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ABSTRACT 45 
Purpose. To assess the reliability and construct validity of a self-46 
paced, submaximal run test (SRTRPE) for monitoring aerobic 47 
fitness. The SRTRPE monitors running velocity (v), heart rate 48 
(HRex) and blood lactate concentration (B[La]) during three, 3-49 
min stages prescribed by Ratings of Perceived Exertion (RPE) 50 
10, 13 and 17.   51 
Methods. Forty, (14 female), trained endurance runners 52 
completed a treadmill graded exercise test (GXT) for 53 
determination of maximal oxygen consumption (V̇O2max), 54 
velocity at V̇O2max (vV̇O2max) and velocity at 2 mmol∙L-1 (vLT1) 55 
and 4 mmol∙L-1 (vLT2) B[La]. Within 7-days, participants 56 
completed the SRTRPE. Convergent validity between the SRTRPE 57 
and GXT parameters was assessed through linear regression. 58 
Eleven participants completed a further two trials of the SRTRPE 59 
within a 72-hour period, to quantify test-retest reliability. 60 
Results. There were large correlations between v at all stages of 61 
the SRTRPE and V̇O2max (r range = 0.57–0.63),  vV̇O2max (0.50–62 
0.66) and vLT2 (0.51–0.62), with vRPE 17 displaying the 63 
strongest associations (r > 0.60). Intraclass correlation 64 
coefficients (ICC3,1) were moderate to high for parameters, v 65 
(range = 0.76–0.84), HRex (0.72–0.92) and %HRmax (0.64–0.89) 66 
at all stages of the SRTRPE. The corresponding coefficients of 67 
variation were 2.5–5.6%. All parameters monitored at intensity 68 
RPE 17 displayed the greatest reliability.  69 
Conclusion. The SRTRPE was shown to be a valid and reliable 70 
test for monitoring parameters associated with aerobic fitness, 71 
displaying the potential of this non-invasive, time efficient test 72 
to monitor responses to endurance training.  73 
  74 



INTRODUCTION 75 
The frequent and reliable monitoring of an individuals’ 76 
responses to endurance training is an important component 77 
within the management of appropriate training stress and 78 
recovery1.  79 
 80 
Endurance performance is determined by the level of aerobic 81 
metabolism that can be maintained during a race (performance 82 
V̇O2)2. Performance V̇O2 is dictated by the upper limit for ATP 83 
production via oxidative phosphorylation (V̇O2max) and fraction 84 
of V̇O2max that can be sustained (influenced by the lactate 85 
threshold and running economy)2. Although these parameters 86 
(V̇O2max, lactate threshold and running economy) are often 87 
analysed using a treadmill-based graded exercise test (GXT) to 88 
assess the construct of aerobic fitness in runners2–4, their analysis 89 
for the purpose of monitoring acute within-subject responses to 90 
training has limitations. Specifically, in homogenous cohorts of 91 
runners, V̇O2max has shown a low association with competitive 92 
performance 5,6 and low sensitivity to within-subject variation in 93 
performance following training4. Comparatively, velocity at 94 
V̇O2max (vV̇O2max) and velocity at 4 mmol∙L-1 blood lactate 95 
concentration (vLT2), has shown greater associations to within-96 
individual changes in endurance running performance4. 97 
However, the traditional analysis of vV̇O2max and vLT2 by the 98 
GXT requires expensive equipment, invasive procedures (blood 99 
sampling) and tester expertise, making this protocol 100 
inappropriate for regular monitoring and largely inaccessible. 101 
 102 
Outside of a laboratory setting, aerobic fitness can be indirectly 103 
assessed through track-based multistage maximal exercise tests7 104 
or distance4 and time6 fixed time-trials. The submaximal 105 
components of aerobic fitness (upper limit of sustainable 106 
velocity) can be evaluated through the assessment of critical 107 
velocity from three, maximal effort time-trials over variable 108 
distances (1200m–3600m)8. However, although more 109 
accessible, these protocols require athletes to perform to 110 
exhaustion, making them inadequate for the regular monitoring 111 
of athletes’ responses alongside training.   112 
 113 
The Lamberts Submaximal Cycle Test (LSCT) is a practical 114 
exercise test which can be integrated into training as a warm-up. 115 
This test monitors performance output (power output/running 116 
velocity) and Ratings of Perceived Exertion (RPE) in response 117 
to three, short incremental exercise bouts (3–6-mins), fixed by a 118 
relative internal load of  60%, 80% and 90% heart rate maximum 119 
(HRmax)9,10. In an adaptation for runners, the velocity (v) 120 
monitored in an outdoor setting at 60%, 80% and 90% HRmax has 121 
been shown to be positively associated with aerobic fitness 122 
parameters; V̇O2max (r range = 0.58–0.75)10 and vLT2 (0.79–123 
0.89), suggesting that submaximal performance within this field-124 



based test offers good construct validity in relation to aerobic 125 
fitness.  126 
 127 
However, this protocol may be limited by monitoring 128 
individual’s responses to fixed intensities prescribed by a 129 
%HRmax. Firstly, this does not completely relinquish the 130 
requirement for athletes to complete a test to exhaustion. 131 
Furthermore, standardising the intensity of each stage by 132 
%HRmax, likely leads to large inter-individual differences in 133 
metabolic, perceptual and performance responses (e.g. blood 134 
lactate responses and RPE), due to the inter-individual variations 135 
in the location of metabolic thresholds (lactate thresholds) 136 
between the stage intensities of 60%–90% HRmax11. 137 
 138 
In response to these limitations, we aim to explore the utility of 139 
a self-paced submaximal run test (SRTRPE) which monitors v, 140 
heart rate (HRex) and blood lactate concentration (B[La]) 141 
responses to three, 3-min stages prescribed by RPE 10, 13 and 142 
1712. The prescription of intensity by RPE may provide a 143 
practical alternative which will not require prior completion of a 144 
GXT to exhaustion and more validly represents the pacing 145 
demands of competitive endurance running. Importantly, the 146 
vLT2 has consistently been appraised by RPE values 12–14, 147 
regardless of sex or competitive level and despite large inter-148 
individual differences in the  %V̇O2max or %HRmax at this 149 
threshold11,13. Therefore, the particular intensities prescribed by 150 
the SRTRPE (RPE 10, 13 and 17) may provide  better insight into 151 
the training effect on performance corresponding to below, 152 
approximately at, or above vLT2. Lastly, the use of 3-min stages 153 
is suggested as adequate to allow steady state v14,15  to be 154 
reached, whilst minimising the time required for testing 155 
compared to similar submaximal protocols (i.e. ~6-mins less 156 
versus  LSCT).  157 
 158 
With these developments in mind16, the potential effectiveness 159 
of the SRTRPE is dependent on its relative levels of validity and 160 
reliability17,18. As the SRTRPE aims to monitor a construct of 161 
fitness (aerobic fitness), validity can be determined by the 162 
magnitude of correlation between SRTRPE parameters and other 163 
accepted determinant of this fitness construct (V̇O2max, 164 
vV̇O2max, vLT1 and vLT2)18. Furthermore, in order to evaluate 165 
the potential sensitivity of the SRTRPE to true changes in 166 
performance, the magnitude of two component sources of 167 
variability,  systematic bias and random error  will need to be 168 
quantified and accounted for17. 169 
 170 
Therefore, our study aims to investigate the construct validity of 171 
the SRTRPE through association with parameters of the GXT 172 
(V̇O2max, vV̇O2max, vLT1 and vLT2). In addition, we aim to 173 



assess the test-retest reliability of v, HRex and B[La] at each stage 174 
of the SRTRPE.  175 
 176 
METHODS 177 
 178 
Participants.  179 
Forty endurance runners (14 females: 35 ± 3 yrs; V̇O2max 49.00 180 
± 7.20ml·kg-1·min-1) (26 males: 38 ± 7 yrs; V̇O2max 57.50 ± 181 
5.63·kg-1·min-1) were recruited. All participants had over 2-182 
years’ experience of completing running-based endurance 183 
training (> 30km per week), with at least one-year competitive 184 
experience. All participants gave informed, written consent; 185 
completed a health questionnaire and confirmed that they had 186 
been free from injury in the previous 6-months. A sub-set of 187 
eleven runners within this cohort undertook additional tests 188 
required for reliability analysis (see Design) (5 females: 37 ± 8 189 
yrs; V̇O2max 50.00 ± 5.70 ml·kg-1·min-15) (6 males: 35 ± 10 yrs; 190 
V̇O2max 61.47 ± 6.43 ml·kg-1·min-1).The study was approved by 191 
the local University Research Ethics and Advisory Group (Prop 192 
71_2017_18, Prop 107_2017_18, Prop 83_2018_19). 193 
 194 
Design.  195 
On their first visit all participants completed a treadmill-based 196 
maximal exercise test (GXT) to assess V̇O2max, HRmax and the 197 
running v at B[La] 2 mmol·L-1 (vLT1) and 4 mmol·L-1 (vLT2). 198 
Following 30-mins passive recovery, a familiarisation of the 199 
SRTRPE  was completed. On their second visit, > 2-days after and 200 
within 1-week of visit 1, participants performed the SRTRPE. For 201 
analysis of reliability a subset of participants (n = 11) completed 202 
an additional visit (> 2-days and within 72-hours of visit 2) in 203 
which two trials of the SRTRPE were performed, separated by  30-204 
mins passive recovery. 205 
 206 
Maximal incremental run test.  207 
Participants undertook a two-phase treadmill based 208 
(H/P/Cosmos, Nussdorf-Traunstein, Germany) GXT for the 209 
assessment of vLT1 and vLT2 (Phase-one) and to determine 210 
V̇O2max, vV̇O2max and HRmax (Phase-two). Before initiation of 211 
the test, all participants read the standardised instructions for 212 
reporting the RPE (6-20) scale12. Participants completed a 5-213 
min warm up at an intensity representing the v at which 214 
walking transitioned  to running (range 7–9 km·h−1). Phase-one 215 
comprised of 5–7 submaximal intervals with v increasing by 1 216 
km·h−1 every 4-mins, initiated at the v completed during warm-217 
up. In the 1-min recovery between intervals, RPE (6–20)12 was 218 
reported and a 5µL fingertip capillary blood sample was taken 219 
to assess B[La] (Biosen C-Line, EKF Diagnostics, Penarth, 220 
UK). Phase-one was terminated when B[La] exceeded 4 221 
mmol·L-1. Phase-two proceeded following a 10-min recovery; 222 
initiated at the same starting v as phase-one, increasing v by 0.5 223 



km·h−1 every 1-min until  volitional exhaustion. Maximal effort 224 
was accepted by attainment of at least two of the following 225 
criteria: HRex within 10 beats·min-1 of age-predicted maximum; 226 
RER ≥ 1.10; RPE ≥ 17; and B[La] ≥ 8 mmol·L-1. V̇O2max was 227 
determined as the highest 30-second average oxygen uptake19 228 
and v at this point (V̇O2max) was considered the vV̇O2max. HRex 229 
was recorded at a second by second frequency; Heart rate 230 
maximum (HRmax) was considered the highest 5-second 231 
average recorded HRex (Polar T31 Instruments, Kempele, 232 
Finland). The first and second lactate threshold (vLT1, vLT2)  233 
was calculated as the v at which B[La] reached 2 mmol·L-1 and 234 
4mmol·L-1 respectively (Biosen C-line, EKF diagnostic, 235 
Barleben, Germany). Mean laboratory conditions were: 236 
Temperature 19.2ºC (range =18ºC–20.2ºC), Humidity 749 to 237 
761 mmHg.  238 
 239 

The Self-paced Submaximal Run Test (SRTRPE)  240 
The SRTRPE comprised of three, 3-min stages interspersed by 1-241 
min recovery, performed on an outdoor, synthetic, 400m running 242 
track (Figure 1). Intensity was prescribed by RPE 10, 13 and 243 
1712. Participants were instructed to control their pace based 244 
upon a set of standardised instructions, which were  re-read to 245 
them prior to each SRTRPE12. During each 3-min stage, 246 
participants v (km∙h-1) and HRex (beats·min−1) were recorded 247 
using a GPS monitor (1Hz sampling rate; Polar V800) and HRex 248 
monitor (1Hz sampling rate; Polar H7). The watch-face was 249 
covered during testing using a sleeve or sweat-band. A whistle 250 
was blown to signify the end of each 3-min stage. The first 120-251 
seconds of v and HRex data was excluded from final analysis as 252 
steady state has previously been established to occur after this 253 
point14,20. During the 1-min recovery between stages, a 5µL 254 
sample of whole fresh capillary blood was collected from the 255 
fingertip and subsequently analysed for B[La] (Biosen C-line, 256 
EKF diagnostic, Barleben, Germany). Mean outdoor testing 257 
conditions were: Windspeed 1.2 m/s (range = 0.4 m/s–1.8 m/s), 258 
temperature 8.5 ºC (range = 4ºC–13ºC) 259 
 260 
Statistical Analysis  261 
All data was assessed for normality of distribution prior to 262 
statistical analysis using the Shapiro-Wilk test. Raw data for v 263 
(km·h−1), HRex (beats·min−1), %HRmax and B[La] (mmol.L-1) 264 
were summarised as mean ± SD for each three trials. Prior to 265 
analysis, all data were log-transformed to reduce bias associated 266 
with non-uniformity of error and were subsequently back-267 
transformed to obtain a reliability statistic in raw and percentage 268 
units. This was with the exception of %HRmax, where raw units 269 
are already expressed in percentage points. 270 
 271 



A regression model, with v for each stage of the SRTRPE as the 272 
independent variable and parameters of the GXT (V̇O2max, 273 
vV̇O2max, vLT1 and vLT2) as the dependent variable(s) was 274 
computed to examine the construct validity of the STRRPE. v was 275 
selected as the only independent variable because this is the 276 
primary outcome measure of the STRRPE, where intensity is fixed 277 
according to RPE. The analysis was carried out for all 278 
participants and for male and female subgroups separately. The 279 
strength of the relationships were assessed by a Pearson’s 280 
product–moment correlation coefficient (r) while the shared 281 
variance was given as the coefficient of determination (R2). 282 
Standard errors of the estimate (SEE) were used to represent 283 
random bias in raw and %units (derived from analysis of the log-284 
transformed data for %units). Uncertainty in estimates, and 285 
ranges of values compatible with the data sample, assumptions 286 
and statistical models, were expressed as 90% confidence 287 
intervals (CI)21. Intervals for Pearsons r and SEE values were 288 
derived from an F and chi-squared distributions, respectively. 289 
The strength of correlations were determined using the following 290 
criteria: 0.1 (trivial), 0.1–0.3 (small), 0.3–0.5 (moderate), 0.5–291 
0.7 (large), 0.7–0.9 (very large), and 0.9–1.0 (almost perfect)10.  292 
Analysis was performed using Microsoft Excel (Version 16.28, 293 
Microsoft, Redmond, WA, USA), using a spreadsheet 294 
downloaded from (sportsci.org/2015/ValidRely.htm). 295 
 296 
To examine the re-test reliability of STRRPE, the systematic 297 
change in each outcome measure was given as the mean 298 
difference between consecutive trials. A minimum effect test 299 
(MET) provided a practical, probabilistic interpretation of the 300 
mean change in each outcome measure between trial 1–2 and 2–301 
324. For v and internal load measures (HRex and B[La]), we used 302 
a smallest important threshold of 0.2 multiplied by the pooled, 303 
between-subject SD of all three trials, alpha set at PMET <0.05. 304 
Typical error (TE, also expressed as a coefficient of variation 305 
[CV]) was also calculated between consecutive trials, estimated 306 
as the standard deviation of change scores divided by the square 307 
root of 2. These values were then pooled to give the overall TE 308 
and CV. In addition, Intraclass correlation coefficients (ICC3,1) 309 
was assessed using a 2-way mixed-effects model 22. Confidence 310 
intervals for the mean change were calculated using a t-311 
distribution. For TE, CI were calculated using the chi-squared 312 
distribution and for the ICC3,1 an F-distribution was used23. The 313 
thresholds for interpretation of the magnitude of  ICC3,1 were : 314 
>0.99 (extremely high), 0.90–0.99 (very high), 0.75–0.90 (high), 315 
0.50–0.75 (moderate),  0.20–0.50 (low), <0.20 (very 316 
low)25.Analysis was performed using Microsoft Excel (Version 317 
16.28, Microsoft, Redmond, WA, USA),using a spreadsheet 318 
downloaded from (sportsci.org/2015/ValidRely.htm).  319 
 320 
 321 



 322 
RESULTS 323 
 324 
Group performance in GXT and SRTRPE. 325 
Table 1 displays the mean ± SD results for the GXT for both 326 
male and female participants. Table 2 displays the physiological 327 
responses (HRex, %HRmax and B[La]) and v associated with each 328 
stage of the SRTRPE. Each stage was considered sub-maximal 329 
based upon prior outlined criterion for maximal effort (see 330 
Maximal incremental run test), with intensity prescribed by 331 
RPE 10, 13 and 17 corresponding to; 74.7 ± 6.3%, 81.4 ± 7.0% 332 
and 88.7 ± 6.1% of HRmax and 1.5 ± 0.4 mmol.L-1, 1.8 ± 0.6 333 
mmol.L-1 and 3.5 ± 1.6 mmol.L-1 respectively. As shown in 334 
Figure 2, the mean absolute difference (km·h−1) between vLT2 335 
evaluated by GXT and v at each stage of the SRTRPE was; -336 
2.51±1.58 km·h−1 for RPE 10, -0.34 ± 1.52 km·h−1 for RPE 13 337 
and 1.53 ±1.40 km·h−1 for RPE 17.   338 
 339 
Concurrent validity of the SRTRPE. 340 
Table 3 and Figure 3 display the inferential validity statistics for 341 
parameters of the SRTRPE with parameters of the GXT (V̇O2max, 342 
vV̇O2max, vLT1 and vLT2). For all participants (n = 40), RPE 17 343 
had the strongest association with parameters of the GXT (r 344 
range = 0.60–0.66, large). Standard errors of the estimate were 345 
~8–12% for all measures. Table 3 shows the relationship 346 
between v at each stage of the SRTRPE and parameters of the 347 
GXT for each sex.  348 
 349 
Test-retest reliability of the SRTRPE. 350 
Table 2 displays the inferential statistics for the test-retest 351 
reliability of the SRTRPE. The MET revealed no meaningfully 352 
changes in v, HRex, %HRmax and B[La] between trial 1–2 and 2–353 
3 (PMET >0.05). Figure 4 illustrates individual values for v in trial 354 
1, 2 and 3 for each SRTRPE intensity.  355 
 356 
CV’s for v ranged from 3.9%–5.5%, and from 2.5%–5.6% for 357 
HRex, with variation consistently lower at greater submaximal 358 
intensities. The typical error for %HRmax  ranged 2.2%–4.0%. 359 
B[La] displayed the highest CVs’ ranging from 24.8–28.6%.  360 
ICC3.1’s were moderate to high for parameters v (range = 0.76–361 
0.84), HRex (0.72–0.92) and %HRmax (0.64–0.89) at all stages of 362 
the SRTRPE. B[La] displayed the lowest ICC3.1 (0.26–0.69).  363 
 364 
DISCUSSION.  365 
Our study sought to assess the construct validity and reliability 366 
of parameters of the novel SRTRPE. Results showed large 367 
associations (r range = 0.50–0.66)  between v at each stage of the 368 
SRTRPE and parameters of the GTX, suggesting results of the 369 
SRTRPE can validly reflect an individuals’ level of aerobic 370 
fitness.  A moderate to high reliability for parameters: v (ICC 371 



range = 0.76–0.84), HRex (0.72–0.92) and %HRmax (0.64–0.89) 372 
was measured during self-paced, submaximal efforts. 373 
 374 
The v at RPE 10, 13 and 17 showed large associations with 375 
vV̇O2max (r = 0.50–0.66) and vLT2 (r = 0.50–0.62) (Table 2); 376 
suggesting SRTRPE  is able to discriminate between individuals 377 
of varying aerobic fitness. Previous authors have described 378 
greater associations between LSCT and GXT parameters9, 379 
which may result from their use of standardised, laboratory 380 
conditions. However, Vesterinen10 showed the v at intensities 381 
60%, 80% and 90% HRmax recorded in outdoor conditions, still 382 
displayed greater correlations with  vV̇O2max (r range = 0.74–383 
0.83) and vLT2 (0.78–0.89) than the current study. This 384 
discrepancy may result from differing methods of assessments 385 
of vV̇O2max  and vLT2 between studies, or disparity in the 386 
duration in intervals of the GXT (4-mins) and SRTRPE (3-mins) 387 
analysed in the current study. We cannot comment if greater 388 
error in the SRTRPE caused lower associations as the reliability 389 
of the submaximal exercise test used by Vesterinen10 was not 390 
reported. 391 
  392 
The analysis of the regression error (SEE) shows for example,  393 
for a given vRPE 17 the associated V̇O2max may vary by 9.0% 394 
(7.6–11.3%) and vLT2 by 10.0% (8.3–12.5%). The magnitude 395 
of this error is greater than previously identified meaningful 396 
differences for both V̇O2max4 and vLT226, suggesting that v 397 
measured during the  SRTRPE would not accurately predict the 398 
treadmill based GXT results.  399 
 400 
Our results show that when separated, female participants 401 
displayed greater associations between our independent and 402 
dependent variables resulting from lower values of v in SRTRPE 403 
and GXT parameters, when compared to males who ‘clustered’ 404 
higher on both (Table 3, Figure 3). These results highlight the 405 
potential constraints in generalising overall correlation results to 406 
more homogeneous subsets (e.g. elite cohorts)17. In addition, our 407 
results provide further evidence that runners homogenous in 408 
V̇O2max show variability in performance v, explaining the low 409 
association between V̇O2max and  endurance performance in such 410 
cohorts5,6 and support the preferential use of field-based exercise 411 
tests for monitoring6. 412 
 413 
Our results support previous evidence that RPE 10, 13 and 17 414 
correspond to intensities below, approximately at, or above 415 
vLT2 (Figure 2)11,13. Of the 40 participants, only one regulated 416 
vRPE 10 above their vLT2 (+0.43 km·h−1) and 3 participants 417 
regulated vRPE 17 below their vLT2 (each -0.90, -0.64 and -0.23 418 
km·h−1 below vLT2). This standardisation of intensity may aid 419 
the interpretation of responses to endurance training 420 



interventions which specifically target adaptations around these 421 
metabolic thresholds.  422 
 423 
Results revealed no meaningful difference for v, HRex, %HRmax 424 
and B[La] between trials 1-2 and 2-3 (PMET >0.05) providing no 425 
evidence of systematic bias17. The study may be limited in 426 
performing two trials (2-3) on the same day23. However, 427 
evidence of low variability between trials 2-3 suggests that the 428 
SRTRPE can reliably be used multiple times within a day which 429 
may benefit monitoring of responses to morning and evening 430 
training. The relative reliability of v during SRTRPE is 431 
comparable to previous research describing the variability in 2-432 
mins track-based v (km·h−1) produced at RPE 10 (6.4% ± 3.1%), 433 
RPE 13 (2.9% ± 1.1%) and RPE 17 (2.9% ± 0.8%)15. Together 434 
our results suggest that 3-mins is sufficient in allowing 435 
participants to reach and maintain a steady state v14 based on 436 
RPE; minimising the time required for testing compared to 437 
similar submaximal protocols (i.e. ~6-mins less versus LSCT). 438 
 439 
Field-based maximal exercise tests such as distance fixed time-440 
trials are often preferred for athlete monitoring due to their high 441 
ecological validity and reliability6,16. Previously, the average v 442 
for maximal effort 1500m and 5km time-trials  have displayed 443 
CV’s of 2.0% (95% CI: 1.2–4.0%) and 3.3% (95% CI: 2.1–444 
6.8%) respectively27.As such, the within-individual variability of 445 
vRPE 17 seen during the current study is comparible (CV = 446 
3.9%, 90% CI: 3.0–5.7%). This provides evidence that the 447 
SRTRPE, which provides a more time-efficient and less 448 
physically demanding alternative to maximal performance tests, 449 
is also comparable in sensitivity. 450 
 451 
The potential sensitivity of the SRTRPE can be explored by 452 
comparing the magnitude of measurement error in the test 453 
(noise) to prior reported meaningful changes in these parameters 454 
(signal)17,23. Previous literature, assessing a comparable cohort,  455 
reported  5.1% improvement in average v over 5000m, on an 456 
outdoor track following 6-weeks of endurance training. 457 
Treadmill based submaximal v (vLT2) has similarly been shown 458 
to vary by 4.4–6.3% following 6-week’s training3,4.This 459 
magnitude of expected change (signal) is greater than the CV 460 
(noise) for v at all stages of the SRTRPE, suggesting an acceptable 461 
sensitivity of the test15,22.  462 
 463 
The utility of HRex to sensitively monitor aerobic fitness has 464 
been debated due to its sensitivity to confounding variables 465 
outside of training stress20. Previous research has shown a day-466 
to-day variation in HRex of 6–8 beats·min−1 at intensities 60–467 
80% maximal and 3–5 beats·min−1 at intensities 80–90% of 468 
maximal28. This is comparable to the random error found in the 469 
current study (Table 2). Additionally, previous research reported 470 



a comparable magnitude of variability (CV range = 2.3–7.0%) in 471 
% HRmax during self-paced combined arm and leg cycling at RPE 472 
9, 13 and 1729. The variability shown in the current study should 473 
be accounted for when determining true-change in this 474 
parameter. The measurement error was greatest for B[La] with a 475 
CV range of 24.8–28.6%. This high magnitude of variation has 476 
similarly been reported between repeated 1000m efforts at RPE 477 
17 (CV = 16.8%)30. Our results suggest that B[La] during the 478 
SRTRPE may be too  unreliable for monitoring purposes. 479 
 480 
Future research aiming to monitor individual’s responses using 481 
the SRTRPE should be cautious that results may be influenced by 482 
environmental conditions and reliability of the GPS and HRex 483 
monitors used. It would be advised to complete a separate 484 
reliability analysis if conditions or equipment vary from those 485 
used in the current study. 486 
  487 
 488 
PRACTICAL APPLICATIONS: 489 

• Large between-subject correlations between v at each 490 
RPE stage and GXT suggest that these measures are 491 
convergent of a similar fitness construct (aerobic 492 
capacity) and the STRRPE could therefore be a more 493 
accessible and practical test to discriminate between 494 
participants. 495 

• Modest error between v at each RPE stage and GTX 496 
parameters suggests the SRTRPE should be used 497 
cautiously to predict GXT variables such as vLT2 and 498 
warrants further investigation for this use.  499 

• Low TE/CV’s for v selected at each RPE intensity, 500 
suggest that true individual changes can be detected with 501 
reasonable accuracy. 502 
 503 

CONCLUSIONS:  504 
The novel SRTRPE shows large associations with GXT 505 
parameters, suggestive of construct validity. The SRTRPE test 506 
shows acceptable reliability over repeated trials. Future research 507 
should examine response to the SRTRPE across participants with 508 
a broader range of aerobic capacities and its sensitivity to within-509 
individual changes in fitness. 510 
 511 
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FIGURE CAPTIONS  641 
 642 
Fig.1 Schematic of the SRTRPE.  643 
 644 
Fig.2 Box-plot for the difference in velocity (v) selected at RPE 645 
10,13 and 17 and velocity at 4 mmol∙L-1 B[La] (vLT2). The box 646 
defines the upper and lower quartile and the median for the 647 
absolute difference in velocity (km·h−1). Whiskers show the 648 
minimum and maximum differences. 649 
 650 
Fig.3 Regression analysis between velocity selected (v) at RPE 651 
10 (A) RPE 13 (B)  and RPE 17 (C) with velocity and maximal 652 
oxygen capacity (vV̇O2max) and velocity at 4 mmol∙L-1 B[La] 653 
(vLT2). Group correlations (n=40) females (n = 14), male 654 
(n=26). Pearson’s product moment correlation (r) with 90% 655 
confidence intervals. 656 
 657 
Fig.4  Individual raw values for the velocity at each stage of the 658 
SRTRPE over three repeated trials. 659 
 660 
  661 
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 665 

 666 

Table 1.  Results for the Graded Exercise Test (GXT) (mean ± SD). (n = 40) 

 Female (n = 14) Male (n = 26) 

V̇O2max (ml×kg×min-1) 49.00 ± 7.20 57.50 ± 5.63 

vV̇O2max (km×h-1) 13.80 ± 1.38 16.09 ± 1.26 

vLT1 (km×h-1) 10.75 ± 1.24 12.04 ± 1.34 

vLT2 (km×h-1) 12.31 ± 1.25 14.10 ± 1.38 

Abbreviations: maximal oxygen consumption (V̇O2max), velocity at V̇O2max (vV̇O2max) and 
velocity at  2 mmol.L-1 (vLT1) and 4 mmol.L-1 (vLT2). 

Table 2. Test-retest reliability of the parameters of the self-paced submaximal run test, over three repeated trials. (n = 11) 

 Mean ± SD  Reliability Statistics (90% CI) 
 Trial  

Overall 
 Systematic Change    

 1 2 3   Trial 2–1 Trial 3–2 TE CVTEM% ICC3,1 
v (km·h−1)   
RPE 10 

10.86 ± 1.18 10.71 ± 0.98 10.86 ± 1.17  10.81 ± 1.11 
 -0.15 

(-0.60–0.31) 
0.15 

(-0.32–0.62) 
0.60 

(0.47–0.88) 
5.5 

(4.3–8.1) 
0.76 

(0.49–0.90) 

RPE 13 
12.63 ± 1.06 12.83 ± 1.10 12.85 ± 1.07  12.77 ± 1.08 

 0.20 
(-0.21–0.62) 

0.02 
(-0.42–0.46) 

0.55 
(0.44–0.81) 

4.5 
(3.5–6.6) 

0.78 
(0.53–0.91) 

RPE 17 
15.02 ± 1.41 15.06 ± 1.25 14.74 ± 1.00  14.94 ± 1.23 

 0.04 
(-0.38–0.46) 

-0.32 
(-0.75–0.12) 

0.55 
(0.43–0.81) 

3.9 
(3.5–6.6) 

0.83 
(0.64–0.94) 

HRex (beats·min−1) 
RPE 10 

132.6 ± 10.4 136.5 ± 13.6 133.2 ± 14.0  134.1 ± 12.8 
 3.9 

(-1.9–9.8) 
-3.3 

(-8.7–2.2) 
7.3 

(5.8–10.7) 
5.6 

(4.4–8.3) 
0.72 

(0.44–0.89) 

RPE 13 
147.3 ± 11.1 146.7 ± 15.0 144.3 ± 15.7  146.1 ± 14.1 

 -0.5 
(-5.5–4.5) 

-2.4 
(-7.3–2.4) 

6.3 
(5.0–9.3) 

4.7 
(3.7–6.9) 

0.83 
(0.63–0.94) 

RPE 17 
160.5 ± 12.4 161.0 ± 13.1 156.3 ± 13.4  159.3 ± 13.0 

 0.4 
(-2.5–3.4) 

-4.6 
(-8.0–-1.3) 

4.1 
(3.2–6.0) 

2.5 
(2.0–3.7) 

0.92 
(0.82–0.97) 

%HRmax 
RPE 10 

73.9 ± 5.7 76.0 ± 6.4 74.2 ± 6.8  74.7 ± 6.3 
 2.1 

(-1.0–5.3) 
-1.8 

(-4.8–1.2) 
4.0 

(3.2–5.9) 
 0.64 

(0.32–0.85) 
RPE 13 

82.1 ± 5.5 81.8 ± 7.8 80.4 ± 7.5  81.4 ± 7.0 
 -0.3 

(-3.1–2.5) 
-1.4 

(-4.1–1.2) 
3.5 

(2.8–5.2) 
 0.79 

(0.55–0.92) 
RPE 17 

89.4 ± 5.4 89.7 ± 6.4 87.1 ± 6.4  88.7 ± 6.1 
 0.3 

(-1.3–1.9) 
-2.6 

(-4.4–-0.8) 
2.2 

(1.8–3.3) 
 0.89 

(0.75–0.96) 
B[La](mmol.L-1) 
RPE 10 

1.5 ± 0.4 1.6 ± 0.5 1.8 ± 0.4  1.6 ± 0.4 
 0.0 

(-0.2–0.3) 
0.2 

(-0.1–0.6) 
0.4 

(0.3–0.6) 
24.8 

(19.1–38.3) 
0.26 

(-0.11–0.63) 

RPE 13 
1.8 ± 0.6 1.8 ± 0.6 2.3 ± 0.7  2.0 ± 0.6 

 0.1 
(-0.3–0.5) 

0.5 
(0.0–0.9) 

0.6 
(0.4–0.8) 

32.2 
(24.6–50.5) 

0.27 
(-0.10–0.64) 

RPE 17 3.5 ± 1.6 2.9 ± 1.1 3.7 ± 1.1  3.4 ± 1.3  -0.6 
(-1.1–-0.1) 

0.9 
(0.2–1.6) 

0.8 
(0.6–1.1) 

28.6 
(22.0–44.6) 

0.69 
(0.39–0.87) 

Abbreviations: RPE ( Rating of perceived exertion) v (Velocity) HRex (Exercising heart rate) HRmax (Heart rate maximum) B[La] (Blood lactate concentration) TEM (Test error of 
the measurement) CVTEM% (TEM as a Coefficient of variation) ICC1,3 (Intraclass correlation coefficient). 
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Table 3. Regression analysis between the velocity measured during self-paced 
submaximal running test and parameters of the graded exercise test. (n = 40) 

 r (90% CI) R2 SEE raw  
(90% CI) 

SEE %  
(90% CI) 

V̇O2max (ml·kg-1·min-1) 

RPE 10 0.57 (0.36–0.73) 0.33 6.4 (5.4–8.0) 12.3 (10.3–15.4) 

RPE 13 0.56 (0.35–0.72) 0.31 6.5 (5.5–8.0) 12.4 (10.4–15.6) 

RPE 17  0.63 (0.44–0.77) 0.39 6.1 (5.2–7.6) 11.6 (9.7–14.6) 

vV̇O2max (km·h−1) 

 RPE 10 0.50 (0.27–0.67) 0.25 1.5 (1.3–1.9) 10.6 (8.9–13.2) 

RPE 13 0.57 (0.36–0.72) 0.32 1.5 (1.2–1.8) 10.0 (8.4–12.5) 

RPE 17  0.66 (0.49–0.79) 0.44 1.3 (1.1–1.6) 9.0 (7.6–11.3) 

vLT1 (km·h−1) 

RPE 10 0.46 (0.22–0.64) 0.21 1.4 (1.2–1.7) 12.5 (10.4–15.7) 

RPE 13 0.52 (0.30–0.69) 0.27 1.4 (1.1–1.7) 12.0 (10.0–15.0) 

RPE 17  0.60 (0.40–0.75) 0.36 1.3 (1.1–1.6) 11.2 (9.4–14.0) 

vLT2 (km·h−1) 

RPE 10 0.51 (0.28–0.68) 0.26 1.4 (1.2–1.7) 11.0 (9.2–13.8) 

RPE 13 0.57 (0.36–0.72) 0.32 1.4 (1.1–1.7) 10.5 (8.8–13.2) 

RPE 17  0.62 (0.43–0.76) 0.39 1.3 (1.1–1.6) 10.0 (8.3–12.5) 

Abbreviations: maximal oxygen consumption (V̇O2max), velocity at V̇O2max (vV̇O2max) 
and velocity at  2 mmol.L-1 (vLT1) and 4 mmol.L-1 (vLT2), v (Velocity) RPE (Rating of 
perceived exertion) SEE ( Standard error of the estimate).    
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