25 2.16 3.56 3.47
AUT 93 1.02 1.48 1.12 3.54 2.48 2.44 3.65 3.79 3.73
BEL 100 1.31 1.24 0.99 3.84 1.63 1.62 3.98 3.50 3.47
BRA 22 2.16 1.05 0.92 8.60 3.27 3.23 11.66 7.85 7.63
BGR 17 2.34 1.13 1.46 11.80 3.98 3.89 22.85 5.04 5.13
CAN 100 1.25 0.48 0.38 2.96 1.40 1.38 1.44 2.91 2.86
CHL 44 1.81 1.58 1.04 3.65 3.05 2.91 3.75 3.10 2.96
CHN 27 1.71 1.04 0.86 7.04 2.44 2.39 17.27 12.93 12.77
COL 32 2.16 1.03 0.92 6.14 2.56 2.54 20.25 9.41 9.18
CZE 23 1.19 0.82 0.38 3.98 1.54 1.45 5.33 4.00 3.82
DNK 100 0.99 0.92 0.56 5.22 1.88 1.86 2.48 1.88 1.92
EGY 25 1.03 2.36 1.34 12.29 6.53 6.43 3.05 3.30 3.12
FIN 56 1.28 1.53 1.20 3.55 1.57 1.54 6.59 6.15 6.03
FRA 100 1.26 1.51 1.10 3.46 2.47 2.42 3.42 4.91 4.80
DEU 100 3.60 1.87 1.79 20.77 5.27 5.25 16.80 4.27 4.24
GRC 41 1.31 1.37 1.20 6.81 4.43 4.39 9.03 5.43 5.33
HKG 53 2.20 1.07 0.97 5.61 3.08 3.05 10.79 18.92 18.54
HUN 23 2.03 1.00 0.92 12.88 3.38 3.36 11.62 6.40 6.33
IND 97 1.59 1.04 0.96 6.22 3.38 3.36 2.02 2.63 2.59
IDN 27 1.36 2.32 1.81 10.06 2.94 2.91 15.59 9.14 8.95
IRL 27 2.79 0.97 0.94 16.21 3.28 3.27 11.50 5.96 5.91
ISR 24 1.08 1.69 1.22 9.00 2.01 1.97 8.86 7.38 7.17
ITA 93 1.64 0.71 0.57 3.70 2.16 2.12 3.47 3.24 3.18
JPN 100 0.69 0.77 0.42 3.83 3.36 3.32 1.60 1.73 1.71
JOR 39 1.34 1.77 1.31 3.96 1.31 1.27 9.58 7.40 7.27
KEN 34 0.83 0.90 0.42 5.30 4.30 4.11 1.68 2.59 2.46
KOR 55 2.63 1.52 1.11 13.06 3.98 3.97 1.07 1.78 1.71
MYS 44 1.43 0.50 0.43 4.61 2.32 2.27 22.72 13.05 12.82
MAR 34 1.33 1.14 0.83 4.90 1.67 1.62 11.05 5.11 4.98
NLD 100 1.65 1.54 1.00 3.64 1.89 1.88 3.82 2.01 1.98
NZL 91 1.36 1.07 0.82 4.09 2.37 2.30 3.25 5.10 4.99
NGA 32 2.61 4.59 2.82 7.91 9.18 8.82 7.68 9.03 8.67
NOR 48 0.92 1.07 0.79 3.37 1.45 1.41 5.59 7.17 7.04
PHL 36 1.71 0.86 0.77 10.28 2.73 2.70 8.11 3.84 3.77
POL 23 1.38 0.86 0.72 8.30 2.56 2.53 6.41 4.54 4.50
PRT 31 1.69 2.90 2.28 4.45 1.85 1.79 9.45 7.64 7.53
ROU 19 1.49 0.92 0.44 4.04 1.54 1.44 11.81 5.37 5.27
RUS 20 1.75 0.62 0.47 6.04 1.56 1.49 20.77 11.12 10.99
SGP 45 1.01 0.82 0.59 4.12 2.61 2.56 12.09 13.32 13.08
ZAF 54 1.30 0.76 0.63 4.83 1.79 1.77 4.71 5.81 5.72
ESP 100 1.11 0.58 0.38 2.15 1.48 1.45 4.51 4.40 4.30
SWE 100 1.69 0.59 0.50 3.22 1.49 1.47 2.65 3.41 3.35
CHE 99 1.28 0.54 0.38 3.07 1.34 1.30 2.53 2.75 2.70
TWN 32 4.09 7.95 6.65 5.19 1.76 1.70 8.86 9.96 9.79
THA 42 1.54 0.75 0.61 6.44 3.55 3.47 8.75 6.80 6.64
TUN 21 1.88 1.32 0.96 7.64 1.93 1.88 16.20 6.99 6.87
TUR 32 1.79 5.13 3.86 10.00 12.64 12.36 7.53 10.98 10.70
GBR 84 1.75 1.49 0.96 2.67 1.42 1.39 3.50 5.39 5.25
USA 100 1.48 0.65 0.58 4.07 2.04 2.03 1.95 3.38 3.32
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Table 2.6: Cross-country mean squared forecast errors (MSFE) for the regression analysis
used in the variance bounds test

Country Shiller Cochrane MIDAS
ARG 1.614 1.498 0.851
AUS 1.451 0.198 0.135
AUT 0.781 0.254 0.233
BEL 2.261 0.530 0.418
BRA 2.016 0.306 0.177
BGR 0.228 0.538 0.496
CAN 1.947 0.398 0.246
CHL 3.579 0.423 30.955
CHN 1.360 0.512 0.446
COL 2.127 0.851 0.535
CZE 0.605 0.256 0.517
DNK 1.354 0.236 0.155
EGY 1.842 0.588 0.616
FIN 1.985 0.205 0.168
FRA 0.982 0.170 0.136
DEU 26.904 5.931 2.055
GRC 1.011 0.627 0.532
HKG 2.339 0.175 0.096
HUN 1.019 0.220 0.247
IND 1.108 0.449 0.299
IDN 0.902 0.291 0.293
IRL 1.034 0.387 0.365
ISR 1.351 0.204 0.208
ITA 1.344 0.771 0.728
JPN 1.772 0.292 0.269
JOR 0.720 0.467 0.439
KEN 1.112 0.633 0.404
KOR 1.579 0.293 0.288
MYS 1.274 0.182 0.171
MAR 2.428 0.170 0.130
NLD 1.118 0.359 0.228
NZL 0.282 0.364 0.233
NGA 0.777 0.281 0.240
NOR 1.062 0.233 0.188
PHL 1.243 0.282 0.224
POL 0.270 0.302 0.445
PRT 0.443 0.214 0.176
ROU 1.090 0.890 0.651
RUS 2.041 0.174 0.403
SGP 1.547 0.104 0.099
ZAF 1.096 0.216 0.177
ESP 1.446 0.181 0.144
SWE 1.552 0.215 0.187
CHE 1.282 0.214 0.213
TWN 0.740 0.221 0.264
THA 1.033 0.281 0.338
TUN 1.227 0.233 0.187
TUR 0.971 0.308 0.288
GBR 0.812 0.081 0.079
USA 1.498 0.113 0.094

2.6.2 Global Financial Database Metadata on FT All-Share Index

Sources include Thorold Rogers, A History of Prices in England, (1693-1697), Larry Neal, The Rise of

Financial Capitalism: International Capital Markets in the Age of Reason, New York: Cambridge Univ.

Press, 1990 (1698-January 1811), W. W. Rostow and Anna J. Schwartz, The Growth and Fluctuation of
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the British Economy 1790-1850), (2 vols.), Oxford: Oxford U.P., 1953, p. 368, (February 1811-December

1850), Hayek as given in Rostow, ibid., p. 456 (January 1851-June 1867), K.C. Smith and G.F. Horne,

An Index Number of Securities, 1867-1914, London and Cambridge Economic Service Special Memorandum

No. 37, (July 1867-December 1906), Banker’s Magazine (January 1907-May 1933), Economist (1933-1962),

Financial Times (1950-). Volume data are provided for the London Stock Exchange. The number of bargains

is provided in the FT 30 Industrials file, the Value of shares traded is provided in the FT All-Share Index,

and the total shares traded is provided in the FT-500 Non-Financial Index. The All-Share index contains

the historical data for the United Kingdom. East Indies Stock is used for 1693. The index is an unweighted

arithmetic average of Bank of England and East Indies stock from 1694 to August 1711, and of Bank of

England, East Indies and South Sea stock from September 1711 to January 1811. Rostow’s Total Index of

Share Prices is used from 1811 to 1850. Hayek’s index was taken from Rostow and excludes banks, insurance,

and bridge stocks, but includes industrial stocks. This index is linked to the London and Cambridge Economic

Service index, which begins in July 1867 and continues until 1906. The L&CES index consisted of 25 stocks

in 1867 and had grown to 75 stocks by 1914. The Banker’s Magazine kept a capitalization-weighted index of

287 stocks, which gave the total capital values of the companies that were included. This was the broadest

index of London shares at the time and the index is used beginning in 1907. Although this index was

calculated beginning in 1887, the Banker’s Magazine usually omitted calculating the index for one month

during the summer, and for this reason it is excluded until 1907 when calculations were made for every month.

The London market closed in August 1914 and reopened in January 1915. The Banker’s Magazine Index is

used through May 1933. Beginning in June 1933, the Actuaries General Index is used. This index included

financial stocks, commodities, and utilities, but excluded debentures and preferred shares. Beginning in

April 1962, the Financial Times-Actuaries All-Share Index is used. All indexes have been chain linked to

one another to create a continuous index with the All-Share index’s base of April 10, 1962 used as the base

for the entire index. The All-Share Index is a capitalization-weighted price index and covers about 98-99%

of the capital value of all UK companies. It uses the Paasche formula, adjust for capitalization changes, and

has its components reviewed in December. It combines the FT-SE 100, FT-SE Mid-250 and FT-SE Small

Cap indices, but excludes the Fledgling and AIM index components. Data are weekly from 1965 to 1968

and daily thereafter.
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CHAPTER 3

Implied Volatility of Stock and Divi-

dend Derivatives

3.1 Introduction

Aggregate stock market valuation models typically set equity prices equal to the present-value of their

expected future dividend payments. To a large extent, such valuation principles depend on accurately

forecasting realised future dividend payments but there are challenges1 to attain error-free future dividend

forecasts.

Important studies Shiller (1981), LeRoy & Porter (1981), West (1988b) on dividend and stock volatility

found that movements in stock index prices are more volatile than movements in actual dividend, indicating a

stock dividend puzzle. These conclusions are conceptually based on volatility relations derived from expected

present-value models using predictive regressions2. Other recent extensions to the Shiller present value model

consider learning effects on stock price dynamics. Jagannathan & Liu (2019) use learning effects in a latent

variable present-value model; their findings point out to some possible market-agent aversion to long-run risk

and learning impact on volatility of stock-prices. Li & Yang (2013) showed that dividend volatility positively

predicts future asset returns, with predictive power improving with the forecasting horizon. A no-arbitrage

technique to compute the value of discrete dividend payments using only the information from market prices
1Regarding long-horizon return-forecasting regressions, Fama & French (1988), Cochrane (2008) and

other literature emphasise low out-of-sample forecasting R2 including the fact that R2 values only increase
with length of horizon. On out-of-sample predictability, Jagannathan & Liu (2019) found 25.3%-27.1%
predictability in total variation of annual aggregates stock returns coming from dividends.

2Cochrane (2008) however argued that such models suffer from an “errors-in-variables” problem.
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of options is presented in Desmettre et al. (2017).

In a different approach Pang et al. (2008) departed from the usual assumption that dividends may be

characterised by a normal distribution and proposed employing the beta distribution for dividend yields; they

use the coefficient of variation for studying the stability of dividend yields. Li & Yang (2013) also showed

that dividend volatility positively predicts future asset returns, with predictive power improving with the

forecasting horizon. There are also nonparametric predictive inference (NPI) option pricing techniques to

exploit price volatilities within short term investment horizons. I find in He et al. (2018) and Chen et al.

(2019) that the performance of such methods strongly depend on long historical data.

Derivative markets currently trade in stand-alone dividend derivative contracts that come with direct

exposure to dividend volatilities. In this regard, relevant literature hold the view that such markets have

the tendency to advance and support rational pricing of assets in stock markets (see Brennan 1998). Some

of these stand-alone contracts are based on index dividends paid by the index constituents with maturities

that extend to about a decade. Dividend derivatives are described and discussed in Wilkens & Wimschulte

(2010); Mixon & Onur (2016); Tunaru (2018); Filipović & Willems (2019). An interesting dividend derivative

product development is described in Brown & Davis (2004) as the Australian “endowment warrant,” which is

a long-term contract with strike price corrected downward every time the underlying stock pays a dividend.

Other important works on pricing matters when assuming that dividends are stochastic are the seminal

paper by Geske (1978), the papers by Lioui (2005) and Lioui (2006) who revisited Black-Scholes and put-call

parity under stochastic dividends, Korn & Rogers (2005) who deal with the stochastic evolution of discrete

dividend payments assuming their timing is known and Nielsen (2007) who studies the role of dividends in

pricing derivatives securities more generally.

Dividend swaps have emerged recently as a useful innovation to extract forward looking information for

futures equity returns, see Van Binsbergen et al. (2013) and Golez (2014). A two-factor model estimated on

dividend futures data only is proposed by Kragt et al. (2020) who show that the model can cover a significant

part of the observed daily stock market returns. The predictability in patterns of implied volatility (IV) and

option prices is statistically possible, as shown in Goncalves & Guidolin (2006) among others. An excellent

summary of the general structure of systems widely used for equity portfolio analytics is also presented in

Pachamanova & Fabozzi (2014).

EURO STOXX 50® Index Dividend Futures Options (IDF) contracts are settled in cash into the realized

dividends paid during their settlement period; commencing a day after the third Friday in December and

ending on the third Friday of December the following year. The cash settlement is the sum of all dividends

which are paid over the settlement period. The dividend payment category takes into account those paid

in either cash or shares. There are ten annual maturities available on Eurex Exchange at any given time.

74



0

20

40

60

80

100

120

140

0

1

2

3

4

5

6

C
u

m
u

la
ti

ve
 D

iv
id

en
d

 P
ay

m
en

t

D
iv

id
en

d
s 

in
 I

n
d

ex
 P

o
in

ts

Time

Figure 3.1: Historical evolution of cumulative dividend and daily dividends in index points
on the Dow Jones Euro STOXX50®.
Notes:The time series is at a daily frequency, from December 22, 2008 to December 17, 2012. The blue markets are index
dividend points and the red-dotted line is cumulative dividends.

Index dividend futures option contracts provides an efficient means of measuring the market participants’

ex ante assessment of implied index dividend volatility. Since dividend derivatives have become stand-alone

contracts, it will be important to investigate issues about implied dividend volatility and also uncover its

subsequent relationship with that implied by index stock options.

In Figure 3.1, I present two ways of reporting the Dow Jones Euro STOXX50® dividends within calendar

years, using either cumulative cash dividends or index dividend points. The cumulative quantity produces a

sigmoidal shape illustrated in Figure 3.1. The non-decreasing cumulative dividend payment can be dealt with

a diffusive logistic growth process. This approach however gives no guarantee to obtaining a monotonically

increasing dividend. One way to deal with this shortcoming is to impose a functional form that produces

strictly positive curvature, since dividends are non-negative. The underlying asset in this study is EURO

STOXX 50® DVP (Dividend Points Index)3. Figure 3.1 shows how the time series of dividend points

resembles a jump process, similar to the case of (Tunaru 2018, Filipović & Willems 2019). The jump sizes

3The contract value is EUR 100 per index dividend point of the underlying and the price quotation is
in points. Minimum price change of 0.01, equivalent to a value of EUR 1 per contract. The dividend point
time-series is not strictly non-decreasing. The options settle to the realized value of dividend payments in a
future period.

75



can be modelled with a beta distribution to ensure strictly positive payments occur.

In this study, I investigate the stock and dividend volatility puzzle from a derivatives perspective.

I analyse the IV of index-dividend futures options and stock-index option contracts. For the first time

in the literature, I take advantage of a recent set of derivative instruments, the stock and IDF options,

to investigate jointly the implied volatilities for stock and for stock index dividend. The novelty of my

approach consists in having a forward looking view and being able to determine the IV associated with each

side, stock and dividends, from different sets of options. In this context, I outline conditions under which

the dividend puzzle effects inferred from historical data are safely exchangeable with future expectations of

it. I explicitly allow for variability in time-to-maturity of option contracts and interest rates, while outlying

a computational approach that allows aggregation of volatility measures under the Black-Scholes formula;

Black (1976) formula and the Bakshi et al. (2003) model-free IV approach. I empirically show that the

stock dividend puzzle still exists in this new context but the discrepancy between the two volatilities declines

with the horizon. Furthermore, I explore how to identify profitable trading strategies using trading signals

generated from the time-varying implied volatility ratios that define the dividend puzzle.

This study is organised as follows. Section 3.2 describes the methodology of the study. Here, I discuss

the computational approach and numerical methods to derive the dividend puzzle from option prices data.

Section 3.3, presents the data sets and discusses the main results and their implications. I show further

numerical investigations on trading strategies designed around the mean reversion characteristic of IV and

the implied mean-reversion of the ratio of IV for stock and dividend futures. In Section 3.4, I summarize

the findings and conclude the study.

3.1.1 Variance bounds test for implied dividend volatility

Aggregate stock market valuation models typically set equity prices equal to the present value of their

expected future dividend payments. To a large extent, such valuation principles depend on accurately

forecasting realised future dividend payments but there are challenges4 to attain error-free future dividend

forecasts.

Important studies Shiller (1981), LeRoy & Porter (1981), West (1988b) on dividend and stock volatility

found that movements in stock index prices are more volatile than movements in actual dividend, indicating a

stock dividend puzzle. These conclusions are conceptually based on volatility relations derived from expected
4Regarding long-horizon return-forecasting regressions, Fama & French (1988), Cochrane (2008) and other

literature emphasise low out-of-sample forecasting R2 including the fact that R2 values only increase with
the length of the horizon. On out-of-sample predictability, Jagannathan & Liu (2019) found 25.3%-27.1%
predictability in the total variation of annual aggregates stock returns coming from dividends.
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present-value models using predictive regressions. Van Binsbergen & Koijen (2011) however argued that

such models suffer from an “errors-in-variables” problem. In addition, known regression-based approaches

are using historical asset prices (Shiller 1981, LeRoy & Porter 1981, Golez 2014, Jagannathan & Liu 2019)

thereby setting a retrospective view on the concept of dividend market volatility.

In this paper, for the first time in the literature, I take advantage of a recent set of derivative instruments,

the stock index dividend options, to investigate jointly the implied volatilities for stock and for stock index

dividend. The novelty of my approach consists in having a proper forward looking view and being able

to determine the implied volatilities associated with each side, stock and dividends, from different sets of

options. I will show that the stock dividend puzzle still exists in this new context but the discrepancy

between the two volatilities declines with the horizon. Furthermore, I explore how to identify profitable

trading strategies based on the implied volatilities and their ratios as trading signals.

Geske (1978) pointed out that assuming that dividends are known when in fact they are not, has the

effect to misestimate the volatility. There is increasing literature related to dividend derivatives. LeRoy &

LaCivita (1981), Michener (1982) argued that observed violations in expected-present value volatility bounds

are due to assumptions on the choice of dividend discount factor. Both studies found extra volatility within

stock prices when using a stochastic discount. Flavin (1983) investigate whether sampling variability in

empirical studies may be the root cause of violations observed in variance bounds. Other studies (see Marsh

& Merton 1986, Dejong & Whiteman 1991) also investigate the possibility of observing a reversal in Shiller’s

present-value variance relation under different time-series treatment for dividends.

Taking a different approach Pang et al. (2008) departed from the usual assumption that dividends

may be characterised by a normal distribution and proposed employing the beta distribution for dividends

and the coefficient of variation of investing the stability of dividend yields. Recent extensions to the Shiller

present value model consider learning effects on stock price dynamics. Jagannathan & Liu (2019) use learning

effects in a latent variable present-value model; their findings show that market-agent aversion to long-run

risk and learning impact stock-prices. These conclusions provide further support to Shiller (2015) irrational

exuberance argument and further suggest a need to consider a forward-looking approach to explore why

prices are more volatile than dividends.

Manley & Mueller-Glissmann (2008) provide excellent description of the applications of dividends for

improvement of investment strategies. Dividend derivatives are discussed in Wilkens & Wimschulte (2010);

Mixon & Onur (2016); Tunaru (2018); Filipović & Willems (2019).

Novel market data from new financial instruments could provide salient information on the relation

between stock and dividend volatility. I adopt a forward-looking approach that explores discussions on stock

and dividend volatility from the perspective of a derivative. This study analyses IV of IDF option and
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stock-index option contracts. Thus a forward-looking view of implied volatilities of the underlying assets is

feasible.

The predictability in patterns of IV and option prices is statistically possible, as shown in Harvey &

Whaley (1992); Cont et al. (2002); Goncalves & Guidolin (2006); Gatheral (2011) among others. This lays

a steady foundation for us to conceptualise the IV surface as a stochastic state variable accounting for the

evolution of the underlying asset price process. I explicitly allow for variability in the time-to-maturity of

the option contracts, while outlying a computational approach that allows aggregation of volatility measures

under Black & Scholes (1973); Black (1976) including the Bakshi et al. (2003) model-free IV approach.

Figure 3.2 illustrates the idea behind the study.

EURO STOXX 50® Index Dividend Futures 

Options
Stock Index Options

(EURO STOXX 50® Index Options)

Establish the excess volatility puzzle using IV estimates

𝜃𝑡 =
𝒱𝑡
෨𝒱𝑡

𝑜𝑟 Θ𝑡 = 𝒱𝑡 − ෨𝒱𝑡

-Black Scholes IV

- Model-free IV

𝒱𝑡 = 𝐸𝑡 𝑉𝑎𝑟 𝜎𝑡
𝑆 𝜏 + 𝑉𝑎𝑟_𝑡[𝐸 𝜎𝑡

𝑆 𝜏 ]

- Black (1976)

- Model-free IV

෨𝒱𝑡 = 𝐸𝑡 𝑉𝑎𝑟 𝜎𝑡
𝐷 𝜏 + 𝑉𝑎𝑟𝑡[𝐸 𝜎𝑡

𝐷 𝜏 ]

Design two Trading Rules based on the 𝜃𝑡 and Θ𝑡

Evidence of  inefficiency in the equity market exists: if  the rules 

outperforms the Buy and Hold strategy

𝜃𝑡 ≥ 1 𝑜𝑟 Θ𝑡 > 0 ⇒ 𝑣𝑎𝑟 𝑝 ≥ 𝑣𝑎𝑟 𝑝𝑡
∗

(Suggesting an inefficient market)

Figure 3.2: Conceptualisation of variance bounds inequalities in derivatives markets

3.2 Models and Methods

In this section, I discuss two different implied volatility estimation methods: the first is Bakshi et al.

(2003) model-free and the Black-Scholes and Black (1976) model-based approaches. Under the model-based

approach, I employ Brent (2013) derivative-free method to solve the convergence problem in the numerical

iterations.
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3.2.1 The model-free implied volatility

Our model-free IV estimation procedure closely follow Bakshi et al. (2003) using DeMiguel et al. (2013)

interpolation procedure to increase my approximation accuracy.

I let St denote the stock price at time t and define the τ -period log-return Rpt,τq � ln
�
Spt�τq{St

�
. I

further let Cpt,τ,Kq and Ppt,τ,Kq denote the stock-index call and put options prices; K and τ, respectively

denote the strike price and time to maturity. For the IDF option market, rCpt,τ,K̃q, rPpt,τ,K̃q, rK, and τ denote

call price, put price, strike and time to maturity respectively. The fair value of the variance contract in

Bakshi et al. (2003) is Vpt,τq � E�t texpp�rτqR2
pt,τqu with a price given by

Vpt,τq �
» 8
St

2
�

1� log
�
K
St

�

K2 � Cpt,τ,KqdK �

» St
0

2
�

1� log
�
K
St

�

K2 � Ppt,τ,KqdK (3.1)

rVpt,τq � » 8
rSt

2
�

1� log
�
�K
rSt

�

rK2

� rCpt,τ,�Kqd rK �
» rSt

0

2
�

1� log
�
�K
rSt

�

rK2

� rPpt,τ,�Kqd rK (3.2)

rVpt,τq denotes the variance contract in the dividend case with rSt � Ft, the stock index dividend futures with

the same time to maturity τ as the option. From (3.1) the τ -period model-free IV can be calculated as

σpmfq � pVpt,τqq1{2 for stocks and rσpmfq � prVpt,τqq1{2, for dividends. The computation of IV uses out-of-the-

money calls and puts with delta ∆c   0.5 and ∆p ¡ �0.5 respectively (see Britten-Jones & Neuberger 2000,

DeMiguel et al. 2013).

Equations 3.1 and 3.2 uses the cross-section of both call and put option prices. The derivation first

assumes the market agent always pays to take a long position in the volatility contract. To unwind the

position, all out-of-the money puts and calls will be weighted by their strike-price-dependent values so that

2p1� lnpK{Stqq{K2. The integral in (3.1) is approximated from the available option data after discretisation.

For each maturity in my option data, an interpolation and extrapolation procedure for out-of-the-money call

and put IV is done through cubic splines5. Given maturities and their corresponding interest rates, I estimate

the final model-free IV’s from the option prices calculated from the interpolated volatilities. There are two

challenges to calculating the model-free implied volatilities, i.e. 1) truncation of the integration domain and

2) discretising the respective integrals while using a continuum of option prices. This continuum ranges from

St to 8. Options market prices are available for just a subset of this required range, and this is where the
5According to DeMiguel et al. (2013) using a narrower grid deteriorates accuracy of the approximations.

I use 1001 points for the integral approximation.
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truncation comes in. Jiang & Tian (2005) point to instances where options market prices are available in

intervals of $5.00 and options prices are uniquely identified by the available strikes. This observation also

supports the use of discretisation and integration with respect to strike prices. Jiang & Tian (2005) and

DeMiguel et al. (2013) also discuss how to deal with these two problems. The left-point rule of numerical

integration can also be used. Integration of strike price allows us to calculate a single implied volatility for a

range of strike prices compared to the Black-Scholes which generates one implied volatility for each available

strike.

3.2.2 Implied volatilities from Black-Scholes and Black Models

An interesting approach to estimating volatility directly from recent data and then accounting for estimation

uncertainty is described in Popovic & Goldsman (2012).

A wide range of closed-form approximations were also proposed over the years, with the method in

Li (2008) as one of the best providing accurate computations for both at-the-money and out-of-the-money

options, faster than standard solver algorithms. Homescu (2011) provided a survey of methodologies proposed

for constructing implied volatility surfaces from options prices.

The theoretical Black-Scholes price of the stock index option is:

ν
pjq
S,τ � χpjqSte�qτΦpχpjqd1q � χpjqKe�rτΦpχpjqd2q (3.3)

χpjq �
" 1, if j � c

�1, if j � p

where j P tc, pu, with c labelling the call option and p the put option, S is the price of the underlying

asset, K is the option strike price, q is the dividend yield, r is the risk-free interest rate and τ � T � t

denotes the time-to-maturity for both calls and puts. Φp�q is the cumulative normal distribution function.

d1 � lnp SK q�pr�q�σ2
2 qτ

σ
?
τ

and d2 � d1 � σ
?
τ .

For index dividend futures options, I employ the Black (1976) model leading to the formulae:

rνpjqS,τ � e�rτ
�
χpjqFtΦpχpjqrd1q � χpjqKΦpχpjqrd2q

	
(3.4)

where Ft is futures6 price of the underlying asset at time t, K is the option strike price, r is the risk-free

interest rate and τ denotes the time-to-maturity for both cases. For Black (1976), rd1 � lnp F
�K
q� 1

2σ
2τ

rσ
?
τ

and

6I set the dividend yield equal to the risk-free rate and the futures price as the stock price. Because the
present value of the futures price is the prepaid forward price for the futures contract.
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rd2 � rd1 � rσ?τ . By definition, I expect the respective implied volatility σtpK,T q and rσtpK,T q to produce a

theoretical Black-Scholes and Black (1976) option price which equals their market prices. Additionally, I note

that the Black-Scholes call (put) option pricing formula is a decreasing function of implied volatility such

that for all option prices ranging from limσÑ0� ν
pjq
pS,K,t;σq � maxr0, S �Ke�rpτqs to limσÑ8 ν

pjq
pS,K,t;σq � S,

Hence, a uniquely identifiable implied volatility is estimable.

The IV will equate the market price of the option to the Black-Scholes value and the Black (1976)

value, respectively. IV is obtained by respectively inverting
³
Ω e

rτ pS � Kq�qrSsdS � ν
pjq
S,τ and

³
Ω e

rτ pS �
Kq�qrF sdS � rνpjqF,τ ; where qp�q is the risk-neutral density and j � c in χpjq. Since I have no analytic solution

to this, IV is calculated via numerical iterative technique where hpσpBSqq � νpS,K,σpBSq,q,r,tq � νpmktq � 0 for

equity and hprσpBqq � rνpS,K,rσpBSq,r,tq�rνpmktq � 0 for index dividend options. νpS,K,σpBSq,q,r,tq and rνpS,K,rσpBq,r,tq
are the respective theoretical Black-Scholes and Black (1976) option prices, and νpmktq and rνpmktq are their

respective market prices. I solve the convergence problem by using Brent (2013) derivative-free method,

where

σt�1 � σthpσt�1qhpσt�2q
phpσtq � hpσt�1qqphpσtq � hpσt�2qq

� σt�1hpσt�2qhpσtq
phpσt�1q � hpσt�2qqphpσt�1q � hpσtqq (3.5)

� σt�2hpσt�1qhpσtq
phpσt�2q � hpσt�1qqphpσt�2q � hpσtqq

in my procedure, the secant method

σpt�1q � σpt�1q � hpσpt�1qq
σpt�1q � σpt�2q

hpσpt�1qq � hpσpt�2qq
(3.6)

replaces the quadratic interpolation when σt � σt�1 in consecutive approximations.

3.2.3 Implied volatilities of aggregated data

I aim to provide a convenient approach by which information contained within multiple IVs can be efficiently

aggregated and compared. Noting the fact that IV surface cross-section is a function of moneyness (m)

and time-to-maturity (τ � T � t), I also recognise that estimated IV could be conditioned on the same

parameters at any given time. It is possible to have a situation whereby moneyness in the stock index

option market does not directly correspond to moneyness in the index dividend option market. Conditioning

on well defined categorisation of option maturity term-structure will permit aggregation and comparison

of implied volatilities across different option market classes (see, Goncalves & Guidolin 2006, Bernales &
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Guidolin 2014).

For each underlying asset, stock index or dividend index futures, I consider all European options with

maturities categorised by the length of τ into three classes, short-term maturity,medium maturity and long-

term maturity. In each class there is a varying but finite set of option prices with different strikes. I denote

by Vtpτq and rVtpτq the conditional total variance at time t of implied volatility of stock index and dividend

index futures from respective τ category. Hence Vtpτq and rVtpτq can be decomposed into two components:

Vt � EtrV arpσSt |τqs � V artrEpσSt |τqs (3.7)

rVt � EtrV arpσDt |τqs � V artrEpσDt |τqs (3.8)

From (3.7) and (3.8), Vt1{2 and rV1{2
t appropriately suffice as the standard deviation of total variance of

implied volatilities. I define the Implied Volatilty Ratio (IVR) θ as;

θt �
d

VtrVt (3.9)

which allows us to compare volatility across option maturity in the two markets. It is also possible to use

Implied Volatility Differences (IVD) Θ as a basis to compare volatility across option maturities.

Θt �
a

Vt �
brVt (3.10)

3.2.4 Trading strategies using the implied volatilities

One important argument supporting the theory that stock markets are not efficient is the existence of

trading strategies that are superior to a buy and hold strategy. Volatility derivatives markets are the latest

fast expanding markets in the derivatives asset class spectrum. General principles and many detailed insights

into trading volatility are presented in Gatheral (2011) for a more quantitative approach and Rhoads (2011)

for a more investment strategy approach.

The trading strategy outlined in this section will be applied to my in-sample trading dataset and its

performance will be assessed using an out-of-sample dataset. The criteria for splitting the data is described

in the results section. The motivation for this section is to investigate whether the information on implied

volatility ratios defined above holds useful trading information. In this regard, I first ascertain the single

trading horizon at which point the correlation between the trading signal and the trading threshold is optimal.
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For any given signal7 Ψt where t � 1, . . . , T , I calculate the surface of all correlation coefficients between�
1 � Ψt

MApNqpΨqt



and moves in the stock log-return rt�k, where MApNqpΨqt denotes the N step moving

average of the series tΨut¥0 at time t.

Note that by taking 1 minus the trading signal process, a positive correlation is in fact equivalent to

a negative correlation between implied volatility ratio (signal versus threshold) as a trading vehicle and

corresponding stock return. I let rstrategyt denote the time series of returns generated by the implemented

trading strategy, where t � 1, . . . , T and T is the size of calculation window for the returns space.

The analysis of the annualized performance of each trading strategy follows DeMiguel et al. (2013) and is

based on: (i) out-of-sample trading strategy volatility, and (ii) out-of-sample Sharpe ratio(SR), (iii) average

return pµ multiplied by 252, (iv) certainty-equivalent (CE) return, and (v) the drawdown-based Calmar ratio

(CR) performance measure:

pσstrategy � � 252
T � 1

Ţ

t�1

�
rstrategyt � pµstrategy��1{2

(3.11)

xSRstrategy � pµstrategypσstrategy (3.12)

pµstrategy � 252
T

Ţ

t�1
rstrategyt (3.13)

yCEstrategy � u�1
�

1
T

Ţ

t�1
u
�
rstrategyt

�

(3.14)

yCRstrategy � rstrategy � rf
�maxtDrawdownu (3.15)

where u is the power utility function, with a relative risk aversion value of 1 and Drawdown is the number

of negative returns.

For each strategy, I also analyse value at risk performance measures using the standard VaRα � ��rt�
zα � σ̂

�
. In addition, I also test whether the difference between the Sharpe ratios of the respective trading

strategies are statistically significantly better than the benchmark strategy. This test is based on the Ledoit

& Wolf (2008) statistic that provides robustness when returns are time series in nature or have heavier tail

than the normal distribution8. The null hypothesis is H0 : ∆ � 0 where ∆ � µj{σj �µn{σn is the difference

between two Sharpe ratios. The two trading strategies are denoted by j and n, with the buy and hold

strategy denoted by n, and their respective sample average returns and standard deviations are xµj , xµn and

7The trading signals are generated from the time-varying model-free and model-based IV differences which
are computed from the series of implied volatility surfaces that span the sample period.

8Ledoit & Wolf (2008) provide detailed explanations on how to improve robustness of the Sharpe ratio
test statistic using bootstrapping and Heteroscedastic autocorrelated consistent (HCA) covariance matrix
estimation inference. There are other implementations of the Sharpe ratio test also in Bilson et al. (2015)
which is based on Jobson & Korkie (1981) Z-test statistic, Barras et al. (2010), and Ardia & Boudt (2018).
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pσj , pσn. The test statistic d is specified as

d � |p∆|
spp∆q (3.16)

where the standard error of p∆ is spp∆q is well defined and elaborated in Ledoit & Wolf (2008). DeMiguel &

Nogales (2009) and Ardia & Boudt (2018) respectively adopted the approach to assess stability properties

of portfolio selection methods and performance of hedge funds. Suppose I denote by pF , the empirical

distribution function of the B bootstrap pairs that correspond to pµj{pσj � pµn{pσn; then a two-sided p-value9

for (3.16) is given by pp � 2 pF p0q. Ledoit & Wolf (2008) showed that the bootstrapping procedure that is

based on sampling with replacement allows us to resample from the observed return series thereby offering

superior benefits over some other existing methods that only offer null-restrictions to data.

Finally, I calculate the bootstrap10 test statistic for the Linton et al. (2005) second-order stochastic

dominance (SSD) test. The purpose is to determine the trading strategy return series that is preferred

by any given risk averse investor irrespective of their preferences. The null hypothesis of the SSD test is

H0 : j ¡2 n where ¡2 indicates that trading strategy j stochastically dominates the buy and hold strategy

n. A rejection of this null suggests that any strong ordering by j and n that correspond to specific utility

functions Uj and Un will not enjoy general acceptance (see Linton et al. 2005).

3.3 Computational Results

This section presents the results of the computational procedure outlined in section 3.2. The section also

implements and assess the performance of trading strategies that depend on the information held in the term

structure implied volatility ratios.

3.3.1 Data sets

The data used in this analysis consists of daily trading information on the Dow Jones Euro Stoxx50®, which

is called in this paper EURO STOXX 50 for brevity, the EURO STOXX 50 dividend futures option prices

and the EURO STOXX 50 option prices. The time series are from May 20, 2010 to August 14, 2018, giving a
9Ledoit & Wolf (2008) also developed a studentized time series bootstrap confidence interval for ∆ such

the two ratios are different if zero is not contained in the obtained interval
10Linton et al. (2005) provide a nice discussion on the reasons why subsampling improves the power of the

SSD test.
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total of 2,098 trading days11. The index dividend futures option data were obtained from the Eurex exchange

while the stock index option data is from OptionMetrics.

I exclude options prices with extreme moneyness, and those that violate the known no-arbitrage condi-

tions. Our filtering conditions follow Bakshi et al. (1997), DeMiguel et al. (2013) and Fabozzi et al. (2014).

I also filter out observations were 1.7   CtpK,τq�PtpK,τq
Ftpτq�K   0.3 and Ftpτq � K. This allows us to control

for impact of noise from unreliable sample points based on moneyness12. Both index dividend and stock

index options have moneyness definition set at m � K{Ft � 1 following Fabozzi et al. (2014). In addition,

I exclude options with implied volatilities iv less than 1% and greater than 110%; options with less than 7

days-to-maturity(DTM pτq, hereafter) are also filtered out since they have stronger sensitivity to the slightest

error in option prices.

Following Goncalves & Guidolin (2006), Fabozzi et al. (2014), Wang et al. (2017), I construct option

subsamples based on time-to-maturity range 16   τ ¤ 24, 24   τ ¤ 60, 60   τ ¤ 180, and 180   τ ¤ 360

for the index dividend and stock index option datasets. The resulting output is a cross-section of call and

put option contracts with different strike prices observed for any selected trading day. I use variable interest

rates which are linearly interpolated from zero-coupon Euro-currency denominated Treasury yields from

OptionMetrics. Interest rates are continuously compounded.

3.3.2 Implied volatility surface plots

Figure 3.3 presents implied volatility surface plots of a randomly selected mid-year trading day from my

sample. Black (1976) model implied volatility plots for May 21, 2011 presented in Figure 3.3a and the Black-

Scholes implied volatility surface plots are presented in Figure 3.3b using same selected day The expected

smoothness in IDF implied volatility is evident in the plots. The surface plot of index-dividend futures is

smoother with less humps.

Periods half-way around June indicate the point of inflection on the sigmoidal nature of historical plots

of index dividend points. This is a feature of the dividend markets, with the majority of the companies

paying dividends around the end of the financial tax year. Figure 3.3 illustrate how IV surface of equity

consistently lies above its dividend counterpart for a given day. A test for the presence of mean reversion
11I excluded data in the range t   2010 because it was unavailable
12Moneyness classification (m) is constructed as follows: Deeper-out-of-the-money (m   �0.15 for puts

and m ¡ 0.15 for calls); Deep-out-of-the-money (p�0.15,�0.10s for puts and p0.10, 0.15s for calls); for Out-
of-the-money (p�0.10,�0.05s for puts and p0.05, 0.1s for calls); at-the-money (r�0.05, 0.05s); in-the-money
(p0.05, 0.1s for puts and p�0.10,�0.05s for calls); deep-in-the-money (p0.10, 0.15s for puts and p�0.15,�0.10s
for calls) and deeper-in-the-money (m ¡ 0.15 for puts and m   �0.15 for calls). Goncalves & Guidolin
(2006), Fabozzi et al. (2014), Wang et al. (2017).
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(a) Index-dividend: (21/05/2010) (b) Stock-index: (21/05/2010)

Figure 3.3: Implied volatility surface for equity and dividends associated with STOXX 50
using daily data between May 21, 2010 to June 08, 2011.
Notes: Graphical plots (a) and (b) are index-dividend futures implied volatilities surface and stock-index
implied volatility surface for 21/05/2010. The trading day was randomly selected from the sampling period
May 21, 2010 - June 08, 2011. (a) is from Black (1976) model and (b) is from Black-Scholes model

effect in the ratios confirms the mean-reversion characteristic. Only ATM implied volatilities are used in the

estimation process. Most of the action is in the first half of the year with the ratio falling to low flat levels

for six months horizon.

Figure 3.5 plots the surface graph of IVD (Θ) for two randomly selected trading dates in the dataset

i.e May 21, 2010 and June 08, 2011. The corresponding IVR (θ) surface plots for the same trading dates

are presented in Figure 3.4. The implied volatility ratio values are strictly greater than 1 with respective

maximum of 25.09 and 6.58 in May 21, 2011 and June 8, 2011. The respective minimum values for both

days are 4.33 and 1.89. Table 3.1 presents summary results describing the characteristics of volatility ratio

equation in (3.9) for model-based implied volatilities. For nearest maturity options, the variability in stock

prices are at least 2 times larger than the variability in dividends.

The magnitude of the ratio rises gently through medium-term maturity options (i.e. 1-3 month maturity

options); and reaches its maximum-point around (3-9 month maturity options), where variability in stocks

is at least 5.3 times larger than the variability in dividends. Furthermore, I observe a decline in the θ for

long-dated options and it is clear that 0 ¤ θ ¤ 1 for options with maturities exceeding 9 months-to-maturity.

The model-free implied volatility ratios are presented alongside the model-based results as bold figures.

The results on the model-free implied volatility shows that the variability in stock prices could be at

least 32 times larger than the variability in dividends in short-dated maturities, thereby suggesting that

stock index implied volatility moves too much to be associated with index dividend implied volatilities. The

magnitude of the ratio remains high for 1-3 and 3-9 month maturity options hence suggesting that findings

86



Figure 3.4: Surface plot of the ratio of model-based implied volatilities of stocks to dividends,
using daily data between May 21, 2010 to June 8, 2018.
Notes: The IVR pθq are obtained from (3.9) using the implied Black-Scholes volatility for numerator and
implied Black (1976) model volatility for denominator. Only ATM implied volatilities are used.

Figure 3.5: Surface plot of the ratio of model-based implied volatilities of stocks to dividends,
using daily data between May 21, 2010 to June 8, 2018.
Notes: The IVD pΘq are obtained from (3.10) using the implied Black-Scholes volatility for numerator and
implied Black (1976) model volatility for denominator. Only ATM implied volatilities are used.
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in short-dated maturities still persist in the medium-term maturity case. Despite this observation, I find a

dramatic decline in the volatility ratio for long-dated options; suggesting that derivatives investors expect

dividend volatility to be more in tune with the volatilities of stock index option.

Table 3.1: Implied volatility ratios between stock and dividend markets.

Stock Dividend
Panel A: Comparing volatility across τ using model-based and model-free implied volatilities

TTM
?

V
?

Vpmfq
arV b�Vpmfq

16   τ ¤ 24 0.154 0.090 0.080 0.001
24   τ ¤ 60 0.160 0.087 0.050 0.002
60   τ ¤ 180 0.156 0.073 0.029 0.034
180   τ   360 0.128 0.054 0.214 0.202
Panel B: Implied Volatility Differences (IVD) and Bootstrap Confidence Intervals on Θ

IVD pΘq Bootstrap Conf. interval for IVD
TTM Θ Θpmfq 95% CI for Θ 95% CI. for Θpmfq

16   τ ¤ 24 0.074 0.089 r0.066, 0.083s r0.087, 0.089s
24   τ ¤ 60 0.111 0.085 r0.107, 0.114s r0.084, 0.085s
60   τ ¤ 180 0.128 0.039 r0.126, 0.130s rr0.036, 0.041s
180   τ   360 -0.086 -0.148 r�0.087,�0.086s r�0.149,�0.147s

Notes: Vptq and �Vptq respectively denote the total variance of IV for stock and dividend markets defined
in (3.10). Superscript pmfq denotes corresponding model-free estimates. The respective bootstrap confidence
intervals for implied volatility differences Θ are reported.

The model-based implied volatilities are observed to be significantly higher than the model-free estimates

for index options as well as dividend options. This is because I partition13 the option dataset into four (4)

non-overlapping categories using TTM τ . On each given day of the dataset, the model-based IV procedure

generates an implied volatility estimate for each unique strike price that is available in each group G, while the

model-free IV technique integrates across all the strike prices available within a given group Gj , j � 1, . . . , 4,

thereby generating a single IV. In this regard, the total variability of IV Vj within each Gj , j � 1, . . . , 4 is

higher for the model-based IV compared to the model-free case. Goncalves & Guidolin (2006), Fabozzi et al.

(2014), Wang et al. (2017) present similar partitioning scheme for IV of stock index options.

Table 3.1 also displays the model-free implied volatility of dividend options steadily declining as TTM

falls from six months to 16 days. The model-based estimate has a similar pattern. The excess volatility

puzzle identified by Shiller (1981) can be interpreted as evidence against the efficiency of trading on stock

markets. The lack of market efficiency opens the door for identifying profitable trading strategies. In the

next section I will try to identify some trading strategies using the implied volatility information as signals
13As outlined previously, the partitioning spans contracts with 16   τ ¤ 24, 24   τ ¤ 60, 60   τ ¤ 180,

and 180   τ ¤ 360 TTM thereby creating four groups denoted by G1, G2, G3, and G4. The total number of
contracts in each group is respectively written as Ng1 , Ng2 , Ng3 , and Ng4 . There are k̃ unique strike prices
in each Gj , j � 1, . . . , 4.
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and compare those strategies with a standard buy and hold benchmark. If my strategy, based on a forward

looking signal extracted from options, beats the buy and hold strategy this is further support for the excess

volatility puzzle.

Table 3.2: Normality test on the log of index dividend futures prices.

Day 30/11/2011 25/11/2012 26/11/2013
Test/ TTM 17 24 17 24 17 24

KS Limiting Form 3.21*** 3.735*** 5.512*** 5.453*** 2.145*** 2.346***
KS Stephens Modification 3.224*** 3.885*** 5.529*** 5.47*** 2.253*** 2.445***
KS Marsaglia Method 3.21*** 3.735*** 5.512*** 5.453*** 2.145*** 2.346***
KS Lilliefors Modification 0.252*** 0.835*** 0.36*** 0.363*** 0.536*** 0.538***
Anderson-Darling Test 16.308*** 20.504*** 29.254*** 28.352*** 5.911*** 7.093***
Shapiro-Wilk Test 0.741*** 0.013*** 0.719*** 0.707*** 0.273*** 0.244***
Shapiro-Francia Test 0.747*** 0.113*** 0.723*** 0.711*** 0.243*** 0.216***
Jarque-Bera Test 37.459*** 6.667*** 37.932*** 55.634*** 116.492*** 207.243***
Dagostino & Pearson Test 27.42*** 55.869*** 34.996*** 38.83*** 42.972*** 49.528***

Day 24/04/2014 05/11/2015 21/08/2018
Test/ TTM 17 24 17 24 17 24

KS Limiting Form 2.334*** 1.837*** 3.317*** 3.865*** 2.752*** 2.281***
KS Stephens Modification 2.574*** 1.962*** 3.386*** 3.922*** 2.957*** 2.383***
KS Marsaglia Method 2.334*** 1.837*** 3.317*** 3.865*** 2.752*** 2.281***
KS Lilliefors Modification 0.825*** 0.53*** 0.538*** 0.536*** 0.83*** 0.538***
Anderson-Darling Test 8.456*** 4.323*** 14.509*** 19.944*** 11.446*** 6.699***
Shapiro-Wilk Test 0.281*** 0.327*** 0.152*** 0.122*** 0.091*** 0.253***
Shapiro-Francia Test 0.5*** 0.295*** 0.133*** 0.106*** 0.091*** 0.224***
Jarque-Bera Test 2.667 43.322*** 1948.913*** 5214.998*** 3.667 173.076***
Dagostino & Pearson Test 11.413*** 33.648*** 88.242*** 116.267*** 17.439*** 47.372***

Notes: 17 and 24 days are randomly selected time-to-maturity (TTM).

I present the normality test results for the log of index dividend futures prices in Table 3.2 where

Normality is consistently rejected by a large set of normality tests in each trading day near maturity of con-

tract. Rejection of normality suggest that the Black (1976) may not accurately display the set of remarkable

characteristics of the index dividend futures options like the ‘pull-to-par’ effect reflected on implied volatility.

3.3.3 Model-free trading Strategy for predictive peak for differ-

ence in implied volatilities

The predictive peak is determined numerically and it is shown in Figure 3.6 occurs with N � 111 model-

free implied volatility differences (MFIVD) moving average (trading) days and K � 50 (trading) days of

STOXX50 index log-returns.

Using the identified correlation peak, I implement the first trading strategy by focusing on periods

when the current MFIVD crosses its own moving average threshold for 111 days. I go long in the stock and
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Figure 3.6: Correlation of model-free IVD level relative to N-day moving average versus
K-days moving average for STOXX 50 log-returns.
Notes: Relative level is defined as the ratio of the model-based IVD to its own N-day moving average minus
one. K is the k-day out log-return of STOXX 50 index which I define as rt�k � lnpPt�kPt

q where t � 1, . . . , T
indicates daily trading days and k � 1, . . . , 250 is the index for observed number of days out. N is the n-day
moving average for the model-based implied volatility difference (IVD) signal

short in the futures whenever the MFIVD crosses below its moving average and close the long position and

go short in the stock and long in futures contract as soon as the MFIVD crosses above its moving average

(see similar strategies also in Brock et al. 1992, Williams 2011). This is based on the observed negative

correlation between IV and the stock index. One can see the evolution of MFIVD, its moving average and

stock in Figure 3.7

In order to avoid problems of not being able to pay for closing trades, every trade is carried out for

a proportion Q of the total balance in the money market account I hold for these trades. For all trading

strategies considered, the signal is denoted by tΨtut¥0. The dynamic threshold is tΓtut¥0 alongside a

tradeable liquid asset tAtut¥0. Let’s denote by τ1, τ2, . . . , τn the grid of points where Ψt � Γt changes signs,

that is when the signal crosses over the threshold. All trading strategy will have an initial endowment of 10

million EUR that will be put into a money account tCtut¥0 accruing money market interest r. I consider

the 12 month Euribor rates in the analysis for interest rate calculations.

The trading strategy is based on the idea that MFIVD and STOXX 50 are negatively correlated. Hence

by monitoring current MFIVD versus its moving average, I can see when the difference in implied volatilities

of stock and dividend is high or low. If it is high then that means the stock price is low now and at some

time in the near future the IV of stocks will go down so the MFIVD will be low and hence the stock price

will be high. This means that when MFIVD is above its threshold I buy the stock, and hedge at the same

time by going short in the nearest maturity index dividend futures contract. I will unwind this position
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Figure 3.7: Comparison of Model-free IVD and STOXX 50 using daily data from May 20,
2010 to December 31, 2016

and sell the stock later on when the MFIVD goes below its threshold; at this point I immediately close the

hedge and go long in the nearest maturity futures contract. Thus, the investor could go long the asset A by

buying stock equivalent to 10% of the value of in the money account at the time of transaction, τi, hence

0.1 � Cτi , if Ψτi � Γτi ¡ 0 and initiate a short hedge using the nearest maturity index dividend futures

contract. To unwind, the investor will sell the entire stock position at τi and also close out the futures hedge

at the same time. This involves going short by selling 0.1 � Cτi in stock if Ψτi � Γτi   0 and then unwind

at τi�1 by buying back stock to cancel their short position. Suppose the spot prices of the index at τi and

τi are respectively denoted by Sτi and Sτi�1 and the corresponding futures prices are Fτi and Fτi�1 . The

futures position is Fτi � Fτi�1 , and the stock position is Sτierpτi�1�τiq � Sτi�1 .

The transaction is followed through only when the absolute difference |Ψτi � Γτi | ¡ 0.01 in order to

avoid transaction costs for trades that are not economically significant. Unlike similar excess volatility trading

strategies in Bulkley & Tonks (1989) and Bulkley & Tonks (1992), I are able to use a priori trading strategies

that involve going short. Here, the basis risk between borrowing and lending rates is not significant since

the trading is done daily and hedged with a Futures trade14. I test the quality of the trading strategies for

the MFIVD by comparing the performance of their associated portfolios to that of a benchmark15 portfolio

which is based on a long-only trading strategy. The buy and hold strategy of the benchmark becomes a base

model that allows us to evaluate performance only in terms of the trading signal dynamics (see Brock et al.

1992, Lo & Patel 2008).

14The transaction fees for cash settlement is on the Eurex Exchange is EURO 0.35 per contract. Position
closing adjustments is EUR 0.70 per contract.

15The initial trade is for a proportion of Q of the total balance in the money account I hold. At inception,
the investor goes long on the asset, and buys stock equivalent to Q% of the total value held in the money
account; Q� Cτ0 , where 0.1 ¤ Q ¤ 1. This initial position is held till end of the sample period.
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Table 3.3 reports the standard comparative performance measures for various variants of this strategy

under unique market regimes spanned by risk-free rate values and proportions of investments. The annualized

return of wealth realised under the MFIVD trading signal consistently exceed that of the buy and hold

benchmark. The annualized volatility of returns generated by the MFIVD trading strategy is lower compared

to the buy and hold. This observation remains consistent across varying proportions of investment except for

cases where Q � 5%. The annualized Sharpe ratios calculated under buy and hold benchmark consistently

lie below that of MFIVD trading rule across all Q’s.

I use the Shape ratio test proposed by Ledoit & Wolf (2008) to verify whether differences in Sharpe ratios

generated by the two strategies are statistically significant. Table 3.3 shows that the annualized Sharpe ratio

of the MFIVD trading strategy is significantly higher than those generated by the buy and hold benchmark

when Q ¤ 50%. I also report test statistics of Linton et al. (2005) second order stochastic dominance (SSD)

test. The SSD test is to determine which trading rule generates stochastically dominant wealth preferred by

any risk averse investor, irrespective of their preferences. I fail to reject the null hypothesis of the SSD test

results, suggesting that the MFIVD strategy stochastically dominates the buy and hold benchmark. The

statistical dominance of the MFIVD is robust for varying Q’s.

Table 3.3 also presents the Calmar ratios of the MFIVD and buy and hold across different investment

proportions. The MFIVD performs better on risk adjusted basis compared to the buy and hold. The certainty

equivalent (CEQ) values of the MFIVD strategy are consistently lower, compared with the annualized return

of the MFIVD strategy across all Q’s thereby indicating a risk averse market agent. The difference between

the strategy’s annualized return and the market agent’s CEQ provides information about the risk premium,

which ranges between 0.1% and 0.2%.
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Table 3.3: Comparison of trading strategy performance and risk using data the differences
in model-free IV as trading signal.

Performance Measure Series Q � 5% Q � 20.0% Q � 35.0% Q � 50.0% Q=65.0% Q � 80.0% Q � 95.0%

Ann. Return BH 0.005 0.008 0.012 0.015 0.019 0.022 0.022
MFIV D 0.062 0.063 0.054 0.062 0.055 0.057 0.058

Volatility BH 0.011 0.042 0.075 0.108 0.141 0.174 0.206
MFIV D 0.033 0.034 0.044 0.060 0.074 0.088 0.102

Historical VaR BH -0.001 -0.004 -0.008 -0.011 -0.015 -0.018 -0.022
MFIV D 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Sharpe Ratio BH 0.422 0.201 0.159 0.142 0.134 0.128 0.105
MFIV D 1.859 1.857 1.212 1.033 0.745 0.643 0.567

Calmar Ratio BH 0.189 0.117 0.095 0.085 0.080 0.078 0.065
MFIV D 15.240 3.238 1.015 0.549 0.381 0.291 0.251

CEQ BH 0.005 0.008 0.012 0.015 0.019 0.022 0.021
MFIV D 0.060 0.061 0.052 0.060 0.054 0.055 0.056

Sharpe Ratio Test d 1.322* 2.964*** 1.865** 1.542* 1.031 0.838 0.720
SSD Test MFIV D ¡2 BH 0.723 0.817 0.843 0.847 0.837 0.787 0.803

Notes: Standard summary performance measures for the trading strategy using Implied Volatility
Differences (IVD) i.e. MFIV D � MFIVs �MFIVd as signal. The trading signal is based on a
111-day moving average of the model-free IVD. Q is a proportion of the total balance in the money
account I hold. I report the p-values of the Linton et al. (2005) second order stochastic dominance
(SSD) ratio test statistic. The null hypotheses under the SSD test is H0 : MFIV D ¡2 BH
suggesting that the trading strategy MFIV D based on model-free IVD second order stochastic
dominates the buy and hold strategy BH. The test statistic of the Ledoit & Wolf (2008) Sharpe
ratio test is d � |p∆|{spp∆q where ∆ denotes the difference between the Sharpe ratios of MFIVD and
buy and hold benchmark.

3.3.4 Model-based trading Strategy for predictive peak for differ-

ence in implied volatilities

I repeat the steps followed above for model-free signal using the difference of the model-based IV of stock to

dividend as my trading signal. The predictive peak of the correlation matrix shown in Figure 3.8 occurred

for N � 88 days of the moving average and K � 156 days for the returns horizon. It is known from

mathematical works of Jacod & Shiryaev (2013), that predicting or calling out the actual peak is difficult if

not impossible while observing the actual random data flow in real time. The trading strategy tries to select

such best minimal and maximal price points to buy and sell and make an arbitrage profit. Figure 3.9 shows

the evolution of this new trading signal versus its threshold and the STOXX 50. The trading strategy in

this case is based on selling STOXX 50 when the MBIVD is below its 88-days moving average and unwind

the trade when the order between the two reverses. The values in Table 3.3 indicate that, depending on

the period and the style of investing, prudent versus aggressive. Periods of substantially high MBIVD in

Figure 3.9 are associated with lower Sharpe ratios in the trading strategy.

In Table 3.4 I report the comparative performance measures under various variants of this trading
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Figure 3.8: Correlation of model-based IVR level relative to N-day moving average versus
K-days moving average for STOXX 50 log-returns.
Notes: Relative level is defined as the ratio of the model-based IVR to its own N-day moving average minus
one. K is the k-day out log-return of STOXX 50 index which I define as rt�k � lnpPt�kPt

q where t � 1, . . . , T
indicates daily trading days and k � 1, . . . , 250 is the index for observed number of days out. N is the n-day
moving average for the model-based implied volatility ratio (IVR) signal
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Figure 3.9: Comparison of Model-based IVR and STOXX 50 using daily data from May 20,
2010 to December 31, 2016
Notes: The graph illustrates historical evolution of Black-Scholes implied volatility ratio together with its
136-day moving average. This is plotted alongside the STOXX 50 index level. The data is from May 20,
2010 to December 31, 2016.
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strategy. The results are largely consistent with that of the MFIVD trading strategy. I do not reject the null

hypothesis of the SSD test results across all investment proportions. Hence, the MBIVD trading strategy

stochastically dominates the buy and hold benchmark. The annualized certainty equivalence (CEQ) of

wealth generated under the MBIVD trading rule generally exceed that of the buy and hold. The market

agent’s risk premium has a minimum of 2% and a maximum of 3%. The Sharpe ratio’s of the MBIVD

trading strategy exceeds that of the buy and hold benchmark across all investment proportions. Except for

Q � 95%, the Ledoit & Wolf (2008) test statistic shows annualized Sharpe ratio of MBIVD is significantly

higher than that of the buy and hold benchmark. Average annual returns of realized wealth under the

MBIVD are substantially higher when compared to the buy and hold. The annualized volatility of the buy

and hold benchmark is approximately 1.4 to 2.5 times larger than the annualized volatility of the MBIVD

strategy.

Table 3.4: Comparison of trading strategy performance and risk using data the differences
in model-based IV as trading signal.

Performance measure Series Q � 5% Q � 20% Q � 35% Q � 50% Q � 65% Q � 80% Q � 95%

Ann. Return BH 0.005 0.008 0.012 0.015 0.019 0.022 0.022
MBIV D 0.064 0.055 0.066 0.072 0.069 0.078 0.076

Volatility BH 0.011 0.042 0.075 0.108 0.141 0.174 0.206
MBIV D 0.032 0.031 0.041 0.050 0.062 0.074 0.082

Historical VaR BH -0.001 -0.004 -0.008 -0.011 -0.015 -0.018 -0.022
MBIV D 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Sharpe Ratio BH 0.422 0.201 0.159 0.142 0.134 0.128 0.105
MBIV D 1.973 1.773 1.620 1.442 1.124 1.055 0.927

Calmar Ratio BH 0.189 0.117 0.095 0.085 0.080 0.078 0.065
MBIV D 57.709 4.926 4.154 3.245 1.472 1.601 1.196

Certainty Equivalence BH 0.005 0.008 0.012 0.015 0.019 0.022 0.021
MBIV D 0.062 0.053 0.064 0.069 0.067 0.075 0.073

Sharpe Ratio Test d 1.378* 2.798*** 2.576*** 2.259** 1.694* 1.563* 1.351
SSD Test MBIV D ¡2 BH 0.763 0.830 0.817 0.810 0.843 0.830 0.827

Notes: Standard summary performance measures for the trading strategy using implied volatility
differences (IVD) i.e. MBIV D � MBIVs �MBIVd as signal. Every trade is carried out for a
proportion Q of the total balance in the money account held for respective trades. The trading
signal is based on a 88-day moving average of the model-based IVD. I report the p-values of
the Linton et al. (2005) second order stochastic dominance (SSD) ratio test statistic. The null
hypotheses under the SSD test is H0 : MBIV D ¡2 BH suggesting that the trading strategy
MBIV D based on model-based IVD second order stochastic dominates the buy and hold strategy
BH. The test statistic of the Ledoit & Wolf (2008) Sharpe ratio test is d � |p∆|{spp∆q where ∆
denotes the difference between the Sharpe ratios of MBIVD and buy and hold benchmark.
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3.4 Chapter Summary

The study has compared the information in the implied volatility of stock index options to the information

in the implied volatility of index dividend options. The approach illustrates how the implied volatility

term-structure of option contracts with time-to-maturity exceeding “9-months” are justified by subsequent

fluctuations in dividends although contracts with time-to-maturities around “1-month”, “1-3 months” and

“3-9 months” stock volatility and dividend volatility are far apart. Such periods coincide with dividend

announcement dates of index constituents, hence associated with lower levels of dividend uncertainties. This

finding may as well be driven by the impact of averaging like in an Asian option is less volatile than the

asset. Longer maturity implies more dividend dates hence more stable time series, thereby allowing market

agents to apply the similar weights to stock and dividend uncertainties. This phenomenon clearly makes the

dividend puzzle effect more prominent when IV for corresponding stock-index options and IDF options do

not decrease together.

The analysis shows IV of stock index options consistently exceeds that of index dividend options,

thereby confirming previous criticism based on novel financial data and instruments. However, the magnitude

of excess implied volatilities declines with long-dated time-to-maturities, suggesting that the discrepancy

between the two IV is sensitive to the investment horizon. This result holds in both model-free and model-

based cases. The evidence for the dividend puzzle inferred from expectations on future realizable dividends

has a term-structure feature, being almost negligible in the long-run and strongly evident in the short

horizons. This implies that inferences about the dividend puzzle for forward-looking purposes, cannot be

directly obtained from that observed from historical data without reference to the investment horizon.

For the first time in the literature I constructed an implied volatility index for the STOXX 50 dividend

futures contract. This is then employed as a vehicle to help us learn more about the properties of the

volatility excess puzzle using information from the dividend derivatives markets. The evolution of this index

shows clearly that in recent years there has been a lot more volatility on dividend markets. The trading

strategy results also indicate that market participants can improve returns by considering trading signals

based on stock and dividend IV differences; which both outperform the long-only trading baseline model

portfolio.

Further investigations shall be focused on detecting calendar spread arbitrage and butterfly arbitrage

opportunities, in both equity and dividend derivatives markets, using the characterization results of static

arbitrage presented in Gatheral & Jacquier (2014) for implied volatility surfaces, perhaps also combining

this with the computational shortcut approach discussed in Fengler (2009).
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APPENDIX B

Additional Material for Chapter 3

B.1 Summary Statistics for Stock and Dividend Im-

plied Volatility

Table B.1: Summary statistics for stock implied volatilities across moneyness

1-month 1-3 months 3-9 months 9-12 months TotalMoneyness Statistic Call Put Call Put Call Put Call Put

m   �0.15 mean 0.555 0.538 0.463 0.465 0.377 0.388 0.329 0.344 0.426
stdev. 0.076 0.066 0.055 0.051 0.035 0.037 0.022 0.026 0.045

p�0.15,�0.10s mean 0.334 0.313 0.278 0.283 0.245 0.253 0.224 0.246 0.271
stdev. 0.037 0.030 0.023 0.023 0.015 0.018 0.009 0.011 0.021

p�0.10,�0.05s mean 0.303 0.285 0.262 0.263 0.234 0.241 0.217 0.235 0.255
stdev. 0.033 0.030 0.022 0.024 0.016 0.020 0.009 0.011 0.021

p�0.05, 0.00s mean 0.271 0.248 0.254 0.252 0.228 0.239 0.209 0.234 0.242
stdev. 0.032 0.029 0.023 0.023 0.016 0.019 0.008 0.012 0.020

p0.00, 0.05s mean 0.236 0.224 0.233 0.235 0.221 0.229 0.206 0.238 0.228
stdev. 0.030 0.032 0.019 0.021 0.017 0.020 0.009 0.014 0.020

p0.05, 0.1s mean 0.250 0.230 0.233 0.230 0.213 0.228 0.200 0.230 0.226
stdev. 0.027 0.028 0.020 0.022 0.016 0.018 0.008 0.013 0.019

p0.10, 0.15s mean 0.278 0.264 0.235 0.230 0.211 0.219 0.192 0.226 0.232
stdev. 0.029 0.030 0.020 0.023 0.014 0.017 0.009 0.013 0.020

m ¡ 0.15 mean 0.540 0.499 0.414 0.396 0.271 0.300 0.222 0.297 0.372
stdev. 0.071 0.059 0.057 0.051 0.034 0.038 0.019 0.027 0.046

Total mean 0.382 0.354 0.324 0.322 0.268 0.282 0.240 0.270 0.305
stdev. 0.048 0.042 0.035 0.034 0.023 0.026 0.013 0.018 0.030

Notes:The values in the table are based on moneyness classification used ourthe paper. Moneyness is defined
as m � K{Ft � 1. Moneyness classification m is constructed as follows: deep-out-of-the-money (DOTM) is
assigned if m   �0.15, out-of-the-money (OTM) if �0.15 ¤ m ¤ �0.05 and �0.05   m   0.05 if at-the-
money (ATM). Likewise, in-the-money (ITM) is assigned if 0.05 ¤ m ¤ 0.15 and deep-in-the-money (DITM)
for m ¡ 0.15 following Rosenberg & Engle (2002) and Wang et al. (2017).
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Table B.2: Summary statistics for dividend implied volatility across moneyness

1-month 1-3 months 3-9 months 9-12 months TotalMoneyness Statistic Call Put Call Put Call Put Call Put

m   �0.15 mean 0.100 0.063 0.092 0.041 0.082 0.040 0.214 0.081 0.129
stdev. 0.007 0.008 0.005 0.005 0.001 0.003 0.030 0.023 0.024

p�0.15,�0.10s mean 0.066 0.040 0.056 0.026 0.066 0.041 0.115 0.073 0.088
stdev. 0.003 0.005 0.003 0.003 0.002 0.004 0.016 0.019 0.016

p�0.10,�0.15s mean 0.039 0.025 0.034 0.021 0.056 0.042 0.098 0.066 0.077
stdev. 0.002 0.003 0.001 0.000 0.003 0.004 0.015 0.020 0.017

p�0.05, 0.00s mean 0.021 0.020 0.023 0.021 0.045 0.043 0.071 0.056 0.062
stdev. 0.001 0.000 0.001 0.000 0.007 0.008 0.014 0.018 0.016

p0.00, 0.05s mean 0.020 0.022 0.021 0.023 0.042 0.046 0.054 0.068 0.059
stdev. 0.000 0.000 0.000 0.000 0.007 0.008 0.012 0.019 0.014

p0.05, 0.10s mean 0.022 0.036 0.021 0.031 0.041 0.051 0.051 0.083 0.061
stdev. 0.003 0.002 0.000 0.001 0.007 0.007 0.012 0.018 0.014

p0.10, 0.15s mean 0.034 0.060 0.023 0.048 0.040 0.058 0.058 0.112 0.074
stdev. 0.004 0.004 0.002 0.003 0.007 0.005 0.014 0.021 0.016

m ¡ 0.15 mean 0.051 0.093 0.033 0.075 0.038 0.073 0.070 0.169 0.099
stdev. 0.006 0.006 0.004 0.004 0.006 0.002 0.016 0.039 0.022

Total mean 0.050 0.051 0.043 0.040 0.054 0.049 0.083 0.085 0.082
stdev. 0.004 0.004 0.003 0.003 0.004 0.004 0.016 0.022 0.018

Notes:The values in the table are based on moneyness classification used ourthe paper. Moneyness is defined
as m � K{Ft � 1. Moneyness classification m is constructed as follows: deep-out-of-the-money (DOTM) is
assigned if m   �0.15, out-of-the-money (OTM) if �0.15 ¤ m ¤ �0.05 and �0.05   m   0.05 if at-the-
money (ATM). Likewise, in-the-money (ITM) is assigned if 0.05 ¤ m ¤ 0.15 and deep-in-the-money (DITM)
for m ¡ 0.15 following Rosenberg & Engle (2002) and Wang et al. (2017).

B.1.1 Trading strategy for predictive peak for VSTOXX

The predictive peak is determined numerically and it is shown in Figure B.1 occurs with N � 31 VSTOXX

moving average (trading) days and K � 13 (trading) days of STOXX50 index log-returns.

Using the identified correlation peak, I implement the first trading strategy by focusing on periods when

the current implied volatility crosses its own moving average threshold for 31 days. I go long in the stock

whenever the VSTOXX crosses below its moving average and close the long position and go short in the

stock as soon as the VSTOXX crosses above its moving average (see similar strategies also in Brock et al.

1992, Williams 2011, Guobuzaite & Martellini 2012). This is based on the observed negative correlation

between VSTOXX and the stock index. One can see the evolution of VSTOXX, its moving average and

stock in Figure B.2

In order to avoid problems of not being able to pay for closing trades, every trade is carried out for

a proportion Q of the total balance in the money market account I hold for these trades. For all trading

strategies considered, the signal is denoted by tΨtut¥0. The dynamic threshold is tΓtut¥0 alongside a

tradeable liquid asset tAtut¥0. Let’s denote by τ1, τ2, . . . , τn the grid of points where Ψt � Γt changes signs,
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Figure B.1: Correlation of VSTOXX relative level to subsequent moves in the STOXX 50
log-returns.
Notes: Relative level is defined as the ratio of the VSTOXX to its own N-day moving average minus one.
K is the number of days out fo log-return of STOXX 50 index which I calculate as rt�k � lnpPt�kPt

q where
t � 1, . . . , T indicates daily trading days and k � 1, . . . , 250 is the index for observed number of days out. N
is the n-day moving average for the VSTOXX signal.

that is when the signal crosses over the threshold. All trading strategy will have an initial endowment of 10

million EUR that will be put into a money account tCtut¥0 accruing money market interest r. I consider

the 3 month Euribor rates in the analysis for interest rate calculations.
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Figure B.2: Comparison of VSTOXX and STOXX 50 using daily data from May 20, 2010
to December 31, 2016
Notes: Graph (a) Illustrates the historical evolution of VSTOXX together with its 31-day moving average.
This is plotted alongside the STOXX 50 index level.

The trading strategy is based on the idea that VSTOXX and STOXX 50 are negatively correlated.

Hence by monitoring current VSTOXX versus its moving average, I can see when VSTOXX is high or low.

If it is high then that means the stock price is low now and at some time in the near future VSTOXX will go
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down so it will be low and hence the stock price will be high. This means that when VSTOXX is above its

threshold I buy the stock which I sell later on when VSTOXX goes below its threshold. Thus, the investor

could go long the asset A by buying stock equivalent to 10% of the value of in the money account at the time

of transaction, τi, hence 0.1�Cτi , if Ψτi�Γτi ¡ 0 and then unwind, i.e. sell the entire stock position at τi�1;

and it will go short by selling 0.1 � Cτi in stock if Ψτi � Γτi   0 and then unwind at τi�1 by buying back

stock to cancel their short position. The transaction is followed through only when the absolute difference

|Ψτi � Γτi | ¡ 0.01 in order to avoid transaction costs for trades that are not economically significant. I test

the quality of the trading strategies for the VSTOXX and the IV ratios by comparing the performance of

their associated portfolios to that of a benchmark1 portfolio which is based on a long-only trading strategy.

The buy and hold strategy of the benchmark becomes a base model that allows us to evaluate performance

only in terms of the trading signal dynamics (see Brock et al. 1992, Lo & Patel 2008).

Table B.3 reports the standard comparative performance measures for various variants of this strategy

under various market regimes spanned by risk-free rate values and different proportions of investments. The

annual return increases with the proportion of endowment used for investment but so does its volatility.

The Sharpe ratio decreases with the proportion so using a more conservative approach would produce larger

Sharpe ratios. The strategy will produce clear superior returns in an economic environment with larger

risk-free interest rates. Panel C reports the performance based on the benchmark strategy. Comparing with

Panel A and B it is clear that my strategy is superior to this benchmark.
1The initial trade is for a proportion of Q of the total balance in the money account I hold. At inception,

the investor goes long on the asset, and buys stock equivalent to Q% of the total value held in the money
account; Q� Cτ0 , where 0.1 ¤ Q ¤ 1. This initial position is held till end of the sample period.
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Table B.3: Comparison of trading strategy performance and risk using daily data from May
20, 2010 to December 31, 2016.

Weight Q(%) 10 20 30 40 50 60 70 80 90
Panel A: Performance Measures on In-Sample Data (May 20, 2010 - Dec. 31, 2016)

Historical VaR (95%) -0.0003 -0.0007 -0.0011 -0.0014 -0.0018 -0.0021 -0.0025 -0.0028 -0.0032
Sharpe Ratio (Rf=-0.7%) 1.1479 0.7573 0.6154 0.5356 0.4805 0.4376 0.4015 0.3696 0.3405
Calmar Ratio 0.4754 0.3649 0.3144 0.2832 0.2598 0.2402 0.2228 0.2067 0.1916
Annualized CEQ Return 0.0196 0.0258 0.0314 0.0364 0.0407 0.0445 0.0477 0.0502 0.0521

Panel B: Performance Measures on Out-Sample Data (Jan. 1, 2017 - Aug. 14, 2018)
Historical VaR (95%) -0.001 -0.002 -0.003 -0.004 -0.0051 -0.0061 -0.0071 -0.0081 -0.0091
Sharpe Ratio (Rf=-0.7%) 2.4121 2.224 2.1694 2.148 2.1399 2.1384 2.1405 2.1449 2.1507
Calmar Ratio 3.4825 3.7525 3.8561 3.9178 3.9624 3.9983 4.0292 4.0567 4.082
Annualized CEQ Return 0.0266 0.0485 0.0703 0.0918 0.1132 0.1343 0.1553 0.176 0.1966

Panel C: Performance Measures on Benchmark Strategy (May 20, 2010 - Dec. 31, 2016)
Historical VaR (95%) -0.0023 -0.0046 -0.0069 -0.0091 -0.0114 -0.0138 -0.0161 -0.0185 -0.0207
Sharpe Ratio (Rf=-0.7%) 0.6551 0.3604 0.2546 0.1961 0.1564 0.1262 0.1014 0.0799 0.0607
Calmar Ratio 0.1841 0.1118 0.0841 0.0673 0.0532 0.0418 0.0318 0.0228 0.0142
Annualized CEQ Return 0.0147 0.0160 0.0169 0.0172 0.0171 0.0165 0.0154 0.0139 0.0118

Notes: In this table, I report values for the standard summary performance measures for the trading strategy
using VSTOXX as signal. The trading signal is based on a 31-day moving average of the VSTOXX, obtained
from the predictive peak in the correlation of VSTOXX and STOXX 50 index return.

103



CHAPTER 4

NNEG Valuation in ERM Contracts

4.1 Introduction

Equity release mortgages (ERM) as known in the United Kingdom (UK) are designed and sold by insurers

to borrowers aged above 55 years. ERMs are offered to the borrower either as lump-sum upfront loan or

leveled payment received over an agreed period. By design, the borrowers house is the collateral on the

loan and the issued loan is not repaid until contract termination, a condition triggered either by borrower’s

demise or transition into long-term care or a voluntary repayment initiated by the borrower.

Reifner et al. (2009) provided an excellent country-based grouping of ERM schemes across European

Union (EU) member states. The criteria for the proposed grouping were population demographics, pension

provisions, state of mortgage markets, property market statistics, and survey results on the use and market

sentiments on ERM contracts. More specifically, four (4) groups were identified; United Kingdom, Ireland,

and Spain constituted the significant ERM market group (i.e first group); Sweden, France, Austria, Italy,

Finland, and Hungary had less developed loan model ERM market (i.e. second group); Romania, Bulgaria,

and Germany were in the third category with less developed sale model ERM markets. The fourth group

included member states without ERM markets. Recently, Hennecke et al. (2017) found favourable equity

release market conditions in the United Kingdom and the Netherlands, while Ireland and Germany had the

exact opposite. The ERM market space in the United Kingdom has significantly matured through some

reputation issues in her history. Examples include the shared appreciation mortgages (SAM) scandal in the

late 80’s which also received substantial negative press up until the early 1990’s. Working to prevent future

possible scandals, the Financial Conduct Authority (FCA) and the Bank of England (BOE) Prudential

Regulatory Authority (PRA) progressively aim to address and/or prevent such reputation issues by using

104



rule-based regulations. For instance, the United Kingdom currently has the nonnegative equity guarantee

clause, and Solvency II matching adjustment rules for illiquid unrated assets and ERMs. These regulatory

interventions sets the UK equity release market space within the significant ERM market group. These

recent market categorisations jointly inform my decision to focus on UK equity release market space, which

has consistently remained in the significant group.

As of 2013, Netherlands had the highest mortgage debt per capita in the European Union (see Toussaint

2013). The country also possessed four striking observations regarding the role of housing wealth: 1) citizens

can build affluence via housing wealth (Haffner & De Vries 2010, Toussaint 2013), 2) there is little evidence

for outright home ownership as almost homeowners tend to retain mortgage until their old age (Van der

Schors et al. 2007, Toussaint 2013), 3) younger households are inclined to take additional mortgage debt

in order to fund post retirement lifetime expenses (Toussaint 2013), and 4) a significant proportion of the

Dutch population rent their homes while the high-income class are likely to be owner-occupiers (Mulder

et al. 2004).

There are a number of important discussions on the potential and impact of ERMs. On the issue of

potential gain, Moscarola et al. (2015) showed that well structured ERMs could reduce old age economic

vulnerability by taking persons aged 65 over out of the lowest tail of income distribution. In a recent survey

across the EU, Megyeri (2018) also found that ERMs could reduce the impact of poverty risk of the elderly

in society. Hennecke et al. (2017) also showed that equity release mortgages provide some form of pension

insurance while the borrower liquidates her owner-occupied property.

In the UK, the ERM product space is under active prudential regulation. A notable stipulation under

current regulatory standards transfers to the loan issuer the excess cost created when the accumulated loan

value is over the market-value of the collateral house at termination. This is the no-negative equity guarantee

(NNEG) clause that is hotly debated among academics, practitioners and the regulator. Since the NNEG

condition is embedded into the ERM contract by design, I should much as well expect the value of ERMs to

be directly dependent on the resulting NNEG value. Hence, risks associated with the NNEG valuation will

spill over to the ERM value.

The risk factors that drive the NNEG value include the volatility of house prices, the contract rate by

which the issued loan is accumulated, borrower-specific decrement rates (i.e. mortality rate, long-term care

incidence rates and voluntary prepayment) that in effect randomizes the time-to-termination of the contract,

the risk-free interest rate and the service flow rate. Hosty et al. (2008), Li et al. (2010), Ji et al. (2012),

Alai et al. (2014), Kogure et al. (2014), Prudential Regulation Authority (2019b), Prudential Regulation

Authority (2019a), Dowd et al. (2019), and Huang et al. (2020) provide excellent discussion on the factors

that affect NNEG values in ERM contracts.
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The main risk embedded in ERM is the collateral-effect channelled by house price risk. Therefore, the

behaviour of the main stakeholder in this financial market depends on their understanding of house price

risk. Relevant literature on ERMs tend to address different facets of the ERM risk-management process.

Ma & Deng (2013) presented an actuarial based model for pricing the Korean ERM with constant monthly

payments and also with graduated monthly payments indexed to the growth rate of consumer prices. They

found that any shock to house prices may impact younger borrowers more severely. The Ma & Deng (2013)

sensitivity test results on contract maturity (termination) showed how call option values decrease with

maturity, suggesting higher ERM values at younger ages. The study also reported a positive relationship

between house price volatility and call option value. Thus higher volatility will impact younger borrowers

more. Younger borrowers include borrowers within lower age range profile i.e. 55 - 60 years (see Li et al.

2010, Ma & Deng 2013).

Shao et al. (2015) consider that there are only two main risks that insurers selling ERMs face, real-estate

risk and longevity risk and investigated the joint effect of the two on the pricing and risk profile of ERM

loans. Their stochastic multi-period model was based on a new hybrid hedonic/repeat-sales pricing model

and a stochastic mortality model with cohort trends (the Wills-Sherris model). They concluded that using an

aggregate house price index and not considering cohort trends in mortality may lead to an underestimation

of total risk in ERMs.

Wang et al. (2014) developed an analytical formula for calculating the feasible loan-to-value (LTV) ratio

in an adjusted-rate ERM applied to regular tenure payments. In their model, interest rates are modelled

jointly with the adjustable-rate ERM, and the housing price follows a jump diffusion process with a stochastic

interest rate. Assuming the loan interest rate is adjusted instantaneously with the short rate given by a CIR

model, they show that the LTV ratio is independent of the term structure of interest rates, even when the

housing prices follow an exponential Lévy process. Concerns have been raised about the sustainability of

the ERMs at high levels of housing price volatility. Regarding ERMs, these studies tend to support the

assertion by He et al. (2015), and Lim (2018) that housing market price dynamics impacts the entry-exit

and expansion-contraction decisions of the loan issuers through the collateral channel.

The NNEG clause is usually conceptualised as a put option in Prudential Regulation Authority (2018,

2019a,b) and relevant literature (see Li et al. 2010, Dowd et al. 2019). Szymanoski (1994) argued that the

dynamics of house prices is well represented by a geometric Brownian motion (GBM). Studies that used

geometric Brownian motion for house prices related to ERM modelling are Hosty et al. (2008), Kau et al.

(1992), Huang et al. (2011), Ji et al. (2012), Pu et al. (2014).

This is in contradiction with the findings of Case & Shiller (1989) and a large body of empirical evidence

(Tunaru 2017) where: well-documented serial correlation of returns of property prices is not captured; the
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variance for a GBM increases infinitely with the time horizon GBM.

Recent studies accept that house price time-series exhibit serial correlation that invalidates the GBM

assumption (Kogure et al. 2014). Li et al. (2010) considered the Nationwide House Price index and they

remarked that, for this property index, a) there is a strong positive autocorrelation effect among the log-

returns, b) the volatility of the log-returns varies with time, c) a leverage effect is present in the log-return

series. All these three properties present critical challenges to the use of the GBM for house prices. The

characteristics of large movements in house prices presented in Sun & Tsang (2019) also affects the GBM

process as a data-generating process for house prices. There is a need to consider pricing models that provide

valuable improvement to account for the properties of house prices while presenting a valuable extension to

the GBM. It will also be beneficial to ensure the new model contains the GBM as a special case.

The NNEG valuation principles under the Black-Scholes model that is recommended by the regulator

in the UK was compared with a more academic approach based on a ARMA-EGARCH model; a more

suitable methodology for gauging house price risk. The Black-Scholes model overestimates in relative terms

the NNEG by comparison with the ARMA-EGARCH during calm times of low interest rates and positive

growth of house prices, and underestimates comparatively NNEG values during turbulent times of higher

interest rates and downfall of property prices. This impact could significantly affect efforts geared toward

a secured financial footing for ERMs. The choice of the right model may help improve the stability of the

ERM market and benefit ultimately the people who need this financial instrument, given that any additional

cost to the insurer imposed via the regulatory channel is ultimately passed to the consumer. The impact

of house-price-specific risk-sensitivities on NNEG valuation was investigated by focusing on the long-term

effect of house price risk. Finally, I compared the impact on the portfolio of ERM loans of valuing the NNEG

by the regulator’s approach versus the financial economics academic approach.

The findings show that the GBM model recommended by the regulator in the UK produces much

higher values of the NNEG when compared with a best fit ARMA-EGARCH model selected on the basis

of forecasting house prices well. Utilising an inappropriate model in the context of reverse mortgage loan

market may in the end stifle this market by imposing very high capital reserve requirements on insurers. This

is very important since there is no diversification benefit for an insurer issuing ERM loans with each loan

being valued separately for NNEG calculations purposes. Inflating the volatility parameter will automatically

imply a high variance of house prices at long maturities for the GBM model, thereby impacting directly on

ERMs loan characteristics for the younger borrowers who would benefit the most from this new asset class.

The study finds evidence to suggest that service flow rate parameter is not the key driver of underlying

house prices in UK. With majority of house prices not paying rents, which can be verified in the Office of

National Statistics, it would be wrong in this perspective to assume that all houses have prices driven by
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rents. According to the 2016-17 English Housing Survey report of the Ministry of Housing Communities, &

Local Government (2018), 14.4 million (63%) households are owner occupied in England. The proportion

increased gradually from the 80’s, peaking at 71% in 2003. The proportion may be different from country

to country but there is no known country where all houses generate rental income. An overestimation of the

service flow rate induces downward trending house prices in the long run that ultimately inflates the NNEG

values.

While the ERMs may offer a viable solution to long term care and pension boosting to the elderly

generation in most developed economies, there is a general lack of development of this market world-wide.

A possible explanation could be that the interaction between consumers, insurers and regulator needs to be

improved in order to allow for injected capital to work more efficiently.

The remaining of the Chapter is structured as follows: Section 4.2, presents a detailed discussion on

ERM and NNEG literature, shedding light on the background of proposed pricing models and regulatory

standards for ERMs in the UK; Section 4.3, reviews the modelling approaches that will be investigated in

the study; Section 4.4, describes the data and some preliminary analysis including parameter estimation for

the models in the previous section; Section 4.5, presents a comparative sensitivity analysis of the NNEG

valuation indicating the effect of changes on the risk drivers onto NNEG values and indirectly on ERMs

loan values. The section further presents an analysis on the risk exposure characteristics for a lender or

equity release mortgage loans and how those risks vary when using the regulatory imposed approach or my

proposed approach; Section 4.6, summarizes the conclusions of the study.

4.2 Literature Review

Mortgage loans and their amortization remain critical over the lifetime of individuals within any given eco-

nomic environment. Although repayment for such loans often become substantial constituent of a borrower’s

lifetime liability, mortgages provide a medium for wealth/equity accretion among households. To a large

extent residential mortgage markets around the world are exposed to systemic risk which is typically linked

to house price deviations. House price deviations involve tendency of property prices to move away from

their fundamentals; exposures of this nature are detrimental to lending institutions. House price deviations

also refer to the excess of actual house prices over rational house price (i.e. equilibrium price levels based on

fundamentals). Case & Shiller (2003) proxy housing market fundamentals by state-level per capital personal

income and house price indices from Fiserv CSW spanning 1985 - 2002. McCarthy & Peach (2004) also

adopted the same proxy. Mikhed & Zemč́ık (2009) adopts fundamental factors such as personal income,
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population, house rent, stock market wealth, building costs, and mortgage rate. In addition to housing

market fundamentals in Case & Shiller (2003), Himmelberg et al. (2005) also used the house price growth

rates, price-to-income ratio, and rent-to-price ratio. All variables are observable. Regarding this matter,

Shiller et al. (2013) stipulates a need to link housing prices to mortgage values and payments with a down-

ward adjustment to prevent negative equity. One can associate effects of short and long term house price

deviations to systemic risk and market crisis. Whereas short term deviations are related to low liquidity that

is inherent in housing market, long term deviations are associated with instances of irrational behaviour1 of

traders on the market.

Creation of housing wealth is necessary to maintain living standard among economically active indi-

viduals, thus mortgage markets could provide a good reflection of the state of the economy. On this basis,

social benefits of mortgage markets can be improved when risk exposures of financial institutions within the

market space are efficiently managed. Shiller et al. (2013) argued a need to share house price risk between

the lender and borrower via automatic adjustments pertaining to house price levels. Recently Campbell

et al. (2020) found adjustable rate mortgage that provide payment adjustment during economic recessions

could stabilize consumption growth. The proposed adjustment introduced in Campbell et al. (2020) involved

use of interest-only payment during recessionary periods. This mostly pertain to the US market where plain

vanilla adjustable rate mortgage loans are popular. Relevant literature on mortgage design mostly agree

on the need to improve on plain vanilla adjustable rate mortgages to provide relief to household budget.

More recently, Shiller et al. (2019) discussed an excellent implementation of Continuous Workout Mortgage

(CWM) design which cuts out all expensive workout associated with defaults in plain vanilla mortgage con-

tracts, while sharing house price risk with the lender. CWMs are also capable of relieving the government

of the cost of debt relief schemes required during period of financial recessions.

Mortgage interest and ratio of outstanding loan to household disposable income are critical concepts

that underlie design of mortgage loans. In Figure 4.1 I present a market-specific overview that depicts

evolution of these two factors across selected countries. Figure 4.1(a) presents the evolution of mortgage

lending interest rates across five (5) selected countries i.e. Austria(AUS), United States of America (USA),

United Kingdom (UK), Spain (SPA), Germany (GER), and France (FRA).

1According to Shiller (2015) investor enthusiasm possesses a psychological basis that explain specula-
tive bubbles on financial markets. This phenomenon is popularly termed as irrational exuberance. Shiller
(2015) further cites a scenario whereby investor enthusiasm is spurred by news of asset price increases which
subsequently spreads by psychological contagion from trader to trader.
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(a) Interest rates on new loans

(b) Total outstanding loan to disposable income ratio

Figure 4.1: Evolution of representative interest rates on new residential loans and ratio of
outstanding loan to household disposable income across selected countries from 2007 to 2018

Notes: The interest rates are annual averages based on monthly figures. The time series for United Kingdom
(UK), Austria (AUS), and France (FRA) are weighted average interest rate on loans to households for house
purchase. The series for United States(USA) is based on initial fixed period interest rate of over 10-years
on loans for house purchase. Time series for Spain (SPA) is based on initial fixed period interest rate up to
1 year on loans for house purchase. The interest rate series of Germany (GER) is calculated as the initial
fixed period interest rate over 5 and up to 10 years on loans for house purchase.
Source: European Mortgage Federation National Experts, European Central Bank, National Central Banks,
Federal Reserve.
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The representative mortgage rate for periods ranging from 2007 to mid-2008 lie above 4% across all

five countries. Post 2008 representative mortgage lending rate declined steadily across all selected countries

although that for USA was above 4%. The clustering of the mortgage rates of selected European countries

in Figure 4.1 could refer to an existing mutual relationship between loan design within the European Union

zone. On the other hand, Figure 4.1(b) shows how the ratio of total outstanding loan to household disposable

income has evolved from 2007 to 2018. Interestingly the ratio tended to be less variable over the sample period

possibly depicting how rates are adjusted in order to manage default risk, price volatility, and consumption

volatility.

Borrower-specific characteristics may also play a key role in driving risk exposures during market reces-

sions Campbell (2013). For instance, retired seniors with significant debt pose higher probability of default

during market down turn. Despite this possibility, a well structured mortgage scheme may set an efficient

basis for home equity release participation during retirement. Farnham & Sevak (2007) found a fast rate

of transition into retirement when house prices are improved. Likewise, long term mortgage loan borrowers

also inherit protection against deteriorations in creditworthiness (see Campbell 2013). Regarding life time

income sustainability, retired seniors who are cash-poor but house-rich, could create substantial lifetime in-

come when they safely release equity held up in their homes. Hence, housing wealth during old age provides

an opportunity for life time improvement through home equity release mortgages.

4.2.1 Equity Release Mortgages

As a financial instrument, ERMs can be traced back into the mid- to late 1980s in the United Kingdom and

1960s in the United States where they are called Reverse Mortgages. The Reverse Mortgage market saw

significant product revision during the 1980s under the Federal Home Loan Bank Board in the United States.

The financial instrument slowly spread across the global economies gaining more popularity in Australia,

Japan, Singapore, Hong Kong, France and some European countries, (see Addae-Dapaah & Leong 1996,

Chou et al. 2006, Ma & Deng 2013, Mitchell & Piggott 2004, Merton & Lai 2016).

While the differences are apparent, similarities exist when it comes to the purpose for releasing equity,

the age distribution of buyers and the product mix within the market space. With respect to the product

type, most market practitioners specifically use design features as criteria for classification2 of ERMs.
2The following products are readily distinguishable: Voluntary/Partial Repayment, which permits adhoc

or regular repayments of up to a maximum of 10% of initial loan per annum. Early repayment charges are
non-existent. Drawdown Facilities allows for the withdrawal of funds in stages rather than fixed lump-sum.
Interest is applied upon withdrawals. Inheritance guarantee has a maximum loan amount that is reduced,
while a fixed portion of the property value is ring-fenced as a minimum inheritance irrespective of the total
interest accrued to the loan outlay. The fixed ERC design has charges that form a fixed percentage of the
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(a) (b)

(c)

Figure 4.2: ERM product market features in the United Kingdom from 2008 - 2017

Source: Equity Release Council

initial loan for a stipulated period. They are specifically designed to be decreasing in nature. Early payment
charges are approximately zero after the stipulated period. Downsizing protection allows borrowers to scale
down to a smaller property in order to repay the accrued loan amount. It usually has a five-year qualifying
period in practice. The sheltered/age restricted accommodation design imposes a lender’s requirement wear-
in for a given period, some ERMs can be protected against sheltered or age restricted properties. Some
products have embedded interest payments, thereby permitting a monthly interest settlement either in full
or partially. With this, interest accrued on the loan decreases. Borrower’s have the option to return to the
normal interest roll-up at any period. Bishop & Shan (2008) provide further description on the product.
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Figure 4.2 presents a summary of market features for the UK equity release market space. A link can

be clearly drawn between the purpose of releasing equity and the most patronised product design. The

summarised market data shows that most customers choose drawdown ERM and subsequently tend to use

the proceeds to clear outstanding mortgage debt. According to the UK Equity Release Council market

report, more than 50% of borrowers released equity in order to improve their homes/gardens for the period

spanning from 2008 to 2017. Post 2015 market data also showed that more than 30% of borrowers are aged

70 - 74 years, whereas less than 5% are aged 85 and over.

Despite the variability in design, the bottom-line fact still remains that developed economies are working

towards improving home equity extraction schemes. According to Merton & Lai (2016) the success of reverse

mortgage schemes to become a sustainable source of lifetime income strongly depends on availability of

funds from supply side. With respect to the US home equity conversion mortgage (HECM), Merton & Lai

(2016) argued the need for privatising the institutional provision for reverse mortgages. The minimum age

for a borrower should be 60 in Korea for the Korean government-insured ERM program. Per the Equity

Release Council (2019) market report, there is no lifetime mortgage or home reversion plan provider catering

to under 55 age market; “re-mortgages” are the closest to an ERM for borrowers under 55. In a lifetime

mortgage, it is also beneficial to know the risk associated with borrowers in the minimum age. In Italy, the

minimum age by law is 65. Dowd (2018) takes 70 as the base case scenario. The minimum age for ERMs

is generally around 55/60/65. The UK has the lifetime mortgage for buyers aged 55 years and over and

home reversions for buyers aged 65 years and over. France, Japan and South Korea have buyers aged over

60 years, Spain works with buyers above 55 years while Canada and Australia respectively sell to 55 - 62

years and 60 - 65 years (see Bhuyan 2010, Bridge et al. 2010, Kobayashi et al. 2017).

In the United Kingdom, ERMs are not sold without the no-negative equity guarantee (NNEG), a

regulatory clause which compels the loan issuer to write off any excess of the accrued loan amount above

the market value of the collateral property after contract termination. The NNEG clause is subject to other

conditions stipulated in the prudential regulatory authority (PRA) Policy Statements which otherwise makes

their implementation complex. The NNEG clause is also used in other countries like Australia, Japan, and

Canada. The age profile of the target market slightly varies across countries.

The NNEG clause has so far become the fundamental concern to the pricing of ERMs in the United

Kingdom. The funding for the ERM loan portfolio on the side of the issuer also comes against a host of

challenges due to the long and uncertain maturity profile of the constituent assets. ERM cash flow uncertainty

fundamentally borders around its timing and prospective “net-liquidation-value” to be realised at maturity.

Per design, ERMs require adequate and flexible long-term funding to sustain parity with timing, frequency

and severity of the cash flow process generated by the contract. So far, existing literature on valuation

113



and risk management of ERM contracts converge to a common unison that the components of cash flow

uncertainty may well be driven by house-price volatility, mortality rate, risk-free rate, the contract rate

applied on the initial loan, prepayment and long-term care incidence, regulatory changes (see Chinloy &

Megbolugbe 1994, Zhai et al. 2000, Wang et al. 2008, Bhuyan 2010, Huang et al. 2011, Tunaru 2017). These

observed risk-factors drive the tendency of house-prices to be lower or higher than accumulated loan value

observed at the end of a given contract period. Chinloy & Megbolugbe (1994) described this uncertainty as

the “cross-over effect”.

To the ERM issuer, the safety and reliability of the contract relies on the event that the net-liquidation-

value of the underlying property at expiration adequately matches outstanding debt-related liabilities gen-

erated from the extended loan. While this event remains uncertain in some countries, Japan and the United

Kingdom, for example, have the regulator fixing some key parameters in the calculation of the NNEG. Issues

concerning the pricing of the NNEG, treatment of contract fees and charges including the maximum loan

limit constitute key NNEG related problems highlighted in relevant ERM literature.

Although the long-term benefits and observed positive outlook of ERM schemes are conceivable, Hosty

et al. (2008), Siu-Hang Li et al. (2010), Andrews & Oberoi (2015), Kobayashi et al. (2017) found that low

take-up rates of ERMs are partly due to NNEG clauses which potentially makes them unattractive and

financially onerous to lenders. From borrower’s standpoint, Chou et al. (2006), Overton (2010), and Alai

et al. (2014) also found that pricing of ERM consistently makes take-up unappealing to potential borrowers

who consider initial loan amounts to be unrepresentative of home-value. Using house price return time

series, Siu-Hang Li et al. (2010) and Lee et al. (2012) separately showed that NNEG clauses can be a

significantly risky financial burden hence a need for dynamic risk hedging strategies whenever NNEG’s are

educed. Common to the outline of these studies is the observation of NNEG valuation-related complications

when it comes to determining suitable rates for discounting prospective cash flows, establishing a credible

basis for estimating exit, prepayment likelihoods and drawdown rates, setting the appropriate basis for the

potential evolution of underlying house price process and model-calibration for pricing the NNEG risk.

The OECD reported that by 2050 there will be approximately one senior dependent over the age of 65

for any two people of working age. Worldwide, governments are faced with two major problems, increasing

pension deficits and increasing long-term care costs due to improvement in life expectancy of the population

and lower birth rates. Following the recommendations of the Dilnot Commision, the Care Act of 2014 in

the U.K. requires local government to put a cap on out-of-pocket care spending (see Mayhew et al. 2017).

The Dilnot Commission investigated the fair funding on care and support in the UK highlighting the need

to reform pre 2011 funding systems. According to the Commission, the then existing 60-year-old legislation

on social care finding in UK was complex and unsustainable. Under the new Care Act 2014, an individual in
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need of care and support undergoes a needs assessment process with local authorities to ascertain required

needs impact well-being expected outcomes they intend to achieve. In the United States long term care

costs account for about 9% of total health expenditures with upward trends. Brown & Finkelstein (2011)

discussed varied reasons why the insurance of long-term care (LTC) sector does not provide efficient solutions

for these complexities. The European Commission’s 2018 ageing report projects public expenditure on LTC

to increase from 1.6% to 2.7% of GDP between 2016 and 2070 (Spasova et al. 2018).

The ageing3 population across developed countries suggest a potential increase in future demand for

formal pensions and LTC, thereby compelling various governments to direct their fiscal policies towards

identifying sustainable replacement. On this background, ERMs4 are designed to offer feasible solutions to

complexities of sustainable lifetime income facing society since they allow senior borrowers to convert equity

locked in their houses into cash or lifetime income while ageing-in-place. In societies where housing wealth

is concentrated in the hands of senior citizens5, ERMs can serve as solution to ease demographic and fiscal

pressures of ageing population (see Malpass 2008, Doling & Ronald 2010).

Under new regulations, ERMs have been endorsed by Robert Merton as a viable source of funding

for the elderly. Merton (2007) argued that ERMs could be an efficient vehicle to transfer intergenerational

wealth, in a hassle-free way for elderly homeowners. Moreover, Merton & Lai (2016) discussed a structural

design of ERMs that is meant to improve the risk sharing between the borrower and the lender while also

highlighting the important role of the regulator. Cocco & Lopes (2015) outlined improvements to ERM

design that may help to expand this market for those in need. At the same time, education plays a major

factor that links low demand for ERMs with end user’s lack of knowledge or understanding of the financial

product characteristics (Davidoff et al. 2017). People would benefit from simple rules to make long-term

decisions related to retirement (Binswanger & Carman 2012).

The size of ERM market has not seen uniform growth worldwide across developed countries. Nakajima

& Telyukova (2017) highlighted that only approximately 2% of eligible homeowners had an ERM in 2011.

This proportion has increased only slightly by 2017 with 55,000 senior borrowers taking ERMs out of the

total 2 million population of adults over 65. This is surprising since ERM, together with LTC insurance, carry
3By 2050, 44% of the world’s population will live in relatively aged countries with at least 20% of

population aged 60 and over (United Nations 2015)
4Reverse mortgages as they are termed in the USA or Equity Release Mortgages in UK, are collateralised

loans with a stochastic maturity that is tied to either the death, transition into long-term care or the early
prepayment of the borrower. The loans are issued only to borrowers aged over 55 years. By design, the
initial loan is a stipulated percentage of the initial market price of the house at inception of the contract;
and there is strictly no repayment until maturity of the loan contract. The product is a roll-up mortgage
under which initial lump sum loan accumulates interest at the contract rate interest rate until the borrower
either dies, moves into long-term care, or voluntarily cancels the contract.

5Over $500 billion of Australian’s home equity is concentrated in the hands of senior citizens aged 65 or
over.
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consumption transition benefits to senior adults (Davidoff 2009). ERMs in UK have increased substantially

between 2012 and 2019, reaching about four billion sterling pound in outstanding loans notional Equity

Release Council (2018). In Australia, the market size grew from $0.9 billion in 2005 to $3.32 billion in

2011, with the total number of outstanding loans increasing from 14,584 in 2005 to 42,410 in 2011, (Deloitte

Australia 2018).

The stifled growth in take-up rates of ERM among elderly citizens could be design-specific when looking

at the supply-side. For example, in the U.S., I can identify the issue of high premia charged to consumer;

while the UK market has the non-negative equity guarantee (NNEG) clause stipulating that any excess of the

accrued loan amount above the sale value of the property after the exit event will be written off by the lender,

subject to certain conditions. Other possible demand-side explanations relate to low product knowledge on

the ERM risks (Davidoff 2015, Davidoff et al. 2017), moral hazard perhaps highlighted through default in

payment of property taxes (Shiller & Weiss 1999) and homeowners insurance (Moulton et al. 2015).

4.2.2 Regulatory standards on ERMs

Since the NNEG clause is predominantly associated with the ERM market in UK, the conceptual framework

will be situated on current requirements in Product Standards(PS) within the Statement of Principles of

the Equity Release Council6 and Bank of England’s Prudential Regulatory Authority (PRA). An issuer of a

ERM has to consider many factors that contribute to the price dynamics of the ERM and subsequently, other

cashflow valuations. The main factors are age of borrower(s), initial house price, loan-to-value (LTV), house

price growth, risk-free rate, contract rate to be applied on the disbursed loan, mortality rate of borrower(s),

long term care (LTC) incidence, early prepayment rates, current yield curve, forward yield curve, funding

issues if necessary, idiosyncratic risk due to postcode house price differences, ratings requirements if any,

regulatory requirements (Solvency II) and most likely the list is not exhaustive.

For UK reinsurers, the PRA’s rules on valuation are described in Valuation 2.1 of the PRA Rulebook.

For fair valuation the requirement is to value assets at the amount for which they could be exchanged between

knowledgeable willing parties in an arm’s length transaction. Companies reporting under UK GAAP, FRS

102 additionally employ the fair value as the amount for which a liability settled, or an equity instrument

granted could be exchanged, between knowledgeable, willing parties in an arm’s length transaction. On the

other hand, IFRS 13 defines fair value as the price that would be received to sell an asset or paid to transfer

a liability in an orderly transaction between market participants at the measurement date.

In his letter to Mark Carney on 5 December 2018, the Governor of Bank of England, Philip Hammond
6See www.equityreleasecouncil.com/ship-standards/statement-of-principles
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from HM Treasury, stated:

In discharging its general functions, the PRA must also have regard to the regulatory principles

set out in Section 3B of the Act, which are:[...]

the principle that a burden or restriction which is imposed on a person, or on the carrying on

of an activity, should be proportionate to the benefits, considered in general terms, which are

expected to result from the imposition of that burden or restriction.

The key word here is “proportionate” and this is why it is imperative to allow insurers to conduct

internal calculations on the risks associated with ERMs. In their document Prudential Regulation Authority

(2017), the PRA stated that they will assess the capital reserve made for the NNEG risk against their own

view of the underlying risks retained by the insurer. Their assessment is spanned by the following four

principles,

1. Securitisation where firms hold all tranches do not result in a reduction of risk to the firm.

2. The economic value of ERM cash flows cannot be greater than either the value of an equivalent loan

without an NNEG of the present value of deferred possession of the property providing collateral.

3. The present value of deferred possession of property should be less than the value of immediate

possession.

4. The compensation for the risks retained by a firm as a result of the NNEG must comprise more than

the best estimate cost of the NNEG.

There is enough clarity in the first two points with the second point reflecting the concept introduced in the

PRA’s discussion paper DP1/16. According to the PRA , the best estimate cost of the NNEG is “the mean

of a stochastic distribution of possible future guarantee costs, where random variables used in the stochastic

projection have been calibrated based on a best estimate of their true distributions.”

In Prudential Regulation Authority (2018) there is a substantial section on feedback to responses re-

ceived on various risk-calculation issues on ERMs. On point 2.29 the PRA considers that the Black-Scholes

formula is still appropriate for NNEG put option valuation, but in CP13/18 they also made it clear that

other option pricing frameworks may be used as long as it can be demonstrated that valuations meet the

four principles enumerated above. Black-Scholes formula has been reiterated in Prudential Regulation Au-

thority (2019b), that describes the final methodology for managing illiquid unrated assets and equity release

mortgages. The formula is described with two fixed values for the main two parameters that are difficult to
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estimate, the volatility of the house price σ � 13% and the minimum deferment7 rate q � 1%.

The ERMs can be seen as a portfolio of an income security and a crossover put option that is automat-

ically applied at termination, effectively posting the house as collateral in the loan back to the lender even

if the accumulated outstanding balance is larger. The termination time is obviously determined by one of

the following four types of risk: mortality, long-term care, prepayment and refinancing (Szymanoski 1994).

Depending on the market conditions, a longer termination time increases the possibility of something bad

happening, as well as generate higher administrative costs. The advantage or disadvantage position in the

contract is also contingent on the relative cumulative growth of house prices versus loan balance. Longer

contracts may allow risks associated with stochastic house price movement to crystalise.

Moral hazard may increase the NNEG risk if the borrowers forfeit on their obligations to maintain the

state of the property (Shiller & Weiss 1999). To minimise this risk most ERMs products require borrowers

to maintain the insurance for the property, pay the running fees on the house, maintain the property, be the

sole residents in the property, do not leave the property unoccupied for longer than six months.

4.2.3 ERM consultation issues in the UK

The PRA maintains an active market monitoring process in regulating the ERM market space. The dis-

cussion here takes a look at the implication of new changes to the PRA Solvency Statements for insurers

and reinsurers who hold ERM products on their balance sheet. The changes respectively affect the following

parameters; real interest rates (long-term rates), deferment rate, and house price volatility. The responses

considered here in relation to discussion papers (DP) in Prudential Regulation Authority (2019b) and Pru-

dential Regulation Authority (2019a) policy statements (PS), which constitute current improvements that

follow from Bank of England (2016), Prudential Regulation Authority (2017), and Prudential Regulation

Authority (2018).

The PRA’s analysis distinctively considers the real interest rates to be related to the minimum deferment

rate. The Prudential Regulation Authority (2018) report sets the “best estimate” of the deferment rate at

2% p.a. The deferment rate accounts for the extent to which the fair value for deferred possession of the

collateral property should vary from the price paid for immediate possession. For example, if the current

market value of the collateral property is £150,000; then a 2% deferment suggest that a rational individual

will be prepared to pay £147,058.82 to own the property. The deferment rate is used to calculate the deferred

future possession value of the property. One may consider the annualised deferment rate as the discount rate
7The PRA’s 1% deferment rate becomes effective from December 31, 2021 where it completely phases

out the current nil deferment rate regime.
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applied on the current market value of collateral property to set the discounted price equal to the current

price a rational individual is willing to pay today for deferred future possession.

Pertaining to the Reviewing and updating the minimum deferment rate, the PRA asserts that their main

objective is to allow for efficient management of the NNEG costs to interest rate sensitivity. The minimum

deferment rate (MDR) for ERMs together with the volatility parameter (VP) will be reviewed often8. The

MDR is strictly positive, and in absolute terms, its expected change will not be less than 0.5 percentage

points. Changes in the MDR is tied to material changes in long-term real risk-free interest rates. This

suggest a need to establish the link between long-term real interest rates and the MDR, and how transparent

the review process will be.

The link between the two is probably resulting from the fact that the PRA considers property as a real9

asset hence bearing a link with implied inflation rates. There is however, a need to assess how the frequency

of MDR reviews will impact ERM pricing; including the possible imperfect relationship between nominal and

real interest rates. Industry practitioners express the need to work towards reducing the sensitivity of the

NNEG to interest rates. The PRA imposes the Black-Scholes option pricing model as the appropriate model

for the valuation of the NNEG clause. Given the fact that the classical Black-Scholes model depends on risk-

neutralisation methods, there is no need for loan issuers to consider inflation or property growth expectations.

The service flow rate may in fact, be a better parameter to use. This further goes to suggest that the MDR

should rather be linked to the service flow rate and not interest rates. Looking at the assumptions under the

Black-Scholes model, the PRA’s procedure presents an inappropriate hybrid of real-world and risk-neutral

approaches in the ERM market space.

The Deferment rate estimation10 is based on the Sportelli formula and is determined as follows: define

π to denoted the property return which can be decomposed in two ways:

π � g � k (4.1)

π � rf � r̃ (4.2)

where g is the deferment rate, k is the long-term capital growth rate, rf is long-term nominal risk-free rate

and r̃ is a given risk premium. Rearrangement of the system of equations in (4.1) results in g � rf � r̃ � k;

8the minimum deferment rate will be reviewed twice a year i.e. March and September.
9In Prudential Regulation Authority (2019a), the PRA agrees with some ERM loan issuers who value

the NNEG under real-world probabilities with nominal property growth calculated as inflation plus a stable
assumption.

10The justification is based on the Sportelli formula, which determines market value of real assets in
relation to the premium a freeholder attaches to deferred possession. The formula is inherently closer to the
real interest rates rather than market view (see Prudential Regulation Authority 2019a).
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thereby suggesting that changes in the g are driven by changes in rf . The real deferment rate is obtained

by deducting long-term inflation from the both sides of nominal deferment rate equation.

g � i � rf � r̃ � k � i (4.3)

where i is the long-term inflation rate. The PRA further suggests this to be the minimum estimate of the

deferment rate, assuming the estimation produced can be made more robust when k and r̃ are thoroughly

calibrated. Rental yields are only seen as reasonable starting point for calculating deferment rates in the

short-run. Market professionals somehow prefer to use the service flow rate because of the Sportelli formula

may introduce inflation volatility risk into the balance sheets. This will happen when insurers estimate the

deferment rate in nominal terms. Prudential Regulation Authority (2018) notes that the term structure of

net service flow rate departs significantly from the deferment rates over the long-run. With the ERM being a

long-term loan that experiences liability growth with time, the service flow rate may not be a true reflection

of the borrower’s foregone income.

The following are other active engagements the PRA undertakes: reviewing and updating the volatility

parameter, treatment of ERM loans with uncertain principal and interest, and general issues around ERM

valuation for firms. The PRA consistently engage the ERM service providers to ensure rule-based regulatory

requirements are met. This is in line with prudential regulations required under the IFRS solvency II

standards.

4.2.4 Design and pricing mechanics of ERMs

In its basic form, the ERM loan is required to be the primary debt that is written against the collateral house.

With an exception to payments for maintenance cost, property taxes, and other related loan service charge(s),

the borrower has no other credit obligations. The initial loan paid out at the inception of the contract is also

determined in direct relation to the market value of the house. Both academia and practitioners contextualise

the ERM contract as a portfolio that comprises of income security and a crossover put option that kicks-in

when any of the termination events occur. In this event, the NNEG automatically sets the collateral house

to the loan issuer even when the accumulated loan balance exceeds the market value of the house.

Rufenacht (2012) presents an efficient market consistent valuation procedure for pricing the embedded

put option. Andrews & Oberoi (2015), Pfau (2015), Merton & Lai (2016) also discuss issues related to secu-

ritisation, risk management and design of ERM schemes. Pricing valuations from the borrower’s perspective

is also outlined in Nakajima & Telyukova (2017) and Blevins et al. (2017). The pricing complexities of the
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NNEGs in ERM contracts mainly draw to frictional divergence in views on the best model for its pricing

and calibration. This thesis argues for the need to investigate alternative NNEG valuation methodologies

and argue for the need to focus on pricing the NNEG from a model-risk perspective. They expand on the

work of Hosty et al. (2008) and present a detailed discussion on the key issues that affect the NNEG pricing

including analysis on the sensitivities of parameter estimates, and issuer and borrower characteristics. This

thesis also proposes the need to take a portfolio view of the NNEG valuation procedure while considering

idiosyncratic risk due to house price. Previous studies Addae-Dapaah & Leong (1996), Li (2010), Wang et al.

(2008) have solely focused on an individual pricing approach.

Majority of existing studies consider the option-based view relating to which, the NNEG is conceived as

a written put-options on the collateral house price (see Chinloy & Megbolugbe 1994, Miceli & Sirmans 1994,

Boehm & Ehrhardt 1994, Siu-Hang Li et al. 2010, Tsay et al. 2014). With regards to this approach, some

of the first generation models Addae-Dapaah & Leong (1996) make use of static mortality tables, largely

ignoring the effects of mortality variations over time. In order to account for asymmetric jump effects,

Chen, Chang, Lin & Shyu (2010) make use of a generalised Lee-Carter model for borrower mortality; while

assuming house price growth has an autoregressive moving average mean (ARMA) model with a variance

that follows a generalized autoregressive conditional heteroskedasticity (GARCH). The joint effect of age

and house price risk on ERM is also emphasised in Ma & Deng (2013) who use an actuarial-based valuation

for Korean-based ERM products.

Shao et al. (2015) has also shown that using an aggregate house price index without consideration for

cohort trends in mortality will result in understating ERM values. Their model discusses the relative effect

of longevity and house-price risk within a multi-period Wills-Sherris mortality model and a new hybrid

repeated-sales pricing model for house prices. Wang et al. (2014) on the other hand shows that the initial

loan-to-value (LTV) ratio is independent of the term structure of loan interest rates. Wang et al. (2014)

present a methodology for pricing a variable-rate reverse mortgage where the instantaneously adjustable

interest rate process for loans is modelled by a CIR model for interest rates. The ERM products under this

approach are not sustainable at higher house price volatilities according to the base scenario. House price

volatility increases with an increase in respective model parameters, thereby causing an increase in the cost

of ERM insurance. Wang et al. (2014) further showed how the present value of premiums mobilised under

the Federal Housing Administration falls below the present value of total expected cash outflow triggered by

claim payments.

The valuation process for NNEG has to clear some important hurdles:

A1 Identify a suitable economic scenario generator including the house price index under the real-world or
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physical measure P . This can be useful for other risk-management calculations such as value-at-risk

or expected-shortfall.

A2 Identify a suitable mechanism for switching from real-world measure P to risk-neutral measure Q. This

step is called risk-neutralisation of valuation calculations.

B Specify the model for the random maturity which is determined by multiple decrement probabilities for

the ERM; this incorporates mortality, move to long-term care and prepayment.

C Risk-neutral valuation of the contract (ERM or NNEG).

For step A1 insurers can select their preferred ESG (subject to regulatory approval). The NNEG put

option in A2 has random maturity and strike price. The strike price depends on the accumulated value

of the lump sum loan. This makes the market incomplete since a unique martingale measure fails to exist.

There is a need consider some flexibility when it comes to selecting a method for risk-neutralisation. Possible

methods include conditional Esscher Wang et al. (2017) and Buhlman et al. (1996), Geometric Lévy Process

as shown in Miyahara (2011), and Transaction Cost Models in Davis (1997b). Approaches vary in terms of

theoretical and computational complexity. Insurers also have great flexibility over the choice of maturity

distribution model including possible future mortality improvements, prepayment and so on as implemented

in this chapter.

4.2.5 Real-world pricing approach

The works that involve a real-world/physical measure in their valuation methodologies include Chinloy &

Megbolugbe (1994), Ortiz et al. (2013), Lew & Ma (2012) and Ma & Deng (2013). These studies mostly

implement a deterministic pricing technique to model house price growth which makes them a bit misleading

when calibrating the dynamics and sensitivities of the valuation parameters. Hosty et al. (2008) model the

house price process by a geometric Brownian motion (GBM) under the real-world measure and hint that

the technique assumes the future house price index return is independent of prior periods. The volatility

term remains the same as that of the risk-neutral approach, but their respective drift-terms are different.

However, there is always dependency in levels even if returns are independent. Hosty et al. (2008) suggested

a mean-reverting model will suffice as an appropriate approach. Tunaru & Quaye (2019) also suggest that

the real-world measure becomes a fitting alternative whenever one can specify a good econometric model for

the underlying house prices.

In general, the expected rate of growth in a house price index is expected to be higher than the risk-free

rate. With equal volatilities under risk-neutral measure and real-world measure, for a GBM specification,
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a put option evaluation under the risk-neutral measure will be larger, ceteris paribus, than a real-world

valuation. This relative order relationship will be obviously reversed if the trend for house prices goes

negative (or at least with a drift rate lower than the risk-free rate). From works such as Boness (1964),

the valuations could be the same but only under risk-neutrality one can use the same discount rate. The

Boness (1964) formula is mathematically identical to the Black-Scholes 1973 formula, the approach requires

two rates: one for discounting the stock (house or HPI here) and a separate rate to discount the expected

(under actual measure) PV of the option payoffs, call or (here) put.

4.2.6 Risk-neutral pricing approach

The risk-neutral valuation technique for ERMs has approach has equally received much attention. Some of

such works include Hosty et al. (2008), Kogure et al. (2014), Alai et al. (2014), Ji et al. (2012),Lee et al.

(2012),Wang et al. (2014),Li et al. (2010), Chen, Cox & Wang (2010). The corresponding risk-neutralisation

techniques usually employed to risk-neutralise the predictive distributions include the: Esscher transform

Shao et al. (2015), Alai et al. (2014), Wang transform Wang et al. (2014), Li (2010), Bayesian entropy

technique Kim & Li (2017), Kogure et al. (2014), and Ang & Piazzesi (2003), Ang et al. (2006) stochastic

discount factor model which is applied in Alai et al. (2014) and Shao et al. (2015).

Hosty et al. (2008) describes another version of the risk-neutralisation approach that fits a lognormal

model to the Nationwide Average House Price. Tunaru & Quaye (2019) review and replication of Hosty et al.

(2008) show that the data generating process assumed under the GBM model possesses a risk-neutralised

drift term that is estimated as the difference between the yield on government stock less the service flow rate

which is calibrated from the IPD residential property index. Arguing on the basis of a market-consistent

approach, they scale up the house price volatility from 5% p.a. to 11% p.a. using the Booth & Marcato

(2004) de-smoothing technique. The downside to this approach has to do with the fact that the Booth &

Marcato (2004) method is for commercial properties, while ERMs are written on residential properties.

There are also econometric models proposed for modelling the underlying house price indices in the

ERM pricing. Kim & Li (2017) for instance fitted a VAR-DCC/GARCH, Chen, Cox & Wang (2010), Li

et al. (2010), Kogure et al. (2014), Yang (2011) and Lee et al. (2012) fitted an ARMA-EGARCH time series

model. Shao et al. (2015) and Alai et al. (2014) also work with a VAR model for the house price process.

The time series version does well to factor in the stylised features of the return series of the underlying

house price index. Clearly, these models draw many benefits including the ease with which I can change the

distribution of the error process and the specification for the conditional mean and variance.

It is worth noting that the other continuous-time models are specified under the real-world measure
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before switching to their risk-neutral versions. For example the mean-reverting process in Fabozzi et al.

(2012) or in Knapcsek & Vaschetti (2007), the jump-diffusion process as in Wang et al. (2014), Lee et al.

(2012) or Knapcsek & Vaschetti (2007), and the Lévy process also in Wang et al. (2014).

4.2.7 Objectives of the study

Following the discussion on the research gaps, the research study aims to:

i) formulate a framework that incorporates actual house price features and ensures fair valuation of the

NNEG concept in ERM contracts.

ii) extensively investigate the sensitivity of model parameters to the NNEG liability cash flows in ERM

contracts.

iii) present a general model that allows ERM loan issuers to explore the impact of multiple decrement

conditions of ERM contract termination.

4.2.8 Research questions of the study

There is a need to amplify the research question connected to the valuation of the NNEG clause in ERMs

and more expediently provide answers to them. More specifically, the following research questions will be

addressed:

i) Does the ARMA-EGARCH framework transparently calibrate and ensure fair valuation of the NNEG

concept in ERM contracts?

ii) What are the key drivers of the NNEG liability cash flows in ERM contracts?

iii) Is there a general model that efficiently calibrate the multiple termination modes of ERM loans?

4.3 Models and Methods

This section of the thesis will conceptualise and establish the pricing model for the ERM loan. The focus

is to propose an improved model than the one which has been adopted by practitioners in the UK. The

calculations in general are done for an ERM loan based on a lump-sum contract, the commonly issued loan

on the market. Similar to Hosty et al. (2008) and Li et al. (2010), I use quarterly frequency for all variables

and I follow the cash-flows at the end of each period i P t1, . . . , ηu where η is an acceptable provisional end
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maturity given by survival to 100 years. Actuarial modelling typically assumes a maximum age of 120 rather

than 100. NNEG calculations for borrowers aged 100 years and above are zero. The Office of National

Statistics (ONS) life table has a limiting age of 100, survival probability of death are approximately zero at

that point. I assume loan termination is independent of interest rate and house prices in order to simplify

calculations. Hosty et al. (2008) adopt the same assumption. I shall denote by Yt � ln
�

Ht
Ht�1

	
the log-return

of the house price index at time t.

Henceforth V ptq denotes the value at time of an ERM. Without loss of generality I focus on the case of

a lump-sum loan L0 as a percentage of the current value H0 of the collateral house owned by the borrower.

The fixed rate R is the accruing rate on the loan until τ and trtut¥0 is the risk-free (or the issuer funding

rate, OIS or similar. Interest rates are assumed to be deterministic in my analysis) in the economy for

discounting cash-flows by the issuer. The analysis for a floating interest rate environment is also considered

in the discussion section.

The accrued balance on the loan at time τ is Lτ � L0e
Rτ . In order to avoid mathematical complications

I assume that rt � r, so the risk-free rate is constant. Then the market-consistent value of the ERM at time

t to the issuer is computed under a risk-neutral pricing measure as

V ptq � EQt re�rpτ�tq min pLτ , Hτ qs (4.4)

This formula can be further decomposed as in credit markets

Vt � EQt re�rpτ�tq pHτ �maxpHτ � Lτ , 0qqs (4.5)

� EQt re�rpτ�tq pLτ �maxpLτ �Hτ , 0qqs (4.6)

Vt � e�rpτ�tqEQt rLτ s � e�rpτ�tqEQt rmaxpLτ �Hτ , 0qs (4.7)

whereas formula (4.5) shows that the value of the ERM can be also seen as the value today of future house

possession and selling a call option on the house with the strike price Lτ

Vt � e�rpτ�tqEQt rHτ slooooooooomooooooooon
prepaid forward on house

� e�rpτ�tqEQt rmaxpHτ � Lτ , 0qslooooooooooooooooooomooooooooooooooooooon
call option on house

(4.8)

Since τ is stochastic, a direct valuation of the above formulae is not facile. However, I can use a conditioning
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argument, working with an annual grid and rewrite

Vt �
Ţ

j�t�1
EQt re�rpτ�tqLτ � 1tτ � jus �

Ţ

j�t�1
EQt re�rpτ�tq maxpLτ �Hτ , 0q � 1tτ � jus (4.9)

where T represents the maximum age that the borrower may reach, taken typically as 100 or 120 in ERM

markets. A monthly grid is also feasible. Denoting Lj � L0e
Rj and Hj the house price at time j, under the

assumption that the termination time τ is independent of the house price process tHtut¥0 and applying the

deferred probability of termination at time t as t|jqx

Vt �
Ţ

j�t�1
t|jqxE

Q
t re�rpτ�tqLjs �

Ţ

j�t�1
t|jqxE

Q
t re�rpτ�tq maxpLj �Hj , 0qs (4.10)

or

Vt �
Ţ

j�t�1

�
t|jqxL0e

pR�rqpj�tq � t|jqxE
Q
t re�rpj�tq maxpLj �Hj , 0qs

	
(4.11)

An ERM is then a portfolio of ERM yearly components, derived as the difference between a fixed

income bullet bond and a put option with the exercise price Lj and contingent on the collateral house price,

and then weighted by t|jqx the deferred termination probability. x is the age of the borrower at contract

inception. The calculation of t|jqx is the probability that a borrower aged x terminates a contract between

time x� t and x� t� j. I present a formal derivation below. Once the NNEG value embedded in the loan is

determined the valuation model becomes easily computable since the value of the loan repayment is nothing

but a zero-coupon bond, and lenders must have robust valuation tools for the latter. Dowd et al. (2019) argue

that the Black (1976) model can be applied to value the NNEG put option. The UK Prudential Regulatory

Authority (PRA) as well, recommends a Black-Scholes pricing formula (see Prudential Regulation Authority

2019b).

I use a multiple decrement model to evaluate the conditional probability of termination. This is similar

to Dickson et al. (2013); in Figure 4.3, tqp1qx denotes the probability that an active borrower aged x dies

between age x and x� t; tqp2qx is the probability that an active borrower aged x voluntarily prepays between

age x and x � t, and tq
p3q
x denotes the probability that an active borrower aged x moves into long-term

care between age x and x� t. An active ERM loan contract is considered to be in state p0q i.e. the Active

state. For any decrement d � 1, 2, 3, tqpdqx denotes the probability that a borrower aged x at inception of the

contract fails within t years due to decrement pdq.
This suggest that the pxq moves out of the active state, thereby causing the ERM contract to lapse. All

the three states of decrements are mutually exclusive, in this regard I denote the probability of failing due to
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Figure 4.3: Discrete probabilities of ERM termination

any given decrement by xtqx which is the sum of the individual mutually exclusive probabilities of transition

between the three states. For the three-state decrement model in Figure 4.3,

xtqx � tq
p1q
x � tq

p2q
x � tq

p3q
x (4.12)

The probability of remaining in the active state is xtpx � 1�xtqx. On this basis, the probability that any

contract will be terminated within t years due to a specific decrement depends on pxq being in the active

state before the failure year. More specifically, pxq survives t � 1 years before failing in the t-th year. The

probability that an ERM contract issued to pxq terminates due to decrement d within t years is

tq
pdq
x �

t�1̧

k�0
kp
pτq
x q

pdq
x�k

� k|q
pdq
x (4.13)

This can be extended to the form:

t|jq
pdq
x �

t�j�1¸
k�t

kp
pτq
x jq

pdq
x�t (4.14)

which denotes the probability that a borrower aged x terminates a contract due to decrement d between

time x� t and x� t� j. In many instances the loan is given to a living couple. The loan will survive as long

as one of the couple survives. One common assumption is to use for a borrowing couple a 95% adjustment

factor of the base mortality table for the male and female.

127



Knapcsek & Vaschetti (2007) calculate the joint cumulative probability of death after t years for a

couple pxq, and pyq with the formula

tqxy � tpx � tpy (4.15)

where tpx is the cumulative probability of death by year t for pxq. The same goes for tpy. There is also a

possible correlation built-in as couples can take care of each other and survive longer.

In this regard the ERM contract survives t years and fails within the next u years due to some decrement

d. In the multiple decrement setup, the NNEG and ERM value in (4.11)

Vt �
Ţ

j�t�1

�
t|uq

pdq
x L0e

pR�rqpj�tq � t|uq
pdq
x EQt re�rpj�tq maxpLj �Hj , 0qs

	
(4.16)

4.3.1 The Deferment Rate

If Ht is the house price today the deferment price to get the house at a future time T is denoted by ÐÝF tpT q
and the deferment rate q is defined by the equation

ÐÝ
F tpT q � Hte

�qpT�tq (4.17)

In derivatives terms ÐÝF tpT q is the prepaid forward price on the collateral house, which is linked to the forward

price directly through interest compounding

FtpT q � erpT�tqÐÝF tpT q (4.18)

Combining (4.17) and (4.18)

FtpT q � Hte
pr�qqpT�tq. (4.19)

Computationally, if r � q   0 then tFtpT quT¥0 decreases with T so the forward house price curve will be in

backwardation. Vice versa, if r � q ¡ 0 then tFtpT quT¥0 increases with T so the forward house price curve

will be in contango. Formula (4.19) simply ignores the fact that it is not possible to short sell house and

that transaction costs are relevant in this market.

The PRA condition is requiring ÐÝ
F tpT q   H0 which from (4.17) is equivalent to q ¡ 0. At the same

time, the same condition is equivalent to

FtpT q   Hte
rpT�tq (4.20)
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Figure 4.4: UK House Price Growth Vs 5-year and 10-year Risk Free Yields from January
2006 to June 2019.

Source: House prices are from HM Land Registry, Registers of Scotland, Land and Property Services North-
ern Ireland, Office for National Statistics – UK House Price Index. The monthly risk free series is from the
Bank of England

which is equivalent to say that the forward curve on house prices will be bounded by the current house price

inflated at the risk-free rate. One can remark that the upper boundary for the house price forward presented

in (4.20) is too tight compared with the proper no-arbitrage upper boundary derived in Syz & Vanini (2011)

who provide a more realistic set-up for property forward valuations.

While I agree that (4.20) is likely to hold during normal times, hence almost all of the time, I disagree

that it ought to be true all the time. In the aftermath of a property market crash such as the subprime

crisis, the house that may be the collateral in an ERM loan has the value impaired by the market collapse.

However, sellers who may like to sell forward a house say in five or ten years time, may not agree to discount

even further the house for their prepaid price. It is more likely then that the property sellers may consider

that the property prices will recover from the market collapse in the medium to long term run and the house

inflation rate is likely to exceed the risk free rate. Between 2008Q1 and 2009Q4, the UK property prices

collapsed with an average annual price change of -6.44%. Property prices recovered by 1.13% p.a. between

2009Q1 and 2014Q4 and 2.67% p.a. between 2009Q1 to 2019Q3 while the 5 year and 10 year spot rates

averaged 1.40% p.a. and 2.26% p.a. in the UK, respectively over the ten year period.

Another argument invoked by Dowd et al. (2019) in favor of the Black ’76 model is the ability to

work with the Black 1973 formula even when the increments of the data generating process returns are

autocorrelated and they point to Cornalba et al. (2002) as the theoretical work supporting this rationale.

However, Cornalba et al. (2002) work strictly with Black-Scholes formula and not with Black 1973 and

moreover, their technique is applied when the increments are negatively autocorrelated near horizon. This

is in contradiction with house price historical series that exhibit positive autocorrelation near horizon and
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negative autocorrelation long horizon, a well known empirical feature of real-estate prices time series (Tunaru

2017). Furthermore, the excellent technique otherwise presented in Cornalba et al. (2002) requires the

possibility to hedge or trade long and short the underlying asset.

4.3.2 ARMA-EGARCH model

The ARMA-EGARCH model is answering two problems encountered when modelling house prices. First

I have serial correlation. The ARMA part of the model should be able to capture efficiently this effect.

Secondly, negative and positive innovations may have different effects on the conditional volatility, allowing

financial markets to react asymmetrically to bad and good news, even though in absolute value those inno-

vations may have the same magnitude (Patterson 2000). The model specification should also ensure that

the conditional volatility or variance is always positive.

This model is built as a submodel for log-returns and a submodel for conditional volatilities. Hence, as

in Li et al. (2010), first I specify an ARMA(m,M)

Yt � c�
m̧

i�1
φiYt�i �

M̧

j�1
θjεt�j � εt (4.21)

where εt � Np0, htq, c is the drift term, m and M are the maximum lag order of the GARCH term and

the ARCH term. Yt is the log return of house price at time t and φi and θj denote the dependence of Yt

on the Yt�1 and the j-th innovation εt�j . A required condition is for 1 � φ1B � φ2B
2 � � � �φmBm and

1� θ1B� θ2B
2� � � � θMBM to possess common factors with absolute value of the zeros being greater 1. For

the conditional variance ht the EGARCH(P,Q) model is specified

lnphtq � k �
P̧

i�1
αi lnpht�iq �

Q̧

j�1
βjr|�εt�j | � E|�εt�j |s � Q̧

j�1
γj�εt�j (4.22)

with rεt � εt?
ht

is the standardized innovation at time t. The respective weights on lnpht�iq and the stan-

dardized innovations �εt�j are αi and βi for i � 1, . . . , P . The leverage11 effect in the EGARCH process is

captured by the leverage parameter γj for j � 1, 2, � � � , Q. To ensure Equation 4.22 is weakly stationary,

1�α1B�α2B
2� � � �αpBP and 1�β1B�β2B

2� � � �βQBQ must have no common factors and the absolute

value of the zeros must be greater than 1. Based on parameter count, the ARMA-EGARCH model gives 9

degrees of freedom to fit. This is considerable compared to GBM which needs just 2 parameters i.e. µ and
11The leverage effects allows the conditional variances to respond asymmetrically to positive and negative

innovations. γj ¡ 0 implies that a positive �εt�j adds more conditional variance than its negative counterpart
of same magnitude.
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σ. I expected ARMA-EGARCH model to immediately give advantage in terms of better fit.

Here t follows the discrete time grid dictated by the data, either monthly or quarterly for Nationwide

average house price (non-seasonally adjusted).

My main interest is to use this model and obtain forecasts of volatility to long horizons that can be

used for NNEG valuation. It follows then that, under the real-world measure Pt

Yt|Ft�1 � Npµt, htq (4.23)

where µt � c�°m
i�1 φiYt�i�

°M
j�1 θjεt�j . The ARMA and EGARCH exact specifications are selected based

on goodness-of-fit diagnostic statistics. The risk-neutralisation procedure of the ARMA-EGARCH model is

presented below.

4.3.3 Esscher transform risk-neutralisation for ARMA-EGARCH

Let T be the longest possible maturity for the ERM product; as an example, for a 65 years old if I consider 100

the longest survivor age then T � 35 and let P be the probability measure associated with the information

set FT . Consider Pt be the projected measure P on the smaller information set Ft. Following Buhlman

et al. (1996), Siu et al. (2004) and Li et al. (2010), for a given sequence of t constants λ1, λ2, . . . , λt, the

distribution function of Yt under the measure rPt given Ft�1 through

F
rPtpy;λt|Ftq �

³y
�8 e

λtxdFPtpx|Ftq
EPtpeλtYt |Ftq

(4.24)

The key to the risk-neutralisation under the conditional Esscher measure is to observe that the moment

generating function of Yt given Ft�1 under rPt is calculated from

E
�Ptpe

zYt ;λt|Ft�1q � EPtpepz�λtqYt |Ft�1q
EPtpeλtYt |Ft�1q (4.25)

Because Yt|Ft�1 � Npµt, htq so then it can be proved that

E
�Ptpe

zYt ;λt|Ft�1q � epµt�htλtqz�
1
2htz

2
(4.26)

The risk-neutral-measure is identified from the local martingale condition by finding those λqt such that
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E
�Ptpe

Yt ;λqt |Ft�1q � er�g (4.27)

with r the risk-free rate and g the service flow rate12. This gives the risk-neutralising constants

λqt �
r � g � µt � 1

2ht

ht
(4.28)

Combining things together gives the sequence of risk-neutral measures Qt such that

E
�Qtpe

zYt ;λqt |Ft�1q � epr�g�
1
2htqz� 1

2htz
2

(4.29)

which shows that the risk-neutralization effect is to keep the same type of normal distribution but change

by translation the parameters. Thus, under Qt, I have that

Yt|Ft�1 � Npr � g � 1
2ht, htq (4.30)

For pricing the NNEG I need to calculate the following risk-neutral expectation, see Li et al. (2010),

e�rpt�0.5�δqEQr
�
L0e

Rpt�0.5�δq �Ht�0.5�δ
	�
s (4.31)

For simplicity let us denote by τ � t� 0.5� δ which is the known maturity given by the termination of the

RM, and K � L0e
Rpt�0.5�δq is the accrued balance at τ which is known. Hence the option above is a put

option on Hτ . Now, a correct approach will have to take a path-dependent approach and build recursively

the chain of conditional volatilities (variances) to the required maturity. For example, for maturity τ , the

house price Hτ can be calculated as

Hτ � H0 expp
i�τ̧

i�1
Yiq

12In the absence of market prices for forwards/futures or total return swaps on property, selecting a
martingale measure is done with the conditional Esscher transform. An excellent discussion of technical
issues involved with using the conditional Esscher transform to identify a martingale measure under the
incomplete market setting, in relation to GARCH models, can be found in Siu et al. (2004). For calibration
purposes the local martingale condition described here arises by constructing a self-financing portfolio with
one unit of the asset S and all rental cum-income invested in the bank account. Under the bank account
numeraire, the portfolio discounted is a martingale. In other words, under the martingale measure as
identified above, the normalised gains process is a martingale, see Bjork (2009) for an exposition how to deal
with dividend income in asset pricing. The rental income should be considered net of running costs where
possible. Another difficulty with rental income is that when using pounds rental income, for option pricing
purposes the present value of all future rental income is needed and calculating that looks very difficult,
particularly for long horizons.
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using Monte Carlo simulation based on (4.30) for the risk-neutral measure and based on (4.23) under the

real world measure. I shall refer to this Monte Carlo simulation approach13 as the ARMA-EGARCH risk

neutral (ARMA-EGARCH-rn) for the former and the ARMA-EGARCH real world (ARMA-EGARCH-rw).

4.3.4 Simulating the house price return process

The procedure to simulate the house price process is a straightforward one (see examples in Hardy 2003).

Given the lognormal (LN) distribution with parameters µ and σ per time unit, and an appropriate random

number generator14; I proceed with the following steps:

(i) Generate z1, a standard normal deviate

(ii) Calculate the log-return of house prices at the first time unit Y1 � µ�σz1, and then use Y1 to generate

H1 � H0 exppY1q the house price at time t � 1.

(iii) Repeat steps (i) and (ii) for each t � 2, 3, . . . , n where n denotes the projection period in each

simulation.

(iv) Continue by repeating steps (i) and (iii) for some G scenarios, for which I choose G in order to increase

accuracy in the analysis.

4.3.5 ARMA option pricing model for NNEG

This section develops a closed form formula for the NNEG put option defined for ERM contracts when un-

derlying house price returns follow an autoregressive moving average (ARMA) process. The model considers

an instance where the drift term of the ARMA process has an AR effect and the diffusion term an MA effect.

Wang et al. (2012) defined a martingale transformation required for the discounted house price following

this framework.

House price historical series in empirical data exhibit positive autocorrelation near horizon and negative

autocorrelation at the long horizon (see Tunaru 2017), thereby setting the ARMA model an alternate good

fit since ERMs are likewise long-term collateralised loans. The ARMA model is specified as follows

rYt � ωdt�
�m̧

i�1
αid lnHt�ih �

�M̧

j�0
σβjdW

P
t�jh (4.32)

13A similar procedure applies for the ARMA-GARCH family of models.
14Here I used twister, the default MATLAB random number generator to increase the speed of the large

simulation exercise.
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where, αi and βj the coefficients15 of the autogressive and moving average terms. rm and �M are the

respective AR and MA orders. rYt is the house price log return under the ARMA model. The constant term

is ω, σ is the constant volatility coefficient, h ¡ 0 is a small arbitrarily fixed constant and dt ¡ 0. WP
t in

the model is a one-dimensional standard Brownian motion defined over a filtered probability space where

dWP
t�ih, i � 1, 2, . . . , N are the consecutive instantaneous increments of the standard Brownian motion at

t� ih. h is set equal to the frequency of the data set when working in an empirical setting.

Wang et al. (2012) showed that (4.32) does not allow for arbitrage opportunities and further possesses

a closed-form solution for ARMAprm,�Mq-type options in a martingale pricing approach (see, Appendix C.1).

Recall previously that the NNEG value at the maturity date T is V pT q � maxrKT �HT , 0s, where KT is the

accumulated loan balance and HT is the house price at time T . The value of the put option Pt0 at time-t0

is given by

Pt0 � e�rpT�t0qEQ
�

maxpKT �HT , 0q|Ft0
�

(4.33)

The corresponding closed-form solution for (4.33) is written as

Pt0 � Ke�rpT�t0qΦ
�� d2N pt0, T q

��Ht0e
gpT�t0qΦ

�� d1N pt0, T q
�

(4.34)

where

d1zpt0, sq �
lnpHt0{Kq �

�
r � g � 0.5σ2

zpt0, sq


ps� t0q

σzpt0, sq
aps� t0q

and

d2zpt0, sq � d1zpt0, sq � σzpt0, sq
a
ps� t0q

σ2
zpt0, sq � Vzpt0, sq{ps� t0q

z � rps� t0q{hs for any s ¡ t0, where rxs denotes the integer part of any x. The cdf of the standard normal

distribution is Φp�q. The closed-form formula expressed in (4.34) is the Black-Scholes formula which has a

volatility function that depends on α and β in (4.32). The ARMA-type Black (1976) futures option pricing

version can be obtained from (4.34) when Ht0 is replaced with FeT�t0 , the futures house price at time t0,

where T is the settlement date. (4.34) reduces to the Black-Scholes model as ps � t0q Ñ 0 (see Heston &

Nandi 2000, Liao & Chen 2006, Wang et al. 2012). Setting Φ0 to 1 in Appendix (C.8), results in a conditional

15β0 = 1

134



variance as follows

Vnpt0, tq � σ2
�

1pn¡0q
n�1̧

j�0

�
1�

j̧

i�1
Ψi
�2
h� �1� ņ

i�1
Ψi
�2pt� tnq



, @t P rt0, T s (4.35)

where n � rpt� t0q{hs and Ψ are parameter coefficients that depend on the moving average (MA) orders in

Equation (4.38) . Additionally, if Ψi � 0 for all i � 1, 2, . . . , n, then I obtain the same variance used in the

Black-Scholes model:

σ2
npt0, tq �

Vnpt0, tq
t� t0

�
σ2
�

1pn¡0q
°n�1
j�0 h� pt� tnq



t� t0

� σ2 (4.36)

This implies that using the Black-Scholes model when Ψi � 0 for i � 1, 2, . . . , n will result in undervaluing the

NNEG. Wang et al. (2012) found that the Black-Scholes model will overvalue the option when α1 � β1   0

and further confirms that the AR effect is more significant in driving option prices compared with the MA

effect. This is contrary to earlier findings in Liao & Chen (2006) who assert the opposite in stock option

contracts. Equation 4.32 can be rewritten using lag operators Lkχt � χt�kh as follows

�
1� α1L� � � � � α

�mL
�m
�rYt � ωdt� σ

�
1� β1L� � � � � β

�M
L
�M
�
dWP

t (4.37)

Equation (4.37) reduces to the GBM model when the AR and MA orders both equal zero. In this sense, the

approach I introduce and the GBM are consistent and additionally, I get a better higher order approximation

for the house price volatility. Ψj is estimated by evaluating

Ψj �

$''&''%
°
�m
i�1

�
ci

�°j
k�0 βj�kλ

k
i




, if j ¤ �M°

�m
i�1

�
ciλ

j��M
i

�°�M
k�0 β�M�kλ

k
i




, if j ¥ �M (4.38)

where
°
�m
i�1 ci � 1 for i � 1, . . . , rm and

ci � λ�m�1
i

Π�mk�1pλi � λkq
, i � 1, . . . , rm, k � i

The variance of the instantaneous house price returns Rt at any given time t, conditioned on information

set available at time t0 is given by

V art0pRtq � σ2
� ņ

j�0

�
Ψ2
j

�

dt, @t P rtn, tpn�1qq (4.39)
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where n � rpt � t0q{hs, and Rt � rYt. Likewise, the conditional autocorrelation coefficient for house price

returns is:

Corrt0
�
Rt, Rpt�ghq

� � °n
j�0 ΨjΨpj�gqa°n

i�0pΨiq2
b°n�g

i�0 pΨiq2
. (4.40)

Thus, there will be no autocorrelation in the absence of the autoregressive and moving average parameters.

Appendix C.2 presents the procedure to obtain Ψj .

4.3.6 ARIMA-GARCH option pricing model for NNEG

This subsection will describe and present the NNEG put option pricing using an ARIMA-GARCH model

for underlying house price returns. Recall that the house price return series are characterised by negative

autocorrelation in the long term. In order to allow for an efficient description of the actual house price return

dynamics, I need to adjust the error distribution of the conditional mean model including the specification

of the autoregressive conditional heteroscedastic (ARCH) component. The presence of heteroscedasticity

suggest that the market is incomplete. Badescu et al. (2011) and Ogneva & Golembiovskii (2018) also

suggested a likelihood of non-replicable contingent liabilities.

To ensure I maintain parsimony in the model specification, the thesis opted for a flexible error distribu-

tion model. The ARIMA-GARCH is one of such models with this feature, which allows for the conditional

variance of the return series to be modelled with a generalised ARCH (GARCH) and subsequently, the

conditional mean series by the autoregressive integrated moving average (ARIMA).

As shown earlier, the volatility of the real residential market does not follow GBM the essential precon-

dition required under the Black-Scholes model. Additional time series characteristics of residential property

returns for the UK is outlined in Section 5.3.

The mathematical formulation for the NNEG value is based on the no-arbitrage principle, which relies

on a risk-neutralization measure. The market is not complete under the ARCH model, hence the non-

existence of a unique equivalent martingale measures. Following Duan (1995), Föllmer & Schied (2011), and

Ogneva & Golembiovskii (2018), the house price at time t is given by Ht � H0e
yt where yt denotes the

continuously compounded rate of return and y0 � 0, t � 0, . . . , T in the ARIMA-GARCH case.

Suppose I denote the rate of return increment by δ, and specify a GARCH model for house price prices
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as in Heston & Nandi (2000) where

lnHt � lnHt�δ � r � λσ2
t � σtεt (4.41)

σ̃2
t � σ̃0 �

xm̧

j�1
α̃j σ̃

2
t�jδ �

xM̧

j�1
β̃j
�
ε̃t�jδ � γ̃j σ̃t�jδ

�2 (4.42)

The option price under this model is estimated numerically as the mean of the present value of option payoffs

x̃t under risk neutral measure Q, where

EQ
�
x̃t|Ft0

� � x̃t0 , t0   t (4.43)

EQ
�
eyt |Ft0�1

� � er (4.44)

The estimation of (4.43) and (4.44) for my GARCH process follows Duan (1995) local risk-neutral estimation

procedure. While satisfying Camara (2003) sufficient conditions, I assume the errors of the GARCH process

follow a normal distribution and the conditional variance is constant over one period in relation to the

variations in the risk-neutral measure. Under this procedure, the real-world house price returns are given

by:

yt � r � λσt � 1
2σ

2
t � εt εt|Ft�1 � i.i.d.N p0, σ2

t q (4.45)

σ2
t � α0 �

xm̧

i�1
αiε

2
t�i �

xM̧

j�1
βjσ

2
t�j (4.46)

where λ is the coefficient of the risk-premium, r is the one period risk-free rate of interest. The corresponding

risk-neutralized versions of (4.45) and (4.46) are given by

yt � r � λσt � 1
2σ

2
t � ξt ξt|Ft�1 � i.i.d.N p0, σ2

t q (4.47)

σ2
t � α0 �

xm̧

i�1
αi
�
ξt�i � λσt�1

�2 � xM̧

j�1
βjσ

2
t�j (4.48)

The value of the house together with the NNEG put option under the risk-neutral measure Q is written as

HT � Ht exp
��
T � t

�
r � 1

2

Ţ

i�t�1
σ2
i �

Ţ

i�t�1
ξi



(4.49)

pt � e�pT�tqEQ
�

maxpKT �HT , 0q|Ft
�

(4.50)
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where KT the strike price, is the accumulated value of the initial loan at time T . The termination of the

ERM contract occurs at T when the borrower dies, transition into long term care or early prepays.

4.3.7 Interest rate risk

The most evident risk affecting ERMs is interest rate risk. Given the long and uncertain maturity of these

loans, one needs to rely on models to simulate future paths for interest rates. Lenders of ERMs use, in

general, two types of rate. The contract rate R is the rate charged on the loan. This is the rate at which

the loan balance grows. Secondly, there is the discount rate trt : t ¥ 0u which is the discount rate used to

calculate the present value of the mortgage loan. Very often in the literature rt � r, which is a constant

risk-free rate used for discounting purposes. There is evidence that, where choice is available, borrowers will

prefer adjustable rates to fixed rates.

From a lender perspective, Cho et al. (2013) advocated using a multi-period cash-flow model incorpo-

rating house price risk, interest rate risk and termination delay. They argue that the lump sum mortgages

are more profitable and less risky than the tenure ERMs. One possible explanation is that the analytical

valuation of an ERM with tenure payments is far more complex than that for a lump sum mortgage. A

valuation framework that takes into consideration the mortality risk, interest rate risk and housing price risk

is also detailed in Lee et al. (2012).

A very interesting observation (Pfau 2016) linked to interest rates is how the line of credit of an ERM

grows. The loan balance typically grows at a rate given by the reference interest rate, say one-month LIBOR,

a fixed spread reflecting the lender’s profit margin plus a fixed mortgage insurance premium. The sum rate

is called the effective rate and is applied to project the growth of the loan balance. The same rate is also

applied to increase the overall principal limit, which for line-of-credit ERM contracts is equal to the balance

of the line-of-credit plus the loan balance and plus set-asides. The design arbitrage is that interest and

insurance premiums are charged only to the loan balance. The line-of-credit and set-aside accrue under the

effective rate as if these rates are also charged to these ledgers.

Li et al. (2010) assumed a risk-free continuously compounded rate r � 4.56% that is the average yield

from the 20-year nominal zero-coupon British government securities in the year 2007; and a contract rate

R � 6.39% continuously compounded obtained as the average contract rate for the top 10 UK equity release

providers in May 2007. The lump sum loan in the ERM contract is usually accumulated at a constant

contract rate Ji et al. (2012) used for the UK the following parameters for NNEG valuation: r � 4.75%; rate

R � 7.5% while Dowd (2018) takes as the base case r � 1.5% (and decreasing to 0.5% for a stress scenario).

For the Korean market, Lew & Ma (2012) reported that the average value of the 10-year government
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bond rates was 5.12% between 2002 and 2007 so the expected interest rate was calculated as 7.12% after

adding 2% lender’s margin. Those values were adjusted in Feb 2012 to be 3.3.% for house prices and 6.33%

for the expected interest rate.

Some articles assume independent evolution between house prices and interest rates, Chinloy & Meg-

bolugbe (1994), Wang et al. (2008). Others assume a two-factor model correlating house prices and interest

rate dynamics (Huang et al. 2011), or a multidimensional regression model as in Chang et al. (2012) and a

VAR approach as in Alai et al. (2014).

The interest rates can be fixed, and many borrowers seem to prefer this route, but it can be very steep,

in some cases the rates being in double digit figures such as 12% or 15%. Annually-adjustable rates can be

used to link the payments on the ERMs to a reference interest rate. The reference rates that have been

used on the market are the 1-year constant maturity treasury, the 1-month and 1-year LIBOR, the 10-year

Treasury rate in the USA, and the certificate of deposit (CD) rate in Korea. In order to avoid liquidity

pressures, this rate is usually not allowed to vary by more than few percentage points within a year.

4.3.8 Costs of funds

Hosty et al. (2008) stated the following annualised funding costs based on the information from the wholesale

banking markets at the time of their research: average swap rate 5.10%; funder’s margin over LIBOR 0.40%,

redemption profile insurance and risk premium 0.25%, cost of solvency capital 0.07%.

The cost of redemption profile insurance is discussed in more detail in Hosty et al. (2008). The idea

is that funders of ERMs will buy insurance to rematch earning LIBOR on the full outstanding balance of

the portfolio, irrespective if the portfolio level falls below best estimate such as if multiple decrements are

faster than predicted, in which case there is a cost of breaking swaps, or if the portfolio level is higher than

the best estimate such as in the case of delayed multiple decrements due to cohort behaviour, innovation

in medicine etc. in which case more swaps must be added. The financial instrument that helps managing

this risk is the Balance Guaranteed Swap (BGS). Hosty et al. (2008) mentions that before 2007 a full cover

BGS had a cost of 70 bps p.a. and buyers of BGS usually reduced this hedging costs by using a narrower

confidence interval around expected redemption portfolio profile.

The pricing and management of the BGS has been discussed in Fabozzi et al. (2009), Fabozzi et al.

(2010) and, more recently, in more detail in Tunaru (2017). The standard pricing is done based on a portfolio

of swaptions or amortising swaptions. One problem frequently ignored by BGS market makers is that when

a swaption is exercised, the inherited swap, although contributing positively towards hedging the desired

risk short term may change later on into a liability. Pricing can be done also with a portfolio of caps or
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with a portfolio of floors. In a world without transaction costs it should not matter for the final result which

way the pricing is done, so whether one type of derivative carries or not downside risk should not matter.

However, the pricing of portfolio of floors is not central focus of this chapter. These are more expensive than

swaptions but they do not carry any downside.

Another problem here is that the notional is not always amortising or accreting (negative amortisation).

The outstanding balance depends on remaining loans, individual loan balance growth, house prices and age

of borrowers. Therefore, the BGS price will be more difficult to calculate than the usual BGS price related

to forward mortgages.

4.4 Data and Preliminary Analysis

Here I focus on parameter estimation using data for the house price time-series in the United Kingdom.

Table 4.1 reports the estimates for rate of growth of house prices µ and volatility σ, under GBM, across

various regions, and using two methods of estimation.

Table 4.1: Estimation of annualised drift and volatility parameters from Nationwide average
house price quarterly time series 1974-2019 (non-seasonally adjusted) for the entire UK
and also across regions, using three methods of estimation: maximum likelihood estimation
(MLE), and method of moments (MM).
Notes: YorksHside is Yorkshire and Humberside

Period 1974-2019 Period 2007-2019
MLE MM MLE MM

Region µ σ µ σ µ σ µ σ
North 6.20% 6.62% 6.42% 6.64% 0.01% 4.22% 0.10% 4.26%
YorksHside 6.20% 6.64% 6.42% 6.66% 0.43% 4.58% 0.54% 4.63%
North West 6.62% 5.57% 6.77% 5.59% 0.41% 4.11% 0.50% 4.15%
East Midlands 6.73% 5.99% 6.92% 6.01% 1.58% 4.07% 1.66% 4.11%
West Midlands 6.65% 6.11% 6.84% 6.12% 1.54% 4.05% 1.61% 4.09%
East Anglia 6.89% 6.86% 7.12% 6.88% 2.11% 5.06% 2.25% 5.12%
Outer South East 7.11% 6.23% 7.31% 6.25% 2.50% 4.98% 2.62% 5.03%
Outer Met 7.32% 5.87% 7.49% 5.89% 3.11% 5.10% 3.25% 5.15%
London 7.89% 6.40% 8.10% 6.42% 4.13% 6.10% 4.31% 6.16%
South West 7.12% 6.14% 7.31% 6.15% 1.84% 4.50% 1.95% 4.54%
Wales 6.34% 6.60% 6.56% 6.61% 0.54% 5.74% 0.71% 5.79%
Scotland 6.17% 5.39% 6.32% 5.40% 0.44% 4.42% 0.54% 4.47%
Northern Ireland 6.36% 8.04% 6.68% 8.06% -2.88% 9.04% -2.46% 9.13%
UK 6.81% 5.08% 6.93% 5.09% 1.69% 4.30% 1.78% 4.35%

There is variability in the estimates of house price expected growth rate and volatility, across regions,

depending on the period of estimation and method of estimation. In a separate analysis for monthly data

of the same Nationwide series, I found slight differences as well. One can note that post subprime crisis the

volatility is smaller than before the crisis and the expected growth rate decreased also substantially.

The Nationwide average house price series do not incorporate any adjustments for the fact that old
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houses are replaced by new and much more expensive houses. There is no clear mechanism on how old

houses are replaced by new ones. The longest time series on house prices in the UK goes back to 1952. It

is difficult to capture precisely this effect. Insurers can take a conservative view and apply a dilapidation

discount as a haircut at the termination of the contract. The dilapidation discount rates should increase

with time.

An important remark;16 the estimated drift term is done only when I locally know the future direction of

the housing market prices. This cannot be done without errors, but the solution can be improved by deriving

the distribution of the GBM parameters µ and σ. When the sample variance of the empirical distribution

is known, (Jacod 1994, p.2) demonstrates that µ can be consistently estimated with a high probability of

convergence to the true value of the drift term if M � dtÑ 8 where M is the number of observations and

dt is the time step. Based on this, I benefit by letting the number of observations increase with a fixed dt

In a numerical study, I simulate the sampling distribution of the parameters and use iterative methods

to build a random distribution of each parameter. I propose taking a Value-at-risk approach where I focus on

selected percentiles of the house price distribution. Drawing from the fact that the marginal distribution of

the house price is lognormal I can simulate the distribution of percentiles given the parameter distributions.

Based on this technique, a Monte Carlo pricing procedure for the NNEG put option where Ht in (4.5)

and (4.6) is replaced by the percentile of house price.

16Given the log return Yi � log hptiq � log hpti�1q where h is an observed sample house price time series.
I estimate the sample mean using the initial and final points as the relevant information while neglecting all
other remaining observations.
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(b) Sampling distribution of σ
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(c) Sampling distribution of 99th per-
centile of house prices
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Figure 4.5: Exploring the sampling distribution for GBM parameters and that of percentiles
of house prices over 1952Q4 - 2019Q3.
Notes: The sampling distributions are obtained from 100,000 Monte Carlo simulations. The percentiles
reported in (c) are computed from the log normal distribution using the set of parameters simulated in (a)
and (b).

The q-q Plot in Figure 4.5 shows that sampling distribution of the 99th quantile place more weight on

the lower values and less weight on higher values. The Monte Carlo procedure is implemented for the NNEG

put option.

4.4.1 Finding the ARMA-EGARCH model

For the ARMA-EGARCH models I consider a forward model selection procedure. From all models that fit

well data I select the model using an Occam’s razor approach, looking for the simplest possible model (i.e.

the smallest number of parameters) that has significant parameters but that also provides a very good fit to

the data. The model with superior AIC and BIC goodness-of-fit is preferred.

The model I selected is the ARMA(4,3)-EGARCH(1,1) with parameters in Table 4.2. There could be

other ARMA-GARCH-type models that may provide a better fit than the model I have identified. The

universe of ARMA-GARCH-type models is very large and it is outside the scope of this research to search

through the entire universe of this model class.
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Table 4.2: Parameters estimates for the ARMA(4,3)-EGARCH(1,1) model over the monthly
Nationwide average house price time series between 1952Q4 and 2019Q1 (non-seasonally
adjusted).

Parameter Estimate Std. Error t-value Pvalue
c 0.0156 0.0033 4.7681 0.0000
φ1 -0.2197 0.0456 -4.8158 0.0000
φ2 -0.2706 0.0333 -8.1271 0.0000
φ3 -0.2450 0.0466 -5.2580 0.0000
φ4 0.7260 0.0356 20.4060 0.0000
θ1 0.8621 0.0608 14.1850 0.0000
θ2 0.9539 0.0141 67.7490 0.0000
θ3 0.9126 0.0591 15.4410 0.0000
k -1.5497 0.4902 -3.1616 0.0016
α1 0.8167 0.0571 14.2970 0.0000
β1 0.4837 0.1032 4.6870 0.0000
γ1 0.1476 0.0540 2.7357 0.0062

4.4.2 Forecasting comparison

Ultimately, a good model for house price returns should have good forecasting power, at least at short and

medium horizon. I retained the out-of-sample period of 2016-2018, monthly, to compare the forecastability

of various models. For the short forecasting horizon of two years ARMA(4,3)-EGARCH(1,1) model produces

similar forecasts with the GBM specification, under any of the three parameter estimation method.

In Figure 4.6, I illustrate the forecasting error for the out-of-sample Nationwide monthly time series for

the last two years. My results show that it is possible, at a given point in time and for a given forecasting

horizon, to have very different models that give similar futures house price values.

One may argue that 2016-2018 was a very benign period for house prices in the UK. I have also redone

the analysis for a five year out-of-sample period, with quarterly data (also monthly in the appendix), the

latter going back to 1952. To this end, I employed the quarterly Nationwide average house price data

because it goes back to 1952, so it may have more chances to capture more extreme movements. I conduct

a forecasting exercise with five years out of sample data. The results are presented in Figure 4.7 and they

show the superiority of the ARMA-EGARCH model in terms of forecasting future house prices.

Furthermore, I test more formally which model has superior forecasting capability or whether the GBM

model (preferred by the regulator) produces similar forecasts as my proposed model. The results of Diebold-

Mariano tests are illustrated in Table 4.3 where the same analysis is carried out with quarterly data. Clearly,

for any of the three methods of estimation of parameters (MLE, MM, and GMM), the ARMA-EGARCH

model is, overall, superior to the GBM model.

I have also redone the analysis using the ARMA-GJR model. Here are the main outputs showing that

143



-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

MLE GMM MM ARMA_GARCH

Figure 4.6: 2-year forecasting for ARMA(4,3)-EGARCH(1,1)
Notes: Comparison of out-of-sample forecasting error (actual minus forecast) for Nationwide Average House
Price Monthly (non-seasonally adjusted) for ARMA(4,3)-EGARCH(1,1) and GBM model specifications, over
the out-of-sample period Oct 2016 to Sep 2018.
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Figure 4.7: 5-year forecasting for ARMA(4,3)-EGARCH(1,1)
Notes: Comparison of out-of-sample forecasting error (actual minus forecast) for Nationwide Average House
Price Quarterly (non-seasonally adjusted) for ARMA(4,3)-EGARCH(1,1) and GBM model specifications,
over the out-of-sample period Q4 2013 to Q3 2018.
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Table 4.3: Comparing forecasting (quarterly) under the GBM model with different estimation
methods versus the ARMA(4,3)-EGARCH(1,1) model with Diebold Mariano test over the
out-sample of 20 quarters (Q4 2012-Q3 2018).

MODEL RMSE MAE
GBM-MLE 0.0147 0.0129
GBM-GMM 0.0176 0.0158
GBM-MM 0.0189 0.0170
ARMA(4,3)-EGARCH(1,1) 0.0063 0.0055

Diebold-Mariano Forecast Accuracy Testing
MODEL 1 MODEL 2 STATISTIC P-VALUE
GBM-MLE GBM-GMM -4.0356 0.0007
GBM-MLE GBM-MM -3.9256 0.0009
GBM-MLE ARMA(4,3)-EGARCH(1,1) 3.6009 0.0019
GBM-GMM GBM-MM -3.4400 0.0027
GBM-GMM ARMA(4,3)-EGARCH(1,1) 4.3231 0.0004
GBM-MM ARMA(4,3)-EGARCH(1,1) 4.3598 0.0003

Notes: I report some measures of forecasting accuracy such as root mean squared error (RMSE) and mean
average error (MAE) as well as the Diebold-Mariano test for comparing GBM model under different esti-
mation methods with the selected ARMA-EGARCH model, based on the out-of-sample data for monthly
Nationwide time series. The models in bold provide superior forecasting performance by comparison with
the paired model. The test statistic is compared with critical values of standard normal distribution Np0, 1q.
If I fail to reject the null, i.e. the p-value is between 0.05 and 0.95 at 90% confidence level, then the two
models compared produced similar forecasts. Otherwise, the model in the direction of the statistic (1 if
negative, 2 if positive) will give better forecasts.

again a model of this type would be preferable to the GBM model. The graphs in Figures 4.8 and 4.9 indicate

that the ARMA(4,2)-GJR(1,1) model will outperform the GBM model for two year and five year forecasting

horizon.
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Figure 4.8: 2-year forecasting for ARMA(4,2)-GJR(1,1)
Notes: Comparison of out-of-sample forecasting error (actual minus forecast) for Nationwide House Price
Index Monthly for ARMA(4,2)-GJR(1,1) and GBM model specifications, over the out-of-sample period Oct
2016 to Sep 2018.
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Figure 4.9: 5-year forecasting for ARMA(4,2)-GJR(1,1)
Notes: Comparison of out-of-sample forecasting error (actual minus forecast) for Nationwide House Price
Index Monthly for ARMA(4,2)-GJR(1,1) and GBM model specifications, over the out-of-sample period Oct
2013 to Sep 2018.

Regarding the NNEG valuations, the NNEG values depicted in Figure 4.14 for the baseline scenario

shows a similar performance to the ARMA-EGARCH, suggesting consistency of the findings.

4.4.3 Forecasting power of ARMA-EGARCH and GBM models

In Figure 4.10, I redo the same analysis for the forecasting error for the out-of-sample Nationwide monthly

time series with five years out of sample. Now, the ARMA(4,3)-EGARCH(1,1) outperforms the GBM house

price forecasting. Moreover, now the MLE estimates for GBM dominates the MLE and GMM method,

confirming that there is substantial parameter estimation risk even for such a simple model as GBM.
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Figure 4.10: Comparison of out-of-sample forecasting error (actual minus forecast) for Nationwide
Average House Price Monthly (non-seasonally adjusted) for ARMA(4,3)-EGARCH(1,1) and GBM
model specifications, over the out-of-sample period Oct 2013 to Sep 2018.

In Table 4.4, I present the forecasting testing result based on monthly frequency and refitted models.17

Even for this much longer period the forecasting under the ARMA-EGARCH model is superior to the

forecasting under GBM.

Table 4.4: Comparing forecasting (monthly) under the GBM model with different estimation
methods versus the ARMA(4,3)-EGARCH(1,1) model with Diebold Mariano test over the
out-sample of 60 months (Oct 2012-Sep 2018).

MODEL RMSE MAE
GBM-MLE 0.0079 0.0067
GBM-GMM 0.0081 0.0069
GBM-MM 0.0090 0.0078
ARMA(4,3)-EGARCH(1,1) 0.0063 0.0051

Diebold-Mariano Forecast Accuracy Testing
MODEL 1 MODEL 2 STATISTIC P-VALUE
GBM-MLE GBM-GMM -3.9838 0.0002
GBM-MLE GBM-MM -6.7823 0.0000
GBM-MLE ARMA(4,3)-EGARCH(1,1) 3.7681 0.0004
GBM-GMM GBM-MM -6.0371 0.0000
GBM-GMM ARMA(4,3)-EGARCH(1,1) 3.9739 0.0002
GBM-MM ARMA(4,3)-EGARCH(1,1) 4.8545 0.0000

4.4.4 Service flow rate

Any additional income produced by the collateral house needs to be adjusted for any contingent claim

calculations under the risk-neutral (market valuation) approach. For the majority of buyers, houses play

17For ease of comparison I retained the GBM model with the three estimation methods and ARMA(4,3)-
EGARCH(1,1) that again provides a good fit to the data in-sample.
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the role of a consumption asset and not that of an investment asset. There is no evidence that service flow

rates are driving future house prices so the expected house prices at various future long horizons cannot

be determined with growth models in the same way expected share prices may be determined with growth

models linked to dividends. The PRA (see PRA CP13-18, paras 2.12-2.15) arrive at the 2% value for the

net service flow rate calculated as the gross service flow rate (5%) minus maintenance costs, management

costs, voids, with central estimate for net service flow rate as 2% but 1% permitted as a minimum value.

Ji et al. (2012) used for UK the service flow rate g � 2% while Dowd (2018) mentions g � 2% and g � 3%

as a base case rate, increasing to g � 4% as a stress test, and varying between 1%, 0% and �2.75% as well.

Hosty et al. (2008) used 3.3%.

The more precise calculations are challenging because the buy-to-let percentage of houses portfolio is

relatively small and it varies geographically, with London and South-East as the main areas. Hence, the

idiosyncratic component of service flow rates is quite large. This spatial lack of homogeneity of buy-to-let

activity, together with the fact that less than 20% of a housing portfolio may be considered to be associated

with rented properties, makes it very difficult to consider service flow rates as the main drivers of house

prices.

4.4.5 Estimating service flow rate with rental income data

The Office for National Statistics has been gathering data on service flow rates for a 10% of all properties

rented out. From their data I have calculated the monthly sterling rental values average for England taking

into account the weights and income given by property type.18. The monthly service flow rate for England

is then calculated by dividing the average sterling rental sum to the average property price in England in

that month. In addition, I also calculated proxy average quartiles estimates for service flow rates using

weighted averages of lower, median and upper quartile of monthly sterling rental figures.19 Figure 4.11

displays monthly series, average, proxy median and proxy lower and upper quartiles for England. The mean

average monthly service flow rate over this period is 0.4315% (5.1776% annualised) while the mean proxy

upper quartile is 0.48% (5.76% annualised). Note that this service flow rate corresponds only to the pool of

properties rented out.

There seems to be a lot of variation in the evolution of service flow rates over time, with a large drop

observed at the end of 2009 and first half of 2010. There is also great variation across regions in terms
18I left out the rents coming from room only.
19The proxy quartiles do not represent actual quartiles since weight averaging the medians will not nec-

essarily produce the median, for example. I produced these proxies to have a rough idea of distribution of
service flow rates.
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of service flow rates20 evolution that needs to be managed idiosyncratically similar to the same issue for

volatility.

According to the Office for National Statistics, there were about 26.4 million households in the UK

in the 2012 (following 2011 census) out of which approximately 5 million lived in rented out properties.21

Hence less than 20% of properties are rented out. This means that a rough calculation would give a total

service flow rate, weighted by the 20% representing the actual renting market, of 1.03% (5.1776% � 20%)

per annum.
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Figure 4.11: Monthly series, average, proxy median and proxy lower and upper quartiles for
England between Oct 2010 and Sep 2018. Source: Author’s calculation based on data from
the Office for National Statistics.

An even more precise calculation should take into account the net service flow rate which is calculated

as the service flow rate net of running costs. The latter is calculated taking into account three elements.22

First, the voids, defined as the number of months per year the property stays unrented. The usual rule of

thumb is to assume one month’s loss of gross rental income per annum, so the sterling pound average rental

income will be multiplied by 11/12. Then, letting agent’s fees in the range 10-15% of the rental income plus

VAT (12%-18% including VAT) at the current rate of 20%. I can take the mid-value of 15% that needs to

be deducted from the resulting sum after applying the voids. The third component refers to maintenance
20The Global Property Guide 2018, projects lower gross annual service flow rate in London.

It estimates gross service flow rate for houses in prime central London to be around 3.2%.
https://www.globalpropertyguide.com/Europe/United-Kingdom#rental-yields

21Personal communication with Rhys Lewis from the Office of National Statistics.
22The values for these elements were selected upon consultation with specialists in the field.
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costs that are typically around 15% of the gross rental income, inclusive of any VAT. Hence, agents’ fee

and maintenance cost together will erode the rental income by 30%. The average net service flow rate then

following from the above calculations will give an annualised net service flow rate of 0.66%. In this study

I used an average value of 1% as representative for 2018 in the UK for baseline scenarios, and I considered

higher and lower values (including negative) for sensitivity scenarios discussed later on.

There are few other important points regarding the relationship between ERM and net service flow

rate. By contractual terms, the collateral houses in the ERMs cannot be rented out. This implies a service

flow rate of 0. The service flow rate was calculated from the rental income that is representative across the

properties in the index. If more than 20% of properties become available for renting the rents are likely to

decrease because of supply and demand. It is not clear what will happen with the house prices then, so I

cannot say either way what will be the effect overall on the house market.

Recall that the 20% of the houses that produce rental income is not just a sample of from the total

population of houses that produce rental income. It is the full subset of the population of houses in the UK.

Hence, the 80% remaining will not have one house that will pay rent. Since I are trying to determine the

dynamics of the data-generating process, at the moment, any house price index will have to adjust rental

income over the entire population. Likewise, if 80% of the houses will produce that rental income then I

would multiply 5%� 0.80 to get the relevant service flow rate, and if all houses are rented out producing 5%

rental income then 5% is the service flow rate on the index.

However, while those issues are important in themselves, my modelling is using a data-generating process

for a house price index. I envisage that the NNEG valuations obtained in this way are only “indicative”, say

for a house that has exactly the same price as the index. The data-generating process, say GBM, requires

the additional income part to be taken into account at the risk-neutralisation stage. Rental yield is needed

for GBM but also for any other model employing the conditional Esscher martingale measure for risk-neutral

pricing purposes.

4.5 Risk Sensitivity Analysis

This section of the study presents a detailed analysis on the sensitivity of the NNEG and ERM cost sensitiv-

ity respective model parameters. Both the ARMA-EGARCH-rn23 and GBM-rn24 are presented side-by-side

while I analyse the degree of responsiveness of the cost estimates. The ARMA-EGARCH-rn is based on

100,000 Monte Carlo Simulations while the GBM-rn is based on the Black-Scholes closed-form formula.
23NNEG estimates under risk neutral ARMA-EGARCH model
24NNEG estimates under risk neutral GBM model
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The large simulation allows us to improve accuracy and efficiency (see Hardy 2003). The summary re-

sults produced from the sensitivity exercise for risk-free rate, contract rate , service flow rate, mortality

improvement/deterioration, and early prepayment is presented in Table 4.5 and Table 4.6 for both ARMA-

EGARCH-rn and GBM-rn respectively. The LTV sensitivity results are in Figure 4.15.

4.5.1 The NNEG and ERM baseline scenario

There is currently no market price benchmark on the UK ERM market space. An efficient way to conduct

a good market valuation involves the use of sensitivity analysis, where a pre-specified benchmark scenario

is carefully defined. In this section, I specify the baseline values for key parameters that drive the NNEG

values. The termination conditions are mortality, early pre-payment, and transition into longterm care,

suggesting a multiple decrement model. The study makes provisions to also investigate issues that pertain

to single decrement (mortality only) in relation to the normal practice of relevant literature. The single

decrement case is a special case that allows one to simplify assumptions relating to the pricing procedure.

The baseline scenario uses (r � 0.57%, R � 4.91%, g � 1%, σ � 4.88% and Flexible loan-to-value (LTV)

rates). The initial25 house price is assumed to be H0 � £310000 for borrower-age ranging from 55 years to

100 years.

The comparative NNEG valuations are illustrated in Figure 4.12. The NNEG values are reported as a

percentage of the initial loan advanced to the borrower at the inception of the contract. According to the

Equity Release Council (ERC) Autumn 2019 market report, the average contract rate fell below 5% for the

first time in July 2019. The current average contract rate is 4.91%. The sensitivity test results allows the

study to investigate the effect of previous market conditions as much as possible. Figure 4.12 also illustrates

the term structure of the ERM cost to the loan issuer.

The baseline scenario illustrates high NNEG to loan ratio and the GBM-rn model values consistently

lie above the ARMA-EGARCH-rn values for male, female and joint borrower’s altogether. The scenario also

possess a positive but relatively small risk-neutral drift r � g � �0.03% and volatility level (4.88%). These

two attributes suggest that the underlying house prices gradually decreases in relation to the accumulated

loan balance over the lifetime of the borrower, thereby corroborating Warshawsky & Zohrabyan (2016)

assertion that house prices have heavy discounting in standard equity release products.
25My initial house price level is based on Equity Release Council (2019) market report.
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(b) ERM Cost at Baseline

Figure 4.12: NNEG values as percentage of initial lump sum loan for the two baseline
scenarios.

Notes:The results are for both the GBM-rn and ARMA-EGARCH-rn , under multiple decrement rates for
the two baseline scenario with r � 0.57%, g � 0.5%, σ � 4.86%, and R � 4.91% with Flexible LTV pricing

The NNEG to initial loan ratio remains above 0% for all borrowers up until age 85 years. There is a

sharp decline in NNEG values after age 60 years. The ARMA-EGARCH-rn pricing model produces lower

NNEGs compared to GBM-rn, although the direction of responsiveness to an increase in the contract rate

lead to upward shift of NNEGs in both models. The NNEG values appear to rise faster at lower age ranges

i.e. 55-60 years and peaks at age 60 in both models.

Li et al. (2010) observe a reversal of this ordering in NNEG due mainly to the nature of the underlying

assumptions. First, their study is based on a fixed initial loan for all borrowers at £30,000. This creates

a different LTV structure when borrowers have different initial house price values. The volatility estimates

in their GBM valuation process is also different because the sampling period of the house price index data

ends in 2008 for their study. The risk-free rate is about more than twice the service flow rate while the

contract rate is at R � 6.39%. Based on these fundamental differences, I hasten to add that my analysis

and discussions does not propose an expected ordering the GBM and ARMA-EGARCH NNEG valuation

procedures. It is possible to observe NNEG values that boarder around the GBM version, when one adopts

another model that fits and forecasts house price series well. Having a market benchmark value from the

ERM spaces can help with calibration against this observed variations.

Figure 4.13 shows the NNEG values for the baseline scenarios under a full risk-free curve described

152



in Appendix C.6.8 for 3rd May 2020. The calculations indicate higher NNEG values under a full risk-free

curve. Notice that ARMA-EGARCH-rn values are re-simulated with adjusted drifts every month based on

changing risk-free rates sourced from the full term structure of risk-free rates.

55 60 65 70 75 80 85 90 95 100

Age

0

10

20

30

40

50

60

70

N
N

E
G

 
(
%

)

GBM-rnMale

GBM-rnFemale

GBM-rnJoint

ArmaEgarch-rnMale

ArmaEgarch-rnFemale

ArmaEgarch-rnJoint

(a) NNEG Cost under floating risk-free curve
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(b) ERM Cost under floating risk-free curve

Figure 4.13: Calculations of NNEG and ERM cost for baseline scenarios w.r.t. risk-free
curve and the baseline scenarios R � 4.91%, g � 1%, σ � 4.88%.

Overall, I can see that there are very small marginal changes in the levels of NNEG, but the profiles

of NNEG vectors under the two baseline scenarios remain the same. The reason for that is that the only

sizeable difference in risk-free rates between my constant rate of r � 0.57% and the rates indicated in

Appendix C.9 is at the front end of the curve. However, the NNEG values at ages 88 and over are zero

due to LTV protection. Also, loan accretion does not have enough time to exceed the market value of the

collateral house when borrowers are aged over 88 years.

4.5.2 ARMA-GJR Results

Figure 4.14 presents the NNEG and ERM cost curves over the lifetime of the loan contract of a female

borrower aged 55 at inception. The ARMA-GJR results are consistent with the earlier results observed for

the ARMA-EGARCH model. This is not surprising, particularly when the fitted ARMA-GJR model is of

the same order as the fitted ARMA-EGARCH model.
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(a) NNEG Cost at Baseline
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(b) ERM Cost at Baseline

Figure 4.14: NNEG valuations as percentage of lump sum for GBM-rn and ARMA-GJR, under
multiple decrement rates for the two baseline scenario with r � 0.57%, g � 1%, σ � 4.88% and
standard Flexible LTV vector valuations.

4.5.3 Sensitivity of NNEG main baseline scenario to LTV varia-

tions

The LTVs play a fundamental role in NNEG valuations and they can change the profile of NNEG vectors as

well as their overall magnitude level. Figure 4.15 illustrates the comparison of the baseline scenarios under

various market LTV loadings. The LTV has a great influence on the final value of the NNEG and one can

argue that one of the most efficient methods to manage the NNEG risk is to consider the sensitivity of NNEG

to LTV variations.

The comparative NNEG calculations presented in Figure 4.15 indicate that higher LTVs lead to a

steepening of the NNEG values. Market practitioners may consider downward (upward) adjustment to the

LTVs based on the high (low) house price volatility expectations. This partly allows the loan issuer some

control over the basis risk discussed in Andrews & Oberoi (2015).
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(c) Flexible MaxPlus LTV

Figure 4.15: NNEG sensitivities with respect to loan-to-value (LTV) ratios

Notes: The sensitivity results are for LTV variations. Subplot (a) illustrates the sensitivity results for the
ARMA-EGARCH versus GBM model under Flexible Plus LTV. Subplot (b) illustrates the sensitivity results
for the ARMA-EGARCH versus GBM model under Flexible Max LTV. Subplot (c) illustrates the sensitivity
results for the ARMA-EGARCH versus GBM model under Flexible Max Plus LTV. The baseline parameter
values are r � 0.57%, R � 4.91%, and g � 1.00% using Flexible LTV. The service flow rate R is strictly
positive under PRA requirements. In each case, the sensitivity results indicate the degree of responsiveness
of NNEG cost to changes in the model parameter. In each case, the sensitivity results indicate the degree
of responsiveness of NNEG cost to changes in the model parameter. The values reported in the table are
computed by varying the respective sensitivity parameter by 1% either upward or downward with exception
to mortality and prepayment which considers 20% upward or downward movement.

4.5.4 NNEG sensitivities with respect to risk-free rate

The risk-free rate prq impacts NNEG calculations in two ways. The obvious way is via discount factors, a

lower risk-free rate keeping the back end NNEG put payoffs still high, or, to put it the other way, a high

risk-free rate dampening the back end NNEG values. The second channel of interference is the calibration of

the conditional Esscher martingale measure using r�g as the local drift, which also appears in the GBM-rn.
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This risk-neutral local drift makes NNEG put values move in the opposite direction to risk-free rates, the

larger the risk-free value the lower the NNEG, and the lower the risk-free rate r the higher the NNEG put

value.

The analysis presented in Table 4.5 and Table 4.6 shows that both ARMA-EGARCH-rn and GBM-rn

NNEG values decrease when r increases and the NNEGs increase when r decreases. This is intuitively correct,

ceteris paribus a larger r will shift the projected future house price values in a risk-neutral world upwards,

while a lower r will project lower house prices. Around current levels of risk-free rate, the responsiveness of

ARMA-EGARCH-rn valuations is substantially higher than that of the GBM-rn valuations. This suggest

that one can efficiently account for the degree of responsiveness in risk-free changes when the calibration

of the house price process is improved. The improvement in the calibration process associated with the

ARMA-EGARCH risk-neutral model over that of the GBM is reported in Table 4.3.

4.5.5 NNEG sensitivities with respect to contract rate

The contract rate pRq is decisive in the NNEG ending up in the money. It is evident that even a slight increase

in the contract rate , compounded monthly to 45-55 years, may inflate the loan accumulated balance to very

high values. Hence, another good tool for risk-managing the NNEG levels attached to ERMs is having

contract rate s as low as possible. The sensitivities of the NNEG calculations with respect to variations in

the contract rate are reported in Table 4.5 and Table 4.6. The NNEG values increase dramatically with

the increase in the contract rate R and decrease rapidly with the decrease in the contract rate. When

time to maturity T is high, the lump sum loan gets enough accumulation time while the tendency of

impairment/dilapidation to the collateral house also increases.

4.5.6 NNEG sensitivities with respect to service flow rate rate

The service flow rate pgq is another important lever for influencing NNEG calculations. A pessimistic investor

may consider potential high service flow rates as influencing house price growth and argue that high service

flow rates are equivalent to low house prices. This may not always be the case for UK since, there has been a

structural imbalance of new property build for the last decades. Furthermore, a relatively small percentage

of people prefer renting to buying property. Based purely on economic considerations it is expensive to rent

in the UK. People who rent tend to do so because they probably have no other choice e.g. cannot buy

because they did not save for a deposit.

In the models I investigate in this study, the service flow rate plays the opposite role to r, such that a
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high g will computationally give a lower risk-neutral drift (even negative) so the pathway of house prices is

trending down, boosting the NNEG put values. The opposite is true for low or even negative g.

The sensitivity of NNEG valuations with respect to the service flow rate g under various scenarios

are presented in Tables 4.5 and 4.6. The NNEG values increase with an increase in service flow rate and

decrease with the decrease in service flow rate, for both the GBM-rn and ARMA-EGARCH-rn. Intuitively

this is correct, since a larger value for g implies a low or even negative drift in the risk-neutral world so the

projected house prices will be lower in the future, implying a higher NNEG value. Both risk-neutral and

actual worlds are affected by changes in g. Large value of g affects the real-world and risk-neutral world

in the same way, i.e., producing a negative drift. In the real-world we have µ � g as drift term and in the

real-world we have r � g as the drift term. The behavior of the drift term depends on the magnitude of µ

and r. A smaller value for g or even zero, as some insurers are using, leads to a more positive drift in the

GBM-rn model that will give increased house prices in the future and hence lower NNEGs.

4.5.7 NNEG sensitivities with respect to house price volatility

The NNEG valuations with respect to changes in the volatility pσq of house prices that impact the GBM-rn

approach is presented in Table 4.6. The volatility of the data generating process employed for house prices

plays a key role in any option-type valuation. It is known from option theory that higher volatility will imply

higher values for the NNEG put.

For the ARMA-EGARCH volatility parameters as estimated on the Nationwide monthly historical time

series, I used an almost identical multiplication factor as coming out from the ratio of GBM volatility in the

stressed scenario versus the baseline scenario. For example, when I stressed σGBM � 10%, the ratio to the

baseline volatility of σGBM � 3.9% is about 2.5. Hence, I multiply the series of ARMA-EGARCH volatilities

by a factor of 2.5 when redoing the NNEG calculations for the ARMA-EGARCH-rn. Likewise, for other

sensitivity values of σ, I multiply the entire vector of ARMA-EGARCH volatilities with the appropriate

multiplication factor to preserve the same ratio taken for GBM volatility values. The ARMA-EGARCH-rn

sensitivity test results are reported in Table 4.5.

I also find that changes in volatility σ � 1% the ARMA-EGARCH NNEG sensitivities are below the

GBM NNEG sensitivities. Thus, in a recession period I can expect the ARMA-EGARCH NNEG values to

be higher because the volatility is not constant low and the random variation may generate also occasionally

larger volatility values that may produce higher NNEGs. These occasional higher values will drag the average

Monte Carlo average NNEG estimate upwards. By contrast, the GBM-rn will give the same valuation given

by the analytical formula.
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Table 4.5: Sensitivity test of the NNEG cost under ARMA-EGARCH

Baseline Values
Age 55 60 65 70 75 80 85 90

LTV 0.115 0.17 0.225 0.285 0.324 0.365 0.415 0.415
Initial Loan 35650 52700 69750 88350 100440 113150 128650 128650

PANEL A: NNEG SENSITIVITY TO RISK FREE RATE

r �Ò 1%
Male -0.974 -0.956 -0.949 -0.948 -0.959 -0.969 -0.982 -1.000
Female -0.972 -0.953 -0.946 -0.945 -0.957 -0.968 -0.975 -1.000
Joint Life -0.972 -0.953 -0.946 -0.945 -0.956 -0.968 -0.979 -1.000

r � 0%
Male 2.653 0.842 0.223 -0.108 -0.170 -0.188 -0.175 -1.000
Female 2.503 0.776 0.185 -0.133 -0.190 -0.205 -0.191 1.084
Joint Life 2.499 0.776 0.184 -0.134 -0.191 -0.205 -0.188 0.945

r �Ó 1%
Male 6.670 2.315 1.062 0.444 0.394 0.451 0.624 1.908
Female 6.140 2.119 0.956 0.379 0.338 0.400 0.568 3.167
Joint Life 6.138 2.122 0.956 0.377 0.333 0.396 0.576 2.890

PANEL B: NNEG SENSITIVITY TO ROLL-UP INTEREST RATE

R �Ò 1%
Male 6.090 2.113 0.949 0.370 0.318 0.362 0.501 1.908
Female 5.622 1.937 0.853 0.311 0.267 0.317 0.463 3.167
Joint Life 5.619 1.939 0.853 0.310 0.262 0.314 0.469 2.890

R �Ó 1%
Male -0.969 -0.950 -0.944 -0.943 -0.955 -0.967 -0.974 -1.000
Female -0.967 -0.947 -0.941 -0.940 -0.953 -0.965 -0.975 -1.000
Joint Life -0.967 -0.947 -0.941 -0.940 -0.953 -0.966 -0.973 -1.000

PANEL C: NNEG SENSITIVITY TO RENTAL YIELD

g �Ò 1%
Male 4.160 1.353 0.534 0.122 0.123 0.211 0.405 1.908
Female 3.782 1.204 0.449 0.068 0.075 0.167 0.358 3.167
Joint Life 3.781 1.207 0.449 0.066 0.070 0.162 0.362 2.890

g � 0%
Male -0.962 -0.938 -0.932 -0.933 -0.949 -0.963 -0.974 -1.000
Female -0.959 -0.933 -0.928 -0.929 -0.947 -0.962 -0.975 -1.000
Joint Life -0.959 -0.933 -0.927 -0.929 -0.946 -0.962 -0.973 -1.000

PANEL D: NNEG SENSITIVITY TO HOUSE PRICE VOLATILITY

σ �Ò 1%
Male 0.264 0.226 0.407 0.540 0.572 0.581 0.550 1.000
Female 0.213 0.253 0.428 0.546 0.582 0.589 0.566 1.084
Joint Life 0.213 0.253 0.428 0.546 0.582 0.589 0.566 0.945

σ �Ó 1%
Male -0.214 -0.425 -0.556 -0.643 -0.714 -0.789 -0.858 -1.000
Female -0.203 -0.403 -0.513 -0.658 -0.679 -0.782 -0.836 -1.000
Joint Life -0.202 -0.403 -0.513 -0.658 -0.679 -0.782 -0.836 -1.000

PANEL E: NNEG SENSITIVITY TO MORTALITY CHANGES

mortality is 20% heavier
Male -0.228 -0.473 -0.602 -0.687 -0.729 -0.764 -0.789 -1.000
Female -0.250 -0.486 -0.611 -0.694 -0.735 -0.768 -0.796 -1.000
Joint Life -0.321 -0.537 -0.652 -0.728 -0.768 -0.800 -0.829 -1.000

mortality is 20% lighter
Male 0.563 0.033 0.222 0.384 0.442 0.492 0.552 1.000
Female 0.560 0.032 0.223 0.385 0.446 0.498 0.562 1.000
Joint Life 0.738 0.153 0.128 0.305 0.368 0.420 0.487 1.000

PANEL F: NNEG SENSITIVITY TO VOLUNTARY PREPAYMENT

Prepayment is 20% heavier
Male -0.228 -0.472 -0.600 -0.683 -0.723 -0.754 -0.781 -1.000
Female -0.186 -0.446 -0.581 -0.669 -0.711 -0.743 -0.772 -1.000
Joint Life -0.129 -0.408 -0.551 -0.644 -0.686 -0.721 -0.749 -1.000

Prepayment is 20% lighter
Male 0.501 0.121 0.216 0.394 0.464 0.522 0.608 1.000
Female 0.461 0.128 0.238 0.439 0.492 0.554 0.610 1.000
Joint Life 0.291 0.210 0.400 0.491 0.518 0.621 0.655 1.000

Notes:The sensitivity results are for the risk-free rate r, contract rate R, service flow rate g, and house price
volatility σ. The baseline parameter values are r � 0.57%, R � 4.91%, and g � 1.00%. The service flow
rate is strictly positive under PRA requirements. In each case, the sensitivity results indicate the degree
of responsiveness of NNEG cost to changes in the model parameter. The values reported in the table are
computed by varying the respective sensitivity parameter by 1% either upward or downward with exception
to mortality and prepayment which considers 20% upward or downward movement.
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Table 4.6: Sensitivity test of the NNEG cost under GBM

Baseline Values
Age 55 60 65 70 75 80 85 90

LTV 0.115 0.17 0.225 0.285 0.324 0.365 0.415 0.415
Initial Loan 35650 52700 69750 88350 100440 113150 128650 128650

PANEL A: NNEG SENSITIVITY TO RISK FREE RATE

r �Ò 1%
Male -0.601 -0.860 -0.819 -0.782 -0.785 -0.793 -0.802 -1.000
Female -0.972 -0.854 -0.812 -0.775 -0.780 -0.788 -0.795 -1.000
Joint Life -0.974 -0.854 -0.812 -0.775 -0.779 -0.788 -0.793 -1.000

r � 0%
Male 1.768 1.277 1.070 0.939 0.979 1.046 1.116 1.500
Female 1.694 1.225 1.027 0.904 0.947 1.019 1.094 1.333
Joint Life 1.696 1.226 1.028 0.905 0.946 1.014 1.096 1.667

r �Ó 1%
Male 4.181 2.807 2.279 1.962 2.072 2.260 2.465 4.500
Female 3.945 2.658 2.165 1.872 1.989 2.186 2.410 4.000
Joint Life 3.952 2.663 2.168 1.873 1.985 2.175 2.422 4.333

PANEL B: NNEG SENSITIVITY TO ROLL-UP INTEREST RATE

R �Ò 1%
Male 3.840 2.599 2.118 1.826 1.927 2.095 2.279 4.000
Female 3.630 2.465 2.014 1.745 1.850 2.029 2.222 3.667
Joint Life 3.635 2.469 2.017 1.745 1.847 2.018 2.237 4.000

R �Ó 1%
Male -0.906 -0.849 -0.807 -0.769 -0.772 -0.780 -0.791 -1.000
Female -0.902 -0.843 -0.800 -0.762 -0.767 -0.776 -0.786 -1.000
Joint Life -0.902 -0.843 -0.800 -0.762 -0.766 -0.776 -0.785 -1.000

PANEL C: NNEG SENSITIVITY TO RENTAL YIELD

g �Ò 1%
Male 2.512 1.719 1.453 1.314 1.490 1.737 2.023 4.000
Female 2.334 1.598 1.356 1.234 1.414 1.669 1.966 3.333
Joint Life 2.339 1.602 1.358 1.235 1.411 1.659 1.970 3.667

g � 0%
Male -0.875 -0.804 -0.758 -0.722 -0.736 -0.753 -0.767 -1.000
Female -0.869 -0.795 -0.748 -0.712 -0.728 -0.750 -0.769 -1.000
Joint Life -0.869 -0.795 -0.748 -0.711 -0.728 -0.750 -0.770 -1.000

PANEL D: NNEG SENSITIVITY TO HOUSE PRICE VOLATILITY

σ �Ò 1%
Male 0.336 0.229 0.203 0.200 0.273 0.398 0.605 2.000
Female 0.303 0.204 0.180 0.178 0.248 0.367 0.564 1.667
Joint Life 0.304 0.205 0.181 0.179 0.247 0.363 0.570 2.000

σ �Ó 1%
Male -0.280 -0.199 -0.177 -0.174 -0.230 -0.316 -0.442 -1.000
Female -0.259 -0.180 -0.159 -0.157 -0.213 -0.300 -0.427 -1.000
Joint Life -0.260 -0.181 -0.160 -0.156 -0.212 -0.300 -0.430 -1.000

PANEL E: NNEG SENSITIVITY TO MORTALITY CHANGES

mort. = 20% heavier
Male -0.215 -0.211 -0.211 -0.214 -0.224 -0.234 -0.244 -0.500
Female -0.234 -0.228 -0.229 -0.231 -0.240 -0.248 -0.256 -0.333
Joint Life -0.307 -0.304 -0.308 -0.316 -0.332 -0.351 -0.363 -0.333

mort. = 20% lighter
Male 0.506 0.486 0.484 0.490 0.523 0.559 0.558 0.500
Female 0.508 0.488 0.486 0.490 0.517 0.545 0.538 0.333
Joint Life 0.676 0.659 0.664 0.681 0.729 0.778 0.800 0.667

PANEL F: NNEG SENSITIVITY TO VOLUNTARY PREPAYMENT

Prepay. is 20% heavier
Male -0.216 -0.211 -0.208 -0.208 -0.210 -0.207 -0.198 0.000
Female -0.179 -0.177 -0.176 -0.177 -0.179 -0.181 -0.179 -0.333
Joint Life -0.125 -0.122 -0.120 -0.117 -0.114 -0.109 -0.096 0.000

Prepay. is 20% lighter
Male 0.507 0.484 0.479 0.478 0.497 0.510 0.488 0.500
Female 0.411 0.398 0.396 0.397 0.411 0.424 0.410 0.333
Joint Life 0.295 0.285 0.280 0.277 0.280 0.274 0.259 0.000

Notes:The sensitivity results are for the risk-free rate r, contract rate R, service flow rate g, and house price
volatility σ. The baseline parameter values are r � 0.57%, R � 4.91%, and g � 1.00%. The service flow
rate is strictly positive under PRA requirements. In each case, the sensitivity results indicate the degree
of responsiveness of NNEG cost to changes in the model parameter. The values reported in the table are
computed by varying the respective sensitivity parameter by 1% either upward or downward with exception
to mortality and prepayment which considers 20% upward or downward movement.
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It can be noticed that the NNEG values increase with the increase in volatility and decrease with the

decrease in volatility. Doubling the volatility level seems to increase the NNEGs by about 75%. The NNEG

values increase almost 7 times fold when switching from σ � 5% to σ � 12%.

4.5.8 NNEG sensitivities to mortality rates

Here I analyse the effect of ramping up mortality rates by 20% (mortality deterioration) or slowing down

mortality rates by 20% (mortality improvement) for the baseline scenario. Increasing the mortality rate will

bring forward the termination of the loans, which in turn will diminish the NNEG values because the front

months values are weighted with larger multiple decrement probabilities. When the mortality rates decrease

the NNEG values at the back end are weighted with higher multiple decrement probabilities, and so the total

NNEG values will be higher than the baseline scenarios. The impact of 20% increase/decrease of mortality

rates on NNEG values is quite small. In order to observe larger changes, very large changes in mortality

rates must occur. All things being equal NNEG values will be low in COVID situation when mortality

incidence rate is high compared with post-COVID situation when borrowers have improved survival rate.

This is because, mortality and NNEG values are negatively related.

4.5.9 NNEG sensitivities to prepayment rates

Here I analyse the effect of ramping up prepayments by 20% or slowing down prepayment by 20% for

each of the two baseline scenarios. Overall, prepayment rate changes do not change very much the NNEG

profile. Although the NNEG profile does not change much as prepayment rates change, the value does when

prepayments change significantly.

From discussion with few insurers, the current evidence on prepayments is rather mixed. For older

vintages the prepayment rates are virtually zero. For younger vintages the prepayment26 rates used for

risk-management are higher than those reported previously in Hosty et al. (2008). The prepayment due to

refinancing is farther from full capacity. The main driver for prepayment seems to be downsizing when one

member of the couple, usually the husband, dies and the surviving borrower decides to move into a smaller

property.
26Prepayment penalties may be charged by loan providers when borrowers voluntarily repay some or all

of the amount borrowed before the contract travels its full length. According to the Equity Release Council
(2019), there is no prepayment penalty when borrowers transition into long-term care. The penalties are
used to offset expenses associated with the early termination e.g. if the loan provider obtained the said lump
sum from another lending agreement. Typically providers will issue out affordable lump sums to the ERM
borrower(s) while making assumptions about potential length of time contract may travel.
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Prepayment rates should increase in economic times characterised by recessions with decreasing interest

rate regimes following booming periods with high interest rate regimes. For NNEGs, high prepayments and

decreasing contract rate s are offset by low risk-free rates r. Prepayments should be of concern when risk-free

rates are low and contract rate s are high, that is in the aftermath of a crisis such as the subprime crisis.

However, most lenders will try to ramp-up their portfolios in those times and ERM borrowers will not switch

shortly after getting their loan due to ERCs and other psychological factors. In the aftermath of a crisis one

may expect house prices to be low which will reduce the incentive for refinancing due to the LTV constraint.

4.6 Chapter Summary

In this chapter of the thesis, I show that the GBM model recommended by the regulator in the UK produces

much higher values of the NNEG when compared with a best fit ARMA-EGARCH model selected on the

basis of forecasting house prices well. Utilising an inappropriate model in the context of reverse mortgage

loan market may in the end stifle this market by imposing very high capital reserve requirements in insurers.

This is very important since there is no diversification benefit for an insurer issuing ERM loans, each loan

being valued separately for NNEG calculations purposes. Furthermore, inflating the volatility parameter

will automatically imply a high variance of house prices at long maturities for the GBM model, therefore

impacting directly ERMs loan characteristics for the younger borrowers who would benefit the most from

this new asset class.

The study also finds evidence to suggest that service flow rate parameter is not the key driver of

underlying house prices in UK. If the majority of house prices do not pay rents, and this is verified in the

Office of National Statistics, it would be wrong to assume that all houses have prices driven by rents. The

proportion may be different from country to country but there is no known country where all houses generate

a rental income. An overestimation of the service flow rate induces downward trending house prices in the

long run that ultimately will inflate the NNEG values.

While the ERMs may offer a viable solution to long term care and pension boosting to the elderly

generation in most developed economies, there is a general lack of development of this market world-wide.

One possible explanation is that the interaction between the consumers, the insurers and the regulator needs

to be improved and the capital should work more efficiently.

The application of Black 1973 option pricing formula for NNEG valuation is theoretically not sound

and it can lead to important misvaluations for ERM, depending on the levels of risk-free rates. This may

have a detrimental effect on the development of this important financial product for society.
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The Black 76 model would be applicable if there was a house price futures contract traded. This is not

the case currently but the research in this area highlights the importance of introducing futures contracts

for hedging house price risk in financial and insurance markets. UK insurers may also consider hedging their

house price risk with CME house price futures, while simultaneously insulating from foreign exchange risk

by also using FX USD/GBP futures or options. House price futures contracts may also be introduced at

some point in future on the UK market, thereby making the Black 76 applicable.
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APPENDIX C

Additional Material for Chapter 4

C.1 The ARMA process Martingale property

The valuation of the NNEG clause in ERM contracts has been specified as an European put option on the

collateral house price. The resulting derivative contract is therefore written on the house price H. The

proof is an adaptation of that of Wang et al. (2012) and let the continuously compounded risk-free interest

rate rt � r, @t P r0, T s, so that the risk-free rate is constant in order to avoid mathematical complications.

Suppose further that there exists a savings account denoted B such that

dBu � rBudu, @u P r0, T s (C.1)

where B0 � 1 and Bt � ert. The house price dynamics under the ARMA process can be rewritten as:

lnHt � lnHt0 � rpt� t0q � 0.5Vnpt0, tq � ZPn pt0, tq,@t P rtn, tn�1q (C.2)

where

Anpt0, tq � pµ� rqpt� t0q � 0.5Vnpt0, tq � σ
8̧

j�n�1

�
ΨjpWP

t�jh �WP
t0�jhq

�
�σ

ņ

i�0

�
ΨjpWP

t0 �WP
t0�ihq

�
, @t P rtn, tn�1q

(C.3)

ZPn pt0, tq � σ
ņ

j�0

�
ΨjpWP

t�jh �WP
t0 q
�
, @t P rtn, tn�1q (C.4)
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Vnpt0, tq � V arp
�

lnpHt{Ht0q|Ft0
�
, @t P rtn, tn�1q (C.5)

where n � rpt� t0q{hs.

ZPn pt0, tq � σ

�
Ψ0

» t
t0

dWP
u � Ψ1

» t�h
t0

dWP
u � � � � � Ψn

» t�nh
t0
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u

�
(C.6)
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�
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which denotes a rearrangement of ZPn as the sum of independent increments of Brownian motion. The same

property results in conditional variance

Vnpt0, tq � V arp
�

lnpHt{Ht0 |Ft0q
� � σ2

�
1pn¡0q

n�1̧

j�0

� j̧

i�0
Ψi
�2
h� � ņ

i�0
Ψi
�2pt� tnq



(C.8)

the conditioning indicates that prior to time t0, the house price and the Brownian motion are known values1.

Under the martingale probability measure Q, I transform the discounted house price into a Q-martingale

and write it as

EQ
�
Ht|Ft0

� � Ht0e
prpt�t0qq, @t P rt0, T s (C.9)

Transformation to a Q-martingale is provided in Wang et al. (2012). Suppose house price dynamics follow

(4.32), and its roots 1� α1z � � � � � αpz
P � 0 lies outside a unit circle and ϕ satisfies

Anpt0, tq � σ
ņ

i�0

�
Ψi

» t�ih
t0

ϕpsqds� � 0, @t P rtn, tn�1q (C.10)

where n � rpt � t0q{hs and dWQ
t � dWP

t � φptqdt is a one-dimensional Brownian motion. The resulting

house price process under Q is

lnHt � lnHt0 � rpt� t0q � 0.5Vnpt0, tq � ZQN pt0, tq, @t P rtn, tn�1q (C.11)

where n � rpt� t0q{hs and ZQN pt0, tq � σ
°n
j�0 Ψj

�
WQ
t�jh �WQ

t0

�
.

1The house prices together with the Brownian motion within this interval are also assumed to be bounded.
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C.2 Determining the information set for ARMA model

In MATLAB, ψj is directly obtained by using the following procedure: LagOp, mrdivide and toCellArray.

More specifically, if C � p1 � 0.5L � 0.38Lq and D � p1 � 0.15L � 0.2L2q for an ARMA(2,2) model with

α1 � 0.5, β1 � 0.15 and α2 � 0.38, β2 � 0.2, I execute C � LagOpp1� 0.5� 0.38q, D � LagOpp1 0.15 0.2q
and

ψ � toCellArraypmrdividepD,C,1RelTol1, 0, Degree, 6qq

in MATLAB. Then, ψ is equal to rψ0, . . . , ψ6s � r1, 0.65, 0.91, 0.70, 0.69, 0.61, 0.57s
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C.3 NNEG sensitivity to the risk free rate

(a) GBM: r up 1% (b) ARMA-EGARCH: r up 1%

(c) GBM: r = 0% (d) ARMA-EGARCH: r = 0%

(e) GBM: r down 1% (f) ARMA-EGARCH: r down 1%

Figure C.1: Sensitivity test for changes in risk free rate

Notes:The sensitivity results are for the risk-free rate r. In each case, the sensitivity results indicate the
degree of responsiveness of NNEG cost to changes in the model parameter. This values reported in the table
is computed as pNNEGp1q�NNEGp0qq{NNEGp1q, where NNEGp0q is the NNEG cost estimated from the
baseline parameters and NNEGp1q is the new NNEG cost estimated by varying the sensitivity parameter
by 1% either upward or downward.

167



C.4 NNEG sensitivity to the contract rate

(a) GBM: R up 1% (b) ARMA-EGARCH: R up 1%

(c) GBM: R down 1% (d) ARMA-EGARCH: R down 1%

Figure C.2: Sensitivity test for changes in Roll Up rate

Notes:The sensitivity results are for the contract rate R applied to the loan. The baseline parameter values
are r � 0.57%, R � 4.91%, and g � 1.00%. The market contract rate is at all time low of 4.91% for the
first half of 2019 Equity Release Council (2019). In each case, the sensitivity results indicate the degree
of responsiveness of NNEG cost to changes in the model parameter. This values reported in the table is
computed as pNNEGp1q � NNEGp0qq{NNEGp1q, where NNEGp0q is the NNEG cost estimated from the
baseline parameters and NNEGp1q is the new NNEG cost estimated by varying the sensitivity parameter
by 1% either upward or downward.
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C.5 NNEG sensitivity to the service flow rate

(a) GBM: g up 1% (b) ARMA-EGARCH: g up 1%

(c) GBM: g down 1% (d) ARMA-EGARCH: g down 1%

Figure C.3: Sensitivity test for changes in Rental Yield

Notes:The sensitivity results are for the service flow rate g. The baseline parameter values are r � 0.57%,
R � 4.91%, and g � 1.00%. The service flow rate is strictly positive under PRA requirements. In each case,
the sensitivity results indicate the degree of responsiveness of NNEG cost to changes in the model parameter.
This values reported in the table is computed as pNNEGp1q � NNEGp0qq{NNEGp1q, where NNEGp0q is
the NNEG cost estimated from the baseline parameters and NNEGp1q is the new NNEG cost estimated by
varying the sensitivity parameter by 1% either upward or downward.

169



C.6 NNEG sensitivity to the volatility house prices

(a) GBM: σ up 1% (b) ARMA-EGARCH: σ up 1%

(c) GBM: σ down 1% (d) ARMA-EGARCH: σ down 1%

Figure C.4: Sensitivity test to volatility rate

Notes:The sensitivity results are for house price volatility σ. The baseline parameter values are r � 0.57%,
R � 4.91%, and g � 1.00%. In each instance, the sensitivity results indicate the degree of responsiveness of
NNEG cost to changes in the model parameter. This values reported in the table is computed as pNNEGp1q�
NNEGp0qq{NNEGp1q, where NNEGp0q is the NNEG cost estimated from the baseline parameters and
NNEGp1q is the new NNEG cost estimated by varying the sensitivity parameter by 1% either upward or
downward.

C.6.1 General characteristics

C.6.2 Rental yield

Ji et al. (2012) used for UK the service flow rate g � 2% while Dowd (2018) mentions g � 2% and g � 3%

as a base case rate, increasing to g � 4% as a stress test, and varying between 1%, 0% and �2.75% as well.

Hosty et al. (2008) used 3.3%.
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C.6.3 Loan-to-Value Ratio (LTV)

Table C.1: Loan to values (LTVs) for various equity release mortgages issued 29/11/2018.

Age Flexible Flexible Plus Flexible Max Flexible Max Plus
55 11.50% 16.00% 21.20% 24.00%
56 12.50% 17.00% 22.40% 25.00%
57 13.50% 18.00% 23.60% 26.00%
58 14.50% 19.00% 24.80% 27.00%
59 15.50% 20.00% 26.00% 28.00%
60 17.00% 21.00% 27.50% 29.50%
61 18.00% 22.00% 28.50% 31.00%
62 19.00% 23.00% 29.50% 32.00%
63 20.00% 24.00% 30.50% 33.00%
64 21.00% 25.00% 31.40% 34.00%
65 22.50% 26.50% 32.20% 35.10%
66 24.00% 28.00% 32.50% 36.20%
67 24.80% 29.00% 33.50% 37.30%
68 25.60% 30.00% 34.50% 38.40%
69 27.00% 31.50% 35.50% 39.50%
70 28.50% 33.00% 36.60% 41.10%
71 29.70% 34.00% 37.70% 42.20%
72 30.50% 35.00% 39.00% 43.40%
73 31.20% 35.50% 40.00% 44.60%
74 31.70% 36.00% 41.00% 45.80%
75 32.40% 37.00% 42.00% 47.00%
76 33.20% 38.00% 43.00% 48.00%
77 34.00% 39.00% 44.00% 49.00%
78 35.00% 40.00% 45.50% 50.00%
79 35.50% 41.00% 46.50% 50.50%
80 36.50% 42.00% 48.00% 51.50%
81 37.50% 43.00% 49.00% 52.50%
82 38.50% 44.00% 49.40% 53.00%
83 39.50% 45.00% 49.80% 53.00%
84 40.50% 46.00% 50.20% 53.00%
85 and over 41.50% 47.00% 50.50% 53.00%

Source: Legal & General

For the LTV I also point to 40% (Dowd 2018), to 27% for new drawdowns and 32% for new lump sum plans

as reported in the Equity Release Council (ERC) 2017 Report.

Hosty et al. (2008) is using an initial loan advanced as £20,000 while LTV starts from 15% at age 55

and increases by 1% each year up to 50% at age 90. The minimum house price is £70,000. This procedure

sets the maximum house price2 to 133,333 at age 55. Similarly, Li et al. (2010) has a minimum house price

of £60,000, starts from 17% at age 60 and increases by 1% each year up to 50% at age 90 and an initial loan
2There seems to be a typo in Hosty et al. (2008) who give 233,333.

171



at £30,000.

An overall average value of 20% seems to be representative, but a more refined table taken into account

age is also useful.

C.6.4 Longevity or mortality risk

The sellers of ERMs have considered for a long time that longevity risk is diversifiable. Hence, by pooling a

large numbers of loans I could use mortality tables to determine the terminations of loans. The same idea

applies to long-term care risk and prepayment risk.

Table C.2: Longevity expectations based on Immediate Annuities Male and Female Lives.

Year
Expectation of life at birth Expectation of life at age 65

Male Female Male Female

1841 40 42 11 12
1900 49 52 11 12
2000 76 80 16 19
2020 79 83 18 21

Notes: Derived from Continuous Mortality Investigation Research 00 tables.

The mortality data used in Hosty et al. (2008) is derived from the Continuous Mortality Investiga-

tion Research (CMI “00”) mortality tables. The tables are referred to as Immediate Annuities Male Lives

(IML “00”) and the Immediate Annuities Female Lives (IFL “00”), adjusted for cohort effects (i.e. where

rates of improvement in mortality have been different for people born in different periods historically). The

tables show the probability of death during any year for an individual of a particular age who is alive at the

start of that year.
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Table C.3: Mortality of different socio-economic classes as a percentage of population mor-
tality.

Class Ages 50-64

I 72%
II 77%

IIIN 104%
IIIM 130%
IV 120%
V 180%

Source: Hosty et al. (2008).

Hosty et al. (2008) discussed how to adjust mortality rates for different socio-economic classes and by

property value. Table C.3 shows the adjustment factors that occur due to different socio-economic conditions

while Table C.4 indicates the adjustment factor by the type of property.

Table C.4: Mortality assumptions by property value

Property Value Mortality Assumption
up to GBP130k 120% base

GBP130k -GBP250 k 100% base table
GBP250 k-GBP750 k 85% base table

GBP750k + 55% base table

As an additional stress scenario, Dowd (2018) considers the expected (mean) longevity increased by

two years.

One may also use the T08 series of term mortality tables, based on 2007-2010 data collected by the

CMI. I use the Office for National Statistics mortality tables (ONS tables for 2015-2017).
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C.6.5 Mortality Table: Office for National Statistics(ONS)

Table C.5: Mortality Table Office for National Statistics 2015-2017

Age Male Female
x qx qx
55 0.56% 0.4%
56 0.61% 0.4%
57 0.61% 0.4%
58 0.68% 0.5%
59 0.75% 0.6%
60 0.85% 0.6%
61 0.96% 0.6%
62 1.02% 0.7%
63 1.12% 0.8%
64 1.22% 0.8%
65 1.26% 0.9%
66 1.47% 1.0%
67 1.64% 1.1%
68 1.58% 1.1%
69 1.89% 1.3%
70 2.09% 1.4%
71 2.28% 1.5%
72 2.57% 1.7%
73 2.72% 2.0%
74 3.18% 2.1%
75 3.53% 2.2%
76 3.82% 2.6%
77 4.27% 2.9%
78 4.60% 3.3%
79 5.42% 3.6%
80 5.72% 4.2%
81 6.38% 4.5%
82 7.21% 5.3%
83 7.89% 6.0%
84 9.07% 6.8%
85 10.42% 7.8%
86 11.49% 8.9%
87 12.06% 9.6%
88 14.22% 11.2%
89 15.38% 12.6%
90 17.01% 14.2%
91 20.26% 16.3%
92 20.79% 17.5%
93 22.32% 19.9%
94 25.25% 22.1%
95 27.05% 23.9%
96 28.71% 25.4%
97 30.49% 27.5%
98 35.92% 28.3%
99 38.74% 31.4%
100 34.60% 32.8%
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C.6.6 Long term care risk

Long Term Care (LTC) is defined the inability to carry out at least two activities of daily living (“ADLs”).

There is very little data available on the movement of people into long-term care as a result of their inability

to perform ADLs and making it difficult to accurately predict the rate of morbidity which will affect the

timing of the underlying cash flows entering the transaction.

When premiums were originally set for the HECM3 loans, there was no actual exit data so the assump-

tion made was that loan exits would occur at 1.3 times the rate of mortality, see Rodda et al. (2004). The

actuarial market practice in the UK calculates morbidity rate as a factor of the mortality rate.

Table C.6: Percentage loading to base mortality due to long term care entry.

Age Male(%) Female(%)
¤ 70 2 3
p70, 80s 4 12
p80, 90s 5 13
p90, 100s 4 8

Source: Hosty et al. (2008).

For multi-state modelling considering the interaction between long-term care entry and mortality is

paramount because there is significantly higher mortality experienced by long-term care residents compared

to “at home” mortality means that to maintain the same aggregate assumption for mortality by age lighter

than average mortality should be assumed for “at home” lives. Table C.6, from Hosty et al. (2008), shows

the long-term care net impact of additional decrements, offset by reductions in at-home mortality, taken to

be the uplifts to base mortality, with intermediate values by linear interpolation.

C.6.7 Prepayment risk

Not very much is known about the values of the prepayment rate for ERMs. In the US in the early days

of the HECM programme, a flat prepayment rate of 0.3 times the mortality rate of the youngest borrower

in the family was used. In Korea, a prepayment rate of 0.2 times the 2010 mortality rate for females was

chosen based on Korean demographic data.
3The only reverse mortgage insured by the US Federal Government is called a Home Equity Conversion

Mortgage (HECM), and is only available through an Federal Housing Administration (FHA) approved lender.
If you are a homeowner age 62 or older and have paid off your mortgage or paid down a considerable amount,
and are currently living in the home, you may participate in FHA’s HECM program. The HECM is FHA’s
reverse mortgage program that enables you to withdraw a portion of your home’s equity.
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Table C.8: Prepayment rates reported in Ji et al. (2012)

Year Prepayment rate (%)
1 0.0
2 0.0
3 0.15
4 0.3
5 0.3
6+ 0.75

Source:Institute of Actuaries (2005)

Prepayment risk is usually managed with early redemption charges (ERC). Hosty et al. (2008) describe

this feature that varies by different providers. The ERC can be fixed rate charge or marked to market.

In August 2007, the fixed charge scales ranged from 3% flat for the first 5 years and nil thereafter, to 7%

initially stepping down to nil after 10 years and some providers applied charges for the first 20 years. Many

large providers were charging mark to market penalties with the ERC applied depending on interest rate

movements between inception and repayment. The ERCs were capped (currently at either 20% or 25%).

Hosty et al. (2008) considered the following prepayment rates. The first set was taken from the Norwich

Union prospectus for Equity Release Funding (no.5) plc, August 2005, as follows: ERF1, 4.4% p.a.; ERF2,

3.7%; ERF3, 2.5%; ERF4, 1.4% (prepayment rates given by number of loans). In addition, the prepayment

rates in Table C.7 were noted from Bell & Bain Ltd, Glasgow.

Table C.7: Prepayment rates assumptions

Year Prepayment rate (%)
1-2 1.00
3 2.0
4-5 2.5
6-8 2.0
9-10 1.0
11-20 0.5
21+ 0.25

Source:Hosty et al. (2008)

Ji et al. (2012) separated prepayment rates into two sources, Table C.7 for remortgaging of ERMs and

Table C.8 for prepayment arising from changes in personal circumstances.
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C.6.8 Discount factors

One issue that is often neglected in NNEG valuation is the choice of discount factors. Quite often the discount

factors are derived from a unique constant risk-free rate, accepted in the framework described by Knapcsek

& Vaschetti (2007), see also Dowd (2018). Kogure et al. (2014) used dfptq � p1 � rq�t with r � 0.5% for

the Japanese market. Li et al. (2010) use returns from Treasury-bills as a proxy for short-term interest rate

and Kim & Li (2017) employed the 91-day certificate of deposit as a proxy for the same risk-free rate. Hosty

et al. (2008) used a constant risk-free rate equal to 4.5% but considers the discount rate as 4.75%, effectively

extracting the NNEG risk premium by applying the same time invariant risk premium of 0.25%.

Wang et al. (2014) and Lee et al. (2012) employ a CIR short-rate model for discount curves, which will

also fit in the framework described in Knapcsek & Vaschetti (2007).

I used in my calculations the risk-free curve on 6 April 2020, downloaded from Bloomberg. This is

described in Table C.9.

Table C.9: GBP Risk-free term structure of interest rates on 26 December 2018.

Maturity 03/05/2020
1M 0.12%
3M 0.14%
6M 0.17%
1Y 0.06%
2Y 0.00%
3Y 0.03%
4Y 0.05%
5Y 0.07%
6Y 0.09%
7Y 0.10%
8Y 0.13%
9Y 0.20%

10Y 0.23%
12Y 0.32%
15Y 0.41%
20Y 0.52%
25Y 0.54%
30Y 0.55%
40Y 0.48%
50Y 0.41%
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C.7 Valuation Under the Geometric Brownian Motion

The GBM dynamics is specified under the real-world measure using the equation

dHt � µHtdt� σHtdWt (C.12)

For simplicity, I denote by K � L0e
RT the exercise price of my NNEG put option at maturity T .

C.7.1 Risk-neutral world GBM pricing

Under risk-neutral world the dynamics changes only in the drift to

dHt � pr � gqHtdt� σHtdWt (C.13)

where g is the service flow rate.4.

The Black-Scholes formula behind the NNEG put option is

PutpH0,K, T q � e�rTEQ pmaxrK �HT , 0sq (C.14)

where Q is the risk-neutral measure implied by the Black-Scholes model. Then

PutpH0,K, T q � Ke�rTΦp�d2q �H0e
�gtΦp�d1q (C.15)

where d1 � 1
σ
?
T

�
lnpH0{Kq � pr � g � 0.5σ2qT � and d2 � d1 � σ

?
T .

C.7.2 Real-world GBM pricing

Under this method securities are priced using real-world probabilities derived from the historical information

and a risk-neutral (funding rate) discount rate.

This would be valued under real-world measure as

PutpH0,K, T q � e�r
�TEP pmaxrK �HT , 0sq (C.16)

4I consider service flow rate here in order to be able to compare GBM-rn as used by some insurers with
other approaches. I do not necessarily agree that g � 0
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where r� should be the risk-adjusted interest rate reflecting the premium charged for investing in this market.

Using the usual trick that

EP pmaxrK �HT , 0sq � EP
�pK �HT q1tHT Ku

�
� EP

�
K1tHT Ku

�� EP
�
HT 1tHT Ku

�
� KP pHT   Kq � EP

�
HT 1tHT Ku

�
(C.17)

One can show with standard calculations that

P pHT   Kq � Φ
�
� 1
σ
?
T

�
lnpH0{Kq � pµ� 0.5σ2qT �


and

EP
�
HT 1tHT Ku

� � H0e
µTΦ

�
� 1
σ
?
T

�
lnpH0{Kq � pµ� 0.5σ2qT �


Thus

PutpH0,K, T q � e�r
�T �KΦ p�d2q �H0e

µTΦ p�d1q
�

(C.18)

where d1 � 1
σ
?
T

�
lnpH0{Kq � pµ� 0.5σ2qT � and d2 � d1 � σ

?
T .

C.7.3 Black 1973 model

Some argued that the “correct” approach is to use the Black (1976) formula for pricing the NNEG. Under

this model pricing the NNEG would be done with the formula

Put � e�rT rKTNp�d2q � F pT qNp�d1qs (C.19)

with

d1 � lnpF pT q{KT q � 0.5σ2τ

σ
?
T

, d2 � d1 � σ
?
T

where r is the risk-free rate of interest, KT is the strike price for period T calculated as KT � L0e
R�T (here

L0 is the initial loan value) and F pT q is the forward house price for year T , which also has the formula

F pT q � H0e
pr�gqT (C.20)
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where g is the house rental rate and H0 is the current house price.

C.7.4 Forecasting measures

The root mean squared error (RMSE) is defined as the squared root of the average squared forecasting

errors. The mean absolute error (MAE) is defined as the average of the absolute values of forecasting errors.

A lower RMSE or MAE indicates a better forecasting method or model. The forecasting measures may be

higher because of a couple of really bad forecasts or outliers.

An improved approach for comparing forecasting methods (models) is the Diebold Mariano test Diebold

& Mariano (1995). This test is based on a loss function L for the forecasting error et and it calculates the

loss differential between two methods 1 and 2 as

d12t � Lpe1tq � Lpe2tq

Under the appropriate technical assumptions the Diebold-Mariano statistic is defined as

DM12 � d12pσd12

where d12 � 1
T

°t�T
t�1 d12t and DM Ñ Np0, 1q.

The null hypothesis is that the two models produce equal expected forecast loss. The alternative is

that one model has a superior (lower) expected forecast loss than the other one. Usually a quadratic loss

function is used, i.e. Lpetq � e2
t .
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CHAPTER 5

House Price Volatility and ERM Port-

folio Cash Flows

5.1 Introduction

In this Chapter of the thesis, I investigate the long-term effects of idiosyncratic house price risk on ERM

portfolio cash flow. Case & Shiller (1987), Case & Shiller (1990), Case et al. (2000), Geltner (2007), and

Tunaru (2017) present excellent discussions on derivative instruments designed on real-estate indices which

serve as efficient reference for house price data. The work of Case & Shiller (1987) identified two categories

of real-estate indices i.e. transactions-based index and the valuation-based (appraisal based) index. The

different variants of house price indexes are identified by the underlying methodology, from which they

created.

The transaction-based indices is linked to actual transaction price data obtained over the period of

interest. After controlling for index return volatility and disparities due to differing trading periods in

granular information obtained regarding this category of indexes Hoag (1980), Miles et al. (1990), Webb

et al. (1992), Fisher et al. (2004), Geltner (2007), and Tunaru (2017) suggest transaction-based indices is

ideal choice for the underlying asset in derivative contracts designed on real-estate properties. Extensive

literature addressing the well-identified statistical complexities on this class of house-price data brings forth

the hedonic-value and repeat-sales regression methodologies (see Adelman & Griliches 1961, Bailey et al. 1963,

Rosen 1974, Shiller 2008). Case & Shiller (1989) argued that repeat-sales indices extends additional benefits

of not being affected by mixed sales and other related changes. A key difference between the transaction-
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based and appraisal-based indices has to do with the treatment of capital improvement expenditures as it

relates to the index return appreciations. Recent studies highlight model risk effects in hedonic methods.

Tunaru (2017) discussed instances where the hedonic valuation method inherits the pitfalls associated with

statistical regression methods, e.g multicollinearity, parameter estimation errors, and model misspecification.

The appraisal-based/valuation-based indices are dependent on continual updates of individual real-

estate characteristics. For each period, the classical appraisal-based index returns is estimated using a simple

aggregation of regular appraised values. Tunaru (2017) outlines the difficulty in accurate maintenance of this

class of indices for very large populated regions. Construction of appraisal-based methods are typically beset

with ”valuation smoothing” since the methodology is purely subject to the valuer’s opinions year-on-year

(Hager & Lord 1985, Clayton et al. 2001). The valuation smoothing arises from the fact that year-on-year

appraisals creates valuation estimates which are tied to prior sales prices for the properties. This flaw

becomes more persistent when the real-estate market tends to be rapid in advancement. There is also a

dampening effect on the randomized error term, hence the volatility of the valuation-based historical price

series tends to be lower compared to the volatility of actual property price series or hedonic price series

(Siu-Hang Li et al. 2010).

The classical geometric Brownian motion (GBM) is employed with an intention to capture the diffusion

dynamics in house price volatility when pricing ERM contracts (see Hosty et al. 2008, Li et al. 2010). The

downside to the GBM model has been thoroughly addressed in Chapter 4. When pricing ERM contracts,

most time series models adopt a two-part conditional heteroscedastic model, one for fitting the conditional

mean and another for the conditional variance. Model specifications in Chen, Cox & Wang (2010) and Siu-

Hang Li et al. (2010) including those outlined in Equations (4.21) and (4.22) of the thesis are typical examples.

Although this modelling approach sometimes suffers from some degree of weak-stationarity problems Tsay

(2005) and Wei et al. (2006) showed that the process is more likely to capture the observed autocorrelation

effect inherent in property price return series. This is so because, the model allows the estimated conditional

log-returns to be equally depend on innovations of its autocorrelation and moving average coefficients. In

this same regard, the second portion of the two-part specification in (4.22) accounts for the innovations in the

conditional variance. Siu-Hang Li et al. (2010) specified an exponential GARCH (EGARCH hereafter) model

for the conditional variance which accounts for the leverage effect in the return series. Huang et al. (2020)

also worked with ARMA-GARCH jump model that can capture the characteristics of jump persistence,

volatility clustering and autocorrelation.

Relating to the stochastic modelling of property prices in UK, Siu-Hang Li et al. (2010) discussed a

need to account for the statistical properties of the selected index when pricing NNEGs. They argue that

real-estate performance models developed by Wilkie (1995), Booth & Walsh (2001), and Booth & Marcato
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(2004) are unlikely to capture instances of high serial correlation, leverage effect and the heteroscedasticity

of log-return volatility, hence not ideal for modelling . As mentioned earlier, the geometric Brownian motion

(GBM) model which is another alternative, has serious shortfalls. Its assumptions inherently besets it with

attributes1 which makes them inappropriate for the house price time series.

Some degree of subjectivity exists in house price volatility modelling in relevant ERM literature. Fair

value pricing of ERM contracts depends on the efficient modelling of the underlying property in the contract

(Siu et al. 2004, Hosty et al. 2008, Li et al. 2010, Kogure et al. 2014, Cocco & Lopes 2015, Dowd et al. 2019).

Lew & Ma (2012) used a housing price growth rate of 3.5% per annum, reflecting the average house price

growth rate in Korea between 1986 and 2006. With respect to the UK, Hosty et al. (2008) argued that the

house price inflation growth rate should be between RPI and the economic growth plus a “bit”, and he gives

2.5% to 5.5% as a confidence interval for the house price inflation, “with either extreme difficult to justify”. Ji

et al. (2012) assumed initial house price values: 176500, 111000, 81000, and 60000 respectively linked to the

age of the younger spouse 60, 70, 80 and 90 years. Hosty et al. (2008) analysed house price inflation (growth)

for various U.K. regions over the period 1974-2007 and observed that average annual U.K. growth was 8.8%

for the period with the lowest-growth area being 0.5% lower (Scotland at 8.3% p.a.) and the highest-growth

area 0.5% higher (London at 9.3%). For the United Kingdom Hosty et al. (2008) used a pricing basis of

4.5% HPI (mean level) with 8% volatility and then loaded the volatility by 3% to cover the shift from Index

to individual properties (idiosyncratic risk), giving a final assumption of 11% volatility. These values are

calculated relative to a geometric Brownian motion. Importantly, using de-smoothing process pioneered by

Geltner increases volatility to 17.01% per annum. Dowd (2018) applied a volatility of 10% per annum for

the house prices and mentioned stress tests conducted to have house prices fall by 30% and 40% although

he also indicates that the future values of prices cannot enter considerations for pricing NNEG. It is unclear

how the reduction of 30% or 40% in house prices is achieved; one can only presume that this is applied

directly to the current house price.

Alai et al. (2014) argued for the need to account for property dilapidation over the life time of the

ERM contract since the loan issuer is likely to inherit a collateral house that is impaired in value. A careful

consideration will show that the property dilapidation rate is the parameter which will adjust the market

value of the underlying house price in order to account for the impact of dereliction in property maintenance.

Shiller & Weiss (2000) earlier attributed the incidence of this to potential reduction in property maintenance

to instances where the ERM borrower may face a lessened financial interest in the collateral house. When
1The GBM assumptions imposes the following implications i.e. @t ¡ 0, single-period returns follow a

lognormal distribution parametrised µ and σ which are time-invariant. This presupposes a no conditional
heteroscedasticity and leverage effect. Also, @t � u, the return series are independent, indicating a no
autocorrelation in log-return series
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the impairment parameter is calibrated, the loan issuer will have an opportunity to analyse any resulting

pool of dilapidated residential properties, as this class of collateral will have lower values compared to the

general real estate market prices. The impairment factor will also capture the resulting basis2 risk in the

event where individual property prices in the loan issuer’s portfolio fall below the house price index changes.

The impairment factor is used to parameterise the degree of dilapidation suffered by the collateral house

from inception of the ERM contract to its termination. It will account for dereliction idiosyncratic effects,

and capital improvement expenditure. The idea of the impairment factor is based on the normal wear and

tear of the collateral property. The dynamics of the impairment parameter may also provide additional

information that can improve the calibration of the house price volatility.

In this chapter I investigate the long term effects of idiosyncratic house price risk on ERM portfolio

cashflows. The discussion argues for the need to explain the characteristics of the NNEG portfolio values

when the well-known features3 of house price time series are well calibrated in the contract valuation.

The analysis formulates a framework that transparently calibrates and integrates property impairment and

idiosyncratic house price risk into ERM contracts to ensure fair value creation in ERM portfolios. Within

the same setup, the analysis also investigates the cash flow implications of the idiosyncratic house price risk

when using the GBM or time series based models in pricing ERM contracts. The chapter presents a closed

form formula for the impairment factor with which I explore the relationship between the term structure of

impairment factors and the volatility estimate from the house price model. More specifically, the analysis

identifies the corresponding impairment factors for various ages of a borrower that should be allied in order

to match the NNEG valuation without idiosyncratic risk. For example, using a volatility of σ � 13% in

the Black-Scholes put option NNEG valuation tends to produce NNEG values equivalent to a 2.6% annual

impairment factor in the NNEG valuation under the adjusted Black-Scholes formula4. This means that the

collateral house will lose in value about 13% after after fives just because of dilapidation and dereliction

idiosyncratic effects.

Based on the current market trends, I considered the portfolio effects of house price risk when looking

at the cash flow analysis from a lender perspective. We constructed an ERM portfolio that takes the view

that all borrowers live exactly to their expected lifetime. In setting up the profile of the borrowers, the study

recognises that the future lifetime expectancy of a 60 year old will differ from the lifetime expectancy of a 70

year old and so on, and it will also be different between males and females. Another approach randomises
2Andrews & Oberoi (2015) is one of the early studies that document the term-structure of basis risk in

ERM contracts.
3Glaeser & Nathanson (2017) presented an excellent discussion of house price time series features within

a perfectly rational model.
4The adjusted Black-Scholes formula equals the original NNEG Black-Scholes pricing formula adjusted

for property impairment or property dilapidation.
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arrival of termination event between the current age of the borrower and 100, so for example a 65 year old

female borrower’s time until termination is a random number between 1 and 35. Drawing 4 as the random

number means that the female borrower has 4 years until termination as an extreme portfolio I also consider

cash-flows for a portfolio where all borrowers go to 100 years.

The portfolio has 10,000 loan contracts in total. The total portfolio size is made of 4927 females and 5073

males. The sampling procedure follows from Hosty et al. (2008). Based on the loan to value ratios (LTVs)

introduced in Appendix C.1 the study used initial property values distributed as follows: 2500 borrowers

on Flexible LTV with 100,000 loan; 2500 borrowers on Flexible LTV with 200,000 loan, 2500 borrowers

on Flexible LTV with 310,000 loan and 2500 borrowers on Flexible Max Plus LTV with 950,000 loan. In

order to analyse the portfolio NNEG cash flows, I considered the following components of the loan portfolio:

the total expected value of the house collateral, portfolio cash generated, total portfolio accrued cash in

money account, the annual expected payment upon borrower termination, the four-year ahead total portfolio

expected payments, and the total NNEG exposure at risk (EAR) due to house collateral. The calculations

were based on the assumption that the loans are terminated at a random time before the expected future

lifetime maturities, for male and female borrowers. The mortality rates are estimated from the Office of

National Statistics life table for 2017.

The study presents the evolution of the portfolio outstanding balance and the evolution of generated

cash from ERM loan terminations under the ARMA conditional mean and an EGARCH conditional vari-

ance model (ARMA-EGARCH, hereafter) for underlying property prices. The spread between quantiles of

portfolio generated cash is larger under the GBM model. This implies riskier cash-flow projections that

would automatically require larger capital reserves under Solvency 2 set of regulations which supports the

conservative nature of the GBM model. The first 2-5 years of the portfolio lifetime shows an approxi-

mately equal spread between the quantiles of portfolio generated cash under both models. This supports

the earlier observation regarding the 2-year out-sample forecast analysis in Chapter 4 where both GBM and

ARMA-EGARCH models give similar future house price values.

When compared to the ARMA-EGARCH model, uncertainty levels in portfolio generated cash flow is

much larger under the GBM model. This observation is consistently associated with scenarios where time-to-

termination of portfolio loan contracts exceed 10-years. With respect to the comparative ledgers such as the

expected payments that the portfolio will generate next year versus the payments generated over the next

four years. There is a high plateau of sustainable payments of the money inflow under the ARMA-EGARCH

simulations between 15-22 years. Under the GBM model there is a peak around 20 years after which the

expected cash flows decrease much faster than in the case of the ARMA-EGARCH simulations.

The probability distribution of the EAR measures at various time horizons for the ARMA-EGARCH
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model and the GBM model, respectively show that essentially all histograms are entirely on the negative

domain. This is explained by the fact that the simulated house prices exceed the outstanding balance for

the respective loans in the portfolio. At all horizons, the distribution of EAR values coming from the Monte

Carlo simulation exercise in the GBM case has longer negative tail than the distribution generated for

the corresponding ARMA-EGARCH case, confirming that GBM simulations are overly conservative from a

regulatory perspective and leading to excess capital reserves costs that will make the RM market less efficient

on a capital efficiency basis and less appealing to consumers who will ultimately absorb this extra cost.

The range of ERM portfolio exposure at risk (EAR) is consistently larger in the GBM model com-

pared to the ARMA-EGARCH. The negative EAR values I observed is because the individual collateral

house consistently lies above the accumulated loan amounts. For periods beyond 20-years, the frequency of

EAR values generated under the ARMA-EGARCH model is double that of the GBM model. The ARMA-

EGARCH model seems to provide an opportunity for to capture tail extreme tail observations in EAR;

thereby allowing issuers to explain the long term effect of house price risk.

The remainder of the chapter is organized as follows: Section 5.2, describes the design structure of

the ERM portfolio and the parametrisation of portfolio cash flows; Section 5.3, presents results on empirical

analysis of UK house price index data. The investigation outlines both national and regional specific features

of the Nationwide house price index series for the UK; Section 5.5, reports the results under alternative

approaches of setting up the ERM portfolio comparing cash flows under both the GBM and the ARMA-

EGARCH models for underlying house prices. The analysis on the term structure of impairment factors is

presented in Section 5.4; Section 5.6 concludes.

5.2 Models and Methods

In this section, I describe and setup an ERM portfolio that closely capture current market information,

trying to stay as close as possible with the portfolio assumptions in Hosty et al. (2008) but linking the

termination probabilities to current mortality tables. The new market statistics include actual practitioner

data on contract rate, risk-free interest rate, mortality improvement factors, long-term care incidence rate

etc. The main ERM portfolio takes the view that all borrowers live exactly to their expected lifetime. Note

that the lifetime expectancy of a 60 year old will differ from the lifetime expectancy of a 70 year old and so

on, and it will be also different between males and females.

The portfolio has 10,000 loan contracts in total, 4927 female and 5073 males. The initial property value

is distributed as follows: 100k - 2500 borrowers on Flexible LTV, 200k - 2500 borrowers on Flexible LTV,
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310k - 2500 borrowers on Flexible LTV, and 950k - 2500 borrowers on Flexible Max Plus LTV.

The research uses the following cash flow variables, where i denotes the loan number and t the year

ahead.

• τ
piq
t � indicator variable if termination for loan i arrives in year t (taken as 1) or not (taken as 0)

• ω
piq
t = 1 if the loan (i) is still active, and is equal to 0 if it is not active.

• K
piq
t � L

piq
0 eRt accumulated balance for loan i at time t

• �
K
piq
t � K

piq
t �ωpiqt accumulated balance for loan i at time t, if the borrower survives to 100 years (and

t ¥ 100.).

• �Kt �
°
i

�
K
piq
t is the portfolio outstanding balance at time t

• C
piq
t � minpHpiq

t ,K
piq
t q � τ

piq
t is the cash generated in year t from loan i

• Ct �
°
i C

piq
t total portfolio new cash generated by loans terminating in year t

• ACt = total portfolio accrued cash in money account by time t; this is calculated recursively ACt �
ACt�1 � er � Ct.

• P
piq
t � EpCpiqt q � EpminpHpiq

t ,K
piq
t q � τ

piq
t q � EpminpHpiq

t ,K
piq
t qq � Epτ piqt q; is the payment expected

from loan (i) in year t under risk-neutral probability. This would be clearly zero in all years except
the year when borrower is expected to terminate5. In that year, that is when τ

piq
t q � 1, P piqt �

EpminpHpiq
t ,K

piq
t qq.

• Pt �
°
i P

piq
t is the total payment expected on the portfolio in year t,

• P 4Y
t � Pt�1 � Pt�2 � Pt�3 � Pt�4 is the total portfolio expected payments over the next four6 years.

• �
F
piq
t � L

piq
0 ert � ω

piq
t accumulated funding balance for loan i up to time t

• rFt � °i

�
F
piq
t is the portfolio outstanding funding balance at time t

• NetPt � Pt � p rFt ��Ft�1q is the portfolio total expected payment on the portfolio in year t, net of
interest payment for that year.

• NetP 4Y
t � P 4Y

t � p�Ft�4 � �Ftq is the total portfolio expected payments over the next four years, net of
interest payments during those four years.

• Ht �
°
iH

piq
t � total expected value of house collateral at time t

• EAR
piq
t � K

piq
t �H

piq
t NNEG exposure at risk for loan piq at time t

• EARt �
°
iEAR

piq
t � total NNEG exposure at risk due to house collateral

• E
piq
t � EpKpiq

t �H
piq
t q � K

piq
t � EpHpiq

t q is the expected exposure for loan piq at time t

• Et �
°
iE

piq
t � total expected exposure due to house collateral

• Γpiqt � Γpiqt�1e
r � Ct; Γ0 � L0 is the oustanding liability net of funding costs.

5My main portfolio takes the view that all borrowers live exactly to their expected lifetime. Note that
the lifetime expectancy of a 60-year-old will differ from the lifetime expectancy of a 70-year-old and so on,
and it will be also different between males and females.

6The 2-year out-of-sample forecasting error for the GBM and ARMA-EGARCH models in 4.7 shows
how both models produce similar future house price values. The ARMA-EGARCH performs better in a
5-year out-of-sample forecasting error analysis. Hence, the total portfolio payments over the next four years
provides an opportunity to compare portfolio cash-flow implications of the two models within a time frame
where both models possess equal performance in predictability.
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5.2.1 Modelling House Price Idiosyncratic Risk in ERM Loans

Recall the NNEG liability to the ERM loan issuer is valued as a put option in (4.6) that matures in, say,

T years with a terminal value maxpKT �HT , 0q. Following Alai et al. (2014), I assume the collateral house

in the ERM contract is possibly impaired in value at termination. We model the impairment using a value

compressing factor of ℘. From another view point, ℘ is the parameter that adjusts the market value of the

underlying house prices for the impact of dereliction/dilapidation of property maintenance.

Shiller & Weiss (2000) attributed this potential reduction in property to lack of maintenance by the

ERM borrower who may face a lessened financial interest in the collateral house. The ℘ parameter will allow

the loan issuer to analyse the resulting pool of impaired residential properties, as this class of houses will

have lower values compared to the general real estate market prices. Furthermore, the ℘ will also capture

the resulting basis risk between individual property prices that are collateral in the loan issuer’s portfolio

and the general house price index. We are also able to further investigate the issue of hefty discounting

applied to home values as mentioned in Warshawsky & Zohrabyan (2016).

Since the impairment parameter affects only the house prices at maturity, I have sHT � p1 � ℘qTHT ,

where ℘ denotes the annual rate of impairment charged on the collateral house price. It is evident that I

should impose that 0 ¤ ℘   1 while for practical purposes ℘ is closer to zero. The valuation of the NNEG

put option price is readjusted under a Black-Scholes model7 as follows

sAp0q � EQ
�
e�rT

�
KT �maxpKT � sHT , 0q

��
(5.1)

� EQ
�
e�rT

�
KT �maxpKT � p1� ℘qTHT , 0q

��
(5.2)

� p1� ℘qT te�rTEQ ��KT p1� ℘q�T �maxpKT p1� ℘q�T �HT , 0q
��u (5.3)

Hence, formulae (5.2) and (5.3) give the Black-Scholes price of the NNEG while allowing for the impaired

value adjustment. EQ denotes the risk-neutral expectation of the NNEG put option payoff and Q denotes

the risk-neutral measure. When using (5.2), I replace HT with sHT ; in (5.3) I will multiply te Black-Scholes

formula by p1� ℘qT and adjust KT to KT p1� ℘qT .

The readjusted Black-Scholes NNEG formula accounting for the idiosyncratic risk at time t � 0 is

BSPutadjpT q � KT e
�rTΦp�d�2 q �H0p1� ℘qT e�gTΦp�d�1 q (5.4)

7The Black-Scholes model is used here mainly for simplicity of exposition given that the NNEG valuation
can be carried out in closed-form solution. The thesis shows numerous instances using the Black-Scholes
model for the NNEG valuation.
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where d�1 � 1
σ
?
T

�
lnpH0{Kq � pr � g � lnp1� ℘q � 0.5σ2qT � and d�2 � d�1 � σ

?
T .

Consider T pτx the multiple decrement survival probability and denote by µpdqx , µ
pvq
x and µpeqx respectively

the force of decrement due to: mortality, voluntary prepayment and entry into long term care for a borrower

aged x at inception of the ERM contract. The cost of the NNEG with a given maximum term say η years

(such as η � 45 years for a 55 years old borrower) is the value of the portfolio of put options in (4.6) and (5.2).

Πp0q �
η̧

t�1
BSPutadjptqt�1p

τ
x1q

d
x,t�1 (5.5)

where t�1p
τ
x1q

d
x,t�1 is the probability that pxq survives t and dies within the next t � 1. Replacing with

1q
v
x,t�1 and 1q

e
x,t�1 will allow us to account for termination by voluntary prepayment or entry into long term

care. The three forces are mutually exclusive.

The formula (5.5) can be used to extract the equivalent implied volatility to use in the plain Black-

Scholes NNEG formula that matches the idiosyncratic risk adjusted Black-Scholes NNEG valuation. In this

way one can answer the question “what is the volatility parameter to use in the Black-Scholes formula such

that the NNEG put option value matches another NNEG put option which is based on real-world estimated

volatility with impaired adjusted house value at termination?”. In other words, how can I transfer the

idiosyncratic house price risk, under any suitable model, into a volatility adjustment under Black-Scholes

put option price formula?.

In order to get a feeling for the difference between the idiosyncratic house price risk adjusted NNEG and

a no idiosyncratic NNEG with specified volatility sσ, under the Black-Scholes set-up, since the formula (5.5)

is just a weighted average of individual annual or monthly put option prices, I need to consider only the

difference in formula (5.4) and the Black-Scholes put option price derived earlier which is equal to

Λp℘q � KT e
�rT

�
Φ
�� d�2

�� Φp�rd2q
�
�H0e

�gT
�
p1� ℘qTΦ

�� d�1
�� Φp�rd1q

�
(5.6)

where

d�1 � d1 � T

σ
lnp1� ℘q, d�2 � d2 �

?
T

σ
lnp1� ℘q

and rd1 � 1rσ?T rlnpH0{KT q � pr � g � 0.5rσ2qT s

and rd2 � rd1 � rσ?T . Remarking that
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Λp0q � ��KT e
�rTΦp�rd2q �H0e

�gTΦp�rd1q
�

(5.7)

which is negative being minus the price of a put option, and

lim
℘Õ1

Λp℘q � KT e
�rT p1� Φp�rd2qq �H0e

�gTΦp�rd1q (5.8)

� KT e
�rTΦprd2q �H0e

�gTΦp�rd1q (5.9)

which is positive, the continuity of Λ as a function of ℘ implies that there is a solution to the equation

Λp℘q � 0 for any H0,KT , r, g, rσ, and σ.

5.3 Empirical properties of UK house price index

This section analyses the house price index across the entire UK in order to determine cross-similarities and

differences between the regional and national property price time series. We let Yt denote the log-return of

UK house price index and calculate the j-horizon compounded return as the sum of quarterly returns where

Yt�1:t�j � lnHt�j � lnHt

�
J̧

j�1

�
ht�j � ht�j�1

�
(5.10)

where ht is the log of house price at time t. The data is from 1973Q4 - 2019Q3 and plots for house price index

log-returns at j � 5 and j � 10 are presented in Figure 5.1 and Figure 5.2 respectively. The corresponding

99%-VaR is calculated for each rolling volatility estimate in order to explore the characteristics of quarterly

losses suffered at 1% of the time assuming the value of investment is £1000.

Figure 5.1 shows how the volatility of the 5-year horizon log-returns lies between 1% and 8.5% across

the entire sample period. Between February 1993 and August 1998, the rolling volatility for the national

house price index (the red dotted line) is below that of the other regions. For post 1994 periods, I observe

that the 5-year rolling volatility series for Northern Ireland consistently lies above the calculations in the

other regions. There is a downward trend in volatility for periods after 2015 across the whole UK. Clearly,

the regional indices appear to increase and decrease together together with the price index at the national

level.

The 10-year rolling volatility plots presented in Figure 5.2 shows lower levels of volatility, ranging

between 2% and 4% (without Northern Ireland) and between 2% and 6% when Northern Ireland is included.
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(a) 20-quarter (5 year) rolling volatilities

(b) 20-quarter (5 year) rolling historical VaR

Figure 5.1: Evolution of 20-quarter rolling volatility and 99%-VaR.

Notes: Figure (a) presents the 20-quarter rolling volatilities of house price returns and Figure (b) illustrates
the evolution 99%-VaR using a 20-quarter (5-year) rolling window of house price returns. The value of
investment in the VaR calculations is £1000. Each στ is based on sample size τ, τ � 1, τ � 2, . . . , τ � 20,
where τ is at a quarterly frequency.
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(a) 40-quarter (10 year) rolling volatilities

(b) 40-quarter (10 year) rolling historical VaR

Figure 5.2: Evolution of 40-quarter rolling volatility and 99%-VaR.

Notes: Figure (a) presents the 40-quarter rolling volatilities of house price returns and Figure (b) illustrates
the evolution 99%-VaR using a 40-quarter (10-year) rolling window of house price returns. The value of
investment in the VaR calculations is £1000. Each στ is based on sample size τ, τ � 1, τ � 2, . . . , τ � 40. τ
is at a quarterly frequency.
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Here I observe lesser variability in the rolling volatility. The 99%-VaR is less variable over the longer-horizon

with a £100 maximum (without Northern Ireland). The VaR levels appears to move in the same direction

as the rolling-volatilities. The number of observations in the 10-year rolling window volatility calculation is

large enough to always incorporate more of the post-2015 upward trend observed in the house price series.

This is in contrast to the 5-year rolling window volatility calculation which slowly adds on larger observations

post-2015.

5.3.1 Multi-sample test of equal variance across regions

We implement a multi-sample test for equal variances across the regional house price returns series. This

is a test of homogeneity of variance across regional house price returns against the alternative hypothesis

that not all regional log-returns series have the same variance. This will allow loan issuers to verify whether

the volatility used in pricing the NNEG clause in ERMs should be region-specific. The test produces a

Bartlett’s8 statistic of 62.247 with a low p-value, p � 2.0758e�8, suggesting a rejection of the null hypothesis

that the variances are homogeneous across all regions. This implies at least one region has significantly

different volatility in log-returns.
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Figure 5.3: Box-plot for Bartlett’s test of equal variance across regional house price index in
UK.

Notes: The test is conducted on quarterly log-returns of UK house price indices using a sample period
spanning 1973Q4 to 2019Q3.

8The Bartlett’s test is a test of homogeneity of the variances across regions. This allows us to verify
whether the regional house price samples have equal variances. An alternative test is the Levene test.

193



5.3.2 Distributional properties of regional house prices

Figure 5.4 presents a plot of the volatility of realized house price return against the annual average price

returns across UK. Northern Ireland recorded the largest (8.12%) volatility of returns while Scotland recorded

the least (5.40%). The highest average return was observed in the London house price series (1.96%), while

the North reported the lowest average return of 1.53%.

Figure 5.4: Volatility and average house price index for United Kingdom.

Notes: This Figure plots the volatility of the realized house prices against the annual average house price
returns across the UK. The illustration summarises the house price index mean-variance relation across all
regions in the UK.

We use the Kolmogorov-Smirnov (KS) test to verify whether the observed distributional differences in

returns across regions is significant. Most NNEG pricing models in literature tend to use volatility of national

house prices index as proxy for all loans, notwithstanding the location of the underlying house collateral (see

Hosty et al. 2008, Li et al. 2010, Dowd 2018, Dowd et al. 2019). This may lead to model risk exposures

when region-specific variations in house prices are completely ignored and volatility is kept constant at the

national level. The KS test enables us to identify whether the underlying region-specific differences in UK

house price variations are significant.

A common practice to make calculations more facile is to invoke the independent-and-identically-

distributed (i.i.d) assumption, where the regional and national house price returns are assumed to come

from the same distribution (see Li et al. 2010, Dowd et al. 2019). Huang et al. (2020) considered the effect

of region-specific variations in house price risk and fitted an ARIMA-GARCH model with jump calibrations
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house price return series of four regions in the UK. Empirical results presented in Table 5.1 suggest that

(i.i.d) assumption may not hold under different return horizons. A possible solution to this issue is to de-

termine the best transformation to apply to the regional return-series Yt�1:t�j to produce a corresponding

version rYt�1:t�j which possesses the same distribution as the national house price return series Yt�1:t�j .

Table 5.1: Two-Sample Kolmogorov-Smirnov Test Using Regional and National House Price
Index Return Series.

Region J � 1 J � 4 J � 5 J � 10
North 0.142** 0.167** 0.165** 0.194**
YorksHside 0.109 0.156** 0.146* 0.174**
NorthWest 0.093 0.161** 0.104 0.188**
EastMids 0.066 0.094 0.098 0.132
WestMids 0.066 0.139* 0.061 0.201*
EastAnglia 0.06 0.083 0.140* 0.125
OuterSouthEast 0.077 0.089 0.146* 0.139
OuterMet 0.044 0.111 0.134* 0.146
London 0.06 0.161** 0.177** 0.201**
SouthWest 0.055 0.067 0.11 0.097
Wales 0.109 0.161** 0.152** 0.181**
Scotland 0.098 0.139* 0.177** 0.222**
Nireland 0.142** 0.061 0.165** 0.153

Notes: The test decision is based on the null hypothesis that the regional and national house price index
return series are from the same distribution. Significance at 5% level is indicated by �� while � indicates
significance at 10% level. We conduct the test for J � 1, 4, 5, and 10 quarter-horizon.

These preliminary results further suggest that prudent ERM issuers need to explore diversification

strategies for region-specific distributional variations together with their impact on regulatory capital re-

quirements. In an instance where ERMs are priced on a loan-by-loan basis as per regulatory requirement;

the loan issuer would be expected to set a house price volatility which ensures fair value pricing. This choice

would be the real-world house price volatility estimated from either the national or regional house price

index (see an example in Huang et al. 2020). The loan issuer may also settle on a mathematically adjusted

real-world volatility (see Hosty et al. 2008, Li et al. 2010). Results in Table 5.1 also confirm the need to

consider region-specific variations in the volatility of UK house prices essentially when there is more than

one-period return involved.
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5.3.3 Accounting for regional house price variations

We have so far explored formal statistical tests which jointly confirm distributional differences between

regional and national house price index. We proceed to investigate possible transformations that can be

applied on the regional log-returns in order to mimic the distributional properties of the log-returns on the

national house price series. Suppose, I let Yt�1:t�j and rYt�1:t�j respectively denote the regional and national

house price return series at time t with J�period horizon and implement the transformation

E

� rYt�1:t�j � a1
a2

�
� ErYt�1:t�js (5.11)

V ar

� rYt�1:t�j � a1
a2

�
� V arrYt�1:t�js (5.12)

where Er�s and V arr�s are the respective unconditional expectation and variance of the series. Then a1 and

a2 are the unknown constants required to transform the regional return series such that

E rYt�1:t�js � a�1
2 E

�rYt�1:t�j
�
� a1 � a�1

2 (5.13)

V ar rYt�1:t�js � a�2
2 V ar

�rYt�1:t�j
�

(5.14)

Table 5.2 reports the values of a1 and a2 that correspond to each J�horizon return across the UK regional

house price indices. The results shows that a1 is generally negative at lower horizon returns i.e j ¤ 4 while

a2 is strictly positive across all return horizons. a1 ¡ 0 for higher horizons.

The values of a1 and a2 are used to create the region-specific transformed log-return series. It is worth

noting that the transformed series generated in the transformation exercise are now dependent samples. In

this regard, I will be unable to use the traditional Kolmogorov-Smirnov (KS) test that based on independent

samples. We adopt a bootstrap version of the univariate KS test proposed in Abadie (2002) in order to

correct for the case where the distributions being compared are not independent. Table 5.3 shows how

the proposed transformation procedure increases the likelihood of obtaining regional house price log return

series which are from the same family of distribution as the national house price return series. The findings

suggests that the scaling constants applied to the volatility parameter in the GBM pricing model for NNEG

valuation must be carefully selected.
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Table 5.2: Estimates of Scaling Constants

Region J � 1 J � 4 J � 5 J � 10

a1 a2 a1 a2 a1 a2 a1 a2

North -0.007 1.306 -0.013 1.105 -0.063 1.076 -0.087 1.040
YorksHside -0.007 1.308 -0.020 1.199 -0.081 1.118 -0.135 1.095
NorthWest -0.002 1.097 -0.008 1.088 -0.044 1.094 -0.032 1.026
EastMids -0.003 1.179 -0.010 1.140 -0.039 1.103 -0.058 1.082
WestMids -0.004 1.202 -0.007 1.078 -0.026 1.041 -0.001 0.976
EastAnglia -0.006 1.350 -0.016 1.257 -0.062 1.202 -0.130 1.211
OuterSouthEast -0.003 1.226 -0.011 1.218 -0.039 1.182 -0.080 1.184
OuterMet -0.001 1.157 -0.006 1.167 -0.012 1.133 -0.031 1.130
London -0.002 1.262 -0.003 1.207 0.014 1.154 0.063 1.092
SouthWest -0.003 1.208 -0.007 1.140 -0.025 1.116 -0.052 1.125
Wales -0.006 1.299 -0.016 1.154 -0.059 1.076 -0.076 1.033
Scotland -0.003 1.060 0.004 0.850 0.008 0.842 0.027 0.841
Nireland -0.011 1.582 -0.033 1.406 -0.143 1.242 -0.245 1.193

Notes: This table presents the estimates of the respective constants a1 and a � 2 needed to transform the
regional series in order to obtain the same distribution as the national house price return series.

Table 5.3: Two-Sample KS Test with Abadie Correction

Region J � 1 J � 4 J � 5 J � 10
North 0.038 0.061 0.073 0.061
YorksHSide 0.038 0.072 0.073 0.072
NorthWest 0.044 0.056 0.061 0.056
EastMids 0.033 0.067 0.049 0.067
WestMids 0.055 0.044 0.055 0.044
EastAnglia 0.049 0.078 0.061 0.078
OuterSouthEast 0.055 0.061 0.085 0.061
OuterMetro 0.06 0.061 0.098 0.061
London 0.055 0.078 0.122 0.078
SouthWest 0.06 0.056 0.03 0.056
Wales 0.055 0.067 0.067 0.067
Scotland 0.066 0.067 0.085 0.067
NIreland 0.055 0.122* 0.152** 0.122*

Notes: The test is carried out between each transformed regional house price return series, and the UK
national house price index return series. The reported values are the test statistic of each test. The Abadie
correction enables us to implement the KS test for pairs that are not independent and identically distributed.
The test-statistic of the two-sample KS test with Abadie (2002) correction are reported. �� denotes signifi-
cance at 95%.
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5.3.4 Predictability of house prices

In order to account for the dynamic behaviour of the log-return of house price time series, I specify a model

that will describe the temporary deviations about the trend of log house price ht

ht � Υt �
8̧

j�0
υjεt�j (5.15)

where Υt describes the trend and εt is a random disturbance. Fluctuations in ht will be temporary if°8
j�0 υjεt�j is stationary stochastic process. ht is trend stationary as υj Ñ 0 for large j.

This ensures that a decline in house price index below trend today has no effect on forecasts of the

index value Etpht�jq in distant future. Thus growth rates for any given house price index must rise above

their historical average for several periods until the trend line is re-established. The random walk equation

to capture permanent house price index fluctuations is specified as

ht � µ� ht�1 � εt (5.16)

The size of the random walk component in the house price index is measured by the variance of its log

differences V arpht�ht�qq � qσ2. Gu (2002) showed that a constant variance suggests that the natural log of

house price index is a pure random walk, q is the number of differences taken. As V arpht�ht�qq Ñ 2σ2
h the

natural log of house price index is stationary about a trend as specified in Equation 5.15. If ht is a random

walk, then p1{qq � V arpht� ht�qq, which is the variance ratio9 expressed as a function of q-difference would

be a constant at σ2 (see Gu 2002).

Empirical results in Gu (2002) showed that fluctuations in house price index can be partially temporary

with a small component of random walk. In the long run, this structure allows the impact of small shocks

to be reversed. Hence, a shock that impacts house prices today will be slowly reversed in the long run at a

rate which a simple parametric model e.g. GBM may not be able to capture. Appendix D.2 presents the

standard normal test statistic for the variance ratio test specified for the hypothesis of homoscedasticity and

heteroscedasticity consistent estimators.
9The variance ratio declines to zero if ht is trend-stationary and negatively correlated. It increases with q

if ht is not trend stationary and positively correlated. The variance ratio will equal the variance of the shock
to the random walk component if the house price index prices is partly permanent and partly temporary.
The modelling will then be a combination of a stationary series and a random walk.
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Table 5.4: Estimated variance ratios and heteroscedasticity consistent Z-values

Region qp2qV R Z�pqq qp4qV R Z�pqq qp8qV R Z�pqq qp16qV R Z�pqq
North 0.48 -4.74 0.28 -3.69 0.14 -3.00 0.09 -2.30
YorksHside 0.61 -4.06 0.36 -3.90 0.22 -3.14 0.12 -2.42
Northwest 0.68 -3.33 0.38 -3.74 0.26 -2.98 0.17 -2.30
EastMids 0.67 -3.23 0.42 -3.21 0.26 -2.72 0.16 -2.19
WestMids 0.63 -2.35 0.29 -2.83 0.21 -2.43 0.12 -2.14
EastAnglia 0.62 -4.60 0.33 -4.36 0.22 -3.12 0.12 -2.34
OuterSoutheast 0.79 -2.35 0.43 -3.59 0.29 -2.80 0.18 -2.22
OuterMetro 0.82 -2.07 0.51 -3.19 0.32 -2.80 0.19 -2.28
London 0.64 -4.04 0.37 -4.02 0.25 -3.08 0.15 -2.40
SouthWest 0.81 -2.08 0.36 -3.72 0.24 -2.79 0.15 -2.14
Wales 0.48 -4.22 0.32 -3.14 0.20 -2.59 0.11 -2.20
Scotland 0.59 -3.98 0.24 -4.28 0.13 -3.38 0.07 -2.58
Nireland 0.51 -5.33 0.30 -4.28 0.19 -3.22 0.11 -2.41
uk 0.91 -1.15 0.46 -3.65 0.31 -2.92 0.18 -2.36

Notes:This table presents the variance ratios estimated across the regional house price indexes in the UK
over q-differences of log-returns. The data is quarterly and q is set at (2, 4, 8, and 16). A unit variance ratio
is indicative of a series that follows random walk. A ratio greater than unity indicates that variances of the
log-return series grow more than proportionally with time and this indicates a positive autocorrelation. A
variance ratio that is less than unity suggests that the variance of the log-return series grow less than pro-
portionally with time indicating a negative autocorrelation. Z�pqq ¡ 1.645 indicates statistical significance
at 10% level, Z�pqq ¡ 1.96 indicates significance at 5% level, and Z�pqq ¡ 2.575 denotes significance at 1%
level.

Table 5.4 report the variance ratio test results for UK house price index series. The variance ratios are

smaller than unity indicating that variances of house price returns grow less than proportionally with time.

Variance ratio values less than unity are suggestive of a negative autocorrelation for the index return series.

Furthermore, the test show statistically significant autocorrelations at 5% level across all regions including

Wales, Scotland and Northern Ireland. More specifically, the results suggest that house price returns are

not random across UK, hence price increase in one quarter are likely to be followed by a price decrease in

another and vice versa10. Negative autocorrelation is consistently observed when q is increased from 2 to 16

providing evidence that house price changes are not random.

5.3.5 Volatility, return and autocorrelation

The thesis further examined the empirical relationship between autocorrelation, volatility, and house price

log-returns. Similar to Gu (2002), I specify regression equation

ρiq � α� β1σi � β2σ
2
i � β3Yi � εi,t (5.17)

10The level of seasonality could also play a role in driving this observation.
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where ρq is level of autocorrelation in the ith house price index with q-difference. ρq � |yV R� 1|, allowing us

to measure the extent of deviation from randomness with respect to the same scale. σi and σ2
i respectively

denote the standard deviation and variance of log of house price. Yi is average quarterly log returns. We

use σi and σ2
i as explanatory variables to account for any nonlinear relationship that may exist between

volatility and autocorrelation. The regression results are presented in Table 5.5.

Table 5.5: Estimated relations between volatility, return and autocorrelation

|V R� 1| α σ σ2 Y Adj.R2

qp2q 12.84
(4.41)**

-21.04
(8.68)**

13.06
(5.02)**

-253.1
(136.44)* 0.48

qp4q 6.21
(2.79)*

-10.19
(5.50)*

5.69
(3.18)**

-61.83
(86.38) 0.36

qp8q 5.43
(1.71)***

-8.52
(3.37)**

4.72
(1.95)**

-49.71
(52.99) 0.58

qp16q 4.00
(1.14)***

-6.00
(2.24)**

3.21
(1.29)**

-20.67
(35.19) 0.58

Notes: The table presents the regression coefficients depicting the relationship between volatility, return and
autocorrelation at q � 2, 4, 8 and 16. The t-statistics are in parenthesis. *, ** and *** respectively denote
the significance at 10%, 5%, and 1% levels. The sample period is from 1973Q4 -2019Q3.

The relationship between volatility and autocorrelation is negative and statistically significant. This

observation is consistent with earlier results observed in Gu (2002) who used United States house price index.

The relationship between Y and ρq is negative statistically insignificant when q is greater than 2. In practice,

the prudential regulatory authority (PRA) uses an inflated volatility (about, 13%) when pricing the NNEG

in ERMs. This suggests the PRA assigns a higher probability to the incidence of the crossover risk. Some

market practitioners believe that for shorter durations, the presence of serial correlation might mean that

the Black-Scholes volatility needed to be higher than historic volatility in order to replicate an ARMA result

that did pick up that serial correlation. Given the results in Table 5.5, it is not clear to how increasing

volatility for a process that does not have serial correlation, such as the GBM, will induce or recover values

as if serial correlation existed. This is an ad-hoc procedure that does not seem to have any grounding into

statistical modelling. Once again, the volatility relations seem to suggest that values such as 11% or 13%

may be used as stress values and not as current data generated volatility markers.

5.4 Property Impairment and Implied Volatilities

Figure 5.5 presents the corresponding impairment factors for various ages of a borrower that should be

applied in order to match; the NNEG valuation without idiosyncratic risk and 13% volatility under Black-
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Scholes formula with corresponding NNEG valuation with idiosyncratic house price risk under Black-Scholes

formula and ARMA-EGARCH method. For example, using a volatility of 13% in the Black-Scholes put

option NNEG valuation is equivalent to assuming a 2.6% annual impairment factor in the NNEG valuation

under the adjusted Black-Scholes formula. This means that the collateral house will lose in value about 13%

after five years, 23% after ten years, 33% after 15 years and 41% after 20 years because of dilapidation and

dereliction idiosyncratic factors. We can notice that for the UK, the idiosyncratic risk adjustment rate to

be applied for the ARMA-EGARCH is always below the corresponding rate for the Black-Scholes, with the

largest difference of almost 1% per annum, for borrowers with an age between 85 and 90. The intuition for

this results is that an ARMA-EGRACH model produces house price returns within a smaller band the GBM

for which variance of returns increases linearly with time and therefore small impairment factors are implied

under this model to match a given target NNEG.
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Figure 5.5: Comparison of the implied impairment factor across borrower’s age for NNEG
valuation under the Black-Scholes and ARMA-EGARCH models

Notes: The implied volatility calculations are for a female borrower aged 55 years at inception and standard
market values for other inputs H0 � 310, 000, r � 0.175%, R � 5.25%, g � 1% at the end of 2019.

The graphs depicted in Figure 5.6 show the implied volatility obtained by varying the impairment

factor on panel (a) and the implied impairment factor given by varying the volatility parameter on panel

(b), in (5.5) where the left side is taken as the NNEG value obtained as recommended by the PRA, using

the Black-Scholes formula with an inflated volatility of σ � 13% and a rental yield equal to g � 1%. Both

implied volatility surfaces are quite steep, reflecting the characteristics of the Black-Scholes formula.

Since the ARMA-EGARCH model is more robust for modelling house prices under the physical measure,
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(a) implied volatility (b) implied impairment factor

Figure 5.6: Sensitivities related to idiosyncratic risk relative to the baseline scenario using
calculations for a Female borrower aged 55 years at inception and standard market values
for other inputs H0 � 310, r � 0.57%, R � 4.91%, g � 1% at the end of 2019.

it is useful to observe the sensitivity of the impairment factor when applied to the NNEG valuation under

the ARAM-EGARCH to match the NNEG valuation under Black-Scholes with various volatility parameters

σ. This exercise leads to the results presented in Figure 5.7. If an insurer would like to match the PRA

Black-Scholes NNEG with 13% volatility while using internally the ARMA(4,3)-EGARCH(1,1) model then

the values along the curve extracted from Figure 5.7 for all respective borrower’s age are quite small up to

the age of 80, while increasing rapidly afterwards. In other words, under the ARMA-EGARCH model, the

idiosyncratic risk manifests itself only for quite old borrowers who are indeed unlikely to carry out repairs

of the house. By contrast, the same mechanism applied under the Black-Scholes model marks idiosyncratic

risk for “younger” ages, over-penalising in our opinion this category of borrowers from this point of view.

5.5 ERM Portfolio Cash Flows Analysis

In this section, I will consider the portfolio effects of house price risk when looking at the cash flows analysis

from a lender perspective. My main portfolio takes the view that all borrowers live exactly to their expected

lifetime. Note that the lifetime expectancy of a 60 year old will differ from the lifetime expectancy of a 70

year old and so on, and it will be also different between males and females.11

11Another portfolio randomises arrival of termination event between the current age of the borrower and
100, so for example for a 65 year old female I draw a random number between 1 and 35. As an extreme
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Figure 5.7: The implied impairment factor across borrower’s age when matching the NNEG
valuation under the Black-Scholes with various σ and ARMA-EGARCH model.

Notes: The implied volatility calculations are for a female borrower aged 55 years at inception and standard
market values for other inputs H0 � 310, 000, r � 0.175%, R � 5.25%, g � 1% at the end of 2019.

The portfolio has 10,000 loan contracts in total, 4927 female and 5073 males. The initial property value

is distributed as follows: 2500 borrowers on Flexible LTV with 100,000 loan; 2500 borrowers on Flexible

LTV with 200,000 loan, 2500 borrowers on Flexible LTV with 310,000 loan and 2500 borrowers on Flexible

Max Plus LTV with 950,000 loan.

The following notations are used here.

If ωpiqt = 1 if the loan (i) is still active, and is equal to 0 if it is not active then K
piq
t � L

piq
0 eRt is the

accumulated balance for loan i at time t and �
K
piq
t � K

piq
t � ω

piq
t is the accumulated outstanding balance for

loan i at time t, if the borrower survives to t; �Kt �
°
i

�
K
piq
t is the portfolio outstanding balance at time t.

The evolution of accumulated loan balance Lpiq0 eRt � ω
piq
t in Figure 5.9a is the same for both GBM

and ARMA-EGARCH models. There seems to be an inflection point just after 20 years for the portfolio

accumulated balance. The tipping point for the generated cash is around 20 years. Thereafter, projected

cash flows in the second part of the life of the portfolio decreases at a faster rate. Under both models the

portfolio runs down at 40 years.

In order to analyse the portfolio NNEG cash flows, I let Ht �
°
iH

piq
t denote the total expected value

of house collateral at time t. Cpiqt � minpHpiq
t ,K

piq
t q � τ

piq
t is the cash generated in year t from loan i and

portfolio I also consider cash-flows for a portfolio where all borrowers go to 100 years. The results for this
latter portfolio are not reported here but they are available from authors upon request.
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Table 5.6: Descriptive statistics for a hypothetical ERM portfolio.

Age Band Prop. Value (mil GBP) Initial Loan (mil GBP) Weight Average Maturity
Panel A: Profile of male borrowers

55-60 16.74 2.30 0.85% 27.69
60-64 204.29 38.80 11.28% 24.59
65-69 440.82 109.20 26.30% 21.01
70-74 447.95 135.87 28.73% 15.78
75-79 264.12 89.63 18.09% 8.02
80-84 141.98 54.52 10.36% 3.00
84+ 56.73 23.54 4.39% 3.00

Panel B: Profile of female borrowers

55-60 14.26 1.92 0.75% 28.20
60-64 198.71 37.79 11.31% 25.19
65-69 427.18 105.76 26.26% 22.41
70-74 451.05 136.99 29.83% 18.35
75-79 262.88 89.51 18.58% 12.55
80-84 121.52 46.80 9.15% 4.57
84+ 51.77 21.48 4.13% 3.00

Ct �
°
i C

piq
t represents the total portfolio new cash generated by loans terminating in year t; ACt is the total

portfolio accrued cash in money account by time t and it is calculated recursively ACt � ACt�1 � er � Ct.

P
piq
t � EpCpiqt q � EpminpHpiq

t ,K
piq
t q � τ

piq
t q � EpminpHpiq

t ,K
piq
t qq � Epτ piqt q; is the payment expected

from loan (i) in year t. This would be clearly zero in all years except the year when borrower is expected to

terminate. In that year, that is when τ
piq
t � 1, P piqt � EpminpHpiq

t ,K
piq
t qq.

Pt �
°
i P

piq
t is the total payment expected on the portfolio in year t, while P 4Y

t � Pt�1�Pt�2�Pt�3�Pt�4

is the total portfolio expected payments over the next four years.

EAR
piq
t � K

piq
t � H

piq
t NNEG exposure at risk for loan piq at time t and then EARt �

°
iEAR

piq
t �

total NNEG exposure at risk due to house collateral. The calculations are based on the assumption that the

loans are terminated at a random time before the expected future lifetime maturities, for male and female

borrowers.

5.5.1 Portfolio calculations with GBM and ARMA-EGARCH

The calculations are based on the assumption that the loans are terminated at a random time before the

expected future lifetime maturities, for male and female borrowers. A separate set of calculations with loan

terminated at exactly the expected future lifetimes and another one at random times up to 100 years, are

available upon request from authors.

The graphs in Figure 5.8 illustrate house price pathways under the GBM and the ARMA-EGARCH

model, under the physical measure. The GBM price paths display more variability, indicating the possibility
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of house prices to be overall lower at long term horizons.
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Figure 5.8: House price pathways up to 46 years under GBM and ARMA-EGARCH models.

In Figure 5.9, I illustrate the evolution of the portfolio outstanding balance under both GBM and

ARMA-EGARCH model, on the left side graphs, and the evolution of generated cash from loan terminations,

again under each GBM and ARMA-EGARCH models. The evolution is quite similar under both models

for each of the five important quantiles. There seems to be an inflection point between 10-15 years for the

portfolio accumulated balance, which may be explained by the peak around 20 years horizon for the portfolio

generated cash.
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Figure 5.9: Evolution of outstanding portfolio loan balance.

The portfolio accrued cash account grows as depicted in Figure 5.10 where I also illustrate the portfolio

outstanding funding balance. The evolution is almost symmetric, as the cash generated grows rapidly the

funding liability balance decreases substantially beyond 25 years.
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Figure 5.10: Evolution of cash generated by ERM portfolio and outstanding funding balance.

Figure 5.11 shows various comparative ledgers. On the left side I display the expected payments that

the portfolio will generate next year versus the payments generated over the next four years. The peak of

the money inflow will occur, under the GBM model between 20-25 years and under the ARMA-EGARCH

model, between 15-25 years. The portfolio outstanding balance dominates the funding balance, over the

entire portfolio life.
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Figure 5.11: Comparison of various balance ledgers measures.

The graphs displayed in Figure 5.12 show the portfolio expected payment, net of funding costs, under

both models. The evolution and percentiles indicate a similar evolution, with the break-even zero cross-over

point just before 20 years. This suggests that, under our simulated scenarios, the risk exposure declines over

time, and only after 20 years the portfolio of ERMs becomes truly profitable.
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Figure 5.12: Evolution of net balance. A negative balance indicates profits.

The probability distribution of the EAR measures are calculated at various time horizons (5,10,15,20,25,30)

and described by the graphs in Figure 5.13 for the GBM model and by the graphs in Figure 5.14 for the
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ARMA-EGARCH model. We observe that essentially all histograms are entirely on the non positive do-

main. This is explained by the fact that the simulated house prices exceed the outstanding balance for the

respective loans in the portfolio. With a larger number of simulated scenarios is possible that some loans

will have accumulated balances exceeding the price of the collateral house.

Figure 5.13: EAR portfolio measures at various points in time under GBM model.

Figure 5.13 and Figure 5.14 shows the percentiles of the expected exposure due to collateral risk, under

both GBM and the ARMA-EGARCH model. While the profile looks very similar for the two models, as

order of magnitude is larger for the latter model. The fact that the exposure is actually negative is a good

characteristic, indicating in reality that there is very little risk due to the exposure to house prices.
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Figure 5.14: EAR portfolio measures at various points in time under ARMA-EGARCH
model.
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Figure 5.15: Profile of expected exposure based on evolution of collateral house prices.
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5.6 Chapter Summary

The valuation of the NNEG is a hotly debated topic among practitioners and academics. So far, the ERM

market space determine the NNEG cost as a put option on the collateral house with a random time-to-

maturity that is contingent on the borrower(s) mortality, early prepayment or transition into long term care.

The strike price of the put option is the accumulated value of the unamortised loan at the maturity date. The

PRA still considers that the Black-Scholes formula is appropriate for the NNEG put option valuation. Other

option pricing techniques can be used so far as they satisfy a set of principles in the PRA policy statement.

So far, the best estimate of the NNEG cost is “the mean of a stochastic distribution of possible future

guarantee costs, where random variables used in the stochastic projection have been calibrated based on a

best estimate of their true distributions”. The valuation procedure described for the Black-Scholes formula

comes with fixed values of the volatility of the underlying house price to 13% and a minimum deferment rate

of 1%.

This research study undertakes a detailed investigation on the stylised properties of regional house price

indices in the UK. The findings suggest that house price increments exhibit positive autocorrelation in the

near horizon and negative autocorrelation in the long horizon. The investigation on the relationship between

autocorrelation and volatility shows that autocorrelation is significant and negatively related to volatility

across all regions in the UK, consistent with Gu (2002) and Tunaru (2017). The sampling distribution of

the house price volatility in the GBM model ranges between 4.0% - 5.6% which is at least two times lower

than the 13% volatility that is fixed by the PRA.

Another important finding refers to the relationship between the property impairment factor p℘q and

the volatility pσq of the underlying house prices over the lifetime of the ERM loan contract. ℘ and σ are

positively related, and the scenario used in this research study shows that an implied volatility of 13% is

equivalent to assuming a 2.6% annual impairment factor in the NNEG valuation. Thus, the market value of

the collateral house sH20 � p1� ℘qTH20 will lose about 41% of its value (without) impairment by the 20th

year of the ERM contract. The maximum likelihood estimate (MLE) of the volatility in the GBM model

used in this study is 4.88%, which is equivalent to an impairment rate of 0.8% in Figure 5.6. In this case,

the market value of the collateral house at the 20th year loses 15% of its market value.

Finally, the results show how the house price pathways under the GBM model display more variability

compared to the ARMA-EGARCH model. This suggests that the is a higher possibility for house prices to

be overall lower at long term horizons. The term structure of the portfolio outstanding funding balance is

symmetric, as cash the generated grows rapidly the funding liability balance decreases substantially beyond
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25 years. Regarding the expected payments that the portfolio generates between the next year and the next

four years, I find that the peak of the money inflow will occur, under the GBM model between 20-25 years

and 15-25 years under the ARMA-EGARCH. The portfolio outstanding balance consistently exceeds the

funding balance over the entire portfolio life. More importantly I find that the cross-over point occurs just

before 20 years, suggesting that the risk exposure declines over time and the certainty of portfolio profits

greatly improves after 20 years.

The NNEG value can be considered at the portfolio level or at the loan level. In this research I focus

our analysis on individual loan NNEG calculation. Future research could continue with investigations on

NNEG valuation at portfolio level and the degree of capital savings that can be made due to diversification

of portfolios and possible NNEG calculation at portfolio level.
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APPENDIX D

Additional Material for Chapter 5

D.1 De-smoothing approach

One approach to deal with serial-correlation in house prices that is apparently being used by life actuaries

working on annuities is to use a desmoothing procedure and get the modelling that way. While I do not

fully agree with the standard desmoothing procedure that is normally applied to commercial real estate

valuations because the indices there are appraisal based, a potentially good line of modelling in the context

of real estate derivatives is described in Van Bragt et al. (2015) and Tunaru (2017). They consider the

observed real estate price index as the convex combination of an “efficient market” price or true market price

yptq and the previously observed market price apt� 1q

aptq � Kyptq � p1�Kqapt� 1q

with K a confidence parameter linking the two. This model is equivalent to an exponentially weighted

moving average (EWMA) model that is well-known in financial risk management. To account properly for

time value of money the model is adjusted using an expected annual return π

aptq � Kyptq � p1�Kqp1� πqapt� 1q

Van Bragt et al. (2015) assume that the underlying market returns follow a random walk process with

drift. For a total return real estate index, they prove that the price of a forward contract would then be
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equal to

FtpT q � 1
dfpt, T q ryptqp1� αK,T ptq � aptqαK,T ptqs

where αK,T ptq � p1�KqT�t.
Moreover, Van Bragt et al. (2015) derive an approximate formula for the forward and a European put

option contingent on a real estate index, using techniques developed for pricing Asian options and based on

calculate the first moment M1 and the second moment M2 of aptq, under the risk-neutral measure. Thus,

the forward price formula is

FtpT q �M1;

while the European put option formula for strike X is

pptq � dfpt, T qrΦp�d2q � FtpT qΦp�d1qs

with σ �
c

1
T�t ln

�
M2
M1

	
, d1 � lnpFtpT q{Xq�0.5σ2pT�tq

σ
?
T�t , d2 � d1 � σ

?
T � t.

The model developed by Van Bragt et al. (2015) can also be adapted to include seasonality effects and

there are analytical formulae for pricing swaps on real-estate index as well.

D.2 The variance-ratio test for house prices

The test statistic of the variance-ratio test at q-differences is denoted V Rpqq and is given by

V Rpqq � σ2pqq
σ2p1q (D.1)

where σ2pqq is 1{q times the variance of the q-differences, σ2p1q is the variance of the first differences.

σ2pqq � 1
m

nq̧

t�q
pht � ht�q � qµ̂q (D.2)

where, m � qpnq � q � 1q
�

1� q
nq



. and also

σ2p1q � 1
pnq � 1q

nq̧

t�1

�
ht � ht�1 � µ̂


2
(D.3)

where µ̂ � 1
nq

�
hnq � h0



and h0 and hnq are the first and last observations of the time series.
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Asymptotic standard normal test statistic for variance-ratio under the hypothesis of homoscedasticity

zpqq � V Rpqq � 1
φpqq0.5 � Np0, 1q (D.4)

where φpqq � 2p2q�1qpq�1q
3qpnqq . Asymptotic standard normal test statistic for the heteroscedasticity-consistent

estimator is

z�pqq � V Rpqq � 1
φ�pqq0.5 � Np0, 1q (D.5)

where φ�pqq � °q�1
j�1

�
2pq � jq

q

�2
δ̂pjq and

δ̂pjq �
°pht � ht�1 � µ̂q2pht�j � hq�°pht � ht�1 � µ̂q2

�2 (D.6)
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CHAPTER 6

Conclusion

The thesis has attempted to address two issues surrounding financial solutions for improving the lifetime

income of retired seniors. Dividend and equity release mortgage (ERM) cash flow volatility was studied

to investigate characteristics which make them suitable alternatives for post retirement income. Pressures

resulting from population demography including risk of post retirement poverty and pension income adequacy

are the main problems. Both dividends and ERMs constitute private savings towards retirement income

adequacy, as most economic environments experience persistent low interest rate environment. As a possible

solution to lifetime income smoothing, we have shown that dividend and equity release mortgage investments

have a potential to produce positive short-run realisable outcomes at lower cost.

Firstly, we have shown from our findings on dividends that; the excess of realized price volatility over

its ex-post rational counterpart does not only pertain to the US but also extends to a large international

sample of 50 countries. We found the magnitude of excess volatility to be substantially higher in developing

countries compared to their developed counterparts. However, we present evidence that this difference is

most likely driven by the length of available data in each country rather than reflecting a fundamental

relationship between excess volatility and a country’s state of economic development.

The findings also showed the sensitivity of variance bounds test results to the specification used in

order to obtain expectations of future dividends. For instance, using mixed-frequency regressions to obtain

a measure of expected dividend growth results in substantially less pronounced excess volatility on average

compared to that observed when using the first generation variance bounds test of obtaining a price trend

via regressions against time. Nevertheless, even though the magnitude of the effect varies, all measures of

ex-post rational prices consistently result in excess volatility across the vast majority of sample countries.

More specifically, the results provide further empirical support for the argument that evaluating stock
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market rationality is heavily dependent on the test’s specific assumptions about the dividend process. Similar

to previous findings from the US market, we document that variance bounds tests are characterized by the

same challenges and nuances with respect to dividend stationarity when applied to other countries as well.

Consequently, inferences about stock market rationality will ultimately depend on the assumptions that one

is willing to make about the underlying dividend process.

Secondly, the thesis extended the variance bounds literature by taking a forward-looking view of div-

idend volatility. We compared the information in the implied volatility (IV) of stock index options to the

information in the IV of index dividend futures options. The findings showed how the variability in IV

term-structure of option contracts with long-dated time-to-maturity can be justified by subsequent fluctu-

ations in dividends. On the other hand, near-term maturity options have stock IVs which exceed that of

dividends. In practice, such near-maturity index dividend futures options have expiry dates that coincide

with dividend announcement dates of index constituents, hence associated with lower levels of dividend

uncertainties. This phenomenon clearly makes the dividend puzzle effect more prominent when IV for cor-

responding stock-index options and index dividend futures options do not decrease together. The analysis

showed that IV of stock index options consistently exceed that of index dividend options, thereby confirming

previous criticism based on novel financial data and instruments. Interestingly, the magnitude of excess

volatility declines with long-dated time-to-maturities, suggesting that the discrepancy between the two IV

is sensitive to the investment horizon. This result holds irrespective of how IV is calculated i.e. either using

the model-free or model-based approach. For the first time in the literature the thesis has constructed an

IV index for the STOXX 50 dividend futures contract. This presents in the way to help us learn more about

the properties of the dividend puzzle in dividend derivatives markets. The evolution of this index shows

clearly that in recent years there has been a lot more volatility on dividend markets. The trading strategy

results also showed that market participants can improve returns by combining a bet on the relationship

of implied index dividend volatility and implied volatility of the index rather than use a directional bet on

the underlying asset. Trading signals generated with the IV ratio and IV differences both outperform the

long-only trading baseline model portfolio.

One striking implication of these joint findings on excess volatility puzzle relates to the fact that;

expectations about future realizable dividends has a term-structure feature, being almost negligible in the

long-run and strongly evident in the short horizons. Excess volatility puzzle inferences which are made from

forward-looking data may not be directly replicated by using observations and techniques based on historical

data, without considering investment horizon. It is likely to lose macro-market efficiency when index (firm

aggregated) dividend data is forecasted very far into the future1; likewise, inferences from historical data

1Future dividend expectations are forecasted by making specific assumptions about the dividend gener-
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are may be driven by sample size. Dividend derivatives are currently considered on a long-dated horizon,

providing investors with synthetic exposure to gross returns realized on Euro STOXX 50 DVP futures.

We have empirically shown they exhibit lower volatility when compared with equities. Over the long-run

fund managers could draw diversification benefits against substantial equity exposure by using dividend

derivatives.

Thirdly, regarding the ERMs, we show that the GBM model recommended by the regulator in the UK

produces much higher values of the NNEG when compared with a best fit ARMA-EGARCH model selected

on the basis of forecasting house prices well. Utilising an inappropriate model in the context of reverse

mortgage loan market may in the end stifle this market by imposing very high capital reserve requirements

in insurers. This is very important since there is no diversification benefit for an insurer issuing ERM loans,

each loan being valued separately for NNEG calculations purposes. Furthermore, inflating the volatility

parameter will automatically imply a high variance of house prices at long maturities for the GBM model,

therefore impacting directly ERMs loan characteristics for the younger borrowers who would benefit the

most from the this new asset class. An overestimation of the rental yield induces downward trending house

prices in the long run that ultimately will inflate the NNEG values.

The application of Black ’76 option pricing formula for NNEG valuation is theoretically not sound and

it can lead to important miscalculations for ERM, depending on the levels of risk-free rates. This may have

a detrimental effect on the development of this important financial product for society. The model would

be applicable if there was a house price futures contract traded. This is not the case currently but the

research in this area highlights the importance of introducing futures contracts for hedging house price risk

in financial and insurance markets. As the underlying market is incomplete, pricing NNEG based on risk-

neutral concepts will always be controversial. It might also be worthwhile to consider the full distribution of

the outcomes, based on the real-world projections of the underlying economic variables. It will be beneficial

to explore other finance/economic/actuarial models suitable for this purpose.

The current results point out to some early important points. In the absence of market prices or

recognised benchmark prices, it is difficult to identify the best model (method) with reference to ERM

prices. The best that can be done under current circumstances is to (a) look for a model that has good

forecasting power of house prices; and (b) compare various models across a large set of scenarios, from

standard baseline to stressed scenarios.

ARMA-EGARCH family of models outperforms the GBM model under real-world measure in terms

of forecasting short- and medium-term house prices. This is not surprising since the theoretical properties

of the GBM model are in contradiction with the empirical stylised features of house price time series. The

ating process.
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GBM (Black-Scholes) model is simple to implement but it lacks theoretical support for this asset class. It

may inflate in relative terms the NNEG for the young age borrowers due to high variance of house prices at

long maturities.

The method of parameter estimation may give different results. For GBM the GMM parameter estima-

tion method may produce superior forecasting results versus MLE and MM. At the same time, the estimates

under GMM can be substantially different from the parameter values estimated by MLE or MM. Black 76

model theoretical formula for pricing European options is based on the futures of the underlying asset- house

prices in this case. In the absence of a residential house futures contract, one cannot switch modelling from

spot house prices onto futures.

Moreover, one common mistake in some papers covering NNEG valuation is to refer to the forward

house prices in relation to the Black 76 model. In addition, if the forward house prices are produced using

a formula that has not been proved from the first principles, the risk management for ERMs may become

unreliable. Using multiple decrements will always deflate NNEG values due to earlier termination. It is

possible to get similar NNEG vectors under very different models. Adjusting volatilities (one value for each

maturity) under GBM-rn may lead to a matching of NNEG values produced by an ARMA-EGARCH model.

The ARMA-EGARCH model produces NNEG values that depend on the risk-neutralisation method. The

minimal entropy risk-neutral measure can also be applied in conjunction to ARMA-EGARCH house price

modelling. The NNEG formulae under minimal entropy method need to be refined if net rental income ought

to be included.

The analysis shows that NNEG values produced by the GBM cannot be considered lower bounds for

NNEGs calculated from more appropriate models, nor upper bounds. The only exception is the regions of

high NNEG risk when the two classes of models (GBM on one part and the ARMA-EGARCH on the other)

come out almost the same.

The valuations under ARMA-EGARCH models may look more complicated computationally but the-

oretically they are more robust. There is still a question about what is the best way to risk-neutralise the

results. The current method of risk-neutralisation for the ARMA-EGARCH using the conditional Esscher

transform still makes use of the r � g in the martingale calibration and this is slightly concerning. The

minimal entropy risk-neutral procedure, which can be used to bypass difficulties related to the rental yield

estimation is largely unstable when extensions are made to include the incidence of mortality.
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6.1 Future research

The next stage of research for the non-negative equity guarantee clause in ERMs is very crucial due to

recent increase in market demand. Volatility of house prices is key driving factor of NNEG values, hence the

need to adopt valuation models which are robust to downturns in the economic environment. The future

conceptual framework for ERM contracts must seek a balance borrower and issuer expectations to ensure

survival of unanticipated property price decline. This thesis sets the pace by investigating the relationship

between house price volatility and property dilapidation or dereliction. This approach integrates borrower

participation and property depreciation events in the NNEG valuation, with an aim to reduce risk of moral

hazard. Using house price index at postcode level will also allow ERM loan issuers to manage moral hazard

emanating from the borrower’s failure to maintain the property. Huang et al. (2020) found substantial

differences in NNEG values for different regions in UK.

Future research may also consider adapting the design mechanism of Continuous Workout Mortgage

(CWM) to fair valuations of ERMs. CWM products bear close resemblance to ERM contracts via the

negative equity insurance component. Per its dual design, CWMs have a fixed rate home loan and a negative

equity insurance embedded with automatic adjustments for price changes in the underlying collateral house.

The benefit here is to share underlying risk while the ERM loan issuer awaits the NNEG liability. Automatic

adjustments for house price changes over contract lifetime will provide for better management of the NNEG

liability. Shiller et al. (2013) and Shiller et al. (2019) present excellent discussions on CWMs and its viability

for mitigating financial fragility. Initial loan issued in an ERM contract strictly accretes over time without

any borrower repayment until termination. Continuous workout mortgages may be adapted to obtain closed

form formulae for an actuarially fair contract rate to accumulate the initial loan and also for NNEG values

with a focus on estimating key parameters of the contract. One could also explore how CWMs can be

used to enhance financial resilience by mitigating against unanticipated systemic risk. This will improve

sustainability of ERM cash flow for the elderly in our society.

In further work beyond the thesis timeline, one may consider modelling the NNEG put option by using

a jump-diffusion option pricing model with serially correlated jumps. Here jump sizes could be modelled

with an autoregressive process while exploring the underlying house price return volatility. This approach is

efficient towards investigating the relationship between observed jump sizes, house price return, and NNEG

cost. The mixed frequency data sampling GARCH (MIDAS-GARCH)is an alternative time series model that

can be used to explore the relationship between macroeconomic indicators i.e. GDP, inflation, interest rate,

unemployment etc with short-run and long-run house price volatility. This technique will allow future studies
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to consider the impact of systemic exogenous variables on house price volatility when pricing ERMs. Last

but not the least, there is a need to consider new data driven nonparametric procedures that has potential

to generate similar results to historical simulation in risk management.
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