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A HISTOLOGICAL EXAMINATION OF ENAMEL MICROEVOLUTION OVER 2000 YEARS OF 

HUMAN HISTORY USING BRITISH POPULATIONS 

 

Abstract 

The study of permanent enamel thickness and secretion rates of ameloblasts have yielded insights 

into the evolution of enamel when compared between hominin species. However, the study of 

modern human permanent tooth enamel has received far less attention, particularly regarding daily 

secretion rates (DSRs) and changes over time between populations. Moreover, enamel thickness and 

DSRs have rarely been analysed in conjunction for human samples. The research here uses dental 

histological thin sections to examine inner, mid, and outer DSRs for lateral and cuspal enamel, and 

the average (AET), relative (RET), cuspal (CT), and lateral (LT) thickness, for permanent first molar, 

upper canine, and upper first incisor crowns, from five British populations spanning the last 2000 

years of history. The populations cover the Roman period (1-4AD) to modern day. A total of 265 

teeth were analysed: first molar (n=115), upper canine (n=69), and upper first incisor (n=81). Results 

display consistent and significant trends towards decreasing DSRs from the ancient to modern 

populations. This was observed in all first molar cuspal regions (inner p<0.001, mid p<0.001, and 

outer p<0.001) and the inner and outer lateral regions (inner p=0.01 and mid p<0.001), in all upper 

first incisor cuspal and lateral regions (all p<0.001), and in all upper canine cuspal and lateral regions 

(all p<0.001). Enamel thickness features revealed less inter-population variation in first molars. The 

Early Anglo-Saxon RET was significantly larger than that of the Late Anglo-Saxon (p<0.001) and 

Medieval (p<0.001) populations. The Modern-day population LT was significantly thicker than the 

Roman populations (p=0.04). These differences allude to potential differences in diet between these 

populations. Alongside the differences seen between populations, the data provides the first major 

evidence for changes in the daily rate of enamel growth in human permanent dentition between 

populations. That similar variation was not observed in enamel thickness suggests thickness and 

growth can vary significantly and independently between human population. 
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CHAPTER 1: INTRODUCTION, THESIS STRUCTURE, AND RESEARCH QUESTIONS  

1.1 Introduction 

Within dental anthropology there is a large volume of research regarding enamel. Studies 

concerning human samples most commonly analyse enamel within an intra-population context (e.g. 

Dean and Scandrett, 1995; Reid et al., 1998; Mahoney, 2010, 2013), or as a comparative basis for 

hominoid dental analysis (e.g. Bromage, 1991; Dean et al., 1993a, 1993b; Reid and Ferrell, 2006). 

The studies looking at differences in human enamel features between populations are fewer in 

number, and have primarily investigated the variation between populations of different geographic 

origin (Kajiyama, 1965; Fitzgerald, 1995; Reid and Dean, 2006; Reid and Ferrell, 2006; Smith et al., 

2006, 2007a). Additionally, there has been very little research conducted into whether features of 

human enamel could vary over time within a temporal context. Those that have been conducted 

used archaeological samples to investigate for variation in enamel thickness (Smith et al., 2007a, 

2010; Le Luyer et al., 2014; Le Luyer and Bayle, 2017). Until now, no such research has addressed 

modern clinical dental samples or studied enamel growth patterns. Research presented here will 

provide such analysis, by presenting two peer reviewed published manuscripts involving analyses 

using dentition from British populations spanning the last 2000 years, and additional discussion as to 

how the data gathered from the British populations compares to previously researched populations. 

The aims are to expand upon our understanding of the evolutionary plasticity of modern human 

permanent enamel. These aims will be met by investigating differences in enamel thickness and 

growth rates through daily secretion rates (DSRs) between populations within a temporal transect, 

across the tooth row, and between biological sexes.  

Chapter 2 provides a detailed overview of general dental anatomy, compromised of an 

detailed description of enamel anatomy and composition, and descriptors of each stage of enamel 

growth and formation (amelogenesis). Chapter 3 consist of a review of existing literature will be 

conducted regarding all relevant dental histological research, all intraspecific studies that have been 

conducted on human dentition, and a brief assessment of the relevant literature regarding non-

human primates and hominins. Chapter 4 will further review the enamel feature data collection 

methods associated with the novel research presented later. This literature review will serve to 

contextualise the subsequent novel research, and highlight why temporal analysis of a large human 

dental data set is crucial to ongoing research in anthropology and bioarcheology. After reviewing the 

relevant literature, the histological methods employed to analyse the dental samples, and gather 

data from the produced sections, will be detailed in Chapter 5. This methods section will also include 
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a profile analysis of each dental collection utilised, including analysis of their geographic region 

within the United-Kingdom, their date of origin, and relevant contextual information.  

After the review and methods chapters, the published manuscripts will be presented. These 

chapters represent a streamlined version of the published articles with sections already covered in 

the literature review and materials sections removed. The full, unedited, and formatted articles can 

be found in Appendix C. Please note both the streamlined and full versions include edits made 

following the peer review process. Chapter 6 (Aris et al., 2020b) addresses temporal variation in the 

two-dimensional thickness and DSRs of permanent first molars. Chapter 7 (Aris et al., 2020a) 

addresses the daily growth patterns, but will focus on the anterior dentition (specifically first upper 

first incisors and upper canine) of the same British populations from the last 2000 years. Following 

the two novel pieces of research, a discussion (Chapter 8) and final conclusions (Chapter 9) will be 

presented. Chapter 8 will further bring together the theories and conclusions of each of the research 

project chapters, thus allowing for any observed changes in first molar dentition to be cross-

examined with those from the upper anterior tooth analyses, and vice versa. Chapter 9 will present 

findings regarding: the inter- and intra-population variations observed in enamel thickness measures 

and regional DSRs, the exact relationship therein between enamel thickness and DSR variation, the 

similarities and/or dissimilarities of variations between tooth types, and the future research required 

to follow on from the discoveries presented here. 

In regards to ethical considerations, all sampling procedures followed the guidelines for 

destructive sampling of human remains outlined by Mays and colleagues (2013). This primarily 

involved only analysing one tooth per individual set of remains, alongside the ethical treatment and 

storage of all human remains throughout the research process. The use of only one tooth per 

individual was also done on request from the institutions which curated the material. These steps 

were followed for the research of both the archaeological and modern-day clinical samples. In 

addition, in order to sample the modern-day samples ethical approval for histology research was 

obtained from the United Kingdom National Health Service research ethics committee (REC 

reference: 16/SC/0166; project ID: 203541). 
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1.2 Research questions 

Using the aforementioned approach and structure, this research project will aim to answer the 

following research questions: 

1. Have enamel growth rates of permanent first molars and upper anterior teeth varied 

between populations over time? 

2. Have enamel growth rates of upper anterior teeth varied between biological male and 

female groups between and within populations? 

3. How have enamel growth rates varied between tooth types? 

4. Has enamel thickness of permanent first molars varied between populations over time? 

5. Do any variations in enamel growth and thickness correlate? 
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CHAPTER 2: BACKGROUND – DENTAL ANATOMY AND AMELOGENESIS 

 

2.1 Enamel anatomy 

2.1.1 Enamel structures and components 

Enamel is a composite mineralised tissue, formed of mineral and organic components, which cover 

the primary dentine of a tooth, creating the outer portion of the tooth (see Fig. A.2; e.g. Bowes and 

Marray, 1935; Helmcke, 1967; Weatherell et al., 1974; Boyde, 1997; Berkovitz et al., 2002; Antoine 

et al., 2018). While the shape and function of enamel varies between tooth types, in general it forms 

thickest at the cusps of a tooth and thinnest at the cervix and serves to protect the tooth throughout 

life, aided by its organisational structure which creates a hard and wear resistant surface (e.g. 

Helmcke, 1967; Bodye, 1997; Berkovitz et al., 2002:102).  

Calcium hydroxyapatite (Ca10(PO4)6(OH)2) mineral accounts for between 90-92% of enamel 

volume and around 96% by weight (e.g. Bowes and Marray, 1935; Helmcke, 1967; Beynon et al., 

1998; Berkovitz et al., 2002; Nanci, 2003; Antoine and Hillson, 2016; Antoine et al., 2018). The 

concentration of hydroxyapatite increases moving apically away from the enamel dentine junction 

(EDJ). Enamel hydroxyapatite forms as crystallites 68-70nm in width and 25-26nm thick (Berkovitz et 

al., 2002; Nanci, 2003). As a result of being highly mineralised, enamel is further able to withstand 

both shearing and impact forces whilst wearing down very slowly. This resistance is vital as enamel 

cannot be repaired or maintained in any way by the body (e.g. Bowes and Marray, 1935; Boyde, 

1997; Berkovitz et al., 2002). 

Of the remaining 8-10% of enamel volume 6-8% consists of water. The distribution of water 

within enamel is linked to the relative concentration of hydroxyapatite (Bowes and Marray, 1935; 

Helmcke, 1967; Berkovitz et al., 2002; Antoine et al., 2018). Near the EDJ there are a lower number 

of organised crystallites and higher porosity (Nanci, 2003). This results in water filling the spaces 

between crystals surrounding the organic components of the enamel as well as forming a hydration 

layer coating the hydroxyapatite crystallites (Helmcke, 1967; Nanci, 2003). Near the occlusal surface, 

water volumes are lower as crystal concentration and organisation increases (e.g. Boyde, 1997; 

Helmcke, 1967; Berkovitz et al., 2002; Nanci, 2003). Here the water is either trapped in the defects 

of the crystalline matrix, or coating the crystallites (Weatherell et al., 1974; Berkovitz et al., 2002; 

Nanci, 2003). The last 2-4% of enamel is an organic matrix. The majority of this organic mixture is a 

combination of amino acids, peptides, and other small molecules which in total make up between 
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50-90% of the matrix’s volume (Helmcke, 1967; Berkovitz et al., 2002; Nanci, 2003). The amino acids 

are primarily glycine, alanine, and glutamic acid (Berkovitz et al., 2002:104). 

The proteins present within enamel are amelogenins and non-amelogenins. Amelogenins 

compromise around 90-95% of all enamel proteins which spread across the whole of the enamel, 

forming a gel like substance from which ions can rapidly spread to produce the crystalline prism 

structure of enamel (see Fig 2.1; Weatherell et al., 1974; Boyde, 1989; 1997; Eisenmann, 1998; 

Berkovitz et al., 2002; Nanci, 2003; Robinson et al., 2003; Smith and Nanci, 2003; Fukumoto et al., 

2014). Amelogenins are spread across enamel with the concentration of non-amelogenin proteins 

highest at the EDJ, specifically within enamel tufts (Berkovitz et al., 2002; Nanci, 2003; Boyde, 1997). 

These tuft regions are linear structural formations which run the length of the inner third of enamel, 

originating at the EDJ. Non-amelogenins (or enamelins) are far less in abundance, comprised by 

ameloblastin and tuftelin, making up the remaining 5-10% of enamel proteins (Berkovitz et al., 2002; 

Nanci, 2003). 

 

2.1.2 Enamel prisms 

Mature hydroxyapatite prisms make up the majority of structure enamel at a cellular level. Each 

prism is made up of approximately 10,000 near-parallel and regulated hydroxyapatite crystallites 

compacted into a thin rod with a diameter of 5-6µm and a length of 2.5mm (e.g. Boyde, 1997; 

Berkovitz et al., 2002; Nanci, 2003; Antoine and Hillson, 2016). The grouping of the crystallites into 

prisms accounts for the relative flexibility of individual crystals. Due to their micro-porosity and 

surrounding organic components single crystals possess too much bendability alone, grouping 

thereby strengthens and stiffens them and thus also strengthens the overall structure of enamel 

(Boyde, 1997). These grouped prism rods run apically from the EDJ to the occlusal surface (Helmcke, 

1967; Boyde, 1989; Nanci, 2003; Robinson et al., 2003) and have been tracked using both 2D and 3D 

methodologies (Smith and Tafforeau, 2008). Prisms can vary at the angle at which they reach their 

apex, but typically reach the outer enamel surface at an angle around 120o (Hillson, 1996; Antoine 

and Hillson, 2016). Prisms also tend to orientate in near-parallel groups, and always originate 

perpendicular to the EDJ (Helmcke, 1967; Boyde, 1997; Berkovitz et al., 2002). The centre of the 

prism is highly organised with little angular deviation, whereas the boundaries of the crystallites can 

deviate from anywhere between 400 and 600 in angularity (Helmcke, 1967; Eisenmann, 1998; 

Berkovitz et al., 2002). This creates an optical effect which can be observed using microscopic 

analysis (Helmcke, 1967; Boyde, 1997; Berkovitz et al., 2002). Further optical effects can be caused 
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by the variation in the pathways of enamel prisms. While they all run from the EDJ to the outer 

enamel surface they will regularly undulate around their long plane in groups around other groups 

of prisms, this is known as prism decussation (e.g. Boyde, 1989; Antoine et al., 2018). While 

decussation is reduced with distance from the EDJ and in lateral regions of enamel, it can make 

following single prisms across their length difficult (Boyde, 1989; Antoine et al., 2018). 

 

2.1.3 Aprismatic enamel 

Aprismatic enamel (also known as non-prismatic enamel; e.g. Boyde, 1997) is a small layer of prism-

less enamel which can be observed at the outer surface of all unworn dentition (Helmcke, 1967; 

Mukherjee et al., 2018). Aprismatic crystallites are aligned perpendicular to the occlusal surface of 

the tooth and at strict right angles to each other. In permanent teeth the thickness of aprismatic 

enamel ranges from 20-70µm (Berkovitz et al., 2002; Mukherjee et al., 2018). The degree of 

thickness is dependent on the specific part of the tooth the enamel is formed at, being thicker at the 

cusps and thinner at the cervical border (Berkovitz et al., 2002). Even though it is not clustered into 

prisms, aprismatic enamel is still formed primarily of hydroxyapatite crystallites and has a low 

concentration of organic material due to the loss of boundaries between prisms and Hunter-

Schreger bands (Boyde, 1997; Berkovitz et al., 2002; Nanci, 2003). The formation of this type of 

enamel is a result of ameloblasts losing their Tomes’ processes during the final stages of enamel 

formation (see 2.2 Amelogenesis and Fig 2.5b). 

 

2.1.4 Incremental enamel lines 

The development and growth of enamel involves periods of high activity which alternate with 

periods of dormancy (Helmcke, 1967; Berkovitz et al., 2002). As a result of this rhythmic process 

enamel develops a series of incremental lines which appear under histological and radiographic 

analysis (Berkovitz et al., 2002). The main types of lines which can be observed are short period lines 

(cross striations) and long period lines (lines of Retzius or enamel striae). 

Cross Striations – These form at right angles to enamel prisms running across their transverse long 

axis, appearing as brighter or darker bands compared to the majority of the prism volume (Helmcke, 

1967; Boyde, 1997; Berkovitz et al., 2002; Antoine and Hillson, 2016; Antoine et al., 2018). These 

lines form due to the diurnal circadian rhythms of ameloblasts, as the daily pattern of enamel 

secretion causes the formation of lines between periods of activation (see 2.2 Amelogenesis) 
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(Helmcke, 1967; Bromage, 1991a; Dean, 1995; Dean and Scandrett, 1996; FitzGerald, 1998; Reid et 

al., 1998; Mahoney, 2008; Lacruz et al., 2012; Zheng et al., 2013; Antoine et al., 2018). Cross 

striations are observable as being brighter or darker under light microscopy due to the variation in 

the carbon dioxide available for incorporation into the enamel mineral (Boyde, 1997; Antoine et al., 

2018). Variation in carbon dioxide variability is believed to correlate with variation in metabolic 

activity (e.g. Boyde, 1989; Antoine et al., 2018). The resulting differences in chemical composition 

between cross striations, in comparison to enamel matrix propagated during the secretion of new 

matrix, results in different refractive indexes and thus difference in appearance through light 

microscopy (Boyde, 1989; 1997; Antoine et al., 2018).  

Past research has shown that, due to the pattern of cross striation development, they can be 

utilised to reconstruct an accurate chronology of enamel growth (Antoine and Hillson, 2016; Antoine 

et al., 2018). Cross striations are relatively consistent in their organisation, observed to form in 2.5-

6µm intervals, with increasing distance occurring with proximity to the outer enamel surface as 

enamel matrix secretion speed increases (Berkovitz et al., 2002; Antoine and Hillson, 2016; Antoine 

et al., 2018; Aris et al., 2020a; 2020b). This difference is wider and more equal between spaces in the 

main body of the enamel at around 4µm, with lines forming more closely together near the EDJ (as 

close as 2µm) (Berkovitz et al., 2002). See Figure 2.1A.  

Retzius Lines – Retzius lines, first described by Retzius (1837), form obliquely across the 

hydroxyapatite enamel prisms along the front of secreting ameloblasts. Like cross striations, Retzius 

lines develop from near the EDJ and span across the enamel to the occlusal surface of the tooth (e.g. 

Helmcke, 1967; Bromage, 1991c; Dean and Scandrett, 1996; Reid et al., 1998). These lines are less 

abundant than cross striations and form as a single structure across the entire circumference of 

enamel (Helmcke, 1967; Bromage, 1991c; Berkovitz et al., 2002; Antoine et al., 2018). In humans an 

average of 6-10 (mode = 8) cross striations form between the formation of two Retzius lines, 

resulting in an average 25-30µm gap between them (Bromage, 1991c; Dean and Scandrett, 1996; 

Reid et al., 1998; Schwartz et al., 2001; Reid and Ferrell, 2006; Mahoney 2008; Antoine and Hillson, 

2016; Antoine et al., 2018). This can vary at the dental cervix where less enamel is secreted slower 

meaning the space between Retzius lines can be as small as 15-20µm (Berkovitz et al., 2002; 

Guatelli-Steinberg and Reid, 2010).  

Whilst the distance between Retzius lines and the time between their formations is 

observed and predicted, their actual size as individual structures can vary with accentuated lines 

forming during periods of disturbance to the mineralisation of enamel (Helmcke, 1967; Risnes, 1986, 

1990). Where Retzius lines appear accentuated and enlarged it is theorised to be the result of an 
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interruption to the secretory stage of amelogenesis (Helmcke, 1967; Berkovitz et al., 2002). In these 

cases the lines are referred to as Wilson Bands (Wilson and Schroff, 1970; Rose et al., 1978; 

Berkovitz et al., 2002). The exact etiology for Wilson Bands is unknown although there has been 

some evidence to suggest that these are the internal structures associated with linear enamel 

hypoplasia lines, with the accentuated form being the result of a period of stress (Gustafon, 1959; 

Rose et al., 1978; Hillson and Bond, 1997; Mahoney, 2008:133). Figure 2.1B. 

Retzius lines have morphological manifestations observable on the external surface enamel. 

The presence of these lines on the enamel surface produces smooth groove-like structures which are 

separated by clear ridges called perikymata (Helmcke, 1967; Bromage and Dean, 1985; Dean, 1987; 

Risnes, 1990; Dean and Scandrett, 1996; Reid et al., 1998; Shellis, 1998; Reid and Ferrell, 2006; 

Mahoney, 2008; Guatelli-Steinberg and Reid, 2010; Guatelli-Steinberg et al., 2012; Antoine et al., 

2018). The distance between these grooves is the same as that of the interior Retizus lines which 

define them.  
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Fig. 2.1. Cross-section of a Roman upper first incisor displaying the appearance of interior enamel 

formations and prism pathways under microscopic observation. The two superimpositions highlight 

the cross striations and the prism pathways they follow. 

 

2.1.5 Other enamel structures 

Neonatal Lines – the largest Retzius line present in a tooth which forms at the point of birth, marking 

the boundary between pre-natal and post-natal enamel growth (Rushton, 1933; Schour, 1936; 

Christensen and Kraus, 1965; Kraus and Jordan, 1965; Beynon et al., 1991; Schwartz et al., 2005; 

Birch and Dean, 2014; Antoine and Hillson, 2016). Neonatal lines share the same function and 
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developmental process as other Retzius lines, but are marked by thicker morphology and darker 

appearance (Helmcke, 1967; Berkovitz et al., 2002). 

Enamel Spindles – round structures with a similar shape to enamel tufts but far narrower in size. 

Enamel spindles develop to around 8µm in diameter and extend into the enamel for roughly 25µm 

originating at the EDJ (Berkovitz et al., 2002). Unlike enamel tufts, enamel spindles do not align with 

enamel prisms and are believed to be a formation defect caused by ondotoblast processes becoming 

compacted between ameloblasts during early dental development (Berkovitz et al., 2002; Nanci, 

2003). 

Enamel Lamellae – sheet-like formations which form along the diameter of enamel originating either 

at the EDJ or the outer portions of primary dentine (Bodecker, 1953; Berkovitz et al., 2002). Like 

enamel spindles they are narrower than tufts, but are longer and more expansive than both 

(Berkovitz et al., 2002). Enamel lamellae represent regions of hypo-mineralisation, a defect which 

appears as a crack-like structure in the enamel when overserved in a longitudinal histology cross 

section (Berkovitz et al., 2002). Differentiation can be made between enamel lamellae and actual 

cracks to the enamel, as during demineralisation cracks will break down whereas the lamellae will 

retain their form. Enamel lamellae are the result of prisms not completing maturation, resulting in a 

higher level of porosity and organic material (Berkovitz et al., 2002; Farooq et al., 2021). 

Enamel Cracks – narrow fissure-like structures which appear on the surface of the enamel and are 

the external manifestation of enamel lamellae (Berkovitz et al., 2002; Bajaj and Arola, 2009). They 

range in distance along the surface of the enamel and can reach the occlusal and/or incisal edge of 

the tooth; this length is usually dictated by the enamel lamellae they represent (Berkovitz et al., 

2002). It should be noted that there is a difference between enamel cracks and cracks in the enamel. 

Enamel cracks are an external, structural morphology, whereas cracks in the enamel are the result of 

trauma and can be both internal and/or external in their location (Berkovitz et al., 2002; Bajaj and 

Arola, 2009). 

Tomes’ Process – a morphological feature developing on the surface of ameloblasts parallel to the 

EDJ during the early stages of enamel secretion (Boyde, 1997; Berkovitz et al., 2002). These pronged 

pyramidal cellular organs act to guide the deposition of enamel matrix and form walls of 

interprismatic regions, and are ultimately responsible for the final prismatic structure of mineralised 

enamel (Berkovitz et al. 2002).  
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2.1.6 Enamel defects 

A number of defects can affect the healthy growth of enamel. Only teeth deemed healthy were used 

in the novel research presented here. Below are the common enamel features that, when present, 

were used to classify teeth as unhealthy and thereby no suitable for use in this research.  

Enamel Hypoplasia – a linear formation similar in appearance to a perikymata groove, forming as a 

part of the external surface of enamel (e.g. El-Najjar et al., 1978; Skinner and Hung, 1989; Berkovitz 

et al., 2002). Hypoplasia lines are much more exaggerated and less organised than perikymata 

grooves (Berkovitz et al., 2002). These lines form as a result of interference to the active section of 

enamel matrix during amelogenesis, and while it can be difficult to identify the exact cause of 

individual cases of enamel hypoplasia formation, the interference is required to influence the 

chemical composition of the matrix secreted at the time (e.g. El-Najjar et al., 1978; Berkovitz et al., 

2002). Such interferences have been linked to external stressors, including psychological events and 

physiological events associated with malnutrition, disease, and/or drug use (e.g. El-Najjar et al., 

1978; Rose et al., 1978; Boldsen, 2007; Guatelli-Steinberg et al., 2012; Miszkiewicz, 2015; Wright et 

al., 2015). Should the event occur during a stage of development of multiple teeth, then a hypoplasia 

line can form across multiple teeth denoting a single event. The impacts of stress, as observable on 

dentition, has been linked to slower crown formation (e.g. Guatelli-Steinberg and Lukacs, 1999; 

Fitzgerald and Saunders, 2005; Reid and Dean, 2006; Aris and Street, 2021). As a result, while direct 

comparison between the presence of enamel hypoplasia and internal growth of the same tooth have 

yet to be made, the potential as alluded to from past research warrants not analysing teeth with 

hypoplasia lines in this project. 

Enamel Hypocalcification (enamel/amelogenesis imperfecta) – a morphological malformation of 

enamel where a lack of calcium and overabundance of protein in enamel results in imperfect 

mineralisation (Berkovitz et al., 2002). Enamel hypo-calcification occurs when there is interference 

during the enamel maturation, causing the prism structures to form incompletely (Robinson et al., 

2003; Simmer et al., 2014; Wright et al., 2015). This results in both the increased concentration of 

organic material due to the loss of an organised structure, as well as pitted legions and reduced form 

of surface enamel. (Mangum et al., 2010; Simmer at al., 2010; Wright et al., 2015). 
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2.2 Amelogenesis 

Amelogenesis refers to the formation of enamel through the actions of ameloblasts cells. 

Amelogenesis is spilt into five descriptive stages, each defined by a different period of an 

ameloblast’s life cycle: 

                             

Fig. 2.2. Figure displaying the life cycle of an ameloblast throughout the stages of amelogenesis: a. 

presecretory stage, b. secretory stage, where the cell possesses a triangular Tomes’ process (seen on 

the bottom edge) c. transition stage where the cell’s Tomes’ process has begun to degrade, d. 

maturation stage, and e. post-maturation stage. Image produced using the BioRender tool set 

(https://biorender.com/). 

 

2.2.1 Presecretory stage 

This stage is all ameloblast activity prior to the secretion of any enamel matrix (Berokvitz et al., 

2002). The early presecretory stage involves the differentiation of mesenchymal cells into pre-

ameloblasts within the internal enamel epithelium (Boyde, 1967; 1989; 1990; Berkovitz et al., 2002; 

Jiang et al., 2014; Antoine and Hillson, 2016). This occurs during the earliest stage of dental 

development. The first cells to differentiate are those positioned at what will later become the 

dentine horn apex, and continues down the enamel dentine junction (EDJ) towards to the dental 

cervix (Boyde, 1989; Berokvitz et al., 2002; Nanci, 2003; Smith and Nanci, 2003). These cells begin 

cuboid in shape before becoming polarised with their large and ovoid nuclei moving to the end of 

https://biorender.com/
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the cell. This morphological change displaces all other organelles to the other end of the cell 

adjacent to the future EDJ (Boyde, 1967; 1989; 1990; Berkovitz et al., 2002; Jiang et al., 2014). 

Once differentiated the pre-ameloblasts become a sheet-like structure which covers the EDJ 

(e.g. Boyde, 1997; Berkovitz et al., 2002 Antoine et al., 2018). This sheet of cells then begin secreting 

primary enamel matrix as they move away from the dentine in a perpendicular trajectory (Boyde, 

1997; Antoine et al., 2018). This initial matrix is unorganised and is formed of small sheet of crystals 

rather than organised prisms (Boyde, 1997; Berkovitz et al., 2002; Nanci, 2003). After this early 

secretion begins it is typically between eight to ten days before regular cross-striations are formed 

(Boyde, 1997). This early secreted matrix serves to anchor the enamel layer to the primary dentine 

at the EDJ. Once the crystals are secreted the pre-ameloblasts undergo morphological changes, 

becoming more rectangular in shape and developing a pole-like structure which will later form a 

pyramidal Tomes’ process (see Fig 2.5a-b) (Boyde 1997; Berkovitz et al., 2002). This transition marks 

the ending of the pre-secretory stage of amelogenesis. 

 

2.2.2 Secretory stage 

At the onset of the secretory stage, pre-ameloblasts have fully matured into ameloblasts capable of 

secreting true enamel matrix (Berkovitz et al., 2002). The ameloblasts are now identified by large 

strands of rough endoplasmic reticulum (RER) which form parallel to the long axes of the cells 

(Boyde 1997; Berkovitz et al., 2002; Jiang et al., 2014). These RER begin to produce enamel proteins 

which will later be secreted to form prismatic enamel matrix (Boyde, 1989; Berkovitz et al., 2002). 

The ameloblasts also develop a large number of Golgi apparatus at this stage, form along the long 

axis of the cell. These structures act to package the enamel proteins into secretory granules which 

then migrate to the newly formed Tomes’ process (see Fig. 2.5b) (Berkovitz et al., 2002). 

As the secretory stage begins, a thin layer of enamel matrix is secreted by the ameloblasts as 

they move apically away from the EDJ and towards the future occlusal surface of the tooth (Boyde, 

1997; Berkovitz et al., 2002; Jiang et al., 2014; Antoine et al., 2018). As this initial secretion 

completes the rod of the cell proximal to the EDJ takes on its pyramid-like appearance, becoming a 

true Tomes’ process (Skobe, 1976; Boyde, 1997; Berkovitz et al., 2002; Jiang et al., 2014). The Tomes’ 

process possesses a set of prongs which sit on a single side of the pyramid. These prongs secrete the 

initial enamel matrix which form the walls of interprismatic regions (e.g. Skobe, 1976; Boyde, 1997; 

Berkovitz et al., 2002; Antoine and Hillson, 2016; Antoine et al., 2018). By creating these walls, the 

prongs create hexagonal pits which allow the Tomes’ process to secrete enamel matrix from its 
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apex. This matrix fills the linear pits formed by the walls as the ameloblasts move away from the EDJ, 

thereby forming enamel prisms (Boyde, 1989; Berkovitz et al., 2002). The walls defining the shape of 

each prism also creates space, known as discontinuities, between different prisms. This means that 

the spaces between each prism possess different structural compositions and thereby different 

refractive indexes, meaning individual enamel prisms to be identified under light microscopy 

(Antoine and Hillson, 2016; Antoine et al., 2018). 

During their movement away from the dentine and the EDJ, the ameloblasts are held in their 

linear structure by the cellular web formed during the pre-secretory stage (Berkovitz et al., 2002). 

This web is attached to the end distal to the EDJ. The movement of the cells away from the EDJ 

during this stage is highly regular, determined by a daily rhythm of matrix secretion (Robinson et al., 

2003; Zheng et al., 2013). It is this rhythmic movement that produces the incremental layers which 

compromise enamel and produce the cross striation and Retzius lines described earlier in this 

chapter. After it is secreted, but before it matrix is mineralised, the enamel matrix is soft (Boyde, 

1997). Soon after this initial secretion however, mineralisation of the enamel matrix begins, and 

enamel becomes tough as required by its masticatory function (Boyde, 1997; Berkovitz et al., 2002; 

Robinson et al., 2003).  

 

2.2.3 Transition stage 

The transition stage begins as enamel reaches its full thickness and is the shortest of all stages of 

amelogenesis (Berkovitz et al., 2002). During this stage ameloblasts undergo morphological changes 

including the loss of height and volume, the destruction of their Tomes’ process, and a significant 

decrease in the organelle content (see Fig 2.5c) (Skobe, 1976; Boyde, 1989; 1997; Berkovitz et al., 

2002). The Golgi apparatus and RER see especially large reductions, as the surviving cells undergo 

autophagocytosis (destruction via self-digestion) (Berkovitz et al., 2002). Such changes to 

ameloblasts are necessary in order for the maturation of enamel to occur. At the end of the 

transition stage around 25% of the ameloblasts undergo apoptosis (programmed cell death) 

(Berkovitz et al., 2002; Nanci, 2003). 

Whilst fully formed in terms of size and morphology, at this stage the enamel of the tooth is 

still immature with high levels of water and protein, alongside a relatively low mineral content 

(Berkovitz et al., 2002; Nanci, 2003). During the transition stage enamel can possess as high as 65% 

water content, 20% other organic material, and as low as 15% hydroxyapatite crystals by weight 

(Berkovitz et al., 2002; Nanci, 2003). The transition stage ends as the surviving cells, now positioned 
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at the outer surface of the tooth surrounding the immature enamel, form a basal lamina which 

attaches the cells to the enamel via hemidesmosomes (stud-like connection structures) (Berkovitz et 

al., 2002). 

 

2.2.4 Maturation stage 

During the maturation stage immature enamel is mineralised into its final mature state. This involves 

the removal of water and amelogenin-rich surrounding matrix by ameloblasts, and the subsequent 

expansion of pre-existing enamel crystals to reduce the inter-crystalline space (Rönnholm, 1962; 

Boyde; 1998; Beynon et al., 1998; Berkovitz et al., 2002; Nanci, 2003; Smith and Nanci, 2003; 

Antoine and Hillson, 2016; Antoine et al., 2018).  

The maturation of enamel is the direct result of the actions of the ameloblasts. At the start 

of this process approximately 25% more ameloblasts undergo apoptosis leaving only 50% of the 

original cells (Berkovitz et al., 2002). Those surviving ameloblasts undergo more morphological 

changes as the remaining organelles move and collate at the end of the cell adjacent to the Tomes’ 

process (Skobe, 1976; Boyde, 1997; Berkovitz et al., 2002). The Tomes’ process itself becomes a 

striated and ruffled border which allows the ameloblasts to actively control the release of 

accumulated calcium and phosphate ions into the enamel through active transport calcium pumps 

(see Fig 2.5c) (Wöltgens et al., 1995; Simmer et al., 2014). This release causes the final transition 

from immature, highly porous enamel, to mature, highly mineralised enamel as the calcium moves 

in an occluso-cervical direction (Beynon et al., 1998). During this process hydroxyapatite crystals 

enlarge, causing the crystallites to change from an initial size of 1.5nm thick up to 25nm in thickness 

(Wöltgens, 1971; Boyde, 1997; Berkovitz et al., 2002; Antoine et al., 2018). The expanding crystals 

cause a significant reduction in inter-crystalline space and organic composition (Hiller et al., 1975; 

Robinson et al., 2003). Once fully mature enamel prisms can never be treated by ameloblasts as 

these are lost during the post-maturation stage, meaning then cannot undergo further development 

or repair (see section 2.2.5). As a result mature enamel prisms are consequently a permanent record 

of ameloblast secretory history and enamel growth (Dean, 1989; Antoine et al., 2018). 

In order to remove excess water, the ameloblasts will transition between ruffled and smooth 

stages between five to seven times during the maturation stage (Berkovtiz et al., 2002; Wright et al., 

2015). The smooth stage produces junctions between the cells, which allow for the escape of water 

and proteins which are squeezed out by expanding crystallites (Berkovtiz et al., 2002; Wright et al., 

2015). 
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2.2.5 Post-maturation stage 

The post-maturation stage begins at the climax of enamel mineralisation where the mineral to 

organic material ratios are as described at the beginning of this chapter. At this stage the remaining 

ameloblasts become flattened, losing their columnar shape (see Fig. 2.5d) (Berkovtiz et al., 2002). 

Here the ameloblasts are separated from the enamel as a 1µm thick layer of amorphous protein 

forms between them (Berkovtiz et al., 2002; Skobe et al., 2017). Once separate the ameloblasts are 

joined together by a basal lamina on their ends proximal to the enamel before being absorbed by 

the surrounding dental follicle around the time of crown eruption (Boyde, 1997; Berkovtiz et al., 

2002; Lacruz et al., 2013; Skobe et al., 2017; Antoine et al., 2018). This lamina continues to surround 

the mature enamel and acts as a protective barrier during the eruption of the tooth, only fully 

disintegrating when the tooth has erupted from within the oral cavity of the alveolar bone (Boyde, 

1997; Berkovitz et al., 2002; Antoine et al., 2018). 
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CHAPTER 3: LITERATURE REVIEW 

LITERATURE REVIEW I – HISTORY OF ENAMEL HISTOLOGY AND VARIATION IN HUMAN ENAMEL 

GROWTH AND DEVELOPMENT 

 

3.1 Importance of enamel growth and earliest history of enamel histology 

Enamel growth of human and non-human primates is plastic with both external and internal 

structures developing, or developing differently, according to different events and personal life 

histories which coincide within the periods of enamel formation. Such events include stress (e.g. 

Guatelli-Steinberg et al., 2012), accessory enamel growth (e.g. Aris and Street, 2021), nutritional 

deficit (e.g. Wright et al., 2015), and weaning practices (e.g. Dirks et al., 2010). In addition, enamel 

thickness is a commonly researched area of anthropology, especially within dental- and paleo-

anthropology (e.g. Skinner et al., 2015). Comprehension of the timing and pattern of enamel growth 

can only provide useful context to data on enamel thickness of the same teeth, especially when such 

data may be used to differentiate groups on a population or even species level. Both the events 

which can influence enamel growth, and features of enamel thickness are a clear and common area 

of anthropological research. Understanding the process and variation of enamel crown growth is 

therefore vital to such research. As a result the study of enamel crown growth has been ongoing for 

over a century, often through the analysis of incremental lines. 

The study of dental incremental lines was first recognised during the mid-19th century 

(Retzius, 1837; Owen, 1845). Following this, research found dentition developed as the result of 

biological systems and cellular secretion (Halberg et al., 1959; Needham, 1964; Neville, 1967; 

Scheving and Pauly, 1974). The earliest examples of enamel histology date from the turn of the 

century, with studies by von Asper (1916) and Gysi (1931) – they were the first to claim cross 

striations were an incremental representation of daily growth. Subsequent studies provided further 

evidence for the incremental growth of dentition (Schour and Pincher, 1937; Okada, 1943; Massler 

and Schour, 1946). These studies thus showed how enamel histology could be used to investigate 

enamel daily secretion patterns (Asper, 1916; Gysi, 1931; Schour and Pincher, 1937; Okada, 1943; 

Massler and Schour, 1946). It is only by the discovery of the incremental growth of enamel, and the 

development of enamel histology as a method, that the research presented here can be conducted. 
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3.1.1 Early study of incremental lines 

Studies of enamel histology involve the analysis of human and non-human dentition. Mimura (1939) 

used a system of labelling developing teeth in dogs, rabbits, and pigs by injecting lead acetate and 

sodium fluoride. This acted to stain the teeth at intervals while they were forming, and were 

observed as distinct striae within the enamel. It was further noted that the lines which formed 

between stained intervals corresponded to the number of days between injections (Mimura, 1939), 

supporting the hypothesis of daily lines forming incrementally during enamel formation. Histological 

and scanning electron microscopy (SEM) studies published in the mid-20th century, using mammalian 

and human archaeological material, showed that cross striations can be both viewed and analysed 

as a daily forming structure (Gustafon, 1959; Boyde, 1963, 1967, 1979; Kajiyama, 1965; Tagiguchi, 

1966; Helmcke, 1967). It is the discovery of the human-based studies in particular (Gustafon, 1959; 

Kajiyama, 1965; Tagiguchi, 1966; Boyde, 1967, 1979), that enamel develops under a daily pattern, 

that allows the published manuscripts (Chapters 6 and 7) presented later to examine enamel growth 

rate differences between populations. 

In contrast, Weber and Glick (1975) theorised that incremental lines within enamel could be 

the product of bisecting enamel prisms. However, enamel histology routinely involves the vertical 

sectioning of teeth which produces dental sections along the plane which prisms form, deviations of 

enamel prisms can on occasion be viewed on the same slide as cross striations. Warhawsky and Bai 

(1983) suggested that striation-like markings could be the products of knife chatter when making 

ultra-thin slides. This claim has since been discredited as cross striations have been observed via 

both SEM analysis and through thicker ground sections of enamel.  

 

3.1.2 Early human histology  

Compared to the fossil and primate research, the frequency of early studies conducting histology on 

human teeth is low. Early studies utilised small sample sizes (Gustafon, 1959; Boyde, 1963; Shellis, 

1984; Risnes, 1986 Dean and Beynon, 1991; Dean et al., 1991; Beynon, 1992; Dean and Scandrett, 

1995; Reid et al., 1998), highlighting the low number of available human sections which existed at 

the time. The material used was mostly archaeological, which shows that the use of clinical dentition 

is only now becoming more widely used. The first research using histological techniques tested 

whether those methods pioneered on non-human primates could accurately be replicated on 

archaeological material (Gustafon, 1959; Boyde, 1963; Shellis, 1984). Subsequent research worked 

to identify the common growth patterns of human enamel, and made preliminary comparisons to 
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known patterns of extinct hominin enamel formation rates and enamel thicknesses (Wilson and 

Beynon, 1989; Dean and Beynon, 1991; Beynon 1992). The identification of common human enamel 

thickness and growth patterns is of particular use to the enamel research presented later, as it can 

be used for comparison to the data collected here. 

 

3.2 Modern history of enamel histology 

3.2.1 inter-species and population analyses 

Since the start of the 21st century, the frequency at which studies have been published on the 

subject of enamel histology has increased. These newer studies discussed how histological enamel 

data can be used to estimate age of death and the life history of human and non-human primates 

(Dean, 1998; Dirks, 1998; Reid et al., 1998; Antoine, 2000; Dean and Reid, 2001; Schwartz et al., 

2001; Dirks et al., 2002; Dean and Schrenk, 2003; Reid and Dean, 2006; Smith et al., 2007a; 2007b). 

In addition, a number of studies created models of enamel characteristics unique to each hominin 

taxa (Beynon et al., 1998; Reid and Ferrell, 2006; Ramirez-Rozzi, 1998; Dean and Smith, 2009). More 

recent studies have continued to investigate from a more inter-specific perspective. These studies 

built upon earlier research (Wilson and Beynon, 1989; Dean and Beynon, 1991; Beynon 1992) by 

comparing findings of one hominin species to modern humans, rather than making isolating 

conclusions to a single taxa (Reid and Dean, 2000; 2006; Schwartz et al., 2001; Smith et al., 2007a; 

2007b; 2009; 2010; Guatelli-Steinberg et al., 2005; 2007; 2012b; Guatelli-Steinberg and Reid, 2005; 

Reid et al., 2008; Dean, 2009).  

 One assumption made in many of these histological studies is that enamel thickness and 

growth patterns are consistent within hominoid species, allowing for the use of single populations 

are representative samples of a species. More recent research by Guatelli-Steinberg and colleagues 

(2012b) compared data gathered from modern human and extinct fossil hominin histological 

samples. They found a significant cross over between extension rates and crown formation times 

(CFTs), across both the enamel of multiple tooth types and species (Guatelli-Steinberg et al., 2012b). 

They concluded that small data sets were unreliable in assessing enamel features of entire species, 

which had previously been the norm (Shellis, 1984; Guatelli-Steinberg et al., 2012b). Within the 

literature these is additional appreciation that small samples sizes may not be representative of 

populations both for human and non-human species (Schwartz et al., 2002; 2003; Smith et al., 2003; 

2004; Lacruz, 2006; Lacruz and Bromage, 2006; Mahoney et al., 2007) and caution should be taken in 
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their interpretation. As a result a study investigating for intraspecific variation in enamel formation 

between populations within a species is pertinent. 

 

3.2.2 Amelogenesis biomechanics 

Recent enamel research focuses on how the mechanisms of amelogenesis can result in enamel 

growth variation between enamel regions and tooth types. This can be seen in studies by Mahoney 

(Mahoney, 2008; 2010; 2011; 2012; 2013; 2015; Mahoney et al., 2016; 2017) and Guatelli Steinberg 

et al (2012b). These most commonly include influencers of prenatal enamel growth (Mahoney, 2008; 

2011; 2012; 2015; Mahoney et al., 2017), eruption and cuspal sequencing (Mahoney, 2008; 2012; 

2015), and evolutionary morphological adaptations (Smith et al., 2006). 

The specific study of deciduous enamel and the comparison of deciduous to permanent 

enamel development and formation have also become more frequent in recent literature. Research 

by Grine (2005), Birch (2009; 2012), and Mahoney (2011; 2012; 2013; 2015; Mahoney et al., 2016; 

2017) have further developed the field of histology by focussing their discussion on how enamel 

develops differently according to its region and tooth type, and concluding with how future research 

should continue to investigate this (Mahoney et al., 2017). Recent research concerning dental and 

skeletal biorhythms have followed such suggestions by investigating possible causes for the 

development of cross striations and Retzius lines (Lacruz and Bromage, 2006; Antoine et al., 2009; 

Bromage et al., 2012; Lacruz et al., 2012; Zheng et al., 2013; Mahoney et al., 2016). These articles 

collectively have been successful in identifying variations in enamel growth patterns within modern 

humans, and thereby show the potential of using histological methods to identify and interpret 

other existing intraspecific variations in human enamel. 

 

3.3 Intraspecific study of human enamel histology  

The earliest research published conducting intraspecific analysis of human enamel identified the 

ranges of human enamel periodicity (Weber and Glick, 1975; Boyde, 1979; Weber and Ashrafi, 1979; 

Risnes, 1986; Beynon and Reid, 1987; Sunderland et al., 1987; Beynon, 1992; Dean et al., 1993; 

Fitzgerald, 1998; Reid et al, 1998a; Risnes, 1998; Li and Risnes, 2004), age estimation (Boyde, 1963; 

Moorrees et al., 1963; Christensen and Kraus, 1965; Kajiyama, 1965; Gustafon and Koch, 1974; Huda 

and Bowman, 1995; Liversidge, 1995; Fitzgerald, 1998; Reid et al., 1998a; Antoine, 2000; Fitzgerald 

and Saunders, 2005; Antoine et al., 2009), and crown formation times (Kajiyama, 1965; Tagiguchi, 
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1966; Dean and Beynon, 1991; Dean et al., 1993; Liversidge, 1995; Fitzgerald, 1995; Beynon et al., 

1998). These studies present a reliable pattern of enamel formation for all human tooth types, with 

enamel secretion rates found to continuously increase from the dental cervix to the occlusal surface 

of enamel, and with relatively slow CFTs compared to other primates. This research laid the 

foundations for intraspecific studies of human enamel, however few addressed inter-population 

variation (Fitzgerald, 1995; Reid and Dean, 2006; 2008; Reid and Ferrell, 2006; Smith et al., 2006), 

and even fewer temporal variation (Smith et al., 2010; Le Luyer et al., 2014; Le Luyer and Bayle, 

2017). It is therefore pertinent that subsequent research be conducted which further examines 

inter-population differences in human enamel thickness and growth across a temporal transect.  

 

3.3.1 Intraspecific permanent and deciduous patterns 

Research by Harris (1998), Grine (Grine et al., 2001; Grine, 2002, 2005), and Gantt and colleagues 

(2001) present preliminary investigations of variation in enamel thickness of permanent and 

deciduous teeth. They found that enamel thickness followed a trend of increased thickness moving 

distally within the maxilla and mandible, with no variation between the sexes. However, the most 

influential finding was the significant difference between the relative enamel thickness (RET) of 

deciduous and permanent molars (Gantt, 2001; Grine, 2002, 2005). Subsequent research by De 

Menezes Oliveira and colleagues (2010) and Mahoney (2010, 2013) provided further evidence for 

morphological variation, finding mean thickness (De Menzes Oliveira et al., 2010) as well as average 

enamel thickness (AET) (Mahoney, 2010, 2013) of the deciduous teeth to be significantly reduced 

compared to that of equivalent permanent teeth. In addition, De Menzes Oliveira and colleagues 

(2010) investigated the shape of enamel prisms and mineral composition of the same teeth. Their 

results showed that while deciduous teeth contained a higher percentage of organic material and 

denser enamel prisms, the morphology of deciduous enamel prisms was identical to that of 

permanent dentition (De Menezes Oliveira et al., 2010). The combination of the similarities and 

variations between deciduous and permanent human enamel features show how tooth types can 

develop according to varying patterns of amelogenesis. It is therefore vital to widen research of 

human dental growth to multiple tooth types, even with the permanent dental arcade. 

In response to the studies on enamel thickness, Birch and Dean (2009, 2014) researched 

deciduous teeth, comparing growth rates in correlation with thickness of deciduous human teeth to 

known permanent ranges (see Reid et al., 1998). While their preliminary deciduous sample was 

compromised of only 20 individuals from an unspecified population(s), they found that deciduous 
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enamel followed the same general DSR pattern, with volume secretion increasing with distance from 

the EDJ. In contrast, deciduous enamel DSRs were found to increase at a slower rate from inner to 

outer regions compared to permanent teeth (Birch and Dean, 2009, 2014). These findings can be 

replicated through an analysis of data published by Fitzgerald and Hillson (2009), gathered from an 

ancient Greek juvenile cemetery, when compared to permanent enamel DSRs published by Reid and 

colleagues (1998).  

These conclusions have subsequently been supported in studies by Mahoney (2011, 2012), 

which provided in depth analyses of formation patterns involved in the development of deciduous 

mandibular first and second molars (Mahoney, 2011), and mandibular and maxillary canines and first 

and second incisors (Mahoney, 2012). They found that deciduous DSRs were faster within the inner 

regions of enamel but slower in the outer regions when compared to permanent dentition. In 

addition, the DSRs of all deciduous enamel regions were found to remain consistent within the tooth 

row, similarly to what has been observed in permanent dentition (Beynon et al., 1991b). This 

showed again how deciduous teeth develop more consistently and do not undergo the exponential 

increase in DSRs regularly seen in permanent teeth (Mahoney, 2011, 2012). Overall, the consistent 

findings of variation between deciduous and permanent enamel growth highlight the differences 

that can exist between different human teeth. It is important therefore to expand this research, 

including comparisons of DSRs between different permanent tooth types. 

 

3.3.2 Intraspecific patterns of permanent enamel growth and thickness 

The first studies to investigate variation within permanent human dentition looked into differences 

between the teeth of the same function. Macho and Berner (1993) and Macho (1994) found a 

significant reduction in crown diameters when moving distally along the tooth row. Within the 

maxilla, first molars had significantly thinner enamel than second and third molars and overlapping 

ranges in RET (Macho and Berner, 1993; Macho, 1994). Macho (1994) suggested that these findings 

indicated that a species-specific range of enamel traits that could not be accurately formulated and 

presented without large scale in-depth interspecific studies.  

Grine (2002, 2005) investigated variation between human molar types. They found that RET 

progressively increased from first to third molars, and for cuspal enamel thickness of molars to be 

more variable than lateral thickness. However, this was thought to be the result of decreasing 

dentine volume in more distal molars, than the result of adaptations in enamel (Grine, 2002, 2005). 

Smith and colleagues (2006) studied the maxillary and mandibular teeth, finding AET to also increase 
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from between molars moving distally along the tooth rows. Some enamel thickness features also 

displayed sex differences, with thicker AET in females, and greater dentine area, EDJ length, and bi-

cervical diameter in males (Smith et al., 2006).  

Mahoney (2008) investigated a wider number of growth pattern traits within the context of 

specific teeth and found that within first molar Retzius periodicity (RP), DSRs, and CFTs could vary 

within both a population and a tooth while following the normal trend associated within human 

enamel development. Dean (2009) and Guatelli-Steinberg and colleagues (2012b) found enamel 

extension rates (EERs) varied alongside CFT and variation in human EERs both within and between 

premolars and molars. Guatelli-Steinberg and colleagues (2012b) further showed that EERs declined 

in modern humans, and were strongly related to EDJ length. These results first provide further 

evidence for variation existing within humans, and the shape of the tooth may be the cause of 

variation. While the combination of this research represents an appreciation of different enamel 

growth patterns existing within humans, these studies focused on specific populations. Future 

research would benefit from conducting similar research comparing across multiple human 

populations. 

 

3.3.3 Intraspecific geographic variation between populations 

Fitzgerald (1995) first published analysis of different populations, using histological samples of 

modern human molars. Their statistical analysis revealed significant differences in the growth rates, 

particularly in the CFTs, of Japanese and African samples (Fitzgerald, 1995). While this research did 

not identify a pattern to geographic variation, it did show evidence for significant intraspecific 

variation existing in modern human enamel. 

Reid and Dean (2006) and Reid and Ferrell (2006) conducted inter-population research into 

human enamel growth. They studied 678 samples covering all tooth types, spread across five 

different populations from four different continents. The CFTs varied sporadically between African 

and European populations especially, with both presenting significantly higher and lower rates than 

the other depending on the tooth types analysed (Reid and Dean, 2006; Reid and Ferrell, 2006). 

Smith and colleagues (2006) conducted a similar study using three of the four histological collections 

used by Reid and Dean (2006). They presented more supporting evidence for variation in enamel 

thickness between posterior teeth; they also found further differences in the EDJ length and 

thickness between the first molars of the American and European populations (Smith et al., 2006). 

While these studies displayed further evidence for variation in enamel growth patterns between 
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human populations they do not consider whether the difference in time period between the 

populations may have influenced inter-population differences in enamel features. 

Reid and colleagues (2008) found significant differences in all upper premolars and first 

lower premolars between the European and African populations. The differences between European 

and African human CFTs were found to vary according to tooth and cusp, but with a general trend to 

longer CFTs in European individuals. These results further highlighted the variation between 

populations in modern human teeth and encourage the further expansion of similar research. These 

studies presented crucial insight into enamel variation in humans. However, whilst location may be 

the causation for varying dental development patterns, it must be appreciated that all the above 

research used the same clinical sections from southern Africa and medieval sections from the 

Netherlands/Denmark. As a result, the cause of varying enamel formation could lie within the 

temporal distinctions differentiating the populations, instead of or in addition to their geographic 

differences. 

 

3.3.4 Temporal studies of modern human enamel 

Despite the breadth of intraspecific human studies, the volume of those making direct conclusions 

from temporal analysis is low. Smith and colleagues (2007a) present the first study directly 

commenting on temporal variation in modern human enamel.  They showed CFTs of modern 

humans from Europe and South Africa to a 160,000 year old sample (Homo neanderthalensis) from 

Morocco. Their initial analysis found the same sporadic variations between the African and European 

incisors and molars as Reid and Dean (2006). Moreover, Smith et al (2007a) found the Moroccan 

individual presented longer CFTs (up to ~800 days) than modern humans. Following this, Smith and 

colleagues (2010) continued investigating temporal changes in enamel formation, by calculating 

EERs of a modern human pre-historic population and of fossil human deciduous teeth. While the 

fossil sample was small, the EERs they presented were near evenly split between falling within, and 

faster than, the ranges calculated from the modern humans (Smith et al., 2010). These analyses did 

not involve sufficient pre-history human specimens to make any final assessment as to how much 

variation exists within human enamel formation patterns. However, they do provide the first 

evidence of significant temporal variation in human enamel growth features. 

 Le Luyer and colleagues (2014) and Le Luyer and Bayle (2017) investigated temporal 

variation in modern human enamel thickness. Le Luyer and colleagues (2014) research focussed on 

upper molars from populations of Upper Palaeolithic, Mesolithic, and Neolithic periods, and involved 
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comparing the RET and a series of linear thickness measures between these populations. Using 

histological evidence and micro-scans of the molars they found a significant reduction in the RET and 

metacone expression of the Mesolithic molars compared to the Neolithic dentition (Le Luyer et al., 

2014). Le Luyer and Bayle (2017) further concluded that the transition from hunter-gatherers to 

agriculture resulted in the significant changes seen in enamel morphology over the short time span. 

This research further highlighted how human enamel is able to rapidly change between populations 

in a temporal context.  

Overall, earlier research provided strong evidence for both human enamel growth rates and 

thickness being highly plastic, and able to respond to evolutionary pressure over a short period of 

time. This research is still in its infancy, and more research is required to further expand our 

understanding of temporal variation in human enamel. 

 

3.4 Concluding remarks I 

 To conclude, the literature regarding histological analyses of human dentition shows enamel 

to be highly researched. Our understanding of how human enamel thickness can vary according to 

tooth types, and how enamel growth rates vary between regions of the dental crown and between 

tooth types, is particularly well studied. Subsequent analyses of human enamel variation regarding 

enamel thickness and growth rates, have been mostly limited to studies between populations of 

different geographic location (Fitzgerald, 1995; Reid and Dean, 2006; Reid and Ferrell, 2006; Smith et 

al., 2006; Reid et al., 2008). Less attention has been given to possible temporal variation and where 

this has been examined it is limited to the study of enamel thickness (Le Luyer et al., 2014; Le Luyer 

and Bayle, 2017) and CFT analyses (Smith et al., 2007a). It can be seen that enamel DSRs have not 

been analysed for variation between populations overtime, or alongside similar analyses of enamel 

thickness. Our understanding of how these features of enamel development vary between human 

populations is therefore limited. As a result it is pertinent for research to analyse human populations 

of similar geographic origin, dating from different time periods, for inter-population variations in 

enamel growth rate and thickness measures.  
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LITERATURE REVIEW II – MEASURES OF PERMANENT ENAMEL 

 

3.5 Growth measures 

3.5.1 Daily enamel secretion rate (DSR) 

Daily secretion rates (μm/day) represent a quantitative aspect of dental development which can be 

used to assess the speed at which a tooth’s enamel formed (e.g. Beynon et al., 1991a; Schwartz et 

al., 2001; Reid and Dean, 2006; Mahoney, 2008, 2011; Smith, 2008). They are calculated by 

measuring the length (μm) between a number of (typically six) adjacent daily formed cross striations 

which develop as enamel matrix is secreted during amelogenesis (see superimposition of Fig 4.1; e.g. 

Schwartz et al., 2001; Mahoney, 2008).  

By measuring the length of cross striations through the length of the enamel before 

comparing them to the Retizius lines, early research found regular and consistent relation relations 

between the two (Risnes, 1986; Dean et al., 1993a; Dean and Scandrett, 1996). These findings 

showed that measuring cross striations could accurately estimate the speed of enamel growth. More 

recent studies have compared known age at death to direct counts of cross striations, showing 

beyond reasonable doubt that short period lines are directly associated with a daily rhythm of 

enamel matrix secretion (Antoine, 2000; Antoine et al., 2009). Research has also investigated the 

most accurate method for calculating DSRs. When both radiographic and histological methods were 

compared, Beynon and colleagues (1998a) found histology to be significantly more accurate. 

Enamel growth speeds vary during different periods of dental development, therefore DSRs 

can be highly variable according to when in the developmental cycle of the tooth the enamel was 

undergoing secretion (e.g. Beynon et al., 1991a; Schwartz et al., 2001; Mahoney, 2008). As a result 

DSRs are calculated for specific time periods by analysing isolated regions of the tooth (see Fig 3.1). 

For instance, measuring the average DSR of inner cuspal enamel will indicate the speed at which the 

tooth was developing during the initial stages of growth, whereas measuring outer cervical enamel 

DSRs show the speed of the tooth’s final period of development (Berkovitz et al., 2002). 

To increase accuracy, DSR measures are taken multiple times within any given region of 

enamel, before calculating a mean of the results to give an average DSR (e.g. Beynon et al., 1991a; 

Schwartz et al., 2001; Mahoney, 2008). Daily Secretion rates vary greatly within a tooth, with DSRs 

increasing with distance from the EDJ, and regional cuspal DSRs being faster than lateral DSRs of 
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equivalent regions (e.g. Reid and Dean, 2006; Smith, 2008; Mahoney, 2011). Daily Secretion rates 

have been found to remain consistent within an individual’s dental arcade (Beynon et al., 1991a) and 

between the same enamel areas of different cusps within the same tooth (Mahoney, 2008). 

 

Fig. 3.1. Digital image of a paracone (the mesial-buccal located cusp) from one individual dating to 

the Roman period. White squares show the areas of the cuspal and lateral enamel subdivided into 

inner, mid, and outer regions. The black square shows a 40x magnified superimposition of the mid 

lateral enamel. White arrows indicate individual cross striations. 

 

3.6 Thickness measures 

Average enamel thickness and relative enamel thickness are a standardised measure of enamel first 

described by Martin (1983; 1985), and later updated by Shellis and colleagues (1998). While similar, 

due to the nature of comparing enamel between modern humans, non-human primates and extinct 

hominins, they are implemented independently according to what is appropriate to the associated 

study. 

 

3.6.1 Average enamel thickness (AET) 

Average enamel thickness (mm) is a quantitative measure which gives an average enamel thickness 

accounting for all regions (cervical, lateral, and cuspal) of a tooth’s enamel (Martin, 1983). Even 
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though this measurement cannot be used to represent any isolated part of the tooth, it is a useful 

figure with which to compare the overall thickness of enamel between individuals or populations 

(e.g. Smith et al., 2006a; Olenjniczak et al., 2008). However, AET is only accurate for use when it is 

compared between teeth of the same type and position within the dental arcade, and type between 

individuals of the same species.  

Within anthropological literature, AET measures have been presented routinely for unworn 

permanent dentition, including first molars (Smith et al., 2006a; Olejniczak et al., 2008), canines 

(Schwartz and Dean, 2005, 2006; Feeney et al., 2010; Buti et al., 2017), and incisors (Reid and Dean, 

2006; Smith et al., 2008; Benazzi et al., 2014). In some cases AET has been calculated from worn 

teeth, but only where enamel wear was minimal or moderate (Smith et al., 2006a). Traditionally a 

single controlled plane of cross section is used to analyse enamel thickness of human dentition. In 

molars this is typically the buccal-lingual plane (Schwartz and Dean, 2005; Olejniczak et al., 2005) 

and in anterior teeth the labial-lingual plane (Reid and Dean, 2006; Smith et al., 2008; Benazzi et al., 

2014), both passing through associated cusp and dentine horn apices. In cases where multiple planes 

are available for thickness analyses, RET is used (see section 3.6.2) in place of AET to account for the 

impact of obliquity on enamel thickness calculations (Smith et al., 2004; Smith et al., 2006a). To 

further account for obliquity of cross sections, AET is only calculated where the associated dentine 

horn presents as a sharp V-shape (Smith et al., 2006a). These studies provide data from a broad 

range of populations with drastically different geographic origins and time period dates, as well as 

providing guidance for using methods for calculating enamel thickness from cross sections. However, 

despite the range of human populations covered, little research has conducted direct inter-

population analyses for enamel AET. 

 

3.6.2 Relative enamel thickness (RET) 

Relative enamel thickness is a free scale derivative of AET which accounts for researchers aiming to 

compare the average enamel thickness across varying tooth types, and dentition of different species 

(e.g. Martin, 1983; Olenjniczak et al., 2008). Relative enamel thickness is a quantitative figure which 

represents the overall thickness across the entire area of dental enamel that accommodates for the 

volume of dentine encapsulated by the enamel crown (Martin, 1983). Relative enamel thickness 

allows for more accurate comparison of different tooth types and morphologies as it removes the 

influence of dentine shape and has also been used to reduce the impact of obliquity on enamel 

thickness calculations where multiple cross section planes are available (Smith et al., 2006a). 



29  
 

The data published for human permanent RET concerns first molars (Smith et al., 2006a; 

Olejniczak et al., 2008), canines (Schwartz and Dean, 2005, 2006; Saunders et al., 2007; Feeney et al., 

2010; But et al., 2017), and incisors (Reid and Dean, 2006; Smith et al., 2008; Benazzi et al., 2014). 

These provide a significant volume of data and allow for a strong understanding of the ranges 

existing within human permanent RET. However, no direct analysis for how human RET can vary 

between populations within the context of changes over time has been conducted. 

 

3.6.3 Linear enamel thicknesses: cuspal (CT) and lateral (LT) thickness 

Linear enamel measurements can be taken from two dimensional cross sections of permanent 

dental crowns. These measures represent the maximum distance that can be measured from the EDJ 

to the outer enamel surface, with the measured line drawn perpendicular from the EDJ region in 

question (molars: Macho and Berner, 2005; anterior tooth types: Reid and Dean, 2006). Similarly to 

AET, linear measures of enamel are only collected from dental cross sections with low obliquity 

(Smith et al., 2004; Olejniczak et al., 2005), where the dentine horn of associated sections possesses 

a sharp V-shape (Smith et al., 2006a). Linear enamel thickness measurements are also routinely 

collected and compared between controlled planes of cross sections, to account for potential 

differences in measures produced when teeth are sectioned at different angles (Schwartz and Dean, 

2005). These are again typically the buccal-lingual plane for molars (Schwartz and Dean, 2005; 

Olejniczak et al., 2005) and the labial-lingual plane (Reid and Dean, 2006; Smith et al., 2008) in 

anterior teeth. 

As a result of the method for their collection, these features only represent isolated regions 

of enamel, and are less frequently analysed than AET and RET particularly for anterior tooth types. 

However, they represent an important measure for showing how enamel volume can vary in its 

distribution across the enamel cap, where AET and RET only display the overall thickness of enamel 

which encompasses dentine. Both CT and LT are therefore valuable measures to take in conjunction 

with analyses of AET and RET. 

Linear measures of permanent human first molars are well represented in the literature for 

both CT (e.g. Schwartz, 2000a; Suwa and Kono, 2005; Reid and Dean, 2006; Mahoney, 2010) and LT 

(e.g. Macho and Berner, 1993; Suwa and Kono, 2005; Mahoney, 2010) measurements taken from 

sections across the buccal-lingual plane. Despite the volume of data for human molar linear 

thickness such measures have yet to be analysed for inter-population variation within the context of 

changes over time. Anterior tooth type CT has only been published from labial-lingual plane sections 
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produced from Southern African and European populations and considered for its sexual 

dimorphism (Reid and Dean, 2006). Anterior tooth type LT has yet to be presented for human 

populations. As a result, it is imperative to investigate both CT and LT measures for inter-population 

variation in order to appreciate the level of variation which exists within the human species. 

 

3.7 Concluding remarks II 

Both thicknesses and DSRs of human enamel are highly researched. In particular, AET and RET have 

been researched for variation in molars (Smith et al., 2006a; Olejniczak et al., 2008), canines 

(Schwartz and Dean, 2005, 2006; Saunders et al., 2007; Feeney et al., 2010; Buti et al., 2017), and 

incisors (Reid and Dean, 2006; Smith et al., 2008; Benazzi et al., 2014), but these analyses have not 

investigated for inter-population differences. Linear measures of human enamel thickness are also 

widely researched for molar teeth (Macho and Berner, 1993; Schwartz, 2000a; Suwa and Kono, 

2005; Reid and Dean, 2006; Mahoney, 2010). Anterior tooth linear enamel thickness has been less 

widely researched, with only CT having been previously studied (Reid and Dean, 2006). In addition to 

LT having never been published for human populations, CT has never been investigated for inter-

population variation. Human daily secretion rates are similarly well researched compared to enamel 

thickness. While DSR studies have been investigated for variations between regions of the enamel 

crown (e.g. Reid and Dean, 2006; Smith, 2008; Mahoney, 2011), across individual dental arcades 

(Beynon et al., 1991a), and between the cusps of individual teeth (Mahoney, 2008), no study has yet 

investigated for inter-population differences. It is therefore pertinent to examine both enamel 

thickness measures, and regional DSRs, for multiple tooth types, for differences between human 

populations. Such analysis will also allow for comments to be as to the correlations, or lack thereof, 

between the inter-population difference of enamel growth and thickness. 
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CHAPTER 4: MATERIALS AND METHODS 

 

4.1 Materials – dental samples 

Two hundred and eighty five teeth over five different time periods: Roman (70-400AD), Early Anglo-

Saxon (500-600AD), Late Anglo-Saxon (800-1200AD), Medieval (1000-1600), and modern-day clinical 

material (extracted within the last 20 years) (Table 4.1). All archaeological samples came from British 

populations and modern-day samples compromised teeth extracted from England and Southern 

Scotland. Unworn teeth were selected where possible. When worn, only teeth with approximately 

80% of their crown height remaining were selected based on criteria outlined by Guatelli-Steinberg 

and colleagues (2005), and when wear was present no data relating to the cuspal region of the 

enamel cap was collected (see Fig. 4.1). One tooth was taken from each individual during the 

sampling process, following the guidelines for destructive sampling of human remains guideline 

outlined by Mays and colleagues (2013) and on request from the institutions which curated the 

dental material utilised. Left teeth were utilised wherever possible, with the right tooth only being 

used in instances where the left was missing, poorly persevered, or heavily damaged. Selection 

preference was also given to individuals presenting an antimere to the tooth being selected for 

sectioning, but in a select few cases of the Roman collections this condition could not be met in 

order to attain suitable sample sizes for tooth types within each population. 
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Fig. 4.1. Cross sections displaying examples of worn and unworn teeth analysed. The left cross 
section, a Medieval upper first incisor, displays no occlusal wear. The right cross section, a Roman 
upper first incisor, displays occlusal wear and thus no data requiring the cuspal region was collected 
from it. 

 

Ethnicity was unknown for all individuals across all populations from which samples were 

taken. In the case of the archaeological collections this was due to individual records not existing for 

any of the individuals of any of the populations studied. For the modern-day individuals, due to data 

laws the only information available was the biological sex and town/city location from which the 

individual had the tooth sampled extracted. Factoring in ethnicity to any analysis was thereby 

impossible, an unavoidable limitation of this project. 
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Table 4.1. Descriptive information of dental samples. 

Population Date Location Collection 
Names 

Number of teeth sampled 

Upper 
incisors 

Upper 
Canines 

First 
Molars 

Roman 70-400AD 
 

Cirencester,  
Gloucester 

St James’ Place/ 
Bath Gate 

10 11 11 

Early 
Anglo-
Saxon 

500-600AD Ramsgate,  
Kent 

Ozengell 22 20 20 

Late Anglo-
Saxon 

800-
1200AD 

Newcastle-Upon-
Tyne, 
Northumberland 

Black Gate 10 10 21 

Medieval 1100-
1500AD 

Canterbury,  
Kent 

St Gregory’s 
Priory  

19 8 43 

1000-
1600AD 

York, North  
Yorkshire 

Fishergate House 8 8 5 

Modern-
day 

Extracted 
within the 
last 20 
years 

Newcastle-Upon-
Tyne and 
Glasgow 

UCL/Kent 12 12 15 

 

4.1.1 Roman samples 

The Roman samples were from two sites: St James’ Place and Bath Gate cemeteries (see Fig 4.2). 

Both sites dated between 70-400AD (see Table 4.1), presented archaeological material consistent 

with Roman-British populations, and are thought to have been small urban populations with access 

to marine resources from the River Severn (McWhirr et al., 1982). 

 

4.1.2 Early Anglo-Saxon samples 

The Early Anglo-Saxon samples came from a site in Thanet, Ozengell (see Fig 4.2), dated to 500-

600AD (see Table 4.1). The population is thought to have been small and coastal, with regular access 

to marine resources from the North Sea and/or the English Channel (Millard et at al., 1969). The 

Anglo-Saxon period in Thanet is associated with newly developing urban areas following Roman 

occupation (McKinley et al., 2015). 
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4.1.3 Late Anglo-Saxon samples 

The late Anglo-Saxon sample came from the Black Gate Cemetery site (see Fig 4.2), dated to 800-

1200AD (see Table 4.1). This was a large urban population with access to marine resources through 

proximity to the River Tyne (Swales, 2012).  

 

4.1.4 Medieval samples 

The Medieval samples come from two sites: St Gregory’s Priory, Canterbury, and Fishergate House, 

York (see Fig 4.2). The sites were dated between 1100-1500AD (Hicks and Hicks, 2001) and 1000-

1600AD (Holst, 2001) respectively (see Table 4.1). Both are documented to have been large urban 

populations (Hicks and Hicks, 2001; Holst, 2001).  

 

4.1.5 Modern-day samples 

The modern-day samples came from the UCL/Kent collection, a repository of teeth collected from 

dental surgeries in northern England and southern Scotland (see Fig 4.2). All samples were extracted 

within the last 20 years (see Table 4.1). Ethical approval for histology research on this collection of 

teeth was obtained from the United Kingdom National Health Service research ethics committee 

(REC reference: 16/SC/0166; project ID: 203541). 
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Fig. 4.2. Map of the United-Kingdom and Northern Ireland displaying the geographic location where 
the archaeological samples were excavated/modern-day samples were extracted. Shapes denote the 
samples geographic origin, colour the time period they associated with (multi coloured shapes 
thereby meaning individuals from more than one time period originated from the same location): 
Roman = Orange, Early Anglo-Saxon = Purple, Late Anglo-Saxon = Blue, Medieval = Green, Modern-
day = Red. 
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Fishergate House (Medieval: 1000-1600AD) 

Glasgow (Modern Day) 
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4.2 Methods – sample preparation 

4.2.1 Epoxy resin embedding 

Methods for sampling human biological material using semithin histological techniques (Cathey, 

1963; Dancey et al., 1976; Islam and Frischm, 1985) were used to produce all dental cross sections 

according to standard procedures used in dental anthropology research (e.g. Aris, 2020; Mahoney, 

2008; Schwartz et al., 2003; Schwartz, 2000). On each tooth the cusp apex, cervical line, and root 

apex was marked with a fine point marker as to draw a straight line through cusp apex and dentine 

horn (see Fig. 4.3). For the first molars this line was along the buccal-lingual plane as to pass 

through: the paracone and protocone of the upper molars; the metaconid and protoconod for the 

lower molars. For the upper first incisors and canines the line was along the labial-lingual plane. On 

teeth with curved or broken roots no mark was made on the root apex. A 30mm sample cup 

(SamplKup) was lined with an epoxy mould releasing agent twice, leaving 30 seconds between each 

application. The tooth was then embedded in an epoxy resin mixture, with a 4:1 ratio mixture of 

epoxy resin (Epoxycure 1) and epoxy hardener (Epoxycure 2), for 24 hours. The resin mixture was 

produced in 20ml disposable scintillation vials (Beuhler). Once lined with a releasing agent the 

marked tooth was placed within a sample cup, ensuring that the apex of the tooth’s enamel surface 

was in contact with the sample cup’s edges, while the root and dental cervix was near to the centre 

of the cup. Positioning the tooth is this way meant that the first cut into the tooth itself could be 

aligned as required with the saw starting as near to the cusp as possible to reduce chance of making 

a misaligned cut (see section 4.2.2). Once positioned the resin mixture was then poured onto the 

tooth ensuring it was fully submerged. 
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Fig. 4.3. Diagram of how marks were made on upper first incisors, upper canines, and first molars 
(left to right respectively) before cutting to create a line through the cusp apex and dentine horn. The 
dashed red line displays the line created by the marks made at the blue crosses. Note the lack of blue 
cross on the unaligned root apex of the upper canine. The teeth displayed all came from the 
Fishergate House Medieval collection. 

 

4.2.2 Cross sectioning 

Once the resin had hardened, the embedded tooth was removed from the sample cup. The resin 

mould was then reduced in size so the tooth could be sectioned immediately adjacent and parallel 

with the applied markings. Once the mould was reduced the tooth was positioned against a 

lubricated wafering blade, with the blade aligned with the guiding marks applied previously. No cuts 

were made into the tooth until it was certain that the blade and marks were aligned. Precise 

alignment produces a cross section which passes directly adjacent to a tooth’s cusp and dentine 

horn, thus producing a cross section showing the length of the enamel spanning the dentine horn 

and enamel cusp apices. Whether this was successful can be seen in the shape of the dentine horn 

of a cross section, where a sharp point (with a V-shaped appearance; Smith et al., 2006a) at the apex 

denotes and precise cut, or a curved/rounded apex a misaligned oblique cut (Reid and Guatelli-

Steinberg, 2017). Where oblique cuts were noted, and thus the precise distance between the 

dentine horn and cusp apexes could not be accurately measured, the associated sections were not 

used for analysis of enamel thickness. See Figure 4.4. To reduce the number of teeth not used 

because of misaligned oblique cuts, the entire method outlined here was practiced on disarticulated 
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archaeological teeth with no known provenance, provided by the University of Kent Human 

Osteology Laboratory. Only when suitable cuts could be made reliably were the samples analysed 

here prepared. Moreover, teeth from the population with larger sample sizes (Medieval and Early 

Anglo-Saxon) were sectioned first, ensuring that the population with the smallest sample sizes 

(Roman and modern-day) were sectioned when the most time had been the methodological skill 

was most refined. 

A precision saw (Beuhler IsoMet 4000) and 152-178mm diamond-edge wafering blades 

(IsoMet) were used to section the tooth in two. To cut the tooth, the blade was spun between 100 

to 300 rotations per minute. Slower speeds were maintained when cutting dental material to avoid 

causing the enamel to shatter. Particular caution was taken when sectioning the more fragile and 

less well preserved teeth, such as those from the early Anglo-Saxon Ozengell collection.  
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Fig. 4.4. Cross sections displaying aligned and misaligned cuts, both observed through the shape of 
the dentine horn (highlighted with dashed red lines). The left cross section, a Medieval upper first 
incisor, displays an aligned cut with sharp pointed, V-shaped, dentine horn apex. The right cross 
section, a Roman first molar, displays a misaligned cut with a rounded dentine horn. 

 

4.2.3 Initial Slide Production 

Once cut, the surface of the resin surrounding the sectioned tooth displaying the interior structures 

was ground down using sheets of 200mm grinding paper (Beuhler SiC). This process removed any 

resin fragmentation. The tooth was then adhered to standard histological glass slides (Fisherbrand) 

using the same epoxy resin mixture used to create the resin mould. The adhering resin was left 24 

hours to dry. Once dried the mounted cross section was again cut using the wafering blade to reduce 

the cross section to around 1-2mm in thickness. Once cut, the cross section was cleaned of any 

remaining macroscopic debris using distilled water. 
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4.2.4 Grinding and polishing 

To grind down the cross section it was placed in a handheld grinder (Behuler). The slide was then 

lapped against waterproof silicon carbide paper sheet (CarbiMet) of varying degrees of grit at a rate 

of 50 to 80 rotations per minute using a grinder-polisher (EcoMet 300). The first stage of grinding 

used a 300mm 600 grit waterproof silicon carbide paper sheet, moving then to 600 grit, and finally 

1200 grit paper sheets (CarbiMet). Between using each paper sheet the slide was washed with 

distilled water and dried, before being analysed under a light microscope (Olympus BX53 Upright 

Microscope) to assess the clarity at which the enamel structures could be observed. Grinding was 

complete when slides were between 100-120µm thick (as recommended by: Antoine et al., 2018; 

Aris, 2020), when enamel areas were a moderate light-brown colour (as seen, for example, in Fig. 

4.4), and any striae of Retzius were clear and defined under a 4x magnification.  

The slide was then polished to remove scratches created through grinding. The slide was 

polished using the handheld grinder and a polishing plate applied with aluminium oxide powder 

(Buehler Micro-Polish II: 0.3µm). The plate was first saturated with water and then aluminium oxide 

powder was scattered evenly over its surface. The polishing plate was rotated, without further 

lubrication, at a rate of 80 rotations per minute. Polishing was complete when no scratches were 

observable on enamel areas when observed under a 20x magnification. 

 

4.2.5 Cleaning and cover slipping 

The slide was cleaned in order to remove any particulates, micro- and macroscopic debris, and 

water. First the slide was placed in a 50ml beaker containing distilled water. The beaker was then 

vibrated in an ultrasonic bath (Fisherbrand FB11002) for two minutes. While vibrating the polished 

surface of the tooth was sprayed with distilled water every 30 seconds. The slide was then dried 

under light. Drying was conducted as quickly as possible to avoid any air particulates accumulating 

on the surface of dental material.  

Once dry the slide was submerged in a 95% ethanol solution for two minutes. At the end of 

the two-minute period the slide was dried under light. The slide was then submerged for two 

minutes in 100% ethanol. The slide was then again dried with heat. The slide was then twice dipped 

in a histological cleaning agent solution (Histoclear) and left to dry for two minutes. 

Once dried the slide was given a 22x40mm cover glass slip (Fisherbrand). This was adhered 

to the slide using a xylene-based mounting medium (DPX). The DPX medium was spread over the 
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cross section surface of the dental material in order that it covered both the tooth and surrounding 

slide surface. The cover slip was applied quickly to avoid creating air bubbles between the glass and 

the cross section. The cover glass slip was allowed to dry for 24 hours. While drying, weights were 

placed to surround the slide in order to maintain a flat surface area. 

 

4.2.6 Health and safety 

Risk assessment forms were completed, and approved by the University of Kent, School of 

Anthropology and Conservation, ethics review board. Gloves were worn during all stages of sample 

preparation both for personal protection, and to prevent sample contamination. Particular care was 

taken during any stage involving the use of releasing agents as well as during the mixing and 

application of epoxy resins. In addition, when polishing the slides using the histoclear solution and 

when mounting cover glass slips using DPX medium, both gloves and a face filter mask were worn. 

Furthermore, at no point was the saw or grinder-polisher left unattended whilst active, and both 

machines were disassembled whenever they were out of use. Moreover, no chemical component 

was ever left unattended or exposed to the environment for any longer than necessary, regardless 

of its hazard level. 

 

4.2.7 Preparation time 

The time taken to produce the 285 dental sections is worth noting. Due to the precision required for 

the marking, cutting, and grinding/polishing stages, and the additional time needed for the 

embedding and cover slipping processes, the production of a histological slide took four days to 

complete. Within these four days, outside the time needed for drying, approximately two 

concentrated work hours were needed to attend each individual tooth over the entire sectioning 

process. Accounting for five teeth being prepared in groups approximately 72 days and 570 

concentrated work hours, over a three month period, was required to produce the entire 

histological sample examined throughout this project. The time spent conducting histological 

methods as a part of this project was longer than this, owing to time taken to practice the sampling 

procedure, and some later samples produced not meeting the required quality not being included 

among the 285 teeth analysed throughout this project. 
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4.3 Measurements taken 

4.3.1 Daily secretion rates 

Daily secretion rates (µm/day) were calculated for the inner, middle, and outer regions of the cuspal 

and lateral areas of each tooth. These regions were determined by dividing the length of the 

associated enamel area into three equal-sized parts along the length of local enamel prisms. 

Standardised methods were utilised to calculate DSRs for the six enamel regions (see Fig 4.5; e.g. 

Beynon et al., 1991a; Schwartz et al., 2001; Mahoney, 2008; 2011; Bromage et al., 2012). First, the 

outlined enamel regions were determined by dividing the length of the associated enamel area 

along the longitudinal aspect of the enamel prisms, into three equal parts. Where the tooth was 

unworn the cuspal enamel regions were determined within the appositional enamel of each tooth. 

Lateral enamel regions were determined within the imbricational enamel at a point equidistant 

between the dentine horn and the dental cervix measured along the EDJ.  

Within each enamel region an initial measurement was made along the long axis of an 

enamel prism corresponding to the length of five consecutive cross striations. This length was 

divided by five to give a single mean daily rate of secretion. This measurement and mean calculation 

was repeated five additional times, and the sum of the six means further averaged in order to give a 

grand mean and standard deviation. Both these procedures were repeated for all three determined 

regions of both cuspal and lateral enamel (Fig 4.5 superimposition). All measurements of cross 

striations were taken between 20x and 40x magnification using either single captured images or 

stitched composite images of whole enamel regions using Olympus cellSens software. Within the 

Olympus cellsens software magnification-calibrated linear measuring tools were used to take all 

measurements. Calibrations were checked each new time the software was utilised. 
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Fig. 4.5. Digital image of an upper canine (top left), upper first incisor (top right) and a first molar 

paracone from individuals dating to the Roman period. White squares show the areas of the cuspal 

and lateral enamel subdivided into inner, mid, and outer regions. These regions were used for DSR 

calculations. The black square shows a 40x magnified superimposition of the mid lateral enamel. 

Black arrows indicate individual cross striations. 

 

4.3.2 Average enamel thickness 

Average enamel thickness is calculated by dividing the area of the dental enamel cap, as viewed 

from a 2D plane after sectioning, by the length of the EDJ. For AET calculations the distance of the 

EDJ is measured following the path of the junction between the two most distant points of the 

dental cervix (e.g. Martin, 1983; Smith et al., 2006; Olenjniczak et al., 2008; Feeney et al., 2010). See 

Figure 4.6. Average enamel thickness was calculated by observing a dental crown under a high 

powered light microscope at 4x magnification using Olympus cellSens software. All measurements 

taken to calculate AET were also taken using Olympus cellSens software, using magnification-

calibrated measuring tools. Calibrations were checked each new time the software was utilised. For 

all first molars AET was calculated using the mesial cusps (paracone and protocone).  
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4.3.3 Relative enamel thickness 

Relative enamel thickness is calculated by dividing the AET, as calculated from a 2D plane after 

sectioning, of a tooth by the square root of the area of dentine. See Figure 4.6. The output of the 

division is then multiplied by 100 to give the tooth’s RET. It is by using the square root of the dentine 

area that RET becomes a free scale figure. Within the context of this project RET will be used when 

equivalent teeth of different positions are compared (e.g. UM1s to LM1s). Relative enamel thickness 

was calculated by observing a dental crown under a high powered light microscope at 4x 

magnification using Olympus cellSens software All measurements taken to calculate RET were also 

taken using Olympus cellSens software, using magnification-calibrated measuring tools. Calibrations 

were checked each new time the software was utilised.  For all first molars AET was calculated using 

the mesial cusps (paracone and protocone). 

 

4.3.4 Cuspal thickness 

Cuspal thickness (mm) is a linear measure and was taken from 2D cross sections of each 

tooth. Measurements were made from the apex of the sharp V-shaped dentine horn to the unworn 

occlusal surface tip of the enamel (e.g. Gantt, 1977; Beynon and Wood, 1986; Grine and Martin 

1988). See Figure 4.6. As this measurement utilises the unworn occlusal surface of a tooth, it was not 

taken for any teeth presenting any degree of wear. Cuspal thickness was taken from the mesial-

buccal cusp for each first molar. Using the mesial-buccal cusp allowed the measurement to be 

standardised. This was an important protocol to follow as thickness can vary significantly between 

different first molar cusps (e.g. Macho and Berner, 1993; Macho, 1994; Mahoney, 2010). Cuspal 

thickness measures were taken under a high powered light microscope at 10x magnification using 

Olympus cellSens software. Within the Olympus cellsens software magnification-calibrated linear 

measuring tools were used to take cuspal thickness measurements. Calibrations were checked each 

new time the software was utilised. 

 

4.3.5 Lateral thickness 

Lateral thickness (mm) is a linear measurement which was taken from the buccal-lateral regions of 

each first molar. For all teeth LT was calculated by measuring the distance between the EDJ and 

outer enamel surface. The point measured from on the EDJ was located approximately 1mm from 

the dentine horn, adjacent to the first Retzius line to make contact with enamel surface (See Fig. 4.6; 
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e.g. Beynon and Wood, 1986; Grine and Martin, 1988; Schwartz, 2000a; Grine, 2005; Mahoney, 

2010; Le Luyer et al., 2014). The linear measurement was then made from this point of the EDJ, 

staying perpendicular to the EDJ, until it reached the outer enamel surface. It should be noted that, 

as LT does not follow an enamel prism, it is a purely morphological feature not directly reflecting 

enamel growth. See Figure 4.6. Lateral thickness was measured under a high powered microscope at 

10x magnification using Olympus cellSens software. Within the Olympus cellsens software 

magnification-calibrated linear measuring tools were used to take lateral thickness measurements. 

Calibrations were checked each new time the software was utilised. 

 

 

Fig. 4.6. Cross-sectional diagram of 2D enamel thickness measures taken. C. the enamel cap area and 
B. the dentine encompassed by the enamel and bi-cervical diameter (double-headed arrow). The area 
of C. was divided by the length of the EDJ (marked by arrows) to give the average enamel thickness 
(AET) in mm.  The AET is divided by the square root of the area of B and multiplied by 100 to give the 
relative enamel thickness (RET) (e.g. Martin, 1983), which is a dimensionless index. The first Retzius 
line that emerges on the outer enamel surface (solid red line) marks the border between cuspal and 
lateral enamel. The dashed line (CT) illustrates the cuspal enamel thickness measurement (e.g. 
Beynon and Wood, 1986). The dotted line (LT) illustrates the lateral enamel thickness measurement 
(e.g. Grine and Martin, 1988). 
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4.3.6 Inter-observer error 

For each measurement collected, including each of the six regional DSR measures, data collection 

was repeated a minimum of three times each on a different day. Once all repeats were conducted, if 

notable differences were seen across the three measures the associated data was deleted and 

collection restarted for the given measure. This process was repeated where needed until consistent 

data for each measurement taken was achieved. Note that this meant, for a tooth where all 

thickness and DSR measures could be collected, an absolute minimum of 126 measurements were 

taken (108 DSR measurements; Fig. 4.5 and 18 measurements associated with enamel thickness; Fig. 

4.6). 
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CHAPTER 5: RESEARCH CHAPTER – ENAMEL THICKNESS AND GROWTH RATES IN MODERN HUMAN 

PERMANANENT FIRST MOLARS OVER A 2000 YEAR PERIOD IN BRITAIN 

Published in the American Journal of Physical Anthropology. 

Co-authored with: Dr Patrick Mahoney, Mackie O’Hara, and Dr Chris Deter 

 

Abstract 

Objectives 

This study explores variation and trends in first molar enamel thickness and daily enamel secretion 

rates over a 2000 year period in Britain.   

 

Methods 

Permanent first molars (n=89) from the Roman, Anglo-Saxon, and Medieval periods, as well as 

modern-day Britain, were analysed using standard histological methods. Relative enamel thickness 

(RET) and linear measurements of cuspal and lateral thickness were calculated for mesial cusps. 

Daily secretion rates (DSRs) were calculated for inner, mid, and outer enamel regions in both cuspal 

and lateral enamel. Significant differences and trends were identified between samples using non-

parametric statistical tests. 

 

Results 

Enamel thickness differed between some populations, but no temporal trends were identified. Early 

Anglo-Saxon first molars had significantly thinner RET than both Late Anglo-Saxon (p<0.001) and 

Medieval (p<0.001) first molars. Lateral enamel from the Roman first molars was significantly 

thinner than the modern-day sample (p=0.04). In contrast, a significant slowing trend in DSRs was 

observed across the more ancient to modern-day samples in every measured region except the mid-

lateral enamel region. 

 

Discussion 

This study presents the first evidence for a gradual slowing in the daily rate that enamel is secreted 

in first molars over the past 2000 years in Britain. However, this trend was not matched by 

consistent or significant positive or negative shifts in enamel thickness. These findings suggest that 

modern human first molars of similar enamel thickness, from different modern and ancient 

populations, formed at different rates. 
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5.1 Introduction 

This intraspecific study of modern human permanent molars investigates enamel thickness (e.g. 

Macho and Berner, 1993; Suwa and Kono, 2005; Reid and Dean, 2006; Smith et al., 2006a) and daily 

enamel secretion rates (DSRs) (e.g. Beynon et al., 1991b; Lacruz and Bromage, 2006; Mahoney, 

2008) in modern and ancient British populations. Enamel thickness and DSRs will be compared 

across a 2000 year period, between populations from St James’ Place and Bath Gate (70-400AD), 

Ozengell Grange (500-600AD), Black Gate (800-1200AD), St Gregory’s Priory (1100-1500AD), 

Fishergate House (1000-1600AD), and a modern collection of clinical dental extractions. The 

objective is to identify variation in these two components of dental development when compared 

between these populations over this period of time.   

 

Some components of enamel thickness, including average enamel thickness and the area of 

the enamel cap, can vary amongst modern humans when compared between populations, the sexes, 

and tooth types (e.g., Smith et al., 2006a). Variation in enamel thickness has also been identified 

amongst modern human populations from different time periods (e.g. Le Luyer et al., 2014; Le Luyer 

and Bayle, 2017). Thicker enamel has been observed in modern human molar crown regions where 

surface wear was expected to be greatest (Grine, 2005; Le Luyer et al., 2014; Le Luyer and Bayle, 

2017). Subsequent research suggests that a shift in the distribution of enamel thickness upon a 

molar, when compared between Mesolithic and Neolithic groups from France, may represent a 

functional adaptation related to the transition to agriculture (Le Luyer and Bayle, 2017). One aim of 

this study is to further explore this finding in British samples, to determine if molar enamel thickness 

changed in Britain over the last 2000 years. During this time period there was substantial population 

movement into and out of Britain, as well as cultural, dietary, and social developments (e.g. Scull, 

1993; Privat et al., 2002; Lightfoot et al., 2009). Given the potential association between these 

factors and enamel thickness, we could expect significant changes between British populations. 

 

Enamel thickness of primate teeth is the product of several growth mechanisms including 

the daily rate at which ameloblasts secrete enamel (Grine and Martin, 1988; Macho, 1995; Mahoney 

et al., 2016). Daily secretion rates (DSRs) are typically highly variable when compared within or 

between primates (e.g. Boyde, 1989; Shellis, 1998; Schwartz et al., 2005; Smith et al., 2007a, 2007b, 

2007c), and are typically slower in modern humans relative to earlier fossil hominins (Dean et al., 

2001).  Several studies have reported mean DSRs for modern humans (e.g. Beynon et al., 1991b; 

Lacruz and Bromage, 2006; Mahoney, 2008; Smith et al., 2007b). However, while a previous study 

calculated DSRs for both archaeological and modern-day human sample (e.g. Smith et al., 2007b), 
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the aim in that study was not focused on variation in DSRs through time.  One aim in the present 

study is to determine if there is a temporal trend in DSRs amongst modern humans from Britain. 

 

5.1.1 Amelogenesis and enamel secretion rates 

As DSRs can vary within a tooth, comparisons of these rates between tooth types, or between 

populations, are usually undertaken for specific regions within a crown (e.g., Dean, 1998) where the 

molar crown is divided into cuspal, lateral, and cervical enamel, and then further subdivided into 

inner, mid and outer regions. However, DSRs are broadly similar when equivalent regions are 

compared between cusps within a molar (Mahoney, 2008).  

 

Most modern human DSR studies use single human populations (Beynon et al., 1991b; 

Lacruz and Bromage, 2006; Mahoney, 2008). When multiple human populations are examined it is 

often part of a larger, interspecific study of a grouped single representative sample (e.g. Smith et al., 

2007b). Recently, Nava and colleagues (2017) reported slower DSRs in deciduous incisors from the 

present day compared to equivalent samples from imperial Rome.  While their analysis was not 

focused on a temporal transect, their results do suggest a temporal trend in the DSRs of these 

populations. No study has specifically compared DSRs from equivalent enamel region of permanent 

teeth, between modern human populations from different time periods. Thus, our understanding of 

how DSRs can vary between populations from different time periods is limited. 

 

5.1.2 Enamel thickness 

            The thickness of enamel is established at the end of the secretory stage of amelogenesis 

(Nanci and Smith, 1992; Smith and Nanci, 1995). A number of linear measures, and summary 

measures calculated from them, associated with enamel thickness can be calculated from virtual and 

histological sections and have featured heavily in anthropological research, often in studies of diet in 

non-human primates (e.g. Martin, 1983; Molnar and Gantt, 1977; Dumont, 1995; Smith et al., 

2007a), extinct hominins (e.g. Kay, 1981; Olejniczak et al., 2008; Skinner et al., 2015; Zanolli et al., 

2016) and humans (e.g. Grine, 2005; Reid and Dean, 2006; Feeney et al., 2010; Le Luyer et al., 2014; 

Le Luyer and Bayle, 2017).  

 

 Hlusko and colleagues (2004) reported enamel thickness to be highly heritable in baboons 

over relatively short periods, in an evolutionary perspective. Examination of the human genome and 

the genetic components involved in the activation of the enamel matrix protein enamelin, have 
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revealed differences between humans and non-human primates consistent with the selective 

pressures of natural selection (Daubert et al., 2016; Horvath et al., 2014; Kelley and Swanson, 2008). 

These interspecific variations in enamelin appear to correlate with known variations in diet between 

species, strongly supporting the evolutionary link between dietary changes and enamel thickness 

(Kelley and Swanson, 2008; Horvath et al., 2014).   

 

 Within humans, single-nucleotide polymorphisms associated with enamel thickness have 

been identified between individuals of African and non-African ancestry, suggesting enamel 

thickness can differ significantly between modern human populations (Daubert et al., 2016). Human 

enamel thickness might therefore, respond to selective pressures and differ among modern human 

populations across time as well. This study will therefore focus on features on enamel thickness, 

including linear measures of lateral (e.g. Macho and Berner, 1993; Suwa and Kono, 2005; Mahoney, 

2010) and cuspal molar thickness (e.g. Schwartz, 2000a; Suwa and Kono, 2005; Reid and Dean, 

2006), and relative enamel thickness (Martin, 1983; Smith et al., 2006a; Olejniczak et al., 2008) of 

the molar enamel cap (Figure 6.1). The aim is to determine if enamel thickness, and its linear 

distribution over a molar crown, changes over a 2000 year time period when compared between 

British populations.  

 

5.1.3 Inter-specific studies of permanent enamel thickness and diet 

Inter-specific studies of primates suggest thicker enamel may relate to the increased consumption of 

abrasive foods (e.g. Martin et al., 2003).Thicker enamel may allow teeth to retain their ability to 

chew and process foods throughout an individual’s lifetime, delaying exposure of dentine and 

protecting the pulp chamber while the enamel continues to wear (e.g. Molnar and Gantt, 1977; Janis 

and Fortelius, et al., 1988; Martin et al., 2003; Pampush et al., 2013).  Within hominins for example, 

quartz dust in or on foods has been suggested to serve as an abrasive additive that may select for 

thicker enamel (Lucas et al., 2013). 

 

Others have proposed a second model explaining how thicker enamel may relate to food 

hardness in some mammalian species (e.g., Kay, 1981). Dumont (1995) observed significantly greater 

molar relative enamel thickness (RET) values in species consuming a hard diet compared to a closely 

related non-durophagous species. Martin, Olejniczak, and Maas (2003) observed a similar 

relationship in extant primates, noting that primates with thickly enamelled molars regularly 

consumed hard diets. The relationship between the mechanical properties of food and enamel 
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thickness has been considered in Pan troglodytes and Pongo pygmaeus (Vogel et al., 2008). While 

both species display preferences for ripe fruit, Pongo molar enamel is relatively thicker and 

possesses occlusal crenulations that may facilitate increased fracture resistance in the face of 

consumption of a harder diet during fallback episodes. Additionally, genetic evidence indicates that 

enamelin, one of the genes associated with enamel production and thickness, has undergone 

evolutionary selection since our divergence from chimpanzees, potentially due to shifts in diet 

(Kelley and Swanson, 2008; Horvath et al., 2014). 

 

Differences in molar enamel thickness have also been attributed to variation in dietary 

hardness and composition between hominoid species. Kay (1981) found Ramapithecine species to 

have thicker enamel that may have related to the consumption of hard-rind nuts or seeds. Studies of 

Neanderthal populations have suggested that thin enamel in the post-canine teeth of European 

Neanderthal populations, as compared similarly aged human samples, allude to variation in diet 

between the two groups (Olejniczak et al., 2008) with particular reference to softer meat-based 

diets in Neanderthals (Smith et al., 2012). This alternative model suggests that consuming softer 

foods relaxes selective pressures leading to thinner enamel between species. Skinner and colleagues 

(2015) analysed a wide range of hominins, finding enamel thickness to follow a trend towards 

thickening throughout the Pliocene, culminating in the thick enamelled robust Australopithecus, 

followed by a thinning trend throughout the genus Homo (Skinner et al., 2015). Evans and colleagues 

(2016) have further suggested the variation in enamel thickness between hominin species to be 

result of developmental inhibitory cascade mechanism, wherein decreases in mesenchymal 

activation and inhibition maintenance within dentition resulted in progressively thinning teeth in 

Homo. It is therefore plausible, as enamel thickness has decreased over time within the Homo genus, 

that a similar thinning of molar enamel to continue in modern human populations. However, while 

this developmental feature could potentially further explain inter-species hominin variation, it may 

not necessarily predict patterns within a species over a period as short as 2000 years. 

 

5.1.4 Studies of enamel thickness within human permanent molars 

Enamel thickness can vary between modern human populations. Cuspal enamel thickness varies 

between South African, North American, and European populations samples (Reid and Dean, 2006). 

Mean average enamel thickness (AET) of molars differed between Southern African, Northern 

English, Northern American, and medieval Danish samples (Smith et al., 2006a). More recently, Le 

Luyer and Bayle (2017) reported AET and RET for 40 maxillary second molars from individuals in 
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France representing a 7000 year period between the Upper Paleolithic, Mesolithic, and Neolithic 

periods. They found a significant difference between the RET of the Early Mesolithic and Early 

Neolithic molars, with Mesolithic dentition possessing the thinnest enamel. Within a crown, enamel 

thickness can also vary over the cusps (e.g., Kono and Suwa, 2000; Kono et al., 2002; Kono, 2004; 

Mahoney, 2010).  

 

Molar enamel thickness may differ between males and females within populations. Macho 

and Berner (1993) found linear measures of maxillary third molars from females to have marginally 

thicker enamel than their male counterparts. Schwartz and Dean (2005) reported that female 

mandibular third molars had slightly thicker enamel (RET) on average compared to males. Others 

(Smith et al, 2006a; Saunders et al., 2007; Sorenti et al., 2019) have similarly found thicker RET in 

female teeth and greater dentine volumes in male molars.  Several studies have related increases in 

enamel thickness along the molar row to increased bite forces along the molar row during chewing, 

and a change in the proportions of enamel or dentine within a molar (e.g. Macho and Berner, 1993; 

Schwartz, 2000; Grine, 2005; Mahoney, 2013).  

 

All these findings highlight the actual and potential variability in human molar enamel 

thickness. They thereby justify conducting wider inter-population studies of modern human enamel 

thickness. In this particular study, it is therefore reasonable to expect to see significant variation in 

enamel thickness measures between the populations spanning the last 2000 years in Britain.  

 

5.1.5 Relationship between enamel thickness and underlying growth mechanisms 

The relationship between DSRs and enamel thickness within humans is poorly understood. Past 

research has alluded to links between DSRs and enamel thickness of equivalent teeth in modern 

humans (Smith et al., 2006a; Mahoney, 2015). When compared along the deciduous tooth row, 

incisors with thinner enamel had faster mean DSRs compared to molars with thicker enamel that 

had slower DSRs (Mahoney, 2015). However, permanent first molar cusps with thicker enamel do 

not necessarily present faster DSRs than first molar cusps with thinner enamel (Mahoney, 2008). The 

possible association between thicker enamel and faster or slower secretion rates requires further 

work in humans. Smith and colleagues (2006a) also presented molar DSRs alongside thickness data. 

However, it was not an aim of their study to explore relationships between this measure of enamel 

growth and thickness. Thus, whether DSRs vary alongside molar enamel thickness when compared 

between human populations from different time periods has not been examined previously.  
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5.2 Materials and methods 

5.2.1 Dental sample 

Permanent first molars (n = 89) were selected from the British populations representing five time 

periods. These populations date from the Roman period (n = 11), Early Anglo Saxon (n = 12), Late 

Anglo-Saxon (n = 19), Medieval (n = 32) and Modern-day (n = 15). Only non-pathological teeth and 

unworn first molars were selected. Right first molars were selected unless it was unavailable or the 

left was better preserved.  Sex was not known for the majority of these samples as many of the first 

molars were separate from the rest of the skeleton. For details pertaining to the specific breakdown 

of each population sample by tooth position, the curated state of samples and the information 

regarding sex, see Table 5.1. 

 

5.2.2 Enamel thickness 

For each first molar, relative enamel thickness (RET), cuspal thickness (CT), and lateral thickness (LT) 

were measured. Each was measured and calculated on a composite image produced by stitching 

together 20x magnified images using cellSens digital software. The two linear measures of enamel 

thickness (CT and LT) were measured on the paracone of maxillary molars, and the metaconid of 

mandibular molars. These cusps experience reduced masticatory loads compared to the protocone 

and protoconid (Schwartz, 2000a). While cusps experiencing higher masticatory loads and abrasion 

levels have been found to be more responsive to external selective pressures, particularly in the in 

the maxillary molars (e.g. hypocone; Kono et al., 2002), the variable wear levels and preservative 

states (particularly cracks, chips, and chalk damage) of the archaeological population highly 

influenced the sample sizes for these cusps. The paracone and metaconid were less affected by 

wear, meaning the sample sizes for each population were more consistent. As a result, the paracone 

and metaconid was selected to explore temporal variation in enamel thickness. 

 

 

5.2.3 Daily secretion rates of enamel 

Daily secretion rates were calculated for the inner, mid, and outer regions of the lateral and cuspal 

enamel areas of each tooth using standard methods (e.g. Beynon et al., 1991a; Schwartz et al., 2001; 

Mahoney, 2008). The regions were determined by dividing the length of the associated enamel area 

into three equal parts along the length of the enamel prisms. All cross striations were measured at 

magnifications between 20x and 40x on the paracone and metaconid. See Figure 5.1. 
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Fig. 5.1. Digital image of a paracone from one individual dating to the Roman period. White squares 
show the areas of the cuspal and lateral enamel subdivided into inner, mid, and outer regions. These 
regions were used for DSR calculations. The black square shows a 40x magnified superimposition of 
the mid-lateral enamel. White arrows indicate individual cross striations. 
 

5.2.4 Statistical analysis 

Differences in dentin area were tested for between populations using a Kruskal-Wallis test, as a 

proxy for tooth size. A subsequent Kruskal-Wallis test was then conducted to test for differences in 

dentine area between maxillary and mandibular teeth. Next, Mann Whitney-U tests were conducted 

to test for differences in enamel thickness (RET, LT, and CT) and DSRs (from each region), between 

the maxillary and mandibular M1s within each sample population. Following this, Kruskal-Wallis 

tests combined with Dunn-Bonferroni pairwise comparison was used to compare enamel 

thicknesses and DSRs, between archaeological time periods. Kruskal-Wallis tests first identify 

whether any significant inter-group differences are present, with pairwise comparisons subsequently 

identifying the exact differences. Jonckheere-Terpestra tests consider changes in means between 

groups over a defined order (Jonckheere, 1954), so were conducted to identify any significant trends 

in enamel feature changes with the populations ordered by their time period of origin to test for any 

trends in changes over time. Positive results from a Jonckheere-Terpstra test indicate increasing 
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trends, and negative results indicate decreasing trend. All statistical analyses were performed using 

SPSS 24.0. 

 

5.3 Results 

5.3.1 Tooth size and maxillary and mandibular molars 

No significant differences were identified in the dentine areas between any two populations for 

either maxillary or mandibular teeth (Table 5.1). Thus, no scaling of the CT and LT measures was 

required in subsequent analyses. Dentine area varied significantly between maxillary and 

mandibular molars (p<0.001; see Table 5.2). This meant RET was analysed rather than AET for 

subsequent analyses so that the maxillary and mandibular molars could be combined when 

comparing populations. There were no significant differences between RET or linear measures of 

enamel thickness, or the DSRs, when compared between the maxillary and mandibular molars of any 

population (see Table 5.3 and 5.4 respectively). Therefore, the data for maxillary and mandibular 

molars of each population were combined to form time-period representative samples for 

subsequent statistical tests. 

 

 

 

 
Table 5.1. Results of the Kruskal-Wallis test for the comparison of first molar dentine areas 
between populations for maxillary and mandibular teeth.  

Population N Mean S.D Min Max Kruskal-
Wallis Sig. 

Maxillary molars 

Roman 4 34.77 5.69 29.27 39.55 0.12 

Early Anglo-Saxon 4 27.46 5.74 19.16 32.13 

Late Anglo-Saxon 9 39.89 7.27 31.91 52.02 

Medieval 13 39.78 4.02 32.68 46.59 

Modern Day 2 28.84 3.42 26.42 31.26 

Mandibular molars 

Roman 3 36.17 3.18 32.61 38.74 0.10 

Early Anglo-Saxon 3 25.62 3.38 21.78 28.18 

Late Anglo-Saxon 1 34.14 - - - 

Medieval 12 38.29 6.09 26.87 49.14 

Modern Day 6 36.61 3.26 31.36 41.09 
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Table 5.2. Kruskal-Wallis test with Monte Carlo resampling procedures comparing 
dentine areas between maxillary and mandibular first molars. Due to uneven distribution 
of sample sizes between populations and tooth positions, differences were tested using 
19 (10 upper and 9 lower) randomly selected samples, four (two upper and two lower) 
from each population, except the Late Anglo-Saxons where only one mandibular tooth 
was available. Significant results are marked in bold. 

 Total sample Analysed sample 

Molar 
Position 

N Mean S.D Min Max N Mean S.D Sig. 

Maxillary 32 34.90 6.28 21.78 47.85 10 32.90 4.15 0.00* 

Mandibular 25 39.35 5.52 28.18 52.02 9 40.04 7.21 

*p<0.001 
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Table 5.3. Comparison of difference in the mean values for each population of each DSR region 
between the maxillary and mandibular teeth using Mann-Whitney U tests.  

Population Feature M1 Position N Mean S.D Sig. (2-
tailed) 

Roman Inner Cuspal DSR Maxillary 4 3.68 0.33 0.85 

Mandibular 3 3.78 0.21 

Mid Cuspal DSR Maxillary 4 4.15 0.13 0.34 

Mandibular 4 4.25 0.22 

Outer Cuspal DSR Maxillary 4 4.54 0.29 0.85 

Mandibular 3 4.59 0.13 

Inner Lateral DSR Maxillary 5 3.72 0.38 0.93 

Mandibular 6 3.62 0.19 

Mid Lateral DSR Maxillary 5 4.20 0.49 0.79 

Mandibular 6 4.19 0.16 

Outer Lateral DSR Maxillary 5 4.47 0.46 0.66 

Mandibular 6 4.65 0.20 

Early Anglo-
Saxon 

Inner Cuspal DSR Maxillary 4 3.66 0.23 0.62 

Mandibular 3 3.74 0.16 

Mid Cuspal DSR Maxillary 4 3.98 0.27 1.00 

Mandibular 3 3.98 0.29 

Outer Cuspal DSR Maxillary 4 4.39 0.28 1.00 

Mandibular 2 4.51 0.41 

Inner Lateral DSR Maxillary 7 3.31 0.19 0.73 

Mandibular 5 3.58 0.27 

Mid Lateral DSR Maxillary 7 3.83 0.23 0.63 

Mandibular 5 3.90 0.16 

Outer Lateral DSR Maxillary 7 4.26 0.15 0.75 

Mandibular 5 4.22 0.30 

Late-Anglo-Saxon Inner Cuspal DSR Maxillary 14 3.31 0.27 0.30 

Mandibular 3 3.19 0.19 

Mid Cuspal DSR Maxillary 15 3.68 0.28 0.36 

Mandibular 3 3.48 0.10 

Outer Cuspal DSR Maxillary 15 3.99 0.35 0.73 

Mandibular 3 4.01 0.13 

Inner Lateral DSR Maxillary 16 3.40 0.25 0.10 

Mandibular 3 3.17 0.17 

Mid Lateral DSR Maxillary 16 3.65 0.34 0.48 

Mandibular 3 3.48 0.34 

Outer Lateral DSR Maxillary 16 3.89 0.39 0.87 

Mandibular 3 3.83 0.48 

Medieval Inner Cuspal DSR Maxillary 16 3.32 0.22 0.34 

Mandibular 7 3.44 0.29 

Mid Cuspal DSR Maxillary 18 3.58 0.27 0.27 

Mandibular 9 3.81 0.22 

Outer Cuspal DSR Maxillary 18 3.88 0.31 0.34 

Mandibular 9 3.96 0.21 

Inner Lateral DSR Maxillary 19 3.33 0.26 0.57 

Mandibular 10 3.42 0.25 

Mid Lateral DSR Maxillary 19 3.63 0.26 0.51 

Mandibular 10 3.69 0.35 

Outer Lateral DSR Maxillary 18 3.87 0.29 0.34 

Mandibular 9 3.93 0.18 

Modern Day Inner Cuspal DSR Maxillary 3 2.95 0.43 0.22 

Mandibular 11 3.27 0.35 

Mid Cuspal DSR Maxillary 4 3.31 0.41 0.17 

Mandibular 11 3.59 0.38 

Outer Cuspal DSR Maxillary 4 3.40 0.17 0.40 

Mandibular 11 3.88 0.34 

Inner Lateral DSR Maxillary 4 3.06 0.25 0.66 

Mandibular 11 3.16 0.20 

Mid Lateral DSR Maxillary 4 3.32 0.26 0.57 

Mandibular 11 3.45 0.34 

Outer Lateral DSR Maxillary 4 3.45 0.21 0.07 

Mandibular 11 3.81 0.42 
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Table 5.4. Comparison of difference in the mean values for each population, of each enamel 
thickness feature and supplementary thickness data, between the maxillary and mandibular teeth 
using Mann-Whitney U tests. 

Thickness features 

Population Feature M1 Position N Mean S.D Sig. (2-tailed) 

Roman RET Maxillary 3 17.97 1.61 0.20 

Mandibular 3 16.08 1.51 

LT Maxillary 4 1.39 0.06 0.35 

Mandibular 6 1.31 0.14 

CT Maxillary 3 1.58 0.21 0.40 

Mandibular 3 1.34 0.11 

Early Anglo-Saxon RET Maxillary 4 20.53 1.84 0.22 

Mandibular 3 22.83 1.76 

LT Maxillary 7 1.39 0.18 0.78 

Mandibular 4 1.41 0.24 

CT Maxillary 5 1.08 0.22 0.57 

Mandibular 3 1.34 0.49 

Late Anglo-Saxon RET Maxillary 7 16.39 1.50 0.50 

Mandibular 1 14.97 - 

LT Maxillary 16 1.43 0.11 0.25 

Mandibular 3 1.52 0.09 

CT Maxillary 12 1.17 0.23 0.79 

Mandibular 2 1.15 0.33 

Medieval RET Maxillary 13 16.33 1.79 0.89 

Mandibular 9 16.27 02.45 

LT Maxillary 18 1.44 0.22 0.98 

Mandibular 9 1.43 0.18 

CT Maxillary 18 1.08 0.25 0.56 

Mandibular 9 1.03 0.15 

Modern Day RET Maxillary 2 15.43 2.87 0.08 

Mandibular 8 20.19 3.45 

LT Maxillary 4 1.77 0.45 0.66 

Mandibular 11 1.64 0.31 

CT Maxillary 4 1.23 0.71 1.00 

Mandibular 11 1.29 0.55 

RET component thickness data 

Roman Enamel cap area Maxillary 4 20.98 2.72 0.22 

Mandibular 3 18.49 2.17 

EDJ length Maxillary 4 18.58 1.78 0.62 

Mandibular 3 19.11 0.44 

AET Maxillary 4 1.12 0.13 0.22 

Mandibular 3 0.96 0.11 

Early Anglo-Saxon Enamel cap area Maxillary 4 21.83 2.64 0.11 

Mandibular 3 18.43 2.96 

EDJ length Maxillary 4 18.76 0.79 0.06 

Mandibular 3 16.74 0.82 

AET Maxillary 4 1.16 0.09 0.62 

Mandibular 3 1.10 0.13 

Late Anglo-Saxon Enamel cap area Maxillary 9 22.52 3.70 0.80 

Mandibular 1 22.2 -0.40 

EDJ length Maxillary 9 20.00 1.51 0.40 

Mandibular 1 22.34 - 

AET Maxillary 9 1.12 0.19 0.60 

Mandibular 1 0.99 - 

Medieval Enamel cap area Maxillary 13 21.02 2.70 0.47 

Mandibular 12 20.32 2.15 

EDJ length Maxillary 13 20.56 1.18 0.32 

Mandibular 12 19.71 1.93 

AET Maxillary 13 1.02 0.10 1.00 

Mandibular 12 1.03 0.15 

Modern Day Enamel cap area Maxillary 2 15.54 6.95 0.14 

Mandibular 6 21.87 1.41 

EDJ length Maxillary 2 16.58 1.63 0.14 

Mandibular 6 19.44 1.55 

AET Maxillary 2 0.92 0.32 0.42 

Mandibular 6 1.13 0.12 
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5.3.2 Enamel thickness measures 

Table 5.5 reports the mean RET, LT, and CT of each population along with the standard deviations 

and results of the Kruskul-Wallis tests. The Early Anglo-Saxon RET was significantly larger than both 

the Late Anglo-Saxon (p<0.001) and Medieval (p<0.001) populations (see Fig. 5.2). Cuspal enamel 

thickness (CT) did not differ significantly between any of the populations (see Fig. 5.3), but the 

lateral enamel thickness (LT) of the modern day population was significantly thicker than the Roman 

population (p = 0.04; see Fig. 5.3). No significant trends were found in RET (p < 0.24), CT (p < 0.21) (p 

< 0.27), or LT measurements across the 2000 years represented in this sample (see Table 5.5). 
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Table 5.5. Results of the Kruskal-Wallis, post-hoc pairwise Dunn-Bonferroni, and Jonckheere-Terpstra tests for the comparison of RETs, 
LTs, and CTs between each population. The Dunn-Bonferroni significance values have been adjusted to account for Bonferroni corrections. 
Inclusion of - and + on Jonckheere-Terpstra results indicate a trend towards reduction or increase respectively. Significant results are 
marked in bold.  

Population N Mean Min Max S.D Kruskal-
Wallis Sig. 

Dunn-Bonferroni Adjusted Sig. Jonckheere-
Terpstra 

Sig. 
Early 

Anglo-
Saxon 

Late 
Anglo-
Saxon 

Medieval Modern 
day 

Relative enamel thickness 

Roman  6 17.02 14.70 19.16 1.74 0.00* 0.13 1.00 1.00 1.00 +0.24 

Early Anglo-
Saxon 

7 21.52 19.00 24.01 2.05  0.00* 0.00* 0.98 

Late Anglo-
Saxon 

8 16.21 13.79 18.20 1.48   1.00 0.39 

Medieval 22 16.30 12.56 21.04 2.03    0.14 

Modern day 10 19.24 13.40 27.24 3.77     

Lateral enamel thickness 

Roman  10 1.34 1.14 1.50 0.12 0.04 1.00 1.00 1.00 0.04 +0.21 

Early Anglo-
Saxon 

11 1.39 1.09 1.77 0.19  1.00 1.00 0.20 

Late Anglo-
Saxon 

19 1.44 1.24 1.68 0.11   1.00 0.81 

Medieval 27 1.44 1.07 1.86 0.21    0.24 

Modern day 15 1.68 1.17 2.36 0.57     

Cuspal enamel thickness 

Roman 6 1.46 1.21 1.78 0.20 0.07  -0.27 

Early Anglo-
Saxon 

8 1.18 0.80 1.77 0.34 

Late Anglo-
Saxon 

14 1.17 0.80 1.53 0.23 

Medieval 27 1.16 1.07 1.86 0.22 

Modern day 15 1.27 0.57 2.27 0.57 

*p<0.001  
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Fig. 5.2. Plot of RET data distribution of each population. The central line displays the median 
thickness for the associated population. 

 

Fig. 5.3. Plot of CT data distribution of each population. The central line displays the median thickness 
for the associated population. 
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Fig. 5.4. Plot of LT data distribution of each population. The central line displays the median thickness 
for the associated population. 

 

5.3.3 Cuspal daily secretion rates 

Table 5.6 reports the mean inner, mid, and outer cuspal DSRs of each population along with the 

standard deviations and results of the Kruskul-Wallis, post-hoc Dunn-Bonferroni pairwise 

comparisons, and Jonckheere-Terpstra tests.  

Inner cuspal DSRs show a significant slowing trend of ameloblast daily secretion rates across 

time (p<0.001). The modern day mean is 0.52µm/day slower than the Roman mean rate (p<0.001; 

see Fig. 5.5). The mean DSRs from the modern day sample were also significantly slower than both 

the Roman (p<0.001) and Early Anglo-Saxon (p<0.001) secretion rates. The Late Anglo-Saxon DSRs 

were significantly slower than the Roman (p=0.04) and Early Anglo-Saxon (p=0.04) secretion rates. 

Differences between the DSRs of inner enamel of the more ancient populations were less marked. 

Rates only increased slightly from the inner enamel of the Roman period to the Early Anglo-Saxon 

period (0.03µm/day mean difference), and only a 0.02µm/day difference between the Late Anglo-

Saxon and Medieval population.  
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Mid cuspal DSR’s show a similar significant trend of slowing (p<0.001); the modern day mean 

is 0.69µm/day slower than the Roman mean (Fig. 5.5). DSRs from this enamel region in the Roman 

sample were significantly faster compared to the Late Anglo-Saxon (p = 0.04), Medieval (p<0.001), 

and the modern day (p<0.001) populations. Rates did not differ significantly between the Late Anglo-

Saxon and Medieval populations.  

Outer cuspal DSRs also showed a significant slowing trend (p<0.001); the modern day mean 

is 0.81µm/day slower than the Roman mean, which represents the most significant decrease in 

cuspal DSR across this 2000 year period (see Fig. 5.5). Pairwise comparisons revealed significant 

differences between five pairs of populations. The mean DSRs were significantly faster in the Roman 

population compared to the Late Anglo-Saxon (p = 0.02), Medieval (p<0.001), and modern day 

(p<0.001). The Early Anglo-Saxon population also presented significantly faster secretion rates than 

the Medieval (p = 0.01) and the modern day (p<0.001) populations. Again, the Roman and Early 

Anglo-Saxon, and Late Anglo-Saxon and Medieval population pairs showed notably less reduction in 

secretion rates over time – 0.16µm/day and 0.09µm/day respectively. 
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Table 5.6. Results of the Kruskal-Wallis, post-hoc pairwise Dunn-Bonferroni, and Jonckheere-Terpstra tests for the comparison of cuspal DSRs (µm/day) 
between each population. The Dunn-Bonferroni significance values have been adjusted to account for Bonferroni corrections. Inclusion of - on 
Jonckheere-Terpstra results indicate a trend towards reduction. Significant results are marked in bold. 

Enamel 
Region 

Population N Mean Min Max S.D Kruskal-
Wallis Sig. 

Dunn-Bonferroni Adjusted Sig. Jonckheere-
Terpstra Sig. Early 

Anglo-
Saxon 

Late 
Anglo-
Saxon 

Medieval Modern 
day 

Inner 
 
 
 

Roman  7 3.72 3.23 4.02 0.26 0.00* 1.00 0.04 0.09 0.00* -0.00* 

Early Anglo-
Saxon 

7 3.69 3.48 4.01 0.19  0.04 0.90 0.00* 

Late Anglo-
Saxon 

17 3.34 3.02 4.20 0.27   1.00 1.00 

Medieval 23 3.36 2.82 3.84 0.24    1.00 

Modern day 14 3.20 2.54 3.99 0.38     

Mid 
 
 
 

Roman  8 4.21 4.07 4.58 0.42 0.00* 1.00 0.00* 0.00* 0.00* -0.00* 

Early Anglo-
Saxon 

7 3.98 3.69 4.40 0.25  0.25 0.40 0.06 

Late Anglo-
Saxon 

18 3.65 3.41 4.66 0.32   1.00 1.00 

Medieval 27 3.65 2.91 4.13 0.28    1.00 

Modern day 15 3.52 2.96 4.18 0.35     

Outer 
 
 
 

Roman  7 4.56 4.12 4.76 0.22 0.00* 1.00 0.02 0.00* 0.00* -0.00* 

Early Anglo-
Saxon 

6 4.43 4.20 4.81 0.29  0.10 0.01 0.00* 

Late Anglo-
Saxon 

18 3.99 3.41 4.66 0.32   1.00 1.00 

Medieval 27 3.90 3.13 4.76 0.28    1.00 

Modern day 15 3.75 3.15 4.58 0.37     

*p < 0.001 
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Fig. 5.5. Circles depict the mean cuspal DSRs of each enamel region for each population. The figure 
illustrates the general decrease in secretion rates over time. The error bars display one standard 
deviation either side of the mean. 

 

5.3.4 Lateral daily secretion rates 

Table 5.7 reports the mean inner, mid, and outer lateral DSRs of each population along with the 

standard deviations and results of the Kruskal-Wallis, post-hoc Dunn-Bonferroni pairwise 

comparisons, and Jonckheere-Terpstra tests.  

The inner lateral DSR data show DSRs slow over time, with a significant negative trend from 

the more ancient to the modern period (p < 0.01; see Fig. 5.6). The modern day mean DSR is 

0.52µm/day slower than the Roman mean. The Late Anglo-Saxon and Medieval populations again 

presented similar secretion rates with no significant differences. Dunn-Bonferroni revealed a single 

Modern 
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difference where the Roman population presented significantly faster secretion rates compared to 

the modern day population (p<0.001). 

Secretion rates slowed slightly between the more ancient to the modern period in the mid 

lateral DSR data, but the trend was insignificant (see Fig. 5.6). The mean secretion rate of the 

modern day population was 0.77µm/day slower than the Roman population. However, the Roman 

population presented significantly faster DSRs than the Late Anglo-Saxon (p<0.001), Medieval 

(p<0.001), and the modern day (p<0.001) populations. The Early Anglo-Saxon population also 

presented significantly faster secretion rates than the modern day population (p<0.001). The 

Medieval and Late Anglo-Saxon populations again presented similar secretion rates (only 

0.02µm/day mean difference). 

Outer lateral DSRs show a significant negative, slowing trend over time (p<0.001; see Fig. 

5.6). The modern day mean rate was 0.86 µm/day slower than the Roman mean, which like the 

cuspal outer DSR, represents the most significant slowing. The mean DSRs were significantly faster in 

the Roman population compared to the Late Anglo-Saxon (p<0.001), Medieval (p<0.001), and 

modern day (p<0.001). The Early Anglo-Saxon population also presented significantly faster 

secretion rates than the Medieval (p = 0.03) and the modern day (p<0.001) populations. Again, the 

Late Anglo-Saxon and Medieval population pairs were nearly identical (0.01 µm/day mean 

difference). 
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Table 5.7. Results of the Kruskal-Wallis, post-hoc pairwise Dunn-Bonferroni, and Jonckheere-Terpstra tests for the comparison of lateral DSRs 
(µm/day) between each population. The Dunn-Bonferroni significance values have been adjusted to account for Bonferroni corrections. 
Inclusion of - on Jonckheere-Terpstra results indicate a trend towards reduction. Significant results are marked in bold. 

Enamel 
Region 

Population N Mean Min Max S.D Kruskal-
Wallis Sig. 

Dunn-Bonferroni Adjusted Sig. Jonckheere-
Terpstra Sig. Early 

Anglo-
Saxon 

Late 
Anglo-
Saxon 

Medieval Modern 
day 

Inner 
 
 
 

Roman  11 3.66 3.30 4.36 0.28 0.00* 0.53 0.11 0.06 0.00* -0.01 

Early Anglo-
Saxon 

12 3.42 3.11 4.03 0.20  1.00 1.00 0.11 

Late Anglo-
Saxon 

19 3.36 2.87 3.94 0.25   1.00 0.24 

Medieval 29 3.36 2.84 3.81 0.26    0.09 

Modern day 15 3.14 2.84 3.66 0.21     

Mid 
 
 
 

Roman  11 4.19 3.67 4.78 0.33 0.00* 1.00 0.00* 0.00* 0.00* -0.64 

Early Anglo-
Saxon 

12 3.85 3.54 4.21 0.20  0.78 0.48 0.00* 

Late Anglo-
Saxon 

19 3.63 2.86 4.14 0.33   1.00 0.65 

Medieval 29 3.65 3.12 4.29 0.29    0.09 

Modern day 15 3.42 2.82 4.04 0.32     

Outer 
 
 
 

Roman  11 4.57 3,97 5.13 0.34 0.00* 1.00 0.00* 0.00* 0.00* -0.00* 

Early Anglo-
Saxon 

12 4.24 3.85 4.63 0.21  0.08 0.03 0.00* 

Late Anglo-
Saxon 

19 3.88 2.89 4.57 0.39   1.00 0.85 

Medieval 27 3.89 3.47 4.50 0.26    0.83 

Modern day 15 3.71 3.13 4.99 0.42     

*p<0.001 
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Fig. 5.6. Circles depict the mean lateral DSRs of each region and population, displaying their general 
decrease over time. The error bars display one standard deviation around the mean. 

 

5.4 Discussion 

With the exception of the Early Anglo Saxon sample, all three measures of first molar enamel 

thickness (RET, CT, and LT) remained generally similar when compared between the British 

populations that spanned a 2000-year period of time. In contrast, there was a significant trend 

towards slower DSRs in samples from the more recent periods when equivalent regions of enamel 

were compared between populations, with the exception of the mid-lateral region. 

 

5.4.1 Relative enamel thickness 

All measures of RET, CT, and LT lie within previously published ranges for human permanent first 

molars (Macho and Berner, 1993; Schwartz, 2000a; Suwa and Kono, 2005; Reid and Dean, 2006; 

Modern 
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Smith et al., 2006a; Olejniczak et al., 2008; Mahoney, 2010) (Table 5.8). Compared to the other 

modern human groups that have been studied, all the British populations (except the Early Anglo-

Saxons) have fairly thin first molar RET. Smith and colleagues (2006a) published mean RETs ranging 

from 20.16 (maxillary Medieval Danish M1s) to 22.62 (mandibular modern South African M1s). A 

study by Olejniczak and colleagues (2008) presented mandibular modern human mesial cusp RET 

ranges more similar to those presented here of 15.87 to 17.05. Here, the Early Anglo-Saxons had a 

mean RET of 21.52, and while the other populations ranged from 16.21 to 19.24 (see Table 5.5). The 

Early Anglo-Saxon values are still well within the range of published modern human RETs.  

 

 

Table 5.8. Ranges/means (± 1SD) for modern human M1 RET, CT, and LT.  

Source/Population N RET CT (mm) LT (mm) 

Past Studies 

Smith et al., 2006a† 37 13.95-23.86   

Smith et al., 2006a‡ 55 11.67-22.62   

Olejniczak et al., 2008†* 6 17.05   

Olejniczak et al., 2008‡* 1 15.87   

Schwartz, 2000a¶ 9  1.77 ± 0.48  

Reid and Dean, 2006§ 15  1.21 ± 0.241  

Reid and Dean, 2006¶ 37  1.09 ± 0.113  

Mahoney, 2010¶ 69  1.13 ± 0.22 1.43 ± 0.19 

Suwa and Kono, 2005§ 31  0.85 ± 0.206 1.47 ± 0.119 

Suwa and Kono, 2005¶ 37  1.12 ± 0.160 1.44 ± 0.113 

Macho and Berner, 1993§ 21   1.36 ± 0.17 

 

This study 

Roman 6-10 17.02 ± 1.74 1.46 ± 0.20 1.34 ± 0.12 

Early Anglo-Saxon 7-11 21.52 ± 2.05 1.18 ± 0.34 1.39 ± 0.19 

Late Anglo-Saxon 8-19 16.21 ± 1.48 1.17 ± 0.23 1.44 ± 0.11 

Medieval 22-27 16.30 ± 2.03 1.16 ± 0.22 1.44 ± 0.21 

Modern day 10-15 19.24 ± 3.77 1.27 ± 0.57 1.68 ± 0.57 
† data for maxillary M1s 

‡ data for mandibular M1s 

§ data for paracone cusp 

¶ data for metaconid cusp 

* includes 3D measurements 

 

Despite falling within previously reported ranges, the RET value for the Early Anglo-Saxon 

sample was significantly greater than Late Anglo-Saxon (p<0.001) and Medieval (p<0.001) 

populations (see Fig. 5.2; Table 5.5). It is possible that this thicker enamel in the Early Anglo-Saxon 
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population compared to the late Anglo-Saxon and Medieval periods might reflect a shift to a diet 

containing a high prevalence of harder or abrasive foodstuffs (e.g. Dumont, 1995; Hlusko et al., 

2004; Grine, 2005; Pampush, et al., 2013). Alternatively, these slight but significant variations 

between populations could relate to differences in the linear dimensions of the tooth crown.  This 

seems less likely though, as metric dimensions of first permanent molars for Anglo-Saxon and 

Medieval populations do not seem to vary greatly between these time periods (Aris et al., 2018).  

Comparative analyses of non-human primate (e.g. Molnar and Gantt, 1977; Grine, 1981; 

Lucas, et al., 1985, 2008, 2013; Martin et al., 2003; Pampush et al., 2013) and human populations (Le 

Luyer et al., 2014) have found that those groups consuming foodstuffs that incur heavy wear tend to 

have thicker first molar enamel and greater RET.  Given the coastal location of the Early Anglo-Saxon 

population, it is possible this population had a greater dependence on marine foods compared to 

the later Anglo-Saxon populations, resulting in greater attrition. Isotopic analysis by Mays and 

Beavan (2012) has identified increased levels of marine food dependency in Early Anglo-Saxon 

samples. High levels wear have also been linked to increased consumption of grit from sand in 

marine diets (Littleton and Frohlich, 1993). It is therefore possible that the greater RET of the Early 

Anglo Saxons could relate to a more abrasive diet.  

Migration and gene flow might have also contributed to the difference in RET between the 

Early Anglo-Saxon and Late Anglo-Saxon and Medieval samples. Rapid increases in migration into 

Britain followed the end of Roman rule, with particular influx of Germanic people corresponding 

with political and cultural upheavals (Scull, 1993; Privat, O’Connell, and Richards, 2002; Lightfoot et 

al., 2009). This high level of immigration from mainland Europe may have also factored into the high 

RET observed in the Early Anglo-Saxon sample, if the immigrating groups had relatively thicker RET 

than those of the indigenous populations. Shifts towards more abrasive marine diets in the Anglo-

Saxon period, and the migration and subsequent gene flow following the end of Roman rule in 

Britain provide two explanatory options for the high RET of the Early Anglo-Saxon population. 

However, further research into this period is required to support of refute these hypotheses. 

 

5.4.2 Linear measures of enamel thickness 

There were few differences in cuspal and lateral thickness between populations and no significant 

directional trends over time (see Table 5.5). The only significant difference (p = 0.04) was thicker 

lateral enamel in the modern sample (1.68 ± 0.57 mm) compared to the Roman sample (1.34 ± 0.12 

mm) (see Table 5.5). Otherwise, both LT and CT remained relatively consistent across all populations 
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with means ranging from 1.34mm to 1.68mm and 1.16mm to 1.46mm respectively (see Table 5.5). 

Given the similarity of RET values for these populations, it is unsurprising that their linear enamel 

thickness measures are similarly indistinguishable. This is especially true considering that the 

maxillary paracone and mandibular metaconid experience less pressure during mastication 

compared to other mesial cusps of M1 teeth (protocone and protoconid) and are therefore less 

likely to undergo selective pressure (Macho and Berner, 1993; 1994; Shellis, et al., 1998; Grine, 2005; 

Kelley and Swanson, 2008).  

 

5.4.2.1 Cuspal enamel thickness 

Despite slight variation between populations, all CT means fell within the known ranges for modern 

human cuspal thickness (see Table 5.8), including those of previously analysed modern-day 

archaeological British (Mahoney, 2008) and Slavic (Schwartz, 2000a) populations and geographically 

diverse modern populations including those from southern Africa (Reid and Dean, 2006), North 

America, Japan, and Germany (Suwa and Kono, 2005).  

The CT data shows no significant directional trends over the time periods considered here 

(see Table 5.5; Fig. 5.3). While the Roman mean CT was the thickest at 1.46mm, and the remaining 

archaeological populations were thinner, ranging from 1.16mm to 1.18mm, there were no 

discernible temporal trends. Although the Early Anglo-Saxon had high RET values compared to the 

other populations, it seems that they possessed a reduced volume of dentine encapsulated by the 

enamel cap (Table 5.2) resulting in a larger RET, rather than a noticeable increase in enamel at any 

crown region.  

 

5.4.2.2 Lateral enamel thickness 

The lateral thicknesses of the first molar cusps analysed here are comparable to those in the 

published literature (see Table 5.4) (Macho and Berner, 1993; Suwa and Kono, 2005; Mahoney, 

2010). The Roman population presents significantly thinner LTs than the modern-day sample (p = 

0.04, Table 5.5). The biological and evolutionary significance of this difference is difficult to identify. 

However, lateral enamel undergoes increased stress from increasing occlusal loads, resulting in 

higher levels of hoop stress that can cause margin fractures (Lawn and Lee, 2009). Interspecific 

analyses of lateral first molar thickness have suggested that the thickening of lateral aspects of first 

molars cusps could be related to dietary differences between modern humans and extinct members 

of the Homo genus (Pan et al., 2016). The significant thickening of enamel between the Roman and 
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modern-day LTs could relate to a shift in mechanical demands of food. However, there was no 

significant trend to the changes in LT across the 2000 year periods, so this possibility should be 

considered with caution. 

 

5.4.3 Daily secretion rates 

Daily secretion rates fall within the known ranges of published modern human enamel DSRs (Beynon 

et al., 1991a; Dean 1998; Lacruz et al., 2006; Lacruz and Bromage, 2006; Mahoney, 2008) (Table 5.9). 

 

Table 5.9. Mean modern human molar DSRs (µm/day ± 1SD) for cuspal and lateral regions. 

Source/Population N Inner Mid Outer 

Cuspal DSRs 
Past studies 

Beynon et al (1991b)† 11-15 2.7 ± 0.4 4.3 ± 0.5 5.1 ± 0.7 

Lacruz and Bromage (2006)† 10 2.80 ± 0.43 4.50 ± 0.55 5.20 ± 0.58 

Smith et al (2007b) 21 2.55 4.34 5.45 

Mahoney (2008)‡ 13 3.01 ± 0.48 4.26 ± 0.54 4.61 ± 0.64 

 
This study 

Roman† 7 3.72 ± 0.26 4.21  ± 0.42 4.56 ± 0.22 

Early Anglo-Saxon† 6-7 3.69 ± 0.19 3.98 ± 0.25 4.43 ± 0.29 

Late Anglo-Saxon† 17-18 3.34 ± 0.27 3.65 ± 0.32 3.99 ± 0.32 

Medieval† 23-27 3.36 ± 0.24 3.65 ± 0.28 3.90 ± 0.28 

Modern day† 14-15 3.20 ± 0.38 3.52 ± 0.35 3.75 ± 0.37 

Lateral DSRs 
Past studies 

Beynon et al (1991b) 12-15 2.6 ± 0.5 4.0 ± 0.4 5.0 ± 0.5 

Lacruz and Bromage (2006) 10 2.70 ± 0.42 4.30 ± 0.67 4.80 ± 0.67 

 
This study 

Roman† 11 3.66 ± 0.28 4.19 ± 0.33 4.57 ± 0.34 

Early Anglo-Saxon† 12 3.42 ± 0.20 3.85 ± 0.20 4.24 ± 0.21 

Late Anglo-Saxon† 19 3.36 ± 0.25 3.63 ± 0.33 3.88 ± 0.39 

Medieval† 27-29 3.36 ± 0.26 3.65 ± 0.29 3.89 ± 0.26 

Modern day† 15 3.14 ± 0.21 3.42 ± 0.32 3.71 ± 0.42 
†data for M1 enamel 
‡data for the metaconid cusp 
 

5.4.3.1 Daily secretion rates compared between enamel regions 

The daily enamel growth rate of each population followed the expected pattern of ameloblast 

activity, with increasing DSRs from inner to outer enamel regions (e.g. Schwartz et al., 2001; 

Mahoney, 2008). Lacruz and Bromage (2006) reported an increase in the mean secretion rates of 10 
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modern human molars, when compared between the inner to mid, and mid to outer-cuspal enamel 

region (mean increase in the mean secretion rate of 1.70 and 0.70µm/day, respectively). Similar 

increases were observed by Mahoney (2008) in 13 British Bronze Age mandibular first molars, where 

metaconid secretion rates increased by 1.25µm/day between the inner and mid regions and 

0.35µm/day between the mid and outer-cuspal areas. While this pattern was present in the modern 

clinical sample, the rate of increase was not nearly as steep as reported elsewhere (mean increase of 

0.32 and 0.13µm/day between inner to mid and mid to outer, respectively; see Table 5.6). This 

suggests that such rapid increases in DSRs through the inner to outer regions are not always present 

in modern human first molars.  

 

5.4.3.2 Cuspal daily secretion rates compared between populations 

Cuspal enamel secretion rates decreased over time (p<0.001; see Table 5.6). A significant decrease in 

cuspal DSRs over such a short period of time has not been documented previously in modern human 

populations for permanent teeth. There was however a notable similarity between the mean cuspal 

DSRs of the Roman and Early Anglo-Saxon populations (respectively: inner +0.03µm/day, mid 

+0.23µm/day, outer +0.13µm/day), and between the Late Anglo-Saxon and Medieval populations 

(respectively: inner +0.02µm/day, mid 0.00µm/day, outer +0.09µm/day).  Considering these 

population pairs are dated to similar periods (Roman/Early Anglo-Saxon – 70-400AD/500-600AD; 

Late Anglo-Saxon/Medieval – 800-1200AD/1100-1600AD) this is unsurprising.  

 

5.4.3.3 Lateral daily secretion rates compared between populations 

Like cuspal DSRs, lateral DSRs slowed over the last 2000 years. However, this trend was only 

significant in the inner and outer-cuspal regions (see Table 5.7). Similar to the cuspal DSRs, there was 

minimal difference between the mean DSRs of the Late Anglo-Saxon and Medieval populations 

across all regions of lateral enamel (inner 0.00µm/day; mid 0.02µm/day; outer 0.01µm/day). This is 

unsurprising, considering these two populations are dated to overlapping periods (800-1200AD and 

1100-1600AD respectively). Analysis of the lateral thicknesses of the M1 cusps also identified 

minimal variation between the British populations presented here and those within published 

literature (see Table 5.8) (Macho and Berner, 1993; Suwa and Kono, 2005; Mahoney, 2010). Given 

the large number of significant variations observed in DSRs that are linked to enamel of the same 

relative thickness (both cuspal and lateral), it appears that underlying growth mechanisms of enamel 
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can change even though the final enamel thickness does not, when compared between human 

populations. 

The volume of published modern human lateral enamel thickness data is considerably 

smaller than that of cuspal regions (see Table 5.9). The lateral DSRs for the British populations 

included here generally fall a bit above the published inner means, below the middle means, and 

below the outer means (see Table 5.9). However, the limited available data regarding M1 lateral 

enamel DSRs (Beynon et al., 1991b; Lacruz and Bromage, 2006) is too small to be considered 

representative of modern humans as a species. Thus, deviation from the published ranges is not 

surprising when analysing five new human populations. 

 

5.4.4 Relationship between DSRs and linear thicknesses 

Previous research has considered potential relationships between DSRs and enamel thickness within 

human first molars (Mahoney, 2008). Additional papers have considered other periodic biorhythms 

associated with enamel growth, in particular, Retzius periodicity (a circaseptum enamel growth 

pattern) has been associated with first molar enamel thickness. In permanent first molar slower 

periodicities have been found to predict thicker enamel (Mahoney et al., 2018). The opposite has 

been observed in deciduous molars (Mahoney et al., 2018). However, the results presented here 

suggest that there is not a strong connection between daily enamel secretion rates and thickness 

when compared between samples of first molars from different periods. While lateral and cuspal 

DSRs slowed significantly over this 2000 year time period in Britain, there was no complimentary 

change in RET, LT, and CT over the same period of time (see Tables 5.5, 5.6, and 5.7).  

 Lacruz and Bromage (2006) found that thicker enamel in fossil hominins is associated with 

faster secretion rates. However, the results presented here suggest that, while first molar enamel 

thickness can remain generally similar across time between human populations, DSRs may fluctuate 

independently. This is most evident in the lateral first molar enamel, where the modern-day sample 

was found to have significantly thicker lateral enamel than Romans (see Table 5.5) yet have 

significantly slower DSRs than Romans in every single enamel region (see Tables 5.6 and 5.7), which 

is opposite of what would be expected given the results of Lacruz and Bromage (2006). Similarly, the 

Roman and Medieval populations show no significant RET, LT, or CT differences (see Table 5.5), but 

the Romans had significantly faster DSRs in the cuspal and lateral middle and outer enamel regions 

(see Tables 5.6 and 5.7). 
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Given the numerous significant differences observed in DSRs and the lack of significant 

differences in enamel thickness measures from the same populations, it appears that inter-

population variations in DSRs and enamel thickness are not tightly correlated. This could be the 

result of a number of factors, including but not exclusive to: features that influence enamel thickness 

changes between groups (e.g. dietary changes) do not affect DSRs in the same way or at all; enamel 

DSRs are more readily plastic than thickness and are therefore able to significantly change between 

groups over shorter periods of time; difference in genetic diversity between the populations 

analysed had a greater influence on enamel DSRs than thicknesses. Future research should therefore 

consider if other developmental variables such as ameloblast lifespan, crown formation time, 

periodicity, and/or enamel extension rate, are more strongly linked to enamel thickness when 

compared between different populations. 

 

5.4.5 Conclusions 

Modern human enamel thickness has remained relatively stable across British populations 

throughout the last 2000 years. Conversely, the underlying enamel secretion rates of both the cuspal 

and lateral enamel regions present a significant slowing trend from the Romano-British period to 

present. Thus, it seems secretion rates can vary significantly over relatively short periods of time in 

modern human populations. Finally, the differences in DSRs were independent of enamel thickness, 

suggesting that factors influencing the rate of enamel growth do not necessarily influence the final 

thickness of enamel, when compared between populations.  

 

 

 

 

 

 

 

 

 

 

 

 

 



76  
 

CHAPTER 6: RESEARCH CHAPTER – ENAMEL GROWTH RATES OF ANTERIOR TEETH IN MALES AND 

FEMALES FROM MODERN AND ANCIENT BRITISH POPULATIONS  

Published in the American Journal of Physical Anthropology. 

Co-authored with: Dr Patrick Mahoney and Dr Chris Deter 

 

Abstract 

Objectives 

This study explored biological sex differences in the regional daily growth rates of human anterior 

enamel from modern and ancient populations in Britain. 

Methods 

Maxillary permanent first incisors (n=80) and upper canine (n=69) from Roman, Anglo-Saxon, 

Medieval, and Modern day populations were analysed using histological methods. Daily secretion 

rates (DSRs) were collected for inner, mid, and outer regions of cuspal and lateral enamel. Modern 

day samples were of known sex, archaeological individuals had sex determined using standard 

osteological methods. Variation in DSRs between the sexes, both between and within populations, 

was tested for using parametric and non-parametric tests. 

Results 

When all samples were pooled, there was no significant difference between males and females. 

Similarly no significant differences in DSRs were identified between male and females within each 

population. When DSRs were compared between the populations, DSRs decreased from the more 

ancient to the more recent populations for males, and for females. More inter-population 

differences were observed in males. 

Discussion 

This study presents evidence for the relative consistency of enamel DSRs between male and female 

groups within each British population. Inter-population analyses found DSRs slowed significantly 

between Roman and modern day populations for both sexes, with male DSRs showing the greatest 

variation between populations. 
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6.1 Introduction 

Studies of enamel daily secretion rates (DSRs) of human teeth have tended to focus on permanent 

molars (e.g. Beynon et al., 1991b; Lacruz and Bromage, 2006; Mahoney, 2008; Aris et al., 2020b) and 

deciduous dentition (e.g. Birch and Dean, 2009; Mahoney, 2012, 2015). Relatively less research has 

been undertaken on growth rates of the anterior dentition (incisors and canines) (e.g. Fitzgerald, 

1998; Reid et al., 1998a; Schwartz et al., 2001). Of these studies only a few tested for biological sex 

differences in the daily rate at which enamel forms (Schwartz et al., 2001). Schwartz and colleagues 

(2001) tested for sex differences in permanent canine DSRs in a sample of humans and non-human 

hominoids. Their analysis of 16 mandibular human canines revealed no difference in DSRs when 

compared between the sexes (Schwartz et al., 2001), though whether there are sex differences in 

incisor enamel growth rates has not been examined.  

The aim of this study is to explore sex differences in DSRs from anterior teeth in ancient and 

modern populations. First, DSRs from equivalent enamel regions of permanent upper first incisors 

and upper canines will be compared between males and females using a pooled sample of all British 

populations. Second, DSRs will be compared between the sexes within each population. Third, DSRs 

will be compared between the populations, for males, and then for females. 

 

6.1.1 Intraspecific study of human enamel secretion rates 

The majority of human anterior tooth DSR analyses have focussed on deciduous dentition. Research 

by Fitzgerald and Hillson (2009) conducted histological analysis on 36 infants from 1st century AD 

Greece in order to study variations in appositional growth rates of enamel. Birch and Dean (2009) 

conducted a similar analysis with the aim of mapping the differences in DSRs across the varying 

regions of the enamel cap for mandibular deciduous tooth types including anterior teeth. They 

found that deciduous enamel DSRs varied similarly to permanent enamel, with DSRs increasing with 

proximity to both the cuspal and outer enamel areas. More recently Mahoney presented deciduous 

anterior tooth DSRs (Mahoney, 2012, 2015). Across Medieval British (Mahoney, 2012, 2015) and 

modern day Swedish samples (Mahoney, 2015), the mean DSRs presented were notably slower than 

those previously presented (Birch and Dean, 2009; Fitzgerald and Hillson, 2009). While these papers 

only concern deciduous teeth, they do highlight the inter-population differences present within 

anterior tooth types concerning their daily growth rates for modern humans.  
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Schwartz and colleagues (2001) compared DSRs between human males and females as part 

of a study into the developmental mechanisms underlying canine dimorphism in extant hominoids. 

Their analysis of 16 mandibular human canines revealed the expected pattern of enamel secretion 

whereby rates were fastest in the cuspal region and with distance from the EDJ.  Rates were 

consistent when compared between human males and females. It was also found that there was no 

significant difference between the DSRs of equivalent regions between the sexes (Schwartz et al., 

2001). Incisor enamel DSRs were not an aim of their study, so little is known about this aspect of 

daily enamel growth in this tooth type. In particular, variation between male and female groups 

within a wider selection of human populations, between the same populations, and for data 

gathered from incisor enamel, has yet to be researched.  

 

6.2 Materials and methods 

6.2.1 Dental sample 

Maxillary permanent anterior teeth (n = 149) were selected from British populations that date to 

archaeological and modern periods. The incisor sample (n = 80) consisted of maxillary first incisors: 

Roman (n = 10); Early Anglo Saxon (n = 22); Late Anglo-Saxon (n = 10); Medieval (n = 26); Modern 

day (n = 12). The maxillary canine sample (n = 69) consisted of Roman (n = 11), Early Anglo Saxon (n = 

20), Late Anglo-Saxon (n = 10), Medieval (n = 16) and Modern day (n = 12). Right teeth were selected 

unless they were unavailable or the left was better preserved.  

 

6.2.2 Estimating sex 

The modern day dental samples were all of known biological sex. The archaeological samples were 

assigned sex using established osteological methods of the skull and pelvis, utilising a 1-5 scale (1 = 

definitely female; 2 = likely female; 3 = indeterminate; 4 likely male; 5 = definitely male; see 

Appendix B) (Phenice, 1969; Ferembach, 1980; Krogman and Iscan, 1986; Schwartz, 1995; Loth and 

Henneberg, 1996; Patriquin et al., 2005). Sex assessment using the skull involved assessing 25 

features known to be sexually dimorphic (as defined by: Ferembach, 1980; Krogman and Iscan, 1986; 

Schwartz, 1995; Loth & Henneberg, 1996). Assessment of the pelvis involved analysing a further 20 

sexually dimorphic skeletal features (as defined by: Phenice, 1969; Ferembach, 1980; Krogman and 

Iscan, 1986; Schwartz, 1995) were also analysed. In addition, where the pelvis was not fragmented 

metric analyses were also used to give a sex determination score (Patriquin et al., 2005). Once all 

viable features of the skull and pelvis had been assigned a 1-5 score, all scores for an individual were 
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given an average which equated to the overall sex assessment. Individuals with a clear sex 

determination (i.e. not indeterminate) were then used for further analyses. Where possible all sex 

assessment methods were utilised, however in some cases methods could not be used due to the 

preservation of skeletal remains. For this reason only individuals with at least well preserved cranial 

or pelvic features were utilised. 

 

6.2.3 Daily secretion rates 

Using standard methods, the DSRs for both the upper first incisors and upper canine were calculated 

for the inner, mid, and outer areas of the lateral and cuspal enamel of each tooth (Fig. 6.1) (e.g. 

Beynon et al., 1991a; Schwartz et al., 2001; Mahoney, 2008). Please note that the angle of prism 

pathways vary slightly between anterior tooth types and molars. As inner, mid, and outer areas of 

enamel cap regions are defined by these pathways they are located slightly differently in dental 

cross sections; as a result differences can be noted between Figures 5.1 and 6.1. All cross striation 

measurements were taken between 20x and 40x magnification (see Fig. 6.2). 
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Fig. 6.1. Cross-sectional diagram of an upper first incisor displaying the breakdown of cuspal and 

lateral enamel into areas for DSR calculation. The left superimposition shows the cuspal enamel. The 

right superimposition shows lateral enamel. The red squares indicate the regions where DSR 

measurements were taken for the, moving upwards, inner, mid, and outer areas.  
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Fig. 6.2. Cross-sectional diagram of an upper canine. A. Appositional enamel and B. Imbricational 

enamel. The top superimposition shows the mid-outer lateral region. The bottom superimposition 

shows cross striations, indicated by the small white arrows, of the outer lateral region. Both images 

were captured at 20x magnification under polarised light. 

 

6.2.4 Statistical analysis 

Mann-Whitney U tests were run to identify any differences between the sexes in regional DSRs of 

upper first incisors and upper canines. Where regional DSRs presented adequate sample sizes, and 

were consistent between tooth types in all populations, they were pooled into a single upper 

anterior tooth sample set for subsequent analyses. A series of Independent Samples T-tests were 

then conducted to test for differences in DSRs between the male and female groups across all 

populations. Further Mann-Whitney U tests were then conducted to search for differences between 

males and females within each of the five populations separately.  

Kruskal-Wallis tests with Dunn-Bonferroni pairwise comparisons and Jonckheere-Terpstra 

tests (for the majority of DSRs), and a series of Mann-Whitney U tests (for cuspal DSRs), one each for 

the male and female samples, were conducted to compare DSRs between the populations. This was 
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undertaken to identify significant in DSRs in males when compared between the time periods, and in 

females when compared between the same periods. In the few cases where n<5 for a given sample 

(where n = number of teeth), mean values and standard deviations were compared between groups.  

While non-parametric tests were required in most cases, parametric tests were conducted 

where sample sizes allowed in order to strengthen the statistical analyses where possible. All 

statistical analyses were performed using SPSS 24.0. 

 

6.3 Results 

6.3.1 Differences between tooth types 

Results of the Mann-Whitney U tests (see Table 6.1) revealed DSRs from equivalent enamel regions 

did not differ significantly when compared between upper first incisors and upper canines within any 

of the British populations.  As a result, the data for both tooth types were pooled to create DSRs 

from anterior teeth for each population. These DSRs from anterior teeth were used for all 

subsequent statistical analyses.  
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Table 6.1. Results of the Mann-Whitney U tests for variation between the upper first incisor and 
upper canine regional DSRs for each population. 
Population Feature Tooth (upper) N Mean S.D Sig. 

Roman Inner Lateral DSR Canine 11 3.46 0.21 0.61 

Incisor 9 3.86 0.23 

Mid Lateral DSR Canine 11 3.97 0.20 0.49 

Incisor 10 4.08 0.13 

Outer Lateral DSR Canine 11 4.41 0.24 0.34 

Incisor 10 4.50 0.16 

Inner Cuspal DSR Canine 9 3.52 0.21 0.30 

Incisor 9 3.78 0.23 

Mid Cuspal DSR Canine 9 4.17 0.27 0.27 

Incisor 10 4.12 0.11 

Outer Cuspal DSR Canine 9 4.65 0.26 0.11 

Incisor 10 4.79 0.12 

Early Anglo-
Saxons 

Inner Lateral DSR Canine 20 3.26 0.19 0.36 

Incisor 22 3.26 0.21 

Mid Lateral DSR Canine 20 3.83 0.20 0.26 

Incisor 22 3.77 0.26 

Outer Lateral DSR Canine 19 4.28 0.21 0.96 

Incisor 20 4.29 0.28 

Inner Cuspal DSR Canine 16 3.27 0.14 1.00 

Incisor 9 3.31 0.20 

Mid Cuspal DSR Canine 15 3.86 0.20 0.65 

Incisor 9 3.89 0.28 

Outer Cuspal DSR Canine 13 4.46 0.38 0.69 

Incisor 8 4.47 0.22 

Late Anglo-
Saxons 

Inner Lateral DSR Canine 10 3.40 0.18 0.34 

Incisor 10 3.58 0.11 

Mid Lateral DSR Canine 10 3.86 0.19 0.25 

Incisor 10 4.00 0.25 

Outer Lateral DSR Canine 10 4.12 0.15 0.39 

Incisor 10 4.36 0.23 

Inner Cuspal DSR Canine 9 3.51 0.21 0.20 

Incisor 8 3.34 0.17 

Mid Cuspal DSR Canine 8 3.94 0.15 0.14 

Incisor 9 4.07 0.26 

Outer Cuspal DSR Canine 6 4.35 0.16 0.35 

Incisor 7 4.49 0.22 

Medieval Inner Lateral DSR Canine 14 3.11 0.26 0.57 

Incisor 25 3.13 0.22 

Mid Lateral DSR Canine 15 3.53 0.27 0.93 

Incisor 25 3.54 0.27 

Outer Lateral DSR Canine 15 3.91 0.24 0.47 

Incisor 25 3.88 0.24 

Inner Cuspal DSR Canine 11 3.12 0.16 0.90 

Incisor 16 3.13 0.18 

Mid Cuspal DSR Canine 12 3.70 0.20 0.96 

Incisor 20 3.73 0.22 

Outer Cuspal DSR Canine 9 4.10 0.25 0.24 

Incisor 19 4.01 0.28 

Modern day Inner Lateral DSR Canine 12 2.85 0.25 0.80 

Incisor 12 3.04 0.21 

Mid Lateral DSR Canine 12 3.30 0.21 0.27 

Incisor 12 3.49 0.27 

Outer Lateral DSR Canine 11 3.60 0.23 0.15 

Incisor 12 3.72 0.25 

Inner Cuspal DSR Canine 10 2.90 0.29 0.93 

Incisor 8 3.20 0.23 

Mid Cuspal DSR Canine 10 3.18 0.22 0.21 

Incisor 8 3.54 0.22 

Outer Cuspal DSR Canine 10 3.57 0.19 0.18 

Incisor 8 3.89 0.23 
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6.3.2 Differences in DSRs between biological sex groups 

Table 6.2 reports the results of DSRs compared between biological male and females when all of the 

British populations were pooled. Independent Samples T-tests revealed no significant differences in 

DSRs when compared between males and females. Table 6.3 reports the same tests conducted 

separately for each population. There was no significant difference between the sexes when DSRs 

from equivalent regions were compared within each population. 

 

Table 6.2. Results of the Independent Samples T-tests for variation in DSRs when 
the sexes were pooled for all populations. 

Feature Sex N Mean S.D Min Max Sig. 

Inner Lateral DSR M 44 3.16 0.33 2.47 4.11 0.19 

F 39 3.31 0.32 2.45 4.24 

Mid Lateral DSR M 44 3.65 0.33 2.99 4.42 0.13 

F 41 3.80 0.31 2,86 4.29 

Outer Lateral DSR M 42 4.05 0.37 3.35 4.75 0.11 

F 40 4.15 0.40 3.03 4.81 

Inner Cuspal DSR M 32 3.24 0.33 2.41 4.16 0.69 

F 32 3.26 0.32 2.51 3.26 

Mid Cuspal DSR M 33 3.72 0.38 2.91 4.58 0.22 

F 33 3.81 0.31 2.86 4.29 

Outer Cuspal DSR M 27 4.17 0.50 3.42 5.05 0.25 

F 31 4.31 0.48 3.16 5.37 
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Table 6.3. Results of the Mann-Whitney U tests for variation in DSRs compared between the 
sexes for the upper anterior tooth sample of each population. 

Population Feature Sex N Mean S.D Min Max Sig. 

Roman Inner Lateral DSR M 8 3.62 0.22 3.35 4.11 0.79 

F 8 3.58 0.36 3.12 4.24 

Mid Lateral DSR M 8 4.04 0.18 3.67 4.28 0.84 

F 9 4.04 0.18 3.68 4.29 

Outer Lateral DSR M 8 4.48 0.17 4.28 4.75 0.77 

F 9 4.41 0.25 3.88 4.81 

Inner Cuspal DSR M 7 3.65 0.28 3.35 4.16 0.33 

F 7 3.57 0.38 3.22 4.23 

Mid Cuspal DSR M 8 4.17 0.21 3.94 4.58 0.90 

F 7 4.13 0.23 3.67 4.35 

Outer Cuspal DSR M 8 4.74 0.28 4.16 5.05 0.52 

F 7 4.72 0.12 4.53 4.92 

Early 
Anglo-
Saxons 

Inner Lateral DSR M 9 3.18 0.15 3.05 3.43 0.60 

F 13 3.39 0.13 3.11 3.62 

Mid Lateral DSR M 9 3.76 0.29 3.36 4.42 0.90 

F 13 3.96 0.19 3.48 4.17 

Outer Lateral DSR M 8 4.33 0.22 3.94 4.74 0.28 

F 12 4.40 0.19 3.96 4.69 

Inner Cuspal DSR M 5 3.25 0.15 3.05 3.43 0.35 

F 9 3.32 0.19 2.85 3.32 

Mid Cuspal DSR M 5 3.75 0.25 3.47 3.99 0.38 

F 9 3.92 0.19 3.38 4.29 

Medieval Inner Lateral DSR M 7 2.96 0.19 2.72 3.22 0.24 

F 5 3.18 0.16 2.97 3.43 

Mid Lateral DSR M 7 3.53 0.14 3.35 3.74 0.28 

F 6 3.64 0.18 3.42 3.91 

Outer Lateral DSR M 7 3.84 0.18 3.61 4.11 0.15 

F 6 4.04 0.28 3.60 4.49 

Inner Cuspal DSR M 7 3.10 0.12 2.91 3.29 0.56 

F 5 3.09 0.20 2.94 3.45 

Mid Cuspal DSR M 7 3.71 0.08 3.62 3.85 0.11 

F 6 3.81 0.26 3.34 4.09 

Modern 
day 

Inner Lateral DSR M 14 2.92 0.23 2.47 3.22 0.53 

F 10 2.99 0.28 2.45 3.32 

Mid Lateral DSR M 14 3.32 0.19 2.99 3.65 0.10 

F 10 3.46 0.31 2.86 3.80 

Outer Lateral DSR M 13 3.66 0.17 3.35 3.84 0.55 

F 10 3.66 0.33 3.03 4.06 

Inner Cuspal DSR M 9 3.00 0.32 2.41 3.34 0.86 

F 9 3.06 0.30 2.51 3.43 

Mid Cuspal DSR M 9 3.25 0.21 2.91 3.59 0.15 

F 9 3.41 0.33 2.81 3.86 

Outer Cuspal DSR M 9 3.66 0.17 3.42 3.95 0.25 

F 9 3.77 0.32 3.16 4.09 
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6.3.3 Differences in DSRs between biological sex groups and between populations 

Tables 6.4 and 6.5 report mean inner, mid, and outer DSRs for cuspal and lateral regions 

(respectively) of the upper anterior tooth samples from the male individuals of each population. In 

addition the tables include the descriptive data and results of the Kruskal Wallis and post-hoc Dunn-

Bonferroni pairwise comparisons. 

Mean DSRs from the inner cuspal enamel region of male anterior teeth were significantly 

slower in the modern day sample compared to the Roman sample.  The inner region mean DSRs of 

the male cuspal upper anterior tooth enamel slowed between the Roman and modern day samples 

by 0.40 µm/day.  This slowing displayed a followed a significant trend through time (p<0.001). The 

Roman mean DSRs were significantly faster than that of the Medieval and modern day populations 

(p<0.001). The mean DSRs of the mid cuspal male upper anterior tooth enamel between the Roman 

and modern day samples slowed by a rate of 0.92 µm/day. The trend towards slowing for the 

enamel region was also significant (p<0.001). In addition, the Roman mean DSRs were significantly 

faster than that of the modern day (p<0.001) population. The mean outer cuspal male upper 

anterior tooth DSRs also alluded to a slowing in secretions rates over time between populations. The 

mean Roman DSRs were significantly faster than the modern day population (p<0.001), with a mean 

difference of 1.08 µm/day.  

The inner region mean DSRs of the lateral upper anterior tooth enamel slowed between the 

Roman and modern day samples by 0.70 µm/day, and displayed a significant slowing trend through 

time (p<0.001). The Roman mean DSRs were significantly faster than that of the Medieval and 

modern day (both at p<0.001) populations. The mean DSRs of the mid lateral upper anterior tooth 

enamel between the Roman and modern day samples slowed by a rate of 0.72 µm/day, and with a 

significant trend towards slowing (p<0.001). The Roman and Early Anglo-Saxon mean DSRs were 

significantly faster than that of the modern day (p<0.001 and p = 0.01 respectively) population. The 

mean Roman DSRs were also significantly faster than in the Medieval (p = 0.03) population. The 

mean DSRs of the outer lateral upper anterior tooth enamel between the Roman and modern day 

samples slowed by an increased rate of 0.82 µm/day. The region also displayed a significant trend 

towards slowing (p<0.001). The Roman and Early Anglo-Saxon mean DSRs were significantly faster 

than that of the modern day (both at p<0.001) population. The mean Roman DSRs were also 

significantly faster than in the Medieval (p<0.001) population. 
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Table 6.4. Results of the Mann-Whitney U and independent samples Kruskal-Wallis tests with post-hoc pairwise Dunn-Bonferroni analysis, and 
Jonckheere-Terpstra testing for variation between the male cuspal DSRs (µm/day) across all populations. Mann-Whitney U tests were used in the 
case of the outer enamel data as only two populations supported statistical analysis (as other samples were ≥n=5). Where populations presented 
sample sizes too small for statistical analysis they are still presented here for future comparisons. The Dunn-Bonferroni significance values have 
been adjusted to account for Bonferroni corrections. The negative Jonckheere-Terpstra result shows the trend towards a reduction in DSRs. 
Significant results are marked in bold. 

Enamel 
Region 

Population N Mean S.D Min Max Kruskal-
Wallis Sig. 

Dunn-Bonferroni Adjusted Sig. Jonckheere-
Terpstra 

Sig. 
Early Anglo-Saxon Medieval Modern 

day 

Inner 
 
 
 

Roman  7 3.65 0.28 3.35 4.16 0.01 0.45 0.00* 0.00* -0.00* 

Early Anglo-
Saxon 

5 3.25 0.15 3.05 3.43    

 0.51 0.43 

Medieval 7 3.10 0.12 2.91 3.29   1.00 

Modern day 9 3.00 0.32 2.41 3.34    

Mid 
 
 
 

Roman  8 4.17 0.21 3.94 4.58 0.00* 0.52 0.07 0.00* -0.00* 

Early Anglo-
Saxon 

5 3.75 0.25 3.47 3.99 

 1.00 0.11 

Medieval 7 3.71 0.08 3.62 3.85   0.32 

Modern day 9 3.25 0.21 2.91 3.59    

 Mann-Whitney U Sig. 

Outer 
 
 
 

Roman  8 4.74 0.28 4.16 5.05 0.00* 

Modern day 9 3.66 0.17 3.42 3.95 

Early Anglo-
Saxon 

4 4.35 0.33 3.99 4.64  

Medieval 4 3.88 0.09 3.77 4.01 

*p<0.001 
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Table 6.5. Results of the independent samples Kruskal-Wallis, post-hoc pairwise Dunn-Bonferroni analysis, and Jonckheere-Terpstra testing for 
variation between the male lateral DSRs (µm/day) across all populations. The Dunn-Bonferroni significance values have been adjusted to account 
for Bonferroni corrections. The negative Jonckheere-Terpstra result shows the trend towards a reduction in DSRs. Significant results are marked in 
bold. 

Enamel 
Region 

Population N Mean S.D Min Max Kruskal-
Wallis Sig. 

Dunn-Bonferroni Adjusted Sig. Jonckheere-
Terpstra 

Sig. 
Early Anglo-Saxon Medieval Modern 

day 

Inner 
 
 
 

Roman  8 3.62 0.22 3.35 4.11 0.00* 0.11 0.00* 0.00* -0.00* 

Early Anglo-
Saxon 

9 3.18 0.15 3.05 3.43  1.00 0.54 

Medieval 7 2.96 0.19 2.72 3.22   1.00 

Modern day 14 2.92 0.23 2.47 3.22    

Mid 
 
 
 

Roman  8 4.04 0.18 3.67 4.28 0.00* 1.00 0.03 0.00* -0.00* 

Early Anglo-
Saxon 

9 3.76 0.29 3.36 4.42  1.00 0.01 

Medieval 7 3.53 0.14 3.35 3.74   1.00 

Modern day 14 3.32 0.19 2.99 3.65    

Outer 
 
 
 

Roman  8 4.48 0.17 4.28 4.75 0.00* 1.00 0.00* 0.00* -0.00* 

Early Anglo-
Saxon 

8 4.33 0.22 3.94 4.74  0.09 0.00* 

Medieval 7 3.84 0.18 3.61 4.11   1.00 

Modern day 13 3.66 0.17 3.35 3.84    

*p<0.001 
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Tables 6.5 and 6.6 report the mean inner, mid, and outer DSRs for the cuspal and lateral region 

(respectively) of the upper anterior tooth samples compromised of the female individuals of each 

population. In addition the tables include the descriptive data and results of the Kruskal Wallis and 

post-hoc Dunn-Bonferroni pairwise comparisons. 

The inner region mean DSRs of the female cuspal upper anterior tooth enamel slowed by a 

rate of 0.51 µm/day between the Roman and modern day samples. Pairwise analyses found the 

mean Roman DSRs to be significantly faster than that of the modern day (p = 0.05), and the trend 

towards slowing through time was also significant (p<-0.001). The mean DSRs of the mid cuspal 

female upper anterior tooth enamel between the Roman and modern day samples slowed by a rate 

of 0.72 µm/day and the trend towards slowing DSRs was significant (p<0.001). In addition, the 

Roman mean DSRs were significantly faster than that of the modern day (p<0.001) population, with 

a mean difference of 0.95 µm/day. The mean outer cuspal DSRs also slowed between populations, at 

a rate of 0.95 µm/day between the Roman and modern day populations. The trend towards slowing 

was again significant (p<-0.001). Male modern day mean outer cuspal DSRs were also significantly 

slower than those of both the Roman and Early Anglo-Saxon populations (both at p<0.001). 

The inner region mean DSRs of the lateral upper anterior tooth enamel slowed between the 

Roman and modern day samples by 0.59 µm/day. Changes in DSRs between populations through 

time, again followed a significant slowing trend (p<0.001). The Roman and Early Anglo-Saxon mean 

DSRs were significantly faster than that of the modern day (p<0.001 and p = 0.01 respectively) 

population. The mean DSRs of the mid lateral upper anterior tooth enamel between the Roman and 

modern day samples slowed by a similar rate of 0.58 µm/day, and with a significant trend towards 

slowing (p<0.001). The Roman and Early Anglo-Saxon mean DSRs were significantly faster than that 

of the modern day (p<0.001 and p = 0.01 respectively) population. The mean Roman DSRs were also 

significant faster than in the Medieval (p = 0.02) population. The mean DSRs of the outer lateral 

upper anterior tooth enamel between the Roman and modern day samples slowed by an 

accelerated rate of 0.74 µm/day, and displayed a significant trend towards slowing (p<0.001). The 

Roman and Early Anglo-Saxon mean DSRs were again significantly faster than that of the modern day 

(both at p<0.001) population. 
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Table 6.6. Results of the independent samples Kruskal-Wallis tests with post-hoc pairwise Dunn-Bonferroni analysis, and Jonckheere-Terpstra 
testing for variation between the female cuspal DSRs (µm/day) across all populations. The Dunn-Bonferroni significance values have been adjusted 
to account for Bonferroni corrections. The negative Jonckheere-Terpstra result shows the trend towards a reduction in DSRs. Significant results are 
marked in bold. 

Enamel 
Region 

Population N Mean S.D Min Max Kruskal-
Wallis Sig. 

Dunn-Bonferroni Adjusted Sig. Jonckheer
e-Terpstra 

Sig. 
Early Anglo-Saxon Medieval Modern 

day 

Inner 
 
 
 

Roman  7 3.57 0.38 3.22 4.23 0.04 1.00 0.19 0.05 -0.00* 

Early Anglo-
Saxon 

9 3.32 0.19 2.85 3.32  1.00 0.64 

Medieval 5 3.09 0.20 2.94 3.45   1.00 

Modern day 9 3.06 0.30 2.51 3.43    

Mid 
 
 
 

Roman  7 4.13 0.23 3.67 4.35 0.00* 1.00 0.89 0.00* -0.00* 

Early Anglo-
Saxon 

9 3.92 0.19 3.38 4.29  1.00 0.07 

Medieval 6 3.81 0.26 3.34 4.09   0.67 

Modern day 9 3.41 0.33 2.81 3.86    

Outer 
 
 
 

Roman  7 4.72 0.12 4.53 4.92 0.00* 1.00 0.31 0.00* -0.00* 

Early Anglo-
Saxon 

12 4.40 0.35 3.96 5.37  1.00 0.00* 

Medieval 6 4.26 0.16 4.08 4.41   0.65 

Modern day 9 3.77 0.32 3.16 4.09    

*p<0.001 
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Table 6.7. Results of the independent samples Kruskal-Wallis, post-hoc pairwise Dunn-Bonferroni analysis, and Jonckheere-Terpstra testing for 
variation between the female lateral DSRs (µm/day) across all populations. Mann-Whitney U tests were used where sample sizes only supported 
the analysis of two populations. The Dunn-Bonferroni significance values have been adjusted to account for Bonferroni corrections. The negative 
Jonckheere-Terpstra result shows the trend towards a reduction in DSRs. Significant results are marked in bold. 

Enamel 
Region 

Population N Mean S.D Min Max Kruskal-
Wallis Sig. 

Dunn-Bonferroni Adjusted Sig. Jonckheere-
Terpstra 

Sig. 
Early Anglo-Saxon Medieval Modern 

day 

Inner 
 
 
 

Roman  8 3.58 0.36 3.12 4.24 0.00* 1.00 0.17 0.00* -0.00* 

Early Anglo-
Saxon 

13 3.39 0.13 3.11 3.62  0.73 0.01 

Medieval 5 3.18 0.16 2.97 3.43   1.00 

Modern day 10 2.99 0.28 2.45 3.32    

Mid 
 
 
 

Roman  9 4.04 0.18 3.68 4.29 0.00* 1.00 0.02 0.00* -0.00* 

Early Anglo-
Saxon 

13 3.96 0.19 3.48 4.17  0.07 0.00* 

Medieval 6 3.64 0.18 3.42 3.91   1.00 

Modern day 10 3.46 0.31 2.86 3.80    

Outer 
 
 
 

Roman  9 4.41 0.25 3.88 4.81 0.00* 1.00 0.47 0.00* -0.00* 

Early Anglo-
Saxon 

12 4.40 0.19 3.96 4.69  0.42 0.00* 

Medieval 6 4.04 0.28 3.60 4.49   1.00 

Modern day 10 3.66 0.33 3.03 4.06    

*p<0.001
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6.4 Discussion 

This study compared DSRs of anterior teeth between biological male and females, from modern and 

archaeological populations from Britain. These comparisons revealed no significant difference in 

DSRs when males were compared to females, either when British populations were combined into a 

single sample, or within each population.  However, there was a significant trend towards a slowing 

of DSRs across the 2000 year period, from the Romano-British to the modern day populations, for 

males, and for females.  There were a greater number of significant differences between the 

populations when males were compared, in comparison to the number of significant differences 

observed in females. 

 

6.4.1 Daily secretion rates compared between the sexes within each populations 

There was no significant difference between the anterior teeth for males and females in this study. 

This analysis reveals that the daily enamel growth of permanent human upper anterior tooth enamel 

is consistent between the sexes, within these ancient and modern British populations. Our findings 

for permanent upper anterior tooth enamel DSRs are consistent with findings for DSRs from 

permanent canines from a single human population (Schwartz et al., 2001).  

 

6.4.2 Daily secretion rates compared between the sexes, from ancient to modern populations 

While all regional DSRs from male and female groups slowed over time (see Tables 6.5, 6.6 and 6.7), 

the male samples displayed a higher volume of significant differences when compared between 

populations. Cuspal enamel analyses revealed four such variations, whereas the equivalent analyses 

of the female samples identified only two pairwise significant differences. Analyses of lateral enamel 

DSRs displayed a similar trend with eight significant differences between the enamel of male groups, 

with slightly fewer significant differences in the female groups.  

 

6.4.3 Daily secretion rates between populations 

Pairwise analysis of both male and female samples found a number of significant inter-population 

differences in DSRs of cuspal and lateral upper anterior tooth enamel. All these differences display 

an additional significant trend towards a slowing trajectory in DSRs between populations from the 

Roman to modern day populations. Indeed, only in the single case of the female inner cuspal DSRs 
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were the mean Roman values not significantly faster than the modern day (p = 0.07; see Table 6.6). 

While the male sample displayed the most pairwise significant differences between populations, the 

trends towards slowing were consistent for all enamel regions across both male and female analyses 

(see Tables 6.5, 6.6, and 6.7). However, the five British populations presented here represent a 2000 

year period of history, and each possessed unique differentiating cultural practices. These factors 

could have potentially caused enamel growth to significantly slow over the last 2000 years in Britain. 

However, additional research would be required to test this theory, and how this might explain the 

variation between the inter-population differences in male and female groups.  

 

6.4.4 Daily secretion rates compared to posterior teeth 

Past research utilising the same British populations, has identified a significant trend towards 

slowing enamel DSRs from the Roman to modern period in permanent first molar teeth (Aris et al., 

2020b). This trend is similar to those observed here in both male and female samples. These results 

show the trend towards the slowing of daily enamel growth in Britain over the last 2000 years, has 

been consistent in both anterior and posterior teeth. Where the differences in enamel growth rates 

between populations were similar in the anterior teeth and first molars of the British populations, 

this was not the case specifically in differences between the Roman and Early Anglo-Saxon 

populations. In their study, Aris and colleagues (2020b) commented on the similarities in the growth 

rates of the two populations, most notably in the cuspal enamel where mean rates were near 

identical. Conversely, in almost all upper anterior tooth enamel regions presented here, both male 

and female DSRs can be observed to vary between the Roman and Early Anglo-Saxon population. 

Only in the mid and outer lateral enamel of the female sample can comparable similarities to that 

seen in the first molar teeth of the sample populations (Aris et al., 2020b) be observed, between the 

Roman and Early Anglo-Saxon populations. These differences in findings between upper anterior 

teeth and first molar growth rates suggest that, within a consistent trend of slowing overtime, 

variation between tooth types has also occurred. This further suggests that no single tooth type 

should necessarily be considered representative of the dental arcade when investigating differences 

in enamel growth rates between human populations. Future analysis of premolar enamel would be 

valuable. 

Comparison of DSRs for equivalent enamel regions and British populations between tooth 

types identifies further variation growth patterns. Comparing mean regional DSRs calculated from 

male and female upper anterior tooth samples (presented here) to mean DSRs for first molar regions 
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(see: Tables 2 and 3 in Aris et al., 2020b; alternatively see Tables 5.6 and 5.7 in Chapter 5) shows 

permanent first molar enamel, in the majority of 24 comparisons, to have been secreted at a faster 

rate than that of anterior teeth. In 11 of these cases first molar regions grew faster, but only by a 

rate of ≤0.15 µm/day. In four of the seven cases where first molar enamel secreted at a slower rate, 

the difference in DSRs between first molar and upper anterior teeth was also only ≤0.15 µm/day. 

Interestingly these were almost always in outer region DSRs. In the remaining six cases of the initial 

24 comparisons, more notable differences were seen between the regional DRSs of first molar and 

upper anterior teeth. One difference was isolated to a single case of the Early Anglo-Saxon 

population in which inner cuspal first molar enamel was secreted at a rate of 0.40 µm/day faster 

than that of the anterior teeth. In another single case, the mid lateral upper anterior tooth enamel 

of the modern-day population grew at a faster rate by 0.23 µm/day. For the remaining four cases 

where notable differences between tooth types were observed, all were within comparisons of the 

medieval population. In the inner lateral and cuspal regions Medieval first molar enamel secreted at 

a faster rate (by 0.29 and 0.26 µm/day respectively), where conversely the outer lateral and cuspal 

regions Medieval upper anterior tooth enamel secreted faster (by 0.23 and 0.40 µm/day 

respectively). While preliminary, the findings of comparing upper anterior tooth and first molar 

enamel DSRs within British populations does allude to variable growth patterns between tooth 

types. Overall, permanent first molar enamel appears to develop faster, particularly in the inner and 

mid regions. Conversely, upper anterior tooth types can develop faster in the outer regions, most 

notably the cuspal outer regions. The cause for this difference is as of yet unknown, but appears to 

be most active in the Medieval British population. 

The discovery of variation in permanent enamel DSRs, both between tooth types within 

populations and within tooth types between populations, provides further evidence to the idea that 

permanent enamel DSRs are highly variable in humans, even over as short a period as 2000 years. 

Furthermore, the reasons underlying the slower DSRs from the more ancient to modern period have 

probably influenced the anterior and posterior teeth, as both of these tooth types show a similar 

trend.  

 

6.4.5 Conclusions 

Results presented here display a consistency in DSRs when compared between biologically male and 

female groups, in both archaeological and modern British populations. In contrast to these findings, 

DSRs have varied to a greater degree between British populations. Daily secretion rates, from cuspal 
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and lateral enamel regions, were observed to have significantly slowed throughout the last 2000 

years in Britain. This pattern is consistent to that previously observed for DSRs in first molar enamel. 

Future research would benefit from integrating life history, genetic, and environmental factors in 

order to widen our understanding of how diversity in human enamel growth has, and may continue 

to, evolve. 
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CHAPTER 7: DISCUSSION 

 

7.1 Enamel growth variation across the tooth row and between groups 

7.1.1 Roman DSRs  

In all cases except one, the mean upper canine DSRs were slower compared to equivalent regions in 

the upper first incisors and first molars in the Roman sample. Mean DSRs showed only slight 

variation between the upper first incisors and first molars when regions were compared. Differences 

were largest between the first molars and upper first incisors in the outer cuspal and inner lateral 

regions (see Table 7.1). Mean outer cuspal upper first incisor DSRs were faster by a rate 0.23µm/day 

compared to the same in first molars. Conversely, mean inner lateral first molar DSRs were faster by 

a rate of 0.20µm/day compared to the same in upper first incisors. Overall, the permanent enamel 

growth of the upper canines was slower than that of first molars and upper first incisors. 

 The differences between tooth types agrees with the comments in the discussion of Chapter 

6 (Aris et al., 2020a) that variation in regional mean DSRs between tooth types has occurred. 

However, in Chapter 6 first molar DSRs were compared to a pooled upper anterior tooth DSRs 

sample. As the comparisons here consider all tooth types, the differences observed show a further 

level of variation in enamel DSRs not previously noted. 

 

Table 7.1. Regional mean DSRs (±SD) for all tooth types of the Roman population. 

Cuspal DSRs Mean (µm/day) 

Tooth  
 

N Region 

Inner Mid Outer 

First molars 7 3.72 ± 0.26 4.21  ± 0.42 4.56 ± 0.22 

Upper canines 9 3.52 ± 0.21 4.12 ± 0.27 4.56 ± 0.26 

Upper first incisors 10 3.78 ± 0.23 4.17 ± 0.11 4.79 ± 0.12 

Lateral DSRs Mean (µm/day) 

First molars 11 3.66 ± 0.28 4.19 ± 0.33 4.57 ± 0.34 

Upper canines 11 3.46 ± 0.21 3.97 ± 0.20 4.41 ± 0.24 

Upper first incisors 9-10 3.86 ± 0.23 4.08 ± 0.13 4.50 ± 0.16 
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7.1.2 Early Anglo-Saxon DSRs  

The first molars presented faster mean DSRs than the equivalent regions in the upper anterior teeth 

for the inner and mid regions of both cuspal and lateral enamel. The upper canines presented the 

slowest mean DSRs for the cuspal inner and mid regions. The difference between the upper canine 

and first molar mean DSRs was most notable in the inner regions, where upper canines were slower 

by a rate of 0.42µm/day in cuspal enamel and 0.16µm/day in the lateral enamel. The mean DSRs for 

the inner and mid regions of lateral enamel were slowest in upper first incisors. Conversely, the first 

molars presented the slowest mean DSRs for the outer regions of both cuspal and lateral enamel 

(although by slim margins of 0.03µm/day and 0.04µm/day respectively; see Table 7.2).  

 In the Early Anglo-Saxon population, variation in mean DSRs differed between tooth types 

when compared to that previously seen in the Roman population, particularly in the slower growing 

upper first incisors. No past research has yet investigated for variation in enamel DSRs between 

tooth types, and whether this could itself vary between populations. As a result, the data for the 

Early Anglo-Saxon population shows an additional new trend in human enamel growth, while 

displaying additional inter-population differences to those previously observed in Chapters 5 and 6 

(Aris et al., 2020a, 2020b). 

 

Table 7.2. Regional mean DSRs (±SD) for all tooth types of the Early Anglo-Saxon population. 

Cuspal DSRs Mean (µm/day) 

Tooth N Region 

Inner Mid Outer 

First molars 6-7 3.69 ± 0.19 3.98 ± 0.25 4.43 ± 0.29 

Upper canines 13-20 3.27 ± 0.14 3.86 ± 0.20 4.46 ± 0.38 

Upper first incisors 8-9 3.31 ± 0.20 3.89 ± 0.28 4.47 ± 0.22 

Lateral DSRs Mean (µm/day) 

First molars 12 3.42 ± 0.20 3.85 ± 0.20 4.24 ± 0.21 

Upper canines 19-20 3.26 ± 0.19 3.83 ± 0.20 4.28 ± 0.21 

Upper first incisors 20-22 3.26 ± 0.21 3.77 ± 0.26 4.29 ± 0.28 

 

 

7.1.3 Late Anglo-Saxon DSRs  

Within the cuspal regions the upper anterior teeth displayed the fastest growing enamel. This was 

fastest in the upper first incisors for the mid and outer regions, and upper canines in the inner region 

(see Table 7.3). Cuspal first molar enamel was therefore the slowest, although first molars were 

equal slowest with upper first incisors in the cuspal inner region.  



98  
 

The lateral region DSRs showed more consistent differences between tooth types. Lateral 

upper first incisor enamel was the fastest growing enamel between the tooth types for all regions. 

Lateral first molar enamel was the slowest growing of all tooth types analysed. Differences between 

the tooth types was most notable in the outer lateral region, where the first molars grew slower by a 

mean rate of 0.24µm/day compared to upper canines, and 0.48µm/day compared to upper first 

incisors. 

The variations between the Late Anglo-Saxon tooth types are more similar to those seen in 

the Romans, and are thereby also different to those of the Early Anglo-Saxon population. In Chapter 

6 sample sizes did not permit for observations to be made between posterior and upper anterior 

tooth types (Aris et al., 2020a). Therefore, the observations made here are novel, and provide 

further evidence for the newly discovered high level of variation which exists within human enamel 

growth, both between populations and tooth types.   

 

Table 7.3. Regional mean DSRs (±SD) for all tooth types of the Late Anglo-Saxon population. 

Cuspal DSRs Mean (µm/day) 

Tooth N Region 

Inner Mid Outer 

First molars 17-18 3.34 ± 0.27 3.65 ± 0.32 3.99 ± 0.32 

Upper canines 6-9 3.51 ± 0.21 3.94 ± 0.15 4.35 ± 0.16 

Upper first incisors 7-9 3.34 ± 0.17 4.07 ± 0.26 4.49 ± 0.22 

Lateral DSRs Mean (µm/day) 

First molars 19 3.36 ± 0.25 3.63 ± 0.33 3.88 ± 0.39 

Upper canines 10 3.40 ± 0.18 3.86 ± 0.19 4.12 ± 0.25 

Upper first incisors 10 3.58 ± 0.11 4.00 ± 0.25 4.36 ± 0.23 

 

 

7.1.4 Medieval DSRs  

The inner cuspal and lateral DSRs were fastest in the first molars. While slower, the upper anterior 

tooth types presented little difference between upper first incisors and upper canines, with mean 

DSRs for the inner cuspal and lateral regions only differing by rates of 0.01µm/day and 0.02µm/day 

(both faster in upper first incisors; see Table 7.4) respectively. Within the cuspal enamel specifically, 

the differences between upper canine and incisor DSRs were more varied in the mid and outer 

regions, but were both were faster than first molars. Within the lateral enamel specifically the 

differences between upper canine and incisor DSRs remained minimal in the mid and outer regions; 

with first molars presenting the fastest DSRs again for the mid region, but all teeth possessing similar 

DSRs for the outer region (all within a mean range of 0.03µm/day; see Table 7.4). 
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In Chapter 6 it was shown that the mean first molar DSRs of the Medieval population were 

faster in inner regions, and slower in outer regions, when compared to the pooled upper anterior 

tooth sample (Aris et al., 2020a). This finding holds here when observing inner enamel regions but is 

less obvious in the outer regions – particularly when observing the similarity between the mean 

DSRs of the outer regions of first molars and upper first incisors. While differences between tooth 

types are still evident in the data here, the results of the comparisons show that it is inaccurate to 

examine differences between tooth types when pooling anterior or posterior tooth types. Future 

research should therefore ensure individual tooth types are kept separate when comparing growth 

rates data between teeth. 

Table 7.4. Regional mean DSRs (±SD) for all tooth types of the Medieval population. 

Cuspal DSRs Mean (µm/day) 

Tooth N Region 

Inner Mid Outer 

First molars 23-27 3.36 ± 0.24 3.65 ± 0.28 3.90 ± 0.28 

Upper canines 9-12 3.12 ± 0.26 3.70 ± 0.20 4.10 ± 0.25 

Upper first incisors 16-20 3.13 ± 0.18 3.73 ± 0.22 4.01 ± 0.28 

Lateral DSRs Mean (µm/day) 

First molars 27-29 3.36 ± 0.26 3.65 ± 0.29 3.89 ± 0.26 

Upper canines 15 3.11 ± 0.26 3.53 ± 0.27 3.91 ± 0.24 

Upper first incisors 25 3.13 ± 0.22 3.54 ± 0.27 3.88 ± 0.24 

 

 

7.1.5 Modern-day DSRs   

Mean DSRs for the first molar and upper first incisor tooth types were similar. In the outer cuspal 

enamel region, the upper first incisor DSRs were faster than the first molars by a mean rate of 

0.14µm/day – this is the largest difference seen in mean DSRs between tooth types (see Table 7.5). 

Upper canine mean DSRs were the slowest for all regions of both enamel areas. When compared to 

first molars (the second fastest DSRs) the upper canine mean DSRs were slower by a rate ranging 

from 0.11µm/day in the outer lateral region, to 0.34µm/day in the mid cuspal regions. 

In Chapter 6 it was observed that only in the mid lateral region did modern-day upper 

anterior tooth enamel grow faster by mean than first molars (Aris et al., 2020a). When upper 

anterior tooth types were separated here this was not the case. This suggests that the differences 

previously observed in Chapter 6 were the result of slow growing modern-day upper canines 

specifically. As a result, it is even more imperative that future research testing for differences 

between the growth rates between tooth types ensure that upper first incisors and upper canines 

are not pooled. 
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Table 7.5. Regional mean DSRs (±SD) for all tooth types of the Modern-day population. 

Cuspal DSRs Mean (µm/day) 

Tooth N Region 

Inner Mid Outer 

First molars 14-15 3.20 ± 0.38 3.52 ± 0.35 3.75 ± 0.37 

Upper canines 10 2.90 ± 0.29 3.18 ± 0.22  3.57 ± 0.19  

Upper first incisors 8 3.20 ± 0.23 3.54 ± 0.22 3.89 ± 0.23 

Lateral DSRs Mean (µm/day) 

First molars 15 3.14 ± 0.21 3.42 ± 0.32 3.71 ± 0.42 

Upper canines 11-12 2.85 ± 0.25  3.30 ± 0.21  3.60 ± 0.23  

Upper first incisors 12 3.04 ± 0.21 3.49 ± 0.27 3.72 ± 0.25 

 

 

7.1.6 Enamel growth variations between the biological sexes 

Chapter 6 investigated for differences between the biological sexes in regional mean DSRs (Aris et 

al., 2020a). No significant differences between biological males and females in regional mean DSRs 

were found when analyses tested a pooled British population, or within each individual populations. 

However, within the Early Anglo-Saxon population, the female sample had consistently faster mean 

DSRs than the male (by rates of: 0.21µm/day in the inner lateral region, 0.20µm/day in the mid 

lateral region, and 0.17µm/day in the mid and outer cuspal regions). There were only two other 

cases where DSRs differed between the sexes by a notable rate: in the outer lateral region of the 

Medieval population and the mid cuspal region of Modern-day samples (see Table 6.3). Sample sizes 

were too small to further analyse sex differences between first molars, but it is possible first molar 

enamel could present differences between males and females. Given the increased regional 

differences observed in the Early Anglo-Saxon population, a larger sample of first molar enamel 

would be ideal for future investigations into sex differences in human enamel growth across the 

tooth row. 

 

7.2 First molar enamel thickness compared to known ranges 

For this section please note that thickness data is presented from a pooled sample of upper and 

lower first molars. Relative enamel thickness was collected from the paracone and protocone cusps 

for the upper molars, and metaconid and protocone cusps for the lower molars. Linear 

measurements of CT and LT were collected from the paracone and protoconid. 
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7.2.1 Roman upper molar enamel thickness 

Observation of the Roman first molar sample RET shows the greatest similarity to data published by 

Olejniczak and colleagues (2008), differing in mean by only 0.02 (see Table 7.6). This data represents 

a modern-day sample of maxillary first molars (different to that collected and analysed from in past 

chapters here) with mostly unknown provenance, but that which is thought to be derived from 

North American and European extractions (Olejniczak et al., 2008). This similarity is unexpected 

given the larger variation in first molar RET (by 2.22; see also Table 7.6) observed between the 

Roman population and Modern-day sample, newly analysed in this research. These differences 

further highlight the intraspecific variation which exists between human populations, first identified 

in here in Chapter 5.  

The mean CT of the Roman population was thicker, on average, than all published human 

ranges by a degree of ˃0.20mm, except in the single case of the population studied by Schwartz 

(2000a). These samples were from a modern British population (Schwartz, 2000a), and had thicker 

mean CT (by 0.31mm; see Table 7.6). This difference is particularly interesting, as the Roman 

population presented thicker CT than the Modern-day population analysed here (by 0.19mm; see 

Table 7.6). This is a similar trend to that previously seen in the RET of the Roman and modern-day 

first molar samples. This not only alludes to wide variation in linear enamel thickness between 

populations, but further indicates that high levels of variation exist between modern-day 

populations. This concurs with comments in Chapter 5 that enamel thickness variations are not 

tightly related to difference in time periods (Aris et al., 2020b). 

The mean LT of the Roman population is more comparable to other published human 

populations (Macho and Berner, 1993; Suwa and Kono, 2005; Mahoney, 2010). While the Roman 

mean values were thinner than all other known populations, this was only by a degree of 0.13mm 

compared to the thickest published mean (Suwa and Kono, 2005), and by 0.02mm to the previous 

thinnest published mean (Macho and Berner, 1993). These results show CT to be more variable 

between human populations, whereas LT remains more consistent. 

 

7.2.2 Early Anglo-Saxon first molar enamel thickness 

The mean first molar RET of the Early Anglo-Saxon population was notably higher than other 

published data, with a value 4.47 higher than data published by Olenjniczak et al (2008) (see Table 

7.6). However, ranges by Smith and colleagues (2006a) includes mean maxillary first molar RET 

larger than the Early Anglo-Saxon population in this research. This variability in RET highlights the 



102  
 

different ranges of RET that exist between human populations. In Chapter 5, the high mean RET of 

the Early Anglo-Saxon population is attributed to possible shifts in diet resulting in thickening of 

enamel between populations over short periods of time, notably in response to highly abrasive diets 

(Aris et al., 2020b). This was concluded to be the result of their coastal location (Millard et al., 1969) 

and additional dietary research of the early Anglo-Saxon period (Littleton and Frohlich, 1993; Mays 

and Beavan, 2012). While similar trends in changing enamel thickness have been observed, these 

have compared populations over a larger span of 7000 years (Le Luyer et al., 2014). It is therefore 

plausible that the high RET of the Early Anglo-Saxon population shows that enamel thickness is 

plastic enough as to vary over far shorter periods of time. Unfortunately, no dietary data is available 

for the Early Anglo-Saxon population. Therefore, future research should endeavour to collect such 

data from the same or a similar population to test this theory. 

The mean CT of the Early Anglo-Saxon population is similar to several different populations 

(Suwa and Kono, 2005; Reid and Dean, 2006; Mahoney, 2010), differing by only ≤±0.09mm. One 

publication in particular varied from the Early Anglo-Saxon data, Schwartz (2000a), where the mean 

CT of a modern-day population was 0.59mm thicker than in the Early Anglo-Saxon population. 

Conversely, the Modern-day sample presented here possesses thicker mean CT by only 0.09mm. 

This is considerably less difference than those noted in Schwartz’s (2000a) population. This suggests 

that while changes in first molar CT have occurred between the Early Anglo-Saxon and modern 

periods, the cause for the changes is not necessarily strongly tied to the difference in time period. 

The mean first molar LT values are more similar to the published values of other 

populations. Early Anglo-Saxon mean LT was only 0.08mm thinner than the thickest published mean 

(Suwa and Kono, 2005), and 0.03mm thicker than the thinnest published mean (Macho and Berner, 

1993). These results agree with the conclusions of Chapter 6, and further show CT to be more 

variable between human populations where LT is relatively consistent. 

 

7.2.3 Late Anglo-Saxon first molar enamel thickness 

Relative enamel thickness mean from of the Late Anglo-Saxon first molar was similar to data 

published by Olejniczak and colleagues (2008), differing in mean by only 0.84 and 0.34 (see Table 

7.6). As previously stated, Olejniczak and colleagues’ (2008) data represents a modern-day sample of 

maxillary first molars thought to be extractions from North America and Europe. This is unusual 

given the larger difference of 3.03 (see Table 7.6) between the mean first molar RET of Late Anglo-

Saxon and the British Modern-day population. These observations continue to highlight the 
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intraspecific variation which exists between human populations identified in here in Chapter 6, and 

the emerging variation observable within the modern period. 

Mean CT of the Late Anglo-Saxon population shows little difference to the ranges published 

by other human populations (Suwa and Kono, 2005; Reid and Dean, 2006; Mahoney, 2010), differing 

to these by only ≤±0.05mm. Conversely, the data published by Schwartz (2000a) was 0.60mm thicker 

than the Late Anglo-Saxon mean (see Table 7.6). The Modern-day sample analysed here presented 

thicker CT, suggesting changes in first molar CT has occurred between the Anglo-Saxon period as a 

whole and the modern period. However, the CT data collected here was only 0.10mm thicker in the 

Modern-day population compared to the Late Anglo-Saxon population. This is again, far less of a 

difference than when the Late Anglo-Saxon population’s CT is compared to that of Schwartz’s 

(2000a) population.  

The Late Anglo-Saxon population possessed similar mean first molar LT values to all other 

published values of human populations. Late Anglo-Saxon mean LT was only 0.03mm thinner than 

the thickest published mean (Suwa and Kono, 2005), and 0.08mm thicker than the thinnest 

published mean (Macho and Berner, 1993). These results build upon previous observations that 

suggest first molar CT is more variable between human populations, compared to more consistent 

LT between populations (Chapter 5; Aris et al., 2020b). 

 

7.2.4 Medieval first molar enamel thickness 

The mean RET of the Medieval first molar sample presented a similar mean value to the Late Anglo-

Saxon, with a difference of only 0.09 (larger in the Medieval population). The Medieval RET was 

therefore also similar to the equivalent data published by Olejniczak and colleagues (2008), with 

differences of by only 0.75 and 0.43 (see Table 7.6). The variable differences between the Medieval 

sample, and the British Modern-day and Olejniczak and colleagues’ modern population, are the 

same as previously observed in the Roman and Late Anglo-Saxon populations. These comparisons 

thereby highlight the variation which exists between human populations identified here, and 

previously in Chapter 5. Conversely, they also highlight the minimal changes which occurred in 

human first molar RET throughout the Late Anglo-Saxon to Medieval periods in Britain. This finding 

concurs with the comments of Chapter 5 that the time period between the two populations was 

potentially too short as to permit significant changes in enamel thickness. 

The mean CT of the Medieval population were also similar to that presented by the Late 

Anglo-Saxon population, differing by only 0.01mm (thinner in Medieval). Mean medieval CT was also 
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similar to the equivalent values reported for other human populations (Reid and Dean, 2006; 

Mahoney, 2010; Suwa and Kono, 2005), differing to these by only ≤±0.05mm (see Table 7.6). The 

modern CT data published by Schwartz (2000a) was 0.59mm thicker in mean when compared to the 

Medieval population. The Modern-day sample analysed here also presented thicker mean CT, but 

only by 0.11mm. These differences alone could suggest similar changes occurred between the 

modern and Medieval periods, as between the Medieval and Anglo-Saxon periods. However, the 

variable difference between Schwartz’s (2000a) modern-day sample, and the Modern-day 

population presented here, are notable. This variance concurs with comments in Chapter 5 which 

suggest that differences in enamel thickness between populations may not be tightly linked to 

difference in time period (Aris et al., 2020b). 

The mean LT of the Medieval population was also similar to that of the Late Anglo-Saxon 

population, differing only in standard deviation. Mean Medieval LT was similar to values of all other 

published data. Medieval mean first molar LT was only 0.03mm thinner than the thickest published 

mean (Suwa and Kono, 2005), and 0.08mm thicker than the thinnest published mean (Macho and 

Berner, 1993). These results build upon previous observations, suggesting human first molar CT can 

be highly variable between populations, whereas LT remains more consistent. 

 

7.2.5 Modern-day first molar enamel thickness 

The mean RET for the Modern-day population is the second highest value ever reported for 

humans, with only the Early Anglo-Saxon population presenting higher values (by 2.28; see Table 

7.6). In Chapter 5 this value is discussed within the context of changes over time, where little 

difference was observed between the British populations (Aris et al., 2020b). While those results do 

suggest little change within a temporal transect, a new highest mean RET for a human population is 

notable. The results presented here expand the previously known range of human molar RET. 

The mean CT of the British Modern-day sample was thicker than all past populations, with 

the exception of the modern-day sample researched by Schwartz (2000a) which had a 0.50mm 

thicker mean. Schwartz’s (2000a) population was of Slavic origin, suggesting the difference between 

the two modern populations was the result of the factors tied to geographic variation. However, the 

previous second thickest mean human molar CT value (seen in the maxillary molars of a Northern 

European sample; Reid and Dean, 2006) is only 0.06mm thinner that of the British Modern-day 

sample (see Table 7.6). This suggests that while modern-day human populations could possess 

thicker first molar cuspal enamel than more ancient populations, the thickness within modern-day 
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populations can vary to a high degree. This finding concurs with previous comments within this 

chapter. 

The mean LT of the Modern-day first molars is the highest value ever reported. This value is 

0.21mm thicker by mean than the previous thickest value (Suwa and Kono, 2005). This difference is 

of particular note, as until now the range of human molar mean LT values was only ±0.11mm. The 

value reported here for the British Modern-day population further highlights the more extreme 

variation in first molar enamel thickness which can exist between human populations. This is similar 

to the variation potential highlighted by the mean CT values published by Schwartz (2000a), also 

collected from a modern-human population. This finding concurs with previous comments in 

Chapter 5 relating to variation between the Roman and Modern-day populations, and possible links 

to dietary shifts (Aris et al., 2020b). However, little research has been conducted on human molar LT 

measures, and thus an evidenced cause for this variation is difficult to ascertain. 

 

Table 7.6. Mean molar enamel thickness measures (±SD) for the British and other published human 
populations. 

Population N Thickness feature 

RET CT (mm) LT (mm) 

This study 

Roman 6-10 17.02 ± 1.74 1.46 ± 0.20 1.34 ± 0.12 

Early Anglo-Saxon 7-11 21.52 ± 2.05 1.18 ± 0.34 1.39 ± 0.19 

Late Anglo-Saxons 8-19 16.21 ± 1.48 1.17 ± 0.23 1.44 ± 0.11 

Medieval 22-27 16.30 ± 2.03 1.16 ± 0.22 1.44 ± 0.21 

Modern-day 10-15 19.24 ± 3.77 1.27 ± 0.57 1.68 ± 0.57 

Past studies 

Smith et al., 2006a† 37 13.95-23.86   

Smith et al., 2006a‡ 55 11.67-22.62   

Olejniczak et al., 2008†* 6 17.05   

Olejniczak et al., 2008‡* 1 15.87   

Schwartz, 2000a¶ 9  1.77 ± 0.48  

Reid and Dean, 2006§ 15  1.21 ± 0.241  

Reid and Dean, 2006¶ 37  1.09 ± 0.113  

Mahoney, 2010¶ 69  1.13 ± 0.22 1.43 ± 0.19 

Suwa and Kono, 2005§ 31  0.85 ± 0.206 1.47 ± 0.119 

Suwa and Kono, 2005¶ 37  1.12 ± 0.160 1.44 ± 0.113 

Macho and Berner, 1993§ 21   1.36 ± 0.17 
† data for maxillary M1s 
‡ data for mandibular M1s 

§ data for paracone cusp 
¶ data for metaconid cusp 

* includes 3D measurements 
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7.3 Discussion – concluding remarks 

7.3.1 Variation in enamel growth 

In Chapters 5 and 6 it was found that there were significant trends of slowing enamel growth over 

time between British populations, for both upper anterior (Aris et al., 2020a) and posterior first 

molar (Aris et al., 2020b) teeth. These address the first research question of this project regarding 

inter-population variation in enamel growth, with the results showing a previously unknown level of 

plasticity in the growth rates of human enamel, as they can now be observed to significantly vary 

between populations within a time period as short as 2000 years. As previously discussed in these 

chapters, it is important that future studies now consider this when using single human populations 

as representative samples in comparative analyses of additional human and non-human primate 

DSRs.  

Conversely to inter-population analysis, subsequent analyses found no direct significant 

difference between mean DSRs of biological male or female samples, directly addressing the second 

research question of this project. These results concur with similar past research (Schwartz et al., 

2001). These findings are of particular interest within the context of the inter-population differences 

over time, as this suggests that the factor(s) resulting in varying enamel growth rates over time was 

not discriminatory between male and female populations. 

To address the third research question of this project, when DSR data is viewed from across 

the tooth row, previously unknown trends in human enamel growth variation can be observed. 

Typically, first molars appear to be the fastest growing teeth. This is particularly evident in the 

Roman, Early Anglo-Saxon, Medieval, and Modern-day populations. Upper first incisors appear to 

also grow at faster rates than upper canines in the majority of cases, and are similar to first molars 

(or marginally faster in isolated cases) in the Roman, Late Anglo-Saxon, and Medieval populations. 

Upper canines were the slowest growing teeth in the majority of cases as seen in the Roman, Early 

Anglo-Saxon, Medieval, and Modern-day populations. Similarly to the consistency in DSRs between 

the biological sexes, the differences between tooth types are consistent within the trend of changes 

over time between populations. This suggests also that the factor(s) resulting in changes in DSRs 

over time between populations have had an equal influence across permanent upper first incisors, 

upper canines, and first molars. 

While the trends of faster growing first molar and slower growing upper canine enamel are 

consistent in four of the British populations, the Early-Anglo Saxon population presents 

contradictory data. In particular, Early Anglo-Saxon first molars were the slowest growing teeth 
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across all enamel areas and regions. The Early Anglo-Saxon population also presented the highest 

degree of variation between the biological sexes in the anterior teeth. This suggests that an 

additional factor influenced the growth rates of Early Anglo-Saxon permanent enamel, which did not 

persist to the Late Anglo-Saxon period. Given the regional differences between the British 

populations this difference in growth across the tooth row could be unique to the Ozengell 

population. If true this could suggest that enamel growth is even more plastic than evidence here 

indicates, and able to vary within single populations over even shorter periods of time. It would 

therefore be interesting for future research to investigate additional Early Anglo-Saxon populations 

for differences in DSRs between tooth types, populations, and biological sexes. 

The potential for the impact of genetic diversity must be considered. While collection of 

genetic data was outside of the ability and scope of this project, there is a real possibility of genetic 

factors causing variation within populations, and thereby influencing the differences in enamel 

growth rates between populations. High levels genetic diversity could for instance explain the 

unique variation seen in the Early Anglo-Saxon population. As discussed in Chapter 5 the period 

related to the Roman and Anglo-Saxon populations analysed here is associated with rapid increases 

in migration into Britain (e.g. Lightfoot et al., 2009), with the same being true for the current period 

of time directly associated with the Modern-day population. Both these periods of migration will 

have resulted in significant gene flow into British populations. While the clear trends in enamel 

growth rates over time between populations could suggest a minimal impact of these periods of 

high levels of migration, the potential influence of genetic drift should not be ignored. It would be 

valuable for future research to further investigate the genetics and origins of these populations to 

help develop an understating of how far migration and resulting generic diversity has influenced 

enamel grow rate variation. However, due to legal restrictions associated with the Modern-day 

extracted samples this is not viable for the specific collection analysed here. 

 

7.3.2 Molar enamel thickness variation between populations  

Analysis of the first molar thickness measures collected address the fourth research question of this 

project. The features of first molar enamel thickness showed little variation between British 

populations; particularly LT and CT, especially within the context of temporal variation (see Chapter 

5). However, comparison of previously published British populations alludes to a degree of variation 

existing between human populations not seen until now. Relative enamel thickness in particular is 

highly variable between populations, as well as between time periods. While the Roman, Late Anglo-
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Saxon, and Medieval populations had relatively larger mean RET values, all these were still within 

known ranges of previously published data. In contrast, the mean RET values of the Early Anglo-

Saxon now represent the highest mean RET values for human first molars. The results comparing the 

Early Anglo-Saxon population to known ranges further supports comments from Chapter 5 that a 

highly abrasive, sea-food heavy diet, resulted in changes in enamel thickness between the British 

populations (Aris et al., 2020b). 

The mean CT values of the British populations remained within the previously published 

literature. However, this is only true given the incredibly high mean CT value published by Schwartz 

(2000a). That value notwithstanding, the Roman and Modern-day populations had mean CT values 

thicker than previously known ranges. These observations concur with those of Chapter 5, which 

comment on the high variability of CT which can now be seen to exist between populations within as 

short a period as 2000 years (Aris et al., 2020b). 

Mean LT values of the archaeological British populations all fall with known published 

ranges. Conversely, the Modern-day sample possessed the thickest mean molar LT ever published 

for a human population. However, rather than being an indication of large inter-population 

differences, this is likely the result of the low volume of data published for human molar LT. This 

supports the findings of Chapter 5 which only observed a single significant difference between the 

Roman and Modern-day populations (p = 0.04; Aris et al., 2020b). 

The potential impact of genetic diversity must again be considered here for enamel 

thickness. As discussed previously in section 7.3.1, and in Chapter 5 when specifically relating to 

enamel thickness, the period of time associated with the Roman, Anglo-Saxon, and Modern-day 

populations analysed here is associated with rapid increases in migration, and thereby gene flow, 

into Britain (e.g. Lightfoot et al., 2009). Unlike with enamel growth rates, no clear trends in enamel 

thickness variation were seen between populations over time. This could potentially allude to a 

more significant impact of increased genetic diversity. It would therefore be even more valuable for 

future research to further investigate the genetics and origins of these populations to help develop 

our understating of how migration and increased generic diversity enamel thickness expression both 

within and between populations.  

 

7.3.3 Summary 

The aims of the research presented here were to expand upon our understanding of the 

evolutionary plasticity of modern human permanent enamel. By analysing changes in features of 
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enamel thickness and growth rates, this has been achieved by discussing any variation within the 

context of: changes over time between populations, differences between biological male and female 

groups, and across the tooth row within populations.  

In regards to evolutionary plasticity of enamel growth, it appears to be consistent between 

the sexes (Aris et al., 2020a), which concurs with past similar findings (Schwartz et al., 2001). 

However, variation between populations show a series of significant changes, most notably 

significant trends of slowing DSRs over time in both first molar (Aris et al., 2020b) and upper anterior 

teeth (Aris et al., 2020a). Such trends have never been observed until now, and show a new level of 

plasticity in modern human permanent enamel. 

 Within the context of changes over time, enamel thickness was shown to be less plastic than 

DSRs, with less inter-population differences (Aris et al., 2020b). However, the significant changes 

observed do allude to a correlation with the shift towards more abrasive diets in Early Anglo-Saxon 

populations. This agrees with past research which has suggested that enamel thickness in human 

molars can significantly differ over time between populations as the result of dietary shifts (Le Luyer 

et al., 2014; Le Luyer and Bayle, 2017). Moreover, the ranges of LT and RET for human first molars 

have been increased with the publication of British population’s mean thicknesses. While this does 

not necessarily increase our understanding of enamel plasticity between populations, it does widen 

our understanding of existing ranges in human molar thickness. 

 Even though the mean first molar enamel thickness measures gathered here have been 

discussed for their differences to previously published ranges, it should still be noted that these 

remained relatively consistent between the British populations (Aris et al., 2020b). Conversely, the 

mean DSRs varied significantly between populations over time for all tooth types and enamel 

regions analysed. This suggests that changes in enamel growth and thickness between populations 

are not tightly linked.  

 

7.4 Limitations 

7.4.1 Limited tooth types and only one tooth analysed per individual 

While this project analysed 285 different teeth, these were isolated to permanent first molars, and 

upper first incisors and canines, all of which came from different individuals. It could be argued this 

represents a good number of tooth types, spanning both the anterior and posterior regions of the 

dental arcade. Nevertheless, it must be considered that second incisors, second and third molars, 
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the majority of mandibular teeth, and the entire premolar tooth type have not be used in any novel 

analysis. Moreover, at no point could the different teeth analysed here be compared within the 

context of a single individual. While this is a significant number of unconsidered tooth types, and 

missed potential analyses, these omissions are purely the result of time and resource constraints, 

and institutional request during sample collections which impacted this project.  

To summarise: 

- Institutions regularly permitted only the sampling of small sample sizes per population 

(typically 10 teeth per collection). Expanding to additional tooth types would have limited 

already reduced samples in some cases (discussed later in this section) to unacceptable 

levels for strong statistical analysis. 

- Institutions consistently requested that individual sets of remains only have one tooth 

sampled. This was commonly reasoned as to reduce the impact of destructive analysis 

conducted for this project on future research using the same collections. 

- The extended time required to section and subsequently collect all measurements from a 

single tooth, via histology and light microscopy, would have meant the inclusion of suitably 

large samples from other tooth types would not have been possible within the timeframe of 

this project. 

- The cost of sampling additional teeth, incurred through the need to collect additional teeth 

and then use consumables to section them, could not have been supported through 

available research funds. 

While these factors limiting the use of additional tooth types were unavoidable, given a 

significant portion of the later discussion presented here concerns inter-tooth difference in regional 

DSRs, this limitation must still be considered. The conclusions of these discussions must therefore be 

noted as preliminary, and observations must be noted to only have been made between first molars, 

and upper anterior tooth types (defined as first incisors and canines). Future research would 

therefore be valuable in expanding the research and analysis here into different tooth types and 

further into the mandibular dental arcade. 

Similarly, the impact of only analysing one tooth per individual must be mentioned considering 

the previous discussion regarding inter-tooth differences. With analyses including 285 teeth from 

285 different individuals, no analysis being conducted across a single individual’s dental arcade limits 

how far observations of differences in regional DSRs between teeth can be interpreted. A potential 

line of future research would be to return to the same individuals analysed here and collect data 
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from a different tooth than already sampled (i.e. an upper first incisor/canine is collected where the 

molar is presented here), to test whether inter-tooth DSR difference are consistent when compared 

in individuals. Such analyses would also help account for differences in diversity of population 

genetics and ancestry. This was another factor that could not be accounted for due to the availability 

of genetic data from the archaeological populations and ethnicity of the modern-day population (see 

section 4.1). 

 

7.4.2 Disparity in sample sizes 

Due to the destructive nature and temporal transect of this project, some populations could be 

represented by larger sample sizes. Notably, the Medieval and Anglo-Saxon populations presented 

here are represented by larger samples as a result of such populations being abundant and readily 

available for analysis in the United Kingdom. Conversely, Roman and modern-day dental collections 

are rarer, and as a result gaining permission to conduct destructive sampling of such collections was 

difficult, even when the collections could be located. In the case of sourcing Roman teeth, 

collections are less common as Roman Britain is associated with high levels of cremation as a burial 

practice (e.g. Williams, 2004), which rarely leaves dental remains suitable for the analyses conducted 

here. As a result of suitable Roman collections being rarer the relative value of the remains is 

increased, which in turn reduces the chance of destructive analysis being permitted. Similar 

limitations surrounded accessing modern-day dentition, as modern extraction samples are rarely 

available to anthropological research. This is due to each modern-day collections sourced from living 

individuals requiring ethical approval for destructive analysis from the United Kingdom National 

Health Service research ethics committee. Despite these issues surrounding sourcing and sampling 

Roman and modern-day teeth, it was ensured that ten of each tooth type analysed in this project 

(first molar, upper canine, upper first incisor) were sampled to support the subsequent statistical 

analysis. 

 

7.4.3 Low number of dental growth measures 

One further limitation of this project was the limited number of measures relating to enamel growth 

which were collected and presented. While regional DSR collection and calculations involved a large 

number of measurements being taken, and their analysis allowed for discussion regarding enamel 

growth variation throughout the enamel cap, a number of commonly analysed enamel growth 
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measures were not collected as a part of this project. Most notably crown formation times (CFTs), 

crown initiation, and enamel extension rates (EERs) are not presented here. 

Crown formation time is a valuable measure as it allows for calculation of the exact time (in 

days) it takes for a crown to fully mature. This could be analysed alone with a research project, or 

alongside DSRs, to investigate enamel growth differences between tooth types and/or populations 

(e.g. Antoine et al., 2009). Unfortunately, calculating CFTs is a very time consuming process. This 

typically involves creating a high-resolution composite image of an entire dental crown, and 

subsequently counting over 1000 cross striations per tooth. Crown initiation relates to the age at 

which a tooth begins to mineralise, and is typically calculated by counting the number of cross 

striations, counted along an enamel prism originating from the dentine horn, between the EDJ and 

neonatal line (e.g. Antoine and Hillson, 2016; Reid and Guatelli-Steinberg, 2017). While there is value 

in comparing this measure between tooth types and populations, this measure routinely involves 

counting upwards of 200 cross striations per tooth, and is thus a highly time consuming process. 

Finally, EERs account for the rate of ameloblast activation as enamel matrix secretion begins along 

the EDJ during amelogenesis (e.g. Antoine et al., 2018). It is calculated by counting cross striations 

along a prism to a striae of Rezius, and then measuring the distance between the prism’s origin and 

intersection of the Retzius line with the EDJ, thus allowing the calculation of the rate of cellular 

differentiation along the EDJ (e.g. Guatelli-Steinberg et al., 2012b; Antoine et al., 2018). Enamel 

extension rates are not a singular measure, and can be continuously measured along the EDJ to 

show changes in rates of differentiation along the length of the EDJ. Depending on the number of 

cross striations counted for each EER calculation, this method can also involve counting over 1000 

lines per tooth analysed. 

Overall, it was the constraints (as previously outlined in section 7.4.1) which resulted in these 

additional growth measures of enamel not being included in this project. It is worth noting that 

crown formation times and enamel extension rates were initially planned to be collected for this 

project, and preliminary data collection was started. However, due to limits of data collection time 

focus was kept on DSRs to ensure large and reliable sample sizes were obtained for each region. 

Valuable future research could now be conducted, returning to the teeth analysed here, by 

examining whether similar trends to those seen in DSRs can be observed in changes in CFTs, EERs 

and initiation rates over time between populations. 
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CHAPTER 8: CONCLUSIONS 

 

8.1 First molar enamel 

The first research question of this project posed whether enamel growth rates of first molars had 

varied over time between populations. The first molars of the British populations showed a 

significant trend in the slowing of DSRs over a 2000 year period. This was seen in all regions of the 

first molar enamel. Until now, molar DSRs have only been recorded within an intra-population 

context which has suggested minimal intraspecific variation (Beynon et al., 1991b; Lacruz and 

Bromage, 2006; Smith et al., 2007b; Mahoney, 2008). This research showed that permanent first 

molar DSRs can instead significantly vary between British populations. Future research would be well 

served extending research on the temporal variation of British populations to those more ancient 

than Roman, including Bronze and Iron Age samples.  This could show how expansive the gradual 

slowing of DSRs between British populations truly is. In addition, a replica study of the one 

presented here using populations of different geographic origin, but still spanning the last 2000 

years, would aluminate as to whether the trend of slowing DSRs is isolated to British populations. 

  The fourth research question asked whether enamel thickness of the same first molars had 

varied over time between populations. First molar enamel thickness is concluded to have varied 

between British populations to a far lesser extent compared to DSRs, with no clear trend between 

populations. First molar enamel thickness varied most notably between the Early and Late Anglo-

Saxon populations. The Early period had larger RET and thicker LT compared to the Late Anglo-Saxon 

population. Past research has suggested variation in molar thickness had been recorded between 

populations differing by a minimum of 7000 years (Le Luyer et al., 2014). Therefore, data presented 

here suggests that human first molar enamel thickness is even more evolutionarily plastic than 

previously thought, as the Early and Late Anglo Saxon populations differ in date by a range of only 

200-700 years. Moreover, the increased thickness of the Early Anglo-Saxon first molars is attributed 

to a more abrasive marine diet. While this theory is based on historical data of the period in 

comparison to thickness measures collected here, it does agree with past research of human molar 

enamel thickness which suggested variations between populations to be the result of differential 

dietary practices (e.g. Le Luyer et al., 2014; Le Luyer and Bayle, 2017). Future research should aim to 

address this concept by analysing thickness data of an Early Anglo-Saxon and/or coastally-based 

population in conjunction with collecting dietary data, in order to make direct comparisons between 

the two. 
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8.2 Upper anterior tooth enamel 

The first research question of this project also posed whether the enamel growth rates of upper 

anterior teeth had varied over time between populations. Daily secretion rates for the upper canines 

and upper first incisors showed variation between the British populations, with a significant trend 

towards the slowing of enamel in more recent populations.  The trend was also observed in both 

male and female samples during independent inter-population analyses. It is difficult to assess the 

DSR ranges for the permanent British anterior teeth in the same manner as the first molar data, as 

there is little available equivalent published data, unlike that available for canines (Schwartz et al., 

2001). However, what can be said is that high degrees of variation between populations can occur in 

these DSRs, even when the populations share a dated origin within a 2000 year period. 

The third research question further asked if enamel growth had varied between different 

tooth types. When isolated, Anglo-Saxon analyses found the Late Anglo-Saxon population to possess 

faster mean upper first incisor DSRs on average than that of the Early Anglo-Saxon population. These 

were significantly faster in the inner and mid lateral upper first incisor regions. However, the upper 

canine enamel DSRs presented variation akin to both the first molars and upper first incisors. While 

the inner and mid cuspal, and inner and mid lateral upper canine DSRs of the Late Anglo-Saxon 

population were also on average faster, the cuspal regions of both enamel areas were faster in the 

Early Anglo-Saxon population. Future research focussing on the Anglo-Saxon period could therefore 

help widen our understanding of what caused the slowing of DSRs between human populations over 

time, as well as the increase in some regional DSRs between the early and Late Anglo-Saxon periods.  

 

8.3 Enamel sexual dimorphism 

The second research question presented in the introduction to this thesis expanded on questions 

regarding enamel growth variation, asking if growth had varied between biological male and female 

groups. Associated analyses found no significant difference between the biological male and female 

upper anterior tooth DSRs in any of the British populations. This agrees with past research by 

Schwartz and colleagues (2001) who found DSRs to be consistent between males and females in a 

modern sample. While we cannot conclude whether this is also true of the first molar enamel DSRs, 

the similar inter-population differences between the first molars and upper anterior tooth types 

would suggest first molars are unlikely to display any differentiating significant sexual dimorphism 

within their DSRs. Given human permanent molars have been found to possess significant sexual 

dimorphism (e.g. Schwartz and Dean, 2005; Cardoso, 2008; Aris et al., 2018), this could mean that 
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differences in size are due to longer periods of enamel growth. The evidence provided is in not 

substantial enough to support this theory fully, with committed future research now being required.  

 

8.4 Enamel growth and thickness 

The fifth and final research question of this project asked if any enamel growth and thickness 

variation correlated. While first molar enamel thickness varied between the Anglo-Saxon 

populations, there was little other variation between the British populations. Conversely, inter-

population variation in regional DSRs occurred in all enamel areas and tooth types analysed. Overall, 

what was found were similarly thick teeth (outside of the Early Anglo-Saxon population) growing at 

significantly different speeds according between populations. While DSRs do not appear tightly 

linked to enamel thickness, past research has found slower Retzius periodicity to predict thicker 

teeth (Mahoney et al., 2018). As a result, it should not be assumed that all enamel growth data 

variation does not correlate with changes in thickness. Future research should thus consider if other 

developmental factors of enamel are more strongly linked to enamel thickness when compared to 

different populations. 

 

8.5 Future research directions  

A number of questions arose during the course of this research, particularly pertaining to the 

inconsistent enamel thickness differences between populations. Comments have been made as to 

the potential influence of dietary changes influencing enamel thickness, most notably in regards to 

the Early Anglo-Saxon population. Future research would therefore be best served conducting 

analyses of stable nitrogen and carbon isotopes from both bone and enamel, preferably from the 

same individuals from whom dental cross-sections were produced. It is thus suggested that future 

research should test the utility of combining isotope and histological methods within research 

projects. Only by doing so can the true inter-population differences in diet be identified, and the 

physiological changes occurring in enamel be tracked for the same populations and individuals.  

The results of the inter-population DSR analyses raise further questions. While the results 

were undeniably significant and consistent across tooth types, it should not be assumed that the 

analyses of the five British populations are representative of the human species at a global or 

temporal scale. It would be of great benefit to conduct similar studies to those presented here on 

more diverse populations. The literature concerning enamel thickness and DSRs is dominated by 
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data gathered from European and Southern African samples. The most obvious and consistent 

finding of this project as a whole, is that dental development via enamel growth is highly variable 

between human populations with minimal difference through a temporal transect. Expansion into 

new populations, from different from regions of the world and time periods, is therefore vital in 

order to develop our understanding as to how and why enamel growth can significantly vary 

between populations over relatively short periods of time. For instance, the trend of slowing enamel 

growth between populations in Britain may not be consistent on a global scale, or even when the 

2000 year time span analysed here is expanded further into the more distant past of Britain. 

Given the preference for European and Southern African in research to date, future research 

would ideally be conducted on Asian, Indonesian, and/or Australasian samples. This would expand 

the available data for human enamel features to be more geographically and ethnically inclusive. 

Moreover, such projects would be best conducted with local and indigenous experts. This project 

proposed that socio-cultural factors could potentially influence enamel physiology. With expert 

knowledge and input, our understanding of how enamel can vary in modern humans between 

populations can only be expanded. Furthermore, more regular inclusion of indigenous experts in bio-

archaeological projects will improve ethical standards and help expand the field outside of the 

current main spheres of influence in Europe and North America. 
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APPENDIX A: GLOSSARY  

 

A.1 Glossary of relevant terms  

A.1.1 Directional and surface definitions 

Dental and histological analysis involves the observation of both two and three dimensional 

features. Directional terms are therefore a key part of their analysis. The following terms are those 

most commonly used within dental histology (see Fig A.1; Beek, 1983): 

Lingual – this refers to the surface or edge of a tooth facing the inwards within the jaw, towards the 

tongue. 

Labial – the labial surface is that opposite to the lingual surface facing outwards. Only anterior teeth 

(incisors and premolars) have a labial surface. 

Buccal – the buccal surface of the tooth is descriptively the same as the labial surface, but refers only 

to the posterior premolar and molar teeth.  

Mesial – all teeth have a mesial surface which faces towards the median plane passing equidistant 

between the first incisors. 

Distal – the distal surface of a tooth lies directly opposite to the mesial surface away from the 

median line. 

Occlusal – the occlusal surface is that which makes contact between maxillary and mandibular teeth 

during mastication. In incisors (and occasionally canines) this is often also referred to as the incisal 

surface. 

Apex – the furthest point from the dental cervix, usable in reference to both enamel and dentine. 
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Fig. A.1. Figure of directional and surface terms used in this project. Image produced using the 
BioRender tool set (https://biorender.com/). 
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A.1.2 Numbering and descriptive systems 

Within text tooth type will be referenced using Latin abbreviations (Beek, 1983:6), tooth side via use 

of “L” and “R”, and tooth position (upper/lower) and number (where needed) though the use 

subscript and superscript (see Table A.1). 

 

Table A.1. Acronyms and devices used to refer to teeth in the shorthand. 

Tooth Types 

Tooth name Abbreviation 

Incisor I 

Canine C 

Molar M 

Tooth Siding 

Tooth side Abbreviation 

Left L 

Right R 

Tooth Position 

Tooth position Abbreviation 

First 1 

Second 2 

Third 3 

Upper (for molars and incisors) Superscript of number 

Lower (for molars and incisors) 
Subscript of number 

Upper (for canines) U 

Lower (for canines) L 
 

Example: RM2 would stand for upper right second molar 

Example: ULC would stand for upper left canine 

 

 

A.1.3 Enamel specific abbreviations and acronyms 

EDJ – Enamel dentine junction: the visible line where the enamel cap adheres to the outermost 

dentine. 

DSR – Daily enamel secretion rate: refers to the quantified aspect of measuring the daily rate of 

enamel matrix secretion. 

RP – Retzius periodicity: the measure, in days, of the circa-septum rhythm producing long period 

lines within dental enamel. 



157  
 

EER – Enamel extension rate: the rate of differentiation among ameloblasts initiating as the dentine 

horn and culminating at the dental cervix. 

iEER – Initial enamel extension rate: a preliminary calculation displaying the rate at which the 

earliest ameloblasts differentiate along the EDJ. 

AET – Average enamel thickness: refer to the average thickness of enamel observable and calculated 

using a two-dimensional dental cross section. 

RET – Relative enamel thickness: the relative measure of AET calculated when accounting for the 

area of dentine encapsulated by the enamel cap. 

CT – Cuspal thickness: the linear thickness of enamel between the dentine horn and the occlusal 

surface of the same cusp tip. 

BCT – Buccal cuspal thickness: a molar specific variant of CT measured at a buccal cusp. 

BLT – Buccal lateral thickness: the maximum linear thickness measurable within the buccal-lateral 

imbricational enamel between the EDJ and the enamel occlusal surface 

CEFT – Cuspal enamel formation time: the time taken for the morphology of appositional enamel to 

have formed, measured in days. 

LEFT – Lateral enamel formation time: the time taken for the morphology of imbricational enamel to 

have formed, measured in days. 

CFT – Crown formation time: the time taken for the morphology of a dental crown to have formed, 

measured in days. The sum of CEFT and LEFT. 

  

A.2 Dental anatomy 

The clinical anatomy of any tooth is comprised of a number of organic and inorganic components: 

Crown – the crown is the most naturally visible, portion of the tooth which is directly involved in 

mastication (see Fig A.2; Berkovitz et al., 2002; White et al., 2011). Within the crown exists the 

enamel-dentine junction (EDJ), the region where the internal enamel borders the primary dentine 

(Berkovitz et al., 2002). Externally the crown possesses the cemento-enamel junction (CEJ), where 

the surface of the enamel meets the cementum surrounding the root dentine of the tooth (White et 

al., 2011:104).  
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Root – the root is the portion of the tooth which acts to anchor the tooth within the alveolar bones 

of the jaw (see Fig A.2; Berkovitz et al., 2002; White et al., 2011). Typically a tooth will have between 

one and three roots according to its type and location within the jaw (White et al., 2011:104). Within 

a dental root is found the root canal, secondary dentine, and cementum (Berkovitz et al., 2002; 

White et al., 2011:104).  

Dental Pulp – a soft tissue which supports the dentinal structures of a tooth comprised of nerves and 

blood vessels which provide a blood supply (Berkovitz et al., 2002; White et al., 2011). Dental pulp is 

unique within the tooth as it can actively produce dentine in reaction to toxins (Berkovitz et al., 

2002). The majority of the dental pulp is contained within the inner area of the crown and is referred 

to as the pulp cavity (see Fig A.2; Berkovitz et al., 2002). The remaining dental pulp compromises the 

root canals, where the nerve and blood flow enters the root through the apical foramina and travel 

to the pulp cavity (Berkovitz et al., 2002; White et al., 2011:106). 

Cervix (or neck) – the cervical region of the tooth is the constricted region where the crown and 

root(s) meet (see Fig A.2; Berkovitz et al., 2002; White et al., 2011:104). Regardless of the number of 

roots a tooth only ever has a single cervix. The majority of the cervix is defined by the external CEJ 

(White et al., 2011:104). This is the line which encircles the cervix at the border between the enamel 

of the crown and the cementum of the root (White et al., 2011:104). 
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Fig. A.2. Two-dimensional cross-sectional diagram of a human permanent molar, displaying all major 
anatomical features compromising the internal structures of dentition. Beige areas denote enamel, 
blue denotes dentine, and red denotes dental pulp. The outer black line of the enamel represents the 
outer enamel surface. 

 

 

Enamel – a mineralised tissue which creates a thick layer over the primary dentine (see Fig A.3; 

Berkovitz et al., 2002). Although brittle, enamel is the hardest biological substance which comprises 

the human body, acting as the primary substance involved in mastication (its specific function 

varying between tooth types; Simmer and Fincham, 1995; Berkovitz et al., 2002; Wright et al., 2015). 

It is formed of between 90-92% hydroxyapatite crystallites and between 10-8% organic protein 

material and water (Berkovitz et al., 2002). 
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Appositional enamel – the earlier forming region of enamel, referred to as cuspal enamel, which is 

observed to have formed before the first Retzius line to develop in contact with both the EDJ and 

outer enamel surface (see Fig A.3; Berkovitz et al., 2002). Appositional enamel is found at the cusp 

tips of dental enamel. 

Imbricational enamel – the later forming enamel, referred to as lateral enamel, which is observed to 

have formed after the first Retzius line to develop in contact with both the EDJ and outer enamel 

surface (see Fig A.3; Berkovitz et al., 2002). Imbricational enamel also include cervical enamel which 

is found in near proximity to the dental cervix (Berkovitz et al., 2002). 

Dentine – a hard but elastic tissue which makes up the highest percentage mass of any tooth (see Fig 

A.3 and/or Antoine et al., 2018). The tooth is comprised of two types of dentine: primary dentine 

which forms deep to the enamel of the tooth crown, and secondary dentine which forms the roots 

(Berkovitz et al., 2002; White et al., 2011:104; Antoine et al., 2018). Dentine is relatively soft 

compared to enamel, formed of between 47-50% hydroxyapatite and 50-53% organic material and 

water (Berkovitz et al., 2002; White et al., 2011:104; Antoine et al., 2018). 

Cementum – a mineralised tissue which thinly coats the roots of teeth (see Fig A.3). It acts to adhere 

the tooth within the alveolar bones of the jaw (Berkovitz et al., 2002; White et al., 2011:106). Softer 

than dentine, cementum is comprised of between 45-50% inorganic substances and 50-55% organic 

material and water (Berkovitz et al., 2002; White et al., 2011:106). 
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Fig. A.3. Two-dimensional cross-sectional diagram of a human permanent molar, displaying relevant 
secondary anatomical features associated with the structures of dentition. Within the beige areas 
dark blue lines represent the Reztius lines used to differentiate appositional and Imbricational 
enamel, blue denotes dentine, and red denotes dental pulp. The right superimposition highlights the 
location of dental cementum. 
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A.3 Tooth types 

Morphologically, adult human dentition starting at the midline, moving distally, is divided into four 

tooth types: incisors, canines, premolars, and molars (see Fig A.4; White et al., 2011:104). Each of 

these has a different function in the process of mastication and has dimorphism to accommodate for 

its role (Beek, 1983; White et al., 2011). It should be noted that all descriptions here refer to 

permanent dentition. 

Incisors – the incisors are the most medial teeth within the jaw developing (Beek, 1983; White et al., 

2011:110). Each adult human possesses eight permanent incisors (four upper and four lower). 

Maxillary incisors tend to be bigger than their mandibular counterparts, with the first incisors also 

being larger than their second (or lateral) neighbours (Beek, 1983; White et al., 2011:110). This is 

particularly evident in the maxillary teeth. Incisors have a shovel-like appearance (see Fig A.4), 

allowing them to cut and slice food during mastication (White et al., 2011:110). Incisors are also 

typical of a tapering root and a flat crown that widens on the mesio-distal plane. This widening is 

more exaggerated in the maxillary teeth (Beek, 1983; White et al., 2011:110). 

Canines – the canines are the third tooth (observed laterally) developing distally to the second 

incisor (Beek, 1983; White et al., 2011:111). Each adult human possesses four permanent canines 

(two upper and two lower). Maxillary canines tend to be larger than the mandibular but not to such 

an extreme degree as incisors (Beek, 1983). Canines have an exaggerated incisive edge on either side 

which forms a single pointed cusp; the lateral incisal edge is more prominent than the mesial (see Fig 

A.4; Beek, 1983; White et al., 2011:110). This cusp acts to grip and tear food during mastication and 

develops an extremely long root to provide anchorage within the jaw (White et al., 2011:110).  

Molars – permanent molars have the largest occlusal surfaces of any tooth type (Beek, 1983). First 

molars, within both the mandible and maxilla, develop the largest occlusal surface, with decreasing 

surface areas moving distally along the jaw in subsequent second and third molars (Beek, 1983; 

White et al., 2011:119-120). The first maxillary molar possesses four cusps (two buccal and two 

lingual) and three roots (two buccal and one lingual) (see Fig A.4); the mandibular equivalent 

develops five cusps (two buccal, two lingual and one distal) and two roots (one buccal and one 

lingual) (Beek, 1983; White et al., 2011:119-120). 
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Fig. A.4. Figure of the location and appearance of the tooth types researched in the project: incisor 
(top right), canine (mid right), and molar (bottom right). Photographic images taken from teeth 
collected from the Fishergate House Medieval collection (see Chapter 5: Materials and Methods). 
Digital imagery produced using the BioRender tool set (https://biorender.com/). 

 

 

 

 

 

 

 

 

 

https://biorender.com/


164  
 

APPENDIX B: SEX DETERMINATION SHEET  

Table B.1 Sheet template for sex determination from features of the pelvis. Each feature was given a score of 
between 1-5 (1 = definitely female; 2 = likely female; 3 = indeterminate; 4 likely male; 5 = definitely male). 

Morphological Characteristic Pelvis 
 

Right Left 

Overall Structure   

Overall Shape (anterior aspect)   

Pelvic Inlet  

Iliac Crest (vertical aspect)   

Iliac Blade (anterior aspect)   

Iliac Tuberosity   

Greater Sciatic Notch   

Auricular Surface   

Pereauricular Sulcus   

Postauricular Space   

Pubic Symphysis Height   

Pubic Rami   

Sub-pubic Angle  

Pubic Tubercle   

Inferior Pubic Ramus   

Ventral Arc   

Sub-pubic Concavity   

Medial Ischio-pubic Ridge   

Obturator Foramen  

Ischial Tuberosity   

Ischial Spine  

Anterior Sacral Curvature  

Sacral Auricular Surface   

Overall Sex (side)   

Overall Sex (total)  
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Table B.2 Sheet template for sex determination from features of the skull. Each feature was given a score of 
between 1-5 (1 = definitely female; 2 = likely female; 3 = indeterminate; 4 likely male; 5 = definitely male). 

Morphological Characteristic Skull 
 

Right Left 

Frontal Tuberosities   

Zygomatic Process of Frontal   

Temporal Ridges   

Suprameatal Crests   

Mastoid Process   

Nuchal Area  

External Occipital Protuberance  

Occipital Condyles   

Canine Emminence   

Mandibular Ramus 
(anterior-posterior) 

  

Mandibular Ramus   

Depth from Incisors to Mentum  

Mental Protuberance   

Lower Margin of 
Mandibular Corpus 

  

Angle of Mandible   

Overall Sex  
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APPENDIX A: PUBLISHED ARTICLES 

The two articles presented in the subsequent pages represent the published versions of Chapter 5 

and Chapter 6 of this thesis. The citations for these articles, in order, are: 

Aris, C., Mahoney, P., & Deter, C. (2020a). Enamel thickness and growth rates in modern human 

permanent first molars over a 2000 year period in Britain. American Journal of Physical 

Anthropology. 

Aris, C., Mahoney, P., O'Hara, M. C., & Deter, C. (2020b). Enamel growth rates of anterior teeth in 

males and females from modern and ancient British populations. American Journal of Physical 

Anthropology. 
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