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Abstract. Let sν ◦ sµ denote the plethystic product of the Schur functions

sν and sµ. In this article we define an explicit polynomial representation cor-

responding to sν ◦ sµ with basis indexed by certain ‘plethystic’ semistandard

tableaux. Using these representations we prove generalizations of four results

on plethysms due to Bruns–Conca–Varbaro, Brion, Ikenmeyer and the authors.

In particular, we give a sufficient condition for the multiplicity 〈sν ◦ sµ, sλ〉 to

be stable under insertion of new parts into µ and λ. We also characterize all

maximal and minimal partitions λ in the dominance order such that sλ ap-

pears in sν ◦sµ and determine the corresponding multiplicities using plethystic

semistandard tableaux.

1. Introduction

Let sλ denote the Schur function labelled by the partition λ. Expressing a gen-

eral plethysm sν ◦ sµ as a non-negative linear combination of Schur functions has

been identified by Stanley as a fundamental open problem in algebraic combina-

torics [29, Problem 9]. While many partial results are known, often obtained by

deep combinatorial, algebraic or geometric arguments, a satisfying general solution

remains out of reach.

In this article we generalize four results on plethysms due to Bruns–Conca–

Varbaro [5], Brion [4], Ikenmeyer [17], and the authors [8, 26], and give them unified

proofs in the setting of polynomial representations of the general linear group. Our

proofs are essentially elementary, requiring little more than basic multilinear algebra

and the background recalled in §2. The article is intended to be readable by non-

experts: in particular, we define the Schur functions sλ and the plethysm product ◦
in §2.2 and include several examples in this introduction.

To state our main results we need the following notation. Let Par(r) denote

the set of partitions of r ∈ N0 and let `(λ) denote the number of parts of the

partition λ. Given partitions λ and µ, let λ t µ be the partition whose multiset of

parts is the disjoint union of the multisets of parts of λ and µ. Define λ + µ by

(λ+ µ)i = λi + µi. (As a standing convention, if i > `(λ) then we set λi = 0.) For

N ∈ N0 define Nλ by (Nλ)i = Nλi for each i. Let λ′ denote the conjugate of the

partition λ.
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Fix µ ∈ Par(m), ν ∈ Par(n) and λ ∈ Par(mn).

Theorem 1.1. If r is at least the greatest part of µ then

〈sν ◦ s(r)tµ, s(nr)tλ〉 = 〈sν ◦ sµ, sλ〉.

Theorem 1.2. If r ∈ N then

〈sν ◦ sµ+(1r), sλ+(nr)〉 ≥ 〈sν ◦ sµ, sλ〉.

Moreover 〈sν ◦ sµ+N(1r), sλ+N(nr)〉 is constant for N ∈ N0 such that

N ≥ n(µ1 + · · ·+ µr−1) + (n− 1)µr + µr+1 − (λ1 + · · ·+ λr).

In particular, 〈sν ◦ sµ+(1r), sλ+(nr)〉 = 〈sν ◦ sµ, sλ〉 if r ≥ `(µ) and r ≥ `(λ). We

give an upper bound for the stable multiplicity at the end of §5.

Theorem 1.3. If n? ∈ N, λ? ∈ Par(mn?) and 〈s(n?) ◦ sµ, sλ?〉 ≥ 1 then

〈s(n+n?) ◦ sµ, sλ+λ?〉 ≥ 〈s(n) ◦ sµ, sλ〉.

For our final theorem we need some further combinatorial definitions. The dom-

inance order on partitions is the partial order defined by λ � µ if λ1 + · · · + λi ≥
µ1 + · · ·+ µi for all i ∈ N. Semistandard tableaux, with entries from an arbitrary

totally ordered set, are defined in §2.1 below. In particular, SSYTN(µ) denotes the

set of semistandard µ-tableaux with entries from N. We order SSYTN(µ) by the

total order defined in Definition 2.1.

Definition 1.4.

(i) A plethystic semistandard tableau of shape µν is a semistandard ν-tableau

whose entries are tableaux in SSYTN(µ).

(ii) Let T be a plethystic semistandard tableau and let M be the greatest entry

of the tableau entries of T . The weight of T , denoted wt(T ), is the com-

position (β1, . . . , βM ) such that for each b, the total number of occurrences

of b in the tableau entries of T is βb.

These objects are illustrated in Example 1.6.

Theorem 1.5. The maximal partitions λ in the dominance order such that sλ is a

constituent of sν◦sµ are precisely the maximal weights of the plethystic semistandard

tableaux of shape µν . Moreover if λ is such a maximal partition then 〈sν ◦ sµ, sλ〉
is the number of plethystic semistandard tableaux of shape µν and weight λ.

Applying the sign twist in Lemma 2.2 to the main theorems gives equivalent

results that are also noteworthy. In particular, Theorem 1.1 implies that if r ≥ `(µ)

then

(1.1) 〈sκ ◦ sµ+(1r), sλ+(1nr)〉 = 〈sν ◦ sµ, sλ〉,

where κ = ν if r is even and κ = ν′ if r is odd. The sign-twist of Theorem 1.5

characterizes the minimal partitions λ such that sλ appears in a general plethysm

sν ◦ sµ.
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In the setting of polynomial representations of general linear groups, the Schur

function sλ corresponds to the Schur functor ∇λ. We develop this background

in §2. In §3 we construct an explicit model for the module ∇ν
(
∇µ(E)

)
, where E

is a complex vector space. By Proposition 3.3, the formal character of this mod-

ule is (sν ◦ sµ)(x1, . . . , xd), where d = dimE. Using this model we prove Theo-

rems 1.1, 1.2, 1.3, 1.5 in §4, §5, §6 and §7, respectively.

Example 1.6. As an illustration of our main theorems, we determine the plethysm

s(3) ◦ s(3). By Lemma 2.2, its sign twist is s(13) ◦ s(13). Using the closure condition

in Definition 1.8 it is easy to show that there are two plethystic semistandard

tableaux of shape (13)(1
3) and maximal weight, as shown in margin. The weights are

(3, 3, 1, 1, 1) and (3, 2, 2, 2) respectively. Hence, by Theorem 1.5 and Lemma 2.2,

1
2
3

1
2
4

1
2
5

,

1
2
3

1
2
4

1
3
4

〈s(3) ◦ s(3), s(5,2,2)〉 = 〈s(3) ◦ s(3), s(4,4,1)〉 = 1.

Since s(13) ◦ s∅ = s∅, it follows from (1.1), applied with r = 3, that 〈s(13) ◦
s(13), s(19)〉 = 1, and so 〈s(3) ◦ s(3), s(9)〉 = 1. (This also follows from Theorem 1.5,

since the unique plethystic semistandard tableau of shape (3)(3) and maximal

weight is

1 1 1 1 1 1 1 1 1

and can, of course, be seen in many other ways.)

By Example 1.10, s(3) ◦ s(2) = s(6) + s(4,2) + s(2,2,2). By the final part of The-

orem 1.2, applied to the second summand, 〈s(3) ◦ s(2+N), s(4+3N,2)〉 is constant for

N ≥ 0, hence 〈s(3) ◦ s(3), s(7,2)〉 = 1. Moreover, by the Cayley–Sylvester formula

(see for instance [13, Exercise 6.18, solution]), 〈s(3) ◦ s(3), s(6,3)〉 is the number of

partitions of 3 contained in the 3 × 3 box, minus the number of partitions of 2

satisfying the same restriction. Therefore 〈s(3) ◦ s(3), s(6,3)〉 = 1. Hence

(1.2) s(3) ◦ s(3) = s(9) + s(7,2) + s(6,3) + s(5,2,2) + s(4,4,1) + f

for some symmetric function f with non-negative coefficients in the Schur basis.

Under the characteristic isometry (see §2.2), s(3) ◦ s(3) is the image of the permu-

tation character of S9 acting on the set partitions of {1, . . . , 9} into 3 sets, each of

size 3. This character has degree 9!/3!33! = 280, which equals the sum of the de-

grees of the irreducible characters of S9 labelled by the partitions appearing in (1.2).

Hence f = 0.

We now explain the antecedents of the main theorems, before giving a more

detailed outline of the strategy of our proofs. For general background on symmetric

functions, including the Young and Pieri rules, we refer the reader to [28, Ch. 7] or

[22, Ch. 1]. For more background on plethysms see [21] and the introduction to [27].
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Antecedents of the main theorems.

Theorem 1.1. Stated in the language of symmetric functions, Proposition 1.16 of

[5] becomes

(1.3) 〈sν ◦ s(1m+1), s(n)tλ〉 = 〈sν ◦ s(1m), sλ〉,

provided that n is at least the first part of λ. By Remark 4.4, both sides in

Theorem 1.1 are zero if λ1 > nr. Therefore this proposition is equivalent to the

case µ = (1m) and r = 1 of Theorem 1.1. (The statement in [5] replaces (n) t λ
with its conjugate partition λ′ + (1n); the conjugation arises because the functor

Lλ in [5] is our ∇λ′ .) The proof in [5] gives a bijection between the invariants in⊗n
(
∧m

E) and
⊗n

(
∧m+1

E) for a Borel subgroup of GL(E). Our proof establishes

a corresponding bijection between highest-weight vectors, with
∧m

replaced with

an arbitrary Schur functor. We remark after this proof on the connection with the

later proof of (1.3) given in [20, Lemma 3.2].

Specializing (1.3) by taking ν = (n) or ν = (1n) gives two results first proved

in [24]. Since Newell’s paper is not easy to read, we explain the connection. Taking

the inner product of both sides of Theorem 1.1 of [24] with sλ, where λ ∈ Par(mn−
k), gives

(1.4)
〈
(s(1k) ◦ s(m−1))(s(n−k) ◦ s(m)), sλ

〉
=
〈
s(n) ◦ s(m), s(1k)sλ

〉
.

(This corrects a typographical error in [24]: as can be seen from the correctly

stated and analogous Theorem 1A, g(1k)ξν{ν} should be g(1k)ξν{ξ}; note that, by

definition, g(1k)ξν = 〈s(1k)sξ, sν〉.) Taking k = n we obtain 〈s(1n) ◦ s(m−1), sλ〉 =

〈s(n) ◦ s(m), s(1n)sλ〉. By Pieri’s rule, s(1n)sλ is the sum of all the Schur functions

labelled by partitions obtained from λ by adding n boxes, no two in the same row.

On the other hand, by Young’s rule, s(n) is a summand of sn(1), so the plethysm

s(n) ◦ s(m) is contained in sn(1) ◦ s(m) = (s(1) ◦ s(m))
n = sn(m). Another application

of Young’s rule now shows that if sλ is a constituent of s(n) ◦ s(m) then `(λ) ≤ n.

Hence

(1.5) 〈s(1n) ◦ s(m−1), sλ〉 = 〈s(n) ◦ s(m), sλ+(1n)〉.

Similarly Theorem 1A in [24] implies that

(1.6) 〈s(n) ◦ s(m−1), sλ〉 = 〈s(1n) ◦ s(m), sλ+(1n)〉.

These are the special case of the equivalent form of Theorem 1.1 stated in (1.1)

when µ = (1m), r = 1 and ν = (n) or ν = (1n).

It follows from our Theorem 1, or by combining (1.5) and (1.6), that 〈s(n) ◦
s(m+2), sλ+(2n)〉 = 〈s(n) ◦ s(m), sλ〉 for all λ ∈ Par(mn). This was proved by Dent

in [9, Theorem 3.8] using the symmetric group.
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Theorem 1.2. The special case of part (i) of the theorem on page 354 of [4] when G

is GL(E) asserts that if ρ is any partition then 〈sν ◦ sµ+Nρ, sλ+Nnρ〉 is a non-

decreasing function of N ∈ N0. Part (ii) gives a condition in terms of simple roots

for the values to stabilise: in the special case of GL(E), it becomes

µi − µi+1 +N(ρi − ρi+1) ≥ n(µ1 + · · ·+ µi)− (λ1 + · · ·+ λi)

for every i such that ρi > ρi+1, as stated in [4, page 362, Corollary 1]. Part (iii)

gives a technical formula for the stable multiplicity.

Our Theorem 1.2 is Brion’s Theorem in the case ρ = (1r). Brion’s theorem for

a general partition ρ follows by repeatedly applying our theorem to each column

of ρ in turn. Brion’s proof uses GL(E)-invariant vector bundles on the Grassman-

nian variety of full flags in E and the long exact cohomology sequence. The more

elementary proof given here, which leads to a combinatorial upper bound on the

stable multiplicity (see Proposition 5.10), is therefore of interest.

Taking ν = (n), µ = (m) and r = 1 in Theorem 1.2 we obtain 〈s(n) ◦ s(m), sλ〉 ≤
〈s(n) ◦ s(m+1), sλ+(n)〉. This is Foulkes’ Second Conjecture, stated as a working

hypothesis at the end of §1 of [12], and proved by Brion in [4].

Theorem 1.3. Proposition 4.3.4 of [17] is equivalent to the special case of Theo-

rem 1.3 when µ = (m). The proof in [17] uses polynomial representations of GL(E),

where E is a complex vector space. The key idea is to multiply highest-weight

vectors in Symn(SymmE) and Symn?(SymmE) to get a highest-weight vector in

Symn+n?(SymmE). This generalizes to prove Theorem 1.3. To motivate this proof

we digress briefly to illustrate the geometric interpretation of this multiplication,

basing our discussion on the examples in [13, §11.3]. (This example is not logically

essential.)

Example 1.7. Let E have basis e1, . . . , ed. Then Sym2E has basis

{e2i : 1 ≤ i ≤ d} ∪ {2eiej : 1 ≤ i < j ≤ d}.

Let Xii = (e2i )
? and Xij = (2eiej)

? be the corresponding elements of the dual space

(Sym2E)?, regarded as a polynomial representation of GL(E) by the contravariant

duality in [14, §2.7]. (Thus if ρ(g) is the matrix representing g in its action on

a polynomial representation V of GL(E) then ρ(gtr)tr represents g in its action

on V ?.) Let C be the image of E under the map E → Sym2E defined by v 7→ v2,

so

C =
{ d∑
i=1

α2
i e

2
i +

∑
1≤i<j≤d

2αiαjeiej : α1, . . . , αd ∈ C
}
.

Thinking of C as an affine variety contained in Sym2E, we see that the vanish-

ing ideal of C in the coordinate ring O(Sym2E) contains X11X22 − X2
12 in de-

gree 2. This is a highest-weight vector for GL(E) of weight (2, 2), so by Proposi-

tion 2.15(ii) it generates a submodule of O(Sym2E) isomorphic to ∇(2,2)(E). This

submodule is the kernel of the map O(Sym2E) → O(E) induced by restricting
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a coordinate function on Sym2E to C and then pulling it back to E using the

squaring map E → C. Thus taking generators for the coordinate ring O(E) so

that O(E) = C[Y1, . . . , Yd], we have Xij 7→ YiYj . This defines a homomorphism

of GL(E)-modules Sym2
(
(Sym2E)?

)
→ Sym4(E?) with kernel ∇(2,2)(E). Since

X2
11 ∈ O(Sym2E)2 maps to Y 4

1 ∈ O(E)4, which is highest-weight of weight (4),

this GL(E)-homomorphism is surjective. Since all irreducible GL(E)-modules are

self-dual under contravariant duality, we obtain

Sym2(Sym2E) ∼= Sym4E ⊕∇(2,2)(E).

Multiplying highest-weight vectors in the coordinate ring O(Sym2E), we see that

for r, s ∈ N0, the product (X11X22 −X2
12)rXs

11 vanishes on C with multiplicity r

and is highest-weight of weight (2s+ 2r, 2r). It follows that

Symn(Sym2E) ∼= ∇2n(E)⊕∇(2n−2,2)(E)⊕∇(2n−4,4)(E)⊕ · · · ⊕W

where if ∇λ(E) appears in W then `(λ) ≥ 3. In particular, if d = 2 then W = 0,

and every summand in the decomposition of Symn(Sym2E) has a simple geometric

interpretation. The decomposition for general d is obtained in Example 1.10 below.

In [8], the first author constructed explicit homomorphisms between modules for

the symmetric group that prove the special cases of Theorem 1.3 when µ = (1m)

and n? = 1 (and necessarily λ? = (1m)) and, subject to the conditions that m is

even and λ has at most 2m parts, when µ = (1m) and λ? = (1mn
?

).

Theorem 1.5. This theorem strengthens the main result of [27]. The proof in [27]

is entirely within the symmetric group, and constructs an explicit homomorphism

corresponding to each maximal partition λ such that sλ appears in sν ◦sµ. This re-

quires a lengthy and quite intricate argument, so again we believe that the shorter

proof presented here, which also gives a precise result on the multiplicity, is of

interest. As a corollary (see Corollary 7.3) we show that if T is a plethystic semis-

tandard tableau of maximal weight for its shape, under the dominance order, then

wt(T ) is a partition. This fact was mentioned in [27], where we noted that it has a

non-trivial combinatorial proof using a variation on the Bender–Knuth involution

(see [2, page 47]).

Although it is not logically essential to the proof of Theorem 1.5, it is often

useful in calculations (as seen already in Example 1.6) that the µ-tableau entries

of a plethystic semistandard tableau of shape µ(1n) and maximal weight satisfy

the following closure condition. Recall that � denotes the dominance order on

partitions, defined before Theorem 1.5.

Definition 1.8. Let T be a set of semistandard µ-tableaux. We say that T is

closed if whenever t ∈ T and s is a semistandard µ-tableau obtained from t by

changing a single entry c to c− 1, then s ∈ T .
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Proposition 1.9. Let T be a plethystic semistandard tableau of shape µ(1n). If

the weight of T is maximal in the dominance order for its shape then the set of

µ-tableau entries of T is closed.

Proof. Let T be the set of µ-tableau entries of T . Suppose that T is not closed,

and let t ∈ T , s 6∈ T and c be as in Definition 1.8. Let S be the plethystic

semistandard tableau of shape µ(1n) obtained from T by deleting t and inserting s,

and then reordering (if necessary) the µ-tableau entries within the single column

of S so that S is column-standard in the total order < on semistandard µ-tableaux

in Definition 2.1. Then S is a plethystic semistandard tableau of shape µ(1n) and

wt(S)b =


wt(T )b + 1 if b = c− 1

wt(T )b − 1 if b = c

wt(T )b otherwise.

Therefore wt(S) � wt(T ). �

Polynomial functors and highest-weight vectors. Let d ∈ N and let E be a

d-dimensional complex vector space. Let V be an D-dimensional representation of

GL(E) corresponding, under some choice of bases of E and V , to the homomor-

phism ρ : GLd(C) → GLD(C). Recall that V is a polynomial representation of

degree r if for all a, b ∈ {1, . . . , D} the matrix coefficient ρ(g)ab is a polynomial

of degree r in the matrix coefficients of g ∈ GLd(C). Let GL(E)-mod be the ad-

ditive category of finitely generated polynomial representations of GL(E) and let

GL(E)-modr be its full subcategory of representations of polynomial degree r. For

each λ ∈ Par(r) let ∇λ : GL(E)-modp → GL(E)-modpr be the Schur functor, as

defined in §2.3. (Our construction and proofs have some novel features, but this

section will be background for most readers.)

By Proposition 2.15 every polynomial representation V ∈ GL(E)-mod decom-

poses as a direct sum of submodules each isomorphic to some ∇λ(E). Let [W :

∇λ(E)] denote the number of irreducible summands of the polynomial represen-

tation W that are isomorphic to ∇λ(E). By Proposition 3.3, composition of

Schur functors corresponds to plethysm of Schur functions. Hence, by Proposi-

tion 2.15(iv),

(1.7) 〈sν ◦ sµ, sλ〉 = [∇ν(∇µE) : ∇λE]

for all partitions λ, µ and ν with at most d parts. Thus each of the main theorems

has an equivalent restatement as a result on polynomial representations of GL(E).

To prove these restatements, we use the model for∇ν
(
∇µ(E)) constructed in §3 and

the following key fact about highest-weight vectors, as characterized in Lemma 2.13

using the Lie algebra action of gl(E), and proved in Proposition 2.15: if V is a

polynomial GL(E)-module then V contains a highest-weight vector v; moreover, if

the weight of v is λ then the submodule of V generated by v is isomorphic to ∇λ(E).
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To illustrate the power of this property we end this introduction by giving a very

short proof that if dimE ≥ n then

(1.8) Symn(Sym2E) ∼=
⊕

λ∈Par(n)
∇2λ(E).

By much more lengthy arguments, Boffi shows in [3] that, over an arbitrary field,

SymnSym2 has a filtration by the functors ∇λ; he reports that this result had

previously been obtained in [1]. The analogous result for the symmetric group was

proved independently by the second author in [25]. Boffi’s result was generalized

to arbitrary commutative rings in [7].

Example 1.10. Let E have basis e1, . . . , en. For each ` ∈ {1, . . . , n} and each

function σ : {1, . . . , `} → {1, . . . , `}, define

w(σ) = (e1e1σ) . . . (e`e`σ) ∈ Sym`(Sym2E)

where iσ is the image of i under the function σ. Let S` denote the symmetric group

of all permutations of {1, . . . , `}. Define

W (`) =
∑
σ∈S`

w(σ) sgn(σ)

for each ` ∈ N0. Since
∏`
i=1 eieiσ =

∏`
j=1 ejσ−1ej for σ ∈ S` we have w(σ) = w(π) if

π = σ−1, and it is easily seen that the converse also holds. In particular, the unique

permutation σ such that w(σ) = e21 . . . e
2
` is the identity. Hence the coefficient of

e21 . . . e
2
` in W (`) is 1, and W (`) 6= 0. For c ∈ {2, . . . , `}, let X(c) ∈ gl(E) be the Lie

algebra element defined, as immediately before Lemma 2.13, by X(c) · ec = ec−1
and X(c) · eb = 0 if b 6= c.

Fix c ∈ {2, . . . , `} and define δ : {1, . . . , `} → {1, . . . , `} by δ(c) = c − 1 and

δ(b) = b if b 6= c. Thus δ(b) = c− 1 if and only if b ∈ {c− 1, c}. The action of gl(E)

on symmetric powers is recalled immediately before the proof of Proposition 2.14.

Using this action and w(σ) = w(σ−1), we find that

X(c) · w(σ) = (ec−1ecσ)
∏
i 6=c

(eieiσ) + (ecσ−1ec−1)
∏
j 6=c

(ejσ−1ej).

The summands are the products of all ebσ−1δeb and ebebσδ, respectively. Hence

X(c) · w(σ) = w(σ−1δ) + w(σδ) and so

(1.9) X(c) ·W (`) =
∑
σ∈S`

w(σ−1δ) sgn(σ) +
∑
σ∈S`

w(σδ) sgn(σ).

Let τ be the transposition (c − 1, c). Using that bτδ = bδ for each b ∈ {1, . . . , `}
and so τδ = δ we get∑

σ∈S`
w(σδ) sgn(σ) =

∑
σ′∈S`

w(σ′τδ) sgn(σ′τ) = −
∑
σ′∈S`

w(σ′δ) sgn(σ′).
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(12)

(12)

(12)

e21e
2
2e

2
3

−(e1e2)
2e23

(e1e2)(e2e3)(e3e1)

−(e1e3)
2e22

(e1e3)(e2e1)(e3e2)

−e21(e2e3)
2

e21(e2e1)e
2
3

−e21(e2e1)e
2
3

e21(e2e3)(e3e1)

−(e1e3)(e2e1)(e3e1)

(e1e3)(e2e1)(e3e1)

−e21(e2e3)(e3e1)

Figure 1. Example 1.10 for ` = 3. Writing permutations σ ∈ S3

in one-line form, the six summands in w3 are w(123), w(213), w(231),

w(321), w(312), w(132), clockwise from the top. Identifying 1 and 2

in the image of σ (shown as the bottom row in the permutation dia-

grams) the contributions from σ and σ(12) cancel. Cancelling pairs are

connected by edges marked (12). Thus
∑
σ∈S3

w(σδ) sgn(σ) = 0.

Hence
∑
σ∈S` w(σδ) sgn(σ) = 0. Similarly

∑
σ∈S` w(σ−1δ) sgn(σ) = 0. It now

follows from (1.9) that X(c) ·W (`) = 0. (This cancellation has an attractive com-

binatorial interpretation, shown in Figure 1 above.) By Lemma 2.13, W (`) ∈
Sym`(Sym2E) is a highest-weight vector of weight (2`).

Now take λ ∈ Par(n). Multiplying highest-weight vectors as in the proof of

Theorem 1.3 shows that if a is the first part of λ then

W (λ′1) . . .W (λ′a) ∈ Symn(Sym2E)

is a highest-weight vector of weight 2λ. By the key fact stated before this example,

Symn(Sym2E) has ∇2λ(E) as a summand.

We use the Frobenius–Schur count of involutions to show that there are no further

summands. For λ ∈ Par(r), let χλ be the irreducible character of the symmetric

group Sr corresponding to ∇λ(E) (and, by the characteristic isometry, to the Schur

function sλ). By the count of involutions,
∑
λ∈Par(r) χ

λ(1) = Tr, where Tr is the
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number of permutations of order at most two in Sr. On the other hand, setting

Mk =
(
Symn(Sym2E)

)
⊗

k∧
E,

it follows from Pieri’s rule and the result already proved thatMk contains
⊕

λ∇λ(E),

where the sum is over all partitions λ ∈ Par(r) having exactly k odd parts.

By (2.2) in §2.2 below, the character of the symmetric group Sr corresponding

to
⊕

2n+k=rMk is
∑

2n+k=r(1C2oSn × sgnSk) ↑SrC2oSn×Sk . For n ≥ 1, the degree

of (1C2oSn × sgnSk) ↑SrC2oSn×Sk is the number of involutions in S2n having pre-

cisely k fixed points. Therefore this character has degree Tr and so
⊕

2n+k=rMk
∼=⊕

λ∈Par(r)∇λ(E) and M0 = Symn
(
Sym2E

)
has no summands other than those

already found.

2. Background

2.1. Partitions and tableaux. Let λ be a partition of r ∈ N. Recall that `(λ)

denotes the number of parts of λ. The Young diagram of λ is the set [λ] = {(i, j) :

1 ≤ i ≤ `(λ), 1 ≤ j ≤ λi}. Let B be a set. A λ-tableau with entries from B is a

function t : [λ]→ B. We write the image of (i, j) under t as t(i,j). If t(i,j) = b ∈ B
then we say that b is the entry of t in row i and column j. When B is a set

of natural numbers, this corresponds to the usual diagrammatic representation of

tableaux (see §2.3 for a small example).

Now suppose that B is totally ordered by an order denoted <. We say that a

tableau t with entries from B is row-semistandard if its rows are weakly increasing

from left to right, column-standard if its columns are strictly increasing from top

to bottom, both under the order <. We say that t is semistandard if it is both

row-semistandard and column-standard. The terms row-standard and standard are

defined analogously, requiring in addition that the rows are strictly increasing. Let

SSYTB(λ) denote the set of semistandard λ-tableaux with entries from B. When

B ⊆ N, we refer to elements of SSYTB(λ) simply as semistandard λ-tableaux. If

B = {1, . . . , d} and t has exactly βb entries equal to b for each b ∈ {1, . . . , d}, then

we say that t has content β. Let SSYT(λ, β) denote the set of semistandard λ-

tableaux of content β. Let tλ be the unique element of SSYT(λ, λ), as defined by

tλ(i,j) = i for each (i, j) ∈ [λ]. In the total order on column-standard λ-tableaux in

the following definition, tλ is the least element.

Definition 2.1. Given column-standard λ-tableaux t and u with entries in a totally

ordered set, set t < u if and only if in the rightmost column that differs between t

and u, the greatest entry not appearing in both columns lies in u.

In particular, if µ and ν are partitions then the semistandard µ-tableaux are

totally ordered by <. A plethystic semistandard tableau of shape µν , as defined in

Definition 1.4, is a semistandard ν-tableau with entries from SSYTN(µ).

The symmetric group on [λ] acts on λ-tableaux on the right by place permutation:

thus if σ ∈ S[λ] and t is a λ-tableau then (tσ)(i,j) = t(i,j)σ−1 . Thus the entry in
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position (i, j) of t is found in position (i, j)σ of tσ. Let CPP(λ) denote the Young

subgroup of S[λ] having as its orbits the columns of [λ].

2.2. Schur functions and plethysm. Let Λ be the ring of symmetric functions

as defined in [28, §7]. Let λ ∈ Par(r). Given a λ-tableau t of content β, let xt

denote the monomial xβ1

1 . . . x
β`(β)
`(β) . The Schur function sλ ∈ Λ is defined by sλ =∑

t∈SSYTN(λ) x
t. By [28, Theorem 7.10.2], sλ is a symmetric function. Thus

(2.1) sλ =
∑

κ∈Par(r)
|SSYT(λ, κ)|monκ

where monκ = xκ1
1 . . . x

κ`(κ)
`(κ) + · · · denotes the monomial symmetric function cor-

responding to κ. For example, s(2) = x21 + x22 + · · · + x1x2 + x1x3 + x2x3 + · · · =

mon(2) + mon(1,1).

Given f(x1, x2, . . .) ∈ Λ, the plethysm f ◦ sλ may be defined by substituting the

monomials xt, where t ranges over all semistandard λ-tableaux with entries from

N, for the variables x1, x2, . . . of f . The general definition of f ◦ g is given in [28,

Ch. 7, Appendix 2], [22, Ch. 1, Appendix A] or [21]. For example, the combinatorial

analogue of the case n = 2 of (1.8) is

s(2) ◦ s(2) = s(2)(x
2
1, x1x2, . . .) = mon(4) + mon(3,1) +2 mon(2,2) = s(4) + s(2,2).

The coefficient of mon(2,2) is 2 since x21x
2
2 may be obtained as both (x21)(x22) and

(x1x2)2 when multiplying out s(2)(x
2
1, x1x2, . . .).

There is an involutory ring homomorphism ω : Λ → Λ defined by ω(sλ) = sλ′ .

We call ω the sign twist. Its effect on plethysms is as follows.

Lemma 2.2. Let µ and ν be partitions. If µ is a partition of m then

ω(sν ◦ sµ) =

{
sν ◦ sµ′ if m is even

sν′ ◦ sµ′ if m is odd.

Proof. See [22, Ch. I, Equation (2.7)]. �

In Examples 1.6 and 1.10 we used the characteristic isometry, which sends the

irreducible character χλ of Sr to the Schur function sλ where λ ∈ Par(r). By [28,

A2.8] or [22, Ch. 1, Appendix A, (6.2)], if µ ∈ Par(m) and ν ∈ Par(n) then under

this isometry,

(2.2)
(
(χµ)×̃n InfSmoSnSn

χν
)xSmn

SmoSn 7→ sν ◦ sµ

where (χµ)×̃n is the character of the irreducible representation of Sm o Sn defined

in [18, (4.3.8)] and InfSmoSnSn
is the inflation map. Thus all the main theorems have

immediate translations into results on characters of symmetric groups. We shall

not use the characteristic isometry any further below.
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2.3. Polynomial representations of GLd(K). In the following three subsections

we construct the Schur functors ∇λ used in the proofs of the main theorems. We

end with Remark 2.16 which explains the connection with an earlier construction

due to James [19, Ch. 26]. Let K be a commutative ring, let B be a totally ordered

set as in §2.1, and let V be a free K-module with basis {vb : b ∈ B}. Except in

the proof of Lemma 2.4, the case K = C suffices. The set B is either {1, . . . , d}
or, when we compose Schur functors, the set of semistandard tableaux with entries

from {1, . . . , d}, with the order from Definition 2.1.

Fix λ ∈ Par(r). Recall that CPP(λ) is defined after Definition 2.1.

Definition 2.3. Let SymλV =
⊗`(λ)

i=1 SymλiV . Given a λ-tableau t with entries

from B, the GL-tabloid corresponding to t is the element f(t) ∈ SymλV defined by

f(t) =

`(λ)⊗
i=1

λi∏
j=1

vt(i,j) ∈ SymλV.

The GL-polytabloid corresponding to t is

F (t) =
∑

σ∈CPP(λ)

f(tσ) sgn(σ) ∈ SymλV.

We define∇λ(V ) to be theK-submodule of SymλV spanned by the GL-polytabloids

F (t) for t a λ-tableau with entries from B.

Since f(t) = f(t′) if and only if the rows of t and t′ are equal as multisets,

(2.3) {f(t) : t a row-semistandard λ-tableau with entries from B}

is a basis of Symλ(V ). It is also useful to note that if σ ∈ CPP(λ) then

(2.4) F (tσ) = F (t) sgn(σ).

In particular, F (t) = 0 if t has a column with a repeated entry, and so ∇λ(V ) = 0

if `(λ) > dimV , as used in Example 1.7. A potential trap is that F (t) depends on

the tableau t, not just on the GL-tabloid f(t). For example, if B = {1, 2, 3} and

t = 1 3
2 1

, t′ = 1 3
1 2

then f(t) = f(t′) but F (t′) = 0 whereas F (t) = v1v3⊗v2v1−v2v3⊗v21−v21⊗v2v3 +

v2v1 ⊗ v1v3 6= 0. It is clear that ∇λ(V ) is functorial in V , so ∇λ is a endofunctor

of the category of free K-modules of finite rank.

Postponing the action of the general linear group for the moment, we find an

explicit basis for ∇λ(V ), introducing two results that are critical to the proofs of

the main theorems. The following lemma is the analogue for GL-polytabloids of

part of the proof of Theorem 8.4 in [19]. There are some subtle differences between

the proofs because of our use of place permutations.



PLETHYSMS OF SYMMETRIC FUNCTIONS 13

Lemma 2.4. Let 1 ≤ j < j′ ≤ λ1 and let 1 ≤ i ≤ λ′j′ . Define subsets of [λ] by

Aλ(i, j) = {(i, j), . . . , (λ′j , j)} and Bλ(i, j′) = {(1, j′), . . . , (i, j′)}. If t is a λ-tableau

then ∑
τ

F (tτ) sgn(τ) = 0

where the sum is over all τ ∈ SAλ(i,j)∪Bλ(i,j′).

Proof. Let A and B denote Aλ(i, j) and Bλ(i, j′), respectively. By definition, the

left-hand side is
∑
τ∈SA∪B

∑
σ∈CPP(λ) f

(
(tτ)σ

)
sgn(τ) sgn(σ). Therefore it suffices

to show that
∑
τ∈SA∪B f

(
(tτ)σ

)
sgn(τ) = 0 for each σ ∈ CPP(λ). Since |A ∪ B| =

λ′j + 1, there exist boxes (h, j)σ ∈ Aσ and (h′, j′)σ ∈ Bσ such that (h, j)σ and

(h′, j′)σ are in the same row of [λ]. Let δ =
(
(h, j)σ, (h′, j′)σ

)
∈ SAσ∪Bσ be the

transposition swapping these boxes. Let ϑ1, . . . , ϑ` be representatives for the left

cosets of 〈δ〉 in SAσ∪Bσ. Thus SAσ∪Bσ =
⋃`
c=1 ϑc〈δ〉 and∑

τ∈SA∪B
f
(
(tτ)σ

)
sgn(τ) =

∑
τ∈SA∪B

f
(
(tσ)(σ−1τσ)

)
sgn(τ)

=
∑

τ?∈SAσ∪Bσ
f(tστ?) sgn(τ?)

=
∑̀
c=1

(
f(tσϑc)− f(tσϑcδ)

)
sgn(ϑc)

= 0

where the final equality holds because δ swaps two boxes in the same row of [λ],

and so the tableaux tσϑc and (tσϑc)δ have equal rows. �

If τ ∈ SAλ(i,j) × SBλ(i,j′) then, by (2.4), F (tτ) sgn(τ) = F (t). Let φ1, . . . , φ` be

representatives for the left cosets of SAλ(i,j)×SBλ(i,j′) in SC , where C = Aλ(i, j)∪
Bλ(i, j′), chosen so that φ1 = id. Thus SC =

⋃`
c=1 φc(SAλ(i,j)×SBλ(i,j′)). By (2.4),

F (tφcτ) = F (tφc) sgn(τ) for each c and each τ ∈ SAλ(i,j) × SBλ(i,j′). Therefore

Lemma 2.4 implies that

|Aλ(i, j)|! |Bλ(i, j′)|!
∑̀
c=1

F (tφc) sgn(φc) = 0.

When K = Z we may cancel the factorials since ∇λ(V ) is a submodule of the free

Z-module Symλ(V ). Thus the relation

(2.5) F (t) = −
∑̀
c=2

F (tφc) sgn(φc).

holds over an arbitrary commutative ring K. We call (2.5) a snake relation, because

of the shape formed by the boxes in Aλ(i, j)∪Bλ(i, j′) when j′ = j+1. It is critical

to the proofs of Theorem 1.1, 1.2 and 1.5.

It is convenient to choose the coset representatives φ1, . . . , φ` so that each φc is

a product of transpositions swapping boxes in Aλ(i, j) and Bλ(i, j), preserving the

relative vertical order of boxes in each set.
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Example 2.5. Let λ = (2, 2, 1). The snake relation for Aλ(2, 1) = {(2, 1), (3, 1)}
and Bλ(2, 2) = {(1, 2), (2, 2)} and a λ-tableau t has five summands on its right-hand

side. Depending on t, some of these summands may vanish. For example

F

 1 1
3 2
4

 = F

 1 1
2 3
4

+ F

 1 1
3 4
2


because, taking coset representatives as suggested above, the tableaux obtained

by the transpositions (1, 2) ↔ (2, 1) and (1, 2) ↔ (3, 1), and the double trans-

position (1, 2) ↔ (2, 1), (2, 2) ↔ (3, 1) have a repeated 1 in their first column.

By (2.4), applying the transposition (2, 1)↔ (3, 1) to the second summand switches

its sign and expresses the left-hand side as a linear combination of semistandard

GL-polytabloids.

Corollary 2.6. If t is a λ-tableau with entries from B then F (t) may be expressed

as a K-linear combination of GL-polytabloids F (s) for semistandard λ-tableaux s

by applying finitely many snake relations.

Proof. By (2.4), we may assume that t is column-standard. If t is not standard

then there exist (i, j), (i, j + 1) ∈ [λ] such that t(i,j) > t(i,j+1). Let A, B ⊆ [λ]

be as in Lemma 2.4, taking j′ = j + 1. By (2.5), F (t) = −
∑`
c=2 F (tφc) sgn(φc)

where each φc swaps certain boxes in A with certain boxes, necessarily having

smaller entries, in B. Thus t < tφc for each φc, where < refers to the order in

Definition 2.1. The result now follows by induction. �

We say that F (t) is straightened by snake relations. A related result to (2.5)

gives some control over the F (s) that may appear in the straightening of F (t); it

is needed in the proof of Theorem 1.2. To state it, we require two further orders.

Define a composition of n ∈ N0 of length ` to be an element β ∈ N`
0 such that∑`

i=1 βi = n. We set `(β) = `. We extend the dominance order from partitions to

compositions in the obvious way, by setting β � γ if β1+· · ·+βi ≥ γ1+· · ·+γi for all

i ∈ N. (As usual, if i exceeds the number of parts of β or γ then the corresponding

part is taken to be 0.)

Definition 2.7. Given a row-semistandard tableau t with entries from {1, . . . , d},
and b ∈ {1, . . . , d}, let t≤b be the composition γ defined by γi =

∣∣{j : 1 ≤ j ≤
λi, t(i,j) ≤ b}

∣∣. If u is a row-semistandard tableau with entries also from {1, . . . , d}
and of the same shape as t, we say that t dominates u, and write t�u if t≤b�u≤b for

all b ∈ {1, . . . , d}. We extend this order to tableaux with entries from an arbitrary

totally ordered set B by the unique order-preserving bijection between {1, . . . , |B|}
and B.

Definition 2.8. Given a tableau t with entries from N, let t be the row-semistandard

tableau obtained by sorting the rows of t into non-decreasing order.
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Proposition 2.9. Let t be a column-standard λ-tableau with entries from {1, . . . , d}.
Then t is semistandard and

F (t) = F (t) + w

where w is an integral linear combination of GL-polytabloids F (s) for semistandard

λ-tableaux s such that t� s.

Proof. We reduce to the analogous result for tableaux with distinct entries proved

in [30, Proposition 4.1]. Let t have content β. Let t? be the tableau obtained from t

by replacing each of the βb entries of t equal to b with a symbol b(1), . . . , b(βb), for

each b ∈ {1, . . . , d}. We say that b(i) has number b and exponent i. We order

symbols lexicographically, by number then exponent, so b(i) < c(j) if and only if

b < c or b = c and i < j. Thus t? has distinct entries and is column-standard.

By Proposition 4.1 of [30], t? is standard. Let V? be the free K-module with basis

vectors vb(i) in bijection with symbols. Again by [30], now working in ∇λ(V?), we

have F (t?) = F (t?)+w where w is an integral linear combination of GL-polytabloids

F (s) for standard λ-tableaux s (each having symbol entries). The proposition now

follows from functoriality: the quotient map V? → V sending vb(i) to vb for each

symbol b(i) corresponds to replacing each symbol with its number. �

Corollary 2.6 also does most of the work to prove a well-known basis theorem for

∇λ(V ). We include the details since the following lemma is also needed in the proof

of Theorem 1.2. As a notational convenience, we extend the dominance order � on

row-semistandard tableaux to GL-tabloids by setting f(t)�f(u) if and only if t�u.

Lemma 2.10. Let t be a column-standard λ-tableau with entries from B. Let

F (t) = f(t)+w where w ∈ Symλ(V ). If u is a row-semistandard λ-tableau such that

f(u) appears with non-zero coefficient when w is written in the canonical basis (2.3)

of Symλ(V ), then f(t) � f(u).

Proof. By definition F (t) =
∑
τ∈CPP f(tτ) sgn(τ). From the identity permutation

we get the summand f(t). Suppose that τ is not the identity permutation. Then

there exist boxes (i, j) and (i′, j) ∈ [λ] such that i < i′ and (i, j)τ = (k, j) and

(i′, j)τ = (k′, j) with k > k′. We say that such boxes form a column inversion of τ .

Let δ =
(
(i, j), (i′, j)

)
. Let c = t(i,j) and let c′ = t(i′,j). Note that since t is column

standard, c < c′. It is easily seen that if c ≤ b < c′ then the Young diagrams of t
≤b

and tδ
≤b

differ by a single box, moved down from row i (the row of c in t) to row i′

(the row of c′ in t). For all other b we have t
≤b

= tδ
≤b

. Hence tδ� t. By induction

on the number of column inversions, we have tτ � tδ. Hence tτ � t. Therefore

f(t) � f(tτ), as required. �

We note this proof is essentially the same as that of Lemma 8.3 in [19], modified to

use place permutations. It is also possible to reduce to this result by distinguishing

equal entries of t by formal symbols, as in the proof of Proposition 2.9.

Proposition 2.11. The set {F (s) : s ∈ SSYTB(λ)} is a K-basis for ∇λ(V ).
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Proof. By Corollary 2.6, ∇λ(V ) is spanned by {F (s) : s ∈ SSYTB(λ)}. Let v =∑
s∈SSYTB(λ)

αsF (s) where not every coefficient is zero. Take s maximal in the

dominance order on semistandard λ-tableaux such that αs 6= 0. By Lemma 2.10,

the coefficient of f(s) in F (s) is 1. Again by this lemma, if s′ is a semistandard

λ-tableau other than s such that αs′ 6= 0, then f(s′)�f(t′) for every f(t′) appearing

in F (s′). Hence, by maximality of s, we have f(t′) 6� f(s). Therefore the coefficient

of f(s) in v is αs, and so v 6= 0. �

2.4. Action of GL(E). We now suppose that K is an infinite field and that E is

a d-dimensional K-vector space. Suppose that V is a polynomial GL(E)-module

with basis, as in the previous section, {vb : b ∈ B}. Let t ∈ SSYTB(λ). The action

of g ∈ GL(E) on F (t) ∈ ∇λ(V ), where t is a λ-tableau with entries from B, is

determined by the multilinear construction in Definition 2.3. The following method

is convenient in calculations: formally replace each entry b in t with gvb, expressed

as a K-linear combination of {vb : b ∈ B}, and then expand multilinearly. For

example, suppose that E is 3-dimensional and V is the natural representation E,

so we take B = {1, 2, 3}. Thinking of GL(E) as 3× 3 invertible matrices, let

g =

α 0 0

δ β 0

ε 0 γ

 ∈ GL(E).

Then in its action on ∇(2,2)(V ) we have

gF ( 1 2
3 1

)= F
( αv1 + δv2 + εv3 βv2

γv3 αv1 + δv2 + εv3

)
= α2βγF

( 1 2
3 1

)
+αβγδF

( 2 2
3 1

)
+αβγεF

( 1 2
3 3

)
+βγδεF

( 2 2
3 3

)
where the first line should be interpreted entirely formally. One may then use snake

relations to express the right-hand side in the standard basis of ∇(2,2)(V ).

In this example, V had polynomial degree 1. In general, if the GL(E)-module V

has degree p, then, identifying GL(E) with GLd(C), the coefficients in gF (t) have

degree pr in the matrix coefficients of g ∈ GLd(C). Thus if |λ| = r then ∇λ :

GL(E)-modp → GL(E)-modpr is an endofunctor of GL(E)-mod. (This was seen

for the decomposition of Symn
(
Sym2E

)
in Example 1.7.) For a further example, if

dimE = 2, V = Sym2E, λ = (2, 1) and v1 = e21, v2 = e1e2, v3 = e22 then working in

∇(2,1)
(
Sym2(E)

)
we have(

α β

γ δ

)
F

(
1 3
2

)
= F

 α2v1 + 2αγv2 + γ2v3 β2v1 + 2βδv2 + δ2v3

αγv1 + (αδ + βγ)v2 + βδv3


= α2β2(αδ + βγ)F (

(
1 1
2

)
+ 2α2βδ(αδ + βγ)F

(
1 2
2

)
+ α2δ2(αδ + βγ)F

(
1 3
2

)
+ · · · ,
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where the coefficients have degree 6.

2.5. Action of gl(E) and highest-weight vectors. As in the previous subsec-

tion, let K be an infinite field and let E be a d-dimensional K-vector space. Fix

a basis e1, . . . , ed of E, and use it to identify GL(E) with GLd(K). Recall that if

V is a polynomial representation of GL(E) and β is a composition with `(β) = d

then a non-zero vector v ∈ V is a weight vector of weight β if

(2.6) gv = gβ1

11 . . . g
βd
dd v

for all diagonal matrices g ∈ GLd(K). Let Vβ be the subspace of V of weight vectors

of weight β, together with 0. The formal character of a polynomial representation V

of GL(E) is the polynomial

ΦV (x1, . . . , xd) =
∑
β

dim(Vβ)xβ1

1 . . . xβdd

where the sum is over all compositions β such that `(β) = d.

Lemma 2.12.

(i) If s ∈ SSYT(λ, β) then F (s) ∈ ∇λ(E) has weight β.

(ii) The formal character of ∇λ(E) is sλ(x1, . . . , xd).

Proof. If g ∈ GL(E) is a diagonal matrix then gf(s) = gβ1

11 . . . g
βd
ddf(s). Since all the

λ-tableaux appearing in F (s) have the same content as s, it follows that F (s) has

weight β, proving (i). Part (ii) follows from (i), Proposition 2.11 and the definition

of Schur functions (see (2.1) in §2.2). �

In the proofs of the main theorems, it is easiest to consider ∇λ(E) as a module

for the Lie algebra gl(E) of GL(E). Let β be a composition of n with `(β) = d.

Recall that if V is a gl(E)-module then v ∈ V is a weight vector of weight β if

X · v = (β1X11 + · · ·+ βdXdd)v

for all diagonal matrices X ∈ gl(E). If this equation holds for all diagonal X ∈ b,

and X · v = 0 whenever X is strictly upper-triangular, then we say that v is a

highest-weight vector of weight β. Let b be the Borel subalgebra of gl(E) of upper-

triangular matrices. For c ∈ {2, . . . , d}, let X(c) ∈ b be the strictly upper-triangular

matrix having 1 in position (c − 1, c) and 0 in all other positions. Since the Lie

subalgebra of b of strictly upper-triangular matrices is generated by X(2), . . . , X(c),

we have the following lemma.

Lemma 2.13. Let V be a gl(E)-module. The vector v ∈ V is a highest-weight

vector of weight β if and only if X · v = (β1X11 + · · · + βdXdd)v for all diagonal

matrices X ∈ gl(E) and X(c) · v = 0 for each c ∈ {2, . . . , d}. �

Using Lemma 2.13 we establish the remaining basic properties of ∇λ(E). (Thus

we take V to be the natural representation E of GL(E), and work in the basis

e1, . . . , ed.) The main novel feature is the use of Proposition 2.9 to prove (v)

and (vi).
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Recall that if V and W are gl(E)-modules then the action of gl(E) on V ⊗W
and SymrV is defined by linear extension of x · (v⊗w) = (x ·v)⊗w+v⊗ (x ·w) and

x · (vi1 . . . vir ) = (x · vi1)vi2 . . . vir + · · · + vi1vi2 . . . vir−1
(x · vir ). The λ-tableau tλ

in (iv) was defined in §2.1 by t(i,j) = i for each (i, j) ∈ [λ].

Proposition 2.14. Let s ∈ SSYT{1,...,d}(λ) and let c ∈ {2, . . . , d}.
(i) If s has content β then F (s) is a weight vector of weight β for the action of

gl(E).

(ii) X(c) · F (s) =
∑
t F (t) where the sum is over all tableaux t obtained from s

by changing a single entry from c to c− 1.

(iii) If every c in s has a c− 1 immediately above it then X(c) · F (s) = 0.

(iv) F (tλ) is a highest-weight vector of weight λ.

(v) Suppose that s has a c not having a c − 1 immediately above it. Find the

highest row of s containing such an entry, and let t be the tableau obtained by

changing the leftmost c in this row to c − 1. Then t is semistandard and X(c) ·
F (s) = εF (t) + y where ε ∈ N and y is an integral linear combination of F (u) for

semistandard λ-tableaux u such that t� u.

(vi) If K has characteristic zero and v ∈ ∇λ(E) is such that X(c) · v = 0 for all

c ∈ {2, . . . , d} then v is a multiple of F (tλ).

(vii) If K = C then ∇λ(E) is irreducible.

Proof. Part (i) follows easily from the rules for the action of gl(E) and the definition

of f(t) as a tensor product of symmetric powers, in analogy with Lemma 2.12(i).

Since X(c) · ec = ec−1 and X(c) · eb = 0 if b 6= c, we also have

X(c) · f(s) = X(c) ·
`(λ)⊗
i=1

λi∏
j=1

es(i,j) =
∑
t

`(λ)⊗
i=1

λi∏
j=1

et(i,j) =
∑
t

f(t).

where the sums are over all tableaux t obtained from s by changing a single entry

from c to c−1. This proves the analogue of (ii) for GL-tabloids, and (ii) now follows

from the definition of F (s). By (2.4), F (t) = 0 whenever t has a repeated entry

in a column, so (iii) follows from (ii). Now (iv) follows from the definition of tλ

in §2.1, (i), (iii) and Lemma 2.13.

For (v), let row a be the row of s containing the chosen entry c. By choice of a,

the tableau t is semistandard. By (ii), X(c) · F (s) = F (t) +
∑
t′ F (t′) where the

sum is over all tableaux t′ obtained from s by changing a different c to a c − 1.

If this c has a c − 1 above it then F (t′) = 0. If not, and this c is in row a, then

by Proposition 2.9, F (t′) = F (t) + z where z is an integral linear combination of

F (u) for semistandard λ-tableaux u such that t � u. In the remaining case c is

in a lower row than row a, and t′ is column standard with t � t′. Therefore, by

Proposition 2.9,

X(c) · F (s) = εF (t) + y

where ε is the number of entries c in row a of t not having c− 1 immediately above

them, and y is as required.
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For (vi), let v =
∑
s∈S γsF (s) where S ⊆ SSYT{1,...,d}(λ) and γs 6= 0 for each s ∈

S. Suppose that v is not a multiple of F (tλ). Choose a minimal such that some

s ∈ S has an entry c in row a with c > a. Choose c minimal with this property

and suppose that s has ε such entries c, where ε is maximal. Thus rows a− 1 and

a of s have the form

a− . . . a− a− . . . a− a− . . . a−

a . . . a c . . . c . . .︸ ︷︷ ︸
ε

where a− denotes a− 1. Replacing any c in row a of s with c− 1 gives a column-

standard tableau; moreover, replacing the leftmost such c gives a semistandard

λ-tableau. Let t be this tableau. Applying (v) to the summands of X(c) · v we see

that

X(c) · F (s) = εF (t) + y

where y is is an integral linear combination of F (u) for semistandard λ-tableaux

such that t� u. Now suppose that γs′ 6= 0. Let t′ be obtained from s′ by changing

a single c to c− 1; we may suppose this c has no c− 1 above it, and so t′ is column-

standard. Then, comparing t′
≤c

and t≤c on row a, our choice of s implies that

t′ 6� t. Therefore, by Proposition 2.9, the coefficient of F (t) in F (t′) is zero. Hence

the coefficient of F (t) in X(c) · v is εγs. Since K has characteristic zero, this is a

contradiction.

Finally, by Proposition 14.13 of [13], the gl(E)-submodule V of ∇λ(E) generated

by F (tλ) is irreducible. If V is a proper submodule of ∇λ(E) then, by Weyl’s

Theorem (see [16, §6.3] or [11, Appendix B]), V has a complementary submodule.

By Proposition 14.13 of [13] this complement contains a highest-weight vector,

contradicting (vi). Hence ∇λ(E) is irreducible. �

We end with a result summarizing the remaining properties we need of polyno-

mial GL(E)-modules.

Proposition 2.15. Let V be a polynomial GL(E)-module of degree r.

(i) V contains a highest-weight vector.

(ii) If v ∈ V is a highest-weight vector of weight λ then v generates a submodule

of V isomorphic to ∇λ(E).

(iii) V is isomorphic to a direct sum of certain ∇λ(E) for λ ∈ Par(r).

(iv) Let ΦV be the formal character of V . If λ ∈ Par(r) has at most dimE parts

then 〈ΦV , sλ〉 = [V : ∇λ(E)].

Proof. Parts (i) and (ii) follow from Proposition 14.13 of [13] and Proposition

2.14(vii); (iii) then follows from Weyl’s Theorem (see [16, §6.3] or [11, Appen-

dix B]). By (iii) it suffices to prove (iv) when V is irreducible, in which case it is

immediate from the orthogonality of Schur functions and Lemma 2.12. �

Remark 2.16. Our definition of GL-tabloids and GL-polytabloids is in deliberate

analogy with the definitions of tabloids and polytabloids in [19, (3.9), (4.3)]. In
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[19, Ch. 26], James uses his results on symmetric groups to construct a polynomial

representation Wλ of GL(E), defined over an arbitrary field K.

Let G⊗ : Sr-mod → GL(E)-modr be the inverse Schur functor sending a Sr-

module U to E⊗r ⊗KSr U . (Here E⊗r is regarded as a right KSr-module by place

permutation on tensors.) James’ moduleWλ may be defined as the image of G⊗(Sλ)

under the canonical map G⊗Sλ → G⊗Mλ induced by the inclusion Sλ → Mλ of

the Specht module Sλ into the Young permutation module Mλ. It follows from

the definition of GL-polytabloids and the isomorphism G⊗(Mλ) ∼=
⊗`(λ)

i=1 SymλiE

that Wλ ∼= ∇λ(E). By working throughout in
⊗`(λ)

i=1 SymλiE we avoid the nasty

technicality that, in general, G⊗(Sλ) 6∼= Wλ. For example, since S(2) ∼= S(1,1) ∼=
M (2) ∼= K when K has characteristic 2, and G⊗(K) = (E⊗2)⊗KS2

K ∼= Sym2E, we

have G⊗(S(2)) ∼= G⊗(S(1,1)) ∼= Sym2E ∼= W (2). But W (2) 6∼= W (1,1) ∼=
∧2

E.

For more recent work on inverse Schur functions we refer the reader to [15]

and [23]. A related homological remark, which explains our notation, is that ∇λ(E)

is a co-standard module in the sense of quasi-hereditary algebras: see [10].

3. A model for ∇ν
(
∇µ(E)

)
Fix µ ∈ Par(m) and ν ∈ Par(n). Let E be a complex vector space with basis

e1, . . . , ed. Throughout this section let B = SSYT{1,...,d}(µ) ordered by the total

order < in Definition 2.1.

Lemma 3.1. The GL(E)-module ∇ν
(
∇µ(E)

)
has as a canonical basis the set{

F (S) : S ∈ SSYTB(ν)
}
.

of plethystic semistandard tableaux of shape µν whose µ-tableau entries each have

entries from {1, . . . , d}.

Proof. By Proposition 2.11, applied with V = E and B = {1, . . . , d}, ∇µ(E) has

{F (t) : t ∈ SSYT{1,...,d}(µ)} as a basis. The lemma now follows from another appli-

cation of Proposition 2.11, this time with V = ∇µ(E) and B = SSYT{1,...,d}(µ). �

As a notational guide, we use upper case letters to denote ν-tableaux whose

entries are µ-tableaux and upper case indices I and J to refer to their rows and

columns.

By Definition 2.3,

(3.1) F (S) =
∑

τ∈CPP(ν)

f(Sτ) sgn(τ).

Since a µ-tableau entry s = S(I,J)τ−1 ∈ B corresponds to the basis vector F (s) of

∇µ(E), we have

f(Sτ) =

`(ν)⊗
I=1

νI∏
J=1

F (S(I,J)τ−1).
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In turn,

F (S(I,J)τ−1) =
∑

σ∈CPP(µ)

f(sσ) sgn(σ) =
∑

σ∈CPP(µ)

`(µ)⊗
i=1

µi∏
j=1

es(i,j)σ−1 sgn(σ).

Thus F (S) ∈
⊗`(ν)

I=1 SymνI
(⊗`(µ)

i=1 Symµi(E)
)
. It will be convenient to define the

weight of a tableau S ∈ SSYTB(ν), denoted wt(S), to be the sum of the contents

of its µ-tableau entries.

For example, take B = SSYT{1,2,3}
(
(2, 1)

)
. If ν = (2, 2) and µ = (2, 1) and

S =

1 1

2

1 1

2

1 1

3

1 2

2

∈ SSYTB
(
(2, 2)

)

then wt(T ) = (7, 4, 1) and

F (S) = F
( 1 1

2

)
F
( 1 1

2

)
⊗F
( 1 1

3

)
F
( 1 2

2

)
−F
( 1 1

3

)
F
( 1 1

2

)
⊗F
( 1 1

2

)
F
( 1 2

2

)
−F
( 1 1

2

)
F
( 1 2

2

)
⊗F
( 1 1

3

)
F
( 1 1

2

)
+F
( 1 1

3

)
F
( 1 2

2

)
⊗F
( 1 1

2

)
F
( 1 1

2

)
.

where F
( 1 1

2

)
= e21 ⊗ e2 − e2e1 ⊗ e1, and so on.

Proposition 3.2. Let S ∈ SSYTB(ν).

(i) If wt(S) = β then F (S) ∈ ∇ν
(
∇µ(E)

)
is a weight vector of weight β.

(ii) X(c) · F (S) =
∑
T F (T ) where the sum is over all ν-tableaux T obtained

from S by changing a single c to c− 1 in a single µ-tableau entry.

Proof. Apply Proposition 2.14(i) and (ii) to (3.1). �

In particular, the canonical basis defined in Lemma 3.1 for ∇ν
(
∇µ(E)

)
consists

of weight vectors.

Proposition 3.3. The formal character of ∇ν
(
∇µ(E)

)
is (sν ◦ sµ)(x1, . . . , xd).

Proof. By the definition of Schur functions in (2.1) and the definition of plethysm

given shortly afterwards, (sν ◦ sµ)(x1, . . . , xd) is obtained by evaluating sν at the

monomials xt for t ∈ B. Thus

(sν ◦ sµ)(x1, . . . , xd) =
∑

S∈SSYTB(ν)

xwt(S).

It follows that if β is a composition of mn with `(β) = d then the coefficient xβ

in sν ◦ sµ is the number of S ∈ SSYTB(ν) of weight β. By Lemma (3.1) and

Proposition 3.2(i), this is the dimension of the β-weight space in ∇ν
(
∇µ(E)

)
. �
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4. Proof of Theorem 1.1

We use the model for ∇ν
(
∇µ(E)

)
in §3, taking dimE = d where d ≥ mn. It

will be convenient to number the rows of [(r) t µ] from 0, so that

[(r) t µ] = {(0, j) : 1 ≤ j ≤ r} ∪ [µ].

Given a µ-tableau t with entries from {1, . . . , d}, let t̃ be the (r) t µ-tableau with

entries from {1, . . . , d, d+ 1} defined by

t̃(i,j) =

{
t(i,j) + 1 if i ≥ 1

1 if i = 0.

Thus t̃ is obtained from t by increasing each entry by 1 and then inserting a new

row of 1s of length r at the top.

The following technical lemma shows that each snake relation satisfied by F (t)

gives a very similar relation satisfied by F ( t̃). We use this to show in the proof of

Proposition 4.3 that F ( t̃) can be straightened in essentially the same way as F (t).

Lemma 4.1. Let t be a µ-tableau with entries from {1, . . . , d}. Let (i, j) ∈ [µ] with

j < µ1. Let F (t) = −
∑`
c=2 F (tφc) sgn(φc) be a snake relation as in (2.5), with

j′ = j + 1. Then

F ( t̃) = −
∑̀
c=2

F ( t̃φc ) sgn(φc).

Proof. Let A = Aµ(i, j) and B = Bµ(i, j+ 1) be as in (2.5). Let B+ = B ∪{(0, j+

1)}. (Recall that the rows of [(r) t µ]) are numbered from 0.) Let C+ = A ∪ B+.

By hypothesis, φ2, . . . , φ` are representatives for the proper left cosets of SA × SB
in SA∪B . The permutations in φc(SA × SB+) fixing (0, j + 1) are precisely the

elements of φc(SA × SB). Therefore the cosets φc(SA × SB+) for 2 ≤ c ≤ ` are

disjoint. Let φ1 = id and choose further coset representatives φ`+1, . . . , φ`+ such

that φ1, . . . , φ`+ is a full set of representatives for the left cosets of SA × SB+ in

SC+ . By (2.5) we have

(4.1) F ( t̃) = −
`+∑
c=2

F ( t̃φc) sgn(φc).

Suppose that c > `. Then (0, j + 1)φc ∈ A, and since t̃(0,j) = 1 and t̃(0,j+1) = 1,

it follows that t̃φc has two entries equal to 1 in column j. Therefore F ( t̃φc) = 0

by (2.4). We may therefore replace the upper limit in the sum in (4.1) with `. After

making this change, (4.1) is precisely the relation we require. �

Recall from §3 that B = SSYT{1,...,d}(µ) is ordered by the total order < in

Definition 2.1. Let B+ = SSYT{1,...,d,d+1}((r) t µ). Given S ∈ SSYTB(ν), let S̃ be

the ν-tableau defined by replacing each µ-tableau entry s of S with s̃. For s, t ∈ B
we have s < t if and only if s̃ < t̃. Hence S̃ ∈ SSYTB+(ν).

Let E+ = E ⊕ 〈ed+1〉 be a (d + 1)-dimensional complex vector space. Recall

that Vλ denotes the λ-weight space of a gl(E)-module V .
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Lemma 4.2. The map F (S) 7→ F (S̃) defines a C-linear isomorphism

∇ν
(
∇µ(E)

)
λ
→ ∇ν

(
∇(r)tµ(E+)

)
(nr)tλ.

Proof. Suppose that v ∈ ∇ν
(
∇(r)tµ(E+)

)
is a weight vector of weight (nr) t λ.

Let T ∈ SSYTB+(ν) and suppose that the coefficient of F (T ) in v is non-zero. By

Proposition 3.2(i), there are nr entries equal to 1 in the µ-tableau entries of T .

Since (r) is the largest part of ((r) t µ), each T(g,h) for (g, h) ∈ [ν] has at most r

entries equal to 1. Therefore each T(g,h) has exactly r entries equal to 1, necessarily

lying in its longest row. Hence T = S̃ for a unique S ∈ SSYTB(ν), and so the map

is surjective. Since it sends basis elements to basis elements, it is injective. �

Let ṽ ∈ ∇ν
(
∇(r)tµ(E+)

)
(nr)tλ denote the image of v ∈ ∇ν

(
∇µ(E)

)
λ

under the

map in the previous lemma.

Proposition 4.3. The map v 7→ ṽ restricts to a bijection between highest-weight

vectors in ∇ν
(
∇µ(E)

)
of weight λ and highest-weight vectors in ∇ν

(
∇(r)tµ(E+)

)
of weight (nr) t λ.

Proof. Let

v =
∑

S∈SSYTB(ν)

αSF (S) ∈ ∇ν
(
∇µ(E)

)
λ
.

By definition,

ṽ =
∑

S∈SSYTB(ν)

αSF (S̃) ∈ ∇ν
(
∇(r)tµ(E+)

)
λ+(nr)

.

Let S ∈ SSYTB(ν). Since changing any 2 to 1 in a ((r) t µ)-tableau entry s̃ of

S̃ gives a ((r) t µ)-tableau with two 1s in the same column, Proposition 3.2(ii)

implies that X(2) · F (S̃) = 0. Now let c ∈ {2, . . . , d}. Again by Proposition 3.2(ii),

X(c) · F (S) =
∑
T F (T ) where the sum is over all T ∈ SSYTB(ν) obtained from S

by changing a single c to c− 1. Moreover, X(c+1) ·F (S̃) =
∑
T F (T̃ ) with the same

conditions on the sum.

Suppose that v is a highest-weight vector. By the previous paragraph and (3.1),

each summand F (T ) appearing in X(c) ·F (S) (respectively, each F (T̃ ) appearing in

X(c+1) · F (S̃)) is a sum of tensor products of symmetric products of F (u) (respec-

tively F (ũ)) for certain µ-tableaux u (respectively ((r) t µ)-tableaux ũ), at most

one of which, say t (respectively t̃), is non-semistandard. By Corollary 2.6, we may

straighten F (t) to a linear combination of F (s) for s ∈ SSYT{1,...,d}(µ) by a se-

quence of snake relations (2.5) swapping boxes between adjacent columns. By mul-

tilinearity, this expresses F (T ) as a linear combination of F (S) for S ∈ SSYTB(ν).

Recall that the rows of [(r) t µ] are labelled from 0. By Lemma 4.1 if we apply

exactly the same sequence of relations to straighten F (t̃), we express F (T̃ ) as a

linear combination of F (S̃) for S ∈ SSYTB(ν) with the same coefficients. Hence

X(c) · v = 0 implies X(c+1) · ṽ = 0. By Lemma 2.13, ṽ is a highest-weight vector.

Conversely, if ṽ is a highest-weight vector then running this argument in reverse

shows that X(c) · v = 0 for c ∈ {2, . . . , d}, and so v is a highest-weight vector. �
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By Proposition 4.3 and Proposition 2.15 we have

[∇ν(∇µE) : ∇λE] = [∇ν(∇(r)tµ)(E) : ∇(nr)tλ(E)].

Theorem 1.1 now follows using (1.7).

Remark 4.4. We remark that since any plethystic semistandard tableau of shape µν

has at most nµ1 integer entries of 1, if λ1 > nµ1 then both sides of the equation in

Theorem 1.1 are zero.

Remark 4.5. In [20, Lemma 3.2] a proof of the special case µ = (1m) and r = 1 is

indicated. In our notation, the authors consider ∇ν
(∧m+1

(E)
)

as a submodule of(∧m+1
(E)
)⊗n

and observe that each tensor summand in a highest-weight vector v

of weight (n)tλ is of the form (e1 ∧ · · · )⊗ · · · ⊗ (e1 ∧ · · · ). They define a map into(∧m
(E)
)⊗n

by removing e1 from each tensor factor of v and reducing the indices.

This is essentially the inverse map to ours, in this special case.

5. Proof of Theorem 1.2

We adapt the strategy used to prove Theorem 1.1, again working in the model

∇ν
(
∇µ(E)

)
from §3, now taking dimE = d where d ≥ r and d ≥ `(µ).

If r ≥ `(µ) then set e = 1. Otherwise let e = µr+1+1. To relate [µ] and [µ+(1r)]

we use the following notation. Let [i, 0] = (i, e) for 1 ≤ i ≤ r and for (i, j) ∈ [µ], let

[i, j] =

{
(i, j) if j < e

(i, j + 1) if j ≥ e.

As illustrated in Example 5.1, we have

[µ+ (1r)] =
{

[i, 0] : 1 ≤ i ≤ r
}⋃{

[i, j] : (i, j) ∈ [µ]
}
.

Given a µ-tableau t with entries from {1, . . . , d}, let t? be the (µ + (1r))-tableau

defined by t?[i,0] = i for 1 ≤ i ≤ r and t?[i,j] = t(i,j) if j > 0. Thus t? is obtained

from t by inserting a new column e with entries 1, . . . , r, moving the existing

column e and other later numbered columns one position right.

Example 5.1. If r = 2 and µ = (4, 2, 1) then e = 2; the labels for the boxes in

[(4, 2, 1)] and [(4, 2, 1) + (1, 1)] are

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2)

(3,1)

,

[1,1] [1,0] [1,2] [1,3] [1,4]

[2,1] [2,0] [2,2]

[3,1]

.

Two pairs of a µ-tableau t and the corresponding (µ+ (1r))-tableau t? are 1 1 2 3
2 3
4

,
1 1 1 2 3
2 2 3
4

 ,

 1 1 2 3
3 3
4

,
1 1 1 2 3
3 2 3
4

 .
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Given φ ∈ S[µ], let φ? ∈ S[µ]+(1r) be defined by [i, 0]φ? = [i, 0] for 1 ≤ i ≤ r and

[i, j]φ? = [i′, j′] ⇐⇒ (i, j)φ = (i′, j′). In analogy with Lemma 4.1, we now show

that F (t?) satisfies the appropriate conjugate of each snake relation (see (2.5) after

Lemma 2.4) satisfied by F (t).

Lemma 5.2. Let t be a µ-tableau with entries from {1, . . . , d}. Let (i, j) ∈ [µ] with

j < µ1. Let F (t) = −
∑`
c=2 F (tφc) sgn(φc) be a snake relation as in (2.5), with

j′ = j + 1. Then

F (t?) = −
∑̀
c=2

F (t?φ?c) sgn(φ?c).

Proof. The claimed relation is an instance of (2.5) for t?, with respect to the boxes

[i, j] and [i, j + 1] ∈ [µ] + (1r). �

Remark 5.3. If e = 1 the added column in t? is at the far left with entries 1, . . . , r,

and Lemma 5.2 may be compared with Lemma 4.1 in which we add a row at the

top with entries all equal to 1: an intuitive statement of Lemmas 4.1 and 5.2 is

that these additions preserve snake relations. If instead e > 1 and j = e − 1 then

[i, j] and [i, j + 1] lie in the non-adjacent columns e− 1 and e+ 1 of [µ] + (1r); this

is the only case where we need the freedom in (2.5) to take j′ 6= j + 1.

Recall from §3 that B = SSYT{1,...,d}(µ). Let C? be the set of column-standard

(µ+(1r))-tableaux with entries from {1, . . . , d} and let B+ = SSYT{1,...,d}(µ+(1r)).

Thus B+ ⊆ C?. Both B and C? are ordered by the total order < in Definition 2.1.

Given T ∈ SSYTB(ν), let T ? be the ν-tableau defined by replacing each µ-tableau

entry s of T with s?. For s, t ∈ B we have s < t if and only if s? < t?, since the

inserted column is the same in s? and t?. Hence T ? ∈ SSYTC?(ν) and F (T ?) ∈
∇ν
(
∇µ+(1r)(E)

)
. By the case N = 1 of the following definition, T ? ∈ SSYTB+(ν)

if and only if T ? is r-saturated.

Definition 5.4. Recall that if r ≥ `(µ) then e = 1 and otherwise e = µr+1 + 1.

Let N ∈ N0 and let U be a ν-tableau whose entries are certain µ+N(1r)-tableaux.

We say that U is r-saturated if whenever u is a µ + N(1r)-tableau entry of U , we

have u(i,j) = i for 1 ≤ i ≤ r and 1 ≤ j ≤ e.

Equivalently, U is r-saturated if the first e columns of each µ + N(1r)-tableau

entry of U each begin 1, . . . , r when read from top to bottom. For example, when

r = 2 and µ = (4, 2, 1) we saw in Example 5.1 that e = 2. Taking N = 1, of the two

((4, 2, 1)+(12))-tableaux t? shown, only the first could be an entry of a 2-saturated

tableau, since for the second t?(2,1) = 3.

Given v ∈ ∇ν
(
∇µ(E)

)
let v? ∈ ∇ν

(
∇µ+(1r)

)
denote the image of v under the C-

linear map defined on the canonical basis in Lemma 3.1 of ∇ν
(
∇µ(E)

)
by F (T ) 7→

F (T ?) for each T ∈ SSYTB(ν).

Example 5.5. Let r = 2 and let µ = (2, 1, 1) so e = 2. Let d = 4, so B =

SSYT{1,2,3,4}
(
(2, 1, 1)

)
. Take ν = (2). A calculation, either in Magma or by hand
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using the domino tableau rule in [6, Theorem 4.1], gives 〈s(2) ◦s(2,1,1), s(3,2,2,1)〉 = 1

and so the space of highest-weight vectors of weight (3, 2, 2, 1) in Sym2
(
∇(2,1,1)(E)

)
is 1-dimensional. Computing the images of the F (s) for s ∈ B under the generators

X(2), X(3), X(4) of the Borel subalgebra b of upper-triangular matrices in gl4(C)

using Proposition 2.14(ii) one finds that if T(1), T(2), T(3), T(4) are the four tableaux

in SSYTB
(
(2)
)

shown below

1 1
2
3

1 2
3
4

,
1 1
2
3

1 3
2
4

,
1 1
3
4

1 2
2
3

,
1 1
2
4

1 3
2
3

then, by Lemma 2.13,

v = F (T(1))− F (T(2))− F (T(3)) + F (T(4)) ∈ Sym2
(
∇(2,1,1)(E)

)
.

is a highest-weight vector of weight (3, 2, 2, 1). For example, by Proposition 2.14(ii),

we have X(2) · F (T (2)) = 0, X(2) · F (T (4)) = 0 and

X(2) · F (T (1)) = F

 1 1
2
3

F

 1 1
3
4

 = X(2) · F (T(3));

since T(1) and T(3) appear with opposite signs in v, this implies X(2) · v = 0.

Essentially the same calculation shows that

v? = F (T ?(1))− F (T ?(2))− F (T ?(3)) + F (T ?(4)) ∈ Sym2
(
∇(2,1,1)+(1,1)(E)

)
is a highest-weight vector of weight (3, 2, 2, 1) + 2(1, 1). The tableaux T ?(1) and T ?(3)
are not 2-saturated; they lie in SSYTC?

(
(2)
)

but not in SSYTB+

(
(2)
)
. For example

F (T ?(1)) = F

 1 1 1
2 2
3

F

 1 1 2
3 2
4


= F

 1 1 1
2 2
3

F

 1 1 2
2 3
4

− F
 1 1 1

2 2
3

F

 1 1 2
2 4
3


expressed in the canonical basis of Sym2

(
∇(3,2,1)(E)

)
. We leave it as an exercise

to show that if U(1), U(2), U(3), U(4) are the four tableaux in SSYTC?
(
(2)
)

shown

below

1 1 1
2 3
3

1 1 2
2 2
4

,
1 1 1
2 2
4

1 1 2
2 3
3

,
1 1 1
2 4
3

1 1 2
2 2
3

,
1 1 1
2 2
3

1 1 2
2 4
3

then

w = F (U(1))− F (U(2))− F (U(3)) + F (U(4))− F (T ?(2)) + F (T ?(4))
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is a highest-weight vector in Sym2
(
∇(2,1,1)+(1,1)(E)

)
of weight (3, 2, 2, 1) + 2(1, 1),

linearly independent of v?. By Theorem 1.2, the multiplicity

[Sym2
(
∇(2,1,1)+N(1,1)(E)

)
: ∇(3,2,2,1)+N(2,2)(E)]

is constant for N ≥ 1. A further domino tableau calculation shows that 〈s(2) ◦
s(3,2,1), s(5,4,2,1)〉 = 2. Therefore, repeating the column addition once more, we

obtain vectors v?? and w? spanning the subspace of Sym2
(
∇(2,1,1)+2(1,1)(E)

)
of

highest-weight vectors of weight (3, 2, 2, 1) + 2(2, 2); further additions give a span-

ning set for the subspace of Sym2
(
∇(2,1,1)+N(1,1)(E)

)
of highest-weight vectors of

weight (3, 2, 2, 1) +N(2, 2) for each N ≥ 2.

Lemma 5.6. The map v 7→ v? defines a C-linear injection

∇ν
(
∇µ(E)

)
λ
→ ∇ν

(
∇µ+(1r)(E)

)
λ+n(1r)

.

Proof. Let T ∈ SSYTB(ν). Since wt(T ?) = wt(T ) + n(1r), Proposition 3.2(i)

implies that F (T ?) ∈ ∇ν
(
∇µ+(1r)(E)

)
λ+n(1r)

. By definition

(5.1) F (T ?) =
∑

τ∈CPP(ν)

`(ν)⊗
I=1

νI∏
J=1

F (T ?(I,J)τ−1) sgn(τ).

The row-standardization t of a tableau t was defined in Definition 2.8. Applying this

operation to each entry of T ?, we define S(T ?) ∈ SSYTB+(ν) by S(T ?)(I,J) = T ?(I,J).

By Proposition 2.9,

F
(
T ?(I,J)τ−1

)
= F

(
S(T ?)(I,J)τ−1

)
+ u(I,J)τ−1

where u(I,J)τ−1 ∈ ∇µ+(1r)(E) is a linear combination of GL-polytabloids F (s) for

s ∈ B+ such that T ?(I,J)τ−1 � s. Define V ∈ ∇ν
(
∇µ+(1r)(E)

)
by

F (T ?) = F
(
S(T ?)

)
+W ;

by the previous sentence, the vector W is a linear combination of basis elements of

Symν
(
∇µ+(1r)(E)

)
each of the form

`(ν)⊗
I=1

νI∏
J=1

F (u(I,J)),

where the tableaux u(I,J) ∈ B+ can be relabelled by a permutation τ so that

S(T ?)(I,J) � u(I,J)τ for each (I, J) ∈ [ν], with at least one of these dominance

relations strict. It follows that the coefficient of f
(
S(T ?)

)
in F (T ?) comes entirely

from F
(
S(T ?)

)
. By Lemma 2.10, this coefficient is 1.

Each µ + (1r)-tableau entry of S(T ?) is of the form t? where t ∈ B. Given

s = t? one may reconstruct t as follows: choose, for each i ∈ {1, . . . , r}, a box (i, ji)

containing i in row i of s; now erase the entry in this box, and move each entry to
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the right of the now empty box one place to the left; finally delete the box at the

end of row i. More formally,

t(i,h) =

{
s(i,h+1) if i ∈ {1, . . . , r} and h ≥ ji
s(i,h) otherwise.

Therefore the map T 7→ S(T ?) is injective.

Let

v =
∑

T∈SSYTB(ν)

αTF (T ?)

where not every coefficient is zero. Choose T so that S(T ?) is a maximal element

of {S(T ?) : αT 6= 0} in the dominance order. By the previous two paragraphs, the

coefficient of f
(
S(T ?)) in v is αT . Hence the map F (T ) 7→ F (T ?) is injective. �

Proposition 5.7. The map v 7→ v? restricts to an injective C-linear map from the

highest-weight vectors in ∇ν
(
∇µ(E)

)
of weight λ to the highest-weight vectors in

∇ν
(
∇µ+(1r)(E)

)
of weight λ + (nr). Moreover if every U ∈ SSYTB+(ν) of weight

λ+ (nr) is r-saturated then the map is bijective.

Proof. The first part follows by combining Proposition 3.2(ii), Lemma 5.2 and

Lemma 5.6, in the same way as Proposition 4.3. If the final hypothesis holds

then every U ∈ SSYTB+(ν) is of the form T ? for some T ∈ SSYTB(ν) and so,

by Lemma 3.1 and Proposition 3.2(i), the map F (T ) 7→ F (T ?) defines a linear

isomorphism ∇ν
(
∇µ(E)

)
λ
→ ∇ν

(
∇µ+(1r)(E)

)
λ+(nr)

. Therefore in this case the

restricted map is bijective on highest-weight vectors. �

We need the following sufficient condition for r-saturation.

Lemma 5.8. Let B+M = SSYT{1,...,d}
(
µ+M(1r)

)
. Every element of SSYTB+M (ν)

of weight λ is r-saturated if

M > n(µ1 + · · ·+ µr−1) + (n− 1)µr + µr+1 − (λ1 + · · ·+ λr).

Proof. Let u be a µ+M(1r)-tableau entry of U ∈ SSYTB+M (ν). The entries of u

in {1, . . . , r} lie in its first r rows. Therefore u has at most µ1 + · · · + µr + Mr

such entries. If U is not saturated then it has a µ + M(1r)-tableau entry t such

that t(r,e) > r. This t has at most µ1 + · · ·+ µr−1 +M(r − 1) + (e− 1) entries in

{1, . . . , r}. Since e = µr+1 + 1, this shows that U has at most (n − 1)(µ1 + · · · +
µr +Mr) + (µ1 + · · ·+ µr−1 +M(r− 1) + µr+1) entries in {1, . . . , r}. The number

of such entries is λ1 + · · ·+ λr +Mnr. Therefore

n(µ1 + · · ·+ µr−1 +Mr) + (n− 1)µr + µr+1 −M ≥ λ1 + · · ·+ λr +Mnr.

Rearranging, this implies the lemma. �

Proof of Theorem 1.2. By Proposition 5.7 and Proposition 2.15 we have

[∇ν
(
∇µ(E)

)
: ∇λ(E)] ≤ [∇ν

(
∇µ+(1r)(E)

)
: ∇λ+n(1

r)(E)].
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The first part of Theorem 1.2 now follows from (1.7). Now suppose that N ∈ N0

and N ≥ n(µ1 + · · ·+ µr−1) + (n− 1)µr + µr+1 − (λ1 + · · ·+ λr). By Lemma 5.8,

taking M = N + 1, every element of SSYTB+(N+1)(ν) is r-saturated. Therefore, by

Proposition 5.7, the map v 7→ v? from highest-weight vectors in ∇ν
(
∇µ+N(1r)(E)

)
to highest-weight vectors in ∇ν

(
∇µ+(N+1)(1r)(E)

)
is a bijection. The stability

result now follows from Proposition 2.15. �

Example 5.9. Example 5.5 shows that the stability bound in Theorem 1.2 may

be sharp. We give an example of the opposite case. Fix n ∈ N. It is known (see for

example [26, §8.5]) that
∧n

(Sym2E) is multiplicity-free. Moreover, the partitions λ

such that [
∧n

(Sym2E) : ∇λ(E)] = 1 are all incomparable under the dominance

order, and correspond, by Theorem 1.5, to the maximal weights of the plethystic

semistandard tableaux of shape (2)(1
n). For example,

∧3
(Sym2E) = ∇(4,1,1)(E) ⊕

∇(3,3)(E), corresponding to the plethystic tableau whose single column has (2)-

tableau entries {
1 1 , 1 2 , 1 3

}
,
{

1 1 , 1 2 , 2 2
}
,

respectively. More generally, for each ` ∈ N, provided that dimE ≥ `,
∧(`+1

2 )(Sym2E)

has ∇((`+1)`)(E) as an irreducible constituent, corresponding to the plethystic semi-

standard tableau of shape (2)(1
n) where n =

(
`+1
2

)
, defined using all 2-multisubsets

of {1, . . . , `}.
Let λ be a partition of 2n such that [

∧n
(Sym2E) : ∇λ(E)] = 1. Let{

a1 b1 , . . . , an bn
}

be the entries in the corresponding plethystic semistandard tableau of shape (2)(1
n).

Let N ∈ N0. Then the unique plethystic semistandard tableau of shape (2+N)(1
n)

and weight λ+ (nN) has (2 +N)-tableau entries {u1, . . . , un} where for each i,

ui = 1 . . . 1 ai bi .

Hence, by Theorem 1.5, [
∧n

(Sym2+N E) : ∇λ+(nN)(E)] = 1 for all N ∈ N0.

This stability follows from Theorem 1.2 for N ≥ 2(n − 1) − λ1. In the case

[
∧(`+1

2 ) Sym2+N (E) : ∇((`+1)`)+(nN)(E)] = 1 this bound becomes N ≥ 2(
(
`+1
2

)
−

1)− (`+ 1) = `2 − 3; clearly this can be arbitrarily large.

We end with a combinatorial upper bound for the stable multiplicity. Exam-

ple 5.9 shows that the bound is sharp in infinitely many cases.

Proposition 5.10. Let L be the greater of n(µ1 + · · ·+µr−1) + (n− 1)µr +µr+1−
(λ1 + · · ·+ λr) and 0. Then

[∇ν
(
∇µ+N(1r)(E)

)
: ∇λ+N(nr)(E)] ≤

∣∣{T ∈ SSYTB+L(ν) : wt(T ) = λ+ L(nr)}
∣∣

for all N ∈ N0 with N ≥ L.
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Proof. The bound holds when N = L since the right-hand side is

dim∇ν
(
∇µ+L(1

r)(E)
)
λ+L(rn)

and by Proposition 2.15 this is an upper bound for the left-hand side. By Theo-

rem 1.2 the bound holds for all N ≥ L. �

6. Proof of Theorem 1.3

It is equivalent to show that if n? ∈ N0, λ? ∈ Par(mn?) and Symn?
(
∇µ(E)

)
has

∇λ?(E) as an irreducible constituent then

[Symn+n?
(
∇µ(E)

)
: ∇λ+λ

?

(E)] ≥ [Symn
(
∇µ(E)

)
: ∇λ(E)].

Let c = [Symn
(
∇µ(E)

)
: ∇λ(E)]. Choose linearly independent highest-weight

vectors v1, . . . , vc ∈ Symn
(
∇µ(E)

)
each of weight λ. By the hypothesis and Propo-

sition 2.15, there is a highest-weight vector w ∈ Symn?
(
∇µ(E)

)
of weight λ?.

Multiplying highest-weight vectors in the polynomial algebra
⊕∞

r=0 Symr
(
∇λ(E)

)
,

we see that v1w, . . . , vcw are c linearly independent highest-weight vectors each in

Symn+n?
(
∇µ(E)

)
and each of weight λ+ λ?. The theorem follows.

7. Proof of Theorem 1.5

Let d = `(λ) and let E = 〈e1, . . . , ed〉 be a d-dimensional complex vector space.

Let B = SSYT{1,...,d}(µ). By Definition 1.4 the plethystic semistandard tableaux

of shape µν whose µ-tableau entries have entries from {1, . . . , d} are precisely the

elements of SSYTB(ν). By Lemma 3.1, ∇ν
(
∇µ(E)

)
has {F (S) : S ∈ SSYTB(ν)}

as a canonical basis. By Proposition 3.2, if S ∈ SSYTB(ν) has weight λ then

F (S) ∈ ∇ν
(
∇µ(E)

)
is a weight vector of weight λ.

We use this canonical basis to prove the following two results; the second is

illustrated in Example 7.4 below.

Lemma 7.1. If [∇ν
(
∇µ(E)

)
: ∇λ(E)] ≥ 1 then there exists a plethystic semistan-

dard tableau T ∈ SSYTB(ν) such that wt(T ) = λ.

Proof. Let v ∈ ∇ν
(
∇µ(E)

)
be a highest-weight vector of weight λ. Let v =∑

S∈SSYTB(ν)
cSF (S) be the expression of v in the canonical basis given by Lemma 3.1

of∇ν
(
∇µ(E)

)
. By Proposition 3.2(i), each S such that cS 6= 0 has weight λ. Take T

to be any such S. �

Proposition 7.2. Suppose that λ is maximal in the dominance order on partitions

such that there exists a plethystic semistandard tableau T ∈ SSYTB(ν) of weight λ.

Then F (T ) ∈ ∇ν
(
∇µ(E)

)
is a highest-weight vector of weight λ.

Proof. By Proposition 3.2(i), F (T ) is a weight vector of weight λ. Suppose, for a

contradiction, that F (T ) is not highest-weight. Then there exists c ∈ {2, . . . , d}
such that X(c) · F (T ) 6= 0. By Proposition 3.2(ii), X(c) · F (T ) =

∑
F (U), where
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each U is obtained from T by changing a single c to c−1 in a µ-tableau entry of T .

Thus each U has weight λ? where

λ?b =


λb + 1 if b = c− 1

λb − 1 if b = c

λb otherwise.

Let

X(c) · F (T ) =
∑

S∈SSYTB(ν)

cSF (S)

be the expression of
∑
F (U) in the canonical basis of ∇ν

(
∇µ(E)

)
. Choose S such

that cS 6= 0. Then wt(S) = λ? � λ = wt(T ). This contradicts the maximality

of λ. �

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. By Lemma 7.1, if [∇µ
(
∇µ(E)

)
: ∇λ(E)] ≥ 1 then there is a

plethystic semistandard tableau T ∈ SSYTB(ν) of weight λ. Conversely, by Propo-

sition 7.2, if λ is maximal in the dominance order such that there is a plethystic

semistandard tableau T ∈ SSYTB(ν) then F (T ) is a highest-weight vector, and so

[∇µ
(
∇µ(E)

)
: ∇λ(E)] ≥ 1. Therefore the maximal partitions λ in the dominance

order such that [∇ν
(
∇µ(E)

)
: ∇λ(E)] ≥ 1 are precisely the maximal weights of

the elements of SSYTB(ν). This proves the first part of the theorem. Now suppose

that λ is maximal in the dominance order such that ∇λ(E) appears in ∇ν
(
∇µ(E)

)
.

Let S(1), . . . , S(r) be the plethystic semistandard tableaux of shape µν and weight λ.

By the canonical basis in Lemma 3.1 and Proposition 3.2(i), F (S(1)), . . . , F (S(r))

form a basis for the weight space ∇ν
(
∇µ(E)

)
λ
. By Proposition 7.2 these vectors

are highest-weight. Therefore

r = [∇ν
(
∇µ(E)

)
: ∇λ(E)]

as required. �

As a corollary we obtain the result mentioned in the introduction that is sur-

prisingly non-trivial to prove entirely combinatorially.

Corollary 7.3. If T is a plethystic semistandard tableau of maximal weight then

wt(T ) is a partition.

Proof. Since the weight of a highest-weight vector is a partition, this is immediate

from Proposition 7.2. �

By Proposition 1.9, if T is a plethystic semistandard tableau of shape µ(1n) and

maximal weight then the set of µ-tableau entries of T is closed, in the sense of

Definition 1.8. The converse does not hold: we show this in the following example,

which makes constructive the proof of Proposition 7.2.
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Example 7.4. For ease of notation we shall identify∇(1n)
(
∇µ(E)

)
with

∧n(∇µ(E)
)

via the map sending F (T ), where T is a plethystic semistandard tableau with µ-

tableau entries t1, . . . , tn read from top to bottom, to F (t1) ∧ · · · ∧ F (tn).

Let T be the plethystic semistandard tableau of shape (2, 2)(1
11) and weight

(17, 11, 8, 8) whose (2, 2)-tableau entries, read from top to bottom are

1 1
2 2

, 1 1
2 3

, 1 2
2 3

, 1 1
3 3

, 1 2
3 3

, 1 1
2 4

, 1 2
2 4

, 1 1
3 4

, 1 2
3 4

, 1 1
4 4

, 1 2
4 4

.

Observe that the set T of these (2, 2)-tableaux is closed. By Proposition 3.2(ii),

X(4) ·F (T ) has eight summands, each obtained by changing an entry of 4 in the final

six (2, 2)-tableaux above to 3. In all but two cases, the new (2, 2)-tableau obtained

is semistandard, and so present in the closed set T ; under our agreed identification,

the summand is of the form · · ·∧ F (s)∧· · ·∧ F (s)∧· · · , and so vanishes. Let u and u′

denote the final two (2, 2)-tableau shown above. The corresponding summands of

X(4) · F (T ) are F (U) and F (U ′) where U and U ′ are the plethystic semistandard

tableaux of shape (2, 2)(1
11) with sets of entries

T \ {u} ∪
{

1 1
4 3

}
and T \ {u′} ∪

{
1 2
4 3

}
,

respectively. By the snake relation defined in (2.5) with A = {(2, 1)} and B =

{(1, 2), (2, 2)} we have, working in ∇(2,2)(E),

F

(
1 1
4 3

)
= F

(
1 1
3 4

)
+ F

(
1 4
1 3

)
= F

(
1 1
3 4

)
F

(
1 2
4 3

)
= F

(
1 2
3 4

)
+ F

(
1 4
2 3

)
= F

(
1 2
3 4

)
− F

(
1 3
2 4

)
.

Therefore F (U) = 0 and F (U ′) = −F (T ′) where T ′ is the plethystic semistandard

tableau of shape (2, 2)(1
11) whose entries are the same as T , except for the final

entry u′, which is replaced with 1 3
2 4

; since this new (2, 2)-tableau is greater in the

total order than all the tableaux in T , no reordering within the column is necessary

in order to make T ′ semistandard. Therefore X(4) · F (T ) 6= 0, and so F (T ) is not

a highest-weight vector. As expected from the proof of Proposition 7.2, we have

obtained a plethystic semistandard tableau T ′ of more dominant weight, namely,

(17, 11, 9, 7), by expressing X(4) · F (T ) in the canonical basis of ∇(111)
(
∇(2,2)(E)

)
.

We leave it to the reader to show that F (T ′) is a highest-weight vector, and corre-

spondingly, T ′ has maximal weight for its shape.

Our final example shows that the converse of Proposition 7.2 is false.

Example 7.5. Let T be the plethystic semistandard tableau of shape (2, 1)(1
4)

with entries

1 1
2

, 1 2
2

, 1 3
2

, 1 4
2
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read from top to bottom. Then F (T ) ∈
∧4(∇(2,1)(E)

)
is a highest-weight vector

of weight (5, 5, 1, 1) and so 〈s(14) ◦ s(2,1), s(5,5,1,1)〉 ≥ 1. However T is not of maxi-

mal weight for its shape since (6, 4, 2) � (5, 5, 1, 1) and the plethystic semistandard

tableau U of shape (2, 1)(1
4) with entries

1 1
2

, 1 1
3

, 1 2
2

, 1 2
3

read from top to bottom has weight (6, 4, 2). It is easily seen that U has maximal

weight in the dominance order, and so F (U) is a highest-weight vector. In fact there

are two plethystic semistandard tableau of shape (2, 1)(1
4) and weight (6, 4, 2), the

second is obtained from U by swapping the 2 and 3 in the final (2, 1)-tableau entry

above. Thus, by Theorem 1.5, 〈s(14) ◦ s(2,1), s(6,4,2)〉 = 2; this is one of the smallest

examples where the multiplicity of a maximal constituent is more than 1.
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