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A B S T R A C T 

This paper studies the Multi-period Travelling Politician Problem whose objective is to maximise the 

net benefit accrued by a party leader during a fixed campaign period. The problem is also characterised by 

flexible depots since the daily tours realised by the party leader may not start and end at the same city. A 

hybrid multi-start Iterated Local Search method complemented with a Variable Neighbourhood Descent is 

developed to solve the problem heuristically. Two constructive procedures are devised to generate initial 

feasible solutions. The proposed method is tested on 45 problem instances involving 81 cities and 12 towns 

in Turkey. Computational results show that the hybrid metaheuristic approach outperforms a recently 

proposed two-phase matheuristic by producing 7 optimal solutions and 17 new best solutions. In addition, 

interesting practical insights are provided using scenario analysis that could assist campaign planners in 

their strategic decisions. 

Keywords Routing  Election logistics  Travelling politician problem  Iterated Local Search   

Variable neighbourhood descent    Scenario analysis 

1 Introduction 

This paper looks into the Multi-Period Travelling Politician Problem (MPTPP) which arises in the 

planning of electoral campaigns. A set of cities with population- and time-dependent rewards and a set of 

campaign days are given. The politician’s campaign team seeks to produce an efficient meeting schedule 

for the politician. Their objective is to collect the highest possible total reward from the meetings held in 

selected cities until the end of the campaign period. The schedule consists of either open or closed daily 
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tours with the added restrictions of maximum tour duration and the necessity to return to the campaign 

centre frequently. The name of the MPTPP derives from Periodic Travelling Politician Problem originally 

coined in Aksen and Shahmanzari (2018). It can be classified as an application of the Roaming Salesman 

Problem (RSP) to election logistics. The RSP was first introduced in Shahmanzari et al. (2020) as a strategic 

campaign planning and reward collection problem with rich routing elements. In addition to capturing the 

MPTPP, the RSP can be used to model such problems as touristic trip planning, marketing campaign 

planning, and planning of client visits by company representatives.  

The MPTPP which we investigate in this paper has some similarities with a multi-period extension of 

the Prize Collecting Travelling Salesman Problem (PCTSP) with time-dependent rewards and multiple 

visits. However, the tour does not have to be a round-trip. Besides, a city may be visited either in transit or 

for the purpose of a meeting.  

There are two types of rewards, namely base rewards and depreciated rewards. The base reward is 

defined a priori for each city according to its characteristics, while reward depreciation circumvents 

successive meetings in the same city within short time intervals. It is also worth noting that cities of high 

population or significance may host multiple visits.  

MPTPP has five unique features. First, a maximum tour duration is to be observed in each daily tour. 

Second, it is a selection problem since not every city has to host a meeting. Third, daily tours can be either 

an open or a closed route. Fourth, each city is associated with a time-dependent reward which changes 

linearly according to the day of the meeting and the recency of the previous meeting in that same city. 

Finally, certain cities may host more than one meeting.  

Consider two sets of cities denoted by  1,...,nV  and  0 N V  where the latter includes a 

fictitious city (indexed as 0) and the capital city (indexed as 1) which acts as the campaign centre. Also 

given is a set of days }1,.{ ..,mT  before the elections. On each day tT , any city iN  can be visited 

with or without a meeting. A base reward  0i   is specified for holding a meeting in city .iN  The 

travelling cost from city i to city j is known in advance and denoted by ijc , , , i j i j  N . Similarly, the 

travelling time between each pair of cities is given by , , ,  ijd i j i j  N .  

There is a maximum allowed daily tour duration  . From a marketing and practical viewpoint, there is 

also an explicit limit on the number of meetings that can be held per day which is referred to as  . There 

is a meeting time associated with each city iN  which is denoted by .i  The campaign of the politician 

is assumed to start in the base (capital) city 1i   in the morning of day 1t  , and ends in the evening of 

day .t m  At the end of a day tT , the politician stays overnight in some city iN . We remark that 

waking up or staying overnight in a city i  does not necessarily yield a reward collection in that city. Also, 

for political reasons, the politician cannot be away from the capital for more than   consecutive days.  
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The MPTPP is a generalised version of the well-known travelling salesman problem (TSP) which is one 

of the oldest NP-hard combinatorial optimisation problems. For several decades, the academic literature 

concentrated on developing heuristic approaches to find high-quality solutions for large-scale combinatorial 

optimisation problems. Recently, cross-fertilisation of different optimisation techniques—including not 

only (meta)heuristics but al, so exact algorithms, known as matheuristics, has been introduced as a new 

variant of algorithms to deal with such problems. The motivation behind this effort is to exploit the potential 

synergy that might be harvested from the combination of complementary algorithmic characteristics. 

Especially the past 12 years saw a substantial growth in the numbers of workshops, conferences, books, 

special journal issues, and original research articles about hybrid algorithms the scope of which is not 

limited to combinatorial optimisation problems, but also extend to problems of continuous and multi-

objective optimisation (Blum et al., 2011). The method we propose in this paper consists of two distinct 

metaheuristics to tackle the MPTPP, thus fits one of the categories of heuristic hybridisation as described 

in Salhi (2017). 

As already mentioned above, Shahmanzari et al. (2020) recently solved the MPTPP in the framework 

of an election logistics application of the RSP by using a two-phase matheuristic. In this study, we propose 

the hybridisation of a multi-start iterated local search and a variable neighbourhood descent method as an 

improved solution technique for the same problem. The new solution approach produces better results. In 

addition, an extensive and methodical scenario analysis is conducted which returns a more in-depth 

perception of various situations that might arise in the planning of an election campaign. The contribution 

of this study is threefold.  

1. Designing a hybridised metaheuristic solution method that integrates Iterated Local Search  (ILS) 

and Variable Neighbourhood Descent (VND) to solve the problem recently proposed by 

Shahmanzari et al. (2020) 

2. Producing new best known solutions for large instances which can be used for benchmarking. 

3. Presenting an extensive scenario analysis for obtaining managerial insights in the framework of a 

real-life election logistics application in Turkey. 

The remainder of the paper is structured as follows. Section 2 reviews the literature relevant to the 

MPTPP. It is followed by Section 3 which describes the problem. Section 4 elaborates the proposed hybrid 

multi-start ILS algorithm and a VND metaheuristic collectively referred to as the MS-IVND algorithm. 

Detailed computational results are presented in Section 5 along with a scenario analysis in Section 6. The 

findings of the study are summarised in Section 7. 

2 Literature review 

The first TSP variant that is related to the MPTPP is the periodic travelling salesman problem (PTSP) 

where n cities have to be visited during a period of m days satisfying the required visit frequency of each 
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city. One of the first formulations for the PTSP is provided in Cordeau et al. (1997). The objective is to 

minimise the travelling distance of the entire planning period while constructing a tour for each day and 

meeting the visit frequency of each city. Apart from additional assumptions in our model, the main 

distinction between PTSP and MPTPP lies in the fact that the rewards in MPTPP are time-dependent. 

Moreover, three types of tours are present in MPTPP. Finally, unlike PTSP, MPTPP does not include a 

fixed depot. 

Another class of TSP variants relevant to the MPTPP is known as TSP with profits (TSPP). This class 

of problems comprises the prize collecting travelling salesman problem (PCTSP), the profitable tour 

problem (PTP), and the orienteering problem (OP); see Feillet et al. (2005) for more information. MPTPP 

is more complex than these TSP variants as it contains multiple real life assumptions such as the presence 

of reward complexity, no penalty associated with non-visited cities, the requirement to visit campaign 

centre frequently, and not having a fixed depot. TSPP applications arise in a wide range of business 

operations, including realistic TSPs, job scheduling, freight transportation, or they occur indirectly as a 

subproblem in solution approaches dedicated to other routing problems. The TSPP is by definition the 

single criterion version of a bicriteria extension of the TSP with profit maximisation and travel cost 

minimisation being the two criteria. The basic characteristics of this generic problem are as follows.  

(i). There is a value (like a profit or prize) associated with each vertex of the underlying graph.  

(ii). A feasible solution is not required to visit all vertices.  

(iii). A vertex can be visited at most once.  

(iv). The distance (cost) matrix is nonnegative and satisfies the triangle inequality. 

In PCTSP there are three attributes to consider, namely, the travel cost between cities i and j, the reward 

or the prize that is gained by visiting a given city and lastly the penalty of not being able to visit a given 

city. The aim is to determine a circuit that minimises the sum of travel costs and penalties of unvisited cities 

while guaranteeing at least a minimum total profit. Structural properties of the PCTSP related to the TSP 

polytope and the knapsack polytope were presented by Balas (1989) where families of facet-inducing 

inequalities were identified. Bounding procedures based on different relaxations were developed by 

Fischetti and Toth (1988) and Dell’Amico et al. (1995). The lower bound obtained according to the latter 

paper was used in a follow-up study by Dell’Amico et al. (1998) as the starting point of a Lagrangian 

heuristic. A branch-and-cut algorithm was proposed for the undirected PCTSP in the paper by Bérubé et al. 

(2009). The authors adapted and implemented some classical polyhedral results and derived cut inequalities 

for the PCTSP. 

Another variant of the TSPP is the PTP where the objective is to maximize the net profit. This problem 

was first introduced by Dell’Amico et al. (1995). Fischetti et al. (2007) examined an extended, but related 

problem to cater for several vehicles with identical capacity. The last problem in the TSPP class is the OP. 

The goal in an OP is to determine a circuit or a path on a graph such that the sum of all collected prizes is 
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maximised while still satisfying the upper bound on the total travel cost or time. Vansteenwegen et al. 

(2011) note that OP can be viewed as a combination of the knapsack problem and the TSP. Feillet et al. 

(2005) show that there is an equivalence between the path-seeking and circuit-seeking versions of the 

problem. The name “orienteering problem” originates from the treasure hunt game of orienteering in which 

individual competitors start at an initial control point, try to visit as many checkpoints as possible, and 

return eventually to the control point within a given time frame. Each checkpoint has its own reward. The 

objective of the game is to maximise the collected rewards. Several examples of OP applications have been 

cited in Ke et al. (2008) and in Vansteenwegen et al. (2011). These include orienteering competitions, 

routing technicians to service customers at geographically distributed locations, time-restricted fuel 

delivery to households with different urgency scores, athlete recruiting from high schools for a college 

team, pickup or delivery services with private fleets requiring the selection of only a subset of available 

customers, and trip planning for tourists visiting a city or a region. Another noteworthy OP application is 

found in Millar and Kiragu (1997). It involves fish scouting where a subset of fishing grounds are sampled 

to maximise the value of catch rate assessments. The authors referred to the underlying problem in this 

application as the selective TSP (STSP).  

As mentioned in Section 1, MPTPP was first introduced in a paper by Aksen and Shahmanzari (2018) 

where the authors presented a mixed-integer linear programming formulation for the model solution of the 

problem. Later, Shahmanzari et al. (2020) proposed a two-phase matheuristic and newly generated data sets 

for a closely related version of the same problem, namely the RSP. We use the same data sets of the latter 

authors in our computational experiments. Aligned with the state-of-the-art literature, the variant that 

appears to be the most relevant and similar to our MPTPP is the multi-period OP with time windows which 

was investigated by Tricoire et al. (2010). The most critical difference is that in their study each tour starts 

and ends at the same central node known as the depot, whereas in our problem the terminal node of a tour 

is not known in advance. Also in our case, certain cities are allowed to be visited more than once, and the 

reward function changes according to the day of visit.  

3 Problem description of MPTPP 

The MPTPP is defined as follows. Given a set N  of n  cities ( )nN  and a set T  of m  days 

( ),mT  each city i  is associated with a nonnegative reward i  and a meeting duration i . For each 

daily tour, there is a maximum duration   and a maximum number of meetings  . There are three possible 

types of tours the politician may consider: 

Type 1 tours: Multi-city closed tour   

The politician starts the day (wakes up) in city i  on day t , leaves i  and visits at least one more city 

scheduled for that day. At the end of the day, the politician returns to the same city i  to stay overnight. 
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Type 1 tour is a closed tour starting and ending at city i  and involving at least one more city other than city 

i  (see Fig. 1). 

 

 

 

Type 2 tours: Single-city tour   

The politician wakes up in city i  on day t , spends the whole day in the same city collecting the meeting 

reward and stays overnight in the same city. In Type 2 tours we assume that the politician goes from city i  

to the abovementioned fictitious city 0 and returns from 0 to i . This tour is therefore treated as a closed 

tour starting and ending at city i  (see Fig. 2). 

Type 3 tours: Multi-city open tour  

The politician wakes up in city i  on day t , and goes to another city j . In between cities i  and j  the 

politician may visit one or more cities, or may directly travel from i  to j  where the politician stays 

overnight. Type 3 tour is an open tour starting in city i  and ending in city j  as shown in Fig. 3. 
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ijtX , itFM  and itsR  in (1) are binary decision variables which refer to traversing arc ( , )i j  on day  t , 

holding the first meeting of city i  on day t , and holding a meeting in city i  on day t  when the previous 

meeting in the same city was held s  days ago, respectively. The product resulting from the multiplication 

of the base reward i  with the binary variable itsR  in the second summation term of the objective function 

NET BENEFIT in (1) is depreciated further by a coefficient K . This depreciation is applied to successive 

meetings held in the same city. A simple normalisation coefficient denoted by K  in (1) is used to make the 

rewards and travelling costs compatible. For completeness, the mathematical formulation of MPTPP is 

provided in Appendix A. 

The reward that accrues from meetings is calculated according to the following rules. Further details are 

provided in Section 5.1 where we elaborate time-dependent rewards. 

Rule 1: The earlier a meeting in the campaign period, the higher its reward. 

k, l, m,…  j 

 i 

Fig. 3  Type 3 tour 

 i 

j, k, l,… 

Fig. 1  Type 1 tour 

 i 

0 

Fig. 2  Type 2 tour 

(0: Fictitious City) 
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Rule 2: The sooner a meeting is held after another in the same city, the more its reward is reduced.  

The following constraints are considered in our implementation. 

(i) Chain feasibility: Except for the last day, the terminal city of each day should be the same as the 

starting city of the next day.  

(ii) Maximum tour duration: The total length of each daily tour should not exceed  . 

(iii) Return to campaign centre: The campaign centre must be visited as a terminal node at least once 

every   days. 

(iv) The maximum number of meetings for different city categories: There cannot be more than three 

meetings in big cities. This limitation reduces to two for regular cities. The remaining cities can host 

at most one meeting during the entire campaign. 

(v) No repeated meetings in the same city on the same day: Each city can host at most one meeting every 

day. This applies only for closed tours. 

(vi) At most one meeting in big cities on the same day: If there is a meeting in one of the big cities, there 

cannot be another meeting in the remaining big cities on the same day. 

(vii) Maximum number of meetings per day: There cannot be more than   meetings each day. 

4 Proposed metaheuristic 

MPTPP can be formulated as a 01 integer program as stated in Shahmanzari et al. (2020) where a two-

phase matheuristic is also proposed. Their approach is able to solve small instances of the problem in short 

CPU times. However, the overall solution quality deteriorated rapidly in medium and large size instances. 

In this study we develop a hybrid metaheuristic that incorporates ILS and VND to overcome the 

shortcoming of the matheuristic in Shahmanzari et al. (2020). We refer to the new hybrid method as the 

Multi-Start Iterated Variable Neighbourhood Descent (MS-IVND). The idea of multi-start optimisation 

proved to be promising in routing problems as explored by Reihaneh and Ghoniem (2018) for the 

distribution of pallets dispatched from a food bank to distant destinations of non-profit organisations. 

4.1 General framework 

We propose a metaheuristic based on ILS which calls a local search procedure iteratively by feeding a 

different starting point in an attempt to escape local minima. In brief, ILS has two main components, 

namely, Perturbation and Local Search (LS). Once an initial solution is constructed, the perturbation step 

diversifies the current solution by generating a new solution with a small modification to avoid the 

algorithm from being trapped in the same local minimum. At each iteration, a new solution is generated 

randomly by the perturbation mechanism which is then utilised by LS. See Lourenço et al. (2003) for a 

comprehensive tutorial of ILS, and Salhi (2017) for an overview of heuristic search including ILS. 

The high-level architecture of ILS is sketched in Algorithm 1. The algorithm starts by generating an 

initial solution 0S . Inside the main loop of the algorithm, a perturbation mechanism and a local search are 
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applied to this solution. If the resulting solution S  satisfies the acceptance criterion, it replaces .S  This 

procedure is repeated until the termination condition is met.  

Algorithm 1.  Basic ILS  

1: 0S =GenerateInitialSolution (See Section 4.4) 

2: S=LocalSearch( 0S ) (See Section 4.6) 

3: Repeat 

4:      S =Perturbation( S ) (See Section 4.5) 

5:      S =LocalSearch( S  )  

6:      S=AcceptanceCriterion( S , S ) 

7: Until the termination condition is met 

8: End 

4.2 The MS-IVND metaheuristic  

Our proposed metaheuristic contains four additional features.  

(i) The cyclic use of two novel constructive heuristics to build the initial solution from where the 

algorithm restarts after a certain number of iterations without improvement. Using this technique, 

we allow the algorithm to escape local minima. 

(ii) The incorporation of a variable neighbourhood descent (VND) as a local search. See the review by 

Hansen and Mladenović (2003) for an overview of the VND method, its variants and applications.  

(iii) Two diversification strategies: The first one starts the algorithm from a new initial solution that is 

constructed by either one of the two heuristics presented in Sections 4.4.1 and 0, respectively. The 

second one perturbs the best known solution to generate a new starting solution for the local search.  

(iv) The incorporation of neighbourhood reduction to accelerate the search 

The pseudocode of the MS-IVND method is given in Algorithm 2. The main loop of MS-IVND (lines 

4–19) performs a sequential ILS. The initial solution of each ILS iteration is constructed using either the 

heuristic ESCC or SHRC which will be explained in Section 4.4. At every ILS iteration (lines 11–19) a 

perturbation mechanism is applied followed by a VND. The current ILS loop terminates when the 

maximum number of iterations without improvement max( )  is reached. Once the internal ILS loop stops, 

the algorithm generates a new initial solution with different characteristics to start over again. This way the 

entire process turns into a multi-start type method. The idea is to explore other parts of the solution space 

in order to avoid losing time in the VND step whenever it is trapped at a local optimum. The stopping 

criterion of the main approach is a maximum number of iterations denoted by max .iter  Once this threshold 

is exceeded, both VND and MS-IVND loops will terminate, and the best found solution *S  is returned. We 

describe the primary components of MS-IVND in the following sections. We first provide the solution 
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representation, which is followed by the generation of the initial feasible solution, the perturbation 

mechanism, and the local search procedure. To accelerate the search we also resort to a granular 

neighbourhood reduction scheme which is used throughout the local search. 

Algorithm 2.  MS-IVND  

1: 1iter   

2: 1  

3: *S   // *S  is initially empty set. 

4: While maxiter iter  Do 

5:   If  iter  is an odd number  

6:        ( )initS ESCC  (See Section 0) 

7:  Else 

8:   ( )initS SHRC   (See Section 4.4.1) 

9:  End If 

10:  ( )Best initS VND S  (See Section 4.6) 

11:  While max  Do 

12:   ( )Pert BestS Perturb S  

13:   ( )Temp PertS VND S  

14:   If ( ) ( )Temp BestNetBenefit S NetBenefit S   

15:    Best TempS S  

16:    Append BestS  to the set of *S ; 

17:    0  

18:   End If 

19:   1   

20:  End While 

21:  1iter iter   

22: End While 

23: Return the maximum element of *S  

4.3 Solution representation 

A solution of MPTPP is encoded as two 2-dimensional lists of nodes, one for routing schedules and one 

for meeting schedules. Each list consists of m  arrays (one for each day of the campaign period) where the 

sequence of visited cities is indicated. Fig. 4 represents an example of a campaign of 3m   days with four 

cities being visited on the first day while only three meetings are held. The meeting for city 4 which is the 

last city visited on the first day is held on day 2. Therefore, that city becomes the starting city of the second 

day’s tour. In the solution representation of MPTPP, the first list records the sequence of visited cities for 

each day regardless of whether there is a meeting there or not, whereas the second list records the meetings 
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of each day. The order of nodes in the second list is not important since rewards earned from meetings are 

not dependent on the actual order of visits to cities within a day. 

 

 

 

 

 

4.4 Initial solution construction 

We propose two constructive heuristics to obtain initial solutions for the MS-IVND. Every ILS in our 

implementation starts with a feasible initial solution that is produced by either a greedy heuristic or an 

exhaustive search. The main motivation for alternating between these two heuristics is to diversify the 

search. Both methods initiate with a solution consisting of m empty routes, each for one of the m days of 

the campaign period. Cities are iteratively inserted into routes until a stopping criterion is met. The first 

heuristic is called Selecting Highest-Reward Cities (SHRC) where it follows a similar schema to the 

nearest neighbourhood search. However, it inserts the next city into the route by considering the reward of 

the unrouted cities. The second heuristic which is named Exhaustive Search of Candidate Cities (ESCC) 

performs an exhaustive search to find the best route for each day. We will describe these two procedures in 

the following two subsections. 

4.4.1 The SHRC heuristic 

SHRC starts by assigning a selection probability for each unrouted city; the higher the reward, the higher 

the chance to be selected for insertion. The first selected city is connected to the initial node, which is the 

campaign centre indexed as 1. After checking the feasibility of the route, the search either reverses to the 

previous move or jumps to another node. This procedure continues until the route’s length exceeds the daily 

maximum tour duration. Then, the SHRC starts again to construct the route of the next day. In SHRC the 

highest-reward cities are mostly assigned to the early days of the campaign. The search continues until 

either no unrouted city can be inserted due to the violation of the maximum tour duration or no other city 

is available for insertion. The main steps of SHRC are presented in Algorithm 3. We assume that every city 

is visited only once, and every visited city hosts a meeting. For the terminal (depot) node of each day, it is 

Solution: 

 ,  

 

 

 
 

 

 

 

 

1 

2 

3 
4 

5

6

7

8

Day 1 

Day 2 

Day 3 

Fig. 4. Example of a solution with 8n   and 3m   
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possible to hold the meeting at the end (beginning) of that day or shift the meeting to the beginning (end) 

of the next (previous) day. 

 

Algorithm 3.  The construction of the initial feasible solution: SHRC  

1: For 1day   to m  Do  

2:  While  initS day  is time feasible Do 

3:   i   Pseudo-random selection of an unrouted city  

4:   Append i  to  initS day ; 

5:  End While 

6:  Drop i  from  initS day ; 

7:   1init iS day     

8: End For      

9: Return initS            

 

4.4.2 The ESCC heuristic 

ESCC is also a greedy heuristic which builds daily routes one by one; but it seeks to assign cities to days 

relatively quickly. The detailed pseudo code of ESCC is presented in Algorithm 4. The main idea is to 

assign the cities with higher rewards to the early days of the campaign due to the characteristics of the 

reward function. This assignment procedure is performed through an exhaustive search repeated for each 

day of the campaign period (the outermost For loop in lines 2–28). For each day tT , we first create a 

sorted list of all cities with respect to their updated rewards (lines 3–9). Then, we build a feasible route such 

that the maximum possible net benefit is achieved considering limitations like the maximum tour duration 

and the necessity to return to the campaign centre periodically (lines 10–23). To this end, all possible 

permutations of selected cities are evaluated within a CPU time limit of MaxTimeInit  for each day (lines 

20–22). In our experiments we set MaxTimeInit  to one second. Finally, a feasibility restoration function is 

utilised to make the solution feasible (lines 24–26).  

In the ESCC heuristic we assume that there will be a meeting in every visited city of the daily tour other 

than the wakeup city. It is interesting to note that the wakeup city of day t  never hosts a meeting; but being 

the terminal city for day ( 1)t   where the politician stays overnight, it always hosts a meeting on day 

( 1).t   
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Algorithm 4.  The construction of the initial feasible solution: ESCC 

1: Initialize WakeupCity(1)   1City  and TopCities  ;     //  City 1 refers to the campaign centre. 

2: For 1t   to m  Do 

3:  If  1t    

4:   Rewards    

5:  Else  

6:  Calculate the reward of each city by taking into account the current meeting day t  and   

the recency of the previous meetings which may have been held before day t ; 

7:     End If 

8: Sort all cities eligible for hosting a meeting on day t  in descending order of their rewards  

into the array tH ; 

9:  Append WakeupCity( )t  to the set TopCities ; 

10:  1k   

11:  While TopCities 6  Do // We allow at most six visits on a tour.  

12:   [ ]tj k H   

13:   If WakeupCity( )t j    

14:    1k k   

15:   Else  

16:    TopCities To }pCities { j  

17:    1k k   

18:   End If 

19:  End While 

20:  While CPU time elapsed MaxTimeInit  Do    

21:  Evaluate all the 5! tour permutations and select the one with the lowest total travelling cost.  

Break ties arbitrary; // Each possible permutation represents an open tour for day t. 

22:  End While 

23:  Call the selected tour BestTour ( )t
* * * * * *]1 ,2 ,3 ,4 ,5 ,6[            // 1* is going to be ( )WakeupCity t . 

24:  If BestTour ( )t   is infeasible with respect to MaximumTourDuration  

25:  Crop BestTour ( )t  from its right end starting at city 6* until it becomes time-feasible; 

26:  End If 

27:  WakeupCity( 1)t    last visited city in BestTour ( )t   

28: End For 

29: Return BestTour ( )t , 1,...,t m . 

4.5 The perturbation mechanism 

Perturbation plays a crucial role in our implementation since it forces the algorithm to escape from the 

present local optimum. One of the main goals in such schemes is to control the level of perturbation by 
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avoiding too strong or too loose modifications as this balance helps to maintain the desirable properties of 

the current solution. The perturbation phase used in MS-IVND accepts both improving and non-improving 

moves. In our implementation, the perturbation operator returns a randomly perturbed solution by 

considering three potentially-deteriorating moves which are randomly selected in each iteration.  

M1: Two pairs of two distinct cities are randomly selected and their positions are swapped.  

M2: The two cities with the lowest rewards are replaced with two unrouted cities.  

M3: A city from a route is randomly removed and inserted into the cheapest position in another route.  

It is worth noting that the above perturbation transforms the current solution configuration into a new 

configuration that is unlikely to be reversed to its previous state. This sort of a perturbation mechanism is 

commonly used in tabu search to avoid cycling. We have also tested other moves such as the well-known 

2-Opt. In this classical move, two edges in a route are removed and reordered to eliminate crisscrosses 

which would augment the total travelling distance when triangular inequality applies (Croes, 1958). 

However, the results were found to be inferior; and hence not used here. 

4.6 Local search procedure 

We use the variable neighbourhood descent (VND) method as our local search procedure (LS). VND 

searches for improving solutions within various defined neighbourhoods used in a systematic way to avoid 

local optimality (Hansen and  Mladenović, 2003). VND is in principle similar to, though much simpler 

than, the multilevel metaheuristic developed by Salhi and Sari (1997) for multi-depot routing problems 

where local searches known as levels are used instead of neighbourhoods. The main steps of VND are 

sketched in Algorithm 5. 

Algorithm 5.  VND  

1: Improved FALSE  

2: While Improved FALSE  Do 

3:  1k   

4:  While 
maxk k  Do           (( 1) 4) 1k k   mod  

5:   
* ( , )kS LocalSearch S N   

6:   If 
*( ) ( )NetBenefit S NetBenefit S   

7:    
*S S  

8:    Improved TRUE  

9:   End If      

10:   1k k                  

11:  End While 

12: End While      

13: Return S            
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4.6.1 Neighbourhood structures 

We introduce four neighbourhood structures with two being inter-route and two intra-route.  

N1: 1-1 Exchange Inter-route:  

Two nodes from two distinct routes are randomly selected, and their positions are exchanged.  

N2: Drop-Add:   

One node is randomly selected and dropped from its current route. Next, the unrouted node with 

the highest reward is selected and inserted into the cheapest position in other routes. 

N3: 1-1 Exchange Unrouted:   

Two nodes are randomly selected from the set of routed and unrouted nodes, respectively. The 

interchange is made between the two. 

N4: 1-1 Exchange Intra-route:  

Two nodes in the same route are randomly selected and their positions are swapped. The selected 

nodes can be either a depot (terminal) node or a transient city. In case of a depot (or a terminal 

node) is selected, the last (first) node of the previous (next) period is changed as well.  

 

 

   

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 depicts these four moves. As for all neighbourhoods, we execute the best improving moves (if 

any) where they might affect either scheduling or routing decisions. Each operator is able to select any type 
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1-1 Exchange Unrouted 
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Fig. 5. Examples for the four moves used in VND 
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of nodes including depot, terminal, and transient nodes. For example, in the first two cases, the moves are 

more complicated due to the resulting changes in the route of the next or the previous period. Moreover, if 

a node is inserted as a depot (terminal node), we check whether holding the meeting in the current day or 

the previous (next) day improves the objective value. If this is the case, we assign the meeting to that day. 

In our hybrid MS-IVND method, we explore only feasible regions of the solution space since the 

feasibility restoration is quite time-consuming for the MPTPP. Hence, a solution is only accepted if it is 

feasible with respect to the constraints defined in Section 3. 

4.7 Acceleration scheme 

For the purpose of accelerating the search, we incorporate a neighbourhood reduction scheme similar to 

granular neighbourhoods in Tabu Search (Toth and  Vigo, 2003). During the insertion of node i  into route  

( , 1,..., 1, )R j j k k  , if we observe  min( , )ij ik jkt t t   where   is an appropriate positive coefficient and 

ijt  denotes the travel time between i  and j , we allow the evaluation of this move. Otherwise, this move is 

eliminated. The logic behind such a restriction is to prevent the algorithm from consuming CPU time by 

evaluating non-promising moves. Obviously, if node i  is too far from the starting and ending nodes of a 

route, such an insertion becomes a non-promising move. Therefore, in our MS-IVND implementation only 

those moves are taken into consideration in which i  is fairly close to either j  or k  or both. Similar 

neighbourhood reduction schemes were successfully developed earlier for the multi-depot vehicle routing 

problem by Salhi and Sari (1997). These acceleration schemes are also highlighted in Salhi (2017) as part 

of an effective design in heuristic search in general, and fully exploited in Sze et al. (2016, 2017) for the 

classical and the cumulative vehicle routing problems. 

5 Computational results  

We tested our hybrid solution method MS-IVND on a Dell Precision T7810 model PC equipped with 

Intel Xeon® E5-2690 v4 2.60 GHz processor and 32 GB RAM running 64-bit Windows 10 Professional. 

The Xeon® processor provides 28 threads with the hyper-threading feature turned on. We coded the 

mathematical models of MPTPP and the MS-IVND method in Python 3.6.3 (64-bit version). For the 

solution of the models we employed the commercial mixed-integer linear programming (MILP) solver 

GUROBI 7.5.0 (GUROBI Optimization, 2020) which is called within the Python code.  

The solver specific options applied to all runs are listed in Appendix B where more information is 

provided. Using 45 MPTPP instances from Shahmanzari et al. (2020) we compared the performance of 

MS-IVND with the best known solutions and commercial solver results in that paper. These instances were 

generated with real-world travel distances and times among all cities of Turkey. In each instance at least 

one big city, one midsize city and one small city are included. Appendix C presents the characteristics of a 
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medium-size instance with 40n   cities and a planning horizon of 10m   days. The best tours for this 

instance are mapped in Fig. C.2. All instances are publicly available at http://shahmanzar.ir/MPTPP.html. 

We consider the 80 cities (provinces) of Turkey plus a campaign centre, namely, the capital city Ankara. 

At the time of the 2015 elections, Turkey had 81 cities and 85 electoral zones where İstanbul was comprised 

of three zones, İzmir and Ankara of two zones each. Each city is associated with a base reward value and a 

fixed meeting duration.  

The maximum tour duration limit   which is 14 hours (12 hours) in the summer (in the winter) imposes 

an implicit threshold on the number of cities that can be visited any given day. Each city can accommodate 

at most one meeting a day. There can be an upper bound (such as two or three) on the total number of 

meetings held in each city during the campaign period. The meeting durations range from 60 to 120 minutes 

depending on the population of the host city. For the three biggest cities, namely İstanbul, Ankara and 

İzmir, it is 120 minutes. For cities with fewer than one million population it is 60 minutes, and 90 minutes 

for all other ones. Another point to be mentioned is the periodic returns to the campaign centre Ankara. The 

politician cannot be away from the capital city for more than   consecutive days with {4,5,6,7}.    

The travel time between a pair of cities is the fastest trip (either by road or by airplane), and its cost is 

the sum of the monetary costs of the trip legs. The reader interested in the derivation of these two entities 

is referred to Shahmanzari (2019) where the trade-off between road and air travel is explained in detail. 

5.1 Time-dependent rewards  

In this section we expound the reward calculation and the categorisation of cities in Turkey from the 

main opposition party’s perspective. The proposed model utilises a multifaceted reward function. Initially, 

a nonnegative prize of i  (base reward) is specified for holding a meeting in each city iV  where i  

depends on two factors:  

Factor 1: Population of city iV  ( ).iPop  

Factor 2: Ratio of votes of the politician’s party (PP). 

In addition, the reward earned in city iN  on day tT  is dependent on two further factors: 

Factor 3: Number of remaining days denoted by ( )m t  until the end of the campaign. 

Factor 4: Number of days passed since the previous meeting in the same city, denoted by s  where 

1 1s t   .  

The first two factors directly affect the base reward i , while the remaining two make the reward time-

dependent. Each factor is explained below. 

Factor 1: Population 

http://shahmanzar.ir/MPTPP.html
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In an ideal representative election system, the number of representatives allocated to each electoral 

zone (to each city in the context of our problem) has to be approximately commensurate with the 

population share of that zone (Çarkoğlu and Aksen, 2019). This implies that population is one of the most 

decisive factors in determining the importance of a city in an election campaign.  

In the calculation of the parameter i , each city is first assigned a starting base reward of 100 units. 

Each city’s population is divided by the minimum population of all cities, rounded to the nearest integer, 

and multiplied by a city-dependent multiplier. The result is added to the initial reward of 100, and then 

multiplied further by a Criticality Factor ( )iCF . The formula of the base reward calculation is shown in 

(2) where where the operator ⟦∙⟧ rounds its argument to the nearest integer number.  

 
.

100( )
Popi

i i i
Min.Pop

= CF × + × Multiplier  (2) 

The multiplier in (2) is taken as 3.0 for the top seven (most populated cities), but 2.0 for İstanbul. The 

remaining cities are assigned a multiplier value of 5.0. When a town is taken into consideration, it is 

assumed that it shares the same multiplier with its parent city. These specific multipliers turned out to yield 

proportionate and scaled base rewards. 

Factor 2: Ratio of votes 

In order to find the effect of variation in the number of votes on the number of deputies in the parliament, 

the data of June 2015 election has been analysed for all cities. In our criticality analysis, we first simulated 

the election procedure according to the actual vote counts registered in the election of June 2015. We were 

able to reproduce exactly the same seat distributions in all 85 electoral zones of Turkey which shows the 

validity of the implemented simulation. Next, we evaluated each city by decreasing and increasing the votes 

of the political party in that city by 20%. Cities are categorised as discussed below. The reward statistics 

are provided in Table 1. 

Table 1  Statistics of rewards in criticality categories 

 Noncritical Negative Critical Positive Critical Positive-and-Negative critical 

Number of cities 42 19 11 9 

Average Reward 268 444 564 1,193 

Min. Reward 210 315 460 800 

Max Reward 440 675 680 2,370 

 

We define four criticality categories to label the importance of a city from the perspective of the political 

party on the basis of the distribution of votes in the previous election. Different towns or electoral zones of 

a city are mutually assigned to the same criticality category. We define four distinct categories of criticality 

of cities and associate each category with a different Criticality Factor CF  as follows:  
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Category 1: Noncritical Cities  

These are the cities in which the number of seats won by the political party would not change even when 

the number of its votes changes by 20%. We set 2iCF   for  .i Noncritical Cities  

Category 2: Negative Critical Cities 

In these cities, a 20% increase in the votes of the political party does not affect its seat number in the 

parliament (the number of its deputies elected from those cities). However, a 20% decrease would cause 

the political party to lose at least one seat. We set 3iCF   for  .i Negative Critical Cities  

Category 3: Positive Critical Cities 

In positive critical cities, the political party would gain at least one more seat in the event of a 20% 

increase in the vote count of the past election. However, there exists no risk of losing any seat in the event 

of a 20% loss in the votes. We set 4iCF   for  .i Positive Critical Cities  

Category 4: Positive-and-Negative Critical Cities 

The situation is most sensitive in cities of category 4 where an increase or decrease by 20% in the vote 

count would impact the party’s current seat count in the parliament. Hence, we set 5iCF   for 

- -  .i Positive and Negative Critical Cities  

The motivation behind these CF values is to assign high rewards to highly populated cities, but doing 

so at a decreasing rate. Another motivation is to close the enormous gap between metropolitan cities and 

other midsize cities of Turkey. For instance, İstanbul, despite its ~15 million population, should not earn 

thrice as much base reward as Ankara just because of having thrice as much population. 

Criticality Analysis 

To illustrate the effect of the CF, let us consider two cities, namely Samsun and Kastamonu in the Black 

Sea Region. The base reward of Samsun is higher than Kastamonu ( 540Samsun   and 500Kastamonu  ) 

although Samsun’s population is three times higher than Kastamonu’s population. The base reward of 

Kastamonu almost catches up with Samsun because the latter is a positive-critical city, whereas the former 

is a negative-critical city. As highlighted earlier, MPTPP has obviously a selective nature where not all 

cities in {0,1,..., }nN  need to be included in the meeting schedule.  

Factor 3: Number of remaining days until the election day 

We assume that as we get closer to the end of the campaign, the influence of meetings will decrease. In 

order to inflate the base rewards with the increasing number of remaining days until the elections, we 

develop the following reward function.  

            
1

( )i i

m t
Reward t

m


 
               ,  i t N T    (3) 
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If the political party decides to reverse the effect of Factor 3, the formula in (3) can be easily modified by 

setting ( )i i

t
Reward t

m
 . The reward of a meeting would then be the lowest on the first day and the 

highest on the last day of the campaign.  

Factor 4: Number of days passed since the previous meeting 

In order to prevent the model from visiting highly rewarded cities frequently, we severely penalise 

repeated meetings. To inflate the base rewards with the increasing number of days passed since the last 

meeting, we extend the reward function previously given in (2) as follows: 

 
1

( , )i i

m t s
Reward t s

m Km


 
                ,  i t N T  (4) 

where s  represents the number of days passed since the last meeting and  ( 1)K K   is a prespecified 

depreciation factor for repeated meetings. The criterion of depreciation is not the number of meetings held 

in city i  so far, but the recency of the previous meeting.  

5.2 Parameter calibration 

The efficiency of most metaheuristics depends on their corresponding parameters. The strength of our 

MS-IVND lies in the fact that it has three parameters only: (i) Maximum number of iterations max( )iter , 

(ii) Maximum number of iterations without improvement max( ) , and (iii) the granularity coefficient ( ).

As we use the same neighbourhood structures throughout the experimentation, the number of 

neighbourhood structures, namely maxk  is fixed and hence not considered in our parameter calibration.  

Starting with a promising configuration, we performed empirical tests to determine the best tuning 

parameters for MS-IVND on a benchmark set of 10 instances. Parameters were varied one at a time before 

the method was run again to observe the effect of a given parameter. We compared the test results obtained 

before and after varying the value of the parameter, and chose the one which yielded better results. If no 

change was suggested at the end of the tests conducted for a particular parameter, we moved to the new 

configuration. The following values have been tested: maxiter {25, 50, 100, 150}, max {25, 50, 75, 

100}, and {0.25, 0.40, 0.75, 0.90}. 

After the calibration tests we used the following parameter values in the sequel of our experiments: We 

assigned a fixed value of 100 to maxiter  since the number of calls to the algorithms ESCC, HRC and VND 

is a significant determinant of the execution time of MS-IVND. The parameter max  is set to 50 since the 

multi-start nature within the scope of MS-IVND allows the search to explore diverse regions of the solution 

space. Finally, the parameter   is fixed at 0.75. Comprehensive results of the calibration tests are not 

provided here, but can be collected from the authors. Due to the inherent randomness in our algorithm, the 
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reported MS-IVND solution values and running times for every instance of MPTPP are the averages of the 

best results over ten runs.  

5.3 Results on existing instances 

To our knowledge, no metaheuristic has been published for the MPTPP. The only solution methodology 

developed is FDOR (Finding Daily Optimal Routes) which is a matheuristic due to Shahmanzari et al. 

(2020). Hence, we benchmarked MS-IVND against the commercial MILP solver GUROBI and the FDOR 

heuristic on the same test instances as those reported in Shahmanzari et al. (2020). They are divided into 

three sets referred to as PE.I, PE.II and LE, which comprise 22, 20 and 3 instances, respectively. Our 

results are reported in Table 2 through Table 5. Instance names in the first column of each table comply 

with the identification template nC-m D where n  and m  stand for the number of cities (excluding the 

fictitious city) and the number of days in the campaign period, respectively. 

The average objective values, CPU times and gaps in the first three tables have been calculated for the 

pool of 38 instances in which GUROBI was able to find a best feasible solution (BFS) within a time limit 

of 24 hours. The BFS constitutes the tightest lower bound on the true optimal objective value that can be 

obtained by GUROBI within the specified time limit. For the remaining 7 instances of PE.I and PE.II, 

we benchmarked MS-IVND with FDOR only. The results of these latter tests are presented in Table 5. 

Proven optimal objective values are indicated by an asterisk (*), while the objective value (Obj. Val.) of 

the best known solution (BKS) for a specific test instance is shown in boldface.  

Table 2. Results for 18 PE.I instances solvable by GUROBI 

PE.I 

Instances 

GUROBI   FDOR   MS-IVND  

BFS 
Opt.Gap 

(%) 

 

CPU 
(s) 

  Obj. Val. 
CPU 

(s) 
FDOR  

Gap (%) 

 

Obj. Val. 
CPU 

(s) 
MS-IVND 

Gap (%) (s)   

6C-2D 7110* 0.0  0 0.1   7110 0.1 0.0  7110 109.6 0.0 

6C-3D 8181* 0.0  0 0.1    8181 0.1 0.0   8181 138.0 0.0 

7C-2D 9629* 0.0  0 0.2   9629 0.1 0.0  9629 124.4 0.0 

7C-4D 11597* 0.0  0 0.4    11457 0.2 1.2   11597 135.2 0.0 

9C-3D 10939* 0.0  0 0.5   10788 0.1 1.4  10939 150.7 0.0 

9C-4D 11668* 0.0  1 1.3    11268 0.1 3.4   11668 183.0 0.0 

12C-5D 14575* 0.0  6 6.0   12906 0.3 11.5  13682 207.6 6.1 

15C-7D 17240* 0.0  462 551.3    16132 0.5 6.4   16491 209.2 4.3 

15C-10D 18759* 0.0  19972 30458.5   17356 0.7 7.5  18065 22.8.0 3.7 

21C-7D 19138* 0.0  2026 6705.3    17325 0.9 9.5   17709 263.8 7.5 

21C-10D 21904   6.8  11582 86400.0   20673 1.2 5.6  20934 230.3 4.4 

30C-7D 29427* 0.0  20665 20670.3    27474 1.7 6.6   28582 217.8 2.9 

30C-10D 35013   5.9  30040 86400.0   32213 2.2 8.0  33109 286.9 5.4 

40C-7D 30086   4.0  59757 86400.0    28821 3.7 4.2   29187 213.0 3.0 

40C-10D 36409   12.6  62342 86400.0   34672 4.9 4.8  36005 392.0 1.1 

51C-7D 41087   9.9  85597 86400.0    36942 8.4 10.1   37449 423.1 8.9 

51C-10D 45667   22.3  77316 86400.0   43212 11.3 5.4  44047 484.7 3.6 
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51C-30D 47279   186.7  61189 86400.0    59890 14.5 26.7   63009 829.7 33.3 

Average  23094.9    23941.9 36844.1    22558.3 2.8 3.27   23188.5 270.5 0.98 

Table 3. Results for 17 PE.II instances solvable by GUROBI 

PE.II 

Instances 

GUROBI   FDOR   MS-IVND  

BFS 
Opt.Gap 

(%) 

 

CPU 
(s) 

  Obj. Val. 
CPU 

(s) 
FDOR 

Gap (%) 

 
Obj. Val. 

CPU 
(s) 

MS-IVND 

Gap (%) (s)   

20C-5D 25118* 0.0  44 239.2  24196 0.6 3.7   25118 306.3 0.0 

20C-7D 27523* 0.0  454 1995.9   25419 0.6 7.6    27523 440.7 0.0 

30C-5D 16635* 0.0  161 709.9  16052 1.5 3.5   16635 212.0 0.0 

30C-7D 18855* 0.0  13163 28216.8   17997 1.8 4.6    18855 228.6 0.0 

30C-10D 21251  5.9  17722 86400.0  19577 2.0 7.9   20229 219.8 4.8 

40C-7D 32811  20.1  76679 86400.0   31748 3.0 3.2    33023 266.8 0.6 

40C-10D 37851  3.8  51297 86400.0  34267 3.6 9.5   36427 351.7 3.7 

50C-7D 32829  1.6  4945 86400.0   33101 6.9 0.8    32881 321.3 0.2 

50C-10D 38098  11.8  45006 86400.0  37389 8.5 1.9   37344 325.0 2.0 

50C-15D 44098  35.6  70662 86400.0   41687 11.0 5.5    42293 575.4 4.1 

60C-7D 40480  2.5  36955 86400.0  38105 13.8 5.9   40237 217.7 0.6 

60C-10D 48270  7.0  82709 86400.0   45446 18.8 5.8    48066 385.9 0.4 

60C-20D 50559  80.1  64244 86400.0  62869 22.8 24.3   64056 565.1 26.7 

70C-10D 42474  13.9  82434 86400.0   40201 26.1 5.4    45159 237.9 6.3 

70C-20D 43705  112.3  83589 86400.0  51055 34.9 16.8   57439 591.3 31.4 

80C-10D 40808  22.2  52003 86400.0  38423 38.6 5.8   42559 255.3 4.3 

80C-20D 50777  75.1  74448 86400.0   53270 41.9 4.9    55691 350.0 9.7 

Average
 
 36008.4   44500.9 67903.6   35929.5 13.9 1.39    37855.0 344.2 3.74 

Table 4. Results for the LE instances 

LE 

Instances 

GUROBI   FDOR   MS-IVND  

BFS 
Opt.Gap 

(%) 

 

CPU 
(s) 

 
Obj. Val. 

CPU 
(s) 

FDOR 

Gap (%) 
  Obj. Val. 

CPU 
(s) 

MS-IVND 

Gap (%) (s)  

39C-7D 22361 4.7 85841 86400  22164 11.7 0.9  23360 308.2 4.5 

39C-10D 26774 18.5 63714 86400   27191 13.5 −1.6   27241 276.2 1.7 

39C-14D 30214 57.5 76094 86400   31757 15.9 −5.1   32486 339.2 7.5 

Average 26449.7   75216.3 86400.0   27037.3 13.7 1.93   27576.3 307.9 4.57 

Table 5. Results for 7  PE.I and PE.II instances unsolvable by GUROBI 

PE.I Instances 
FDOR  MS-IVND     

Obj. Val. CPU (s)  Obj. Val. CPU (s)  MS-IVND Gap (%) 

70C-15D 46818 16.6  47813 304.7  2.1 

70C-40D 58408 22.2  66819 1244.3  14.4 

93C-30D 68174 26.6  69444 1191.6  1.9 

93C-40D 73574 27.1  75148 1798.9  2.1 

PE.II Instances 
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70C-30D 57065 36.2  61786 994.1  8.3 

80C-30D 57285 50.0  61605 738.4  7.5 

80C-40D 62576 48.7  65027 1338.4  3.9 

Average  60557.1 32.5  63948.9 1087.2  5.74 

When GUROBI attains a proven optimal solution on a given instance, the associated optimality gap 

between the final lower and upper bounds of the GUROBI solution with respect to the lower bound BFS 

drops to 0.00%. Optimality gaps reported by GUROBI are shown under the column header “Opt.Gap (%)”. 

CPU times are measured in seconds. The columns with the header BFSt  in Table 2, Table 3 and Table 4 

reveal the time it took GUROBI to attain its BFS. The percent gaps in the first three tables are given under 

the column header “MS-IVND Gap (%)”. They have been calculated with respect to the BFS using the 

formula 
BFS  Obj.Val.

BFS
Gap (%) 100


  . On the other hand, the percent gaps in Table 5 have been calculated 

for the incumbent objective values of MS-IVND with respect to those of FDOR since GUROBI cannot 

attain a feasible solution despite running for 24 hours on the instances of Table 5. 

In terms of solution quality, MS-IVND outperforms GUROBI and FDOR on 11 and 40 instances, 

respectively. There is a tie between GUROBI and MS-IVND in 10 instances. Nonetheless, the performance 

of MS-IVND is timewise far superior to GUROBI. With reference to the BFS of GUROBI, it achieves a 

smaller average gap (0.97%, 3.74%, 4.57%) than FDOR (3.27%, 1.39%, 1.93%) in all three instance 

sets. The average Obj. Val. is improved by 0.41%, 5.13%, and 4.71% compared with GUROBI, and by 

2.79%, 5.36%, and 2.43% compared with FDOR. The percent improvement over FDOR is 5.60% in the 

hardest 7 instances which are unsolvable by GUROBI. MS-IVND finds 7 optimal solutions more than 

FDOR. In addition, it achieves 17 new BKSs.  

5.4 Starting GUROBI at the incumbent solution of MS-IVND 

Another set of experiments with GUROBI is performed as follows. We selected all 30 MPTPP instances 

where GUROBI was previously unable to find an optimal solution. For each instance we retrieved the 

values of the decision variables of the implied MILP model from the incumbent MS-IVND solution, and 

passed them to GUROBI as the initial decision variables vector using the MIPStart attribute. 

Subsequently, we started GUROBI at this incumbent MS-IVND solution. The new BFS, Opt.Gap (%) and 

CPU time results are reported and compared with the original results in Table 6. Note that the initial decision 

variables vector of an optimization model in GUROBI is set to zero unless instructed otherwise. 

Starting GUROBI at the incumbent solution of MS-IVND led to one more optimal solution; instance 

PE.I 40C7D is now solved to proven optimality. The final BFS of GUROBI improved in a total of 18 

instances. In three instances it remained the same. Interestingly, in two instances (PE.I 51C7D  and  PE.II 

50C15D), the BFS deteriorated which means that the best possible net benefit value decreased. It is hard to 

comment on this retrogression as we are not exactly knowledgeable about the internal algorithms of the 

black box commercial solvers. It can also be linked to the structure of the new initial solution. Moreover, 
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in 10 instances GUROBI achieved no improvement  over the respective MS-IVND solution which was fed 

as the initial solution.  

Our observation also supports the GUROBI documentation (GUROBI Optimization, 2020) which says 

that starting the solver at an initial feasible nonzero solution will not always lead to a better solution at the 

end. All in all, this approach improved the solution quality in 30 test instances, but not dramatically. 

Average relative BFS improvement is about 6.58% in those instances where GUROBI was able to return a 

feasible solution previously. 

 

Table 6.  GUROBI solutions before and after starting with to the incumbent MS-IVND solution. 

Instances Original GUROBI Solution  
 MS-IVND 

solution 

 GUROBI solution using the MS-

IVND solution as the initial solution 

PE.I     BFS Opt. Gap (%) CPU (s)      Obj. Val.  BFS Opt. Gap (%) CPU (s) 

21C-10D 21904 6.8 86400  20934  21904 6.8 86400 

30C-10D 35013 5.9 86400  33109  35034 5.9 86400 

40C-7D 30086 4.0 86400  29187  30122 0.0 64501 

40C-10D 36409 12.6 86400  36005  36560 12.4 86400 

51C-7D 41087 9.9 86400  37449  38838 10.8 86400 

51C-10D 45667 22.3 86400  44047  46319 19.6 86400 

51C-30D 47279 186.7 86400  63009  63009 94.1 86400 

70C-15D − − 86400  47813  47905 67.3 86400 

70C-40D − − 86400  66819  66819 57.9 86400 

93C-30D − − 86400  69444  69822 96.1 86400 

93C-40D − − 86400  75148  75164 52.7 86400 

PE.II                 

30C-10D 21251 5.9 86400  20229  21606 3.7 86400 

40C-7D 32811 2.1 86400  33023  33026 1.5 86400 

40C-10D 37851 3.8 86400  36427  37851 3.8 86400 

50C-7D 32829 1.6 86400  32881  33319 0.1 86400 

50C-10D 38098 11.8 86400  37344  38235 11.5 86400 

50C-15D 44098 35.6 86400  42293  42293 32.6 86400 

60C-7D 40480 2.5 86400  40237  40480 2.5 86400 

60C-10D 48270 7.0 86400  48066  48515 6.2 86400 

60C-20D 50559 80.1 86400  64056  64056 42.8 86400 

70C-10D 42474 13.9 86400  45159  45159 10.1 86400 

70C-20D 43705 112.3 86400  57439  57458 78.5 86400 

70C-30D − − 86400  61786  61965 59.6 86400 

80C-10D 40808 22.2 86400  42559  42559 17.9 86400 

80C-20D 50777 75.1 86400  55691  58053 88.0 86400 

80C-30D − − 86400  61605  61630 58.6 86400 

80C-40D − − 86400  65027  65027 64.9 86400 

LE                 

39C-7D 22361 4.7 86400  23360  23360 0.4 86400 
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39C-10D 26774 18.5 86400  27241  27241 16.0 86400 

39C-14D 30214 57.5 86400  32486  32486 47.5 86400 

Average 37426.3 30.56 86400  39227.4  39890.6 22.29 85448 

5.5 Results on a Case Study  

We next compare the real-life campaign plan of the party with the MILP model solution and the best 

heuristic solution found by MS-IVND. This comparison better emphasises the need to solve the MPTPP. 

To this end, we retrieved the opposition party’s realised meetings prior to the general election in June 2015. 

In the light of these meetings, we created our large-size instance with 70 cities and a campaign period of 

40 days. In order to make a fair comparison, we removed from the MPTPP model the constraints associated 

with two of our assumptions.  

(i) The first constraint was forcing the politician to hold at least one meeting every day. However, in 

the actual meeting schedule of the party there were two meeting-free days.  

(ii) The second constraint was forcing the politician to end the campaign at the campaign centre. We 

also lifted this constraint since the actual campaign of the party back in June 2015 had not been 

completed in Ankara. Table 7 illustrates the solutions of GUROBI and MS-IVND alongside the 

party’s actual plan on the 70C-40D instance. 

Table 7  Comparison of the GUROBI and MS-IVND solutions with the actual schedule of the party 

 Obj. Val. Opt. Gap(%) # of Meetings CPU time 

GUROBI 
LB =    46,640  (BFS) 

 UB =  117,427 
60.3 75 

259,200 s 

(3 days) 

Party’s Plan 24,534 — 77 — 

MS-IVND 64,830 — 98 1012 s 

Table 7 shows that GUROBI is not able to solve the new MPTPP model to optimality despite a time 

allowance of 3 days. It can only bracket the true optimal objective value between a lower bound (LB) of 

46,640 and an upper bound (UB) of 117,427 where the former is the objective value of the BFS reached by 

GUROBI. However, the BFS bears a net benefit that is about 90% greater than the net benefit accrued by 

the end of the actual campaign plan of the party. In the actual plan there are three meetings in Istanbul, 

Ankara, and Mersin each; two meetings in Izmir; and one meeting in the remaining cities. However, the 

BFS of GUROBI prescribes three meetings in İstanbul, Ankara, İzmir, and Mersin each; two meetings in 

the majority of midsize cities such as Adana, Balıkesir, Bursa, Çanakkale, Hatay, Konya, Zonguldak, Uşak, 

etc.; and one meeting in the remaining cities. MS-IVND, on the other hand, is able to find a much better 

solution with 98 meetings. The results in Table 7 underline the massive advantage of solving the MPTPP 
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for the maximisation of the net benefit obtained from an election campaign that involves a relatively large 

number of cities and spans an extended period. 

6 Scenario analysis and managerial insights 

In this section we conduct an extensive scenario analysis to gain managerial insights into the MPTPP. 

We consider two levels of scenarios; the first level covers extreme scenarios, and the second one 

investigates the effect of different objective functions. Scenario descriptions are presented in the next two 

subsections followed by the last one which discusses their respective results.  

6.1 Scenario analysis level 1: Extreme scenarios 

We consider the following four scenarios with 14   hours as the maximum tour duration (MTD). 

Scenario 1: Base Scenario, described in section 3. 

Scenario 2: Base Scenario with the additional restriction of at most one meeting in each candidate 

city throughout the campaign.  

Scenario 3: Base Scenario where the objective function involves only collected rewards and no 

travelling costs. In addition, the politician needs not return to the capital city periodically.  

Scenario 4: Base Scenario with only closed daily tours originating and terminating at the capital city 

every day.  

6.1.1 Description of the scenarios 

Scenario 1: Model Full-MILP (Base Scenario) 

The politician’s campaign starts in Ankara. The politician cannot be away from Ankara for more than 

5   days in a row. There is no restriction as to where to terminate the tour (sleep) at the end of a given 

day and start the tour of the next day (wake up). Thus, the tour on a given day t   can be either an open or 

a closed tour. There is an MTD constraint in place which prohibits daily tours in excess of 14 hours. 

Candidate cities are divided into three groups, namely big cities (İstanbul, Ankara and İzmir), midsize cities 

and small cities where the number of meetings hosted is limited to three, two and one, respectively. The 

number of meetings held each day is limited to four.  

Scenario 2: Model Full-1Meet 

This scenario is derived from Scenario 1 by revoking the option of multiple meetings in big and midsize 

cities. Since each city can host at most one meeting during the campaign, the binary decision variables itsR  

are excluded from the MILP model of the Base Scenario which, in turn, simplifies the model of the MPTPP 

drastically. We then modify our MS-IVND according to the no-repeated-meeting assumption. While 

exploring the neighbourhoods, a list of all meetings is kept, and the algorithm performs another feasibility 
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check to avoid repeated meetings. The net benefit definition comprising the objective function is simplified 

as shown in (5). It is also worth noting that the optimal solutions (thus the optimal objective values) 

of Scenario 1 and Scenario 2 may be identical.  

 
1

( - ) i it ij ijt

i t i j t

m t
NET BENEFIT Full 1Meet Z K c X

m


    

 
     

N T N N T

  (5) 

Scenario 3: Model Rew-Only 

The third scenario is derived from Scenario 1 using the following two modifications:   

(i) The necessity to periodically return to the capital Ankara at least once every   days is lifted. 

The politician has full freedom to hop from one city to another. Also, the politician can stay 

overnight in any city. Yet the campaign is still going to start in Ankara on day 1.  

(ii) Travelling costs are discarded from the objective function. This fundamental change motivates 

the politician to roam between all candidate cities without considering the cost of travelling.  

These two modifications make our MS-IVND relatively much faster, because the computationally 

expensive feasibility check of returning to the campaign centre is now redundant. 

Scenario 4: Model Alt-1Depot 

The fourth scenario is derived from Scenario 1 by a fundamental paradigm shift in which the politician 

wakes up in the capital city Ankara every morning and returns there to sleep by the end of every day. This 

implies that each daily trip is going to be a closed tour with Ankara being the depot of the trip.  This reduces 

the problem to a multi-period selective TSP with a single depot. In our MS-IVND implementation, we do 

not permit the algorithm to apply the neighbourhood moves on depot nodes. Note that Alt-1Depot is a much 

more restrictive model than Full-MILP since it does not allow open tours. Clearly, the optimal objective 

value of Alt-1Depot is a valid lower bound on that of Full-MILP. Alt-1Depot is also computationally much 

more tractable due to the absence of the novel binary variables representing exclusive departures from and 

exclusive entrances to candidate cities. The reader is referred to Shahmanzari et al. (2020) for an in-depth 

discussion of those variables of the model Full-MILP. 
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Fig. 6  Different tours in the first three scenarios. 

6.2 Scenario analysis level 2: Alternative reward function 

Thus far we assumed that earlier meetings produce higher rewards. In an alternative scenario, we reverse 

the direction of the reward function such that the reward increases as we approach the election day, i.e. the 

end of the campaign period. In this case, the objective function is defined in Eq. (6) where linearity of the 

objective function is also preserved. 

2
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    (6) 

6.3 Computational results of the scenario analysis  

6.3.1 Scenario analysis level 1  

The results of the four different scenarios of level 1 are presented in Table 8. The naming convention in 

the leftmost column of the table sheds light on the sizes of the 10 test instances. We choose only 10 instances 

to illustrate the characteristics of each scenario where we ensure that there exist small-sized, medium-sized, 

and large-sized cities in every instance. Boldface figures in the BFS column of each scenario point to 

proven optimality achieved by the commercial solver GUROBI. Possible tours in the first three scenarios 

are illustrated in Fig. 6. Table 8 consists of four segments where in each segment the first three columns 

correspond to GUROBI. These columns show the optimal or best feasible objective value, the number of 

meetings held during the planning horizon ( ) , and the final gap attained by GUROBI. Within each 

segment, the second group of three columns correspond to the MS-IVND results, and show the objective 

value and the final gap of MS-IVND.  

The CPU time limit in all GUROBI runs was 24 hours. The average optimality gap is 6.19% which 

implies MPTPP is a large-scale optimisation problem even for small-size instances. In Full-1Meet (Scenario 

2), the computational complexity of the problem is greatly reduced due to the removal of the binary 

variables of repeated meetings from the model and due to the simplified net benefit definition shown in Eq 

(5). However, the average optimality gap of GUROBI is still high (7.20%) in Scenario 2.  

Objective values obtained in Rew-Only (Scenario 3) are not comparable with the ones obtained in the 

other scenarios since the travelling costs in the definition of net benefit are ignored. However, except in 

three instances, namely 40C-7D, 51C-7D and 51C-10D, the count of meetings realised in this scenario is 

either higher than or equal to the count of meetings in other scenarios. This can be ascribed to having a 

larger feasible solution space which occurs because of lifting the necessity to visit the campaign centre 

every   days. Similarly, the politician in this scenario has more freedom to travel to remote cities that 

would not be visited in the Base Scenario due to the net benefit being negative after the deduction of 

travelling expenses. The average gap in Scenario 3 is 6.07%. 
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Table 8. Results of the four scenarios 

 Scenario 1: Full-MILP Scenario 2: Full-1Meet 

 GUROBI MS-IVND GUROBI MS-IVND 

Instance BFS   
Opt.Gap  

(%) 
Obj. Val.   

MS-IVND 

Gap  (%) 
BFS   

Opt.Gap  

(%) 
Obj. Val.   

MS-IVND 

Gap  (%) 

15C-7D 17240 14 0.0 16491 15 4.3 16000 13 0.0 16000 13 0.0 

15C-10D 18759 17 0.0 18065 17 3.7 16299 15 0.0 16299 15 0.0 

21C-7D 19138 16 0.0 17709 17 7.5 18117 16 0.0 18117 16 0.0 

21C-10D 21904 21 6.9 20934 19 4.4 20850 20 0.0 20850 20 0.0 

30C-7D 29427 18 0.0 28582 18 2.9 27576 17 3.3 27912 23 1.2 

30C-10D 35013 24 6.0 33109 25 5.4 32210 24 9.0 33964 26 5.4 

40C-7D 30086 20 4.1 29187 18 3.0 27023 18 16.4 28550 19 5.6 

40C-10D 36409 25 12.6 36005 26 1.6 32210 24 9.0 35021 28 8.7 

51C-7D 41087 31 9.9 37449 30 8.9 33366 23 17.6 37042 25 11.0 

51C-10D 45667 36 22.4 44047 35 3.5 35314 26 16.7 40117 30 13.6 

 Scenario 3: Rew- Only Scenario 4: Alt-1Depot 

 GUROBI MS-IVND GUROBI MS-IVND 

Instance BFS   
Opt.Gap  

(%) 
Obj. Val.   

MS-IVND 

Gap  (%) 
BFS   

Opt.Gap  

(%) 
Obj. Val.   

MS-IVND 

Gap  (%) 

15C-7D 22561 16 0.0 21730 16 3.7 11539 10 0.0 11539 10 0.0 

15C-10D 26061 20 0.0 25238 17 3.2 11170 13 15.4 11834 13 5.9 

21C-7D 23932 17 0.0 21750 16 9.1 13779 12 0.0 13779 12 0.0 

21C-10D 28927 23 3.8 26947 21 6.8 14498 15 14.6 15013 15 3.6 

30C-7D 33638 18 0.0 33115 19 1.6 20774 13 0.0 20774 13 0.0 

30C-10D 38148 24 10.0 36991 24 3.0 24520 17 15.9 25901 18 5.6 

40C-7D 32586 19 9.5 31435 19 3.5 20893 13 7.1 21375 13 2.3 

40C-10D 39876 25 13.7 39226 27 1.6 25324 18 19.73 26230 19 3.6 

51C-7D 33123 19 11.0 30774 16 7.1 31154 19 0.0 31154 19 0.0 

51C-10D 41325 28 12.7 38827 25 6.0 37373 26 5.1 37824 29 1.2 

 

The results of Alt-1Depot (Scenario 4) are also interesting, as this scenario bears the most similar 

conditions to the current campaign policy of the party. In comparison to Full-MILP, the commercial solver 

GUROBI was able to attain optimality in one more instance (51C-7D). Table 8 reports an overall lesser 

number of meetings in Scenario 4. It is apparent that the requirement to return to the capital city Ankara at 

the end of every day prevents some of the meetings which were realised in the Full-MILP model of the 

Base Scenario. The average gap reported by GUROBI in this scenario is 7.78%. 

6.3.2 Scenario analysis level 2  

The importance of holding meetings in early days or in the last days of the campaign period should be 

decided by party executives indeed. Despite this fact, we present in Table 9 the comparison between the 
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original and the alternative reward functions on 14 small-size test instances where we solved the Full-MILP 

model of the Base Scenario. All instances are solved to proven optimality under each net benefit function. 

The column with the header “CPU (s)” indicates the solution times in seconds reported by GUROBI.  

According to Table 9 the solution times obtained with the original reward function are better in 13 out 

of 14 instances. The objective values are unfortunately not comparable due to different rewards being 

assigned to each city in different days. The decision to choose which reward function is obviously up to the 

politician. Based on the results in Table 9, we can say that the use of the alternative reward function in (6) 

as the objective function of the MPTPP increases the solution times of our algorithm MS-IVND. 

Table 9  Comparison of new reward function and original reward function 

Instances 

Full-MILP with original reward function  Full-MILP with alternative reward function (6) 

Obj. Value Gap (%) CPU (s) Obj. Value Gap (%) CPU (s) 

6C-2D    7110.8 0.0   0.1   17441.2 0.0   0.1 

6C-3D   8181.3 0.0   0.1   22272.2 0.0   0.2 

7C-2D   9629.5 0.0   0.1   22172.4 0.0   0.2 

7C-3D   10939.0 0.0   0.2   26778.4 0.0   0.4 

7C-4D   11597.4 0.0   0.4   30339.9 0.0   0.7 

9C-2D   9695.0 0.0   0.3   22172.4 0.0   0.1 

9C-3D   10939.0 0.0   0.5   28572.9 0.0   0.9 

9C-4D   11668.4 0.0   1.3   32149.5 0.0   1.8 

12C-3D   12620.0 0.0   1.1   31726.9 0.0   1.3 

12C-4D   13584.8 0.0   2.3   37076.3 0.0   3.6 

12C-5D   14575.6 0.0   6.0   40382.8 0.0   6.4 

15C-3D   12620.0 0.0   1.6   32750.8 0.0   2.9 

15C-4D   14210.3 0.0   4.3   39496.6 0.0   6.1 

15C-5D   15446.9 0.0   14.4   43533.7 0.0   159.8 

7 Conclusions  

In this paper we investigate a logistical planning problem arising in election campaigns which is known 

as the Multi-Period Travelling Politician Problem (MPTPP). It involves a politician who wants to maximise 

the net benefit of his/her campaign over a fixed period of days. Time-dependent and meeting frequency-

dependent rewards are earned by holding a meeting in a city visited on a daily tour. The objective function 

represents the net benefit defined as the total collected reward minus the total travelling cost. Several real-

life aspects such as the necessity to return to the campaign centre frequently, the maximum tour duration, 

and a time- as well as recency-dependent reward function are also incorporated into the model.  

We propose a hybrid multi-start metaheuristic which integrates ILS and VND. It also leverages 

perturbation and local search schemes where three characteristic moves are built into the former and four 
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in the latter. Our approach restarts with a new initial point whenever VND reaches a local optimum. 

Computational results on 45 test instances published in the literature reveal that the proposed metaheuristic, 

which we call MS-IVND, is an efficient algorithm for solving the MPTPP. It outperforms a recently 

published two-phase matheuristic called FDOR and the commercial MILP solver GUROBI in terms of 

solution quality and speed, respectively, which serve as two basic performance criteria. MS-IVND produces 

7 optimal solutions and 17 new best known solutions. The superiority of the new algorithm MS-IVND over 

the MILP solution approach with GUROBI lies in its solution speed. On the other hand, it has a significant 

solution quality advantage over the matheuristic FDOR. We conclude that MS-IVND can help to reap 

higher net benefits from a multi-period election campaign.  

In order to gain managerial insights into this problem, we also carry out a scenario analysis using the 

Base Scenario model referred to as Full-MILP. We conduct extensive experiments in which we demonstrate 

the power as well as the flexibility of MS-IVND which yields favourable results within relatively short 

computational times. Our experimental results provide useful insights into the planning of an election 

campaign in a real-world setting. This study will hopefully inspire other researchers to explore new avenues 

in the research of election logistics, touristic trip planning, and marketing campaigns.  
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Appendix A  

We provide the description of the MILP formulation of the MPTPP in this appendix. The formulation 

is originally due to Aksen and Shahmanzari (2018). The reader is also referred to Shahmanzari et al. (2020) 

for an in-depth discussion of the model constituents, another alternative formulation for the satisfaction of 

the maximum tour duration, and also for valid inequalities which help tighten the original formulation. 

Index Sets: 

{0,..., }nN  Set V  joined by city ‘0’ which denotes a fictitious city with all associated costs, rewards 

and meeting duration being zero. 

\ {0}V N  The set of cities to be considered for collecting rewards throughout the election campaign 

where city 1i   denotes the campaign centre. 

{1,..., }mT  The set of m  days comprising the campaign duration. 

Parameters: 
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ijc  Travelling cost from city i  to j  where 0.iic   

ijd  Travelling time from city i  to city j  where 0.iid   

i  The base reward of city i . 

i  The meeting duration in city i . 

  Maximum number of meetings allowed each day. 

maxT   Maximum tour duration (in hours) in each daily tour. 

   Maximum number of consecutive days during which the politician is allowed to be away from 

the campaign centre. 

K   The base reward depreciation coefficient applied in successive meetings held in the same city. 

K   Normalisation coefficient multiplied with the collected rewards to make travelling costs and 

daily rewards compatible. 

Decision Variables: 

ijtX  Binary variable indicating if arc ( , )i j  is traversed on day t  ( , ,  )i j t N T  with 0.iitX   

itL  Binary variable indicating if the politician does not enter, but only leaves city i  in day t .  

itE   Binary variable indicating if the politician does not leave, but only enters city i  in day t .  

itS   Binary variable indicating if the politician stays overnight (sleeps) in city i  by the end of day .t   

itZ  Binary variable indicating if the politician holds a meeting in city i  on day t   

itFM  Binary variable indicating if the first meeting in city i  is held on day t . 

itsR  

itsR  

Binary variable indicating if city i accommodates two consecutive meetings on day t  and day 

( )t s  with no other activity in between. Since 1 s t  , we have 0itsR   for t s m  . 

itU  A continuous nonnegative variable used in the Modified Miller-Tucker-Zemlin subtour elimination 

constraints. It is used to determine the order of visit for city i  on day t . 

The MPTPP can be formulated as the following mixed-integer linear program: 
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( )its i t sR Z   ,  2 ,  1i t m s t    N    (41)  

1

1

(1 )
t
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k t s

Z s R
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1
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1

 1
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its i t s it k

k t s

R Z Z Z
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

  

     ,  3 ,  2i t m s t    V      (45) 

ijtX , itL , itE , itS , itZ , itFM , {0,1}itsR   and 0itU   (46) 

The objective function (7) maximises the total net benefit. Constraints (8)(9) reflect the selective 

routing characteristic of the MPTPP. Constraints (10)(11) determine a lower and an upper bound on the 

number of meetings held on a given day. Constraints (12) specify the maximum tour duration restriction 

on each daily tour of the politician. Constraints (13)(15) couple the decision variables itFM  and itZ . 

Constraints (16)(28) couple the binary decision variables ijtX , itS , itE , and itL . Constraints (29) ensure 

frequent visits to the campaign centre, at least once every   days. The constraint sets (30) and (31) 

guarantee that no reward can be collected from unvisited cities. Constraint (32)(39) serve as subtour 

elimination constraints. Constraints (40)(45) couple the decision variable itsR , itFM  and itZ . Finally, 

constraints (46) are nonnegativity and binary constraints imposed on the decision variables. 

Appendix B  

Table B.1 summarises the GUROBI options chosen in implementation. MIPGap is computed as 

100%BFS BPS BFS   where BFS  and BPS  stand for the best feasible and best possible solutions, 

namely the tightest lower and upper bounds in a maximisation problem, respectively. The CPU time limit 

(TimeLimit) is set to 86,400 seconds (24 hours). The options Threads and Concurrentmip turn on the 

multithreading (concurrent optimisation) capabilities of GUROBI. When Threads is set to zero, the 

computing load is distributed onto all available fourteen cores (28 threads) of the Intel Xeon® E5-2690 v4 

processor. On the other hand, when Concurrentmip is set to three, the solver divides available threads 

evenly between three independent MILP solve operations and performs them in parallel. Optimisation 

terminates when the first solve operation completes. In order to compare multithreading options, we tested 
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the performance of GUROBI under different concurrent optimisation configurations. We observed that 

Concurrentmip = 3 outperforms other configurations and finds the best feasible solution as well as the 

best possible solution achieving thereby the smallest optimality gap. NumericFocus controls the degree to 

which the code attempts to detect and manage numerical issues. It is set to 3 since the right-hand side values 

of the constraints are relatively large in our model. The reader is referred to GUROBI User’s Manual (2018) 

for a more thorough explanation of these options.  

Table B.1   List of GUROBI specific options applied to all runs. 

GUROBI specific options used in Python codes 

MIPGap = 0.000 

TimeLimit = 86400 

IterationLimit = 1.e9 

NodeLimit = 5.0e8 

Nodefilestart = 6.5 

Threads = 0 

Concurrentmip = 3 

NumericFocus = 3 

DualReductions = 0 

InfUnbdInfo = 1 

Appendix C  

The candidate cities considered in the test instance PE.I 40C-10D and their population, base reward, 

meeting duration and criticality factor data are shown in Table C.1. The cities are sorted in descending 

order of their base rewards. 

Table C.1.  City characteristics in  PE.I 40C-10D 

City   Population in 2015  Base Reward   Meeting Duration   Criticality Factor   

İstanbul 14,657,434 2,370 2 5 

Ankara 5,270,575 1,505 2 5 

İzmir 4,168,415 1,295 2 5 

Bursa 2,842,547 1,040 1.5 5 

Hatay 1,533,507 1,000 1.5 5 

İskenderun 247,220 1,000 1 5 

Antalya 2,288,456 935 1.5 5 

Alanya 134,396 935 1 5 

Adana 2,183,167 736 1.5 4 

Kahramanmaraş 1,096,610 680 1.5 4 

Gaziantep 1,931,836 675 1.5 3 

Denizli 993,442 660 1 4 

Aydın 1,053,506 660 1.5 4 

Kocaeli 1,780,055 645 1.5 3 

Gebze 357,743 645 1 3 

Muğla 908,877 640 1 4 

Çorlu 273,362 640 1 4 

Mersin 1,745,221 630 1.5 3 

Ordu 728,949 580 1.5 4 

Manisa 1,380,366 570 1 4 

Balıkesir 1,186,688 525 1.5 3 

Kastamonu 372,633 500 1 4 

Edirne 402,537 500 1 4 

Kars 292,660 480 1 4 

Eskişehir 826,716 465 1 3 

Erzincan 222,918 460 1 4 

Afyon 709,015 435 1 3 

Adıyaman 602,774 420 1 2 

Diyarbakır 1,654,196 410 1.5 2 
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City   Population in 2015  Base Reward   Meeting Duration   Criticality Factor   

Çanakkale 513,341 405 1 3 

Isparta 421,766 375 1 3 

Giresun 426,686 375 1 3 

Kayseri 1,341,056 370 1.5 2 

Konya 2,130,544 362 1.5 2 

Amasya 322,167 360 1 3 

Bolu 291,095 360 1 3 

Niğde 346,114 360 1 3 

Bartın 190,708 330 1 3 

Malatya 772,904 300 1 2 

Kırşehir 225,562 230 1 2 

The shaded areas in Fig. C.1 denote those cities of Turkey which are included in the 10-day-long 

campaign period. Full-MILP results on PE.I 40C-10D are provided in Fig. C.2 where the circled numbers 

on a city represent the number of meetings realised and the meeting days. Table C.2 reveals the daily tours 

where (M) indicates a meeting. The best gap obtained for this instance in 24 hours was 12.6%.  

Table C.2.   Daily tours of the instance PE.I 40C-10D 

Days Route 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Ankara (M) → Hatay (M) →  İskenderun (M)  

İskenderun → Adana (M) → Istanbul (M) 

Istanbul → Kocaeli (M) → Bursa (M) → Balıkesir (M)  

Balıkesir → Manisa (M) → İzmir (M) → Aydin (M) → Muğla 

Muğla (M) → Denizli (M) → Antalya (M) → Isparta 

Isparta (M) → Afyonkarahisar (M) → Eskişehir (M) → Ankara 

Ankara (M) → Gebze (M) → Istanbul 

Istanbul (M) → Gaziantep (M) → Kahramanmaraş (M)  

Kahramanmaraş → Hatay (M) → Adana (M) → Mersin 

Mersin (M)  
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Fig. C.1    Geographical distribution of 40 cities (shaded areas) 

 

 

Fig. C.2   Cities with meetings 
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