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Abstract

Sustainability and sustainable development research have become a very important
part in the development of energy policy. This has resulted in growing research
interest in the assessment of the sustainable performance of energy systems using
methodological tools such as Data Envelopment Analysis (DEA). However, existing
sustainability evaluation has tended to either focus on production and environmental
impacts at the electricity generation phase or focussed on the use of electricity
for some economic or social benefits given the environmental impacts. Assessing
the production and use phases separately ignores the interlinkages between energy
security, clean energy and energy equity policies, the so-called energy trilemma. This
limitation with existing energy research is due to the differences in the electricity
generation portfolios of different countries, the complex interrelationships between
policy variables and the weaknesses of existing quantitative techniques to handle
such complex sustainability problems.

To address this shortcoming, this thesis draws on advances in network and non-
homogenous DEA and Multi-Attribute Utility Theory to examine the application
of DEA in sustainable energy research. European Union (EU) states are used as
case studies to demonstrate the applications of these techniques. Specifically, DEA
optimisation models are developed to allow for the integration of the generation
and consumption phases of the energy system by adopting a systems approach
to modelling while recognising the differences in the generation portfolios of the
different EU states and allowing for cross-country comparison. Additionally, given
the varying theoretical perspectives on sustainability in the literature, some of these
divergent views are incorporated in the sustainable portfolio generation and energy
consumption evaluations. Consequently, this thesis contributes to existing energy
sustainability research by proposing novel approaches for handling non-homogeneity
in electricity generation portfolios, developing models to provide holistic decision
support and developing models to evaluate the incorporation of sustainability in
electricity portfolio mix decisions.
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These are achieved by addressing three main research objectives. The first
objective pertains to the generation phase of the energy system. Specifically, DEA
optimisation models are developed to assess sustainability and resource efficiency in
electricity production. In the production phase, since units have different portfolios
of generation sources, there exist non-homogeneity in the sub-processes of units
under investigation. This sub-process non-homogeneity problem has not yet been
addressed in the literature. Consequently, two approaches for addressing these
non-homogeneities are proposed. The distinction between the two proposed ap-
proaches is whether the non-existent sub-processes are included in the model to
determine optimal multipliers or not. A comparison of the proposed approaches
with a traditional network DEA reveals differences in the overall scores and rankings
of units under investigation. This underscores the need to ensure appropriate model
correction where there exists such non-homogeneity within sub-processes, especially
in the presence of shared inputs/outputs in parallel network DEA. Empirical assess-
ment of resource efficient and sustainable production of the European electricity
generation systems revealed average scores of between 0.4 and 0.6, over the study
period, without a clear pattern towards performance improvement.

The second objective is to develop models for a holistic assessment of the energy
system by integrating electricity production and consumption phases. While the
production phase is composed of eleven parallel sub-processes, the consumption
phase comprises three multi-stage serial sub-systems representing social development,
economic development and environmental performance. Therefore, the integrated
model is a mixed structure network problem that can provide decision support for
both the generation and the consumption phases, as well as provide recommenda-
tions for the entire system. In addressing this objective, improvements to existing
assessments are made. This includes incorporating electricity as a vital input and
employment as a vital output in social development assessment; linking employment
as an intermediate factor between social and economic development assessments;
and determining environmental performance from emissions and bio-capacity. In
the empirical application it was observed that, higher performers in the generation
phase are not necessarily higher performers in the consumption phase. While higher
performers in the generation phase include Estonia, Poland and Greece, higher
performers in the consumption phase include Malta, Luxembourg and Cyprus. An
integrated assessment, therefore, provides policy makers with a good understanding
of the entire system which may not be evident in the phased assessments.

The final objective examines the implication of sustainability in energy portfolio
mix planning. Awareness of environmental and social impacts of energy generation
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has resulted in the incorporation of sustainability as a relevant consideration in
energy mix planning decisions using portfolio optimisation. Current approaches
for portfolio analyses has tended to add external (social) and environmental costs
dimensions to operational (economic) costs to cater for sustainability in energy
mix planning. It is shown that attempting to combine the various sustainability
associated cost dimensions by adding the respective cost from the various dimensions
has the potential to negate the relevance of some of the dimensions, thereby, making
some dimensions more important than others. The result is optimal portfolios which
may be inconsistent with expectations on sustainability. Relying on Multi-Attribute
Utility Theory, the impact of the interactions and other relationships between the
various components on technology ranking and optimal portfolios are explored. DEA
is employed to examine the impact of the relationship between the cost dimensions
on the technology ranking. The mean-variance framework is then used to construct
optimal portfolios based on the different dimension relationships. It is found that
portfolios constructed using multiplicative pooling of dimensions best conform to
the expectations of sustainability while achieving lower emission potential and use of
higher renewable energy sources given a cost minimisation objective. For example,
additive pooling results in higher rankings for gas and coal powered power plants
when compared to hydro, solar and biomass even though gas and coal under-perform
renewable sources in two out of the three sustainability dimensions. It is, therefore,
recommended that when constructing sustainable portfolio of generation sources,
multiplicative pooling of cost dimensions along the sustainability objectives should
be preferred.
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Chapter 1

Introduction

1.1 Background of the study
Over the past few decades, policy discussions on sustainability and sustainable
development have become mainstream at corporate, national and international
levels of governance. Corporations are under increasing ethical and legal pressure
to take into account their social and environmental impacts (Haugh and Talwar,
2010; Vigneau et al., 2015; Wolf, 2014). Governmental organisations have had the
responsibility of ensuring the protection and preservation of resources that support
welfare and economic development (Van Huijstee et al., 2007). Internationally,
academic contribution and advocacy by various non-governmental organisations
have driven intergovernmental organisations to develop policies with sustainability in
mind. Sustainability policy aims to balance economic, social and environmental issues
(Atilgan and Azapagic, 2016; Khan, 2015). This growing interest in ‘sustainability’
in research and policy has resulted in an increased focus on the generation and use
of energy, since the secure, clean and affordable supply of energy is essential for
economic and social development, as well as improvement of quality of life (Jovanović
et al., 2010; Mondal and Denich, 2010).

This thesis extends Data Envelopment Analysis (DEA) and Network DEA
(NDEA) methodologies in the assessment of the sustainability of electricity sup-
ply and use. Specifically, novel methods for handling differences in the portfolio
of sub-processes in parallel NDEA models as well as incorporating sustainability
into portfolio selection are proposed. Performance assessment models that incor-
porate differences in the electricity generation portfolios of different countries and
integrate production efficiency, social sustainability assessment, energy utilisation ef-
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ficiency, and environmental performance assessments into a single holistic assessment
procedure for comprehensive energy policy decision support are developed.

Additionally, the thesis proposes approaches for incorporating sustainability in
sustainable energy mix planning. This thesis argues that effective decision support
for sustainable energy policy should provide cross-country evaluation that integrates
both the supply and demand-side issues of the energy system while incorporating
differences in generation portfolios of different countries. NDEA handles performance
evaluation problems of complex system structures. Empirical evaluation of electricity
demand and supply systems of countries in the European Union (EU) is conducted,
thereby providing real-world examples of the internal generation systems and its
implications on the society, environment, and economy.

Research in this area has been motivated by the crucial nature of secure, sufficient
and accessible energy for modern societies (Varun et al., 2009) due to a growing
world population, increased energy use per person, and increased urbanisation and
industrialisation rates (Jovanović et al., 2010; Koroneos and Nanaki, 2007; Onat
and Bayar, 2010). Additionally, securing a sustainable provision of energy has
become one of the central political challenges in modern times (Gallego Carrera and
Mack, 2010). As an example, one of the aims of the United Nations Sustainable
Development Goals (SDGs) is ensuring access to affordable, reliable and modern
energy for all (United Nations, 2015; Volkart et al., 2018). Achievement of this SDG
goal is not only important for energy policy but also to fulfilling wider sustainable
development objectives for both developed and developing countries. The electricity
sector is important for sustainable development since it affects various environmental,
economic and social issues across supply chains (Atilgan and Azapagic, 2016). As
such, efforts to transition to sustainable energy systems are progressively becoming
an issue of paramount importance for decision-makers at various levels (Štreimikienė
et al., 2012).

As noted by Štreimikienė et al. (2012, pg. 3302), “efficient production, distri-
bution, and use of energy resources coupled with the provision of equitable and
affordable access to energy simultaneously ensuring the security of energy supply
and environmental sustainability constitute the main energy policy objectives for a
sustainable energy system”. The policy objective for clean, secure and affordable
energy is often termed the “energy trilemma”, which must be balanced in policy
and assessment (Jovanović et al., 2010). This has generated great interest among
researchers to develop tools and techniques that can be used to measure sustain-
ability as a prerequisite for identifying unsustainable processes and monitoring
impact of energy generation and use on society (Afgan and Carvalho, 2004). In
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this regard, various multi-criteria decision-making (MCDM) approaches have seen
extensive application and methodological extension to handle the integration of
multiple dimensions of operation and multiple indicators in sustainability research
(Afgan and Darwish, 2011; Diaz-Balteiro et al., 2017; Doukas et al., 2010). DEA,
originally introduced by Charnes et al. (1978), although popular for sustainability
research has seen limited use in sustainable energy research.

DEA has an advantage over other MCDM approaches as it does not have chal-
lenges with normalisation, dimension weighting and aggregation when incorporating
economic, social and environmental impacts as occurs with other MCDM approaches
(Cinelli et al., 2014; Sueyoshi et al., 2017; Wang et al., 2009). DEA allows for
cross-country assessment and benchmarking of energy systems in line with the
regional and global nature with which sustainability policy is addressed. The limited
application of DEA in sustainability assessment in energy generation is probably
due to the complexity in modelling the differences in electricity generation portfo-
lios of different countries, since most DEA approaches require homogeneity in the
production systems of units under investigation and treat the production system
as a ‘black-box’ (Zhou, Yang, Chen and Zhu, 2018). However, advances in NDEA
methodology together with nonhomogeneous evaluation approaches have provided a
new opportunity for advancing DEA literature in sustainable energy generation and
use. NDEA has not been extensively employed in sustainability issues although it
can take into account the inner operational mechanisms of the different sub-systems
in each unit under investigation (Zhou, Yang, Chen and Zhu, 2018). NDEA can
handle production systems with series structure, parallel structure, or even a mixture
of these (Kao, 2014c), for cooperative and non-cooperative relationships (Liang
et al., 2008).

Therefore, this thesis examines the application of DEA in sustainability research
of systems characterised by complex internal structures and its implications on other
socio-economic and environmental systems. The thesis advances DEA research in
handling sustainability research from a systems perspective, while simultaneously
incorporating concepts in sustainability literature to develop new approaches in
DEA modelling.

1.2 Problem statement
While research on the impact of the electricity system is critical for the electricity
mix planning policy, current research has two major limitations:
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First, impact assessment of energy systems tends to either (a) focus on economic,
social and environmental impacts in producing electricity from some generation
sources (Ewertowska et al., 2016; Malkawi et al., 2017; Stamford and Azapagic,
2011); or (b) focus on the use of electricity for economic production while sometimes
catering for environmental impact (Lu and Lu, 2019; Pan et al., 2020), thereby
treating the production and use phases as separate systems. Štreimikienė et al. (2016)
for example, conducted a sustainability evaluation of the Lithuanian electricity mix
by considering institutional, economic, social-ethics, technological and environmental
criteria associated with electricity generation. On the other hand, Pan et al. (2020)
examined energy utilisation efficiency and economic development. Focussing on one
thematic area provides decision support for one aspect of energy policy while ignoring
the interlinkages between energy security, clean energy, and energy utilisation
efficiency, which are important components of energy policy. Both Narula, Reddy
and Pachauri (2017) and Narula, Reddy, Pachauri and Dev (2017) posit that
energy demand by various sectors triggers energy supply, with supply dynamically
responding to energy demand, hence the need to consider both themes concurrently.
At the policy level, the European Council in 2007, for example, adopted energy and
climate change goals of a 20% reduction in greenhouse gas emissions (GHG), a 20%
share of renewable sources in energy consumption and a 20% improvement in energy
efficiency by the year 2020 (EEA, 2017; Hadian and Madani, 2015; Kazagic et al.,
2014). This requires a look at GHG minimisation in energy production, greater
efficiency in energy consumption for economic activities and increased renewable
energy sources in the portfolio of both produced and consumed energy.

Second, despite the plethora of Operational Research (OR) methods and tech-
niques for multi-objective or multidimensional problems, application of such ap-
proaches for sustainability evaluation needs careful reconsideration since some
assumptions of traditional approaches may be inconsistent with some theoretical
views in sustainability literature. Kuhlman and Farrington (2010) observe that there
have been two major developments in sustainability literature that have served as the
building blocks for sustainability assessment: the triple bottom line of sustainability
by Elkington (1997) and concepts of ‘strong’ and ‘weak’ sustainability coined by
Pearce and Atkinson (1992) and extended by Turner (1993). While the triple bottom
line emphasises the need to achieve economic, social and environmental objectives,
the debate on strong and weak sustainability concerns whether there can be substi-
tution or compensation between natural (environmental), social and manufactured
(economic) capital over time. This relationship between the dimensions raises im-
portant issues of preference and trade-off, which are not adequately discussed in the
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literature (Rowley et al., 2012). Approaches that construct composite indices based
on weights that allow for compensation in the aggregation, for example, allow for
disadvantages on some criteria to be offset by large advantages on other criteria
(Hacatoglu et al., 2015a,b; Rowley et al., 2012) may be inconsistent with some views
on sustainability. On the other side, most energy sustainability research is silent on
their assumptions on such substitution. The few that do include Duan et al. (2011),
Moreira et al. (2015), Myllyviita et al. (2013) and Rogner (2010) who explicitly
indicate the capital substitution assumption made in their modelling. Myllyviita
et al. (2013), for example, state that because compensation between the dimensions
of sustainability is allowed in the framework developed, their framework should be
considered to support the concept of weak sustainability. There is little consideration
for the arguments of strong sustainability in the energy literature and it is uncertain
whether performance evaluation based on the ideas of strong sustainability will
yield significantly different results to that based on a weak form of sustainability.
Theoretical views on weak and strong sustainability regarding capital substitution
thereby provide interesting modelling considerations that can be incorporated into
traditional approaches to be better suited for sustainability evaluation.

Although several definitions of sustainability exist, there is a recognition that
sustainability assessment should provide global to a local integrated evaluation of
economy-nature-society systems in short and long-term perspectives to assist in
arriving at actions to make society sustainable (Kates et al., 2001; Singh et al., 2009).
In this regard, sustainability assessment of the energy system should go beyond
environmental impact and resource efficiency to consider the system’s capacity
to continue to support society in its use of different sources of energy (Afgan
and Carvalho, 2008). This calls for a systems perspective towards sustainability
assessment of energy. Such evaluation should not only include the energy system
in a local context but also its global effects on economic, social and environmental
systems. This is particularly important since little consideration is given in current
research to the interactions between the energy system and some social, ecological
and economic systems (Sala et al., 2015). For example, though ample research
establishes the link between energy use and social development (Martínez and
Ebenhack, 2008; Ouedraogo, 2013), assessments of social developments ignore energy
use as an essential input (Despotis, 2005a,b).

Additionally, current research either evaluates the sustainability of energy tech-
nologies in one country/region while ignoring the global implications of the energy
system (Maxim, 2014; Santoyo-Castelazo and Azapagic, 2014) or considers a global
perspective that ignores the internal structural differences in energy systems of
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different countries (Gómez-Calvet et al., 2014; Song et al., 2013). Consequently,
this work provides new insights into the modelling of systems with sustainability
considerations. Though sustainability has become an integral part of national and
business discourse, modelling approaches employed in such decision support frame-
works do not seem to have incorporated the various views espoused in sustainability
literature. Neither have they been able to incorporate the production and use phases
of the energy system in one assessment procedure. Advances in DEA literature
provide the opportunity to incorporate interrelated systems in the same assessment,
consider preference relationships between different dimensions and conduct cross-
country evaluation in sustainability assessment of the electricity system. This study,
therefore, explores how DEA modelling can be informed by sustainability in order
to show how DEA can be used for sustainability assessment of complex systems.

1.3 Purpose and objectives
From the preceding arguments, the primary research question is how to provide
a holistic sustainability assessment of the electricity system that incorporates the
production and consumption phases of the system which allows for cross-country
benchmarking of performance and caters for differences in generation portfolios.
The thesis aims to develop DEA-based systems assessment models for integrated
evaluation of the sustainability of energy systems that allow for differences in
internal generation structures of different countries while allowing for cross-country
comparison and benchmarking and interactions of the energy system with other
systems. This is achieved by developing new DEA-based assessment models that
integrate production and use phases of the energy system in the same assessment
framework to evaluate the complex relationships in the entire system. Finally, it
provides an empirical assessment and benchmarking of the energy mixes of members
of the EU. Specifically, the study aims to:

a. explore DEA optimisation models that cater for differences in production port-
folios and the assessment of sustainability and resource efficiency in electricity
production of EU countries.

b. integrate electricity production and use evaluations, economic development,
social development and environmental assessments into a single holistic assess-
ment procedure that caters for alternative views on sustainability.
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c. examine the implication of sustainability in portfolio optimisation models
aimed at selecting an optimal mix of energy generation sources that aim to
ensure affordable but clean energy system.

1.4 Research contributions
Unlike the existing literature, which has treated electricity production efficiency,
environmental performance, and energy efficiency evaluation as separate, this study
shows the utility of an integrated evaluation while recognising the interconnectedness
of supply and consumption of electricity. Additionally, by formulating the evaluation
models according to different views on sustainability, this work contributes to the
DEA literature on sustainability and provides a basis for comparing prescriptions
from different sustainability perspectives. Finally, the regional focus of the empirical
application of this work contributes directly to the European Commission’s Secure,
Clean and Efficient Energy policy on a single, smart European electricity grid.
This is because the decomposition of the internal generation systems of individual
countries provides an understanding of the strengths and weaknesses of individual
countries in generating electricity by generation source. This provides a good basis
for future European plans for an integrated electricity generation grid.

To summarise, the following research and practical contributions are claimed in
this thesis:

a. A model is introduced to examine the performance of the electricity generation
systems of different European countries while recognising the differences in the
generation portfolio. Novel methods for dealing with non-homogeneity in the
production portfolio of units under investigation are proposed. The aim is to
allow cross-country benchmarking and overview of the capabilities of different
countries in generation using different sources in line with planned transition
unto a single, smart European electricity grid.

b. In the consumption phase of the assessment, an extension to current eco-
efficiency, social development assessment and environmental performance liter-
ature is provided. Unlike previous studies that mostly treat these assessments
as separate, a concurrent assessment that shows the interrelationships and
complementarities between these assessments in policy is proposed. As such, it
is shown that decisions on economic development have implications on social
development, environmental performance and even electricity generation.
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c. A holistic model is formulated that extends the previous model to integrate the
production of electricity with the consumption phase. This model, therefore,
allows energy production and transmission processes to be understood in one
assessment framework. Since this is a serial structure, it provides the ability to
examine for each country, the source of poor performance in the entire energy
system.

d. Additionally, novel approaches for social and environmental performance
assessments are also proposed to examine the impact of electricity production
and consumption on the human development and environmental systems of the
countries under evaluation. For the social development assessment, for the first
time, a DEA evaluation of the Energy Development Index (EDI) is conducted
which incorporates energy as an important input to social development and
employment as an output that links with economic development assessment.
On the environmental performance phase, unlike previous studies, a direct
link between emissions and the biological capacity of countries is proposed.

e. Finally, the study shows the weaknesses of traditional energy portfolio op-
timisation in constructing optimal technology portfolios when sustainability
objectives are to be considered. It is shown that combining the various sus-
tainability dimensions using an additive relationship negates the relevance of
some of the dimensions, therefore, making some dimensions more important
than others and resulting in optimal portfolios which are inconsistent with
sustainability.

As such, this thesis provides an assessment of the security of supply of energy, the
production and consumption of clean energy and decision support for incorporating
environmental and social factors when generating an affordable energy system.

1.5 Outline of the thesis
Subsequent chapters of the thesis are organised as follows:

Chapter 2 provides a review of the literature on sustainable energy systems
that relate to the current study. The chapter begins with a general overview of
sustainability and sustainable development, highlighting definitional and other im-
portant concepts in the general sustainability literature. This is followed by sections
on energy and economic, social and environmental development and sustainability
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assessment in energy research. Subsequent sub-sections review methods in sustain-
ability assessment with extended focus on DEA applications in energy sustainability
literature.

Chapter 3 provides a methodological review of NDEA and related concepts. The
chapter presents DEA models for parallel, series and mixed production structures.
Additionally, the literature on modelling considerations on interlinking outputs or
inputs, dealing with undesirable outputs and non-homogeneity is also presented.
Critiques of current models are discussed and solutions to those critiques are proposed
in subsequent sections.

Chapter 4 is the problem structuring chapter. The chapter begins with causal
loop diagrams that provide a systematic framework of the problem. These causal loop
diagrams, developed from careful studying of the literature, are then transformed
into network structures to be assessed in subsequent sections.

Chapter 5 is the first empirical chapter of the study. This chapter examines the
sustainability and resource efficiency in electricity production of EU countries. As
such, it is aimed at addressing the first objective which focusses on the production
phase of the sustainable energy system. As electricity is generated concurrently
from different generation sources, parallel network models are constructed to provide
empirical answers to issues under consideration. This chapter provides insights
on the overall production performance as well as the component (technology-wise)
performance of each EU country compared to its peers.

Chapter 6 combines the generation phase with the use phase of the energy system.
The chapter further provides an empirical evaluation of the sustainability of the
energy systems of various EU countries while integrating electricity production
evaluation, energy use efficiency and environmental assessment into a single holistic
assessment procedure. Consequently, the parallel network structures constructed in
Chapter 5 are extended to incorporate series relationships with the environmental,
social and economic systems. This chapter provides insights on the overall system,
production and use, as well as sub-system performance of each country.

Chapter 7 moves on from discussions concerning energy security and energy
efficiency issues, covered in previous chapters, to addressing issues of clean and
affordable energy. In this chapter, the impact of interaction and other relationships
between various cost components on the technology ranking and the optimal portfolio
is explored. Here, how a truly sustainable optimal portfolio of generation sources can
be constructed consistently with the ideal principles of sustainability is demonstrated.

Finally, Chapter 8 provides a summary of findings, conclusions on both model
formulation and empirical assessment, as well as recommendations for practice, policy
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and further research. The interrelationships and flow of the thesis are summarised
in Figure 1.1.
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Figure 1.1 Overview of the thesis structure.

Arrows show the relationship between chapters and the
research objectives in shaded boxes.

It is worth pointing out that Chapters 5 and 6 focus on the clean and secure
energy aspects of the energy trilemma, while Chapter 7 addresses affordable energy
through the minimisation of the cost of energy supply. Since the generation mix
decision is related to how energy is produced, Chapter 7 is directly linked with
Chapter 5, which looks at energy production. While Chapter 7 examines how
countries select the portfolio of the generation sources, Chapter 5 looks at the
sustainable and resource efficient electricity produced from the selected generation
sources.



Chapter 2

Literature Review of Sustainable
Energy System

2.1 Introduction
This chapter is divided into four main sections. Section 2.2 presents a general overview
of sustainability and sustainable development, highlighting definitional and ethical
issues as well as important concepts surrounding the dimensions of sustainability.
Subsequent sections are dedicated to energy and sustainable development. While
Sections 2.3 presents conceptual issues surrounding the relationship between energy,
environment, social development and economic development, Section 2.4 presents
empirical research on sustainability assessment in energy research. Section 2.5
reviews systems thinking and sustainability as it relates to energy research. Finally,
Section 2.6 presents a summary of the chapter.

2.2 Sustainability and sustainable development

2.2.1 Towards a definition

Although the term ‘sustainability’ seems ubiquitous in policy and literature, there
is little consensus on its meaning. It is a difficult concept to define because it is
an evolving one and its meaning is both abstract (Martens, 2006) and contextual
(Kajikawa et al., 2007; Young and Dhanda, 2013). The definition of sustainability
depends on the context in which it is used, as such, ‘sustainability economics’
(Baumgärtner and Quaas, 2010), ‘sustainability science’ (Kajikawa et al., 2007),
‘sustainable system’, ‘sustainable ecology’, ‘sustainable production’ (Glavič and
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Lukman, 2007) among others are used in different fields of study, each with a
slightly different meaning. To be sustainable as a normative concept is analogous to
terms like ‘viability’, ‘survival’, ‘feasibility’, ‘persistence’, ‘unceasing’ and ‘continual’.
However, its use in policy-oriented research is not as clear as its normative meanings.

A number of historical key works such as Tragedy of the Commons in 1968
(Hardin, 1968), A Blueprint for Survival in 1972 (Goldsmith and Allen, 1972) and
Limits to Growth also in 1972 (Meadows et al., 1972), highlighted some of the key
sustainable development principles even before the publication of the Brundtland
Report in 1987 (Brundtland, 1987). Following the Brundtland Report, definitions
in the literature have gone on to re-emphasize human or ecological underpinnings
of sustainable development. Table 2.1 provides some definitions of sustainability
from the literature. Shaker (2015) sees sustainability as humanity’s target goal for
human and ecosystem equilibrium (homeostasis). Finkbeiner et al. (2010) observe
that sustainability should not focus on environmental impact alone but there should
be a balance or even an optimum in environmental, economic and social well-being
dimensions of society. Similarly, McMichael et al. (2003) believe that sustainability
means transforming human ways of living to maximise chances that environmental
and social conditions can support human security, well-being and health indefinitely.
Kahle and Gurel-Atay (2013) believe that “sustainability implies the use of resources
in a manner that can continue indefinitely.”

All of these definitions though different, share some similarities. They all stress
the impact of human activity on the environment or the use of resources by humans.
Additionally, they strive for maintenance or maximisation of a level of quality of
life in the long-term. The definition by Kahle and Gurel-Atay (2013), for example,
advocates that sustainability should last indefinitely. Finally, several of these
definitions see sustainability as an end-goal that can be attained. McMichael et al.
(2003), for example, believe that sustainability can be attained through interactive
inter-disciplinary efforts. It must be noted that the view that sustainability can be
“attained” as an end-goal is disputed by some such as Kahle and Gurel-Atay (2013)
who have suggested that sustainability is infinite and that because of the principle
of continuous improvement used in sustainability, “ideal” sustainability can never
be achieved.
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Table 2.1 Definitions of sustainability.

Definition Source
“Sustainability is defined as a requirement of our generation to
manage the resource base such that the average quality of life
that we ensure ourselves can potentially be shared by all
future generations.”

Asheim (1994)

“Sustainability is “the capacity for continuance more or less
indefinitely into the future.”

Ekins and Newby
(1998) in Bonevac

(2010)

“Sustainability means transforming our ways of living to
maximize the chances that environmental and social conditions
will indefinitely support human security, well-being and
health.”

McMichael et al.
(2003)

“I define sustainability as the possibility that humans and
other life will flourish on the Earth forever”

Ehrenfeld (2008)
in Bonevac (2010)

“Sustainability does not only focus on the environmental
impact, it rather consists of the three dimensions
“environment”, “economy” and “social well-being”, for which
society needs to find a balance or even an optimum”

Finkbeiner et al.
(2010)

“Sustainability is a normative notion about the way how
humans should act towards nature, and how they are
responsible towards one another and future generations”

Baumgärtner and
Quaas (2010)

“Sustainability may then be defined as maintaining well-being
over a long, perhaps even an indefinite period”

Kuhlman and
Farrington (2010)

“Sustainability can now loosely be defined as a state of affairs
where the sum of natural and man-made resources remains at
least constant for the foreseeable future, in order that the
well-being of future generations does not decline”

Kuhlman and
Farrington (2010)

Continued...
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Continuation of Table 2.1
Definition Source
“Sustainability implies the use of resources in a manner that
can continue indefinitely. This ideal often remains elusive, but
it is always the long-term goal, even if unstated.”

Kahle and
Gurel-Atay

(2013)

“‘Sustainability’ should be viewed as humanity’s target goal of
human-ecosystem equilibrium (homeostasis)”

Shaker (2015)

“Sustainability is lexically defined as the ability to maintain
something undiminished over some time period”

Lélé and
Norgaard (1996)

“Sustainability refers to the ability of a society, ecosystem, or
any such ongoing system to continue functioning into the
indefinite future without being forced into decline through
exhaustion or overloading of key resources on which that
system depends”

Gilman (1992) in
Foley et al. (2003)

“Sustainability is the principle of ensuring that our actions
today do not limit the range of economic, social, and
environmental options open to future generations.”

Elkington (1997)

“Sustainability is a process involving people, institutions,
natural resources, and the environment”

Munier (2005)

This shows the existence of different schools of thought about what constitutes
sustainability. On the issue of human activities and implications for the environ-
ment, Kajikawa et al. (2007) assert that sustainability does not connote human
exploitation of nature. In their view, the human-nature dynamic should rather
relate to an alternative term ‘sustainable development’. Regarding the term limits of
sustainability policy, Bonevac (2010) believes that for the concept of sustainability
to have real use and not be seen only as rhetoric, it must be restricted to a period
about which reasonable claims of survival can be made. Expecting a resource to
exist indefinitely is unreasonable since there are time limits to every natural system,
including the universe (Bonevac, 2010). Finally, while Kuhlman and Farrington
(2010), McMichael et al. (2003) and Shaker (2015) see sustainability as a goal to
be achieved, Kajikawa et al. (2007) see sustainability not as a goal but rather a
constraint on the achievement of other goals. Kahle and Gurel-Atay (2013) believe
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that sustainability should last indefinitely and therefore should not be viewed as an
end-goal to be achieved.

The problem becomes confounded when the meaning of sustainable development
is explored. Some of such definitions are provided in Table 2.2. Critics believe
‘sustainable development’ is vague and can be an oxymoron (Bonevac, 2010; Kajikawa
et al., 2007). Additionally, authors like Bonevac (2010) and Büyüközkan and
Karabulut (2018) do not make a distinction between sustainability and sustainable
development. Giovannoni and Fabietti (2013) use the terms sustainability and
sustainable development as analogues but observe that whereas sustainability refers
to a ‘state’, sustainable development refers to the processes required to reach that
state. However, there is disagreement about these terms. Gallopín (2003) asserts
that the two concepts are quite different in that the word “development” points to
the idea of a progressive change which may not necessarily be quantitative. Shaker
(2015) sees sustainable development as the holistic approach and temporal processes
that lead us to the end point of sustainability.

Table 2.2 Definitions of sustainable development.

Definition Source
“Development that meets the needs of the present without
compromising that ability of future generations to meet their
own needs”

Brundtland
(1987)

“Development is sustainable if it involves a non-decreasing
average quality of life.”

Asheim (1994)

“‘Sustainable development’ refers to the holistic approach and
temporal processes that lead us to the end point of
sustainability”

Shaker (2015)

“Sustainable development as “development that lasts.” Giles Atkinson et
al. (1997) in

Bonevac (2010)

“Sustainable development is a strategy by which communities
seek economic development approaches that also benefit the
local environment and quality of life.” The United States
Department of Energy

Mawhinney in
Bonevac (2010)
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Perhaps, the most widely cited definition of sustainable development is the one
outlined in the Brundtland Report that sustainable development is “development
that meets the needs of the present without compromising that ability of future
generations to meet their own needs” (Brundtland, 1987, p. 43). This definition
has two implications - first, it stresses the ability to meet today’s needs (intra-
generational justice) while second, not compromising the needs of future generations
(inter-generational justice) (Baumgärtner and Quaas, 2010; Kuhlman and Farrington,
2010; Schlör et al., 2012). These ethical perspectives on sustainable development
are explored in Section 2.2.2.

There is no unanimity regarding the theoretical and conceptual foundations of
sustainability and sustainable development (Shaker, 2015). Despite its vagueness
and ambiguity, the Brundtland Report’s definition has been highly instrumental and
spurred research interest concerning the future of the planet (Mebratu, 1998). Some
even believe that the absence of a rigorous definition of the terms provides an oppor-
tunity for more debate about the issues in search of common ground (Lélé, 1991).
However, modern discussions of both sustainability and sustainable development
believe that life on earth has environmental limits, which humans, through intercon-
nected consideration of the economy, environment and society, have a responsibility
to preserve (Young and Dhanda, 2013). These environmental limits are highlighted
in the concept of the planetary boundaries (Rockström et al., 2009). Gallopín (2003)
advocates that due to the ambiguity and lack of strong theoretical background to
the field, sustainability can be viewed from a system’s perspective, where careful
consideration of the aspect of the system to be sustained are emphasised. Although
there is no unanimity in terms of the theoretical foundations of sustainability, its
ethical foundations are well understood. These are discussed in the next sub-section.

2.2.2 Ethical foundations

Discussions of sustainability are grounded within certain ethical considerations that
provide the basis on which sustainability-related policy and measurement approaches
should be focussed. The core meaning of the modern concept of sustainability is
based on continuity with a long-term perspective which hinges on three fundamental
relationships of human beings (Becker, 2012):

1. Relationship between humans and contemporaries (intra-generational justice);

2. Relationship between current and future human generations (inter-generational
justice); and
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3. Relationship between humans and nature.

The first two relationships are directly referenced in the famous Brundtland
definition that sustainable development is, “development that meets the needs of
the present without compromising that ability of future generations to meet their
own needs” (Brundtland, 1987, p. 43). The first part of the definition “meeting
the needs of the present” is a requirement for ensuring that the needs of current
generations are met equitably or fairly without disadvantaging contemporaries. Intra-
generational considerations in the sustainability of the energy system may include
issues of reducing energy poverty, improving access to energy and ensuring energy
security. The second part of the definition, “. . . without compromising the ability
of future generations to meet their own needs”, presents a requirement for current
generations to ensure that resources necessary for future human generations can be
met. In energy systems sustainability, objectives relating to the use of renewable
energy sources and reducing negative externalities have some inter-generational
underpinnings. These two perspectives carry an ‘anthropocentric’ notion of justice
that reflects the view that nature exists to satisfy current and future human needs
(Baumgärtner and Quaas, 2010).

However, the modern concept of sustainability also requires the need for some
justice between human and nature interactions. This is indirectly captured in the
Brundtland Report (Becker, 2012) since intra- and inter-generational justice will
require that the quality or stock of nature is not depleted for the needs of current and
future generations. There is, therefore, the requirement to recognise the importance
of the environment as a key stakeholder (Hart, 1995) for both present and future
generations and that there is an inescapable biological dependency of human life on
nature (Becker, 2006). This view, termed as ‘physio-centric ethics’ by Baumgärtner
and Quaas (2010), requires long-term justice for nature. It emphasises that the
setting of human-nature relationships is central to the concept of sustainability. It
moves from the ‘bio-centric or eco-centric viewpoints’ that sees the environment as
the ethical precondition for sustainability even at the point of excluding humans
or increasing human poverty (Gallopín, 2003). Justice towards current and future
human society and environment shows the multidimensional nature of sustainability.
Major dimensions in sustainability literature are discussed in subsequent sub-sections.

2.2.3 Dimensions of sustainability

Since the Brundtland Report, there have been two major developments in sustain-
ability literature (Kuhlman and Farrington, 2010): a) the ‘three dimensions of
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sustainability’ and; b) the distinction between ‘strong’ and ‘weak’ sustainability.
While the three dimensions assessment of sustainability pioneered by Elkington
(1997) is a framework which emphasises the need to consider economic, social and en-
vironmental objectives in sustainability assessment, the distinction between ‘strong’
and ‘weak’ sustainability coined by Pearce and Atkinson (1992) and further refined
by Turner (1993), presents different perspectives on the relationship between nature
and society. These have served as the building blocks for subsequent developments
in sustainability assessments.

It must be noted that there exist other theoretical frameworks used in sustainabil-
ity research. Chang et al. (2017) identifies corporate social responsibility (Carroll,
1999; Lee, 2008), stakeholder theory (Freeman, 1984) and corporate sustainability
(Elkington, 1997) as the major theories used in sustainability research. However,
these theories focus on the role of corporate entities in the sustainability. In this
research, the focus is on sustainability of a national system. The three dimensions
and the concepts of weak and strong sustainability provide a framework for studying
sustainability at the national level. Consequently, the next two sub-sections discuss
these two major developments in the sustainability literature.

Three dimensions of sustainability

Sustainability is widely considered a multidimensional undertaking that considers
economic, social and environmental impacts as interdependent components relevant
to achieving higher quality of life (Kuhlman and Farrington, 2010). Although there
have been arguments to include other dimensions like technological and institutional
dimensions to sustainability (International Atomic Energy Agency, 2005; Maxim,
2014), the three dimensions remain the basis of most sustainability assessment. The
three dimensions consist of “environment”, “economy” and “social well-being”, for
which society (or the system under consideration) needs to find a balance (Finkbeiner
et al., 2010). This idea was pioneered by Elkington (1997) who coined the term
“triple bottom line” while presenting a conceptual accounting framework which
emphasises the need to find a balance in the dynamic interactions between economic,
social and environmental dimensions within any system or decision-making process.
This is a three-pronged model that proposes economic prosperity, environmental
quality and social justice as the obligations to which businesses and economies should
be held accountable in terms of performance instead of the traditional profit-based
single bottom line focus (Elkington, 1997). The triple bottom line Venn diagram as
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presented in Figure 2.1, shows sustainability as the point of intersection between
social, environmental and economic objectives.

 

Figure 2.1 Triple bottom line Venn diagram.

The economic or profits dimension of sustainability is the more traditional
ideas of cost and profit concerns of corporations and governments. It aims at an
organisation remaining a going-concern or economic prosperity of citizens in the
case of governments. Contemporary thinking of core drivers of a business case for
sustainability now extends beyond cost and profit to include qualitative factors
such as risk and risk reduction, reputation and brand value, the attractiveness
of an employer and innovative capabilities (Schaltegger et al., 2012). From this
perspective, sustainability is seen as the capability of a corporation to survive in
terms of profitability, productivity and long-term financial performance (Giovannoni
and Fabietti, 2013). This involves meeting the needs of stakeholders, effective and
efficient management of resources and conformity to regulations. When it comes to
public policy perspective, profit maximisation is usually not an appropriate goal,
rather maximising the nation’s wealth usually expressed as gross domestic product
(GDP) is usually seen as the economic dimension (Kuhlman and Farrington, 2010).
The International Atomic Energy Agency (IAEA), United Nations Department
of Economic and Social Affairs (UNDESA), International Energy Agency (IEA),
EUROSTAT and the European Environment Agency (EEA) all consider use and
production patterns and energy security as critical economic themes for sustainable
development of energy systems (International Atomic Energy Agency, 2005).

The social or people’s dimension captures the impact of corporations, systems,
products or processes on society (Kuhlman and Farrington, 2010). Social equity,
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social justice, health and safety, distributive justice and equality of conditions,
as well as the notion of social responsibility of corporations are usually discussed
in the context of the social dimension of sustainability (Giovannoni and Fabietti,
2013; Glavič and Lukman, 2007). This perspective of sustainability requires that
organisations, products and processes are delivered in a manner that will meet
the objectives and values of society. The social dimension is often difficult to
measure or quantify in practice (Kuhlman and Farrington, 2010). Important social
themes for sustainable development in energy systems include equity, which includes
accessibility and affordability, and health and safety (International Atomic Energy
Agency, 2005).

The environmental or planet dimension considers the ecological impacts of
human and corporate activities. Prior to the multidimensional perspective of
sustainability, sustainability was often compartmentalised as an environmental issue
alone (Giovannoni and Fabietti, 2013) relating to issues such as pollution control,
clean production, eco-design, life cycle assessment and zero waste (Glavič and
Lukman, 2007). This dimension recognises nature as a source of resources for human
social and economic activities that generate waste which may be harmful to nature.
There is, therefore, the need to consider the ecological impacts of human activities
since this has an impact on the ability to meet current human needs and those of
future generations. In energy systems, the atmosphere, water and land are important
themes considered in environmental policy initiatives (International Atomic Energy
Agency, 2005).

These three dimensions have been the primary focus of most studies on sustain-
ability. The modern concept of sustainability is based on the idea of harmony in
these three pillars of sustainability (Finkbeiner et al., 2010). There are other, less
ambitious dimensions, such as those which are not environmentally damaging and
support society but come at a high cost (bearable socio-environmental projects),
economically viable projects which support society but have high environmental
implications (equitable socio-economic projects) and those that are economically
profitable, do not burden the environment but do not provide sufficient support
from society (viable eco-efficiency activities) (Sykes and Trench, 2014). This idea of
interconnectedness and dynamic interactions of natural, social and economic systems
is fundamental to a holistic and system-wide sustainability thinking (Gallopín, 2003;
Schoolman et al., 2012).

There have been other views on the dimensions of sustainability. Kuhlman and
Farrington (2010), argue that the re-interpreting of the essence of sustainability to
encompass the three dimensions obscures the real contradiction between welfare
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and environmental conservation, diminishes the importance of the environmental
dimension and separates the social dimension from economic dimension, which in
reality are the same. They propose the replacement of the social and economic
dimensions with a single dimension called ‘well-being’, which is to be balanced with
another called sustainability, which primarily focusses on environmental or ecological
aspects (Kuhlman and Farrington, 2010). There have been other proposals to include
other dimensions like technological and institutional dimensions (International
Atomic Energy Agency, 2005; Maxim, 2014), however, these have not been as
popular in the literature.

Weak versus strong sustainability

Kuhlman and Farrington (2010) assert that the next most important development
in the sustainability literature is the distinction between ‘strong’ and ‘weak’ sustain-
ability, which was coined by Pearce and Atkinson (1992) and was further developed
by Turner (1993) into ‘very strong’, ‘strong’, ‘weak’ and ‘very weak’ sustainability.
This discussion of weak and strong sustainability moves the debate from how devel-
opment must be measured to a focus on what must be done to secure the desired
development (Pearce and Atkinson, 1998). This idea of sustainability is based on
economic growth theory and equates sustainable development as that which ensures
non-declining per capita well-being over some time (Pearce and Atkinson, 1998).
Based on economic growth theory, the concept of capital (K) is defined to comprise
manufactured capital (Km), skills and knowledge of humans, otherwise called human
capital (Kh) and natural resources and stock of environmental assets together known
as natural capital (Kn) (Pearce and Atkinson, 1998).

The initial idea of weak sustainability is based on the belief that the next
human generation should inherit a stock of wealth that is not less than the stock
inherited by the current generation (Kuhlman and Farrington, 2010). Therefore,
weak sustainability is to ensure that aggregate capital is non-declining, even to the
detriment of other types of capital. This is expressed by Pearce and Atkinson (1998)
as:

dK

dt
≥ 0, where K = Km + Kh + Kn (2.1)

In other words, the change in aggregate capital K over a change in time t

should not fall. Weak sustainability, therefore, implicitly allows for the substitution
of one form of capital for other forms of capital. This means that the stock of
natural capital could be reduced as far as the proceeds received are reinvested in
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other forms of capital such as social capital. This is the perspective of classical
economists who relegate nature as the provider and sink (for wastes) of human
consumption (Gallopín, 2003). Weak sustainability was later re-categorised as ‘very
weak’ sustainability by Turner (1993).

Due to the capital substitution condition, the idea of weak (or very weak) sus-
tainability is seen by environmentalists to be unsuitable for promoting sustainability
goals (Bonevac, 2010). Strong sustainability (very strong by Turner (1993)), on the
other hand, advocates that the next generation should inherit a stock of environ-
mental assets which is not less than the stock inherited by the current generation
(Kuhlman and Farrington, 2010).

dK

dt
≥ 0 and dKn

dt
≥ 0 (2.2)

This, therefore, imposes an additional constraint on weak sustainability, as
proponents of this school of thought believe that natural capital has no substitute.
Therefore, in addition to the non-declining requirement on aggregate capital stock,
there is the requirement that natural capital should also be non-declining even if
it means a reduction in human and manufactured capital (Pearce and Atkinson,
1998). Pursuance of ecological sustainability irrespective of human and economic
concerns is not acceptable to critics (Gallopín, 2003). Bonevac (2010) also observes
that the lack of substitution between natural and manufactured capital will mean
that economic capital cannot be used to increase the stock of natural capital when
in decline.

The divide between the tenets of strong and weak sustainability has led to several
intermediate positions which allow for limited trade-offs between the various forms of
capital (Bonevac, 2010). Whereas Bonevac (2010) views these intermediate schools
as ‘sensible sustainability’, Gallopín (2003) sees the ideas of what Turner (1993)
calls weak and strong sustainability as that which allows for the sustainability of the
whole socio-ecological system. While Turner’s (1993) view of strong sustainability
holds that different forms of capital are not necessarily fungible and a minimum
amount of these different capitals must be maintained independently, the weak view
of sustainability places emphasis on preserving some critical natural capital which is
considered irrecoverable if lost (Gallopín, 2003). Table 2.3 provides a summary of
the various views discussed.

These views on substitution and non-substitution of various forms of capital in the
OR literature is closely linked with the aggregation of overall sustainability indices
across the dimensions (De Mare et al., 2015). The choice of a multidimensional
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Table 2.3 The spectrum of sustainable development.

Classification
CharacteristicsPearce and

Atkinson
Turner

Weak
sustainability

Very Weak
sustainability

a. The overall stock of capital assets
remains stable over time
b. Complete substitution between human
and natural capital

Weak
sustainability

a. Some natural capital is critical
(non-substitutable)
b. Trade-offs still possible

Strong
sustainability

Very Strong
sustainability

a. All natural and other forms of capital
should be independently kept intact over
time
b. No capital substitution

Strong
sustainability

a. Minimum amounts of different capitals
must be maintained independently
b. No capital substitution

Adapted from Gibbs et al. (1998)

assessment approach may be characterised by a higher or lower level of compensation
between the sustainability dimensions (De Mare et al., 2015; Figge and Hahn, 2004).
If the method allows poor performance on one dimension to be compensated by
excellent performance on other dimensions, then it can be argued that the dimensions
are compensable, which is akin to the idea of weak sustainability (Rowley et al.,
2012). This is because the approach allows for trade-off in the various dimensions
(Hacatoglu et al., 2015a) and hence the aggregate performance is being maximised
even at the expense of individual dimensions. If the approach does not allow for
trade-off, however, then it is akin to strong sustainability (Rowley et al., 2012).

2.2.4 Sustainability of a system

The core ideas of modern thinking around sustainability and sustainable development
are based on interaction and inter-dependency between different dimensions of the
system or entity under study. This is because industrial, social and ecological systems
are closely linked when making effective decisions regarding global sustainability
(Fiksel, 2006; Finkbeiner et al., 2010). There are complex relationships within and
between the various systems that need to be integrated in sustainability assessment.
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Additionally, there is a need to understand the dynamic behaviour of the entity or
system under study to develop a more integrated and resilient solution to sustainabil-
ity objectives (Fiksel, 2006). There is also little unanimity and theoretical grounding
around sustainability (Shaker, 2015), which makes sound and robust assessment for
policy difficult.

Systems thinking can offer a useful perspective, compared to other analytical
approaches, when thinking about sustainability since it is a way of thinking in terms
of connectedness, relationships and contexts, which are key underlining principles
in sustainability (Gallopín, 2003). This provides a more robust and conceptually
sound framework for sustainability analysis. Indeed, the idea of the system view of
sustainability is gradually becoming mainstream in sustainability literature. A survey
of 96 papers, published from 1990 to 2015, on systems thinking in sustainability
analysis by Williams et al. (2017) found that 67 out of the 96 papers published
using systems thinking were published from 2010 onward. This shows a growing
acceptance of the ability of systems thinking in enhancing understanding of the
dynamic interactions within and across interconnected systems (Whiteman et al.,
2013; Williams et al., 2017). Systems thinking of sustainability is very useful when
considering the complexity, dynamic interactions and nonlinear interdependencies of
related systems (Fiksel, 2006).

A system is considered as a set of interrelated elements which may include several
other sub-systems or components (Gallopín, 2003). These interconnected elements
are characterised by hierarchical structures, communication, emergent structures
and control (Clayton and Radcliffe, 1997). Since all physically extant systems are
open, the behaviour of a system depends on the system’s internal interactions, how
the external elements or variables from the environment affect it and outputs of the
system into the environment (Gallopín, 2003). There is, therefore, the need to always
determine the boundaries of the system being studied and the adjacent systems that
interact with the system under consideration (Foley et al., 2003). Figure 2.2 is a
general system, which represents the interaction between energy generation system,
ecology and society.

The state variables internal to the boundary of the system under study at a given
point in time are determined by the state of the system and the inputs received
previously in time (Gallopín, 2003). Given Foley et al.’s (2003) definition of a state,
changes in a state variable xj over time can be expressed as:

xj(t2) = xj(t1) + ∆xA
j (t1) + ∆xI

j (t1) − ∆xB
j (t1) − ∆xE

j (t1) − ∆xL
j (t1) (2.3)
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Figure 2.2 A sample representation of a system.

Adapted from Foley et al. (2003)

The new state xj(t2) depends on the prior state xj(t1), imports of the resource
∆xI

j (t1), inflows from adjacent systems ∆xA
j (t1), the exports ∆xE

j (t1), losses due to
consumption ∆xL

j (t1), and outflows to adjacent systems ∆xB
j (t1). Based on this,

the sustainability of a system could be defined as a system for which the net worth
of outputs produced is non-decreasing over time (Gallopín, 2003):

xj(t2) ≥ xj(t1) (2.4)

Other definitions of sustainability can be explored. For example, a resource
variable in the system may be required to operate indefinitely not less than a
requirement xR

j (t1) (Foley et al., 2003).

xj(t1) ≥ xR
j (t1) (2.5)

The systems approach can be used as the basis for understanding the meaning
of sustainability by considering the need for continuing management of system
resources over time, understanding the significance of interactions among systems,
understanding the importance of planning and designing the system, appreciating
the need to re-evaluate the system sustainability at regular intervals and examining
issues related to the resilience of the system (Fiksel, 2006; Foley et al., 2003).
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2.3 Energy and sustainable development
At the national level, electricity systems are powered by a mix of energy from three
main sources, fossil fuels (coal, gas, petroleum which are non-renewable), nuclear
power and renewables (wind, hydro, geothermal, solar etc.) (Varun et al., 2009),
each with their own sub-processes and production requirements, cost and availability
constraints and environmental impacts. The need to assess the implications of energy
generation and use has resulted in attempts to define a set of energy indicators
for assessing sustainable development. The IAEA, together with UNDESA, IEA,
EUROSTAT and EEA, for example, have developed the ‘Energy Indicators for
Sustainable Development: Guidelines and Methodologies’ (International Atomic
Energy Agency, 2005). Energy indicators, developed by these bodies and in research,
have been defined based on a combination of economic, environmental, social and
technological characteristics of energy production and consumption (Jovanović et al.,
2010), thus recognising the multidimensional nature of the sustainability problem in
energy.

Sustainable development of energy systems has become important for policy since
three of the main global policy objectives include economic growth, energy security
and climate change mitigation (Santoyo-Castelazo and Azapagic, 2014). Activities
related to the sustainable development of energy systems include a reduction in
emissions and pollutant gases, increased safety of energy supply, use of renewable
energy sources, improved energy efficiency and improved quality of life (Jovanović
et al., 2009). Energy, therefore, has implications for the environment, economic
development and social welfare. In the following sub-sections, the implications of
energy production and consumption on the environment, society and the economy
are discussed.

2.3.1 Energy and the environment

Ensuring that affordable and reliable energy is derived from environmentally appro-
priate supply sources is critical for sustainable development (Afgan et al., 2007). This
is because of the substantial environmental impacts from the production of various
forms of energy. Apart from its contribution to social and economic development,
energy consumption is also recognised as a major source of greenhouse gas (GHG)
emissions (Lu et al., 2016). A significant proportion of global carbon dioxide (CO2)
emissions and air pollution is a result of fossil fuel combustion to satisfy energy
demand (Rafaj et al., 2006). Coal, for example, has the highest CO2 emissions per
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kWh but continues to dominate the market due to low cost and high availability
(Evans et al., 2009; Varun et al., 2009).

Direct GHG emissions in the energy sector is mainly due to activities like
transport, electricity generation, manufacturing, construction and consumption in
the residential, commercial and institutional sub-sectors (Varun et al., 2009). Such
emissions that are noxious to health and the environment include CO2, carbon
monoxide, methane, nitrogen oxides, sulfur oxides and particulate matter emissions
(Genoud and Lesourd, 2009; Orecchini, 2007; Sahabmanesh and Saboohi, 2017).
Among these, CO2 has been of primary importance in research for several reasons.
Although CO2 is not directly dangerous to human health, it is seen as the major
driver of climate change, with the scientific community nearly unanimous in this
view (Orecchini, 2007) and related risks to human development as a whole (Filho
et al., 2016). The World Commission on Environment and Development, in the
Brundtland Report, identified CO2 as the most important GHG since it is unlike
other air pollutants whose cost of removal from the fuel combustion process is lower
than the cost of damage (Brundtland, 1987). As a result of its global effect, reduction
of CO2 emissions has become of paramount interest in the design and construction
of new power plants with the inclusion of features related to low emissions per unit
of energy produced (Afgan and Carvalho, 2004).

Although fossil fuel is widely seen to have a higher environmental impact, no
single technology shows the best performance on every type of environmental impact.
Nuclear energy, for example, has marginal global warming potential but high ionising
impact (Ewertowska et al., 2016, 2017). Nuclear also has contentious issues with its
end of life waste storage and disposal and risk of large scale accidents (Stamford and
Azapagic, 2011). Even renewable energy sources have environmental impacts when
emissions are examined throughout their lifecycle (Peng et al., 2013; Varun et al.,
2009). This notwithstanding, renewable generation sources, like solar photovoltaic
(PV) systems and wind, have been seen to be relatively more environmentally friendly
and continue to receive policy attention, investment in technology development and
production capacity expansion. Renewable generation sources have become an
attractive source of energy due to the threat of climate change, depletion of primary
fossil fuels and the growing energy demand (Stougie et al., 2018). However, the cost
of generation from renewable sources, coupled with the intermittent nature of some
renewable sources have made total reliance on these sources challenging.

Apart from its pollution potential, generation of electricity, especially from
non-renewable sources, comes with concerns about the depletion of primary energy
resources. European countries, for example, have limited capacity to supply primary



2.3 Energy and sustainable development 28

energy resource in the case of conventional fossil fuels (Afgan and Carvalho, 2008).
Due to the realisation of the limited primary resource capacity and the need to ensure
future generations have relevant resources for their survival, sustainable development,
therefore, also requires a balance between bio-capacity and ecological footprint
(Hadian and Madani, 2015). Whereas ecological footprint is the demand that humans
place on a bio-productive area to produce resources, bio-capacity is the planet’s
capacity to provide resources and ecosystem services annually consumed by humans
(Mancini et al., 2016; Niccolucci et al., 2012). Therefore, environmental sustainability
of the energy system should ensure a balance, resilience, and interconnectedness by
allowing human society to satisfy its energy needs while not exceeding the capacity
of its supporting ecosystems to continue to regenerate primary resources necessary to
meet those needs or through its actions diminish biological diversity due to pollution
(Khan, 2015; Morelli, 2011).

2.3.2 Energy and the society

The role of energy sustainability is indispensable in social development, as highlighted
by the UN Sustainable Development Goal (SDG) of Affordable and Clean Energy
(SDG7) on other SDGs such as Good Health and Well-being (SDG3), Decent Work
and Economic Growth (SDG8), Reduced Inequality (SDG10) and Climate Action
(SDG13). This is because the availability of energy is one of the driving forces
that facilitate the development of vital social systems such as education, health
and employment, among others. Principles such as good quality of life, human
well-being, equitable opportunities for all, diversity and even democratic civil society
are central themes that form the backbone of a socially sustainable society (Khan,
2015). Globally, evidence shows the importance of electricity consumption and
development in various aspects of society. Figure 2.3 reveals a strong positive
association between electric power consumption and Gross National Income, labour
force, life expectancy at birth and literacy rate. As such, countries with higher
electricity consumption are more likely to have better levels of wealth, employment,
health and education. This is because access to modern energy services is essential
to fulfilling basic social needs which are required to support economic growth and
human development (Gaye, 2007).

As such, both the production and use phases of the energy system have implica-
tions on social development. There are implications in terms of health concerns from
emissions during electricity production and social acceptance of some generation
sources (European Commission, 2007) at the consumption phase, and implications
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Figure 2.3 Global electricity power consumption and social indicators (1990-2017).

Data from World Bank (2019) Development Indicators

of energy services needed to support the quality of life and human development
(Dias et al., 2006; Ouedraogo, 2013). An indicator of social development is the
Human Development Indicator (HDI), which emphasises measuring development
using people and the capabilities rather than economic growth alone (do Carval-
hal Monteiro et al., 2018; United Nations Development Programme, 2018). The
HDI, a standard measure of well-being, is a composite measure of health, education
and income and is a widely accepted alternative to GDP for assessing countries’
progress (Freire et al., 2018; Ouedraogo, 2013). HDI is a measure of the average
development of a country in terms of life expectancy, education level and economic
performance (Dias et al., 2006). While HDI allows for analytic comparison between
different countries and different periods (Freire et al., 2018; Hou et al., 2015), it does
not consider all aspects of human development since it does not reflect inequalities,
poverty, human security, empowerment and energy use (Dias et al., 2006; United
Nations Development Programme, 2018).

Dias et al. (2006) argue the importance of seeking alternative development
models for human development, natural resource conservation and the environment
through rational concepts on energy use. Martínez and Ebenhack (2008) show that
tremendous human development gains are possible, even for the world’s poorest
countries, with small incremental access to energy. Ouedraogo (2013) observe a
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long-term positive correlation between electricity consumption and HDI - revealing
that limited access to modern energy services could hamper economic and human
development. It is, therefore, not surprising that attempts have been made to
incorporate aspects of energy use in the assessment of human development. The EDI
was developed by the IEA to track the progress of countries in the use of modern
energy and better understand the role energy plays in human development (Johansson
et al., 2012). The EDI incorporates per capita commercial energy consumption, per
capita electricity consumption in residential sector, share of modern fuels in total
residential energy use and the proportion of people with access to electricity supply
(He, Jiao and Yang, 2018; International Energy Agency, 2011). The EDI focusses
on a country’s transition to using modern fuels without reference to whether the
transition is sustainable given the country’s economic, social and environmental
conditions (Iddrisu and Bhattacharyya, 2015). In addition, although EDI is modelled
to mirror the HDI, it does not include the components of HDI in its computation,
raising concerns of its relevance as an indicator of human development. Energy is a
key input to the development and human well-being cannot be advanced without
access to electricity (Johansson et al., 2012).

The source of energy generation is particularly concerning as it not only makes
the implementation of social programmes possible but also has an impact on the
environment and human the health. Non-renewable energy sources, such as coal,
gas and oil plants, have been shown to have negatively impact health (Orecchini,
2007). This makes a good case for renewable energy. However, there are still issues
surrounding public perceptions towards renewable sources, especially in terms of land
use. Nuclear energy presents a different level of scepticism regarding uncertainties
related to disaster risk and the disposal of radioactive waste.

2.3.3 Energy and the economy

As development in any society is closely linked with the level of energy consumption,
energy is a critical input for national economic development (Mondal and Denich,
2010). It is one of the major pillars of economic development for countries globally
(Shaaban and Scheffran, 2017). Electricity demand is a major component of both
economic and social development, as countries that lack an adequate supply of
electric energy find it difficult to ensure growth of industrial production, national
income, health and education (Onat and Bayar, 2010). Access to affordable energy
is essential for economic development and poverty reduction, on the other hand,
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expansion of energy-related infrastructure is critical for energy security (Fouquet,
2016).

Economic development may have an impact on the nature of the technology
adopted in the energy system. More developed countries can better afford to
invest in renewable technology sources and advances in even conventional generation
technologies that have less impact on society. Furuoka (2017), for example, show
that in Baltic countries, economic development has led to the expansion of renewable
electricity consumption. This can also translate to increased private-investor interest
in the country, with a positive impact on employment, taxation, and other economic
services. On the other hand, the energy sector positively impact the economy.
Availability of reliable power means more economic activity is possible and hence
better economic development. At the supply side, economic development and growth
have an impact on the energy system in terms of technology investment and capacity
development in various sources of energy. However, at the consumption/use phase,
energy security fosters economic activity and development. This cycle that links
energy production to economic development: growth in economic development makes
room for more efficient ways of energy production and subsequently a boost in the
economy, can also be a vicious one as unsustainable energy production can have a
detrimental effect on the environment and society and a fall in economic activity.

It must be noted that views about the relationship between energy, electricity
consumption and economic growth (development) are by no means unanimous,
as there exist some intellectual disagreements. Karanfil and Li (2015) highlight
that four causal hypotheses have been presented and tested in the literature: (a)
growth hypothesis – that electricity is a necessary factor for economic growth;
(b) conservative hypothesis – economic growth leads to electricity consumption;
(c) feedback hypothesis – interdependence between electricity consumption and
economic growth; and (d) neutrality hypothesis – no causal link. Ang (2008) found
strong evidence of causality running from economic growth to energy consumption
growth in both the short and long run. On the other hand, Shahbaz et al. (2013)
show evidence of the positive effect of energy use on economic growth in the long
run. This shows that the nature and direction of the effect depend to a large extent
on the context and period under investigation, which varies among countries (Bekhet
et al., 2017; Karanfil and Li, 2015). The independence and neutrality hypotheses
may be due to possible rebound effects, where gains in reducing energy consumption
may be offset by behavioural changes of economic agents (Galvin, 2014; Zhang et al.,
2017). Other hypotheses, such as the environmental Kuznets curve and pollution
haven hypothesis, have also been explored when discussing energy consumption,
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carbon emissions and economic development (Sarkodie and Strezov, 2019; Zaman
and Moemen, 2017).

Irrespective of the hypothesised or observed relationship, there is evidence of
a growing convergence between energy and economic planning in the literature.
Convergence in the fields of economic development and energy policy and planning
has resulted in the emergence of the field of energy-based economic development
(EBED) aimed at integrating both economic development and energy planning
approaches. EBED focusses on increasing energy efficiency or diversifying energy
resources in ways that contribute to job creation, job retention and wealth creation
(Carley et al., 2011). Energy efficiency and diversification of energy supply into
renewable sources have become the pillars of sustainable energy policy (Prindle et al.,
2007). This is because of regulatory emphasis on the importance of enhancing energy
efficiency, which is the economic output per unit of energy consumption (Zaim et al.,
2017). National and international policies in response to climate change promote
energy efficiency (Shove, 2018). The EU, as an example, has a 20% energy efficiency
improvement target (EEA, 2017). Energy efficiency has become an attractive policy
dimension since it provides a cost-effective means of ensuring sustainable energy
supply and reduction in emissions. As such, there has been research interest in
the analysis of energy efficiency and energy savings potential (Feng and Wang,
2017; Honma and Hu, 2008). This notwithstanding, energy efficiency is a demand-
side policy focussing on energy consumption reduction to achieve a given level of
economic development. It does not incorporate the effect of economic development
and renewable sources capacity investment which is a separate dimension of EBED.

2.4 Sustainability assessment of electricity systems
In this section, empirical research on sustainability assessment of electricity/energy
systems is reviewed to present the current state of the literature. Specifically,
methodological choices in these studies are analysed to understand the strengths
and weaknesses of existing literature. The section is divided into two sub-sections
covering the production and the consumption phases.

2.4.1 Sustainable production assessment

Studies reviewed here focussed on the performance of electricity production systems
considering their economic, social and environmental implications. The study
of sustainability issues often requires the integration of multiple dimensions of
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operations involving multiple indicators (Diaz-Balteiro et al., 2017). The result is
the reliance on composite indices to study and quantify the level of sustainability of
units under investigation. Methods used to measure sustainability in these studies
include Multi-Criteria Decision-Making (MCDM) approaches (Afgan and Darwish,
2011; Doukas et al., 2010; Khan, 2020; Yilan et al., 2020), exergy analysis (Koroneos
and Nanaki, 2007; Lo Prete et al., 2012), lifecycle analysis (LCA) (Barros et al., 2020;
Burkhardt et al., 2011; Evans et al., 2009; Rehl et al., 2012), and other optimisation
based approaches such as multi-objective optimisation and tax/subsidy optimisation
(Mondal and Denich, 2010; Resnier et al., 2007; Zhang et al., 2012). There have
been other studies that have been descriptive without the need to form composite
indices (Gallego Carrera and Mack, 2010; Tsoutsos et al., 2005).

The most widely used approach for sustainability assessment in the literature
reviewed is MCDM approaches. This is mainly due to the multi-dimensionality of
the problem of sustainability, which requires that different objectives and indicators
are considered or integrated simultaneously (Brandenburg et al., 2014). Indeed
Janeiro and Patel (2015) believe sustainability is inherently an MCDM problem.
The review of the literature shows the use of a wide variety of MCDM approaches
such as a) distance functions like TOPSIS (Brand and Missaoui, 2014; Štreimikienė
et al., 2012), b) outranking approaches like PROMETHEE (Buchholz et al., 2009;
Troldborg et al., 2014) and NAIADE (Browne et al., 2010; Giampietro et al., 2006),
c) hierarchical techniques like Analytic Hierarchy Process (AHP) (Chatzimouratidis
and Pilavachi, 2009; Karger and Hennings, 2009), Analytic Network Process (ANP)
(Zhao and Li, 2015), and Multi-level MCDM (Joseph and Prasad, 2020), d) ranking
and classification methods like Data Envelopment Analysis (DEA) (Ewertowska et al.,
2016) and e) optimising averages approaches such as MAUT/MAVT (Phdungsilp,
2010; Santoyo-Castelazo and Azapagic, 2014), ASPID (Vučićević et al., 2014) and
weighted average (Frangopoulos and Keramioti, 2010; Klein and Whalley, 2015).
Approaches have been classified according to Diaz-Balteiro et al. (2017).

These approaches are sometimes used in combination with other approaches or
even with crisp and fuzzy indicators. In their assessment of the sustainability of
urban energy systems in Serbia, Jovanović et al. (2010), for example, used fuzzy
set theory together with the ASPID approach. The problem with most MCDM
approaches is usually with dimension weighting, which may rely on different expert
opinions or equal weighting across dimensions. Additionally, the additive nature of
most approaches means that poor performance on one dimension can be compensated
by higher performance on other dimensions, which seem to be at odds with some
views of sustainability. These approaches tend to be compensatory and must be
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interpreted in terms of the trade-off between the dimensions (Hacatoglu et al.,
2015a).

Another well-used approach is the LCA method. This is an analytical approach,
which allows for the examination of organisational impact across the supply chain.
Rehl et al. (2012) used attributional and consequential LCA approaches to analyse
biogas system environmental impacts in the German electricity mix. They observed
that the calculated environmental performance is affected by the methodology
selected. Some other studies have also used LCA to estimate ‘cradle-to-grave’ impact
of energy systems. The LCA approach is often used together with other MCDM or
other aggregating approaches. Hacatoglu et al. (2015b), Roldán et al. (2014) and
von Doderer and Kleynhans (2014) all used LCA results together with other MCDM
techniques to arrive at a composite sustainability index. The literature on LCA tends
to mainly focus on the environmental dimension of the operation with little, or no,
emphasis on the economic and social aspects of the sustainability triad. Additionally,
there are significant variations in the nature of system boundaries examined in the
various papers. For example, some papers have focussed on ‘cradle-to-gate’ thinking
(Hammond et al., 2013; Mahmud et al., 2020; Quek et al., 2018). This examines
impact until the product leaves the gates of the entity. Barros et al. (2020) provide
a review of LCA studies in sustainable energy generation.

Exergy analysis is another method observed in the review. Exergy analysis
includes the quality of the output in the modelling process, thereby following
the first and second laws of thermodynamics (Koroneos and Nanaki, 2007). The
differences in the quality of output are important when comparing different energy
conversion processes (Lo Prete et al., 2012). Outside these major approaches, there
have been other optimisation and descriptive-based approaches used to understand
the sustainability of energy generation systems. Studies that use descriptive statistics,
such as Gallego Carrera and Mack (2010) and Tsoutsos et al. (2005), do not attempt
to derive composite indices, but primarily focus on discussing the sustainability of
these generating technologies across several indicators.

Dimensions of sustainability

Generally, in the sustainability literature, the triple bottom line concept first put
forward by Elkington (1997), which requires consideration for social, economic and
environmental objectives, is well accepted as the holistic dimensions of sustainability.
This has, therefore, been translated into the sustainability literature of energy
generation systems. It is important to note that almost every paper has attempted
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to examine the impact of the system under investigation based on clearly defined
dimensions. Even the few studies, like Browne et al. (2010), that do not identify
specifically the dimensions being studied, consider the environmental, economic and
social implications of the indicators used.

Another observation from the literature is the prevalence of studies that consider
a fourth dimension. Afgan and Darwish (2011), Chatzimouratidis and Pilavachi
(2009), Duan et al. (2011), Frangopoulos and Keramioti (2010), Pilavachi et al. (2006)
and Rovere et al. (2010) all included a “technical” or “technological” dimension in
addition to the economic, social and environmental dimensions which are widely
studied. This fourth dimension is often defined to account for factors that relate
directly to the operation of the generation technology that cannot be considered
environmental, social or economic. Maxim (2014) defines it to include the ability to
respond to demand, efficiency and capacity factor. The separation of the technical
aspect is central to the idea of the systems approach to technology sustainability
assessment of Musango and Brent (2011), which integrates the ideas of technology
development, sustainable development and systems dynamics. From a systems
perspective, the separation or decoupling of the technical dimension from the other
dimensions allows for the modelling of the impact of other systems on the technology
dimension and vice versa.

Weighting of dimensions

Multi-criteria analysis is by definition an assessment of multiple dimensions of a
problem which might have different levels of importance. Weighting is, therefore,
important in any multi-criteria analysis. Dimension and indicator weighting has
been one of the critical issues in the sustainability literature. This is mirrored in the
energy generation sustainability literature as well. Different papers have different
approaches to dimension weighting. These include equal weighting (Evans et al.,
2009; Varun et al., 2009), unequal weighting (Doukas et al., 2010; Jovanović et al.,
2009) or even both (Klein and Whalley, 2015; Mahlooji et al., 2020; Malkawi et al.,
2017). There are studies which do not even attempt to weight the dimensions in
their assessment. Studies that do not weight dimensions either tend to focus on one
specific dimension or provide a descriptive assessment of the sustainable operation
of the energy generation systems. As there is no consensus on the importance
of the various dimensions of sustainability, studies tend to be subjective in their
weighting of dimensions. Most studies, however, conduct some form of scenario
or sensitivity analysis to determine the robustness of their ranking to changes in
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dimension weighting (Atilgan and Azapagic, 2016; Lipošćak et al., 2006; Rafaj et al.,
2006).

On how weights are determined, many papers have relied on some form of
expert or stakeholder opinions (Dombi et al., 2014; Gallego Carrera and Mack, 2010;
Grafakos and Flamos, 2017), using approaches like AHP to determine the individual
weights of each dimension, or have relied on estimation techniques that determine the
dimension weights without the need for some direct weight input (Ewertowska et al.,
2016, 2017). Evaluation approaches like DEA allow the units under investigation
to choose the most favourable weights that maximise performance, hence requiring
no need to specify dimension weights (Yang et al., 2014). Others have tended to
use weights based on researcher perspectives. Moreira et al. (2015), for example,
assigned a 60% weight to the environmental dimension emphasising an ‘eco-centric’
view.

Modelling weak and strong sustainability

The idea of capital substitution, which is captured in the debate between weak
and strong sustainability (Gallopín, 2003; Turner, 1993), is another modelling
dimension that is considered important in this review. Whereas arguments for
a weak form of sustainability support the idea of non-declining aggregate capital
even at the expense of individual components of aggregate capital (Pearce and
Atkinson, 1998), arguments for the strong form of sustainability do not support
the idea of capital substitution or compensation between various forms of capital
(Kuhlman and Farrington, 2010). Papers surveyed were examined on whether
they explicitly assumed or conducted their analysis from the perspective of strong
or weak sustainability concerning the relationship between the various forms of
capital. Indeed, only, Duan et al. (2011), Moreira et al. (2015), Myllyviita et al.
(2013) and Rogner (2010) explicitly indicated the capital substitution assumption
made in their modelling. Myllyviita et al. (2013), for example, state that, because
compensation between the dimensions of sustainability is allowed in their study,
their framework should be considered to support the concept of weak sustainability.
Most studies are silent on the issue of factor substitutability, although the nature of
their modelling seems to suggest weak sustainability. There is little consideration for
the arguments of strong sustainability in the literature. The study by Giampietro
et al. (2006) was one of the few exceptions, since their modelling of the post-normal
science paradigm in sustainability did not allow for compensation between social
and technical dimensions.
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Systems modelling

Another issue considered as a basis for this review is the evaluation of the extent to
which the literature includes systems thinking in the sustainability assessment of
energy generation systems. Most studies do not consider sustainability as a systems
problem. There are a few studies that considered some form of the systems approach
in the modelling. However, a look at these papers, like Rehl et al. (2012), Roldán
et al. (2014) and von Doderer and Kleynhans (2014), that incorporate some systems
thinking in the assessment reveal that these are mainly LCA-based papers. LCA
is a systemic analytical model (Acquaye et al., 2011; Brandenburg et al., 2014)
which requires an assessment of the impact across the life cycle of the unit under
investigation. Azapagic et al. (2016), for example, conducted an LCA assessment of
UK’s energy sector from the extraction of primary resources, through construction,
operation, decommissioning, waste treatment and disposal phases of the life cycle.
There is little evidence of systems thinking outside the LCA literature especially in
the energy generation performance evaluation literature.

Energy sources and research context

Papers reviewed have studied a broad range of energy generation technologies, from
renewables alone (Tsoutsos et al., 2005; Varun et al., 2009), non-renewable sources
alone (Frangopoulos and Keramioti, 2010) to a combination of renewable and non-
renewable sources (Ewertowska et al., 2016; Shmelev and van den Bergh, 2016). It
is important, especially at national level energy planning to conduct an assessment
that combines both renewable and non-renewable sources to understand the social,
environmental and economic impacts of the system. Some papers even treat the
energy sector as a black-box and consider sustainability issues from the total energy
generated rather than at the technology level (Giampietro et al., 2006; Koroneos
and Nanaki, 2007).

At the contextual level, though these studies span a broad range of countries,
including both developed and developing nations, it is evident that such sustain-
ability assessment is primarily done at the single state level. Most papers surveyed
considered energy generation sustainability in a single country (Assefa and Frostell,
2007; Lipošćak et al., 2006). Very few studies consider such sustainability issues at
the multi-state level or the regional level (Begić and Afgan, 2007; Gallego Carrera
and Mack, 2010). Regional level assessment is particularly important since energy
and sustainability policies are now being set at the intergovernmental level rather
than the state level. The Economic Community of West African States and the EU,
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for instance, have region-level energy policies and directives that are supposed to
ensure sustainability in energy generation of member states. Indeed the EU has clear
country-specific targets for climate and energy in its renewable energy directives
(EEA, 2017).

As contemporary energy policies are formulated at the intergovernmental level,
sustainability assessment must be conducted at the intergovernmental level as well.
The impact of a nation’s energy generation decisions has global implication as
ecological systems are shared by all nations. The Paris Agreement, a universal
legally binding global climate deal comprising 195 countries in 2015 (European
Commission, 2018), is an example of the recognition given to the need for regional
and international cooperation to build resilience and decrease vulnerability to the
harmful effects on the environment. Greater regional focus, with country-level
assessment and benchmarking, is imperative if the impact of sustainable energy
policies will be effective.

DEA application in energy production assessment

The application of DEA in the literature of sustainable energy production has been
in two main strands – performance evaluation at the generation technology level
(plant level) and performance comparison between different technologies (national
level).

The first strand is studies that conduct performance evaluation on one type
of energy generation technology, usually incorporating undesirable outputs, such
as emissions, in the production process. There is a large body of research in this
area of DEA evaluation such as Yang and Pollitt (2009) who examined approaches
for incorporating both undesirable outputs and uncontrollable variables into DEA
in their performance evaluation of Chinese coal-fired power plants and Liu, Lin
and Lewis (2010) who evaluated thermal power plants in Taiwan using radial
DEA measurement. Sueyoshi and Goto (2012b) also conducted an environmental
assessment of coal power plants in the U.S. using radial DEA measurement under
managerial and natural disposability, which followed an earlier study on performance
analysis of the U.S coal-fired power plants (Sueyoshi et al., 2010). Sueyoshi and Goto
(2012a) have also conducted a methodological comparison of radial and non-radial
models in the evaluation of U.S coal-fired power plants. Meanwhile, Bi et al. (2014)
conducted an energy efficiency evaluation of China’s thermal power generation.
Similarly, Liu et al. (2017) conducted a DEA cross efficiency evaluation of coal-fired
power plants in China. There have been other studies like Sueyoshi and Goto (2012c)
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who focussed on the total power generation of the electricity system without the
need to consider differences in the generation portfolio.

Recent research interest in this strand has focussed on decomposing the operations
at the plant level to examine efficiency improvement potential in various sub-units
of the plant. This has seen the application of various network DEA and hierarchical
structure models. Starting from the earlier works of Cook et al. (1998) and Cook
and Green (2005), recent studies include Xie et al. (2012) who decomposed the
power plant operation into generation and grid operations in the two-stage network
DEA evaluation and Bi et al. (2018) who considered a two-stage problem with power
generation and pollutant abatement as the sub-units under investigation. Others
include the two-stage evaluation of fossil fuel power plants by Tajbakhsh and Hassini
(2018) with stages considering financial and sustainability objectives of the power
plants. Xie et al. (2018) also conducted a dynamic network slacks-based evaluation
of provincial power systems in China evaluating multiple operations of power plants
– generation, transmission and distribution. Extensive reviews of studies in this
strand of research have been conducted by Sueyoshi et al. (2017), Zhou et al. (2008)
and Zhou et al. (2018).

These studies tend to focus on a type of production plant or examine the energy
system as a composite without incorporating the differences in the production
portfolios and hence focus on the power plant level, not the system-level. As such,
policy recommendations are aimed at the plant level, not the national level which is
relevant for sustainable energy policy. Due to the requirement for homogeneity in
traditional DEA evaluation, studies are usually restricted to one type of generation
technology ignoring the relevance of a system perspective. Countries produce power
from different sources, therefore evaluation focussing on one or a few sources may lead
to limited policy relevance. Additionally, it is important to consider the generation
and use phases of the energy system for comprehensive decision support. All these
studies in this strand focus on the generation phase of the energy system.

The second strand of DEA literature in the production phase are studies that
conduct performance comparison between different technologies. The focus here is
usually some multi-criteria evaluation of several sources along some sustainability
dimensions to identify sustainable and less sustainable technologies. These studies
are quite limited in the literature. Some identified studies in this strand have been
summarised in Table 2.4 based on the main research issue, the nature of the portfolio
of technologies studied, the context and the temporal nature of the models applied.
It is worth noting that it seems DEA applications in this strand are relatively recent
with application papers covering the period from 2010 to 2018.
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The focus of most of the identified studies have been on efficiency in energy
production (Vazhayil and Balasubramanian, 2013; Zurano-Cervelló et al., 2018).
Such studies mainly focus on the social, economic and environmental factors that
constrain the production of energy. The system boundary for such research usually
ends in the power production plants. Other studies like Sueyoshi and Goto (2013)
and Ewertowska et al. (2017) focus on only the environmental dimension and treats
the production process as a ‘black-box’ without considering the internal differences
in the structure in the energy generation portfolio. As such, the system boundary of
such environmental performance studies rather begins from the output of the power
plant. None of the studies combines the production phase with the consumption
phase in the same assessment.
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A majority of the papers make efforts to combine both renewable and non-
renewable generation sources in their assessment. While this is appropriate since
the energy supply of countries comes from both renewable and non-renewable
sources, the requirement of homogeneity of decision-making units (DMUs) mean
studies either select units with the same portfolio structure (Sueyoshi and Goto,
2013) or focus on one country while comparing different technologies and assuming
the production process across technologies are essentially the same (Rovere et al.,
2010; Vazhayil and Balasubramanian, 2013). There are significant differences in
the production structures of different countries and significant differences in the
production processes of different generation sources. This must be reflected in such
studies. It is also evident in Table 2.4 that most studies tend to use static models
that consider production at only one point in time or mainly focus on production in
a single country. Since the real-world is constantly changing, a dynamic assessment
may be more apt. Additionally, evaluation mostly focusses on a single country,
however, energy policy and environmental impact go beyond one country. Therefore,
there is a need for regional or global assessment.

Since the introduction of the traditional radial – CCR DEA model by Charnes
et al. (1978) and radial BCC DEA model by Banker et al. (1984), there have
been several advances in the methodology. There have been advances catering for
nonhomogeneous DMUs (Cook et al., 2013), differences in production structures (Kao,
2014c) and treatment of undesirable outputs (Seiford and Zhu, 2002). To understand
the extent of DEA application in sustainable energy production assessment, Table
2.5 summarises the 11 studies found in the literature in terms of the nature of DEA
models used.

From looking at the table, it is evident that although the DEA literature is well
advanced, its application in this strand of sustainable energy production literature
is still growing. There is the prevalence of mainly traditional models, which measure
performance improvement targets on a radial basis, which suffer from an inability to
detect non-proportional performance improvement targets. Non-radial approaches
employed are limited to Directional Distance Function, which does not distinguish
input improvements from output improvement. All of these studies have also been
single objective problems mainly focussing on input minimisation.
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2.4.2 Sustainable consumption assessment

In the consumption phase, the focus is on how energy is transformed into other
social and economic services and its impacts on the environment. Therefore, the
review here focusses on how energy interfaces with the economy, through energy
and eco-efficiency assessments, and how energy affects the environment as captured
by studies on environmental performance assessment.

Energy efficiency

As energy is the main intermediate resource for socio-economic development, energy
efficiency constitutes the most important goal for contemporary energy policy
(Štreimikienė et al., 2012). Energy efficiency is the ratio of energy services output to
energy input (Herring, 2006). The focus is on using the energy input to gain the most
output as possible. As such, it broadly defined as a simple ratio of the useful output
of a process divided by energy input into a process (Patterson, 1996). Patterson
(1996) defined various measures of energy efficiency and highlighted their strengths
and weaknesses. These were grouped into four main groups: thermodynamic
measures, physical-thermodynamic measures, economy-thermodynamic measures
and economic measures of energy efficiency (Patterson, 1996). The differences
between the various approaches pertain to the nature of variables in the efficiency
measurement framework, such as monetary values and energy units. Whereas
thermodynamic measures are calculations based on the science of thermodynamics,
physical-thermodynamic measures rely on energy inputs measured in thermodynamic
units but with outputs measured in physical units. Economic-thermodynamic
measures rely on energy inputs in thermodynamic units and outputs measured in
market prices. An example is the energy-GDP ratio of energy intensity. Finally,
economic measures of energy efficiency rely purely on monetary terms (Patterson,
1996).

Hu and Wang (2006), observed that energy alone cannot be used to produce
any output, as such, a multi-input model is necessary for effective energy efficiency
assessment. As such, the focus has moved from using single-input and single-output
measurements as highlighted by Patterson (1996) to a total factor energy efficiency
(TFEE) measurement. In this regard, DEA has found utility in this context since it
allows for multi-input, multi-output assessment. The DEA approach allows for the
computation of energy consumption targets which is then divided by actual energy
consumption to generate a TFEE measure (Zhang et al., 2011). This TFEE measure
can be interpreted as energy-saving potential, as the target energy consumption is
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the minimum possible energy consumption an entity under assessment could have
achieved to generate a given level of output when benchmarked against its peers.

The TFEE has been used for energy efficiency examination of industrial sectors
(Wang et al., 2012; Xiaoli et al., 2014), regions/provinces (Honma and Hu, 2008;
Hu and Wang, 2006), and countries (Hu and Kao, 2007; Zhang et al., 2011). Wang
et al. (2012) examined the regional total factor efficiency of industrial enterprises in
30 Chinese provinces from 2005 to 2009. Their assessment into the overall efficiency,
pure technical efficiency and scale efficiency identified considerable regional divide
in terms of energy efficiency. Honma and Hu (2008) examined the TFEE of 47
prefectures in Japan covering the period from 1993 to 2003 relying on 14 inputs of
which 11 were energy sources. Their study allowed for the examination of energy
efficiencies in the consumption of energy from various sources such as residential
electric power, commercial and industrial electric use, and some primary energy
sources. At the country-level analysis, Zhang et al. (2011) examined the TFEE in 23
developing countries over the period from 1980 to 2005 using DEA window analysis,
which allows for the examination of both cross-sectional and time-varying data.
Chang and Hu (2010) later extended the TFEE by taking into effect the dynamic
energy productivity changes. Their measure of total factor energy productivity index
(TFPI) allows for the decomposition of the TFPI into changes in energy efficiency
and shift in the energy use technology.

Since these early works, there has been considerable interest in the DEA literature
in the application and model development for energy efficiency assessment of various
units due to the policy relevance of the approach. Recent studies have examined
energy efficiency while taking into consideration environmental pollution (Guo et al.,
2018; Yang and Wei, 2019b). Yang and Wei (2019b), for example, examined the
urban energy efficiency of 26 Chinese cities from 2005 to 2015 while incorporating
water waste, SO2, and smoke and dust as undesirable outputs. Considerable attention
has also been dedicated to second stage examination using some form of regression
approaches after the estimation of the energy efficiency measures (Borozan, 2018;
He, Liao and Zhou, 2018; Xiong et al., 2019; Yang and Wei, 2019b). Other recent
studies include Khodadadipour et al. (2021), who examined the energy efficiency of
thermal power plants using stochastic DEA cross-efficiency analysis, Li et al. (2021),
who conducted an efficiency assessment of coal and non-coal energy using dynamic
DEA models, and Mishra et al. (2021) who examined the energy efficiency of Indian
power utilities using DEA.

Amidst all this research on energy efficiency is also growing scepticism of the
practical implication of ‘the gospel of energy efficiency’ (Herring, 2006). Focus on
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energy conversation policy has revealed an energy efficiency gap between actual
energy consumption and optimal energy consumption (Jaffe and Stavins, 1994).
Herring (2006), for example, argues against the belief that improving efficiency in
energy use will allow for the reduction in natural emissions due to the reduction
in energy consumption. Herring’s (2006) view is hinged on the supposed ‘rebound
effect’ as a result of a reduction in the implicit price of energy as a result of energy
efficiency. The result is more affordable energy for households leading to greater
use of energy. Consequently, more energy efficiency has the potential of increasing
energy consumption rather than reducing energy consumption as policy implies
(Galvin, 2014; Zhang et al., 2017). Energy efficiency is, therefore, not necessarily
a goal in itself but a means of achieving energy conservation policy objectives in
energy resource allocation (Jaffe and Stavins, 1994). More effective energy policy
will be to shift to non-fossil energy generation sources through funding from carbon
tax on renewable sources (Herring, 2006) while using energy efficiency assessment
as decision support on the progress of energy policy initiatives. As such energy
efficiency and energy conservation policies in the consumption of energy are still
considered as key means of achieving reductions in GHG and other energy-related
policies (Gillingham et al., 2009). Mardani et al. (2017) provide a comprehensive
review of DEA applications in energy efficiency sampling articles published between
2006 and 2015. While they see great potential for DEA evaluation in the future,
they find environmental efficiency assessment as an essential direction for further
studies. Environmental efficiency research is reviewed is the next section of this
chapter.

Environmental performance assessment

The policy needs to monitor and evaluate the environmental impacts of various
units has resulted in the development of methods for environmental performance
assessment. Various environmental performance indexes have been developed based
on conventional productive efficiency measures (Coelli et al., 2007; Reinhard et al.,
2000). These indices incorporate measures of environmental pollution in standard
productive efficiency analysis to capture environmental performance (Coelli et al.,
2007). Environmental efficiency evaluation is useful in providing an understanding of
the differences in the environmental performance of different units under investigation
as well as serving as an objective reference point for future environmental performance
improvement (Song et al., 2012).
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Reinhard et al. (2000) define environmental efficiency as “the ratio of minimum
feasible to observed use of multiple environmentally detrimental inputs, conditional
on observed levels of output and the conventional inputs.” Reinhard et al. (2000) treat
environmentally detrimental variables as inputs thereby implying that reduction
in waste should result in reduced outputs. Zofío and Prieto (2001) characterise
environmental efficiency in terms of expansion of desirable productions and reduction
in undesirable production. Consequently, their definition implies environmental
efficiency gain is achieved when the increase in desirable production is achieved
along with a reduction in waste or pollutant.

It is clear from this that the handling of environmental impacts, or undesirable
outputs, is fundamental to such environmental efficiency assessment. Literature
is replete with various approaches for modelling such undesirable environmental
impacts. Wang et al. (2018) highlight five ways of dealing with such environmental
pollutants, which are often by-products of useful production - freely disposable1

inputs (Reinhard et al., 2000); data transformation (Seiford and Zhu, 2002); weakly
disposable outputs (Färe et al., 1989, 1996); using different production technologies
(Murty et al., 2012); and using the materials balance (Coelli et al., 2007). As
it is characteristic of most scientific literature, there have been debates on these
methods for dealing with undesirable outputs. Wang et al. (2018) believe that
treating undesirable outputs as inputs does not reflect the real production process
and does not satisfy physical laws; also data transformation approaches results
in inconsistent results. They further argue that weak disposability of undesirable
outputs violates the monotonicity in the production of undesirable output and
may lead to an inappropriate shadow price for pollution. Consequently, such weak
disposability based approaches may evaluate strongly dominated DMU as efficient
which may be used as a target for benchmarking and is inconsistent with the laws
of thermodynamics (Wang et al., 2018).

The origins of environmental evaluation trace to the early works of Edmonds
and Reilly (1983), Harvey (1989) and Reister (1984) who focussed on carbon
emissions (Song et al., 2012). However, in the DEA literature, the early work of
Färe et al. (1989) brought light into the modelling of environmental effects. They
made modifications to the standard Farrell efficiency approach by relaxing the strong
disposability assumption of outputs so that environmental variables could be in
joint production with desirable outputs. The implication of this was that reduction
in environmental outputs could only be achieved at the cost of desirable outputs

1disposability is the ability to discard unwanted inputs or outputs. This can be achieved at a
cost (weakly disposable) or without cost (freely disposable) to the other inputs and outputs



2.4 Sustainability assessment of electricity systems 48

when examining the technical efficiency of units under investigation. Although their
work was broadly similar to Pittman (1981, 1983), Färe et al. (1989) established the
nonparametric measurement of technical efficiency considering undesirable outputs.
Färe et al. (1996) later provided an analysis of the environmental performance of
fossil fuel-fired electric utility firms along the same concepts of weak disposability.

Recent contributions to environmental efficiency assessment in energy research
include Wu et al.’s (2016) two-stage system evaluation of environmental efficiency
and Wang et al.’s (2018) DEA evaluation using the materials balance approach,
among others. Wang et al. (2018), for example, examined the environmental
efficiency and abatement efficiency measurements of China’s thermal power industry
through a DEA-based materials balance approach. The materials balance condition,
which essentially implies ‘what goes in must come out’, was incorporated into DEA
measurement by Coelli et al. (2007) in a similar manner as price information is usually
incorporated into DEA measurement. In contrast to traditional approaches that
either threat pollutants as either undesirable outputs or environmentally determined
inputs in the production process, Wang et al. (2018) argue that these approaches do
not satisfy the physical laws that regulate economic and environmental processes.
As such, their approach, which combines DEA with materials balance principle, can
account for the laws of thermodynamics in the joint evaluation of environmental and
abatement efficiency. Additionally, the overall environmental efficiency is decomposed
into technical efficiency, polluting inputs allocative efficiency and polluting and non-
polluting inputs allocative efficiency. This shows the recent interest of two-stage
(network) DEA modelling in environmental efficiency assessment. Other recent
environmental performance studies include Lin and Chen (2020) who examined
environmental regulation and energy-environmental performance, and Koçak et al.
(2021) who conducted and environmental efficiency of OECD countries using a
bootstrap DEA approach.

Outside the theoretical applications of DEA in environmental efficiency, there
have been several empirical policy-related studies. Zofío and Prieto (2001) examined
the environmental efficiency of the manufacturing industries of OECD countries
under different regulatory scenarios. Taskin and Zaim (2000) explored the search
for theoretical Kuznets curves in environmental efficiencies of high and low-income
countries. The same authors also provided empirical evidence of Kuznets curves in
the environmental efficiency of OECD countries (Zaim and Taskin, 2000). Halkos and
Tzeremes (2009) also explored the existence of Kuznets curves in the environmental
efficiencies of 17 OECD countries by allowing for dynamic effects. Environmental
efficiency evaluation cuts across industries, with applications in agriculture (Reinhard
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et al., 2002, 1999), transportation (Chang et al., 2013; Liu et al., 2019), construction
(Mandal and Madheswaran, 2010), oil and gas (Bevilacqua and Braglia, 2002), energy
(Bi et al., 2014; Halkos and Polemis, 2018), trade (Yang et al., 2019), hospitality
(Giama et al., 2018), among others. Song et al. (2012) provide a survey on DEA
applications in environmental efficiency evaluation.

Outside the frontier-based evaluation of environmental efficiency, there have
been other approaches employed for environmental efficiency assessment. Knight
and Rosa (2011), for example, conducted a cross-national environmental efficiency
analysis of 105 countries using maximum likelihood estimations. Their evaluation of
the environmental efficiency of well-being combines the ecological footprint measure
of environmental consumption with the average life satisfaction measure of subjective
well-being to study the benefits societies derive from their environmental demands.
Yang et al. (2019) employed input-output models in studying the environmental
efficiency embodied in China’s inter-regional trade.

Eco-efficiency

At its basic, eco-efficiency is a ratio that relates the economic value of goods and
services to the environmental costs/value or impacts involved in the production
process (Huppes and Ishikawa, 2005). Camarero et al. (2014) define eco-efficiency as
“the ability to produce more goods and services with less impact on the environment
and less consumption of natural resources.” Eco-efficiency, therefore, integrates the
environmental efficiency analysis with economic considerations. Essentially, eco-
efficiency is the monetary impacts of environmental efficiency (Burritt and Saka,
2006). The triple bottom line Venn diagram, as depicted in Figure 2.1, shows
eco-efficiency as the point where economic and environmental objectives are simulta-
neously considered. Although eco-efficiency does not consider the social dimension,
the management philosophy of eco-efficiency guarantees economic and environmen-
tal benefits for society’s welfare (Rybaczewska-Błażejowska and Masternak-Janus,
2018). The relevance of eco-efficiency as a concept in sustainable development policy
planning is highlighted by the establishment of international standard to govern
its use. The ISO 14045:2012 standard of the International Organization for Stan-
dardization (ISO) is an environmental management standard primarily focussed on
the principles, requirements and guidelines for eco-efficiency assessments of product
systems (International Organization for Standardization, 2019).

Eco-efficiency can be assessed from the regional (Rybaczewska-Błażejowska
and Masternak-Janus, 2018), national (Camarero et al., 2014, 2013), industrial
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(Wursthorn et al., 2011) and product-level (Caiado et al., 2017). Although the initial
ideas of eco-efficiency were mainly focussed on product systems of companies, it has
been adapted for policy strategies and macroeconomic evaluations (Wursthorn et al.,
2011). Rybaczewska-Błażejowska and Masternak-Janus (2018) examined the eco-
efficiency of regions in Poland intending to promote the sustainable transformation
of such regions by combining LCA and DEA. LCA approaches were used to quantify
the lifecycle emissions. Using input-oriented BCC DEA estimation revealed only a
few of the Polish regions were eco-efficient relative to the other regions.

Wursthorn et al. (2011) also used environmental intensity, which is the environ-
mental impact per unit of economic performance, to monitor the eco-efficiency of
sectors in European countries. Their approach relied on lifecycle impact assessment
to disaggregate the eco-efficiency levels for various industry classes. Camarero
et al. (2014) examined whether there was convergence in the eco-efficiency in GHG
emissions among EU countries. Using DEA-based directional distance functions for
the eco-efficiency quantification and econometric approaches for the convergence,
they found the existence of convergence groups, meaning there are at least four
clear groups of EU countries in terms of their eco-efficiency and GHG emissions.
Camarero et al. (2013) also examined eco-efficiency convergence among 22 OECD
countries in an earlier study.

Rashidi and Saen (2015) divided the inputs in the eco-efficiency analysis into
energy and non-energy inputs and the outputs into desirable and undesirable out-
puts. Their analysis of selected members of the OECD was based on a bounded
adjusted DEA measure, which allowed for the calculation of energy-saving potential
and undesirable output abatement potential. Robaina-Alves et al. (2015) used a
stochastic frontier model to evaluate the resource and environmental eco-efficiency
of European countries. They examined the eco-efficiency of two distinct periods
– before the Kyoto Protocol in 2005 and after the Kyoto Protocol. To deal with
potential misspecification errors of the distributional assumptions associated with
the stochastic model, a maximum entropy approach, which combines DEA and
stochastic frontier approach, was used.

Caiado et al. (2017), provide a systematic literature review of eco-efficiency that
highlights the thematic developments in the field. They identify the need to consider
sectoral energy and CO2 emissions and its influence on energy efficiency as an
important area of further research in the eco-efficiency literature. They also see the
need to consider social aspects in the transition towards sustainable development.
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2.5 Systems thinking in sustainable energy research
The literature on systems thinking in sustainable energy research is mostly based on
the lifecycle assessment (Onat et al., 2017). However, there exist studies that rely
on causal loop diagrams and system dynamics. Tejeda and Ferreira (2014) applied
systems thinking to analyse wind energy sustainability. Specifically, causal loop
models were developed to highlight the key factors in the sustainability of wind
energy systems and the relationships between these factors. The causal model that
was developed and presented in Figure 2.4 was based on a previously developed
renewable energy causal model from the literature. Sustainability concerns are
limited in scope to factors of installation, operation and maintenance phases of
onshore wind energy generation projects within a country.
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Figure 2.4 Reproduction of a subset of the wind energy sustainability causal model
of Tejeda and Ferreira (2014, pg. 216).

The causal model highlights the economic, social and environmental dimensions
of sustainability. For example, it is seen that an increase in wind energy installed
capacity is likely to result in more wind power generation. This increased wind
power generation should make an investment in wind energy profitable leading to
more investor interest and more investment in wind projects. Investments in wind
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Figure 2.5 Reproduction of the causal model of Robalino-López et al. (2014, pg. 15).

projects come with the need to ensure more social awareness campaigns, which
can help reduce social resistance towards wind energy production. This highlights
part of the economic and social implications of wind energy generation. On the
environmental dimension, the causal model of Tejeda and Ferreira (2014) show that
increased wind energy installed capacity will lead to more wind power generation,
which should reduce its carbon footprint and ecological footprint as a result of
reliance on such renewable sources. In all, Tejeda and Ferreira (2014) identify seven
major feedback loops in their causal model developed. Tejeda and Ferreira (2014)
later conducted a system dynamics simulation of energy sustainability incorporating
social development, economic development and environmental protection using the
same causal relationships.

Robalino-López et al. (2014) also examined the use of system dynamics for
renewable energy and CO2 emissions in the case of Ecuador. Unlike Tejeda and
Ferreira (2014), whose model considers the investor’s perspective, Robalino-López
et al. (2014) tackle the problem from the national perspective by studying the way
changes to energy and GDP will affect carbon emissions of Ecuador. The effects
of a reduction in non-renewable energy share of the energy generation sources and
energy efficiency improvements are incorporated into the causal relationships studied.
Their causal model is presented in Figure 2.5. They find that there is potential to
control carbon emissions even under scenarios of persistent increment of GDP if it
comes with an increase in the renewable energy share of the generation mix and
improvement in fossil fuel technology.

Mutingi et al. (2017) provided a taxonomic analysis of system dynamics ap-
proaches for energy policy and simulation. They provided a causal loop analysis and
system dynamics simulation of various archetypes. Mutingi et al. (2017), therefore,
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developed several generic models to describe behavioural patterns and gain a deeper
insight into the underlying structures in the system. These models include ones
for energy-economy-environment, energy-demand-supply management, new product
innovation, capacity management, energy pricing and hybrid energy management
problems. In Figure 2.6, the energy-economy-environment problem developed is
presented.
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Figure 2.6 Reproduction of energy, economy and environmental causal model of
Mutingi et al. (2017, pg. 538).

This model seeks the triple-sided objectives of economic profits, sustainable energy
supply and environmental health (Mutingi et al., 2017). Capacity investments in
energy are expected to lead to energy security over time. This increased supply is
expected to push down the equilibrium price (clear price) of the energy supplied,
which affects sales and profits of energy companies and hence their investment in
capacity improvement. Their model also brings in the energy demand phase of
the system through a clearing price. A higher equilibrium price should lead to a
reduction in the quantity of energy demanded. On the other hand, a fall in the
energy demand should lead to a fall in the equilibrium price and sales and capacity
investments.
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Other studies include Ford (2011), who conducted system dynamics modelling
of environment, energy and climate change and Brent et al. (2011), who conducted
a systems dynamic modelling of the sustainability of renewable energy generation
technologies in South Africa, among others. These studies have tended to mostly
focus on renewable sources without considering both renewable and non-renewable
generation sources. Additionally, system modelling seems to be limited mostly
to problem structuring and causal loop diagrams. Very few of these studies have
conducted analysis of the static or dynamic behaviour of the system. Systems
thinking provides a basis for understanding the complex interaction and relationships
in the energy generation and consumption systems. This thesis, therefore, draws
from it to aid in effective problems structuring that better addresses all policy
dimensions in sustainable energy policy.

2.6 Chapter summary
This chapter provided an extensive review of sustainability literature as it relates to
energy systems. Based on general sustainability definitions, concepts and dimensions,
a specific review of energy and sustainable development were conducted to present
the extant literature in this research area. Conceptual issues and methodological
applications concerning the relationship between energy, environment, social devel-
opment and economic development were identified in an empirical review of the
literature. This also included a review of the literature on systems thinking and
sustainability as it relates to energy research.

In this review, a number of key gaps in the literature were identified. First,
whereas there has been increasing interest in the sustainable operation of energy
production systems, this has not been equally translated to the assessment literature.
The dominant method used in most sustainability assessment is MCDM though other
approaches exist. A variety of MCDM approaches have been employed. However,
the use of DEA is mostly limited to traditional approaches that treat the production
system as a black-box. The means that the interconnection between sub-systems
of the energy system is ignored in the performance assessment. Also dominant are
LCA-based evaluations, which tend to focus on the environmental dimension while
neglecting of other dimensions.

Second, with multi-criteria approaches, methodological problems associated with
indicator selection and weighting of dimensions can lead to a variety of outcomes
due to its subjectivity. Although different schools of thought on the substitution of
natural, economic and social resources have emerged over the years, the consideration
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of this has been limited in the assessment literature. Other gaps identified include
the limited use of a systems approach outside LCA research when it comes to the
sustainable operation of energy production systems and the restriction of most
studies to national rather than multi-national basis.



Chapter 3

DEA Modelling of Complex
Internal Structures

3.1 Introduction
In this chapter, a methodological review of the DEA models and concepts that are
relied upon for building models and empirical assessment are presented and discussed.
Specifically, it provides a methodological review of network DEA and associated con-
cepts. The chapter presents NDEA models for parallel, series and mixed production
structures. Additionally, the literature on modelling considerations on interlinking
outputs or inputs, dealing with undesirable outputs and non-homogeneity are also
presented. It also highlights modelling choices that is relied upon in subsequent
chapters.

DEA is a performance measurement technique, introduced by Charnes et al.
(1978), Charnes et al. (1981) and Banker et al. (1984) for the relative performance
evaluation of DMUs with multiple inputs and outputs. The technique is based on
earlier works of Debreu (1951), Koopmans (1951), Shephard (1953) and Farrell
(1957), among others. The original estimation approaches were nonparametric
frontier techniques that employ mathematical programming to evaluate the relative
efficiency of homogeneous DMUs that use multiple inputs to generate multiple
outputs, relative to an empirically generated efficient, or a “best-practice”, frontier
which envelopes the observed DMUs (Cooper et al., 2011). However, there has
been a notable increase in DEA techniques and applications resulting in advances
in both basic and advanced DEA models and techniques beyond the axiomatic
restrictions of the original techniques (Cook and Zhu, 2007). One such extension
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is the network DEA approach, pioneered by Färe and Whittaker (1995), which
considers the intermediate products in the production system.

In presenting the methodological review, the rest of the chapter is organised
as follows; Section 3.2 presents the basic/traditional DEA model. Since this basic
model does not incorporate the internal structure of the DMU in the efficiency
modelling, models that consider the internal structures are presented in section
3.3. Section 3.4 deals with non-homogenous DMU models. Section 3.5 presents
undesirability in the DEA modelling specifically in the context of network models.
Section 3.6 presents alternative DEA approaches for dealing with network problems
and undesirable outputs. Finally, Section 3.7 provides a chapter summary and
discussion of modelling choices.

3.2 Basic DEA models (models with unknown in-
ternal structure)

To formulate the basic DEA model with unknown internal structure, it is important
to define:

a. Xj = {Xij, . . . , Xmj}: the vector of inputs for DMU j

b. Yj = {Yrj, . . . , Ysj}: the vector of outputs for DMU j

The basic DEA CCR model maximises the engineering efficiency ratio of each of
the n DMUs (j = 1, . . . , n) with s outputs (r = 1, . . . , s) and m inputs (i = 1, . . . , m)
defined as the ratio of its weighted outputs to its weighted inputs:

max

s∑
r=1

urYro

m∑
i=1

viXio

(3.1a)

s.t.

s∑
r=1

urYrj

m∑
i=1

viXij

≤ 1 j = 1, 2, ..., n (3.1b)

ur, vi ≥ ε > 0, ∀r, i (3.1c)

In (3.1), Yro and Xio are the observed non-negative outputs and inputs respectively
of DMU o under evaluation. ur and vi are unknown output and input multipliers to
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be determined by solving the model. The objective function (3.1a) is to be maximised
under the condition (3.1b) that the same ratio for all DMUs does not exceed the
maximum efficiency score of unity for the specific multipliers selected by the DMU
under investigation. To ensure that no DMU ignores a particular input or output
in the selection of multipliers, the multipliers are expected to according to (3.1c)
be at least ε, a small non-Archimedean infinitesimal (Alirezaee, 2005; Cook and
Zhu, 2014a; Mehrabian et al., 2000). Model (3.1) can be transformed into a linear
programming (LP) problem using the Charnes and Cooper (1973) transformation.
The resulting LP problem is as follows:

E0 = max
s∑

r=1
µrYro (3.2a)

s.t.
m∑

i=1
νiXio = 1 (3.2b)

s∑
r=1

µrYrj −
m∑

i=1
νiXij ≤ 0 j = 1, 2, ..., n (3.2c)

µr, νi ≥ ε > 0, r = 1, ..., s, i = 1, ..., m (3.2d)

The model (3.2) expresses the DEA problem as an LP problem by setting the
value of the denominator of the objective function in 3.1 to unity and imposing it as
a constraint. For this problem, while a score of unity shows an efficient DMU, any
score lower than unity shows inefficiency for a particular DMU. It is often common
to see the dual form of model (3.2) in the literature. This dual version, also known
as the envelopment model, is expressed as:

E0 = min
λ,si,sr,φ

φ − ε

(
m∑

i=1
s−

i +
s∑

r=1
s+

r

)
(3.3a)

s.t.
n∑

j=1
λjXij + s−

i = φXio i = 1, 2, ..., m (3.3b)

n∑
j=1

λjYrj − s+
r = Yro r = 1, 2, ..., s (3.3c)

λj, s−
i , s+

r ≥ 0, j = 1, 2, ..., n (3.3d)
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Here λ is the intensity vector, while s−
i and s+

r are slack variables. Model (3.3) is
an input minimisation problem which finds the maximum possible radial contraction
of all inputs necessary to make a DMU efficient under a constant returns to scale
(CRS) assumption. Where variable returns to scale (VRS) is preferred, an additional
convexity constraint ∑n

j=1 λj = 1 can be added to model in 3.3. Such a model which
allows for VRS constraint is often referred to as the Banker, Charnes and Cooper
(BCC) model after Banker et al. (1984). On the other hand, the CRS model is
often referred to as the Charnes, Cooper and Rhodes (CCR) model after Charnes
et al. (1978). Both the CCR and the BCC models can also be formulated for the
output-oriented case, which captures simultaneous radial output expansion. In such
a case, the objective function becomes a maximisation problem, while φ will be
attached to Yro in the second constraint instead of Xio. These models have been
formulated using radial measurement approaches; several non-radial alternatives can
be employed. Some of these are presented in Section 3.6 of the chapter.

The basic CCR and BCC models presented do not consider the internal structure
of the DMU when measuring the efficiency, thereby treating the system as a black-
box (Castelli et al., 2010; Kao, 2014c). Hence, the basic model assumes homogeneity
in inputs and outputs of all DMUs and DMU independence (i.e. constraints do not
bind inputs/outputs of a DMU to inputs/outputs of other DMUs) (Castelli et al.,
2010). The black-box structure, which considers just the inputs consumed and the
outputs produced by the overall system, is depicted in Figure 3.1.

 

DMU𝑗 , 𝑗 = 1,… , 𝑛 

𝑌𝑟 

𝑟 = 1,… , 𝑠 

𝑋𝑖 

𝑖 = 1,… ,𝑚 

Figure 3.1 Basic ‘black-box’ structure.

Source: Kao (2014b, pg. 56)

In practice units under investigation are composed of several sub-units that are
linked or operate independently to achieve overall goals (Tone and Tsutsui, 2009).
Aggregating the outputs of the overall system, while ignoring the internal linking
activities, does not allow for the assessment of the division-specific inefficiencies
and their impact on the overall efficiency of the system under investigation (Tone
and Tsutsui, 2009). Additionally, as a DEA model maximises the efficiency ratio by
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determining optimal multipliers, the black-box approach may lead to inappropriate
multipliers for input and output combinations since, DMUs do not have the oppor-
tunity to allocate inputs and outputs among sub-units (Castelli et al., 2010; Cook
et al., 2000). Consequently, the black-box model may assign unreasonable efficiency
scores to DMUs (Tone and Tsutsui, 2009).

The consequence of using the black-box approach is that some sub-unit inefficiency
information is not available to system managers when diagnosing performance
improvement potential. It is more informative to consider the internal structure
of the system under investigation. By considering the internal structure, it is
possible to identify specific under-performing sub-units that may require performance
improvement. Examining the internal structure of DMUs may help explain the
source of the overall performance measured under the ‘black-box’ approaches (Kao
and Hwang, 2008).

3.3 Models with known internal structure
If the internal structures of the DMUs are ignored, the efficiency scores estimated
using the black-box approach will sometimes be misleading (Kao, 2014a). Conse-
quently, when the internal structure is known, it is important to incorporate this into
the performance modelling. DMUs with known internal structures will have some
sub-processes/sub-systems/sub-units. A sub-process p (p = 1, . . . , q), as illustrated
in Figure 3.2, can be defined to have:

a. X
(p)
i , i ∈ I(p): exogenous inputs from outside the system consumed by sub-

process p

b. Y (p)
r , r ∈ O(p): final outputs produced by sub-process p

c. Z
(p)
f , f ∈ M

(p)
I : intermediate inputs consumed by sub-process p produced by

other sub-processes

d. Z(p)
g , g ∈ M

(p)
O : intermediate outputs produced by sub-process p to be con-

sumed by other sub-processes

For a DMU j the total inputs of the system is the sum of the inputs of all sub-
processes such that ∑q

p=1 X
(p)
ij = Xij, i = 1, . . . , m and total outputs of the system

should be the sum of the outputs of the sub-processes ∑q
p=1 Y

(p)
rj = Yrj, r = 1, . . . , s.

It is expected that all intermediate products produced in the system are consumed
in the system (Kao, 2014a).
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Figure 3.2 General structure of a sub-process.

Source: Adapted from Kao (2014c)

In typical practical applications, each DMU under evaluation will have some
interrelated processes arranged in a variety of structures. Various mathematical
models have been developed to evaluate DMUs with different internal structures.
In the next sub-sections, models developed for series, parallel and mixed network
structures are presented.

3.3.1 Series network structure

There exists a series network structure if some or all outputs of one sub-process
are directly consumed by another sub-process in the DMU under consideration as
depicted in Figure 3.3.

In this series structure, each sub-process may have exogenous inputs X
(p)
i which

do not come from other sub-processes and may produce exogenous outputs Y (p)
r to

be consumed by other entities outside the system. There also exist intermediate
product Z

(p)
f produced in the system and consumed by units in the system. A

generalised series structure efficiency model is presented in Section 3.3.1, however, a
specialised type of series structure – the two-stage network, is first reviewed.

Two-stage networks

A special case of the series structure is the two-stage network structure which has
been widely studied in the literature (Cook, Liang and Zhu, 2010). Such models
have two sub-processes, where all outputs of the first sub-process are consumed by
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Figure 3.3 The general structure of the multi-stage series system.

Source: Kao (2014a, pg. 7)

the second sub-process (Cook and Zhu, 2014b). This is shown in Figure 3.4. A
recent application of the two-stage model includes the joint analysis of eco-efficiency
and eco-innovation of OECD countries by Mavi et al. (2019). In their paper, the first
stage was the eco-efficiency assessment, which used labour, energy and land area as
inputs used in generating economic output (GDP) and undesirable GHG emissions.
In the second stage, the eco-efficiency outputs were the inputs in the eco-innovation
analysis, which examined environmentally-related technology innovations.

 

 

 

  

 

 

 

 

 Stage 1     Stage 2    

Figure 3.4 Two-stage series structure.

Source: Adapted from Kao (2014c)

Denoting the efficiency of stage 1 and stage 2 as E
(1)
j and E

(2)
j respectively, the

CCR ratio for the two stages can be expressed as:
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E
(1)
j =

h∑
f=1

ŵfZfj

m∑
i=1

viXij

, and E
(2)
j =

s∑
r=1

urYrj

h∑
f=1

w̃fZfj

(3.4)

In (3.4), the unknown multipliers ŵf and w̃f can be defined to be equal. The
problem with the two-stage model is that the intermediate product Zf is an output in
the first stage but an input in the second stage. Consequently, while the input in the
first stage may have to be reduced to maximise the stage 2 efficiency, it may come at
the cost of a reduction in the output of stage 1, therefore, reducing stage 1 efficiency.
Cook, Liang and Zhu (2010), identified four approaches in the literature for dealing
with the problem of the intermediate products, namely standard DEA methodology,
efficiency decomposition methodology, network DEA and game-theoretic approaches.

The standard DEA approach treats the two systems as independent, therefore,
solving separate unrelated basic efficiency models for stage 1 (E(1)

j ) and stage 2
(E(2)

j ) (Seiford and Zhu, 1999; Zhu, 2000). This approach does not treat the sub-
processes in a coordinated manner, therefore, efficiency improvement in one stage
may lead to inefficiency in the other stage (Cook, Liang and Zhu, 2010). The
efficiency decomposition approach determines the overall efficiency of the system
before decomposing that overall efficiency among the sub-processes. Kao and Hwang
(2008) developed a relational model which has the overall efficiency as a product of
the sub-process efficiencies such that Ej = E

(1)
j × E

(2)
j . In this case, the multiplier

of the intermediate product remains the same whether it is an output or an input
(i.e. ŵf = w̃f). It is also plausible to define the overall efficiency as some form of
average of the sub-processes (e.g. Ej = (E(1)

j + E
(2)
j )/2) (Cook, Liang and Zhu,

2010). Chen et al. (2009) introduced the additive decomposition of the two-stage
DEA by defining the overall system efficiency as a weighted sum of the sub-process
efficiencies.

There may be other outputs of the first stage that are not input to stage 2 or
other inputs for stage 2 which are not outputs of stage 1. Where such exogenous
inputs and outputs exist, then the problem can be seen as a network DEA approach.
Despotis, Koronakos and Sotiros (2016) and Despotis, Sotiros and Koronakos (2016),
for example, provide network DEA models for various types of series structures
using their efficiency composition approach based on multi-objective programming.
Tone and Tsutsui (2009) conduct network modelling of various systems using the
slack-based measure of efficiency. Finally, the game-theoretic approach pioneered
by Liang et al. (2008) models the two-stage problem using concepts in cooperative
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and Stackelberg (leader-follower) game theory concepts. Zhou et al. (2013) later
developed a two-stage efficiency decomposition in the centralised (cooperative) model
using Nash bargaining game concepts. Game-theoretic approaches are presented in
subsequent sections.

Although there are a number of such two-stage models, Cook, Liang and Zhu
(2010) show that all existing approaches can be categorised as either a non-cooperative
or cooperative game problem. Consequently, the centralised and the leader-follower
approaches are presented in the next sub-sections. However, since these approaches
are based on the multiplicative or additive efficiency decomposition, these decompo-
sition approaches are first presented.

Multiplicative decomposition :

Given the two-stage system depicted in Figure 3.4, the CCR efficiency ratios for
the first and second stages can be expressed as:

E(1)
o = max

h∑
f=1

ŵfZfo

m∑
i=1

viXio

(3.5a)

s.t.

h∑
f=1

ŵfZfj

m∑
i=1

viXij

≤ 1 j = 1, 2, ..., n (3.5b)

ŵf , vi ≥ ε > 0, f = 1, . . . , h, i = 1, . . . , m (3.5c)

E(2)
o = max

s∑
r=1

urYro

h∑
f=1

w̃fZfo

(3.6a)

s.t.

s∑
r=1

urYrj

h∑
f=1

w̃fZfj

≤ 1 j = 1, 2, ..., n (3.6b)

w̃f , ur ≥ ε > 0, f = 1, . . . , h, r = 1, . . . , s (3.6c)
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The approach by Kao and Hwang (2008) defines the overall efficiency of the system
as a product of the sub-system efficiencies, therefore, it requires the multipliers for
the intermediate product to remain the same in both models (i.e. ŵf = w̃f = wf ) . If
this condition is not introduced, models (3.5) and (3.6) become independent models
with no linking relationship. The overall efficiency ratio under the multiplicative
model becomes:

Eo = max


h∑

f=1
wfZfo

m∑
i=1

viXio

×

s∑
r=1

urYro

h∑
f=1

wfZfo

 =

s∑
r=1

urYro

m∑
i=1

viXio

(3.7a)

s.t.

h∑
f=1

wfZfj

m∑
i=1

viXij

≤ 1 j = 1, 2, ..., n (3.7b)

s∑
r=1

urYrj

h∑
f=1

wfZfj

≤ 1 j = 1, 2, ..., n (3.7c)

wf , ur, vi ≥ ε > 0, f = 1, . . . , h, i = 1, . . . , m, r = 1, . . . , s (3.7d)

Model (3.7) introduces the sub-process constraints in (3.4) into the CCR model
(3.1). The overall constraint ∑s

r=1 uryrj/
∑m

i=1 vixij ≤ 1 becomes redundant in (3.7)
since it is implied by (3.7b) and (3.7c).

Additive decomposition :
The multiplicative model is a rational assumption for efficiency decomposition but
can be restricted to the CCR model. Chen et al. (2009) developed a weighted
additive model that avoids possible nonlinearity in the multiplicative model in the
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case of a BCC model. The additive model, therefore, allows for decomposing of the
overall efficiency for both the CCR and BCC models. This model becomes:

Eo = max ω1


h∑

f=1
wfZfo

m∑
i=1

viXio

+ ω2


s∑

r=1
urYro

h∑
f=1

wfZfo

 (3.8a)

s.t.

h∑
f=1

wfZfj

m∑
i=1

viXij

≤ 1 j = 1, 2, ..., n (3.8b)

s∑
r=1

urYrj

h∑
f=1

wfZfj

≤ 1 j = 1, 2, ..., n (3.8c)

wf , ur, vi ≥ ε > 0, f = 1, . . . , h, i = 1, . . . , m, r = 1, . . . , s (3.8d)

Note that for the weights ω1 + ω2 = 1 and it is a measure of the relative importance
of the sub-unit which could be exogenously determined outside model (3.8). However,
as the weight is a measure of the relative importance of the sub-process, Chen et al.
(2009) propose that if the size of a unit reflects its importance, then the use of the
total system resources that are dedicated to the sub-process under consideration
may be used. Subsequently, if ∑m

i=1 viXio +∑h
f=1 wfZfo is the total size of resources

used in the system, then the sizes of the two stages could be determined as:

ω1 =
∑m

i=1 viXio∑m
i=1 viXio +∑h

f=1 wfZfo

(3.9a)

ω2 =
∑h

f=1 wfZfo∑m
i=1 viXio +∑h

f=1 wfZfo

(3.9b)
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If these weights are introduced into (3.8), then the new model becomes:

Eo = max

h∑
f=1

wfZfo +
s∑

r=1
urYro

m∑
i=1

viXio +
h∑

f=1
wfZfo

(3.10a)

s.t.

h∑
f=1

wfZfj

m∑
i=1

viXij

≤ 1 j = 1, 2, ..., n (3.10b)

s∑
r=1

urYrj

h∑
f=1

wfZfj

≤ 1 j = 1, 2, ..., n (3.10c)

wf , ur, vi ≥ ε > 0, f = 1, . . . , h, i = 1, . . . , m, r = 1, . . . , s (3.10d)

Model (3.10) can be linearised using the Charnes and Cooper (1973) transforma-
tion. The optimal solution to models (3.7) and (3.10) may not be unique, since there
may exist multiple optimal solutions (Chen et al., 2009; Kao and Hwang, 2008).
Kao and Hwang (2008) have proposed a procedure to determine if multipliers are
uniquely determined.

As earlier indicated, Cook, Liang and Zhu (2010) observe that all two-stage DEA
problems can be categorised as either a cooperative or non-cooperative game theory
problem. Liang et al. (2008) developed two perspectives for modelling two-stage
problems. While in the cooperative (or centralised) model both sub-processes work
together to achieve the highest overall efficiency possible, the non-cooperative model
uses Stackelberg duopoly (i.e. leader-follower competition) where one sub-process
(the follower) optimises its efficiency subject to the optimal multipliers of the other
sub-process (leader) (Liang et al., 2008). For both models, the overall efficiencies
are defined as a product of the sub-processes. The next sub-sections present the
cooperative and non-cooperative two-stage models.
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Cooperative model :
Considering the two-stage model depicted in Figure 3.4, the cooperative model is
essentially Kao and Hwang’s (2008) multiplicative model presented in (3.7). The
linearised model to the overall model is, therefore:

Ecentralised
o = max

s∑
r=1

urYro (3.11a)

s.t.
h∑

f=1
wfZfj −

m∑
i=1

viXij ≤ 0 j = 1, 2, ..., n (3.11b)

s∑
r=1

urYrj −
h∑

f=1
wfZfj ≤ 0 j = 1, 2, ..., n (3.11c)

m∑
i=1

viXio = 1 (3.11d)

wf , ur, vi ≥ ε > 0, f = 1, . . . , h, i = 1, . . . , m, r = 1, . . . , s

(3.11e)

Assuming the optimal multipliers u∗
r, v∗

i and w∗
f of (3.11) are uniquely determined,

then the overall efficiency of the centralised model could be decomposed into the
sub-process efficiencies:

E(1),centralised
o =

h∑
f=1

w∗
fZfo

m∑
i=1

v∗
i Xio

=
h∑

f=1
w∗

fZfo (3.12a)

E(2),centralised
o =

s∑
r=1

u∗
rYro

h∑
f=1

w∗
fZfo

(3.12b)

As the optimal multipliers in (3.12) may not be uniquely determined, there exist a
test for uniqueness and an alternative decomposition approach in Liang et al. (2008).

Non-cooperative model :
Unlike the cooperative model, for the non-cooperative model, a clear leader must be
determined a priori. This can be either of the stages. The leader’s efficiency will
be determined using CCR model (3.1). The follower’s efficiency is then computed
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while maintaining the efficiency of the first stage. Assuming stage 1 is the leader,
its efficiency of the stage will be:

E(1)
o = max

h∑
f=1

wfZfo (3.13a)

s.t.
h∑

f=1
wfZfj −

m∑
i=1

viXij ≤ 0 j = 1, 2, ..., n (3.13b)

m∑
i=1

viXio = 1 (3.13c)

wf , vi ≥ ε > 0, f = 1, . . . , h, i = 1, . . . , m, r = 1, . . . , s (3.13d)

After determining the optimal efficiency of that stage, the follower’s efficiency is
determined by solving for the optimal multipliers in stage 2 that ensures the optimal
efficiency of the leader’s model will remain optimal.

E(2)
o = max

(
s∑

r=1
urYro

)
/E(1)∗

o (3.14a)

s.t.
s∑

r=1
urYrj −

h∑
f=1

wfZfj ≤ 0 j = 1, 2, ..., n (3.14b)

h∑
f=1

wfZfj −
m∑

i=1
viXij ≤ 0 j = 1, 2, ..., n (3.14c)

m∑
i=1

viXio = 1 (3.14d)

h∑
f=1

wfZfo = E(1)∗
o (3.14e)

wf , vi, ur ≥ ε > 0, f = 1, . . . , h, i = 1, . . . , m, r = 1, . . . , s (3.14f)
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Note that E(1)∗
o is determined in model (3.13), therefore, model (3.14) is linear. It

is also possible to make stage 2 the leader. The overall system efficiency is still the
product of the sub-system efficiencies.

E∗
o =E(1)∗

o · E(2)∗
o (3.15a)

=
 h∑

f=1
w∗

fZfo

( s∑
r=1

u∗
rYro

)
/

h∑
f=1

w∗
fZfo

 (3.15b)

=
s∑

r=1
u∗

rYro (3.15c)

Note that ∑m
i=1 v∗

i Xio = 1. Unlike the centralised model, the efficiency decompo-
sition in the Stackelberg model is unique (Liang et al., 2008).

Basic series networks

While the two-stage structure models systems with two sub-processes, the basic
series network models involves q sub-processes (q ≥ 2) where only the first sub-
process has exogenous inputs while only the final sub-process produces the final or
exogenous output. Each of the remaining p sub-processes consume and produce Z

(p)
f

intermediate products. This is shown in Figure 3.5.
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Figure 3.5 Basic series structure.

Source: Kao (2014a, pg. 119)
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Using the relational model of Kao and Hwang (2008), the system efficiency can
be formulated as:

E0 = max
s∑

r=1
urYro (3.16a)

s.t.
m∑

i=1
viXio = 1 (3.16b)

s∑
r=1

urYrj −
m∑

i=1
viXij ≤ 0 j = 1, 2, ..., n (3.16c)

∑
f∈M(1)

wfZ
(1)
fj −

m∑
i=1

viXij ≤ 0 j = 1, 2, . . . , n (3.16d)

∑
f∈M(p)

wfZ
(p)
fj −

∑
f∈M(p−1)

wfZ
(p−1)
fj ≤ 0

p = 2, . . . , q − 1, j = 1, 2, . . . , n (3.16e)
s∑

r=1
urYrj−

∑
f∈M(q−1)

wfZ
(q−1)
fj ≤ 0 j = 1, 2, . . . , n (3.16f)

ur, vi, wf ≥ ε, r = 1, ..., s, i = 1, ..., m, f = 1, . . . , h (3.16g)

Given the optimal solution u∗
r, v∗

i and w∗
f , the efficiencies for the system and

sub-process for each DMU can be estimated as:

Eo =

s∑
r=1

u∗
rYro

m∑
i=1

v∗
i Xio

=
s∑

r=1
u∗

rYro (3.17a)

E(1)
o =

∑
f∈M(1)

w∗
fZ

(1)
fo

m∑
i=1

v∗
i Xio

(3.17b)

E(p)
o =

∑
f∈M(p)

w∗
fZ

(p)
fo∑

f∈M(p−1)
w∗

fZ
(p−1)
fo

, p = 2, . . . , q − 1, (3.17c)

E(q)
o =

s∑
r=1

u∗
rYro∑

f∈M(q−1)
w∗

fZ
(q−1)
fo

(3.17d)
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For the relational series structure model, the product of all the sub-process
efficiencies is the system efficiency (Kao, 2014a). Subsequently, a system is overall
efficient if all sub-processes are efficient.

q∏
p=1

E(p)
o =


∑

f∈M(1)
w∗

fZ
(1)
fo

m∑
i=1

v∗
i Xio




q−1∏
p=2

∑
f∈M(p)

w∗
fZ

(p)
fo∑

f∈M(p−1)
w∗

fZ
(p−1)
fo




s∑
r=1

u∗
rYro∑

f∈M(q−1)
w∗

fZ
(q−1)
fo

 (3.18a)

=

s∑
r=1

u∗
rYro

m∑
i=1

v∗
i Xio

(3.18b)

General multi-stage series networks

While two-stage network and the basic series structures model systems with two or
more sub-processes without other exogenous inputs and outputs, it is possible that
sub-systems will have such exogenous products. This is depicted in Figure 3.3 where
the system has q sub-processes. The multi-stage series structure network model can
be seen as an extension or generalisation of the two-stage and basic series models to
capture more than two stages of interlinked sub-processes. Given q sub-processes,
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using multiplicative decomposition in a centralised model, the efficiency of the
system can be determined using (Kao, 2014a):

E0 = max
s∑

r=1
urYro (3.19a)

s.t.
m∑

i=1
viXio = 1 (3.19b)

s∑
r=1

urYrj −
m∑

i=1
viXij ≤ 0 j = 1, 2, ..., n (3.19c) ∑

r∈O(1)

urY
(1)

rj +
∑

f∈M(1)

wfZ
(1)
fj

−
∑

i∈I(1)

viX
(1)
ij ≤ 0

j = 1, 2, . . . , n (3.19d) ∑
r∈O(p)

urY
(p)

rj +
∑

f∈M(p)

wfZ
(p)

fj

−

 ∑
i∈I(p)

viX
(p)
ij +

∑
f∈M(p)

wfZ
(p−1)

fj

 ≤ 0

p = 2, . . . , q − 1, j = 1, 2, . . . , n (3.19e)
∑

r∈O(q)

urY
(q)

rj −

 ∑
i∈I(q)

viX
(q)
ij +

∑
f∈M(q−1)

wfZ
(q−1)
fj

 ≤ 0

j = 1, 2, . . . , n (3.19f)
ur, vi, wf ≥ ε, r = 1, ..., s, i = 1, ..., m, f = 1, . . . , h (3.19g)

Where Xij = ∑q
p=1 X

(p)
ij , i = 1, . . . , m , Yrj = ∑q

p=1 Y
(p)

rj , r = 1, . . . , s and wf

is the multiplier of the fth intermediate product. The overall model constraint
(3.19c) is redundant and can be eliminated from (3.19). Given the optimal solution
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u∗
r, v∗

i and w∗
f , the efficiencies for the system and sub-process for each DMU can be

estimated as:

Eo =

s∑
r=1

u∗
rYro

m∑
i=1

v∗
i Xio

=
s∑

r=1
u∗

rYro (3.20a)

E(1)
o =

∑
r∈O(1)

u∗
rY

(1)
ro + ∑

f∈M(1)
w∗

fZ
(1)
fo

m∑
i=1

v∗
i X

(1)
io

(3.20b)

E(p)
o =

∑
r∈O(p)

u∗
rY

(p)
ro + ∑

f∈M(p)
w∗

fZ
(p)
fo∑

i∈I(p)
v∗

i X
(p)
io + ∑

f∈M(p−1)
w∗

fZ
(p−1)
fo

, p = 2, . . . , q − 1 (3.20c)

E(q)
o =

∑
r∈O(q)

u∗
rY

(q)
ro∑

i∈I(q)
v∗

i X
(q)
io + ∑

f∈M
(q−1)
I

w∗
fZ

(q−1)
fo

(3.20d)

Cook, Zhu, Bi and Yang (2010) also proposed an extension of their additive
two-stage decomposition in Chen et al. (2009). They define the overall system
efficiency as a weighted additive average of the sub-process efficiencies such that
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Eo = ∑q
p=1 ω(p)E(p)

o and ∑q
p=1 ω(p) = 1. Where the weights are determined by the

relative resource consumption, their model can be expressed as:

E0 = max
s∑

r=1
urYro +

∑h

f=1 wfZfo (3.21a)

s.t.
m∑

i=1
viXio +

∑h

f=1 wfZfo = 1 (3.21b)(
s∑

r=1
urYrj +

∑h

f=1 wfZfj

)
−
(

m∑
i=1

viXij +
∑h

f=1 wfZfj

)
≤ 0

j = 1, 2, ..., n (3.21c) ∑
r∈O(1)

urY
(1)

rj +
∑

f∈M(1)

wfZ
(1)
fj

−
∑

i∈I(1)

viX
(1)
ij ≤ 0 j = 1, 2, . . . , n

(3.21d) ∑
r∈O(p)

urY
(p)

rj +
∑

f∈M(p)

wfZ
(p)

fj

−

 ∑
i∈I(p)

viX
(p)
ij +

∑
f∈M(p)

wfZ
(p−1)

fj

 ≤ 0

p = 2, . . . , q − 1, j = 1, 2, . . . , n (3.21e)
∑

r∈O(q)

urY
(q)

rj −

 ∑
i∈I(q)

viX
(q)
ij +

∑
f∈M(q−1)

wfZ
(q−1)
fj

 ≤ 0

j = 1, 2, . . . , n (3.21f)
ur, vi, wf ≥ ε, r = 1, ..., s, i = 1, ..., m, f = 1, . . . , h (3.21g)

Sub-process efficiency decomposition can then be made using (3.20).

3.3.2 Parallel network structure

Unlike series network structures, for parallel networks, the output of one sub-process
is not directly consumed by another sub-process (Castelli et al., 2010). Sub-processes
operate independently as depicted in Figure 3.6. In subsequent sections, various
parallel network models are presented.

Yang, Ma and Koike (YMK) model

Yang et al. (2000) developed a DEA model for measurement of the overall efficiencies
of independent production systems where the overall efficiency is equal to the
maximum efficiency among all the sub-systems under CCR model. This model,
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Figure 3.6 General structure of parallel sub-processes.

Source: Kao (2014a, pg. 120)

therefore, uses Pareto order for system aggregation (Shen et al., 2018). The YMK
model to determine the overall efficiency of the system is defined as:

E0 = max
q∑

p=1

∑
r∈O(p)

u(p)
r Y (p)

ro (3.22a)

s.t.
q∑

p=1

∑
i∈I(p)

v
(p)
i X

(p)
io = 1 (3.22b)

∑
r∈O(p)

u(p)
r Y

(p)
rj −

∑
i∈I(p)

v
(p)
i X

(p)
ij ≤ 0 p = 1, . . . , q, j = 1, 2, . . . , n

(3.22c)

u(p)
r , v

(p)
i ≥ ε, r = 1, ..., s, i = 1, ..., m (3.22d)
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For the YMK model, the sub-process efficiencies are computed as using the CCR
model similar to the one in (3.2) for each sub-system independently. The dual
version of the YMK model is presented in (3.23).

E0 = min
λ,θ

θ (3.23a)

s.t.
n∑

j=1
λ

(p)
j X

(p)
ij ≤ θX

(p)
io i = 1, 2, ..., m, p = 1, . . . , q (3.23b)

n∑
j=1

λ
(p)
j Y

(p)
rj ≥ Y (p)

ro r = 1, 2, ..., s, p = 1, . . . , q (3.23c)

λ
(p)
j ≥ 0, j = 1, 2, ..., n (3.23d)

Since the overall efficiency is the maximum of the efficiencies of sub-processes, it
implies that the system is efficient if any of the sub-processes are efficient. This can
be a challenging condition to justify in practice.

Kao model

Unlike the YMK model, Kao (2009b) developed the relational model which attaches
the same input and output multipliers to the same type of inputs and outputs
irrespective of the production system. The rationale behind this is that the price
of the factor, on the market, remains the same irrespective of how it is used in the
system (Kao, 2012). For the parallel network of Kao (2009b) the system input is the
sum of all the sub-process inputs such that ∑q

p=1 X
(p)
ij = Xij, i = 1, . . . , m. Similarly,

the sum of the sub-process outputs is the overall system output ∑q
p=1 Y

(p)
rj = Yrj, r =

1, . . . , s.. Therefore, where possible, a system can reallocate resources to the different
independent sub-units in a way that maximises the overall efficiency of the system
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(Kao, 2009b). The model to assess the efficiency of the system shown in Figure 3.6
is as follows:

E0 = max
s∑

r=1
urYro (3.24a)

s.t.
m∑

i=1
viXio = 1 (3.24b)

s∑
r=1

urYrj −
m∑

i=1
viXij ≤ 0 j = 1, 2, ..., n (3.24c)

∑
r∈O(p)

urY
(p)

rj −
∑

i∈I(p)

viX
(p)
ij ≤ 0 p = 1, . . . , q, j = 1, 2, . . . , n (3.24d)

ur, vi ≥ ε, r = 1, ..., s, i = 1, ..., m (3.24e)

From the optimal solution u∗
r and v∗

i , the efficiencies for the system and sub-
process for each DMU can be computed as:

Eo =

s∑
r=1

u∗
rYro

m∑
i=1

v∗
i Xio

=
s∑

r=1
u∗

rYro (3.25a)

E(p)
o =

∑
r∈O(p)

u∗
rY

(p)
ro∑

i∈I(p)
v∗

i X
(p)
io

, p = 1, . . . , q (3.25b)

Kao (2012) and Kao (2014a) show that the system efficiency is a weighted sum
of the sub-process efficiencies. That is, where the importance of a sub-process is
defined as a proportion of resources dedicated to the sub-process to the overall
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resources, w(p) = ∑
i∈I(p)

viX
(p)
io /

m∑
i=1

viXio , where
q∑

p=1

∑
i∈I(p)

viX
(p)
io =

m∑
i=1

viXio then the

weighted average of all sub-process efficiencies becomes:

q∑
p=1

w(p)E(p)
o =

q∑
p=1




∑
i∈I(p)

viX
(p)
io

m∑
i=1

viXio




∑
r∈O(p)

urY
(p)

ro∑
i∈I(p)

viX
(p)
io


 (3.26a)

=

s∑
r=1

urYro

m∑
i=1

viXio

(3.26b)

Consequently, a system is only efficient if all of its sub-processes are efficient and
the total slacks for the system efficiency are the sum of the slacks of the sub-processes
(Kao, 2012). The dual version (envelopment model) of Kao’s parallel network model
in 3.24 is:

E0 = min
λ,θ

θ (3.27a)

s.t.
q∑

p=1

n∑
j=1

λ
(p)
j X

(p)
ij ≤ θXio i = 1, 2, ..., m (3.27b)

q∑
p=1

n∑
j=1

λ
(p)
j Y

(p)
rj ≥ Yro r = 1, 2, ..., s (3.27c)

λ
(p)
j ≥ 0, j = 1, 2, ..., n (3.27d)

Kao’s model therefore uses the average order for overall system aggregation
(Shen et al., 2018).

General parallel network model

While YMK model attaches different importance (multipliers) to the same factors
for different sub-processes, Kao’s model attaches the same importance to these
factors irrespective of the sub-process. It is reasonable for some decision-makers
to attach the same importance to some particular factors while other factors may
have different importance for different sub-processes. Therefore, to capture the
advantages of both the YMK and Kao’s models, Shen et al. (2018) developed a
general parallel model that combines the Pareto and average orders. Their idea is
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based on the observation that the YMK model can be transformed into a form of
Kao’s model. In the general model, the input bundles I(p) and output bundles O(p)

can be defined as a union of factors which are compensable across sub-units in Kao’s
model

(
I

(p)
k , O

(p)
k

)
and factors that have different importance as in YMK

(
I(p)

y , O(p)
y

)
such that

(
I(p), O(p)

)
=
(
I

(p)
k ∪ I(p)

y , O
(p)
k ∪ O(p)

y

)
. The general parallel model and its

dual are formulated as follows:

E0 = max
∑

r∈O
(p)
k

urYro +
q∑

p=1

∑
r∈O

(p)
y

u(p)
r Y (p)

ro (3.28a)

s.t.
∑

i∈I
(p)
k

viXio +
q∑

p=1

∑
i∈I

(p)
y

v
(p)
i X

(p)
io = 1 (3.28b)

 ∑
r∈O

(p)
k

urY
(p)

rj +
∑

r∈O
(p)
y

u(p)
r Y

(p)
rj

−

 ∑
i∈I

(p)
k

viX
(p)
ij +

∑
i∈I

(p)
y

v
(p)
i X

(p)
ij

 ≤ 0

p = 1, . . . , q, j = 1, 2, . . . , n (3.28c)
ur, u(p)

r , vi, v
(p)
i ≥ ε, r = 1, ..., s, i = 1, ..., m (3.28d)

E0 = min
λ,θ

θ (3.29a)

s.t.
q∑

p=1

n∑
j=1

λ
(p)
j X

(p)
ij ≤ θXio i ∈ I

(p)
k (3.29b)

n∑
j=1

λ
(p)
j X

(p)
ij ≤ θX

(p)
io i ∈ I(p)

y , p = 1, . . . , q (3.29c)

q∑
p=1

n∑
j=1

λ
(p)
j Y

(p)
rj ≥ Yro r ∈ O

(p)
k (3.29d)

n∑
j=1

λ
(p)
j Y

(p)
rj ≥ Y (p)

ro r ∈ O(p)
y , p = 1, . . . , q (3.29e)

λ
(p)
j ≥ 0, j = 1, 2, ..., n (3.29f)
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3.3.3 Mixed network structure

It is also possible to have complex internal structures that have both series and
parallel sub-processes. Under such conditions, while some sub-processes share
intermediate factors, other sub-processes are independent of the remaining sub-
processes. An example of a mixed network structure is shown in Figure 3.7.

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 3.7 General structure of mixed sub-processes.

Source: Adapted from Kao (2009a)

In the example in Figure 3.7, the system has two inputs and three outputs. All
inputs are consumed by all three sub-processes in differing but known quantities. For
the outputs Y1, Y2 and Y3 are exclusively produced by sub-process 1, sub-process 2
and sub-process 3 respectively. However, part of the outputs Y1 and Y2 are consumed
by sub-process 3 for further production of Y3. In this case, therefore, sub-process
1 and sub-process 2 operate independently (parallel) of one another. However,
sub-process 3 consumes intermediate products from the two other sub-processes
making it in a serial structure to sub-processes 1 and 2. Y (O)

r is the part of output r
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which is not consumed by other sub-processes. The model, as formulated by Kao
(2009a), to assess the efficiency of the system shown in Figure 3.7 is as follows:

E0 = max u1Y
(O)

1o + u2Y
(O)

2o + u3Y3o (3.30a)
s.t. v1X1o + v2X2o = 1 (3.30b)(

u1Y
(O)

1j + u2Y
(O)

2j + u3Y3j

)
− (v1X1j + v2X2j) ≤ 0 j = 1, 2, ..., n

(3.30c)(
u1Y

(O)
1j + u1Y

(3)
1j

)
−
(
v1X

(1)
1j + v2X

(1)
2j

)
≤ 0 j = 1, 2, ..., n

(3.30d)(
u2Y

(O)
2j + u2Y

(3)
2j

)
−
(
v1X

(2)
1j + v2X

(2)
2j

)
≤ 0 j = 1, 2, ..., n

(3.30e)

u3Y3j −
(
v1X

(3)
1j + v2X

(3)
2j + u1Y

(3)
1j + u2Y

(3)
2j

)
≤ 0 j = 1, 2, ..., n

(3.30f)

u1, u2, u3, v1, v2 ≥ ε (3.30g)

From the optimal multipliers u∗
1, u∗

2, u∗
3, v∗

1 and v∗
2, the efficiencies for the system and

sub-process for each DMU can be estimated as:

Eo =
(
u∗

1Y
(O)

1o + u∗
2Y

(O)
2o + u∗

3Y3o

)
/(v∗

1X1o + v∗
2X2o) = u∗

1Y
(O)

1o + u∗
2Y

(O)
2o + u∗

3Y3o

(3.31a)

E(1)
o =

(
u∗

1Y
(O)

1o + u∗
1Y

(3)
1o

)
/
(
v∗

1X
(1)
1o + v∗

2X
(1)
2o

)
(3.31b)

E(2)
o =

(
u∗

2Y
(O)

2o + u∗
2Y

(3)
2o

)
/
(
v∗

1X
(2)
1o + v∗

2X
(2)
2o

)
(3.31c)

E(3)
o = u∗

3Y3o/
(
v∗

1X
(3)
1o + v∗

2X
(3)
2o + u∗

1Y
(3)

1o + u∗
2Y

(3)
2o

)
(3.31d)

An alternative approach to structuring such mixed system structures is shown
in Figure 3.8 where the sub-processes are shown as a series of parallel networks. In
this way, it is possible to compute the overall efficiency of the different series (of
parallel networks). This is useful in this study where production and consumption
phases of the electricity system are to be assessed.

This is done by introducing dummy sub-process alongside sub-processes 1 and 2
to absorb the inputs for sub-process 3. Also, a dummy sub-process is introduced
alongside sub-process 3 to absorb the final output not consumed by sub-process 3.
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Figure 3.8 Alternative structure of mixed sub-processes.

Source: Adapted from Kao (2009a)

For each dummy sub-process, its outputs are the same as inputs to make that sub-
process redundant in the optimal solution. The redundant constraints for dummy
sub-processes d1 and d2 that can be introduced into model (3.30) are:

(
v1X

(3)
1j + v2X

(3)
2j

)
−
(
v1X

(3)
1j + v2X

(3)
2j

)
≤ 0 j = 1, 2, ..., n (3.32a)(

u1Y
(O)

1j + u2Y
(O)

2j

)
−
(
u1Y

(O)
1j + u2Y

(O)
2j

)
≤ 0 j = 1, 2, ..., n (3.32b)

The model associated with these constraints will, therefore, be the same as the
model in (3.30). As shown in (3.32), the system efficiency of a series structure is
the product of the sub-process efficiencies. Therefore, the structure in Figure 3.8
can be viewed in one way as two series, i.e. stage I and stage II. Therefore, the
overall efficiency Eo is a product of stage I and stage II efficiencies: Eo = EI

o × EII
o
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(Kao, 2009a). From the optimal multipliers the stage I and stage II efficiencies can,
therefore, be estimated as:

EI
o =

((
u∗

1Y
(O)

1o + u∗
1Y

(3)
1o

)
+
(
v∗

1X
(3)
1o + v∗

2X
(3)
2o

)
+
(
u∗

2Y
(O)

2o + u∗
2Y

(3)
2o

))
((

v∗
1X

(1)
1o + v∗

2X
(1)
2o

)
+
(
v∗

1X
(2)
1o + v∗

2X
(2)
2o

)
+
(
v∗

1X
(3)
1o + v∗

2X
(3)
2o

))
=

u∗
1Y1o +

(
v∗

1X
(3)
1o + v∗

2X
(3)
2o

)
+ u∗

2Y2o

(v∗
1X1o + v∗

2X2o)
(3.33a)

EII
o = u∗

1Y
(O)

1o + u∗
2Y

(O)
2o + u∗

3Y3o((
u∗

1Y
(O)

1o + u∗
1Y

(3)
1o

)
+
(
v∗

1X
(3)
1o + v∗

2X
(3)
2o

)
+
((

u∗
2Y

(O)
2o + u∗

2Y
(3)

2o

)))
= u∗

1Y
(O)

1o + u∗
2Y

(O)
2o + u∗

3Y3o

u∗
1Y1o +

(
v∗

1X
(3)
1o + v∗

2X
(3)
2o

)
+ u∗

2Y2o

(3.33b)

Eo = EI
o × EII

o

=
u∗

1Y1o +
(
v∗

1X
(3)
1o + v∗

2X
(3)
2o

)
+ u∗

2Y2o

(v∗
1X1o + v∗

2X2o)

 u∗
1Y

(O)
1o + u∗

2Y
(O)

2o + u∗
3Y3o

u∗
1Y1o +

(
v∗

1X
(3)
1o + v∗

2X
(3)
2o

)
+ u∗

2Y2o


= u∗

1Y
(O)

1o + u∗
2Y

(O)
2o + u∗

3Y3o

(v∗
1X1o + v∗

2X2o)
= u∗

1Y
(O)

1o + u∗
2Y

(O)
2o + u∗

3Y3o (3.33c)

Notice the system efficiency defined in (3.33) is the same as that defined in
(3.31). For all the network models defined in the sections above, if the sub-process
constraints are ignored, the model becomes the traditional CCR model. This means
that the network models impose additional restrictions on the model, therefore, the
efficiency scores on the network models are more restrictive than the traditional
CCR models (Kao, 2009a,b, 2014a).

3.3.4 Shared-flow models

Models discussed in previous sections assume that the input and output quantities
used by sub-processes are empirically known. However, different sub-processes may
have to compete over inputs to be consumed in producing outputs. On the other
hand, different sub-processes may be required to produce different proportions of
output to meet or maximise the overall output levels of the DMU under consideration.
In such situations, the sub-processes are sharing the flow of inputs and/or outputs
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in a shared-flow or multi-activity model (Castelli et al., 2010; Shen et al., 2018).
In shared-flow models, the allocation of input/outputs among sub-processes is
considered a decision variable to be determined to maximise the overall efficiency
of the DMU (Castelli et al., 2010). Early works on shared-flow models include
Beasley (1995), who looked at teaching and research efficiencies of UK universities
by considering how resources are shared among activities. Castelli et al. (2010)
presented an example of a shared-flow model similar to that presented in Figure 3.9.
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Figure 3.9 Shared flow model.

Source: Adapted from Castelli et al. (2010)

As depicted in Figure 3.9, each DMU has 4 sub-processes that together consume
four inputs to produce four outputs. Inputs X2, X3 and X4 are unique inputs to
sub-processes 2, 3 and 4 respectively. Input Xs is shared by sub-processes 1 and
2 only. Outputs Y1, Y2 and Y4 are unique outputs produced by sub-processes 1, 2
and 4. The output Ys is a shared output jointly produced by sub-units 2 and 3 only.
Weights α and β are apportionment factors that determine the proportion of input
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and output, respectively, that should be allocated to each sharing sub-process. For
such a problem, the efficiency model can be formulated as:

E0 = max u1Y1o + u2Y2o + usYso + u4Y4o

v1Xso + v2X2o + v3X3o + v4X4o

(3.34a)

s.t.
u1Y1j + u2Y2j + usYsj + u4Y4j

vsXsj + v2X2j + v3X3j + v4X4j

≤ 1 j = 1, 2, ..., n (3.34b)

u1Y
(1)

1j

vsα(1)Xsj

≤ 1 j = 1, 2, ..., n (3.34c)

u2Y
(2)

2j + usβ
(2)Ysj

vsα(2)Xsj + v2X
(2)
2j

≤ 1 j = 1, 2, ..., n (3.34d)

usβ
(3)Ysj

v3X
(3)
3j

≤ 1 j = 1, 2, ..., n (3.34e)

u4Y
(4)

4j

v4X
(4)
4j

≤ 0 j = 1, 2, ..., n (3.34f)

β(2) + β(3) = 1 j = 1, 2, ..., n (3.34g)
α(1) + α(2) = 1 j = 1, 2, ..., n (3.34h)
u1, u2, us, u4, vs, v2, v3, v4 ≥ ε (3.34i)

Model in (3.34) is nonlinear but can be transformed into an LP problem using the
Charnes and Cooper transformation. Shen et al. (2018) presented shared-flow models
based on their generalised parallel network problem and a linear version based using
the Charnes and Cooper (1973) transformation. The shared-flow problem contains
first the objective to determine the most appropriate allocation of resources and
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second obtaining the best efficiency scores (Shen et al., 2018). This model and the
linearised version can be formulated as:

E0 = max
(α,β)

max
(ur,vi)

∑
r∈O

(p)
k

urYro +
q∑

p=1

∑
r∈O

(p)
y

u(p)
r Y (p)

ro (3.35a)

s.t.
∑

i∈I
(p)
k

viXio +
q∑

p=1

∑
i∈I

(p)
y

v
(p)
i X

(p)
io = 1 (3.35b)

 ∑
r∈O

(p)
k

urβ
(p)
r Yrj +

∑
r∈O

(p)
y

u(p)
r Y

(p)
rj

−

 ∑
i∈I

(p)
k

viα
(p)
i Xij +

∑
i∈I

(p)
y

v
(p)
i X

(p)
ij

 ≤ 0

p = 1, . . . , q, j = 1, 2, . . . , n (3.35c)
q∑

p=1
α

(p)
i = 1, ∀i ∈ I

(p)
k (3.35d)

q∑
p=1

β(p)
r = 1, ∀r ∈ O

(p)
k (3.35e)

ur, u(p)
r , vi, v

(p)
i , α

(p)
i , β(p)

r ≥ 0, r = 1, ..., s, i = 1, ..., m (3.35f)

E0 = max
∑

r∈O
(p)
k

µrYro +
q∑

p=1

∑
r∈O

(p)
y

µ(p)
r Y (p)

ro (3.36a)

s.t.
∑

i∈I
(p)
k

νiXio +
q∑

p=1

∑
i∈I

(p)
y

ν
(p)
i X

(p)
io = 1 (3.36b)

 ∑
r∈O

(p)
k

ω(p)
r Yrj +

∑
r∈O

(p)
y

µ(p)
r Y

(p)
rj

−

 ∑
i∈I

(p)
k

γ
(p)
i Xij +

∑
i∈I

(p)
y

ν
(p)
i X

(p)
ij

 ≤ 0

p = 1, . . . , q, j = 1, 2, . . . , n (3.36c)
q∑

p=1
γ

(p)
i = νi ∀i ∈ I

(p)
k (3.36d)

q∑
p=1

ω(p)
r = µr ∀r ∈ O

(p)
k (3.36e)

µr, µ(p)
r , νi, ν

(p)
i , γ

(p)
i , ω(p)

r ≥ 0, r = 1, ..., s, i = 1, ..., m (3.36f)
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This model in (3.36) is akin to Du et al.’s (2015) non-homogenous parallel DEA
model with disjoint outputs and non-separable inputs. Du et al. (2015) developed
various parallel network models that handle problems with various degrees of non-
homogeneity in the input/output sets of the sub-units.

3.4 Non-homogeneous DMUs
While the original DEA model was based on the assumption that DMUs are homoge-
nous in their input and outputs, in practice there is potential for non-homogeneity
in inputs and/or outputs of various DMUs. DMUs may use the same inputs to
produce a slightly different set of outputs. One way for handling non-homogeneity
is by breaking the DMUs into multiple groups where in each group all members
produce the same outputs. Separate DEA analysis is then conducted for each group
in a way that DMUs are compared to their true peers (Cook et al., 2013). However,
as Cook et al. (2013) point out, this may result in small sample problems which
may mean DMUs will be assigned artificially large efficiencies as the partial peers
may be the best-practice alternatives.

There has been some work on modelling non-homogenous DMUs. Cook et al.
(2012) and Cook et al. (2013) have systematically studied the problem of non-
homogeneity in DEA and developed methods for handling DMUs with non-homogenous
outputs. Li, Liang, Cook and Zhu (2016) looked at the problem of non-homogeneity
of inputs. Shen et al. (2018) showed that some previous non-homogeneity models
could also be transformed into the form of their general parallel DEA model. Ad-
ditionally, whiles Du et al. (2015) examine non-homogeneity in parallel network
problems, Barat et al. (2019) examine non-homogeneity in mixed network DEA
problems.

With the approach by Cook et al. (2013), the N DMUs are grouped into q

(p = 1, . . . , q) mutually exclusive categories, such that all firms in a category p share
the same output set. Each p category has Np members that belong exclusively to
that DMU set. The two group case in Cook et al. (2013) as presented in Figure
3.10 show that DMUs in N1 all produce the four outputs y1, y2, y3 and y4. DMUs
in N2 produce the same subset of outputs y1, y2 and y3. In both cases, the same
inputs are used for the production of the identified outputs. Their approach involves
conducting separate DEA analysis for each output sub-group Ok(k = 1, . . . , K). In
the two-groups case, the mutually exclusive output groups are O1 = y1, y2, y3 and
O2 = y4 However, for DMUs in N1 their inputs must be split in a way that while
α% are used for producing outputs in set O1, the remaining 1 − α% are dedicated
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to the production of the output in O2. In order to cater for the split, they propose
a three step process involving 1) deciding the split of inputs across output groups
and 2) deriving the efficiencies of DMUs in each output sub-group using the splits
derived in step 1. For DMUs that belong to more than one output sub-group (N1

for example), 3) their final scores are a weighted average of the efficiencies of the
sub-processes.

1 2

1 2 3 4

1 11 21 31 41

1 2 12 22 32 42

1' 11' 21' 31'

2 2' 12' 22' 32'

N p
L

O O

Y Y Y Y

j y y y y

N j y y y y

j y y y

N j y y y













Outputs

DMU

 

Figure 3.10 Sample setting for two-groups.

Source: Adapted from Cook et al. (2013)

The generalised non-homogenous output DEA model developed by Cook et al.
(2013) can be expressed as:

E0 = max
∑

O
k

∈LNpo

∑
r∈O

k

urYro (3.37a)

s.t.
∑

i

viXio = 1 (3.37b)
∑

r∈O
k

urYrj −
∑

i

viαiOkpXij ≤ 0

∀j ∈ Np, Ok ∈ LNp , p = 1, . . . , q, (3.37c)∑
O

k
∈LNp

αiOkp = 1 ∀i, p = 1, . . . , q, (3.37d)

aiOkp ≤ αiOkp ≤ biOkp ∀i, Ok ∈ LNp , p = 1, . . . , q (3.37e)
ur, vi, αiOkp ≥ 0 ∀i, r, Ok ∈ LNp , p = 1, . . . , q (3.37f)
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Where LNp denotes the full output set for any DMU in Np and aiOkp and biOkp

set the lower and upper bounds for the split proportions. Model (3.37) can be
linearised using the Charnes and Cooper (1973) transformation. As pointed out
by Li, Liang, Cook and Zhu (2016) this model is similar to the parallel network
approach of Kao (2009b). It is in this regard that Shen et al. (2018) extended the
non-homogenous model into a general DEA framework following the parallel network
approach. Unlike Cook et al.’s models where sub-groups are data-driven, Shen et al.
(2018) categorise output groups based on the internal structure of the operational
properties of the DMUs. Additionally, dummy sub-process k is introduced to make
the model a parallel problem. For such dummy sub-processes a

(k)
ip = 0 (∀i ∈ Io),

β(k)
rp = 0 (∀r ∈ Oo), Y

(k)
rj = 0 ∀r ∈ O(k)), and X

(k)
ij = 0 (∀i ∈ I(k)). Their model can

be expressed as:

E0 = max
∑

r∈Oo

urYro +
∑

k

∑
r∈O

k

u(k)
r Y (k)

ro (3.38a)

s.t.
∑
i∈Io

viXio +
∑

k

∑
i∈I

k

v
(k)
i X

(k)
io = 1 (3.38b)

∑
r∈Oo

urβ
(k)
rp Yrj +

∑
r∈O

k

u(k)
r Y

(k)
rj

−

∑
i∈Io

viα
(k)
ip Xij +

∑
i∈I

k

vk
i Xk

ij

 ≤ 0

∀j, ∀k, ∀p (3.38c)∑
k

α
(k)
ip = 1, ∀i ∈ Io, ∀p (3.38d)

∑
k

β(k)
rp = 1, ∀r ∈ Ok, ∀p (3.38e)

ur, u(k)
r , vi, v

(k)
i , α

(k)
ip , β(k)

rp ≥ 0, ∀i, r, k, ∀p (3.38f)

This could also be transformed into a linear model using the Charnes and Cooper
(1973) transformation. The models presented deal with DMUs with non-homogenous
inputs or outputs. These DMUs are categorised into sub-processes then efficiency
analysis could be conducted for the sub-processes independently.

In parallel network DEA, DMUs may have a similar configuration of sub-processes
although the inputs and outputs of each sub-process may be different. This kind of
non-homogeneity is studied by Du et al. (2015). However, there are applications
where DMUs also differ in terms of sub-processes. For example, different countries
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may have different energy generation sources which means that DMUs differ in
terms of the sub-processes not necessarily the inputs and outputs. This type of
non-homogeneity problem is studied in subsequent chapters of this thesis.

3.5 Undesirable factors
In all models presented in previous sections, outputs satisfy the “more is better”
condition, while inputs satisfy the “less is better condition”. In practice, however,
there is the potential for some outputs, like pollution, to be undesirable. In such
cases, less of those outputs will be required to be efficient. While output desirability
is determined by the decision-maker, input desirability is determined by the system
(Liu, Zhou, Ma, Liu and Shen, 2015). This is so because while undesirable outputs
are outputs the decision-maker will want less of, undesirable inputs are inputs whose
increase will reduce desirable outputs (Liu, Zhou, Ma, Liu and Shen, 2015). In this
study, the focus is on handling undesirable emissions as a result of the production
of energy and economic outputs, therefore, approaches for handling undesirable
outputs are reviewed in the sub-section.

Modelling such undesirable factors in the DEA literature could be traced to the
early work of Färe et al. (1989). There have been several approaches for dealing
with such undesirable factors in the literature. As earlier mention in the second
chapter, Wang et al. (2018) highlight five ways of dealing with such environmental
pollutants, which are often by-products of useful production – data transformation
(Seiford and Zhu, 2002); freely disposable inputs (Reinhard et al., 2000); weakly
disposable outputs (Färe et al., 1989, 1996); under different production technologies
(Murty et al., 2012); and using the materials balance (Coelli et al., 2007).

The data transformation approach converts, by some mathematical operation,
an undesirable output into a desirable output. Seiford and Zhu (2002) for example
suggested a translation of the undesirable output yu

j , by using the constant w, to the
desirable form ȳu

j where ȳu
j = w − yu

j > 0. The translated outputs are then included
in the DEA model in the nature previously discussed. However, data transformation
may affect not only the scores but also the rankings of the DMUs depending on
the choice of the transformation vector (Liu, Meng, Li and Zhang, 2010). Other
approaches that avoid such data transformation include treating the undesirable
output as a desirable input (strong/freely disposable inputs), treating the undesirable
outputs using weak disposability, and using DDF (Färe and Grosskopf, 2004; Liu,
Meng, Li and Zhang, 2010). The material balance approach does not necessarily
require the inclusion of undesirable variables in the production model as it examines
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pollution potential from price information or the unit mass bound in the inputs
and outputs (Coelli et al., 2007; Wang et al., 2018). Subsequent sub-sections will
summarise the strong and weak disposability approaches, while the DDF approach
is presented in section 3.6.1.

For the n DMUs (n = 1, . . . , j), given P (X) which is the set of desirable outputs
Y D ∈ ℜs

+ and undesirable outputs Y U ∈ ℜl
+ which can be produced from the input

vector X ∈ ℜm
+ , where sets are closed and bounded with inputs freely disposable.

3.5.1 Strong/Free disposability

Outputs are strongly disposable if
(
Y D, Y U

)
∈ P (X) then

(
ZD, ZU

)
∈ P (X) if(

ZD, ZU
)

≤
(
Y D, Y U

)
. Under this condition, desirable outputs and undesirable

outputs can be independently and freely varied by the decision-maker without a
cost to the other outputs. This means that undesirable outputs could be freely
reduced without affecting the number of desirable outputs produced. The production
possibility set (PPS) under such a condition will be:

P1 =

(X, Y D, Y U
)∣∣∣ X ≥

n∑
j=1

λjXj, Y D ≤
n∑

j=1
λjY

D
j , Y U ≥

n∑
j=1

λjY
U

j , λj ≥ 0


(3.39)

The problem with this approach to handling undesirable outputs is that it
implicitly treats such outputs as inputs, which does not reflect the real production
process (Wang et al., 2018). To give a theoretical basis for free disposability of
undesirable outputs, Liu, Meng, Li and Zhang (2010) proposed the extended strong
disposability assumption to cater for situations where undesirable outputs, to some
extent, are freely disposable and not in a joint production with desirable outputs.
Where one introduces desirable inputs and undesirable inputs into the PPS, the
extended strong disposability holds if: (X, Y ) =

(
XD, XU , Y D, Y U

)
∈ P, then if

W D ≥ XD, W U ≤ XU , ZD ≤ Y D and ZU ≥ Y U then
(
W D, W U , ZD, ZU

)
∈ P.

Note than
(
W D, W U , ZD, ZU

)
are less desirable set of inputs and outputs compared

with
(
XD, XU , Y D, Y U

)
. The CCR input-oriented envelopment DEA model with
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strongly disposable inputs and outputs (3.40) and its multiplier version (3.41) can
be formulated as in::

E0 = min φ (3.40a)

s.t.
n∑

j=1
λjXij ≤ φXio i = 1, 2, ..., m (3.40b)

n∑
j=1

λjY
D

rj ≥ Y D
ro r = 1, 2, ..., s (3.40c)

n∑
j=1

λjY
U

kj ≤ Y U
ko k = 1, 2, ..., l (3.40d)

λj ≥ 0, j = 1, 2, ..., n (3.40e)

E0 = max
s∑

r=1
urY

D
ro −

l∑
k=1

ckY U
ko (3.41a)

s.t.
m∑

i=1
viXio = 1 (3.41b)

(
s∑

r=1
urY

D
rj −

l∑
k=1

ckY U
kj

)
−

m∑
i=1

viXij ≤ 0 j = 1, 2, ..., n (3.41c)

ur, ck, vi ≥ 0, r = 1, ..., s, k = 1, ..., l, i = 1, ..., m (3.41d)

The coefficient of the undesirable factor is (3.41) can be interpreted as a cost
that reduces the gains made producing the desirable outputs (Coelli et al., 2007).

3.5.2 Weak disposability

In many practical cases, such as in electricity production, the undesirable outputs
are in a joint production with the desirable outputs. In such cases, it is not
possible to reduce the production of undesirable outputs without affecting the
production of desirable outputs. It is also the case that if desirable outputs are
not produced then undesirable bad products will not be produced. Formally, if(
Y D, Y U

)
∈ P (X) and 0 ≤ θ ≤ 1 then

(
θY D, θY U

)
∈ P (X) . This requires

proportional abatement between the desirable and undesirable outputs. For the
null-joint condition for

(
Y D, Y U

)
∈ P (X) , if Y U = 0 then Y D = 0. The PPS that
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imposes free disposability on desirable inputs and outputs and weak disposability of
such undesirable outputs can be expressed as:

P2 =

(X, Y D, Y U
)∣∣∣ X ≥

n∑
j=1

λjXj, Y D ≤
n∑

j=1
λjY

D
j , Y U =

n∑
j=1

λjY
U

j , λj ≥ 0


(3.42)

Based on this PPS, it is possible to develop performance measures. The CCR
input-oriented envelopment DEA model with strongly disposable desirable inputs
and outputs but weakly disposable undesirable outputs (3.43) and its multiplier
version (3.44) can be formulated as in:

E0 = min φ (3.43a)

s.t.
n∑

j=1
λjXij ≤ φXio i = 1, 2, ..., m (3.43b)

n∑
j=1

λjY
D

rj ≥ Y D
ro r = 1, 2, ..., s (3.43c)

n∑
j=1

λjY
U

kj = Y U
ko k = 1, 2, ..., l (3.43d)

λj ≥ 0, j = 1, 2, ..., n (3.43e)

E0 = max
s∑

r=1
urY

D
ro +

l∑
k=1

ckY U
ko (3.44a)

s.t.
m∑

i=1
viXio = 1 (3.44b)

(
s∑

r=1
urY

D
rj +

l∑
k=1

ckY U
kj

)
−

m∑
i=1

viXij ≤ 0 j = 1, 2, ..., n (3.44c)

ur, vi ≥ 0, ck urs, r = 1, ..., s, k = 1, ..., l, i = 1, ..., m (3.44d)

Note that ck is unrestricted in sign for model (3.44). This means that the
shadow price of the undesirable output can be positive or negative in the multiplier
model (Hailu, 2003; Kuosmanen and Matin, 2011; Leleu, 2013). There has been
considerable debate in the literature concerning the economic interpretation of an
unrestricted shadow price of undesirable factors (Hailu, 2003; Leleu, 2013; Murty
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et al., 2012). Various approaches have been provided in the literature to handle the
unexpected sign in the shadow price, however, any restricting of the shadow price
to only non-positive or non-negative values implicitly assumes undesirable factors
are inputs in the primal model (Barat et al., 2019; Leleu, 2013). Kuosmanen and
Matin (2011) reformulate the dual models to provide useful interpretations of the
duality of weakly disposable technologies.

The approaches for dealing with undesirable outputs discussed in sections 3.5.1
and 3.5.2 have been based on the basic DEA model with unknown internal structure.
Considering undesirable outputs in the network structure may introduce additional
considerations. For example, an undesirable output in one stage may be a desirable
input in the subsequent stage. Liu, Zhou, Ma, Liu and Shen (2015) systematically
studied undesirable input-intermediate outputs for two-stage DEA models. They
develop various PPSs based on the free disposability axioms. Outside this study,
there have been several network DEA model-based papers that consider undesirable
outputs, however, these are particularly in the domain of series network or two-stage
DEA applications (Iftikhar et al., 2018; Lozano, 2015; Mirhedayatian et al., 2014).

3.6 Alternative measurement of efficiency
DEA models presented in previous sections of this chapter have been based on the
CCR and BCC radial models. These are radial performance merit functions used in
assessing performance difference between DMUs based on the formulated production
possibility set. There are other radial and non-radial approaches in the literature
that are used for network-based performance assessment. This section reviews two
of these approaches: the directional distance function (DDF) and the slack-based
measure (SBM) methods of network DEA assessment.

3.6.1 Directional distance function

The DDF, introduced by Chambers et al. (1998), allows for concurrent output
expansion and input contraction at the same time. Färe and Grosskopf (2000) show
that the Shephard distance functions, which the CCR models are based on, can be
special cases of the DDF. In the undesirable output context, Färe and Grosskopf
(2004) proposed the DDF approach in assessing the expansion of desirable outputs
and contraction of undesirable outputs under weak disposability. Based on the PPS
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in (3.42), and given the directional vector g = (−gi, gr, −gk) , the inefficiency score
of a DMU o can be assessed using the LP problem:

−→
D 0

(
X, Y D, Y U ; g

)
= max δ (3.45a)

s.t.
n∑

j=1
λjXij ≤ Xio − δgi i = 1, 2, ..., m (3.45b)

n∑
j=1

λjY
D

rj ≥ Y D
ro + δgr r = 1, 2, ..., s (3.45c)

n∑
j=1

λjY
U

kj = Y U
ko − δgk k = 1, 2, ..., l (3.45d)

λj ≥ 0, δ urs, j = 1, 2, ..., n (3.45e)

Here, a DMU is efficient if −→
D 0

(
X, Y D, Y U ; g

)
= 0. If the directional vector g is

set to the observed data g =
(
0, Y D

ro , Y U
ko

)
then the problem in (3.45) is equivalent

to the traditional problem, however, if g = (0, 1, −1) then the solution is the net
improvement of performance for feasible desirable output increases and feasible
undesirable output decreases (Färe and Grosskopf, 2004). The dual of (3.45) is
formulated as:

−→
D 0

(
X, Y D, Y U ; g

)
= min

m∑
i=1

viXio −
s∑

r=1
urY

D
ro +

l∑
k=1

ckY U
ko (3.46a)

s.t.
m∑

i=1
viXij −

s∑
r=1

urY
D

rj +
l∑

k=1
ckY U

kj ≥ 0 j = 1, 2, ..., n

(3.46b)
m∑

i=1
vigi +

s∑
r=1

urgr +
l∑

k=1
ckgk = 1 (3.46c)

ur, vi ≥ 0, ck urs, r = 1, ..., s, k = 1, ..., l, i = 1, ..., m

(3.46d)

Since the DDF in Chambers et al. (1998) and Färe and Grosskopf (2004) assumes
that all factors are adjusted at the same rate, it may be considered as a radial
measure (Zhou et al., 2012). Zhou et al. (2012), therefore, proposed a non-radial
DDF to allow for differing factor adjustments. Given the normalised weight vector
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ω = (ωi, ωr, ωk) , the directional vector g = (−gi, gr, −gk) and the vector of scaling
factors δ = (δi, δr, δk) the non-radial DDF can be estimated using the model:

−→
D 0

(
X, Y D, Y U ; g

)
= max

m∑
i=1

ωiδi +
s∑

r=1
ωrδr +

l∑
k=1

ωkδk (3.47a)

s.t.
n∑

j=1
λjXij ≤ Xio − βiδi i = 1, 2, ..., m (3.47b)

n∑
j=1

λjY
D

rj ≥ Y D
ro + βrδr r = 1, 2, ..., s (3.47c)

n∑
j=1

λjY
U

kj = Y U
ko − βkδk k = 1, 2, ..., l (3.47d)

λj ≥ 0, δi, δr, δk urs, j = 1, 2, ..., n (3.47e)

Kuosmanen and Matin (2011) systematically studied duality of weak disposable
technologies based mainly on DDF. In the network DEA context, Fukuyama and
Weber (2014) show how to measure performance in two-stage problems using non-
radial approaches including the DDF. For the two-stage series structure in Figure
3.4, the primal and dual network DDF of the system are formulated as:

N
−→
D 0 (X, Y ; g) = max

λ
(1)
j ,λ

(2)
j , δ, ẑf

δ (3.48a)

s.t.
n∑

j=1
λ

(1)
j Xij ≤ Xio − δgi i = 1, 2, ..., m (3.48b)

n∑
j=1

λ
(1)
j Zfj ≥ ẑf f = 1, . . . , h (3.48c)

n∑
j=1

λ
(2)
j Zfj ≤ ẑf f = 1, . . . , h (3.48d)

n∑
j=1

λ
(2)
j Yrj ≥ Yro + δgr r = 1, 2, ..., s (3.48e)

λ
(2)
j ≥ 0, λ

(2)
j ≥ 0, ẑf ≥ 0, δ urs, j = 1, 2, ..., n (3.48f)
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N
−→
D 0 (X, Y ; g) = min

m∑
i=1

viXio −
s∑

r=1
urYro (3.49a)

s.t.
m∑

i=1
viXij −

h∑
f=1

wfZfj ≥ 0 j = 1, 2, ..., n (3.49b)

h∑
f=1

wfZfj −
s∑

r=1
urYrj ≥ 0 j = 1, 2, ..., n (3.49c)

m∑
i=1

vigi +
s∑

r=1
urgr = 1 (3.49d)

wf , ur, vi ≥ 0, f = 1, . . . , h, i = 1, . . . , m, r = 1, . . . , s

(3.49e)

3.6.2 Slacks-based measure (SBM)

Tone and Tsutsui (2009) introduced the Network slacks-based measure (NSBM)
which relies on SBM, a non-radial measure of performance, for evaluating the network
efficiency of the DMUs. Using the notations in Section 3.3 and Figure 3.2, the PPS
set can be defined as:

P3 = {(X, Y, Z)| X(p) ≥
n∑

j=1
λ

(p)
j X

(p)
j (p = 1, . . . , q) , (3.50a)

Y (p) ≤
n∑

j=1
λ

(p)
j Y

(p)
j (p = 1, . . . , q) , (3.50b)

Z(p) =
n∑

j=1
λ

(p)
j Z

(p)
j , (3.50c)

Z(p) =
n∑

j=1
λ

(h)
j Z

(p)
j , (3.50d)

λ
(h)
j ≥ 0, ∀j, p

}
(3.50e)
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The inequalities in the PPS could be transformed into equalities by introducing
input (s−) and output (s+) slacks as follows:

X(p) =
n∑

j=1
λ

(p)
j X

(p)
j + s(p)− (p = 1, . . . , q) , (3.51a)

Y (p) =
n∑

j=1
λ

(p)
j Y

(p)
j − s(p)+ (p = 1, . . . , q) , (3.51b)

λ
(p)
j ≥ 0, s(p)− ≥ 0, s(p)+ ≥ 0, ∀p (3.51c)

Tone and Tsutsui (2009) proposed two possible cases for handling intermediate
factors (called links in the Tone and Tsutsui model). If linking activities can be freely
determined by the model (discretionary) then the linking factors can be modelled
as:

n∑
j=1

λ
(p)
j Z

(p)
j =

n∑
j=1

λ
(h)
j Z

(p)
j , ∀p (3.52)

In this case, the value of the intermediate factor can be optimised in the LP
solution. However, if the decision-maker has no discretion over the intermediate
factors such that they must remain unchanged in the optimal solution then the links
can be modelled as:

Z(p)
o =

n∑
j=1

λ
(p)
j Z

(p)
j ∀p, (3.53a)

Z(p)
o =

n∑
j=1

λ
(h)
j Z

(p)
j ∀p (3.53b)

The non-oriented NSBM model can, therefore, be formulated as:

ρo = min
λ(p),s(p)−,s(p)+

q∑
p=1

w(p)
[
1 − 1

mp

( ∑
i∈I(p)

s
(p)−
i

X
(p)
i0

)]
q∑

p=1
w(p)

[
1 + 1

sp

( ∑
r∈O(p)

s
(p)+
r

Y
(p)

r0

)] (3.54)

s.t. (3.51) and (3.52) or (3.53)
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Note that the weights are exogenously determined to reflect the importance of
a sub-process p to the overall system efficiency. Also, this is a nonlinear problem
which could be linearised using the Charnes and Cooper (1973) transformation as
shown in Tone (2001). From the optimal solution

(
s(p)−∗, s(p)+∗

)
, the divisional or

sub-process efficiencies can be computed as:

ρ(p)
o =

1 − 1
mp

( ∑
i∈I(p)

s
(p)−∗
i

X
(p)
i0

)

1 + 1
sp

( ∑
r∈O(p)

s
(p)+∗
r

Y
(p)

r0

) (p = 1, . . . , q). (3.55)

There are extensions for the output-oriented case, the input-oriented case, unde-
sirable outputs as well as frontier projections. Indeed, Färe and Grosskopf (2010)
proposed an SBM model based on the DDF.

3.7 Chapter summary
In this chapter, a methodological review of development in the DEA literature
on modelling internal structures of production systems, undesirable outputs and
non-homogeneity have been conducted. The chapter focussed on different modelling
perspectives required for model building. Section 3.2 presented the basic/traditional
DEA model, which does not consider the internal structure of the production system.
Since this thesis provides a system-wide assessment of the energy system, the internal
generation and consumption structures of the countries under investigation must be
considered. Consequently, in Section 3.3, models that consider the internal structures
were presented. These include a series structure, parallel structure and generalised
network structure. Since different countries generate electricity using different
portfolios of energy sources and some generation sources result in environmental
emissions, separate sub-sections are dedicated to handling such non-homogeneity
and undesirable outputs. Section 3.4 deals with non-homogenous DMU models,
while Section 3.5 presents models for undesirable outputs. Finally, in Section 3.6,
alternative DEA approaches for performance measurement are presented.

All models presented in this chapter have been based on the CRS assumption.
This is because the CRS assumption is adopted in the thesis for the sustainability
assessment of electricity generation and use among EU countries. The CRS assump-
tion is justified because all member countries are developed economies and operate
under a similar policy/regulatory environment (EEA, 2019; European Commission,
2010; United Nations, 2019). Additionally, the assessment is confined to the use of
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radial evaluation techniques, although assessments could be extended to non-radial
measurement approaches. Input orientation is chosen for performance assessment.
This means that DMU performance is determined by the DMU’s ability to consume
fewer resources to achieve a given output level. As shown in Table 2.5, which is a
summary of some DEA studies on energy production, input minimisation has been
the primary orientation for such performance evaluation.

Finally, with regard to handling of the undesirable factors, the choice between
strong disposability and weak disposability depends on the practical application
the model must be applied (Liu, Meng, Li and Zhang, 2010). If the desirable
and undesirable outputs are in joint production, then weak disposability may be
appropriate, otherwise (extended) strong disposability may be applied. In this thesis,
undesirable outputs, are in a joint production with the desirable outputs therefore
weak disposability is used. As earlier indicated, there are other approaches for
handling undesirable outputs in DEA (Wang et al., 2018), however, the use of strong
and weak disposability have been widely accepted in the literature for empirical
evaluation of environmental outputs. The assessment is confined to strong and weak
disposability for which literature on network DEA has been established.



Chapter 4

Problem Conceptualisation

4.1 Introduction
Systems methodology or systems thinking is gaining increasing relevance in sus-
tainability research (Williams et al., 2017) since it allows for the understanding of
the interactions of the complexity of economic, social and environmental systems
(Holling, 2001). The objective of systems thinking is to better understand the
structure of a complex system (Tejeda and Ferreira, 2014). It provides a solution
to linear or ‘silos’ approach to problems, as it offers a more holistic lens to study
the behaviour of actors and actions within social-ecological systems (Williams et al.,
2017). The general approach to systems thinking is systems dynamics developed
by Forrester (1961). System dynamics is a systems thinking methodology that
analyses complex systems which change over time (Ford, 2011). However, system
thinking goes beyond the confines of systems dynamics since approaches such as soft
systems methodology (SSM), interactive planning, systems intervention strategy,
cognitive mapping, viable systems diagnosis, critical systems thinking, lifecycle
analysis, complex adaptive systems, are all systems thinking approaches (Holland,
2006; Ison et al., 1997; Paucar-Caceres and Pagano, 2009).

In the DEA literature, network DEA provides a systems perspective of evaluation
of the production system. DEA aids in assessing useful attributes of the system
(Smith and Shaw, 2019). In practice, systems are composed of several related
sub-systems. Network DEA provides a means of both static and dynamic evaluation
of the efficiency of production and consumption systems and its sub-systems (Kao,
2012). There is evidence of the increasing use of DEA in systems thinking literature,
usually in combination with other approaches (Mingers and White, 2010). Mingers
et al. (2009), for example, use SSM as a means of defining the problem and identifying
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the inputs and outputs to be used in DEA evaluation. In this thesis, causal loop
diagrams are used to define the problem structure, while performance evaluation is
conducted by DEA. Irrespective of the chosen systems approach, much of systems
thinking rely on causal loops diagrams to structure the factors and relationships in
the complex system under study (Forrester, 1994). Consequently, this chapter uses
causal loop diagrams to provide a systematic framework to conceptually present the
nature of sustainable energy generation and consumption problem.

To conceptualise the research problem, the remainder of the chapter is divided
into two main sections. Section 4.2 conceptualises the sustainable energy system
by developing causal structures based on literature. This section first examines the
sustainability problem in the generation phase before examining the consumption
phase. Section 4.3 then conceptualises the sustainable energy problem in a network
framework. The final section is the chapter summary.

4.2 Sustainable energy system
As it has been earlier highlighted, systems modelling of sustainable energy systems
has been primarily used in LCA studies where environmental impacts of the energy
generation system are assessed from raw material stage to disposal. In Section 2.5
of the literature review chapter, various studies using causal diagrams to highlight
the interrelationships between social, economic, environmental and other systems
and the energy generation system were discussed. Causal loop diagrams provide
the basis for developing actions and implementing policies as it simplifies complex
conceptual linkages (Cavana and Mares, 2004). This is usually the qualitative aspect
of systems modelling where the relationship between various pairs of system elements
are revealed (Shire et al., 2018). In this study, this qualitative approach is used to
conceptualise the relevant variables and their relationships to determine the inputs,
outputs and sub-systems in the network analysis.

4.2.1 Sustainable electricity generation

Sustainable electricity generation assessment involves examining the social, environ-
mental and economic implications of electricity generation. The causal loop diagram
in Figure 4.1 presents the causal relationships between electricity generation and
social, economic and environmental aspects of sustainability.

The environmental dimension highlights the resource consumption and the
emissions potential of energy generation systems. Electricity can be generated from
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Figure 4.1 Causal loop representation of sustainable energy generation.

a plethora of sources which are either renewable or non-renewable. Reliance on non-
renewable sources generally increases the environmental impact of energy generation.
Fossil fuel combustion is a major source of global carbon dioxide (CO2) and other
greenhouse gas emissions (Evans et al., 2009; Lu et al., 2016; Rafaj et al., 2006;
Varun et al., 2009). That is why the polarity between non-renewable sources and
greenhouse emissions is positive. It should also be noted that greenhouse emissions
in energy generation generally causes an increase in ecological footprint (Mancini
et al., 2016). Increasingly, energy policy aimed at managing carbon emissions and
decarbonising the generation mix is targeted at reducing non-renewable sources,
carbon capture and investment in nuclear and renewable energy capacity (Gerbaulet
et al., 2019). Consequently, while increased greenhouse gas emissions will lead to
policies for non-renewable energy reduction, the renewable energy source component
of the generation mix is expected to rise with time.

Higher capacity investments in renewable sources result in relatively less en-
vironmental impact. Investments in the capacity of renewable or non-renewable
sources depend on economic considerations of profitability, economic development or
government policy interventions (Agnew et al., 2018; Furuoka, 2017). This usually
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requires long-term planning of the generation mix. Consequently, there is a time
delay for capacity investment to be available in installed capacity (Mutingi et al.,
2017).

On the social dimension of sustainability, there is a link with society as the
source of skilled personnel to manage and operate power generation plants (Onat
et al., 2017). Well-developed societies tend to have better-educated citizens and are
expected to lead to better-skilled employees for the power generation system. There
is a link between energy supply and societal welfare which subsequently leads to
energy demand. However, as this is the use of energy, it is better discussed in the
energy consumption phase of the problem conceptualisation.

4.2.2 Sustainable electricity consumption

The consumption phase of sustainable energy policy tends to focus on eco-efficiency,
energy efficiency and social development (Feng and Wang, 2017; Honma and Hu,
2008). Figure 4.2 shows the interrelationships between the electricity system and
these policy dimensions. Elements from the production phase that remain in Figure
4.2 are in blue while the links in the consumption phase are in red.

Energy generation and consumption are related but are not the same concept.
Various factors account for the difference between generation and consumption.
Distribution losses in the transmission of power from plants to households and export
of electricity tend to reduce the amount of power available for domestic supply. On
the other hand, where local demand outweighs generation, electricity imports can
supplement the demand. This recognition of the difference between generation and
consumption is visible in the policy. The EU’s requirement for increased renewable
energy consumption by member countries targets the consumption phase, rather
than the production phase (EEA, 2016).

In the consumption phase, electricity supply enhances both economic development
and social development. Access to modern energy services is essential in meeting
basic social needs, of health, education, employment which is required to fuel
economic growth and human development (Gaye, 2007). Human well-being cannot
be advanced without access to electricity (Johansson et al., 2012). As energy is a
critical input for national economic development, availability of secure and affordable
power is expected to boost economic activities. This increased economic development
will come at the cost of increased environmental impact on the environment, but
may over time lead to expansion of both renewable and non-renewable energy-related
infrastructure critical for energy security (Fouquet, 2016).
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Figure 4.2 Causal loop representation of sustainable energy consumption.

Karanfil and Li (2015) propose various causal hypotheses for the nature of the
relationship between energy and economic development. First, the growth hypothesis
lays the foundation of electricity consumption and economic growth as seen in eco-
efficiency analysis. Their conservative hypothesis proposes that economic growth
leads to electricity consumption. This can be explained by increased energy demand
as a result of social development from economic development. In that case, higher
economic development will mean society can afford more power for development.
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Finally, while the feedback hypothesis proposes interdependence between electricity
consumption and economic growth, the neutrality hypothesis proposes no causal link
probably due to rebound effects. This is where gains in reducing energy consumption
may be offset by behavioural changes of economic agents, therefore, leading to
increased energy demand (Galvin, 2014; Zhang et al., 2017).

This shows that economic development will have an impact on social welfare and
development. Similarly, social development will also enhance economic development
and increased energy demand. Reliable power supply will enhance education attain-
ment, health and standard of lives of citizens which will result in skilled personnel
available for employment in the power and all other economic sectors. Consequently,
energy efficiency and diversification of energy supply into renewable sources are the
pillars of sustainable energy policy (Prindle et al., 2007).

4.2.3 Sustainable energy system

The previous sub-sections presented and discussed the relevant interrelationships
between electricity and sustainability considerations in both the generation and
consumption phases. These two are important and complementary subsets of policy
on the sustainable energy system. In Figure 4.3 the production and consumption
phases of sustainable energy policy are combined.

From Figure 4.3, it is possible to trace the expected behaviour of power generation
along the sustainability dimensions. There exists a number of feedback loops in terms
of these policy and assessment variables. In the social dimension, more electricity
generation will make power available for household consumption, which should foster
social development and increase both energy demand and skilled labour required for
more electricity generation. This is, therefore, a reinforcing loop. When traced along
the environmental dimensions, electricity generation will lead to emissions, which
will lead to a policy response of decarbonisation, which may mean higher electricity
production from renewable sources. If emissions are examined, from the technology
perspective, a balancing loop is revealed. Increased generation from non-renewable
sources will result in more emissions, which will lead to a policy response aimed at
reducing such non-renewable sources.

These notwithstanding, since the purpose of this thesis is not to examine the
dynamics of relationships over time, further discussion and analysis of these loops
will not be required. The purpose of the causal loop diagram was to structure
the sustainable energy policy from which network models could be developed and
performance assessment and cross-country benchmarking conducted. The next
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Figure 4.3 Causal loop representation of sustainable energy generation and consump-
tion.

section converts these causal loop diagrams into network diagrams, highlighting the
inputs and outputs required for the performance assessment.

4.3 Network structure of sustainable energy sys-
tem

The causal loop diagrams presented provide an overview of important variables and
relationships that must be modelled in sustainable energy policy decision support.
However, as this thesis is focussed on cross-country performance assessment and
benchmarking of energy systems, it is important to translate the causal loops into
production structures. Sub-sections provide network representations of the electricity
generation system, the consumption system and a combined structure.
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4.3.1 Electricity generation network structure

The causal loop diagram for the sustainable electricity generation system is presented
in Figure 4.1. Generally, electricity is generated from renewable and non-renewable
sources. A by-product of the electricity generated is greenhouse gas emissions.
Consequently, there are two outputs in the generation phase of the system. The
electricity generation and greenhouse gas emissions, which are jointly produced
with the useful output. The generation sources are the technologies for producing
electricity. As countries operate with different power generation plants (and sources)
concurrently and independently, it is possible to represent the production system as
a parallel network structure as depicted in Figure 4.4.
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Figure 4.4 Parallel network representation of sustainable energy generation.

These power generation plants require some inputs to generate electricity. From
the causal loop diagram, it is evident that the operation of such power generation
sources is directly linked with the installed capacity and investment in such capacity.
Consequently, the installed capacity of a source at a point in time is a relevant input.
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Additionally, labour is another important input in traditional production systems.
Finally, both renewable and non-renewable sources require some raw materials to
convert into electricity. For example, primary oil resources will be required for
oil-based power plants. Therefore, the primary energy input is also selected as a
necessary input.

There are many differences between the causal loop diagram in Figure 4.1 and
the parallel network structure in Figure 4.4. First, the feedback loop between
greenhouse gas emissions and renewable and non-renewable sources are not modelled
since such policy responses will require time and may not occur in the same period
within which the performance assessment is being conducted. Additionally, while
both renewable and non-renewable sources have a link with greenhouse emissions,
in the parallel network, only the non-renewable sources are directly linked with
such greenhouse emissions. This is since the emissions modelled are those directly
produced as a result of fuel combustion. As such, direct emissions are modelled in
the parallel network, not the lifecycle emissions. Capacity investments are also not
represented directly in the parallel network. It is possible to include investment in
the sector as an input, however, since such capacity investment may be correlated
with installed capacity as well as the time lag for such investment to translate
into installed capacity, only the installed capacity is included as an input. Finally,
ecological footprint, electricity supply and social development variables are discussed
in the consumption phase and are not directly represented in the generation network.

From the structure presented in Figure 4.4, it is possible to assess the performance
of each decision-making unit in terms of each of the generation sources as well as
the entire production system. These inputs and outputs have been variously used
in performance assessment of the sustainability of electricity generation systems.
Sueyoshi and Goto (2013) had electricity and CO2 as the outputs. While electricity
was the desirable output, the CO2 was the undesirable output. Similarly, Mahmoudi
et al. (2019) had electricity generation, carbon emissions together with revenues
as outputs in their assessment of the performance of Iranian thermal power plants.
Labour, generation/installed capacity and primary energy (fuel) consumption has
been used as inputs in Mahmoudi et al. (2019). Other studies that rely on these
inputs and outputs include Mou (2014), Sueyoshi and Goto (2015), Yadav et al.
(2014), Yang and Pollitt (2009), among many others.
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4.3.2 Electricity consumption network structure

Electricity generated in an economy is mainly consumed by economic units to
satisfy social needs or generate other economic activities. Consequently, the uses
of electricity, and energy in general, have been a matter of relevance to policy and
research on eco-efficiency, environmental performance and energy efficiency. The
causal loop diagram of the consumption phase is depicted in Figure 4.2, while its
network representation is presented in Figure 4.5. In the consumption phase, the
network starts from the electricity supply which is consumed by either households
or other economic sectors like manufacturing, transportation, other services and
agriculture. Therefore, some proportion of the electricity generated serves as an
input to both the economic sub-system and the social sub-system. In the social
sub-system, electricity is an essential input which has implication on social welfare
and development. While social development will mean higher levels of employment,
such labour provided by the society serves as an important input in the economic
sub-system. The economic sub-system uses electricity, capital and labour to generate
economic productivity. However, such economic production also results in some
environmental impact. Therefore, environmental performance assessment can be an
assessment from both the electricity generation phase and the economic productivity
stage.

 

Environmental 

Performance 

Economic 
Development (Eco-

Efficiency) 

Social Development 

Greenhouse 
Gas Emissions 

Electricity 
Supply 

Biological 
Capacity 

Gross 
Domestic 
Product 

Emissions 

Human 
Development 
Index (HDI) 

Employment Government Public 
Expenditure 

- Capital  
- Other energy 

consumption  

Figure 4.5 Series network representation of sustainable energy consumption.

There are several differences between the causal loop diagram and the network
diagram. First, while the link between social development and economic development
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is captured in the network diagram, the link between economic development and
social development is not directly represented. This is because government public
expenditure, which forms part of the GDP, is captured as an input in the social
development sub-system. However, it is not directly an output in the economic
development sub-system since it is part of GDP. Therefore, this link is implicit in
one of the outputs in the economic development sub-system. Consequently, the link
is represented by a dashed arrow. Second, the link between economic development
and capacity investment, as well as social development and capacity development
as a result of increased energy demand is not represented in the network diagram.
This is because such capacity investment takes time and will not be captured in a
particular assessment year. Also, capital stock is a relevant variable in eco-efficiency
assessment and is therefore included as an input at this phase. This can be thought
of as the value of previous years’ economic activity as an important stock for future
production (Feenstra et al., 2015). Also, in the environmental performance sub-
system, the output used is the bio-capacity which is a measure of the planet’s capacity
to replenish resources and ecosystem services annually consumed by humans and
absorb waste (Mancini et al., 2016; Niccolucci et al., 2012). Greenhouse emissions
increase the ecological footprint which affects the bio-capacity. Finally, the link
between electricity generation and electricity supply and the factors that play a role
in the difference are discussed in Section 4.3.3.

This series network structure, therefore, allows for the assessment of social
development performance, eco-efficiency and environmental performance in one
conceptual model. Additionally, the optimal weights in the economic development
assessment can be used for energy efficiency assessment of countries under study.
Together, the system efficiency value will, therefore, provide an assessment of the
performance in energy use. Variables in the economic development sub-system
are not new as there are a plethora of studies that use capital, labour and energy
as input and GDP and emissions are outputs in the literature (Lu and Lu, 2019;
Mardani et al., 2017; Mavi et al., 2019; Robaina-Alves et al., 2015; Yang and Wei,
2019a,b).

On the social development sub-system, HDI and its components have been
widely used proxies for social development and social sustainability assessment
(Ülengin et al., 2011; Mariano et al., 2015). This study proposes the inclusion of
electricity supply as an input in this phase due to the extant literature linking
secured power supply to higher levels of social development (Martínez and Ebenhack,
2008; Ouedraogo, 2013). HDI is a measure of the average development of a country
concerning longevity, education level and economic performance (Dias et al., 2006).
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However, an essential part of social development is employment which is not captured
in the HDI. Therefore, employment is included in the social development assessment
and linked to economic development as an input in that sub-system.

In the environmental phase, environmental performance in the literature is
typically assessed as a by-product in eco-efficiency assessment (Mavi et al., 2019;
Sueyoshi and Goto, 2015). This approach does not link environmental performance
to the available resource endowment of the state. However, with the realisation
of the limited capacity of primary resources and the requirement to ensure future
generations have relevant resources for their survival, sustainable development
requires a balance between bio-capacity and ecological footprint (Hadian and Madani,
2015). Whereas the ecological footprint is a measure of human impact on the
environment, the bio-capacity is the natural capital’s bio-productivity or capacity
to contain these human impacts (Siche et al., 2008). An important input in the
assessment of the ecological footprint is carbon emissions (DiMaria, 2019; Geng
et al., 2014). Therefore, increased emissions from electricity generation and economic
production increase the ecological footprint. However, for sustainable development,
the ecological footprint is compared to the bio-capacity to examine the ecological
deficit (DiMaria, 2019; Geng et al., 2014). The objective is to have higher bio-
capacity and lower ecological footprint as an indication of sustainable development.
This study proposes to use greenhouse gas emissions as inputs and bio-capacity as
output in the environmental performance assessment. In the DEA framework, it is
possible to construct models that minimise the ecological footprint (emissions) at a
given level of bio-capacity in a country.

4.3.3 Electricity generation and consumption network struc-
ture

Previous sub-sections have discussed independent conceptual approaches for per-
formance assessment of electricity generation and consumption. However, in this
thesis, the production and consumption phases are combined in one assessment
framework. Therefore, decision support for sustainable energy policy is based on one
systematic assessment. In Figure 4.6 the assessment frameworks in the generation
and consumption phases are combined. The environmental performance assessment
system is linked by emissions from electricity production and other emissions from
other economic activities. For the economic development and the social development
assessment, there is a link between the electricity generated in the first phase and the
electricity supplied in the second phase. The difference between these two concepts
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is due to trade and distribution losses. Therefore, the difference between the two
may be treated as an additional exogenous output in the first phase or by including
a dummy sub-system to take electricity generated as inputs and electricity supply as
output. This accounts for imports, exports and distribution loss links in the causal
loop diagram in Figure 4.3.

The overall network structure is, therefore, a mixed network with parallel gen-
eration phase and serial consumption phase. In the assessment, therefore, the
overall performance score of each decision-making unit can be decomposed into the
generation and consumption phases to identify the source of inefficiency.

4.4 Chapter summary
In this chapter, conceptual frameworks for model development and performance
evaluation are presented. This was presented in two major sections the first of which
employed causal loop diagrams to conceptually map relevant variables and interre-
lationships in sustainability policy at the electricity generation and consumption
phases. These causal loop diagrams were developed based on literature review and
existing causal loops used for systems analysis of electricity production and use.
From the causal loop diagrams, different network diagrams that reasonably capture
the important elements of the system diagrams were developed. The electricity gen-
eration phase is described by a parallel network structure since electricity production
is characterised by the existence of various plants operating independently to meet
national energy demands. The consumption phase, however, had a series structure
which recognises the interrelationships between social development, economic devel-
opment and environmental performance. While the generation and consumption
phases could be treated independently, there is utility in combining these in a single
assessment model, thus emphasising a systems approach to modelling. Consequently,
the chapter also showed how the generation and consumption phases could be com-
bined to allow for holistic assessment of the sustainability performance in electricity
generation and use.
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Chapter 5

Sustainable and Resource Efficient
Electricity Generation

5.1 Introduction
Electricity generation globally comes from a variety of generation sources with
varying environmental consequences and primary energy resource requirement. Gen-
eration sources may include renewable and non-renewable sources. As different
countries may have different combinations of generation sources, cross-country per-
formance benchmarking of sustainability of electricity production should incorporate
such portfolio differences. Unfortunately, the existing literature either conducts
performance assessment at the plant level, usually in one country (Liu, Lin and
Lewis, 2010; Sueyoshi et al., 2010; Yang and Pollitt, 2009), or compares the total
generation at the national level without providing performance assessment at the
generation source-level (Li, Geng and Li, 2016; Sueyoshi and Goto, 2013).

Research at the plant level compares the operational efficiency of various gener-
ation plants of similar generation sources sometimes with process decomposition.
Xie et al. (2012), for example, decomposed the Chinese thermal power plant opera-
tion into generation and grid operations in the two-stage network DEA evaluation.
Similarly, Bi et al. (2018) considered a two-stage problem with power generation
and pollutant abatement as the sub-units under investigation. Other sub-process
decompositions include financial objective and sustainability objectives of the fossil
fuel power plants (Tajbakhsh and Hassini, 2018) and generation, transmission and
distribution (Xie et al., 2018). Apart from the single country evaluation promi-
nent in these studies, these studies fail to consider other generation sources in the
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same assessment. Hardly do such decomposition incorporate both renewable and
non-renewable sources in the same DEA performance assessment.

On the other hand, national level assessment has tended to focus on the social,
economic and environmental factors that constrain the production of energy (Vazhayil
and Balasubramanian, 2013; Zurano-Cervelló et al., 2018). These studies, like
Sueyoshi and Goto (2013) and Ewertowska et al. (2017), have treated the production
system of the country as a ‘black-box’ without providing an assessment of the
performance at the individual source-level as part of the performance assessment.

In the EU, there is focus on the transition towards a Sustainable Smart Euro-
pean Grid, where it may be possible for decentralised electricity generation and
transmission in different countries (Crispim et al., 2014; IqtiyaniIlham et al., 2017).
Therefore, there is the need to conduct a country-specific analysis of electricity
generation performance for each technology and the overall system. Comparing the
performance of different plants producing electricity from a similar source does not
allow for the determination of which countries are higher performers for that partic-
ular source. Also, the cross-country performance assessment that examines the total
electricity generated and environmental outputs fail to provide an assessment of the
sub-systems (different sources) that account for the overall generation performance.

To aid in decision support, the European Environment Agency (EEA) produces
annually an “Overview of electricity production and use in Europe” as a means
of monitoring the performance of countries. This report monitors: CO2 emission
intensity; gross electricity production by fuel; the contribution of fuels to total
electricity production; whether electricity production in Europe is becoming less
carbon-intensive; whether electricity production in Europe is increasing; and whether
power plants are becoming more efficient (EEA, 2019). The report provides some
descriptive summary of resource efficiency and emissions from the various generation
sources without in-depth assessment and cross-country performance benchmarking
in electricity generation and use. There is, therefore, the need for performance
assessment to conduct cross-country assessment that compares the performance
of how resources are efficiently consumed for power generation at the technology
level, as well as provides an assessment of the overall system while incorporating
environmental outputs.

This chapter, therefore, develops DEA optimisation models that provide cross-
country performance assessment in gross electricity production and emissions re-
duction and also decomposes the overall performance to generation source-level
performances. In this process, new optimisation models are developed into handle
non-homogeneity in the production processes. Additionally, models developed incor-
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porate emissions as undesirable outputs in the performance assessment. The chapter
is organised as follows: Section 5.2 provides an overview of the European electricity
generation system from which models are formulated in Sections 5.3 and 5.4 and
empirical analyses conducted in Section 5.5. Finally, in Section 5.6 conclusions are
drawn about the models developed and the empirical assessment conducted.

5.2 The European electricity generation system
The EU has been a leader in promoting sustainable development in the international
arena by way of campaigns, networks and regulations (Afgan and Carvalho, 2008;
Gallego Carrera and Mack, 2010). While Europe has limited capacity in the supply
of primary energy sources of fossil fuel, its capacity in terms of renewable energies is
not yet fully developed (Afgan and Carvalho, 2008). There is potential for hydro,
solar, geothermal and biomass to contribute a large proportion of the total energy
supply. Due to the increasingly integrated economies and energy sectors, the EU is
the world’s second-largest energy consumer behind the USA (Koroneos and Nanaki,
2007). It is not surprising that low-carbon energy sources (renewables and nuclear)
currently dominate the electricity mix of EU countries (EEA, 2019). Figure 5.1
presents the 2017 generation mixes of the 28 EU countries.

On average, 53 per cent of gross electricity production (GEP) in 2017 came
from such low-carbon sources. EU countries have a wide range of renewable source
integration in their production mixes. From 87 per cent renewable energy generation
by Luxembourg to as low as 9 per cent for Cyprus (European Commission, 2020).
Together with Luxembourg, Lithuania, Austria, Latvia, Denmark, Croatia and
Sweden, they have all managed over 50 per cent electricity generation from renewable
sources (European Commission, 2020). Other countries like Slovakia, Belgium and
France with relatively low renewable generation source content had very large GEP
from nuclear, taking their total low-carbon generation source composition over the
50 per cent mark. Overall, 16 of these 28 countries had over 50 per cent of GEP from
low-carbon sources. However, to achieve the EU’s objective of reducing greenhouse
gas emissions by 80-95% by 2050 compared to 1990 levels, there will be a need for
full decarbonisation of the electricity sector (EEA, 2017). From Figure 5.2 it is
evident that gains in decarbonisation crossed the 50 per cent mark in 2012.
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Figure 5.1 Electricity generation mixes of EU countries (2017).

Source: Data from European Commission (2020)
Solid line shows the percentage of renewables in generation mix while the

dashed-lines show percentage of low-carbon energy sources in the generation mix.

Figure 5.2 Combined gross generation mix of all 28 EU countries (1990-2017).

Source: Data from European Commission (2020)

The GEP covers electricity generation from all types of power plants (main
transformers) and private producers (auto-producers) using coal and lignite (solid
fuels), oil, natural and derived gas (gases), non-renewable biomass and waste (waste
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& biofuels [NR]), nuclear and renewable sources comprising hydro, wind, renewable
biofuels (Biofuels [R]), solar photovoltaics, geothermal, tide and other fuels (EEA,
2016; Eurostat, 2019a). It must be noted that Directive 2001/77/EC which requires
an increased share of renewable sources in energy consumption by the year 2020
(EEA, 2017; Hadian and Madani, 2015; Kazagic et al., 2014) does not directly apply
to the GEP since consumption is affected by distribution losses and trade among
other factors (EEA, 2016).

In the policy context, several directives, projections and guidelines exist to
aid countries in the transformation towards reducing GHG emissions from the
electricity sector. A binding target of 40 per cent GHG emission reductions until
2030 based on 1990 levels have been set by the EU for the low-carbon energy
transformation objective (Gerbaulet et al., 2019). Additionally, there is the objective
for decarbonisation of at least 80 per cent of the 1990 levels by 2050 (European
Commission, 2011). This is to be ensured through carbon capture and capacity
investments in nuclear and renewable sources (Gerbaulet et al., 2019). Also, while
Directive 2009/28/EC promotes the use of renewable sources, Directive 2009/29/EC
focuses on improvement in GHG through trading schemes (EEA, 2019). Finally,
COM[2010]-639 sets out strategies for competitive, sustainable and secure energy by
setting new priority areas (European Commission, 2010). There is, therefore, efforts
at capacity improvements, energy security and emissions reductions. Performance
assessment models developed in subsequent sections reflect this policy environment.

5.3 Methods and modelling

5.3.1 Inputs and outputs

Although the source of energy may be different, sources are homogenous in terms
of electricity produced. The by-product of the power generated is GHG emissions
that are generated from fuel combustion in the production of non-renewable sources
(excluding nuclear). Since this undesirable by-product is in joint production with the
desirable power generated, GHG emissions is modelled as a weakly disposable output
while GEP is modelled as freely disposable output. It must be noted that, this study
focusses on direct GHG emissions since the EU’s emissions reduction policy relates
to direct emissions from electricity production. In reality, there may be other sources
of environmental impact for even renewable sources. Output generation is subject
to capacity restrictions, primary energy consumption and labour conditions. Since
an increase in these factors will reasonably increase the desirable outputs, these
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factors are modelled as freely disposable desirable inputs. The general structure of
the system and variables is presented in Figure 5.3.
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Figure 5.3 General structure of electricity generation system.

5.3.2 General model

For n DMUs (n = 1, . . . , j), there is the input vector X ∈ ℜm
+ which can be

used to produce the output set P (X) comprising the set of desirable outputs
Y D ∈ ℜs

+ and undesirable outputs Y U ∈ ℜl
+. This set is closed and bounded

with inputs freely disposable. The weak disposability of the undesirable outputs
means that if there exists

(
Y D, Y U

)
∈ P (X) and 0 ≤ θ ≤ 1 then it should mean

that
(
θY D, θY U

)
∈ P (X) (Färe et al., 1989). Consequently, there is proportional

abatement between the desirable and undesirable outputs such that reduction in
undesirable output will come at the expense of desirable outputs. However, desirable
outputs can be freely disposable. There is also implied a null-joint condition
that no undesirable output can be produced if no desirable output is produced -(
Y D, Y U

)
∈ P (X) , if Y D = 0 then Y U = 0. This means that direct emissions from

fuel combustion are modelled rather than lifecycle emissions. If lifecycle emissions
are rather modelled, then it should be possible to produce positive units of emissions
even when no electricity has been generated. However, the focus is on modelling the
direct emissions in this thesis. The PPS can be defined as:
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P =

(X, Y D, Y U
)∣∣∣ X ≥

n∑
j=1

λjXj, Y D ≤
n∑

j=1
λjY

D
j , Y U =

n∑
j=1

λjY
U

j , λj ≥ 0


(5.1)

Following the traditional CCR efficiency model, the input-oriented envelopment
DEA model with strongly disposable desirable inputs and outputs but weakly
disposable undesirable outputs (5.2) and its multiplier version (5.3) can be formulated
as in:

E0 = min φ (5.2a)

s.t.
n∑

j=1
λjXij ≤ φXio i = 1, 2, ..., m (5.2b)

n∑
j=1

λjY
D

rj ≥ Y D
ro r = 1, 2, ..., s (5.2c)

n∑
j=1

λjY
U

kj = Y U
ko k = 1, 2, ..., l (5.2d)

λj ≥ 0, j = 1, 2, ..., n (5.2e)

E0 = max
s∑

r=1
urY

D
ro +

l∑
k=1

ckY U
ko (5.3a)

s.t.
m∑

i=1
viXio = 1 (5.3b)

(
s∑

r=1
urY

D
rj +

l∑
k=1

ckY U
kj

)
−

m∑
i=1

viXij ≤ 0 j = 1, 2, ..., n (5.3c)

ur, vi ≥ 0, ck urs, r = 1, ..., s, k = 1, ..., l, i = 1, ..., m (5.3d)

The models presented in (5.2) and (5.3) are based on the traditional ‘black-box’
DEA without sub-system integration. The model in (5.4) is based on Kao’s (2009b)
relational model and incorporates the weakly disposable undesirable outputs. Given
that the overall system can be decomposed into q sub-processes (p = 1, . . . , q). Each
sub-process p has X

(p)
i , i ∈ I(p) inputs which are used in producing Y D(p)

r , r ∈ OD(p)

desirable outputs and Y
U(p)

k , k ∈ OU(p) undesirable outputs. It should be noted that
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the total system inputs and outputs are a sum of those of all the sub-processes.∑q
p=1 X

(p)
ij = Xij, i = 1, . . . , m , ∑q

p=1 Y
D(p)

rj = Y D
rj , r = 1, . . . , s and ∑q

p=1 Y
U(p)

kj =
Y U

kj , k = 1, . . . , l. The general parallel network model to estimate the overall and
sub-system efficiencies of the network presented in Figure 5.4 is formulated as:

E0 = max
s∑

r=1
urY

D
ro +

l∑
k=1

ckY U
ko (5.4a)

s.t.
m∑

i=1
viXio = 1 (5.4b)

(
s∑

r=1
urY

D
rj +

l∑
k=1

ckY U
kj

)
−

m∑
i=1

viXij ≤ 0 j = 1, 2, ..., n (5.4c) ∑
r∈OD(p)

urY
D(p)

rj +
∑

k∈OU(p)

ckY
U(p)

kj

−
∑

i∈I(p)

viX
(p)
ij ≤ 0

p = 1, . . . , q, j = 1, 2, . . . , n (5.4d)
ur, vi ≥ 0, ck urs , r = 1, ..., s, k = 1, ..., l, i = 1, ..., m (5.4e)

This model attaches the same input and output multipliers to the same type of
inputs and outputs irrespective of the production system since the price of the factor
on the market, is expected to remain the same irrespective of the sub-process (Kao,
2012). From the optimal solution (u∗

r, c∗
k and v∗

i ), the efficiencies for the system and
sub-processes for each DMU can be computed as:

Eo =

s∑
r=1

u∗
rY

D
ro +

l∑
k=1

c∗
kY U

ko

m∑
i=1

v∗
i Xio

=
s∑

r=1
u∗

rY
D

ro +
l∑

k=1
c∗

kY U
ko (5.5a)

E(p)
o =

∑
r∈OD(p)

u∗
rY

D(p)
ro + ∑

k∈OU(p)
c∗

kY
U(p)

ko∑
i∈I(p)

v∗
i X

(p)
io

, p = 1, . . . , q (5.5b)

Where sub-processes are weighted by the proportion of inputs dedicated to the
sub-process to the overall inputs in the system, Kao (2012, 2014a) show that the
system efficiency is a weighted sum of the sub-process efficiencies. That is, if the
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Figure 5.4 Schematic network structure.

importance of a sub-process is defined by the proportion of resources dedicated to
the sub-process relative to the overall system resources, w(p) = ∑

i∈I(p)
viX

(p)
io /

m∑
i=1

viXio ,

where
q∑

p=1

∑
i∈I(p)

viX
(p)
io =

m∑
i=1

viXio, then the weighted average of all sub-process effi-

ciencies becomes:

q∑
p=1

w(p)E(p)
o =

q∑
p=1




∑
i∈I(p)

viX
(p)
io

m∑
i=1

viXio




s∑
r=1

urY
D

ro +
l∑

k=1
ckY U

ko∑
i∈I(p)

viX
(p)
io


 (5.6a)

=

s∑
r=1

urY
D

ro +
l∑

k=1
ckY U

ko

m∑
i=1

viXio

(5.6b)

5.3.3 Non-homogeneity in parallel processes

Cook et al. (2012) and Cook et al. (2013) show that non-homogeneity may exist in
the ‘black-box’ model where some DMUs choose not to produce some of the outputs
of other DMUs. Their solution is to regroup the DMUs into parallel sub-groups
where all DMUs in each sub-group produce the same set of outputs. Since a DMU
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may belong to more than one sub-group, their inputs must be reallocated across all
sub-units they belong to. Li, Liang, Cook and Zhu (2016) looked at the problem
from the inputs side where DMUs use different combinations of inputs to produce
the same set of outputs. Cook et al. (2013) and Li, Liang, Cook and Zhu (2016)
proposed a three-step process of splitting the outputs/inputs, deriving the efficiencies
of DMUs in each sub-groups and determining the overall efficiencies as the weighted
average of the efficiencies of the sub-groups. Shen et al. (2018) showed that this
three-step process could be achieved in a step. They also determined the sub-groups
based on the internal production structure as compared to Cook et al. (2013) and
Li, Liang, Cook and Zhu (2016) whose grouping was data-driven.

Du et al. (2015) and Barat et al. (2019) have examined non-homogeneity in
the network DEA literature where sub-processes have different combinations of
inputs and outputs. Du et al. (2015) examined non-homogeneity in parallel network
problems while Barat et al. (2019) examined non-homogeneity in mixed network
DEA problems. These studies, however, assume that different DMUs have the
same combination of sub-processes. In the electricity generation system, different
countries have different portfolios of energy generation sources. As such, there is
non-homogeneity in the combination of sub-processes used by each DMU as well
as differences in the inputs/outputs of those sub-processes. This study, therefore,
extends the work of Du et al. (2015) for conditions where DMUs have differences in
the sub-processes.

Both Cook et al. (2013) and Shen et al. (2018) provide a way for dealing with
situations where DMUs under investigation do not belong to some of the sub-groups
in the black-box approach. These ideas could be extended for handling such non-
homogeneity in parallel network problem. For Cook et al. (2013), where a DMU does
not belong to a sub-group, its overall efficiency is defined as the weighted average
of the efficiencies of only the sub-groups it belongs. Therefore, it is not assessed
based on the other sub-groups in the system. As such, the other sub-groups are
treated as non-existent and may be replaced with zero inputs, zero outputs and
zero input/output apportionment. Shen et al. (2018) create a dummy sub-group
where, Y

(p)
rj = 0 (∀r ∈ O(p)) and X

(p)
ij = 0 (∀i ∈ I(p)) to make the problem a parallel

problem while ensuring that no split inputs/outputs are assigned to the dummy
sub-group.

From Figure 5.3, different sources have capacity, labour and primary energy
as inputs and GEP and GHG as outputs. As some inputs (such as labour) and
outputs (such as GHG) are shared, additional restrictions must be placed on the
apportionment factors α

(p)
i and β(p)

r where the DMU does not produce electricity
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using that source. Consequently, if no electricity is produced from that source, that
DMU should get no GHG emissions assigned to the source. Additionally, it should
not have any labour, primary energy resources or capacity allocated to the source if
that variable is shared among the sources.

The problem can be illustrated in model (5.7) where outputs are divided into a
set of shared outputs Y (p)

rs
, rs ∈ O

(p)
k and dedicated outputs Y (p)

r , r ∈ O(p)
y . Similarly,

inputs are divided into a set of shared inputs X
(p)
is

, is ∈ I
(p)
k and dedicated inputs

X
(p)
i , i ∈ I(p)

y . The parallel network DEA problem without any adjustment on the
split input and outputs can be formulated as:

E0 = max
∑

rs∈O
(p)
k

ursYrso +
q∑

p=1

∑
r∈O

(p)
y

urY
(p)

ro (5.7a)

s.t.
∑

is∈I
(p)
k

visXiso +
q∑

p=1

∑
i∈I

(p)
y

viX
(p)
io = 1 (5.7b)

 ∑
rs∈O

(p)
k

ursβ
(p)
rs

Yrsj +
∑

r∈O
(p)
y

urY
(p)

rj

−

 ∑
is∈I

(p)
k

visα
(p)
is

Xisj

+
∑

i∈I
(p)
y

viX
(p)
ij

 ≤ 0 p = 1, . . . , q, j = 1, 2, . . . , n (5.7c)

q∑
p=1

α
(p)
is

= 1, ∀is ∈ I
(p)
k (5.7d)

q∑
p=1

β(p)
rs

= 1, ∀rs ∈ O
(p)
k (5.7e)

ur, urs
, vi, vis

, α
(p)
is

, β(p)
rs

≥ 0,

r = 1, ..., s, rs = 1, . . . s, i = 1, ..., m, is = 1, ..., m (5.7f)

The system input bundle I(p) and output bundle O(p) are defined as a union of
the shared and dedicated sets such that

(
I(p), O(p)

)
=
(
I

(p)
k ∪ I(p)

y , O
(p)
k ∪ O(p)

y

)
. In

this problem, the dedicated output is the electricity generated by energy source p.
It should be noted that if a country does not generate electricity from source p then
it has no installed capacity and should not get any of the sharable inputs dedicated
to that source. If that source is not a low-carbon energy source, then the null-joint
condition should also apply to any sharable undesirable output. Consequently,
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non-renewable energy sources (except nuclear) should not receive any sharable joint
output if the good output for the source is zero.

Two approaches for handling the non-existing sub-processes are proposed in this
study. First, Ln is defined as the set of all the parallel sub-processes in the system.
Let, Ln = {1, . . . , q} with cardinality |Ln| = q. Given this, the parallel network
model to assess the system efficiency with q sub-processes as presented in (5.7) can
be reformulated as:

E0 = max
∑

rs∈O
(p)
k

ursYrso +
|Ln|∑
p=1

∑
r∈O

(p)
y

urY
(p)

ro (5.8a)

s.t.
∑

is∈I
(p)
k

visXiso +
|Ln|∑
p=1

∑
i∈I

(p)
y

viX
(p)
io = 1 (5.8b)

 ∑
rs∈O

(p)
k

ursβ
(p)
rs

Yrsj +
∑

r∈O
(p)
y

urY
(p)

rj

−

 ∑
is∈I

(p)
k

visα
(p)
is

Xisj +
∑

i∈I
(p)
y

viX
(p)
ij

 ≤ 0

p ∈ Ln, j = 1, 2, . . . , n (5.8c)
|Ln|∑
p=1

α
(p)
is

= 1, ∀is ∈ I
(p)
k , p ∈ Ln (5.8d)

|Ln|∑
p=1

β(p)
rs

= 1, ∀rs ∈ O
(p)
k , p ∈ Ln (5.8e)

ur, urs
, vi, vis

, α
(p)
is

, β(p)
rs

≥ 0,

r = 1, ..., s, rs = 1, . . . s, i = 1, ..., m, is = 1, ..., m (5.8f)

The difference between (5.7) and (5.8) is that the latter uses the cardinality of
Ln rather than q. This model will assign some non-negative values of the sharable
output to process p of each DMU irrespective of whether the DMU operates with
that sub-process. At least nothing in the model restricts a DMU from allocating
sharable units to non-existing sub-processes.

A particular DMU j will have Lj set of sub-processes that it utilises in its
production process, where Lj ⊆ Ln. It is reasonable to assume that if a DMU
does not operate using a particular sub-process then its system efficiency should be
unconstrained by that sub-process. Consequently, the non-existing sub-process, and
all constraints associated with that, should be removed from the model examining
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the system and sub-process efficiencies of the DMU. As such, for each DMU, if a
sub-process produces zero dedicated output, then the sub-process will be ignored.

If the cardinality of the sub-process set of a DMU is smaller than the cardinality
of the sub-process set for the entire system, i.e. |Lj| < |Ln|, then the system
efficiency is calculated based on only the existing sub-processes of the DMU under
consideration. The system efficiency for the DMU under this approach (approach 1)
will be:

E0 = max
∑

rs∈O
(p)
k

ursYrso +
|Lj |∑

p=1,p∈Lj

∑
r∈O

(p)
y

urY
(p)

ro (5.9a)

s.t.
∑

is∈I
(p)
k

visXiso +
|Lj |∑

p=1,p∈Lj

∑
i∈I

(p)
y

viX
(p)
io = 1 (5.9b)

 ∑
rs∈O

(p)
k

ursβ
(p)
rs

Yrsj +
∑

r∈O
(p)
y

urY
(p)

rj

−

 ∑
is∈I

(p)
k

visα
(p)
is

Xisj +
∑

i∈I
(p)
y

viX
(p)
ij

 ≤ 0

p ∈ Lj, j = 1, 2, . . . , n (5.9c)
|Lj |∑

p=1,p∈Lj

α
(p)
is

= 1, ∀is ∈ I
(p)
k , p ∈ Lj (5.9d)

|Lj |∑
p=1,p∈Lj

β(p)
rs

= 1, ∀rs ∈ O
(p)
k , p ∈ Lj (5.9e)

ur, urs
, vi, vis

, α
(p)
is

, β(p)
rs

≥ 0,

r = 1, ..., s, rs = 1, . . . s, i = 1, ..., m, is = 1, ..., m (5.9f)

For DMUs with sub-process cardinality the same as the system’s (equinumerous),
they are assessed based on all sub-processes. However, the model as formulated
remains the same since |Lj| = |Ln|. The system efficiency of DMU j is, therefore, a
weighted average of the efficiencies of only its existing sub-processes.

An alternative way for dealing with such non-existent sub-processes is to ensure
that where a DMU does not have the particular sub-process, all split factors for
the sub-process will be zero. i.e. β(p)

r = 0 and α
(p)
i = 0 if the DMU does not have

dedicated outputs and inputs for the sub-process. However, the optimal multipliers
for the dedicated factors will still be constrained by the inputs and outputs of other
DMUs that operate using the non-existent sub-process. This approach maintains all
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the sub-processes of the system in the assessment of each DMU. However, it imposes
restrictions on the split variables such that nothing is allocated to non-existing
sub-processes. Therefore, unlike the first approach that restricts multipliers to the
existing sub-processes, approach two restricts the multipliers using all sub-processes.
However, if a DMU does not operate with that sub-process no factors are dedicated.
For a DMU with |Lj| < |Ln|, then the split values for all processes belonging to the
set-theoretic difference of Ln and Lj (Ln\Lj) are set to zero. The model to examine
the system efficiency will therefore be:

E0 = max
∑

rs∈O
(p)
k

ursYrso +
|Ln|∑
p=1

∑
r∈O

(p)
y

urY
(p)

ro (5.10a)

s.t.
∑

is∈I
(p)
k

visXiso +
|Ln|∑
p=1

∑
i∈I

(p)
y

viX
(p)
io = 1 (5.10b)
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(p)
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urY
(p)

rj
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 ∑
is∈I

(p)
k

visα
(p)
is

Xisj +
∑

i∈I
(p)
y

viX
(p)
ij

 ≤ 0

p ∈ Ln, j = 1, 2, . . . , n (5.10c)
|Ln|∑
p=1

α
(p)
is

= 1, ∀is ∈ I
(p)
k , p ∈ Ln (5.10d)

|Ln|∑
p=1

β(p)
rs

= 1, ∀rs ∈ O
(p)
k , p ∈ Ln (5.10e)

α
(p)
is

= 0, p ∈ Ln\Lj (5.10f)
β(p)

rs
= 0, p ∈ Ln\Lj (5.10g)

ur, urs
, vi, vis

, α
(p)
is

, β(p)
rs

≥ 0,

r = 1, ..., s, rs = 1, . . . s, i = 1, ..., m, is = 1, ..., m (5.10h)

If |Lj| = |Ln| then the relative complement will be a null set (i.e. Ln\Lj = ∅) and
will not require any restriction on the split variables.

It can be seen that in approach one shown in (5.9), the multipliers for the DMU
under consideration are determined subject to constraints relating to only the sub-
processes the DMU currently has. This follows the idea of Cook et al. (2013) where
the DMU’s overall efficiency is determined from a weighted average of sub-group
efficiencies. Since the multipliers are unconstrained in approach one by non-existing
sub-processes, this approach implicitly assumes that the price of the inputs and
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outputs reflects the DMU’s internal operational structure rather than the industry’s
operating structure. Approach one may, therefore, be useful where the DMUs under
evaluation have some form of price control such that the price of inputs and outputs
can be freely determined depending on mostly the DMU’s internal cost assessment.

On the other hand, since constraints relating to even the non-existing sub-
processes remain in the model for approach two, its multipliers reflect the entire
industry information. This approach follows the ideas of Shen et al. (2018) where
dummy units with zero inputs and outputs are created for a DMU when it does
not belong to the specific sub-group. Similar to Shen et al. (2018), split variables
for non-existing sub-processes are set to zero. Since the optimal multipliers reflect
all the sub-processes in the industry, it is argued that approach two may be useful
where the DMU is a price-taker or where the DMU would want to consider the
entire industry policy environment in determining factor prices. In the next section,
an empirical assessment using the models developed is conducted. This includes an
empirical comparison of the results from models (5.8), (5.9) and (5.10).

5.4 Empirical assessments
The sustainability and resource efficiency of the electricity generation systems of EU
countries are assessed in this section. Data for assessment is sourced from the EU’s
Energy datasheets which are based on energy balance statistics from the Eurostat
database. Eurostat’s energy balance dataset provides uniform data across countries
that allow for studying domestic energy and conducting an impact assessment of
energy policy (Eurostat, 2019a). Data analysed in this study cover the 10 years
from 2008 to 2017. As earlier indicated, three inputs and two outputs are used in
the assessment model. These include:

1. Installed capacity (X1): Megawatts (MW) of installed electricity capacity.

2. Transformation inputs (X2): Millions of tonnes of oil equivalent (Mtoe) of
primary energy resources.

3. Labour (X3): Thousands of persons aged from 15 to 64 years employed in
electricity, gas and air conditioning supply.

4. Gross electricity production (Y1): Terawatt hour (TWh) of gross electricity
generated.
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5. Greenhouse gas emissions (Y2): Million tonnes of CO2 (Mt CO2) of greenhouse
gas emissions.

In the European case, there are 28 member countries1 whose electricity production
has been categorised into 11 generation sources. These sources comprise 6 renewable
sources (hydro, wind, renewable biomass, solar, geothermal and tidal energy), nuclear
and 4 non-renewable sources (solid fuels, oil, gases, and non-renewable biofuels and
waste). There is an additional category, called ‘other’, which includes electricity
produced from pumped hydro storage and other fuels not accounted for elsewhere
such as industrial wastes not classed as renewable (EEA, 2016). However, although
there exists installed capacity for such a source in some countries, gross electricity
production from the ‘other’ category for most countries is zero. Consequently, this
source is eliminated from the assessment.

5.4.1 System description

The evaluation framework for this chapter is depicted in Figure 5.5. Starting with
the GEP, each energy source has separate production quantities in the dataset.
However, for the GHG the dataset reports a composite value for all combustible fuel
sources. Consequently, this undesirable output is modelled in a shared-flow problem
with allocations to solid fuels, oil, gases and waste and other biofuel sub-processes.
For the inputs, each input has some level of sharing between the sub-processes.
Installed capacity for renewable sources (except renewable biomass) and nuclear are
known and dedicated to the sub-processes without the need for sharing. Note, only
the composite installed capacity for combustible fuels is reported. Consequently,
this must be optimally allocated between solid fuels, oil, gas, renewable biomass and
waste and non-renewable biofuels.

Transformation input for non-renewable energy sources are known and dedicated,
however, for renewable sources, the transformation input must be optimally allocated
between these sources to maximise efficiency. Finally, the labour variable is a
composite score for the entire industry. As such, the exact number of people
employed in each sub-process is unknown. This variable must, therefore, be allocated
across all sub-processes.

128 member countries in the study period (2008 to 2017)
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Figure 5.5 Evaluation framework of the production system.

5.4.2 Model formulation

System description in the previous sub-section shows that the system is characterised
by a parallel network of 11 sources with shared-flows in both inputs and some output
variables. Additionally, the existence of an undesirable output which is in joint
production with the desirable output requires that the empirical model must capture
weak disposability. This is formulated as follows:
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E0 = max u1Y1o + u2Y2o (5.11a)
subject to:
v1X1o + v2X2o + v3X3o = 1 (5.11b)
u1Y1j + u2Y2j − (v1X1j + v2X2j + v3X3j) ≤ 0 (5.11c)(

u1Y
(1)

1j + u2β
(1)
2 Y2j

)
−
(
v1α

(1)
1 Xs

1j + v2X
(1)
2j + v3α

(1)
3 X3j

)
≤ 0 (5.11d)(

u1Y
(2)

1j + u2β
(2)
2 Y2j

)
−
(
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(2)
1 Xs
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(2)
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(2)
3 X3j

)
≤ 0 (5.11e)(

u1Y
(3)
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(3)
2 Y2j

)
−
(
v1α

(3)
1 Xs
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(3)
2j + v3α

(3)
3 X3j

)
≤ 0 (5.11f)

u1Y
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1j −
(
v1X

(4)
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(4)
2j + v3α

(4)
3 X3j

)
≤ 0 (5.11g)
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3 X3j
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≤ 0 (5.11h)
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u1Y
(8)

1j −
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3 X3j
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≤ 0 (5.11k)
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≤ 0 (5.11n)
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α
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α
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a
(p)
i ≤ α

(p)
i ≤ b

(p)
i (5.11s)

a(p)
r ≤ β(p)

r ≤ b(p)
r (5.11t)

u1, vi ≥ ε, u2 urs, r = 1, ..., s, i = 1, ..., m, j = 1, 2, . . . , n (5.11u)

Since the model in (5.11) is nonlinear, it must be transformed into an LP
problem. Both the shared inputs and outputs must be apportioned across the
relevant sub-processes. While the sharing proportions for the inputs are determined
in the efficiency model, that of the output (GHG) is externally determined. For the
jth country (j = 1, 2, . . . , n), the emissions output variable of the pth technology
(p = 1, 2, . . . , q) for time t (t = 1, 2, . . . , T ) is determined by the contribution of
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the technology to the production mix and the global warming potential (GWP)
attributable to the technology using the formula:

GHGpjt =
RpjtGWPpj/

q∑
p=1

RpjtGWPpj

× GHGjt (5.12)

Where Rpjt represents the contribution of the generation source to the total
non-renewable and non-nuclear generation at time t. Consequently, the sum of the
contributions across all the sources is unity, ∑q

p=1 Rpjt = 1. GWPpj is the emissions
factor represented by the 100 year GWP for source p and country j. The term in the
brackets is, therefore, a generation mix adjusted proportion which satisfies the null-
joint condition. Therefore, if a country has no electricity generated from a particular
source, then no GHG is assigned to the source, given that GHGpj = β

(p)
2 Y2j. Such

decomposition is done in the literature in the absence of sub-process emissions
information (Mandal and Madheswaran, 2010). The 100 year GWP is sourced from
the ecoinvent database (version 3) by Wernet et al. (2016).

To linearise the remainder of model (5.11), first set k
(p)
i = viα

(p)
i . Since∑q

p=1 α
(p)
i = 1 , therefore, vi

∑q
p=1 α

(p)
i = vi = ∑q

p=1 k
(p)
i . Using Charnes and Cooper

(1973) transformation, t = 1/(v1X1o + v2X2o + v3X3o) and define µr = tur, νi = tvi

and γ
(p)
i = tk

(p)
i . The nonlinear programming problem above can, therefore, be

reduced to the problem:

E0 = max µ1Y1o + µ2Y2o (5.13a)
s.t. ν1X1o + ν2X2o + ν3X3o = 1 (5.13b)
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(p)
i ≥ ε, µ2 urs, r = 1, ..., s, i = 1, ..., m, p = 1, ..., q, (5.13r)

j = 1, 2, . . . , n (5.13s)

Note that for the second output, Y
(p)

2j is determined using (5.12). From the optimal
solution
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, the system and sub-process efficiencies can be estimated as:
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(5.14)

It is possible to determine the optimal values of the apportioning factors α
(p)
i .

Note that since vi
∑q

p=1 α
(p)
i = vi and ∑q

p=1 γ
(p)
i = vi, the optimal input allocations

to sub-process p can be determined using:

α
(p)
i = γ

∗(p)
i /v∗

i , p = 1, . . . , q (5.15)

In the next section, the models proposed and developed are empirically tested and
applied to the European context. R/R studio is used to solve all models and generate
graphs in subsequent sections.



5.5 Findings and discussions 136

5.5 Findings and discussions
This section is dedicated to the empirical assessment of the sustainability and
resource efficiency in the electricity generation systems of the 28 EU countries
examined. After the data description in the next sub-section is presented, the
various approaches for handling non-homogenous sub-processes are first examined
before the empirical assessment of the production systems.

5.5.1 Data and description

This study uses a total of five variables, comprising two outputs and three inputs,
for the empirical assessment. One of the outputs (GHG) is an undesirable output
modelled as weakly disposable and in joint production with the desirable output
in some of the sub-processes. The summary statistics of the variables used are
presented in Table 5.1.

Table 5.1 Descriptive statistics of inputs and outputs (2008-2017).

variables n mean sd min max

Outputs:
Gross electricity production (TWh)a 280 117.25 162.79 0.86 652.04
Greenhouse gas emissions (mt CO2)b 280 41.4 65.95 0.24 336.72

Inputs:
Installed capacity (MW) 280 33340 45756.16 571 215142
Transformation inputs (Mtoe) 280 23.92 34.35 0.16 137.94
Labour (Thousand) 280 57.06 76.84 0.8 374.5

a Desirable output
b Undesirable output

The summary statistics are based on the 10-year dataset for all 28 EU countries.
As such the dataset is a balanced panel with 280 observations. On average, gross
electricity production for the 10 years stands at an average of 117.25 TWh per
country with high variation among countries. Malta, for example, had the lowest
GEP in 2016 of about 0.86 TWh with power mainly generated from oil combustion
power plants (0.72 TWh) and Solar (0.13 TWh). On the other spectrum is Germany
with about 652 TWh in 2017 with reliance on solid fuel based power plants. This
variation among the EU countries is observed across all the variables with even
higher variations, relative to the means, in emissions and transformation inputs.

Nearly all the countries, 27 out of the 28 countries, had complete data for all
variables for the entire study period. The only exception was Malta, which had
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missing employment data in the electricity, gas, steam and air conditioning supply
industrial sector from 2014 to 2017. However, as there was complete data from 2008
to 2014 and complete employment data across all industries for the entire study
period, the average proportion of the industry data to the national level for 2008 to
2014 was used for estimating reasonable employment figures for the missing period.
Consequently, 1.072% (sd = 0.00102) of the national employment figures for 2014
to 2017 were used as estimates of the industry employment values for the missing
periods.

5.5.2 Non-homogeneous sub-systems

This sub-section examines the three approaches for dealing with non-homogeneity in
parallel network DEA models. Where DMUs operate with a different combination of
sub-processes together with the existence of split variables, it is important to consider
how this affects the shared variable apportioning and the efficiency scores. In this
study, three approaches have been discussed in section 5.3.3. The first approach
presented in models (5.7) and (5.8) is to apply the usual parallel network model
without any specific treatment for the non-existing sub-processes for the DMUs. The
next approach presented in model (5.9), and akin to Cook et al.’s (2013) approach for
dealing with non-homogeneity in black-box DEA models, assesses DMU’s efficiency
based on only the existing sub-processes. The third approach presented in model
(5.10), and akin to Shen et al.’s (2018) approach for handling non-homogeneity in
black-box models, is to keep all sub-processes but assign zero values to all inputs,
outputs and split variables for the DMU for non-existent sub-process.

To empirically examine the differences in the efficiency scores from the three
approaches, the dataset for the year 2008 is used. The empirical model and the
structure of the network model is shown in equation (5.13) and Figure 5.5 except
that necessary adjustments are made depending on the specific approach adopted for
solving the network problem. As can be seen in Figure 5.5, each of the three inputs
must be split across some specific sub-processes. Installed capacity for renewable
sources is jointly provided, therefore optimal apportionment must be made across
the renewable sources (hydro, wind, renewable biomass, solar and geothermal). The
transformation input for solid fuels, oil, gases, renewable biomass and waste are
jointly reported as combustible fuels. This must also be optimally apportioned
across relevant sub-processes. Finally, the labour variable is reported at the industry
level, therefore, there is no specific sub-process allocation at the data source. This
labour variable must, therefore, be optimally allocated across all the eleven sub-
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processes. Although in Figure 5.5 the emissions variable is to be also shared across
four sub-processes, this apportionment has been done using (5.12). Therefore, no
split factors are considered for the output side. The optimal proportions using the
traditional parallel network model as shown in model (5.8) and other characteristics
of the solution have been presented in Table 5.2.

Table 5.2 Parallel network model characteristics based on equation (5.7) or (5.8).

Country
Existing
Sources
(Out of 11)

Non-existent sources
Split Factor Proportionsa

Installed
Capacity

Transformation
Input

Labour

Austria 9 Nuclear n.a n.a 0.002
Tide n.a 0.002 0.002

Belgium 9 Geothermal n.a 0.002 0.6808
Tide n.a 0.002 0.002

Bulgaria 8 Geothermal n.a 0.0597 0.0909
Tide n.a 0.002 0.0909
Waste & Biofuels [NR] 0.0035 n.a 0.0909

Croatia 6 Nuclear n.a n.a 0.002
Solar n.a 0.002 0.002
Geothermal n.a 0.0689 0.002
Tide n.a 0.002 0.002
Waste & Biofuels [NR] 0.002 n.a 0.002

Cyprus 4 Solid Fuels 0.6649 n.a 0.002
Gas 0.3291 n.a 0.002
Nuclear n.a n.a 0.002
Hydro n.a 0.4627 0.002
Geothermal n.a 0.0462 0.002
Tide n.a 0.002 0.002
Waste & Biofuels [NR] 0.002 n.a 0.002

Czech
Republic

9 Geothermal n.a 0.062 0.002
Tide n.a 0.002 0.002

Denmark 8 Nuclear n.a n.a 0.002
Geothermal n.a 0.002 0.0336
Tide n.a 0.002 0.002

Estonia 6 Nuclear n.a n.a 0.002
Solar n.a 0.0127 0.002
Geothermal n.a 0.0127 0.002
Tide n.a 0.002 0.002

Continued...
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Continuation of Table 5.2.

Country
Existing
Sources
(Out of 11)

Non-existent sources
Split Factor Proportions

Installed
Capacity

Transformation
Input

Labour

Waste & Biofuels [NR] 0.2 n.a 0.002
Finland 9 Geothermal n.a 0.002 0.2093

Tide n.a 0.002 0.002
France 10 Geothermal n.a 0.002 0.7034
Germany 10 Tide n.a 0.002 0.002
Greece 8 Nuclear n.a n.a 0.002

Geothermal n.a 0.0463 0.002
Tide n.a 0.002 0.002

Hungary 9 Geothermal n.a 0.0702 0.0909
Tide n.a 0.002 0.0909

Ireland 6 Nuclear n.a n.a 0.002
Solar n.a 0.002 0.002
Geothermal n.a 0.002 0.2254
Tide n.a 0.002 0.002
Waste & Biofuels [NR] 0.002 n.a 0.002

Italy 9 Nuclear n.a n.a 0.002
Tide n.a 0.002 0.002

Latvia 6 Nuclear n.a n.a 0.0909
Solar n.a 0.002 0.0909
Geothermal n.a 0.0498 0.0909
Tide n.a 0.002 0.0909
Waste & Biofuels [NR] 0.002 n.a 0.0909

Lithuania 7 Solar n.a 0.002 0.002
Geothermal n.a 0.1039 0.002
Tide n.a 0.002 0.002
Waste & Biofuels [NR] 0.0028 n.a 0.002

Luxembourg 7 Solid Fuels 0.002 n.a 0.0101
Nuclear n.a n.a 0.002
Geothermal n.a 0.002 0.0439
Tide n.a 0.002 0.002

Malta 1 Solid Fuels 0.6649 n.a 0.002
Gas 0.3291 n.a 0.002
Nuclear n.a n.a 0.002
Hydro n.a 0.4627 0.002

Continued...
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Continuation of Table 5.2.

Country
Existing
Sources
(Out of 11)

Non-existent sources
Split Factor Proportions

Installed
Capacity

Transformation
Input

Labour

Wind n.a 0.0448 0.002
Biomass [R] 0.002 0.4423 0.002
Solar n.a 0.002 0.002
Geothermal n.a 0.0462 0.002
Tide n.a 0.002 0.002
Waste & Biofuels [NR] 0.002 n.a 0.002

Netherlands 9 Geothermal n.a 0.002 0.2149
Tide n.a 0.002 0.002

Poland 7 Nuclear n.a n.a 0.002
Solar n.a 0.002 0.002
Geothermal n.a 0.0466 0.002
Tide n.a 0.002 0.002

Portugal 9 Nuclear n.a n.a 0.002
Tide n.a 0.002 0.002

Romania 8 Geothermal n.a 0.0577 0.0909
Tide n.a 0.002 0.0909
Waste & Biofuels [NR] 0.0056 n.a 0.0909

Slovakia 8 Solar n.a 0.002 0.002
Geothermal n.a 0.1047 0.002
Tide n.a 0.002 0.002

Slovenia 8 Wind n.a 0.002 0.002
Geothermal n.a 0.0896 0.002
Tide n.a 0.002 0.002

Spain 9 Geothermal n.a 0.002 0.1378
Tide n.a 0.002 0.002

Sweden 9 Geothermal n.a 0.002 0.0194
Tide n.a 0.002 0.002

United
Kingdom

10 Geothermal n.a 0.002 0.249

n.a: not applicable
a minimum bound is 0.002

From Table 5.2, it is evident that not a single country operated using all the
eleven sub-processes in 2008. The highest included France, Germany and the United
Kingdom, which operated 10 of the 11 generations sources. Whiles France produced
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no power from tidal energy, both the UK and Germany did not have production
from geothermal energy. On the other end is Malta, which only produced electricity
using oil-based power plants.

When the optimal split variables, using the traditional parallel network model
without adjustment, are considered across the countries, it is evident that all countries
saw some allocation to at least one non-existing sub-process. For example, 68.08%
of the labour for Belgium in 2008 was allocated to the non-existent geothermal
power sub-process. For France, as much as 70.34% of labour was allocated to
geothermal power. Similar observations can be made for installed capacity and
transformation inputs as well. For example, whereas 66.49% of the combustible
installed capacity is allocated to the non-existing solid fuels sub-process of Malta,
46.27% of the transformation input for renewable energy for the same country was
allocated to the hydro energy sub-process. The implications of these allocations
to non-existing sub-processes are twofold. First, allocating inputs to non-existing
sub-processes deprive the actual operational sub-processes the relevant inputs. This
understating of the inputs may, therefore, mean overestimation of the efficiencies
since the DMUs are assigned artificially smaller inputs. The second implication is
that when coupled with output variables that must be apportioned in the model,
then the assignment of inputs and outputs to the non-existing sub-process will mean
the DMU will have efficiency scores for non-existing sub-process. This will affect
the efficiency decomposition across the other sub-processes. It is important to note
that a minimum allocation of 0.2% for the split variable is enforced such that every
sub-process will receive some allocation. In Appendix A, the optimal allocations
where the minimum bound constraint is relaxed is presented. The results without
the minimum bound constraint are generally similar to that reported in Table 5.2.

As earlier indicated, two approaches are proposed for handling such non-homogenous
sub-processes. Table 5.3 compares the system-level efficiency scores from these two
approaches with that from the traditional parallel network model. From the table,
it seems the system efficiency scores from approach 1 are closer, on average, to the
traditional parallel network model than that of approach 2. This can be explained
by the fact that approach 2 puts more restrictions on the multipliers than approach
1. With approach 1 the non-existing sub-units are ignored in the assessment, con-
sequently, the optimal multipliers chosen by the model is unconstrained by the
constraints attributable to the other DMUs that operate using those non-existing
sub-process. As such, the price paid for a unit of the output is determined by only
the generation sources a DMU currently operates. Approach 2, however, considers
all the other sources in determining the optimal multipliers, except that it ensures
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no allocation is made for the non-existing sub-processes in terms of the split factors.
The price of the outputs is therefore determined by all the possible generation
sources available on the market.

Table 5.3 System efficiency comparison across models (2008).

Country
Traditional

Parallel NDEA
(5.8)

Approach 1
(5.9)

Approach 2
(5.10)

Score Rank Score Rank Score Rank
Austria AT 0.8208 6 0.8215 8 0.8003 3
Belgium BE 0.7281 14 0.7353 15 0.4973 18
Bulgaria BG 0.6782 21 0.6823 21 0.4879 19
Croatia HR 0.7134 19 0.7206 17 0.4245 23
Cyprus CY 0.7508 10 0.9573 1 0.5354 12
Czech Republic CZ 0.6569 23 0.6605 22 0.5565 10
Denmark DK 0.6905 20 0.6955 20 0.5973 8
Estonia EE 0.9296 1 0.9303 2 0.9000 1
Finland FI 0.7652 8 0.7695 10 0.4982 17
France FR 0.7314 13 0.7362 14 0.5066 16
Germany DE 0.7170 17 0.7172 18 0.7172 5
Greece EL 0.8763 2 0.8784 3 0.7851 4
Hungary HU 0.6434 24 0.6475 24 0.4799 21
Ireland IE 0.8319 5 0.8411 7 0.5247 14
Italy IT 0.6581 22 0.6585 23 0.6489 7
Latvia LV 0.6155 27 0.6224 27 0.3613 26
Lithuania LT 0.5145 28 0.5221 28 0.2093 28
Luxembourg LU 0.7765 7 0.8115 9 0.3467 27
Malta MT 0.7206 16 0.8759 4 0.5368 11
Netherlands NL 0.7580 9 0.7638 11 0.5579 9
Poland PL 0.8557 3 0.8564 6 0.8222 2
Portugal PT 0.7136 18 0.7141 19 0.6896 6
Romania RO 0.6382 25 0.6426 25 0.4594 22
Slovakia SK 0.6262 26 0.6341 26 0.3963 25
Slovenia SI 0.7420 12 0.7511 13 0.5286 13
Spain ES 0.7240 15 0.7289 16 0.4017 24
Sweden SE 0.8523 4 0.8578 5 0.4831 20
United Kingdom UK 0.7477 11 0.7543 12 0.5240 15
Geometric Mean 0.7259 0.7428 0.5233

Another point to note is that if a DMU assigns fewer units of the split variable
to non-existing units in the traditional parallel NDEA, the efficiency scores for
the three models are relatively closer compared to a DMU that assigns more units
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to non-existing units. An example is Italy which from Table 5.2 assigns only the
minimum allowable proportions of the split variables to the non-existent DMU
(a total of only 0.6%). Consequently, Italy’s system efficiency scores presented in
Table 5.3 are 0.6581, 0.6585 and 0.6489 for the traditional NDEA, approach 1 and
approach 2 respectively. A similar observation can be made for Germany, Austria
and Portugal. Countries with large variation in the overall scores across the three
models have very large split variable allocations across sub-processes. Cyprus, for
example, assigns a total of 99.6% of combustible fuel installed capacity and 51.09% of
renewable energy transformation input to non-existing sub-processes. It is, therefore,
not surprising that there is high variation in the overall efficiency scores from the
traditional NDEA (0.7508), approach 1 (0.9573) and approach 2 (0.5354).

Finally, differences in the ranking of countries based on the approach selected
for handling this non-homogeneity underscores the importance of correcting non-
homogeneity in the sub-processes. Since approach 2 uses the entire market data in
estimating the system and sub-process efficiencies, subsequent sub-sections of this
chapter are based on parallel network models using this approach. This is because
the price of factors must reflect the entire industrial production possibilities when
assessing the resource efficiency and sustainability in the electricity system.

5.5.3 Efficiency assessment

This section presents and discusses the results of the assessment of the sustainability
and resource efficiency in electricity generation among the EU countries. Results
presented in this section aim at providing an overview of the performance of indi-
vidual countries in minimising resource use in generating electricity from different
production sources and minimising emissions. First, the system efficiency scores,
which looks at the overall industry level data across all generation sources, are
presented. This is followed by a decomposition of the system efficiencies at the
country-level.

System efficiency

System-level efficiency scores in the traditional ‘black-box’ DEA sense do not incor-
porate any information about the composition of generation sources. As such the
country-level total inputs and total outputs are used in the efficiency assessment as
shown in (3.2). There is, therefore, no need to split any inputs across sub-processes.
However, such aggregation, which ignores the internal sub-divisions have the ten-
dency of overestimating the actual efficiency of the DMUs (Castelli et al., 2010;
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Cook et al., 2000; Tone and Tsutsui, 2009). This is shown in Figure 5.6 where the
system efficiencies based on the black-box approach and the parallel network model
(approach two) are compared.

Figure 5.6 System efficiencies from ‘black-box’ DEA model and parallel network
model (2017).

For each country, the black-box approach shows a higher efficiency score than
the parallel network approach. As a result, the parallel network approach is more
discriminatory than the black-box approach. Additionally, it allows for the decom-
position of the system efficiency to provide additional information on which specific
sub-processes require performance improvement (Kao and Hwang, 2008).

Since all countries were examined over 10 years from 2008 to 2017, a summary
of the individual country performance is presented in Figure 5.7 and Figure 5.8 .
Figure 5.7 is a boxplot with jitters that is ordered according to the median overall
system efficiencies. As such, countries on the far right of Figure 5.7 had relatively
higher resource efficiency and sustainable electricity generation on average over the
study period. As can be seen in the figure, over the 10 years, higher performers
on average have included Estonia (EE), Poland (PL), Greece (EL) and Austria
(AT). Other countries with average system-level efficiency higher than 50% include
France (FR), Portugal (PT), Germany (DE), Italy (IT), Netherlands and others.
Half of the EU countries have median system efficiency below 50% on average over
the 10 years. Luxembourg (LU), Latvia (LV) and Lithuania (LT) are at the lower
levels of sustainability in electricity generation. This is generally, similar to the 2017
distributions shown in Figure 5.6.
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Figure 5.7 Boxplot with jitters of yearly system efficiencies across countries (2008-
2017).

Figure 5.8 The level plot of yearly system efficiencies across countries (2008-2017).

A review at the jitters in Figure 5.7 shows that the performance of most countries
differs yearly. Hungary, for example, had an average efficiency of 0.4223. However,
Hungary saw system efficiency as high as 0.6281 in 2017, which shows large im-
provement over the previous years’ scores. To trace the yearly progress in resource
efficiency and sustainable electricity generation, in Figure 5.8, a level plot of the
individual country and EU-wide (average) system efficiencies over time is presented.
From the level plot, it is evident that countries like Austria, Estonia and Poland
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have maintained higher efficiency scores in the 0.7 to 1 range. Other countries like
Latvia, Lithuania and Luxembourg have had scores in the lower end of the scale
over the years. When scores of the 28 countries are averaged, it can be observed
that resource efficiency and sustainable electricity generation in the EU have been
within the 0.4 to 0.6 range with no clear pattern towards performance improvement.

Sub-process efficiency

To understand the source of the system efficiencies, it is important to decompose
the system efficiencies. Decomposition is done from the optimal multipliers using
the equations in (5.14). The decomposition of the 2017 system efficiencies is
presented in Table 5.4. Each country’s system efficiency is decomposed into the
sub-system efficiencies. It is important to remember that the system efficiency is a
weighted average of the sub-system efficiencies where the weights are the ratio of the
resource consumption in a specific sub-process to the overall system-wide resource
consumption (Kao, 2012, 2014a,c).

From Table 5.4 Lithuania, for example, has a very low system efficiency of
0.1620. However, a closer look at the decomposition shows clearly that the country’s
sustainable production problem has nothing to do with its oil-fuelled power plants as
it is a leader in this technology (1.0000). It also has a relative advantage in generating
power from renewable biomass (0.4148). Its lower efficiency in generating power
using hydroelectricity and solar is the primary cause of the lower 2017 performance
levels. The implication is that other countries use lower units of inputs to generate
higher levels of clean electricity using these technologies than Lithuania does. For
hydroelectricity as an example, Austria is the leader in sustainable and resource
efficient production. It is also possible to examine at the technology level which
other countries are higher performers.
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5.6 Chapter summary
This chapter presents optimisation models used to empirically examine cross-country
performance assessment in gross electricity production and emissions reduction. It
also presents the results of the decomposition of the overall performance to generation
source-level performances of 28 EU countries. It is shown in this chapter that where
there exists non-homogeneity in the combination of sub-processes across DMUs in
a parallel network DEA model, there is potential for inaccuracies in the system
and process efficiency scores. DEA-based optimisation models that provide a cross-
country performance assessment of electricity production in the presence of different
country-specific portfolio of generation sources are developed. Specifically, two new
optimisation approaches for handling sub-process non-homogeneity are developed
and compared with the parallel network model without such corrections. These novel
models allow for a better allocation of split factors across sub-processes, therefore,
correcting the potential overestimation of efficiencies as a result of artificially smaller
inputs from allocation of inputs to non-existing sub-processes. Additionally, the
potential for non-existing sub-processes to be assigned efficiency scores have been
solved.

An empirical application of the models is conducted using data on the 28 EU
countries as of the end of 2017. Previous studies have either conducted a country-
wide assessment of sustainable and resource efficient electricity production without
considering the sub-systems in the country or conducted sub-system assessment of
one type of production technology in a single country or across countries. However,
this empirical assessment incorporates multiple production technologies and multiple
countries in one performance assessment framework.



Chapter 6

Sustainable Electricity
Consumption

6.1 Introduction
The demand-side of the energy system has been long at the forefront of policy
on energy and the environment. Perhaps the most widely known energy policy is
energy efficiency, which is the need to ensure less energy consumption in generating
economic outputs (Feng and Wang, 2017; Honma and Hu, 2008; Zaim et al., 2017).
Energy efficiency, together with the diversification of energy supply into renewable
sources, are the main strategies driving sustainable energy policy (Prindle et al.,
2007). There is a wide range of policies and directives aimed at ensuring access to
clean and cheap energy required to ensure both economic and social development
(EEA, 2017; Hadian and Madani, 2015; Kazagic et al., 2014; United Nations, 2015;
Volkart et al., 2018). Consequently, the aim of assessment at the use phase of the
energy system aims at examining how energy is used for both economic and social
purposes while minimising the impact on the environment.

This chapter examines the performance of the EU countries in consuming energy
and ensuring economic productivity and social development while minimising envi-
ronmental impact. In this regard, the assessment integrates eco-efficiency assessment,
social development assessment and environmental impact assessment in a single
assessment framework. This is achieved using a multi-stage network assessment
approach which links these three policy areas in a manner that shows their close
relationship and complementarity.

The first stage of the assessment is dedicated to social development where
countries are benchmarked on their ability to ensure better welfare for citizens.
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At this stage, this thesis differs from existing research in two main ways. First,
electricity consumption at the household level is modelled as an input required
for higher human development and welfare. There is a plethora of evidence to
support the fact that countries with a secure supply of power tend to have higher
social performance in terms of health, literacy, employment, income, among others
(Dias et al., 2006; European Commission, 2007; Gaye, 2007; Johansson et al., 2012;
Ouedraogo, 2013). However, existing research does not incorporate energy as an
input in social development assessment (Freire et al., 2018; Hou et al., 2015; Ülengin
et al., 2011; Mariano et al., 2015). Consequently, an electricity/energy development
index is proposed as a measure of social development. Second, while the HDI
has been widely used for such assessment, it only measures education attainment,
income and health (Freire et al., 2018; Hou et al., 2015). This study, therefore,
proposes the inclusion of employment as an important factor to be maximised in
social development assessment.

The second stage of the assessment pertains to economic development assessment.
Here factors of production, namely labour, capital and energy, are consumed in
generating economic outputs. However, environmental emissions are a by-product
of increased economic productivity. While assessment in this phase has been
widely studied in the literature (Lu and Lu, 2019; Mavi et al., 2019; Robaina-Alves
et al., 2015), the novel contribution of this thesis is how this assessment is linked
to social development phase and environmental performance assessment together
with the electricity generation phase. Specifically, while the labour input in the
economic development phase is an important output in the social development phase,
the environmental emissions output which is in a joint production with economic
outputs is an input in the environmental performance assessment. Finally, energy
is separated into electric energy and other primary fuels. The link between the
electricity generation system and the energy input for economic productivity is also
studied.

The final stage of the multi-stage assessment is dedicated to environmental
performance analysis. Environmental performance studies in the literature are based
on the modelling of environmental output in the economic development phase (Mavi
et al., 2019; Sueyoshi and Goto, 2015) or the abatement of some environmental
factors in the second stage of eco-efficiency assessment (Wang et al., 2018). However,
this study proposes the use of the relationship between ecological footprint and bio-
capacity for studying the performance of countries in terms of their environmental
performance. Specifically, emissions from economic productivity together with
emissions from electricity production are modelled as undesirable inputs in this
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phase. The output considered is bio-capacity, which is nature’s bio-productivity
or capacity to contain the human impact on the environment (Siche et al., 2008).
Sustainability implies minimising the ecological footprint and maximising the bio-
capacity of countries (DiMaria, 2019; Geng et al., 2014). As emissions, specifically
carbon footprint, is an important component of the ecological footprint (DiMaria,
2019; Geng et al., 2014), the environment performance assessment aims at minimising
such emissions given the bio-capacity of countries under investigation.

It is important to note that the three stages highlighted above are the three
dimensions of Elkington’s (1997) triple bottom line of sustainability – social, economic
and environmental objectives. Therefore, the overall score that incorporates all
three stages can be seen as a measure of sustainable use of electricity. Generating an
aggregate measure across these three phases also provides an opportunity to study the
difference in aggregation based on a weaker form of sustainability, where dimensions
are allowed to be compensated when they reduce in stock or a stronger form of
sustainability which does not allow for compensation between dimensions (Bonevac,
2010; Gallopín, 2003; Kuhlman and Farrington, 2010; Pearce and Atkinson, 1998;
Turner, 1993). Specifically, the use of the additive and multiplicative composition of
the overall system performance measures across the three phases provide another
interesting area of assessment.

Finally, this sustainability assessment in the use phase of the energy system is
combined with the sustainability assessment in the generation phase captured in
the previous chapter. As a result, an integrated model that provides a cross-country
holistic performance assessment of the generation and consumption phases of the
energy system, which incorporates differences in generating portfolio of countries at
the generation phase, and eco-socio-environmental interrelationships at the use phase
is proposed and empirically applied. This assessment, therefore, captures policy
issues relating to energy security and clean energy, which are essential components
of the energy trilemma- clean, secure and affordable energy (Jovanović et al., 2010).

In addressing these issues, the remainder of the chapter is organised as follows:
Section 6.2 provides a brief overview of policy considerations and extant literature on
energy and economic, social and environmental performance. This is then followed
by Section 6.3 which provides an overview of methods and models to be used for
the development of empirical models that integrates the three sustainability phases.
Section 6.4 is dedicated to the analysis of empirical data and the presentation
of findings and discussions. This section is divided into two main sub-sections.
Sub-section 6.4.1 integrates the social, economic and environmental assessment in a
single framework. Here the concepts of weak and strong sustainability are explored
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while aggregating of the three dimensions. Sub-section 6.4.2 then integrates the
generation and consumption phases of the energy system in one assessment. Finally,
Section 6.5 provides conclusions and chapter summary.

6.2 Sustainability and electricity consumption
Policy on sustainable development has always had close links with the energy sector.
Although there is a clear SDG on access to affordable, reliable, sustainable and
modern energy for all (SDG 7) (United Nations, 2015; Volkart et al., 2018), several
remaining SDGs including climate action (SDG 13), responsible consumption and
production (SDG 12), good health and well-being (SDG 3), among others have a
clear link with sustainable energy system (United Nations, 2015). Therefore, the
main energy policy objectives for sustainable energy include demand-side issues like
provision of equitable and affordable access, which ensures the security of energy
supply and environmental sustainability (Štreimikienė et al., 2012). In this section,
a brief overview of energy and the economy, society and environment is presented.

6.2.1 Energy and economic development

Energy is a critical input for economic development (Mondal and Denich, 2010;
Shaaban and Scheffran, 2017) as access to reliable power ensures poverty reduction
and industrial productivity (Fouquet, 2016). Karanfil and Li (2015), for example,
show the various causal mechanisms that explain the relationship between energy
and economic development. Environmental Kuznets curve and pollution haven
hypothesis have also explored energy consumption, carbon emissions and economic
development (Sarkodie and Strezov, 2019; Zaman and Moemen, 2017). In the
performance assessment literature, research linking energy and the environment
have been based on TFEE assessment (Hu and Wang, 2006; Zhang et al., 2011) or
eco-efficiency assessment (Camarero et al., 2014, 2013; Rybaczewska-Błażejowska
and Masternak-Janus, 2018). Although these streams of literature use similar
variables, their focuses are slightly different. While TFEE examines the energy-
saving potential in generating economic outputs (Zhang et al., 2011), eco-efficiency
assessment measures the ability to produce more economic outputs while minimising
resource use and environmental impacts (Camarero et al., 2014; Huppes and Ishikawa,
2005).
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6.2.2 Energy and social development

The availability of reliable energy fosters the development of social systems and
expectations such as health, education, employment and quality of life. Empirical
evidence, based on UN data, provided in Figure 2.3 in Chapter 2, shows a strong
positive association between electricity consumption and income, employment, health
and literacy. Policy and performance assessment linking society and energy have
primarily been towards social acceptance of generation sources and social impact of
energy generation (Afgan and Darwish, 2011; Chatzimouratidis and Pilavachi, 2009;
Duan et al., 2011; European Commission, 2007; Frangopoulos and Keramioti, 2010;
Pilavachi et al., 2006; Rovere et al., 2010). There is a separate stream of literature
which assesses social development using social indicators such as the HDI (Freire
et al., 2018; Ülengin et al., 2011; Mariano et al., 2015; Ouedraogo, 2013). However,
such literature does not consider energy consumption as a relevant input, although
there is empirical evidence of an association between energy consumption and social
development. Another stream of energy research that is based on the HDI is the EDI
developed by the IEA as a measure to track the progress of countries in the use of
modern energy and better understand the role energy plays in human development
(Johansson et al., 2012). However, this measure does not include any measure of
social development inspite of being created to mirror the HDI. As energy is a key
input to development and human well-being cannot be advanced without access to
electricity (Johansson et al., 2012), energy must be incorporated in the assessment
of social development.

6.2.3 Energy and environmental performance

The relationship between the energy system and the environment is well understood
in the literature. Energy-related activities require resource consumption from the
environment and also produce negative externalities harmful to the environment
(Lu et al., 2016; Varun et al., 2009). Consequently, sustainable development requires
that affordable and reliable energy is derived from environmentally appropriate
supply sources (Afgan et al., 2007). This requires continuous monitoring of emissions
given the capacity of the environment to absorb such emissions. In the perfor-
mance assessment literature, such environment performance assessment are usually
conducted within the traditional productive efficiency analysis (Coelli et al., 2007)
where environmental factors are captured as undesirable outputs as a by-product
of other desirable factors (Bevilacqua and Braglia, 2002; Bi et al., 2014; Chang
et al., 2013). Such analysis, therefore, looks at environmental efficiency as ensuring
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minimum feasible environmental outputs from the use of multiple environmentally
detrimental inputs (Reinhard et al., 2000). However, sustainable development from
the environmental point of view is discussed as a relationship between ecological
footprint and bio-capacity. Countries with a higher biological capacity to contain
pollution are seen to be more sustainable than those with higher ecological footprint
relative to their biological capacity (DiMaria, 2019; Geng et al., 2014). It is possible,
therefore, to conduct a separate environmental performance assessment that uses
emissions from various economic and industrial sources as inputs to be minimised
given the bio-capacity of the countries in question. This is the approach adopted in
this thesis.

6.3 Methods and modelling

6.3.1 Multi-stage network DEA

As earlier indicated, there exist links between the sub-systems studied in this chapter
in the form of intermediate inputs and outputs. Where outputs of one sub-process
are consumed by other sub-processes, there exist a series or a multi-stage network
problem. The general multi-stage series structure shown in Figure 3.3 is replicated
as follows:
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Figure 6.1 General multi-stage series structure.

Source: Kao (2014a, pg. 7)

Here, X
(p)
i , i ∈ I(p) represents exogenous inputs from outside the system under

investigation but are consumed by sub-processes p. Y (p)
r , r ∈ O(p) are outputs

produced by sub-process p but are not consumed by other sub-processes. Finally,
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Z
(p)
f , f ∈ M (p) are intermediate factors produced (consumed) by sub-processes and

consumed (produced) by sub-process p. Given these factors, the efficiency of a
sub-process p can be computed as:

E(p)
o = max

∑
r∈O(p)

urY
(p)

ro + ∑
f∈M(p)

wfZ
(p)

fo

∑
i∈I(p)

viX
(p)
io + ∑

f∈M(p)
wfZ

(p−1)
fo

(6.1a)

s.t.

∑
r∈O(p)

urY
(p)

rj + ∑
f∈M(p)

wfZ
(p)

fj

∑
i∈I(p)

viX
(p)
ij + ∑

f∈M(p)
wfZ

(p−1)
fj

≤ 1 , j = 1, 2, . . . , n (6.1b)

ur, vi, wf ≥ ε, r = 1, ..., s, i = 1, ..., m, f = 1, . . . , h

Each sub-process will have a similar model as a measure of its efficiency, except
that sub-system 1 will have no intermediate input and sub-system q will have
no intermediate output. Note that the multiplier for an intermediate measure is
assumed to be the same whether it is used as an input or output (Kao and Hwang,
2008) since the price of the factor, on the market, remains the same irrespective of
how it is used in the system (Kao, 2012). The sub-process efficiencies must then
be combined in a way that characterise the efficiency of the system. Various series
structure models were reviewed in Section 3.3.1 of this thesis.

In this chapter, the centralised or cooperative model (Liang et al., 2008) is used
since no leader-follower relationship is assumed to exist between social, economic
and environmental aspects of sustainability. An ‘anthropocentric’ assessment may
give preference to economic and social sub-processes since it assumes nature exists
to satisfy human needs (Baumgärtner and Quaas, 2010). On the other hand, ‘bio-
centric or eco-centric viewpoints’ see the environment as the ethical precondition for
sustainability even at the point of excluding humans or increasing human poverty
and may give preference to the environmental sub-system (Gallopín, 2003). As
nature and humans have inescapable biological interdependence (Becker, 2006), the
centralised model which requires no a priori preference for a particular sub-process
is employed. Two approaches for combining or decomposing the system efficiencies
are employed in this study. These are presented in the next sub-sections.
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Additive decomposition

The additive decomposition approach proposed by Chen et al. (2009) and Cook, Zhu,
Bi and Yang (2010) define the system efficiency as a weighted additive average of the
sub-system efficiencies. Therefore, system efficiency is a linear convex combination
of the q sub-system efficiencies Eo = ∑q

p=1 ω(p)E(p)
o given that ∑q

p=1 ω(p) = 1. The
weight of the sub-system could be exogenously determined, however, Cook, Zhu,
Bi and Yang (2010) suggest weighting the sub-processes by the proportion of their
resource consumption to the system’s resource consumption. In that case, the weight
of sub-systems will be determined as:

ω(1) =
∑

i∈I(1)

viX
(1)
io /

 ∑
i∈I(1)

viX
(1)
io +

q−1∑
p=2

 ∑
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(p)
io +

∑
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wfZ
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fo


+

∑
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io +
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fo

 (6.2a)
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(6.2b)
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 (6.2c)
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If these weights are applied on the sub-system efficiency ratios as shown in (6.1),
then the additive system efficiency of a DMU can be expressed as:

E0 = max
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(p)

rj +
∑

f∈M(p)

wfZ
(p)

fj

−

 ∑
i∈I(p)

viX
(p)
ij +

∑
f∈M(p)

wfZ
(p−1)

fj

 ≤ 0

p = 2, . . . , q − 1, j = 1, 2, . . . , n (6.3d)
∑

r∈O(q)

urY
(q)

rj −

 ∑
i∈I(q)

viX
(q)
ij +

∑
f∈M(q−1)

wfZ
(q−1)
fj

 ≤ 0 j = 1, 2, . . . , n

(6.3e)

ur, vi, wf ≥ ε, r = 1, ..., s, i = 1, ..., m, f = 1, . . . , h (6.3f)

The objective can be replaced by ∑s
r=1 urYro+

∑h
f=1 wfZfo, while the left-hand

side of the first constraint could be: ∑m
i=1 viXio+

∑h
f=1 wfZfo. As this decomposition

of the system efficiency is additive, the system efficiency measure allows compensation
between sustainability dimensions akin to the idea of weak sustainability. The sub-
process efficiencies can be computed from the optimal multipliers u∗

r, v∗
i and w∗

f ,
as:

E(a1)∗
o =

∑
r∈O(1)

u∗
rY

(1)
ro + ∑

f∈M(1)
w∗

fZ
(1)
fo

m∑
i=1

v∗
i X

(1)
io

(6.4a)
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E(ap)∗
o =

∑
r∈O(p)

u∗
rY

(p)
ro + ∑

f∈M(p)
w∗

fZ
(p)
fo∑

i∈I(p)
v∗

i X
(p)
io + ∑

f∈M(p−1)
w∗

fZ
(p−1)
fo

, p = 2, . . . , q − 1 (6.4b)

E(aq)∗
o =

∑
r∈O(q)

u∗
rY

(q)
ro∑

i∈I(q)
v∗

i X
(q)
io + ∑

f∈M
(q−1)
I

w∗
fZ

(q−1)
fo

(6.4c)

Multiplicative decomposition

Kao and Hwang (2008) proposed a multiplicative decomposition of the system
efficiency in the two-stage serial network structure as a product of the sub-system
efficiencies. Their system was based on the closed system two-stage structure where
stage two only consumes the outputs of stage one, while stage one produces no
exogenous outputs (Cook, Zhu, Bi and Yang, 2010). They later proposed a relational
model for multi-stage serial networks as presented in Figure 6.1, which is an extension
of their multiplicative decomposition (Kao, 2014a).

This is achieved by transforming the multi-stage network into a series of parallel
structures where the product of the modified stage efficiencies represents the system
efficiency. The transformed multi-stage network for Figure 6.1 is shown in Figure
6.2. This is achieved by introducing a dummy parallel sub-process for each of the
stages in Figure 6.1 to capture the inputs and outputs of the intermediate processes
(Kao, 2009a).

In Figure 6.2, the dummy sub-processes are represented by the shaded nodes.
Dummy sub-process p′ captures all exogenous inputs yet to be consumed by sub-
sequent sub-processes and exogenous outputs already produced by previous sub-
processes. These inputs and outputs are not attributable to sub-process p. For
example at p′, from Figure (6.2), exogenous inputs to be consumed by subsequent
sub-processes include the inputs for sub-processes p + 1 and all subsequent sub-
processes until the final sub-process q. Outputs produced by previous sub-processes,
which are not attributable to sub-process p, include outputs produced by sub-process
1 until sub-process p − 1. For the dummy sub-process, the inputs are the same as
the outputs and consequently, the constraints for these sub-processes are redundant.
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Figure 6.2 Transformation of the multi-stage network in Figure 6.1 to a series of
parallel networks.

Model (6.5) shows the constraints for the dummy sub-processes 1′, p′ and q′. Note
that j = 1, . . . , n and p = 1, . . . , q.

q−1∑
p=2

∑
i∈I(p)

viX
(p)
ij +

∑
i∈I(q)

viX
(q)
ij ≤

q−1∑
p=2

∑
i∈I(p)

viX
(p)
ij +

∑
i∈I(q)

viX
(q)
ij (6.5a)

p−1∑
p=1

∑
r∈O(p)

urY
(p)

rj +
q∑

p+1

∑
i∈I(p)

viX
(p)
ij ≤

p−1∑
p=1

∑
r∈O(p)

urY
(p)

rj +
q∑

p+1

∑
i∈I(p)

viX
(p)
ij (6.5b)

q−1∑
p=1

∑
r∈O(p)

urY
(p)

rj ≤
q−1∑
p=1

∑
r∈O(p)

urY
(p)

rj (6.5c)

For each parallel sub-process, the efficiency of the dummy sub-process will
be unity since inputs are the same as the outputs. In parallel network models,
the efficiency of the system is a weighted average of the sub-process efficiencies
(Kao, 2009b, 2012), so the efficiency of each of the new parallel system will be a
weighted average of the real and the dummy sub-processes efficiencies (Kao, 2014a).



6.3 Methods and modelling 160

Constraints must be imposed to ensure that sub-system efficiency are not greater
than one:

 ∑
r∈O(1)

urY
(1)

rj +
∑

f∈M(1)

wfZ
(1)
fj +

q−1∑
p=2

∑
i∈I(p)

viX
(p)
ij +

∑
i∈I(q)

viX
(q)
ij


−

 ∑
i∈I(1)

viX
(1)
ij +

q−1∑
p=2

∑
i∈I(p)

viX
(p)
ij +

∑
i∈I(q)

viX
(q)
ij

 ≤ 0 j = 1, 2, . . . , n

(6.6a) ∑
r∈O(p)

urY
(p)

rj +
∑

f∈M(p)

wfZ
(p)

fj +
p−1∑
p=1

∑
r∈O(p)

urY
(p)

rj +
q∑

p+1

∑
i∈I(p)

viX
(p)
ij


−

 ∑
i∈I(p)

viX
(p)
ij +

∑
f∈M(p)

wfZ
(p−1)

fj +
p−1∑
p=1

∑
r∈O(p)

urY
(p)

rj +
q∑

p+1

∑
i∈I(p)

viX
(p)
ij

 ≤ 0

p = 2, . . . , q − 1, j = 1, 2, . . . , n (6.6b) ∑
r∈O(q)

urY
(q)

rj +
q−1∑
p=1

∑
r∈O(p)

urY
(p)

rj


−

 ∑
i∈I(q)

viX
(q)
ij +

∑
f∈M(q−1)

wfZ
(q−1)
fj +

q−1∑
p=1

∑
r∈O(p)

urY
(p)

rj

 ≤ 0 j = 1, 2, . . . , n

(6.6c)
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If identical elements are removed from each of the constraints in (6.6) and the
redundant constraints in (6.5) are removed, system efficiency using the multiplicative
decomposition can be computed using the LP model:

E0 = max
∑

r∈O(1)

urY
(1)

ro +
∑

r∈O(p)

urY
(p)

ro +
∑

r∈O(q)

urY
(q)

ro (6.7a)

s.t.
∑

i∈I(1)

viX
(1)
io +

∑
i∈I(p)

viX
(p)
io +

∑
i∈I(p)

viX
(q)
io = 1 (6.7b)

 ∑
r∈O(1)

urY
(1)

rj +
∑

f∈M(1)

wfZ
(1)
fj

−
∑

i∈I(1)

viX
(1)
ij ≤ 0 j = 1, 2, . . . , n

(6.7c) ∑
r∈O(p)

urY
(p)

rj +
∑

f∈M(p)

wfZ
(p)

fj

−

 ∑
i∈I(p)

viX
(p)
ij +

∑
f∈M(p)

wfZ
(p−1)

fj

 ≤ 0

p = 2, . . . , q − 1, j = 1, 2, . . . , n (6.7d)
∑

r∈O(q)

urY
(q)

rj −

 ∑
i∈I(q)

viX
(q)
ij +

∑
f∈M(q−1)

wfZ
(q−1)
fj

 ≤ 0

j = 1, 2, . . . , n (6.7e)
ur, vi, wf ≥ ε, r = 1, ..., s, i = 1, ..., m, f = 1, . . . , h (6.7f)

The objective function can be replaced by ∑s
r=1 urYro, while the left-hand side

of the first constraint could be: ∑m
i=1 viXio. From this, the efficiency ratio of each of

the new parallel sub-systems can be determined as:

E(m1)∗
o =

∑
r∈O(1)

u∗
rY

(1)
ro + ∑

f∈M(1)
w∗

fZ
(1)
fo +

q−1∑
p=1

∑
i∈I(p)

v∗
i X

(p)
io + ∑

i∈I(q)
v∗

i X
(q)
io

∑
i∈I(1)

v∗
i X

(1)
io +

q−1∑
p=1

∑
i∈I(p)

v∗
i X

(p)
io + ∑

i∈I(q)
v∗

i X
(q)
io

(6.8a)

E(mp)∗
o =

∑
r∈O(p)

u∗
rY

(p)
ro + ∑

f∈M(p)
w∗

fZ
(p)

fo + ∑
i∈I(q)

v∗
i X

(q)
io + ∑

r∈O(1)
u∗

rY
(1)

ro

∑
i∈I(p)

v∗
i X

(p)
io + ∑

f∈M(p)
w∗

fZ
(p−1)

fo + ∑
i∈I(q)

v∗
i X

(q)
io + ∑

r∈O(1)
u∗

rY
(1)

ro

p = 2, . . . , q − 1

(6.8b)
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E(mq)
o =

∑
r∈O(q)

u∗
rY

(q)
ro + ∑

r∈O(p)
u∗

rY
(p)

ro + ∑
r∈O(1)

u∗
rY

(1)
ro

∑
i∈I(q)

v∗
i X

(q)
io + ∑

f∈M(q−1)
w∗

fZ
(q−1)
fo + ∑

r∈O(p)
u∗

rY
(p)

ro + ∑
r∈O(1)

u∗
rY

(1)
ro

(6.8c)

Since the efficiency of the parallel system is a weighted average of the actual
sub-process and the dummy sub-process (with efficiency = 1), the efficiency of
the actual sub-process in the parallel structure can be computed using (6.4). The
multiplicative decomposition, therefore, treats the overall system efficiency as some
form of a geometric average (Chen et al., 2009) thereby minimising the level of
compensation between dimensions as required by strong sustainability advocates.
R/R studio is used to solve all models and generate graphs in subsequent sections.

6.4 Empirical assessments
The empirical assessment is divided into two main sub-sections. The first concentrates
the assessment on the consumption phase where social development, economic
development and environmental performance assessments are conducted. The second
section integrates the generation assessment in chapter 5 with the consumption
assessment into a single assessment framework.

6.4.1 Social, economic and environmental performance as-
sessment

System description – consumption system

The conceptual framework that serves as the basis for assessment in this chapter
has been previously presented in Figure 4.5 of this thesis. This multi-stage network
structure presented in Figure 4.5 was based on causal loop diagram developed from
literature and presented in Figure 4.2. The empirical evaluation framework for this
sub-section is presented in Figure 6.3.

Three sub-processes corresponding to the three dimensions of sustainability are
assessed in a multi-stage network problem. For the three sub-processes, there are
a total of six inputs, two intermediate factors and three outputs in the evaluation
framework. Although electricity supply is depicted in Figure 4.5 as a shared input to
be apportioned between social development and economic development sub-processes,
in Figure 6.3, electricity consumption has been depicted as dedicated inputs to
individual sub-processes. This is because in the social development sub-sector
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Figure 6.3 Evaluation framework of the consumption system.

only household electricity consumption is used. All other electricity consumption,
including industry, transport, energy, commercial and public services, agriculture
and forestry, and fishing (European Commission, 2020), have been assigned to the
economic development sub-process.

Variables and data sources are summarised in Table (6.1). Household electricity
consumption (X1) and non-household electricity consumption (X3) are measured
in TWh. Government public expenditure (X2) represents total general government
expenditure on general public services, defence, public order and safety, economic
affairs, environmental protection, housing and community amenities, health, recre-
ation, culture and religion, education and social protection (Eurostat, 2019b). This
variable is measured in trillions of euros. HDI (Y1) is a standard measure of well-
being, which is a composite measure comprising variables on health, education and
income (Freire et al., 2018; Ouedraogo, 2013). Employment, measured in millions,
represents the number of people aged 15 to 64 years employed in all economic
sectors. GDP in trillions of euros is measured at 2010 exchange rates. Capital stock,
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Table 6.1 Variables and data sources.

Variable Unit Source
Household electricity

consumption (X1)
TWh European

Commission (2020)
Government public
expenditure (X2)

Trillions of euros Eurostat (2020)

Non-household electricity
consumption (X3)

TWh European
Commission (2020)

Capital stock (X4) Trillions of 2011 U.S.
dollars

Penn World Tables
Feenstra et al.

(2015)
Non-electricity primary

energy inputs (X5)
MTOE European

Commission (2020)
Emissions from

electricity production
(X6)

Mt CO2 European
Commission (2020)

Employment (Z1) Millions Eurostat (2020)
Non-electricity emissions

(Z2)
Mt CO2 European

Commission (2020)
HDI (Y1) Unit-free UNDP (2019)
GDP (Y2) Trillions of 2010

euros
European

Commission (2020)
Bio-capacity (Y2) Global hectares Global Footprint

Network (2016)

on the other hand, is measured in trillions of dollars at 2011 U.S. dollar national
prices. The non-electric primary energy inputs (X5) represent all other primary
energy inputs consumed in the country that was not used for electricity generation.
These include those used in refineries, petroleum production and other relevant
sectors (European Commission, 2020). Emissions data comprises that from public
electricity and heat production (X6) and that from other sectors like manufacturing
and construction, transportation, agriculture and other sectors including even other
non-electricity producing energy industries (Z2). Finally, the bio-capacity, measured
in global hectares, represents total productive capacity taking into consideration
actual physical area, the yield factor and the appropriate equivalence factor (Global
Footprint Network, 2016). For bio-capacity, since pollution affects the bio-capacity
already available, the bio-capacity variable is lagged by one year. All variables except
the electricity and emissions variables are normalised in the empirical assessment.

The electricity and energy consumption data, together with the emissions and
GDP are sourced from the EU’s 2020 energy statistics datasheets (European Com-



6.4 Empirical assessments 165

mission, 2020). Government public expenditure and employment data are sourced
from the Eurostat database (Eurostat, 2020). HDI is sourced from the United
Nations Development Programme (UNDP) database (UNDP, 2019). Finally, while
the capital stock data is sourced from the Penn World Tables (Feenstra et al., 2015),
bio-capacity data are sourced from the Global Footprint Network (Global Footprint
Network, 2016).

Model formulation

From the system description in 6.4.1, the sub-process models for the social, economic
and environmental models are formulated as follows:

E(soc)
o = max u1Y1o + w1Z1o (6.9a)
s.t. v1X1o + v2X2o = 1 (6.9b)(

u1Y1j + w1Z1j

)
−
(
v1X1j + v2X2j

)
≤ 0 j = 1, 2, . . . , n (6.9c)

u1, v1, v2, w1 ≥ ε (6.9d)

E(econ)
o = max u2Y2o + w2Z2o (6.10a)
s.t. v3X3o + v4X4o + v5X5o + w1Z1o = 1 (6.10b)(

u2Y2j + w2Z2j

)
−
(
v3X3j+ v4X4j (6.10c)

+ v5X5j + w1Z1j

)
≤ 0 j = 1, 2, . . . , n (6.10d)

u2, v3, v4, v5, w1 ≥ ε, w2 urs (6.10e)

E(env)
o = max u3Y3o (6.11a)
s.t. v6X6o + w2Z2o = 1 (6.11b)

u3Y3j −
(
v6X6j + w2Z2j

)
≤ 0 j = 1, 2, . . . , n (6.11c)

u3 ≥ ε, v6, w2 urs (6.11d)

Non-electricity emission is a weakly disposable output in (6.10) as such is
unrestricted in the multiplier version of the model. In the environmental sub-system
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shown in (6.11), as an increase in emissions has the potential of reducing the desirable
output (bio-capacity), therefore, both emissions variables are undesirable inputs in
this stage as well Liu et al. (2015). As the emissions variable is an undesirable output
in the economic (or electricity production) sub-system and an undesirable input
in the environmental sub-system, these emissions variables satisfy the consistency
condition in determining the desirability of intermediate input-output Liu et al.
(2015). As these variables are weakly disposable in the primal envelopment model,
they are unrestricted in the dual multiplier model.

These sub-process models, as formulated are independent of each other. It is
important to link them to generate a system score and a sub-process decomposition
based on optimal multipliers. Two decomposition approaches are used – multiplica-
tive decomposition (6.12) and additive decomposition (6.15). The multiplicative
model is as follows:

E0 = max u1Y1o + u2Y2o + u3Y3o (6.12a)
s.t. v1X1o + v2X2o + v3X3o + v4X4o + v5X5o + v6X6o = 1 (6.12b)(

u1Y1j + w1Z1j

)
−
(
v1X1j + v2X2j

)
≤ 0 j = 1, 2, . . . , n (6.12c)(

u2Y2j + w2Z2j

)
−
(
v3X3j+ v4X4j + v5X5j + w1Z1j

)
≤ 0

j = 1, 2, . . . , n (6.12d)
u3Y3j −

(
v6X6j + w2Z2j

)
≤ 0 j = 1, 2, . . . , n (6.12e)

u1, u2, u3, v1, v2, v3, v4, v5, w1 ≥ ε v6, w2 urs (6.12f)

From the optimal multipliers, the efficiency decomposition based on the multi-
plicative decomposition is as follows:

Em(I)∗
o = u∗

1Y1o + w∗
1Z1o + v∗

3X3o + v∗
4X4o + v∗

5X5o + v∗
6X6o

v∗
1X1o + v∗

2X2o + v∗
3X3o + v∗

4X4o + v∗
5X5o + v∗

6X6o

(6.13a)

Em(II)∗
o = u∗

2Y2o + w∗
2Z2o + u∗

1Y1o + v∗
6X6o

v∗
3X3o + v∗

4X4o + v∗
5X5o + w∗

1Z1o + u∗
1Y1o + v∗

6X6o

(6.13b)

Em(III)∗
o = u∗

3Y3o + u∗
1Y1o + u∗

2Y2o

v∗
6X6o + w∗

2Z2o + u∗
1Y1o + u∗

2Y2o

(6.13c)

This decomposition represents the efficiencies of the three parallel sub-systems
with one actual sub-process and one dummy sub-processes. The efficiency of the
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actual sub-processes can be determined as:

Em(soc)∗
o = u∗

1Y1o + w∗
1Z1o

v∗
1X1o + v∗

2X2o

(6.14a)

Em(econ)∗
o = u∗

2Y2o + w∗
2Z2o

v∗
3X3o + v∗

4X4o + v∗
5X5o + w∗

1Z1o

(6.14b)

Em(env)∗
o = u∗

3Y3o

v∗
6X6o + w∗

2Z2o

(6.14c)

Additive system efficiency is determined using:

E0 = max u1Y1o + w1Z1o + u2Y2o + w2Z2o + u3Y3o (6.15a)
s.t. v1X1o + v2X2o + v3X3o + v4X4o + v5X5o + w1Z1o + v6X6o + w2Z2o = 1

(6.15b)(
u1Y1j + w1Z1j

)
−
(
v1X1j + v2X2j

)
≤ 0 j = 1, 2, . . . , n (6.15c)(

u2Y2j + w2Z2j

)
−
(
v3X3j+ v4X4j + v5X5j + w1Z1j

)
≤ 0

j = 1, 2, . . . , n (6.15d)
u3Y3j −

(
v6X6j + w2Z2j

)
≤ 0 j = 1, 2, . . . , n (6.15e)

u1, u2, u3, v1, v2, v3, v4, v5, w1 ≥ ε v6, w2 urs (6.15f)

From the optimal multipliers, the sub-system efficiencies can be computed as follows:

Ea(soc)∗
o = u∗

1Y1o + w∗
1Z1o

v∗
1X1o + v∗

2X2o

(6.16a)

Ea(econ)∗
o = u∗

1Y2o + w∗
2Z2o

v∗
3X3o + v∗

4X4o + v∗
5X5o + w∗

1Z1o

(6.16b)

Ea(env)∗
o = u∗

3Y3o

v∗
6X6o + w∗

2Z2o

(6.16c)

In the next section, a descriptions of the data and empirical findings and discussion
are presented.

Data description

Input, output and intermediate factors employed in this section are summarised in
Table 6.1. The summary is based on the pooled data from 2008 to 2017. The table
lists the variables and descriptive statistics for each relevant sub-process.
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Table 6.2 Summary statistics of variables used (2008-2017).

mean sd min max sub-
process(es)

Outputs
HDI Y1 0.87 0.04 0.77 0.94 Soc
GDP Y2 473.94 710.64 6.37 2928.07 Econ
Bio-capacity Y3 3.8E+07 4.1E+07 2.6E+05 1.8E+08 Env
Inputs
Household electricity
consumption

X1 29.16 40.94 0.57 166.13 Soc

Government public
expenditure

X2 236.13 358.93 2.57 1441.42 Soc

Non-household
electricity consumption

X3 73.68 98.32 1.14 405.69 Econ

Capital stock X4 2974.20 4197.55 35.69 15656.57 Econ
Non-electricity TPEI X5 31.16 39.19 0.00 167.11 Econ
GHG from electricity
sector

X6 41.40 65.95 0.24 336.72 Env

Intermediate Factors
Employment Z1 7.68 9.92 0.16 40.48 Soc-Econ
GHG from
non-electricity sectors

Z2 125.87 165.17 1.25 671.32 Econ-Env

Soc. – social development, Econ. – economic development, Env. – environmental
performance
n - 280

Average HDI of EU countries over the study period was 0.8703 (sd = 0.0391)
showing countries under assessment have very high levels of health, education
and income levels with low difference between countries. This is not particularly
surprising as the countries are all developed economies (United Nations, 2019).
However, there is considerable variation in GDP (m = 473.94, sd = 710.64) and the
bio-capacity (m = 38,000,000, sd = 41,400,000). Due to the high difference in the
scale of these variables, all outputs are normalised to have them in a similar range.
For the inputs, more electricity is consumed for economic activities (m = 73.68,
sd = 98.32) than household consumption (m = 29.16, sd = 40.94). Areas of non-
household industrial consumption include industry, transport, agriculture and energy
production (European Commission, 2020). Finally, when the emissions variables are
compared, on average about 33% of GHG emissions are generated from electricity
production. This is particularly high for a single industry as the remaining emissions
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are from many industries including manufacturing, transportation, agriculture,
among others.

Results and analysis

As has been indicated earlier, both the additive and multiplicative decomposition of
system efficiency are conducted in the assessment. While additive decomposition
defines the system (consumption system) efficiency as a weighted average of the
sub-system efficiencies, multiplicative decomposition defines the system efficiency
from the product of the series of parallel sub-systems.

It is argued that both the additive and multiplicative approaches provide insights
into different views of sustainability. This is because additive and multiplicative
decomposition allow for an alternative perspective on overall (sustainability) perfor-
mance based on whether compensation should be allowed between the sustainability
dimensions (Hacatoglu et al., 2015a; Kuhlman and Farrington, 2010). Consequently,
while additive decomposition allows for some considerable compensation between
dimensions, which aligns with the views of weak sustainability (Kuhlman and Far-
rington, 2010; Pomerol and Barba-Romero, 2000), multiplicative decomposition
limits the level of compensation between the dimensions, thus aligning with the view
of strong sustainability (Kuhlman and Farrington, 2010). The difference between
additive and multiplicative composition of measures is further discussed in the
next chapter of this thesis. The 2017 system efficiencies and decompositions using
the additive decomposition of Cook, Zhu, Bi and Yang (2010) and multiplicative
decomposition of Kao (2014a) are presented in Table 6.3.

Table 6.3 shows the decomposition of the system efficiencies for each country.
Note that the decomposition for the multiplicative model as presented in Table 6.3
represents the second stage of decomposition, where the efficiencies of the actual
sub-processes in the parallel network are determined. Consequently, overall efficiency
is not a product of the actual efficiencies. For both the additive and multiplicative
models, higher overall performers in 2017 include Malta, Luxembourg, Cyprus,
Ireland and Sweden. These countries are able to achieve higher social, economic
and environmental outcomes given the use of energy and other resources. The
difference with the decomposition approaches is more prominent when countries at
the lower spectrum of overall performance is examined. For the additive model, the
three countries with the lowest performance for 2017 included Portugal (0.4597),
Greece (0.4888) and the Czech Republic (0.5174). On the other hand, the three least
performers for the multiplicative decomposition were the Czech Republic (0.3952),
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Table 6.3 System and sub-system efficiencies of the consumption phase (2017).

 

Country 

Additive Multiplicative 

System  Rank 
Sub-systems 

System Rank 
Sub-systems c 

Soc. Econ. Env. Soc. Econ. Env. 

AT 0.7198 17 0.3634 0.7198 0.3713 0.7198 15 0.3634 0.7198 0.2262 

BE 0.6327 20 0.3835 0.6327 0.0444 0.6327 16 0.3835 0.6327 0.0396 

BG 0.7213 16 1.0000 0.7625 0.3650 0.5164 22 0.4373 0.7012 0.3650 

HR 0.5997 22 0.4359 0.8422 0.3079 0.4281 24 0.4359 0.4281 0.3319 

CY 1.0000 a 3 0.5683 1.0000 0.0260 1.0000 a 3 0.5683 1.0000 0.0260 

CZ 0.5174 26 0.5270 0.7602 0.1749 0.3952 28 0.5164 0.3952 0.1749 

DK 0.9178 7 0.4428 0.9178 0.2997 0.9178 7 0.4428 0.9178 0.2997 

EE 0.7242 14 0.7381 0.5854 1.0000 0.5299 21 0.7381 0.5854 1.0000 

FI 0.7369 13 0.1750 0.7210 0.8785 0.7364 13 0.1750 0.7365 1.0000 

FR 0.7223 15 0.2503 0.7224 0.4825 0.7223 14 0.2503 0.7224 0.3023 

DE 0.7681 12 0.4743 0.7681 0.1084 0.7681 12 0.4743 0.7681 0.1039 

EL 0.4888 27 0.2948 0.5988 0.1475 0.4793 23 0.2948 0.4793 0.1475 

HU 0.5313 25 0.6028 0.7005 0.2404 0.4249 25 0.6028 0.4249 0.2404 

IE 1.0000 a 4 0.4447 1.0000 0.1582 1.0000 a 4 0.4447 1.0000 0.1582 

IT 0.5552 23 0.5148 0.5552 0.0810 0.5552 19 0.5148 0.5552 0.1649 

LV 0.8332 9 0.9987 0.8228 0.8460 0.8037 9 0.9987 0.7786 0.8037 

LT 0.9576 6 0.8143 0.7836 0.9576 0.9576 6 0.8143 0.7836 0.9576 

LU 1.0000 a 2 0.8397 1.0000 1.0000 1.0000 a 2 0.8397 1.0000 1.0000 

MT 1.0000 a 1 1.0000 1.0000 0.0737 1.0000 a 1 1.0000 1.0000 0.0737 

NL 0.7903 11 0.5601 0.7904 0.0480 0.7903 11 0.5601 0.7904 0.0607 

PL 0.8159 10 0.8186 1.0000 0.000 b 0.7971 10 0.8186 0.7971 0.1592 

PT 0.4597 28 0.5553 0.3387 0.1229 0.4124 26 0.5552 0.4124 0.1229 

RO 0.6648 18 1.0000 0.8556 0.3108 0.4050 27 1.0000 0.4050 0.3108 

SK 0.6401 19 0.8242 0.7335 0.2183 0.6213 17 0.8242 0.6213 0.2152 

SI 0.6200 21 0.5401 0.6780 0.1962 0.6145 18 0.5401 0.6146 0.1962 

ES 0.5473 24 0.3928 0.5473 0.1155 0.5473 20 0.3873 0.5473 0.2126 

SE 1.0000 a 5 0.1661 1.0000 1.0000 1.0000 a 5 0.1661 1.0000 1.0000 

UK 0.8957 8 0.4390 0.8958 0.0862 0.8957 8 0.4390 0.8958 0.2303 

Geometric 

Mean 
0.7249  0.5200 0.7563 0.1388 0.6701  0.5042 0.6743 0.2327 

a  
b  
c  

 

the actual score is lower than 1, the value in the table is due to rounding up  

the actual score is near-zero. Value in the table is due to rounding up 

efficiency decomposition reported in the table is the efficiency of the actual sub-systems in the parallel 

networks. The system efficiency score  is therefore not expected to be a product of these scores reported 

 

Romania (0.4050) and Portugal (0.4124). The difference in the rankings and scores
is due to the assumptions made about how overall efficiency is characterised. The
additive defines system efficiency as a weighted average while the multiplicative
defines system efficiency in a geometric manner (Chen et al., 2009). It is believed
that multiplicative decomposition better reflects the dimensions’ importance in the
overall system efficiency, since the additive decomposition allows for compensation
across sustainability dimensions. Therefore, multiplicative decomposition is used in
the subsequent sub-sections.
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(a) Additive decomposition

(b) Multiplicative decomposition

Figure 6.4 Source of system efficiencies (2017).

Generally, decomposition using either the additive or multiplicative models shows
similar dimension rankings for each country, except in a few cases where the rankings
of the dimension change depending on the model. Austria, for example, performs
better on the environmental dimension (0.3713) than the social dimension (0.3634) on
the additive model. However, this changes in when the multiplicative model is used
resulting in higher social performance (0.3634) than the environmental dimension
(0.2262). Bulgaria, Croatia, the Czech Republic and Hungary also experience such
preference reversal due to model choice. When all countries are averaged, it is evident
that consumption system efficiency is mostly driven by the economic dimension,
followed by social and environmental performance. Environmental performance
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for both approaches is very low compared to the other dimensions. The system
efficiencies reflecting the percentage importance of the three dimensions for both the
additive and multiplicative models are presented in Figure 6.4. It can be observed
that economic and social sub-systems are the primary sources of efficiency among
these EU countries. There is, therefore, more effort required for addressing the
environmental dimension of sustainability in the consumption phase.

Overall performance of the countries is also summarised for the entire study
period in Figure 6.5. Countries have also ordered based on their average system
efficiency scores. The figure displays both the additive and the multiplicative
system efficiency scores. As can be observed, the majority of EU states have overall
efficiencies at or above a score of 0.5. This signifies considerable efforts to ensure
social development, economic development and environmental performance in these
countries.

Figure 6.5 Boxplots of system efficiencies of EU countries (2008-2017).

When the additive and multiplicative models are compared, more countries have
their multiplicative score below the 0.5 mark than the additive score. This shows
the multiplicative model is more discriminatory and has a stronger requirement for
sustainability than the additive measure. Finally, when the performance of countries
in the consumption phase displayed in Figure 6.5 is compared to those from the
generation phase as captured in Figure 5.7, it is clear that higher performance
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in generating electricity does not necessarily result in higher performance in its
consumption and use phase. Consequently, when performance assessment on the
electricity system is being conducted for policy purposes, it is important to conduct
both the generation and consumption phase assessment in a single assessment. The
next section provides a holistic assessment of the generation and consumption phases
in a single assessment framework.

6.4.2 Energy production and consumption

Since the main policy objectives for a sustainable energy system are, “efficient
production, distribution, and use of energy resources coupled with the provision of
equitable and affordable access to energy simultaneously ensuring the security of
energy supply and environmental sustainability” (Štreimikienė et al., 2012), it is
important that performance assessment of the energy system incorporates both the
production and consumption phases of the system. The production systems of EU
countries were assessed in Chapter 5 of this thesis. The consumption phase has also
been examined in Section 6.4.1 of this chapter. Issues on affordable access to energy
are examined in chapter 7 of the thesis.

In this section, an integrated assessment of both the production and consumption
sub-systems of the energy system of the EU countries is conducted. This assessment
essentially combines the parallel network structure presented in Chapter 5 and the
multi-stage serial structure in previous sections of Chapter 6 in a holistic mixed
structure network framework. This is a novel assessment not previously seen in the
literature.

System description – the entire system

The conceptual framework which is the basis for assessment in this section has been
previously presented in Figure 4.6 of this thesis. As has already been indicated,
performance assessments of components of this system have been previously presented
and discussed. The primary aim of this section is, therefore, to show how the
production and consumption phases could be integrated. The empirical mixed
network structure is presented in Figure 6.6.

The major difference between this schema and the previous ones is the inclusion
of a new sub-process between the production and consumption phases. This is the
transmission system, which in practice transfers electricity from production units to
consumption units. This is introduced to capture the difference between the units
of electricity generated and the units consumed. In practice, the difference between
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electricity production and consumption is due to distribution losses, electricity
imports to supplement domestic demands and exports of power to other countries
among other factors (EEA, 2016). For the environmental aspect, it is important
to note that the volume of emissions from electricity production captured as Y2 in
Chapter 5 is the same as variable X6 in consumption analysis. The link between
these variables, therefore, requires no special sub-process.

Note that for simplicity and consistency purposes, all variables in the consumption
phase carry ‘tilde’ as an accent, while variables in the consumption phase carry a ‘bar’
as an accent. It is also important to note that some variables which were exogenous
in previous assessments have become intermediate factors in Figure 6.6. There are
therefore six exogenous inputs, three exogenous outputs and six intermediate factors.
To solve this mixed network structure, the approach of Kao (2014a) is adopted
by transforming the network into a series of five parallel networks. Here, parallel
network I is the production phase and network II is the transmission stage. The
remaining three stages are the three components of the consumption phase.
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As depicted in Figure 6.7, for each phase, a dummy sub-process has been
introduced to capture the inputs and outputs of the intermediate processes (Kao,
2009b). In the next sub-section performance models are formulated.

Model formulation

From the series of parallel networks presented in Figure 6.7, there are five stages
in this assessment framework. First, the constraints for each of the five parallel
networks are presented before they are combined into one framework.

Constraints of parallel sub-processes

Parallel network I – Electricity generation
Parallel network I has 12 sub-processes, 11 of which are actual generation sources.
There are three inputs (labour, installed capacity and transformation inputs) and
two outputs (gross electricity production and greenhouse emissions). Since there are
shared inputs and outputs and non-homogeneity in terms of the sub-units, these
are incorporated in the formulations. The constraints for the parallel network are
presented in (6.17).

(
ũ1Ỹ

(1)
1j + ũ2β

(1)
2 Ỹ2j

)
−
(
ṽ1α

(1)
1 X̃s

1j + ṽ2X̃
(1)
2j + ṽ3α

(1)
3 X̃3j

)
≤ 0 (6.17a)(

ũ1Ỹ
(2)

1j + ũ2β
(2)
2 Ỹ2j

)
−
(
ṽ1α

(2)
1 X̃s

1j + ṽ2X̃
(2)
2j + ṽ3α

(2)
3 X̃3j

)
≤ 0 (6.17b)(

ũ1Ỹ
(3)

1j + ũ2β
(3)
2 Ỹ2j

)
−
(
ṽ1α

(3)
1 X̃s

1j + ṽ2X̃
(3)
2j + ṽ3α

(3)
3 X̃3j

)
≤ 0 (6.17c)

ũ1Ỹ
(4)

1j −
(
ṽ1X̃

(4)
1j + ṽ2X̃

(4)
2j + ṽ3α

(4)
3 X̃3j

)
≤ 0 (6.17d)

ũ1Ỹ
(5)

1j −
(
ṽ1X̃

(5)
1j + ṽ2α

(5)
2 X̃s

2j + ṽ3α
(5)
3 X̃3j

)
≤ 0 (6.17e)

ũ1Ỹ
(6)

1j −
(
ṽ1X̃

(6)
1j + ṽ2α

(6)
2 X̃s

2j + ṽ3α
(6)
3 X̃3j

)
≤ 0 (6.17f)

ũ1Ỹ
(7)

1j −
(
ṽ1α

(7)
1 X̃s

1j + ṽ2α
(7)
2 X̃s

2j + ṽ3α
(7)
3 X̃3j

)
≤ 0 (6.17g)

ũ1Ỹ
(8)

1j −
(
ṽ1X̃

(8)
1j + ṽ2α

(8)
2 X̃s

2j + ṽ3α
(8)
3 X̃3j

)
≤ 0 (6.17h)

ũ1Ỹ
(9)

1j −
(
ṽ1X̃

(9)
1j + ṽ2α

(9)
2 X̃s

2j + ṽ3α
(9)
3 X̃3j

)
≤ 0 (6.17i)

ũ1Ỹ
(10)

1j −
(
ṽ1X̃

(10)
1j + ṽ2α

(10)
2 X̃s

2j + ṽ3α
(10)
3 X̃3j

)
≤ 0 (6.17j)(

ũ1Ỹ
(11)

1j + ũ2β
(11)
2 Ỹ2j

)
−
(
ṽ1α

(11)
1 X̃s

1j + ṽ2X̃
(11)
2j + ṽ3α

(11)
3 X̃3j

)
≤ 0 (6.17k)(

v̄2X̄2j + v̄4X̄4j + v̄5X̄5j

)
−
(
v̄2X̄2j + v̄4X̄4j + v̄5X̄5j

)
≤ 0 (6.17l)
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Note that the final constraint is redundant. There are additional constraints for
the split factors. First, following approach two for dealing with non-homogeneity
as presented in Section 5.3.3 of Chapter 5, Ln is defined as the set of all the sub-
processes with shared factors. In parallel network I, these include all sub-process
except the dummy sub-process. For each DMU j, Lj is defined as the set of sub-
processes, out of the Ln, that specific DMU operates such that Lj ⊆ Ln. The first
set of constraints for the split factors require that the sum of the split factors for
existing sub-processes in the set will be one.

β
(1)
2 + β

(2)
2 + β

(3)
2 + β

(11)
2 = 1 (6.18a)

α
(1)
1 + α

(2)
1 + α

(3)
1 + α

(7)
1 + α

(11)
1 = 1 (6.18b)

α
(5)
2 + α

(6)
2 + α

(7)
1 + α

(8)
2 + α

(9)
2 + α

(10)
2 = 1 (6.18c)

α
(1)
3 + α

(2)
3 + α

(3)
3 + α

(4)
3 + α

(5)
3 + α

(6)
3 + α

(7)
3 + α

(8)
3 + α

(9)
3 + α

(10)
3 + α

(11)
3 = 1

(6.18d)

If a sub-process p is not the member of Lj but a member of Ln, then split factor
for that particular sub-process will be zero. This will ensure no allocation is made
to non-existing sub-processes for a particular DMU. Therefore, all elements in the
set-theoretic difference of Ln and Lj (Ln\Lj) are set to zero:

α
(p)
i = 0, p ∈ Ln\Lj (6.19a)

β(p)
r = 0, p ∈ Ln\Lj (6.19b)

Finally, upper and lower bounds are set for the split factors so that at least some
units of the shared variable will be allocated to all existing sub-processes.

a
(p)
i ≤ α

(p)
i ≤ b

(p)
i p ∈ Lj (6.20a)

a(p)
r ≤ β(p)

r ≤ b(p)
r p ∈ Lj (6.20b)



6.4 Empirical assessments 179

Since elements in (6.17) will result in nonlinearity, the constraints are linearised
using the Charnes-Cooper transformation. If redundant constraints are eliminated,
then the constraints for this parallel network will be:

µ̃1Ỹ
(1)

1j + µ̃2Ỹ
(1)

2j − γ̃
(1)
1 X̃s

1j − ν̃2X̃
(1)
2j − γ̃

(1)
3 X̃3j ≤ 0 (6.21a)

µ̃1Ỹ
(2)

1j + µ̃2Ỹ
(2)

2j − γ̃
(2)
1 X̃s

1j − ν̃2X̃
(2)
2j − γ̃

(2)
3 X̃3j ≤ 0 (6.21b)

µ̃1Ỹ
(3)

1j + µ̃2Ỹ
(3)

2j − γ̃
(3)
1 X̃s

1j − ν̃2X̃
(3)
2j − γ̃

(3)
3 X̃3j ≤ 0 (6.21c)

µ̃1Ỹ
(4)

1j − ν̃1X̃
(4)
1j − ν̃2X̃

(4)
2j − γ̃

(4)
3 X̃3j ≤ 0 (6.21d)

µ̃1Ỹ
(5)

1j − ν̃1X̃
(5)
1j − γ̃

(5)
2 X̃s

2j − γ̃
(5)
3 X̃3j ≤ 0 (6.21e)

µ̃1Ỹ
(6)

1j − ν̃1X̃
(6)
1j − γ̃

(6)
2 X̃s

2j − γ̃
(6)
3 X̃3j ≤ 0 (6.21f)

µ̃1Ỹ
(7)

1j − γ̃
(7)
1 X̃s

1j − γ̃
(7)
2 X̃s

2j − γ̃
(7)
3 X̃3j ≤ 0 (6.21g)

µ̃1Ỹ
(8)

1j − ν̃1X̃
(8)
1j − γ̃

(8)
2 X̃s

2j − γ̃
(8)
3 X̃3j ≤ 0 (6.21h)

µ̃1Ỹ
(9)

1j − ν̃1X̃
(9)
1j − γ̃

(9)
2 X̃s

2j − γ̃
(9)
3 X̃3j ≤ 0 (6.21i)

µ̃1Ỹ
(10)

1j − ν̃1X̃
(10)
1j − γ̃

(10)
2 X̃s

2j − γ̃
(10)
3 X̃3j ≤ 0 (6.21j)

µ̃1Ỹ
(11)

1j + µ̃2Ỹ
(11)

2j − γ̃
(11)
1 X̃s

1j − ν̃2X̃
(11)
2j − γ̃

(11)
3 X̃3j ≤ 0 (6.21k)

γ̃
(1)
1 + γ̃

(2)
1 + γ̃

(3)
1 + γ̃

(7)
1 + γ̃

(11)
1 = ν̃1 (6.21l)

γ̃
(5)
2 + γ̃

(6)
2 + γ̃

(7)
2 + γ̃

(8)
2 + γ̃

(9)
2 + γ̃

(10)
2 = ν̃2 (6.21m)

γ̃
(1)
3 + γ̃

(2)
3 + γ̃

(3)
3 + γ̃

(4)
3 + γ̃

(5)
3 + γ̃

(6)
3 + γ̃

(7)
3 + γ̃

(8)
3 + γ̃

(9)
3 + γ̃

(10)
3 + γ̃

(11)
3 = ν̃3

(6.21n)

γ̃
(p)
i = 0 p ∈ Ln\Lj (6.21o)

ν̃ia
(p)
i ≤ γ̃

(p)
i ≤ ν̃ib

(p)
i p ∈ Lj (6.21p)

The split factor for the emissions variable (Ỹ2j) is externally determined as
discussed in Section 5.4.2 of Chapter 5. It is also important to note that since emis-
sions are undesirable outputs in a joint production with the desirable outputs, it is
modelled as a weakly disposable output. Consequently, µ̃2 is unrestricted in direction.

Parallel network II – Transmission
Unlike the previous parallel network, network II is simple in terms of the constraints.
This comprises two sub-processes. For the actual sub-process, the input is the gross
electricity produced by all generation sources, whiles the outputs are electricity
consumption for households and non-households. Constraints are presented in (6.22).
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Note that the final constraint is redundant.
(
ν̄1X̄1j + ν̄3X̄3j

)
− µ̃1Ỹ1j ≤ 0 (6.22a)(

ν̄2X̄2j + ν̄4X̄4j + ν̄5X̄5j + µ̃2Ỹ2
)

−
(
ν̄2X̄2j + ν̄4X̄4j + ν̄5X̄5j + µ̃2Ỹ2

)
≤ 0 (6.22b)

Parallel network III – Social development
In the social development phase (III), there are two sub-processes whose constraints
are shown in (6.23). The actual sub-process consumes household electricity supply
and government expenditure to generate human development (HDI) and employment.
As with the previous parallel networks, the constraint for the dummy sub-process is
redundant.
(
µ̄1Ȳ1j + w̄1Z̄1j

)
−
(
ν̄1X̄1j + ν̄2X̄2j

)
≤ 0 (6.23a)(

ν̄3X̄3j + ν̄4X̄4j + ν̄5X̄5j + µ̃2Ỹ2
)

−
(
ν̄3X̄3j + ν̄4X̄4j + ν̄5X̄5j + µ̃2Ỹ2

)
≤ 0 (6.23b)

Parallel network IV – Economic development
This parallel network IV also has two sub-processes. The actual sub-process has
three exogenous inputs and one intermediate input. The intermediate input is
the non-household electricity supplied from the transmission system for economic
activities. Two outputs are produced by this parallel network, GDP and emissions
from other sources excluding electricity production. Constraints for this parallel
network are as follows:

(
µ̄2Ȳ2j + w̄2Z̄2j

)
−
(
ν̄3X̄3j + ν̄4X̄4j + ν̄5X̄5j + w̄1Z̄1j

)
≤ 0 (6.24a)(

µ̄1Ȳ1j + µ̃2Ỹ2
)

−
(
µ̄1Ȳ1j + µ̃2Ỹ2

)
≤ 0 (6.24b)

Parallel network V – Environmental performance
The final parallel network has two weakly disposable inputs which are both interme-
diate factors from the economic and the electricity production sub-processes. The
output is the bio-capacity of the country. Constraints for parallel network V are as
follows:

µ̄3Ȳ3j −
(
w̄2Z̄2j + µ̃2Ỹ2j

)
≤ 0 (6.25a)(

µ̄1Ȳ1j + µ̄2Ȳ2j

)
−
(
µ̄1Ȳ1j + µ̄2Ȳ2j

)
≤ 0 (6.25b)
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The full model

The objective function for the multiplicative decomposition considers only the
exogenous variables. This is since the intermediate factors are consumed in the
system. Additionally, the weighted sum of the exogenous inputs of the firm under
consideration should also sum up to one. The fully integrated model for the system
will, therefore, be as follows:

E0 = max µ̄1Ȳ1o + µ̄2Ȳ2o + µ̄3Ȳ3o (6.26a)
s.t. ν̃1X̃1o + ν̃2X̃2o + ν̃3X̃3o + ν̄2X̄2o + ν̄4X̄4o + ν̄5X̄5o = 1 (6.26b)

(6.21),(6.22),(6.23),(6.24) and (6.25) (6.26c)
µ̃1, γ̃

(p)
i , ν̃i, µ̄r, ν̄1, ν̄2, ν̄3, ν̄4, ν̄5, w̄1 ≥ ε, µ̃2, w̄2 urs (6.26d)

r = 1, ..., s, i = 1, ..., m, p = 1, ..., q, j = 1, 2, . . . , n (6.26e)

Redundant constraints in (6.21),(6.22),(6.23),(6.24) and (6.25) are eliminated
from the model in (6.26). The model in (6.26) computes the efficiency of the entire
system. The next part of this sub-section shows the decompositions.

Efficiency decomposition

The efficiency score computed by (6.26) represents the overall system efficiency
that incorporates the generation, transmission and consumption systems. It is
important to decompose this efficiency to determine sub-system performance. It
is possible to decompose the efficiency for each of the five parallel sub-processes
as well as the individual sub-systems within the parallel networks using (6.8) and
(6.4). Various levels of decomposition can be made. Three stages of efficiency
decomposition of the overall system efficiency are defined.

Stage one decomposes the system efficiency into the efficiencies of the five par-
allel sub-systems. Stage two decomposes the parallel sub-system efficiencies into
the efficiencies of the components of those parallel sub-systems. Finally, the third
stage decomposes the overall efficiency into the generation and consumption phase
efficiencies. The overall system efficiency of a series of parallel systems is a product
of the parallel sub-systems efficiencies, while the efficiency of the parallel sub-system
is a weighted average of the sub-process efficiencies (Kao, 2009b, 2012). These
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efficiency decompositions are presented as follows:

Stage one decomposition – Parallel sub-systems
The efficiencies of the five parallel networks are determined from the optimal multi-
pliers as follows:

EI∗
o = µ̃∗

1Ỹ1o + µ̃∗
2Ỹ2o + ν̄∗

2X̄2o + ν̄∗
4X̄4o + ν̄∗

5X̄5o

ν̃∗
1X̃1o + ν̃∗

2X̃2o + ν̃∗
3X̃3o + ν̄∗

2X̄2o + ν̄∗
4X̄4o + ν̄∗

5X̄5o

(6.27a)

EII∗
o = ν̄∗

1X̄1o + ν̄∗
3X̄3o + ν̄∗

2X̄2o + ν̄∗
4X̄4o + ν̄∗

5X̄5o + µ̃∗
2Ỹ2o

µ̃∗
1Ỹ1o + ν̄∗

2X̄2o + ν̄∗
4X̄4o + ν̄∗

5X̄5o + µ̃∗
2Ỹ2o

(6.27b)

EIII∗
o = µ̄∗

1Ȳ1o + w̄∗
1Z̄1o + ν̄∗

3X̄3o + ν̄∗
4X̄4o + ν̄∗

5X̄5o + µ̃∗
2Ỹ2o

ν̄∗
1X̄1o + ν̄∗

2X̄2o + ν̄∗
3X̄3o + ν̄∗

4X̄4o + ν̄∗
5X̄5o + µ̃∗

2Ỹ2o

(6.27c)

EIV ∗
o = µ̄∗

2Ȳ2o + w̄∗
2Z̄2o + µ̄∗

1Ȳ1o + µ̃∗
2Ỹ2o

ν̄∗
3X̄3o + ν̄∗

4X̄4o + ν̄∗
5X̄5o + w̄∗

1Z̄1o + µ̄∗
1Ȳ1o + µ̃∗

2Ỹ2o

(6.27d)

EV ∗
o = µ̄∗

3Ȳ3o + µ̄∗
1Ȳ1o + µ̄∗

2Ȳ2o

w̄∗
2Z̄2o + µ̃∗

2Ỹ2o + µ̄∗
1Ȳ1o + µ̄∗

2Ȳ2o

(6.27e)

These represent a weighted average of the efficiency of the actual sub-processes as
well as the dummy sub-process. The efficiency of the dummy sub-process is 1 in
each case while the weights are determined from the resource consumption.

Stage two decomposition – Actual sub-systems
Each parallel process comprises actual units as well as dummy units. Here, how
the efficiencies of the actual units are determined is presented. Parallel network I is
comprised of 11 actual sub-processes which efficiencies are determined as:

E
(solid)
0 = µ̃∗

1Ỹ
(1)

1o + µ̃∗
2Ỹ

(1)
2o

γ̃
∗(1)
1 X̃s

1o + ν̃∗
2X̃

(1)
2o + γ̃

∗(1)
3 X̃3o

E
(biomass)
0 =

µ̃∗
1Ỹ

(7)
1j

γ
∗(7)
1 X̃s

1o + γ
∗(7)
2 X̃s

2o + γ̃
∗(7)
3 X̃3o

E
(oil)
0 = µ̃∗

1Ỹ
(2)

1o + µ̃∗
2Ỹ

(2)
2o

γ̃
∗(2)
1 X̃s

1o + ν̃∗
2X̃

(2)
2o + γ̃

∗(2)
3 X̃3o

E
(solar)
0 = µ̃∗

1Ỹ
(8)

1o

ν̃∗
1X̃

(8)
1o + γ̃

∗(8)
2 X̃s

2o + γ̃
∗(8)
3 X̃3o

E
(gas)
0 = µ̃∗

1Ỹ
(3)

1o + µ∗
2Ỹ

(3)
2o

γ̃
∗(3)
1 X̃s

1o + ν̃∗
2X̃

(3)
2o + γ̃

∗(3)
3 X̃3o

E
(geothermal)
0 = µ̃∗

1Ỹ
(9)

1o

ν̃∗
1X̃

(9)
1o + γ̃

∗(9)
2 X̃s

2o + γ̃
∗(9)
3 X̃3o

E
(nuclear)
0 = µ̃∗

1Ỹ
(4)

1o

ν̃∗
1X̃

(4)
1o + ν̃∗

2X̃
(4)
2o + γ̃

∗(4)
3 X̃3o

E
(tide)
0 = µ̃∗

1Ỹ
(10)

1o

ν̃∗
1X̃

(10)
1o + γ̃

∗(10)
2 X̃s

2o + γ̃
∗(10)
3 X̃3o

E
(hydro)
0 = µ̃∗

1Ỹ
(5)

1o

ν̃∗
1X̃

(5)
1o + γ̃

∗(5)
2 X̃s

2o + γ̃
∗(5)
3 X̃3o

E
(waste)
0 = µ̃∗

1Ỹ
(11)

1o + µ̃∗
2Ỹ

(11)
2o

γ̃
∗(11)
1 X̃s

1o + ν̃∗
2X̃

(11)
2o + γ̃

∗(11)
3 X̃3o
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E
(wind)
0 = µ̃∗

1Ỹ
(6)

1o

ν̃∗
1X̃

(6)
1o + γ̃

∗(6)
2 X̃s

2o + γ̃
∗(6)
3 X̃3o

(6.28)

The remaining 4 parallel systems only have one actual sub-process each. Con-
sequently, the efficiency decomposition for the transmission, social, economic and
environmental sub-units in parallel networks II, III, IV and V respectively are as
follows:

Etransmission*
o = ν̄∗

1X̄1o + ν̄∗
3X̄3o

µ̃∗
1Ỹ1o

(6.29a)

Esocial*
o = µ̄∗

1Ȳ1o + w̄∗
1Z̄1o

v̄∗
1X̄1o + ν̄∗

2X̄2o

(6.29b)

Eeconomic*
o = µ̄∗

2Ȳ2o + w̄∗
2Z̄2o

ν̄∗
3X̄3o + ν̄∗

4X̄4o + ν̄∗
5X̄5o + w̄∗

1Z̄1o

(6.29c)

Eenvironment*
o = µ̄∗

3Ȳ3o

w̄∗
2Z̄2o + µ̃∗

2Ỹ2o

(6.29d)

Stage three decomposition – Generation and Consumption
The final stage of the decomposition provides a breakdown of the overall system
efficiency into the generation and consumption phases. Since the multiplicative
decomposition was used, the overall system efficiency is a product of the five parallel
sub-systems such that:

Eo = EI
o × EII

o × EIII
o × EIV

o × EV
o (6.30)

This EI
o represents the efficiency of the generation phase of the system.

Generation = EI
o (6.31)

However, the consumption phase comprises the social, economic and environmental
systems. Therefore, the efficiency of the consumption phase is estimated as follows:

Consumption = EIII
o × EIV

o × EV
o (6.32)

The next sections of this chapter present the results, discussions and conclusions
based on the models developed.
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Findings and discussion

In this sub-section, empirical results based on the models developed in the previous
sub-section are presented and discussed. Results encompass both the generation
phase and the consumption phase of energy assessment relevant to energy policy. In
Table 6.4 overall efficiency scores of the countries under study are presented. These
scores are based on constraints about sustainable and resource efficient electricity
generation and how well countries use electricity and other resources to ensure better
social, economic and environmental outcomes for citizens.

From Table 6.4 higher performers include Malta, Cyprus, Luxembourg, Sweden
and Ireland. All of these countries had relatively lower performance in the generation
assessment (Figure 5.6) but had relatively higher performance in the consumption
assessment (Figure 6.4). This is probably because in the holistic assessment, the focus
is on how well countries use primary resources to generate favourable social, economic
and environmental outcomes, while producing electricity in a way that meets their
consumption needs. This is compared to the generation assessment, which focuses on
how well countries use primary resources to generate electricity without considering
electricity demand. Pure consumption assessment also focuses on how countries use
electricity available to meet their needs without considering how efficiently electricity
is produced. As these assessments answer different questions there is a utility in
conducting both a phased assessment as well as a holistic assessment. However,
since energy policy focuses on the system-wide consideration of energy production
and use, the essence of a holistic assessment cannot be understated.
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Table 6.4 Overall efficiency and stage one decomposition (2017).

Country Overall
Stage One Decomposition

I II III IV V
Austria 0.70003 0.98916 0.99872 0.99999 0.70861 1.00000 a

Belgium 0.61367 0.99084 0.99854 0.99999 0.62025 1.00000a

Bulgaria 0.50387 0.99566 0.99990 0.99999 0.70116 0.72183
Croatia 0.40488 0.99802 0.99998 1.00000a 0.40569 0.99999
Cyprus 0.99961 0.99962 0.99999 1.00000a 1.00000 1.00000a

Czech Republic 0.37483 0.99041 0.99873 0.99999 0.37894 1.00000a

Denmark 0.82737 0.99352 0.99947 0.99999 0.83322 1.00000a

Estonia 0.47354 0.99898 0.99974 0.99997 0.49615 0.95570
Finland 0.73032 0.99299 0.99896 0.99998 0.73626 1.00000a

France 0.65082 0.94643 0.98864 0.99987 0.69565 1.00000
Germany 0.67919 0.90702 0.98691 0.99992 0.75881 1.00000a

Greece 0.45281 0.99415 0.99990 0.99999 0.45553 1.00000a

Hungary 0.41497 0.99616 0.99962 1.00000a 0.41673 1.00000a

Ireland 0.88900 0.99546 0.99943 1.00000a 0.89357 1.00000a

Italy 0.48529 0.94977 0.99491 0.99997 0.51359 1.00000a

Latvia 0.49455 0.99882 0.99996 1.00000a 0.58570 0.84541
Lithuania 0.53259 0.99866 1.00000a 1.00000a 0.53331 1.00000a

Luxembourg 0.99933 0.99933 1.00000 1.00000a 1.00000 1.00000a

Malta 0.99978 0.99978 1.00000a 1.00000 1.00000 1.00000a

Netherlands 0.75895 0.98654 0.99730 0.99999 0.77140 1.00000a

Poland 0.78031 0.98157 0.99772 0.99999 0.79678 1.00000a

Portugal 0.37493 0.99092 0.99889 0.99999 0.37878 1.00000a

Romania 0.37831 0.98932 0.99909 1.00000 0.38275 1.00000a

Slovakia 0.61896 0.99666 0.99966 1.00000a 0.62124 1.00000a

Slovenia 0.61348 0.99848 0.99979 0.99999 0.61455 1.00000a

Spain 0.48384 0.95448 0.99481 0.99995 0.50958 1.00000a

Sweden 0.93163 0.98401 0.99681 0.99996 0.94984 1.00000
United Kingdom 0.79152 0.95574 0.99351 0.99994 0.83363 1.00000a

Geometric Mean 0.61072 0.98449 0.99789 0.99998 0.63376 0.98093
a The actual score is lower than 1, the value in the table is due to rounding
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It is important to note that, although the holistic assessment may answer a
slightly different question from the pure phased assessment, it provides the necessary
decompositions as observed in the pure phased assessment. For example, in Table
6.5 the generation source-specific decomposition of 2017 assessment is provided.
When compared with phase-specific assessment in Table 5.4 it is seen that both
show similar results. Austria, for example, has its best generation sources being
gas and hydro and worst generation sources being geothermal and oil. Similarly,
when compared to other countries, Italy is the leader in generating electricity from
geothermal energy, while France is the leader in tidal energy in both the phased and
holistic assessments.

Table 6.6 provides the second stage decomposition of the transmission, social,
economic and environmental systems. Just like the results in the consumption phase
assessment presented in Table 6.3, the main source of efficiency on average is the
economic system. This is then followed by the social and environment sub-systems.
The rankings for the dimensions for each country generally remains the same as
the consumption phase-specific assessment earlier conducted. Unlike the phase-
specific assessments, however, combining the generation and consumption phases
also provides additional insights on how efficiently countries transmit electricity
generated to consumption sectors. Higher performers include Luxembourg and
Lithuania.
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Table 6.6 Stage two decomposition of transmission and consumption phases (2017).

Transmission Social Economic Environmental

Score Rank Score Rank Score Rank Score Rank

Austria 0.2794 17 0.3634 23 0.7086 12 0.1665 18
Belgium 0.3158 12 0.3835 22 0.6203 16 0.0447 26
Bulgaria 0.2408 23 0.4373 19 0.7012 13 0.3418 7
Croatia 0.4791 4 0.4359 20 0.4057 25 0.3319 8
Cyprus 0.3176 10 0.5683 9 1.0000 1 0.0260 28
Czech Republic 0.2126 28 0.5164 13 0.3789 27 0.2881 12
Denmark 0.3047 14 0.4428 17 0.8332 7 0.3261 9
Estonia 0.2150 27 0.7381 7 0.4962 22 0.8381 5
Finland 0.3741 5 0.1750 27 0.7363 11 0.8785 3
France 0.2211 26 0.2503 26 0.6957 14 1.0000 2
Germany 0.2583 19 0.4743 15 0.7588 10 0.1039 21
Greece 0.3517 7 0.2948 24 0.4555 23 0.2495 15
Hungary 0.3671 6 0.6028 8 0.4167 24 0.2641 13
Ireland 0.2466 22 0.4447 16 0.8936 5 0.1704 17
Italy 0.3332 8 0.5064 14 0.5136 20 0.0937 22
Latvia 0.3091 13 0.9987 3 0.5857 18 0.8454 4
Lithuania 0.9728 2 0.2533 25 0.5333 19 0.3956 6
Luxembourg 1.0000 1 0.8397 4 1.0000 1 0.0281 27
Malta 0.4930 3 1.0000 1 1.0000 3 0.0737 24
Netherlands 0.3172 11 0.5601 10 0.7714 9 0.0535 25
Poland 0.2861 16 0.8186 6 0.7968 8 0.2976 11
Portugal 0.2475 21 0.5552 11 0.3788 28 0.1503 19
Romania 0.2376 24 1.0000 1 0.3827 26 0.3108 10
Slovakia 0.3321 9 0.8242 5 0.6212 15 0.2152 16
Slovenia 0.2987 15 0.5401 12 0.6146 17 0.2604 14
Spain 0.2678 18 0.3873 21 0.5096 21 0.1276 20
Sweden 0.2215 25 0.1661 28 0.9498 4 1.0000 1
United Kingdom 0.2537 20 0.4390 18 0.8336 6 0.0910 23

Geometric Mean 0.3183 0.4833 0.6338 0.2053

The third stage decomposition compares the contribution of the generation and
consumption phases to overall system sustainability. The consumption phase here
represents the product of the social, economic and environmental parallel networks
without considering the transmission system. This decomposition has been presented
in a 100% stacked column graph in Figure 6.8. From the figure, it is clear that the
generation phase is the major source of overall system efficiency for most of the
countries under assessment. Some exceptions to this are Cyprus, Luxembourg and
Malta, which are able to leverage performance in the consumption phase.
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Figure 6.8 Stage three decomposition of the source of overall performance.

6.5 Chapter summary
The focus of the previous chapter, Chapter 5, was on the assessment of resource
efficiency and sustainable generation of electricity. Chapter 6 was aimed at addressing
the second objective of this thesis. That is to integrate electricity production
evaluation, economic development, social development and environmental impact
assessments into a single holistic assessment procedure that caters for alternative
views on sustainability. To achieve this, performance models were first developed to
assess the consumption phase of the electricity system. Specifically, a multi-stage
serial network DEA was developed and empirically tested to provide insights on the
social development, economic development and environmental performance of the
countries under evaluation. Several contributions were introduced in the structure
of the stages used for assessment. Finally, the consumption phase assessment was
then integrated with the generation phase assessment which was earlier conducted
in the fifth chapter.

In the consumption phase, two views on forming composite sustainability scores
across the three dimensions studied were explored. The first is additive decom-
position, which defines the overall (composite) efficiency as a weighted average of
the efficiencies of the three dimensions. As this is an additive weighted average,
it inherently allows compensation across dimensions and can, therefore, be consid-
ered to be consistent with the view of weak sustainability. The second approach,
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multiplicative decomposition, evaluates the overall efficiency from a product of the
dimensions in a series of parallel networks. With composite measures evaluated from
the multiplication of sub-components, an overall score is susceptible to low scores
on any dimension. Therefore, this measure limits the level of compensation across
dimensions, which is viewed as consistent with views on strong sustainability. It is
observed in the analyses that multiplicative decomposition is more discriminatory.
However, the rankings of the dimensions for each DMU are generally similar for
both additive or multiplicative decomposition. By this, it is possible to conduct
an assessment from an anthropocentric perspective by giving more weights to the
economic and social dimensions or from a bio-centric perspective where more weight
is given to the environmental dimension or even a more neutral point of view by
allowing the overall score to reflect all three dimensions without the assessor’s input.

In the integrated assessment of the generation and consumption phases, it is
shown that the objective of the integrated assessment is slightly different from
separate phased assessments. The integrated assessment examines how resources
are consumed to generate favourable social, economic and environmental outcomes
given a country’s generation capability and electricity demand. This is different from
phased assessments, which either look at how resources are consumed to generate
electricity without considering demand or how electricity and other resources are
consumed to achieve favourable outcomes without considering efficiency in generating
clean electricity. It is observed that since the phased and holistic assessment answer
slightly different questions, it may be useful to conduct either a phased assessment
or a holistic one. This will depend on the objective of the assessment is conducted.
However, where policy is focussed on the entire electricity system, the utility of a
holistic assessment is highest. It is shown that the results of the holistic assessment
can be further decomposed in ways that are generally consistent with the results of
a phased assessment. Consequently, the holistic assessment proposed can capture
insights from the phased assessments and incorporate the complementarity between
the generation and consumption phases, thereby providing further insights that
cannot be achieved from a purely phased assessment.



Chapter 7

Sustainable Energy Portfolio
Diversification

7.1 Introduction
This chapter moves the research from policy issues on energy security and eco-
efficiency towards addressing policy concerns on clean and affordable energy mix
planning. In order to incorporate sustainability concerns in affordable energy mix
planning, the traditional approach has been to incorporate environmental and
social cost indicators in the total generation cost for each available technology
in a portfolio optimisation model. The impact of the cost configuration along
sustainability dimensions on technology rankings and optimal portfolio are studied
in this chapter. It is shown that combining the various cost dimensions using
an additive relationship has the potential to erase the relevance of some of the
dimensions, therefore, making some dimensions more important than others and
resulting in optimal portfolios which may be inconsistent with sustainability. The use
of a multiplicative relationship between the dimensions to assess how environmental
and external (such as social) cost components in the generation cost, based on
multilinear utility theory, is recommended. DEA is used to build models to examine
how the internal structure of the cost of generation for each technology affects the
optimal portfolios generated.

The remainder of the chapter is organised as follows: Section 7.2 provides
background and highlights the problems with traditional energy mix planning.
Section 7.3 presents the problem with summative technology costs in portfolio
optimisation. Section 7.4 develops various optimisation models to examine the
relationship between the dimensions of sustainability. Section 7.5 presents an
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empirical analysis. The section first examines the impact of various configurations
of cost composition on rankings of individual sources using DEA. This is then
followed by an analysis of the impact of the cost configuration on the optimal
portfolio selected using the mean-variance framework. Finally, concluding remarks
and recommendations are made in Section 7.6.

7.2 Constructing a sustainable energy mix
Rapid economic development and increasing population growth globally have placed
massive pressure on energy resources (Bazmi and Zahedi, 2011; Peng et al., 2013; Zhao
et al., 2019). As such, the development and planning of energy generation sources
have become a matter of priority for countries (Bazmi and Zahedi, 2011). However,
due to awareness of the limits of non-renewable primary resources, environmental
and social impacts of both renewable and non-renewable generation sources and
increasing requirements of policy for clean, secure and affordable energy (the so-
called “energy trilemma”) (Jovanović et al., 2010), there has been growing research
interest in constructing a sustainable mix of energy generation technologies/sources.

Markowitz (1952) first introduced a mean-variance framework for optimising a
portfolio of investment assets by maximising expected returns and minimising asso-
ciated risks, specifically return variance. Since then, this mean-variance framework
has found relevance in several areas, including energy planning decisions. Early
work of Bar-Lev and Katz (1976) and later Awerbuch and Berger (2003) laid the
foundation for the application of this portfolio diversification theory in energy plan-
ning decisions to optimise the portfolio of generation technologies. Subsequently,
there have been many other studies that have used the mean-variance framework
in energy planning decisions (Arnesano et al., 2012; Bazilian and Roques, 2008;
Roques et al., 2010; Westner and Madlener, 2011). Although there have been several
approaches and applications of the mean-variance framework in energy portfolio
planning (Westner and Madlener, 2011), at its foundation, the framework requires
estimates for generation cost (or return) and risk, which form the building blocks
for further assessment. The composition of the generation cost (or return) and risk
have been the basis for some differences in literature, since it has direct implications
on the nature of optimal portfolios generated.

On the one hand, there are studies that tackle portfolio optimisation problems
without considering negative externalities borne by the environment and society
(Allan et al., 2011; Delarue et al., 2011; Shakouri et al., 2015). For example,
components of generation cost in Delarue et al. (2011) include investment costs, fuel
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costs and fixed and variable operation and maintenance (O&M) costs. Similarly,
Allan et al. (2011) considered private costs in estimating the levelised costs of the
technology, thereby ignoring external costs such as the cost of emissions. Cost
components considered included construction, storage, fuel and fuel delivery, pre-
development, O&M costs and a waste and processing plant decommissioning cost
for nuclear energy (Allan et al., 2011). Studies that do not consider environmental
or societal dimensions provide portfolios aimed at optimising the generation cost in
ensuring secure and affordable energy. However, such studies ignore the requirement
for clean energy, which is an essential part of the sustainable energy policy. As such,
optimal portfolios generated do not factor in emission-reduction potential, thereby,
favouring non-renewable sources compared to renewable generation sources.

On the other hand, some studies include environmental or external impacts
when estimating expected generation cost or return (Novacheck and Johnson, 2017;
Stempien and Chan, 2017). The ambitious carbon emissions reduction targets
and the need to raise energy efficiency has significantly influenced the structure of
power generation (Westner and Madlener, 2010, 2011). Consequently, some studies
have sort to consider the seemingly conflicting and competing priorities of energy
security policies and sustainability/climate change policies (Stempien and Chan,
2017). The sustainability problem requires that different objectives or indicators,
on economic, social and environmental dimensions, are considered or integrated
simultaneously (Brandenburg et al., 2014). The solution adopted by studies in the
literature, including Arnesano et al. (2012), Bhattacharya and Kojima (2012) and
Marrero et al. (2015), is the addition of environmental and other external costs
to the industrial cost used in the optimisation model. Arnesano et al. (2012), for
example, defined total generation cost to be the sum of industrial cost, external costs
and direct and indirect CO2 costs. While the industrial cost component comprised
construction, fuel and O&M costs per KWh, the external and CO2 cost components
captured the social and environmental impacts of the various generation technologies.
Marrero et al. (2015), added the externality cost of CO2 emissions to the levelised
cost of energy in the sensitivity analysis to model the potential complementarity
between renewable and non-renewable energy sources in reducing both portfolio
risk/cost and CO2 emission.

While the inclusion of external or environmental cost dimensions in the portfolio
diversification problem is widely accepted in sustainable energy mix planning, it is
argued in this chapter that merely adding such environmental and societal costs
to other economic generation costs does not effectively capture the essence of
sustainability and hence there is more emission-reduction potential for a truly
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sustainable energy portfolio diversification. Relying on multi-attribute utility theory,
it is shown that the preference relationships in an additive model fail to consider
the joint effects in such multi-attribute problems (Keeney and Raiffa, 1993). This
has implications for the optimal portfolios generated and the emissions reduction
potential. This is because, for additive aggregation, there is the potential for poor
performance on some dimensions of sustainability to be compensated by good
performance on other dimensions of sustainability. Additionally, differences in the
magnitude of the contributions of each of the dimensions towards total generation
cost mean some dimensions may be disadvantaged in favour of dimensions with
higher contribution magnitude.

The need to ensure sustainability, security and affordability of energy is one of
the most pressing concerns faced by many governments and international bodies
in contemporary times (Stempien and Chan, 2017). As such, effective modelling
of the problem is key for energy policy. This chapter examines the impact of the
composition of the cost structure on the preference between alternative generation
sources that should be optimised in a portfolio model. As such, the implications
of various cost configurations on the preference between sources and the optimal
portfolio of sources are presented to show the weaknesses of traditional approaches
to constructing sustainable generation mixes. From this, recommendations are made
on how to generate a more sustainable mix with higher emissions reduction potential
and a more effective combination of renewable and non-renewable generation sources.

7.3 Portfolio diversification
The mean-variance framework of Markowitz (1952) used in portfolio optimisation
requires estimates of the expected value of the portfolio of generation sources and
associated risk. The portfolio expected return is defined from the generation cost
(Mari, 2014; Park et al., 2016) or output perspectives (Roques et al., 2010). In
energy mix planning, however, the inverse of expected generation cost (i.e. 1/Cj) is
usually used in a maximisation model (Delarue et al., 2011). The general portfolio
expected return is defined as (Roques et al., 2010):

E(Rp) =
n∑

j=1
wjE(Rj) (7.1)

This expected annual value of the portfolio (E(Rp)) comprises the weighted
sum of the returns (E(Rj)) of n technologies under investigation. The risk of the
portfolio is estimated by the standard deviation of the technologies:
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σp =

 n∑
j=1

w2
j σ2

j +
n∑

j=1

n∑
k=1
j ̸=k

wjwkσjσkρjk


1/2

(7.2)

Where the σj and σk represent the standard deviation of technology j and
technology k, while ρjk is the correlation between technologies j and k. In the opti-
misation problem, the portfolio with the highest return can be found by maximising
the portfolio expected return subject to the portfolio risk as a constraint. On the
other hand, the minimum-variance portfolio can be estimated by minimising the
portfolio risk subject to the expected return as a constraint. For both problems,
there is a further requirement for the weights wj to sum up to unity, such that:∑n

j=1 wj = 1. There may be other upper and lower bound requirements, as well
as capacity constraints on the optimal weights to be estimated. This depends on
the national and international policies on the generation mix (Rombauts et al.,
2011; Santos-Alamillos et al., 2017). Sensitivity analysis is conducted to solve the
maximisation and minimisation models for various values of return and risk.

7.3.1 Decomposing the expected return and risk

The focus of this chapter is to examine the internal structure of the return of
technology from which the optimal portfolio is selected. The expected return,
defined from the inverse of generation costs, comprises various generation cost types
including (but not limited to) O&M costs, capital/investment cost, fuel costs, as
well as emissions factor usually from carbon trading, as well as external costs such
as costs on health damages (Delarue et al., 2011). These costs may be generally
classified as private industrial costs incurred during the plant operation and CO2

costs usually imposed by governments to check emissions and external costs that
could be incurred as a result of the impact of the operation of the plant on society
(Allan et al., 2011; Arnesano et al., 2012). Total cost should reflect the economic,
social and environmental cost per unit of energy produced which should be minimised
to achieve secure, affordable and clean energy. Consequently, the generation cost
(and the risk) of a technology is the basis for determining preference between different
generation sources to generate a sustainable mix.

Total cost is often defined as a sum or weighted sum of the various cost components
for each technology (see Arnesano et al., 2012; Delarue et al., 2011). If the cost of
generation is decomposed into the r = 1, . . . , s independent sustainability dimensions
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(e.g. economic, social and environmental costs), the expected return and variance of
a given technology j can be defined as:

E(Rj) =
s∑

r=1
E(rr) (7.3)

var(r1j + . . . + rsj) =
s∑

r=1
var(rr) (7.4)

where rr = 1/cr . The covariance is zero since the components are independent.
Summing the components may not provide a truly sustainable portfolio since
disadvantages on some dimensions can be compensated by large advantages on
other dimensions. Since the expected return is the basis for determining the
overall sustainability and preference between technologies, it is possible to look at
the problem from a utility maximisation perspective. If the preference between
alternatives satisfy the Von Neumann and Morgenstern (1947) axioms of rational
behaviour and the components are mutually utility independent, then it is possible
to express the multi-attribute utility problem in multilinear form (Keeney and Raiffa,
1993; Stewart, 2005):

u(Y ) =
s∑

r=1
krur(yr) +

s∑
r=1

∑
t>r

krtur(yr) ut(yt) + . . . + k1,2,...,su1(y1)u2(y2) . . . us(ys)

(7.5)
where k’s are scaling constants that ensure consistency. The attribute yr is utility
independent of its complements if the preference for lotteries with different levels of
that attribute yr do not depend on fixed levels of the remaining attributes (Stewart,
2005). In this case, higher economic returns are preferred to low economic returns at
the same level of social and environmental returns. If all subsets of all attributes are
utility independent of their complements, then the attributes are mutually utility
independent (Keeney and Raiffa, 1993; Stewart, 2005). The multilinear form is
a generalisation of both the additive and multiplicative utility functions (Keeney
and Raiffa, 1993). The additive expected return as expressed in (7.3) follows the
first term of the multilinear utility model in (7.5). The additive aggregation is
used if alternatives satisfy additive independence, meaning preferences between the
lotteries depend only on the marginal probability distributions (Keeney and Raiffa,
1993). It ignores the joint probability distribution and hence does not allow for
interaction between the attributes. Elkington (1997) shows sustainability as the point
of intersection between social (people), environmental (planet) and economic (profit)
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objectives. Therefore, the idea of sustainability-focussed planning decisions should
require both economic efficiency and external considerations not either economic
or external. This is seen in the triple bottom line theory, depicted in Figure 2.1,
which shows sustainability as the point of intersection between economic, social and
environmental dimensions. Sustainable development of energy system includes a
reduction in emissions and pollutant gases, increased safety of energy supply, use of
renewable energy sources, improved energy efficiency and improved quality of life
(Jovanović et al., 2009).

An approach which constructs composite scores in a way that allows disadvantages
on some criteria to be offset by large advantage on other criteria (Hacatoglu et al.,
2015a,b; Rowley et al., 2012) is inconsistent with the idea of sustainability (Elkington,
1997). Additivity of the utility function across attributes with comparable scales
allows for loss on one criterion to be compensated by gains of another (Pomerol and
Barba-Romero, 2000). Additionally, the various dimensions may not have the same
magnitude. Bhattacharya and Kojima (2012), show that CO2 costs represent very
little of the total generating cost breakdown in the Japanese case with economic
costs (capital, fuel and O&M) accounting for about 75% of the total risk. Awerbuch
and Yang (2007), showed that carbon costs play very little in the generating cost
structure of fossil-based fuels and even no direct impact on the cost of generating
non-fossil technologies. Examining these dimensions by the sum of the costs has the
potential of reducing the weight of CO2 and other external costs in the final analysis
and so it can be at variance with the ideas of sustainability.

In the case of sustainability, it may be more appropriate to define the expected
return of the technology as a product of its components. In that case, the joint
probability distribution across attributes is of concern such that overall preference
for a technology differs at different levels of some attributes. Consequently, the
desirability of different amounts of an attribute may depend on the specific level
of other attributes (Keeney and Raiffa, 1993). Such interaction is not captured in
the additive utility function. In such a case, the multiplicative preference relation
may be preferred for determining the expected return of a technology across the
sustainability dimensions. This presents some complexity in the estimation of the
risk attributable to the various components. When variables are interacting, variance
depends on whether the interacting variables are independent random variables or
are correlated. Since the economic, social and environmental cost components are
independent, the covariance between the components is assumed to be zero.
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E(Rj) =
s∏

r=1
E(rr) (7.6)

var(r1j · . . . · rsj) =
s∏

r=1

(
var (rr) + (E [rr])2

)
−

s∏
r=1

(E [rr])2 (7.7)

Although the multilinear function in (7.5) has different levels of interactions
between the dimensions, since the definition of sustainability requires only the
interaction among the three dimensions, this study focusses on the interaction of
all the three dimensions simultaneously when determining the technology return.
However, it may sometimes be useful to rely on pairwise interactions when a
technology has zero costs/returns on some dimension. In Section 7.4, optimisation
models to examine the different relationships between dimensions of sustainability
are developed. These models are empirically tested in Section 7.5 to see how the
relationship between dimensions influences the preference between technologies.

7.4 Modelling the relationship between dimensions
DEA is used as the basis for examining the impact of various cost configuration on
the scores and rankings of the technologies. With DEA, it is possible to examine the
dimensions from the individual to composite level which allows for the examination
of the impact of the dimension configuration on the composite scores. Additionally,
DEA has been widely used to tackle portfolio optimisation problems of financial
assets (Basso and Funari, 2001; Edirisinghe and Zhang, 2007; Liu, Zhou, Liu and
Xiao, 2015; Zhou, Xiao, Jin and Liu, 2018) and sustainability assessments of various
nature (Thies et al., 2019; Zhou, Yang, Chen and Zhu, 2018).

7.4.1 Relationship between DEA and multilinear utility func-
tion

The multilinear utility function is presented in equation (7.5), with a set of Y =
(y1, y2, . . . , ys) mutually utility independent attributes. Here ur(yr) is the utility
of the rth attribute scaled by kr where 0 ≤ kr ≤ 1. In practice, the procedure
for constructing the utility u(Y ) in multi-attribute utility theory involves first an
assessment of the partial utilities ur(yr) then determination of an appropriate scaling
using qualitative judgements or other approaches like AHP, Entropy method or
Principal Component Analysis (Dyer, 2005; Yang et al., 2014). Yang et al. (2014)
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have shown the relationship between the DEA approach and the multi-attribute
utility theory in estimating the scaling factors. Since the attributes in (7.5) are all
‘more is better’, DEA Without Explicit Output (DEA-WEI), which uses index data
of the form yir = er/xi where er and xi are outputs and inputs respectively (Liu
et al., 2011), can be used for the assessment of the scaling factors (Yang et al., 2014)
in the model:

h = Max
s∑

r=1
wrur(yro) +

s∑
r=1

∑
t>r

wrtur(yro) ut(yto)

+ . . . + w1,2,...,su1(y1o)u2(y2o) . . . us(yso) (7.8a)

s.t.
s∑

r=1
wrur(yrj) +

s∑
r=1

∑
t>r

wrtur(yrj) ut(ytj)

+ . . . + w1,2,...,su1(y1j)u2(y2j) . . . us(ysj) ≤ 1 (7.8b)
wr ≥ 0, j = 1, . . . , n, r = 1, . . . , s, t = 1, . . . , s (7.8c)

The objective in (7.9) determines the scaling factors that maximise the multilinear
utility function of the alternative o under investigation subject to the restriction
that for all the other j alternatives (j = 1, . . . , n), the same function given the
chosen scaling factors does not exceed unity. Alternatively, the dual form of the LP
problem (7.8) may be preferred:

Max θ (7.9a)

s.t.
n∑

j=1
zjur(yrj) ≥ θur(yro), r = 1, . . . , s (7.9b)

n∑
j=1

zjur(yrj)ut(ytj) ≥ θur(yro)ut(yto), r = 1, . . . , s, t = 1, . . . , s (7.9c)

...
n∑

j=1
zju1(y1j)u2(y2j) . . . us(ysj) ≥ θu1(y1o)u2(y2o) . . . us(yso) (7.9d)

n∑
j=1

zj = 1 (7.9e)

θ ≥ 1 (7.9f)
zj ≥ 0, j = 1, . . . , n (7.9g)
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The optimal solution of (7.9) is the reciprocal of the optimal solution of (7.8).
In a single-input case, as in the risk-return problem, the DEA-WEI can directly be
converted into the CRS (i.e. CCR) DEA model (Liu et al., 2011):

Max θ (7.10a)

s.t.
n∑

j=1
λjerj ≥ θero (7.10b)

n∑
j=1

λjxj ≤ xo (7.10c)

λj ≥ 0, j = 1, . . . , n, r = 1, . . . , s (7.10d)

Note that (7.10) shows the CCR model corresponding to a DEA-WEI model
with just the additive term in the multilinear function. It is possible to show a CCR
model with the interacting terms. This will only require additional constraints. In
the next sub-section, DEA models based on the CCR are developed to examine
how the relationship between the sustainability dimensions influence the rankings of
technologies.

7.4.2 DEA modelling of attribute relationships

DEA models using the CCR model are developed to examine how the modelling of
the relationship between the sustainability dimensions (or attributes) influence the
ordinal ranking of the technologies (or DMUs) (j = 1, . . . , n). In this section, the
expected return (E(r)) is modelled as the output to be maximised while risk (σ) is
modelled as the input to be minimised. For each of the DEA models presented, the
score may be interpreted as a risk-adjusted performance measure since returns are
maximised at given levels of risks.

Additive modelling of sustainability dimensions (Model 1)

As a starting point, the DEA model with expected return and risk defined by (7.3)
and (7.4) is presented for the performance ranking. This model uses technology
returns as a sum of the returns of the various sustainability dimensions that make
up the generation cost of the technology. This risk measure in (7.11) is the square
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root of the variance in (7.4). This is the traditional way return is estimated for
portfolio optimisation problems.

E1
o = max

z, φ
φ (7.11a)

s.t.
n∑

j=1
zjσj ≤ σo (7.11b)

n∑
j=1

zjE(rj) ≥ E(ro)φ (7.11c)

zj ≥ 0, j = 1, 2, . . . , n (7.11d)

For technology o, the objective is to find the maximum Pareto-efficient propor-
tional expansion in expected return given a specified risk level. As such, if the score
φ is equal to unity, then there is no opportunity for expansion of return since no
other technology has a more Pareto-efficient risk-return combination. The inverse of
the score in (7.11) is bounded by zero and unity with unity as the most efficient
score (0 < 1/φ ≤ 1). Also, zj is a non-negative vector of weights for technology
j and E(rj) is the additive expected return score for technology j. It is believed
that the rankings in (7.11) are inconsistent with the idea of sustainability since the
various dimensions are combined without the requirement for good performance on
each of the sustainability dimensions, thereby, allowing compensation.

Separating the sustainability dimensions (Model 2)

To address the weakness of the additive model presented in (7.11), one solution
is to define the various dimensions as separate outputs, thereby, allowing Pareto
preference on each of the sustainability dimensions. Given the dimensions of
sustainability - economic, environmental and social - the total return and risk are,
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therefore, decomposed into the three dimensions treated as the separate/independent
outputs/inputs in separate constraints in Model (7.12).

E2
o = max

z, φ
φ (7.12a)

s.t.
n∑

j=1
zjσrj ≤ σro r = 1, . . . , s (7.12b)

n∑
j=1

zjE(rrj) ≥ E(rro)φ r = 1, . . . , s (7.12c)

zj ≥ 0, j = 1, 2, . . . , n (7.12d)

The model in (7.12) will, therefore, have three risk constraints and three expected
return constraints representing the risk and returns for the three sustainability
dimensions. This model is preferred to that presented in (7.11) since it allows
preference to be examined on each dimension independently. However, the model
allows the technology to choose the sustainability dimension for which more emphasis
will be placed in terms of the weighting. This is because the weights are local and
differ between DMUs. A feature of DEA is that it allows the DMU (technology)
under evaluation to choose the most favourable weights to maximise its scores in
the assessment (Yang et al., 2014). Also, in such a model, the technology return
and risk may be defined as a weighted average in the portfolio analysis. This will,
therefore, present the same challenges as the additive model in forming a composite
return and risk for the technologies since a weighted additive average is used.

Multiplicative modelling of sustainability dimensions (Model 3)

To handle this preference problem between the expected returns across sustainability
dimensions, it may be more appropriate to interact the various dimensions under
study since the idea of sustainability fundamentally requires interacting its dimen-
sions. Here, only the joint probability distribution is explored. Yang et al. (2014)
have shown that the DEA approach can be extended using the multi-attribute utility
theory with variable weights to include interaction terms to reflect value judgements.
To cater for the need for interactions between the dimensions, therefore, the three
return dimensions are included as an interaction term as formulated in (7.13). This
will require an estimation of a new risk variable defined as a product of the returns.
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This new risk variable for each technology is incorporated in (7.13) as σ̂j . Also, note
that the expected return and risk are estimated as in (7.6) and (7.7) respectively.

E3
o = max

z, φ
φ (7.13a)

s.t.
n∑

j=1
zjσ̂j ≤ σ̂o (7.13b)

n∑
j=1

zjE

(
s∏

r=1
rrj

)
≥ E

(
s∏

r=1
rro

)
φ (7.13c)

zj ≥ 0, j = 1, 2, . . . , n (7.13d)

It is believed that the rankings generated from model (7.13) is most consistent
with the principles of sustainability and will ensure that economic, social and
environmental considerations are comparably prioritised in the composition of
different technologies.

Pairwise interaction of sustainability dimensions (Model 4)

The potential problem with (7.13) is the impact a zero score on any dimension can
have on the final ranking. A zero value on any dimension may mean no performance
assessment based on the other dimensions can be undertaken. A renewable technology
may have no environmental cost, for example, if only direct emissions are considered.
In such circumstances, it is possible to conduct pairwise interaction as a compromise
solution.

E4
o = max

z, φ
φ (7.14a)

s.t.
n∑

j=1
zjσ̃rtj ≤ σ̃rto, r = 1, . . . , h − 1, t = h + 1, . . . , s (7.14b)

n∑
j=1

zjE ( rrj · rtj) ≥ E ( rro · rto) φ, r = 1, . . . , h − 1, (7.14c)

t = h + 1, . . . , s

zj ≥ 0, j = 1, 2, . . . , n (7.14d)

Note that σ̃rtj in (7.14) represents the standard deviations of the expected
return for sustainability dimensions r and t estimated using pairwise interaction
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for technology j. The variance is estimated like (7.7) except r is 2 in each case.
The model presented in (7.14) retains the interactions between the dimensions
as required by sustainability while catering for the possibility of zero scores on a
dimension. In essence, this approach examines the other less desirable outcomes in
the triple bottom line Venn diagram in Figure 2.1 such as technologies which are
not environmentally damaging and support society but come at high cost (socio-
environmental), economically viable technologies which support society but have
high environmental implications (socio-economic) and those that are economically
profitable, do not burden the environment but do not provide sufficient support for
society (eco-efficiency) (Sykes and Trench, 2014). The overall technology expected
return and risk under such evaluation is the an average of the pairwise interactions.

Multilinear assessment of sustainability dimensions (Model 5)

An alternative compromise solution that addresses the problem of zero data on the
dimensions and which also captures the joint effects across dimensions is presented
in (7.15). This approach captures both the marginal effects and the joint effects
between the dimensions.

E5
o = max

z, φ
φ (7.15a)

s.t.
n∑

j=1
zj

(
s∑

r=1
σrj + σ̂j

)
≤
(

s∑
r=1

σro + σ̂o

)
, r = 1, . . . , s (7.15b)

n∑
j=1

zjE

(
s∑

r=1
rrj +

s∏
r=1

rrj

)
≥ E

(
s∑

r=1
rro +

s∏
r=1

rro

)
φ (7.15c)

zj ≥ 0, j = 1, 2, . . . , n (7.15d)

7.5 Empirical assessment
To test the arguments presented in this chapter empirical analysis of the models is
conducted. Since energy mix planning is conducted at the national level, the data by
Arnesano et al. (2012) on portfolio optimisation of the Italian electricity generation
mix is used. In their assessment, generation cost comprised environmental (CO2

cost), societal (external costs) and economic (industrial) dimensions. In their study,
the relationship between these dimensions was modelled as a sum where the inverse
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of the sum of generation costs, comprising industrial, external and direct and indirect
CO2 costs, was maximised given the risk associated with each generation technology.

7.5.1 DEA evaluation of sustainability dimensions

Arnesano et al. (2012)) examined the Italian context to verify whether a different
energy mix could be identified that minimises financial costs and risks, while
at the same time examining environmental sustainability. The environmental
dimension, represented by CO2 costs, was based on a lifecycle estimate of the
environmental emissions of the technology, as such, even renewable energy sources
like hydro, wind and solar PVs incur some environmental cost in the production
due to embodied emissions. Assessment based on the lifecycle perspective does not
limit the environmental impact to only the generation of the resources, but the
environmental impacts from ‘cradle-to-grave’ lifecycle thinking perspective. The
composition of total cost included an external cost dimension, which represents
all other costs due to the production of energy that is not sustained by the power
plants itself but by society. This external cost is used as the social dimension of
sustainability in this chapter. A summary of the data from the paper for the 10
technologies comprising both renewable and non-renewable sources are presented in
Table 7.1.

Table 7.1 Cost estimates for the Italian case from Arnesano et al. (2012).

Technology CO2 Cost
(Environmental)

External
Cost

(Societal)

Industrial
(Economic)

Total
Cost

Risk

Gas (100-160) 0.423 2.500 9.893 12.816 11.020
Gas (660) 0.423 2.500 6.939 9.862 10.850
Coal (100-160) 0.816 5.850 5.487 12.154 15.480
Coal (320) 0.816 5.850 4.975 11.642 16.020
Hydro (>10)a 0.172 0.340 5.457 5.968 8.190
Hydro (<10)a 0.172 0.340 6.410 6.922 27.460
Wind (>0.1-2)a 0.041 0.150 13.293 13.484 3.750
PV (0.5-1)a 0.272 0.160 39.746 40.178 4.020
Biomass (<15)a 0.234 2.650 13.223 16.107 12.570
Nuclear (1100) 0.021 0.250 5.082 5.353 16.720
a Renewable energy source

A priori, it is expected based on values in Table 7.1 that renewable energy
generation sources (hydro, solar (PV), wind and biomass) will outperform their
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non-renewable counterparts (gas and coal) if the technologies are considered along
environmental and social perspectives of sustainability. This is because renewable
sources generally have relatively lower environmental and societal costs and have
relatively lower risk levels compared to most non-renewable technologies. Non-
renewable sources like coal and gas have a comparative advantage in terms of the
economic (industrial) dimension. Nuclear energy is also expected to be a higher
performer since it is also associated with lower costs, though the risk may be high.
When cost is examined at the total level, it is seen that the high industrial costs
associated with renewables erodes the gains it makes on the other cost dimensions.
The industrial cost of PV, for an example, represents 98.9% of the total cost of
generation. At the national level, sustainable generation mix planning implies an
optimal mix that effectively caters for environmental and social objectives together
with economic implications. In this section, therefore, the effect of the structure of
the cost/return on the rankings of the various technologies and its implications on
the portfolio generated are examined.

Table 7.2 shows the risk-adjusted performance scores and rankings of the tech-
nologies estimated by model 1 (equation (7.11)) where the costs are combined as
a sum of the dimensions. As expected, due to the use of the additive composite
score, poor performance on some sustainability dimensions is compensated by higher
performance on the others. For example, PV is disadvantaged in terms of compar-
ative performance due to high industrial (economic) costs, although it has a low
environmental and social impact as well as risk. Additionally, gas (100-160) and
gas (660) which are fossil fuel based technologies are among the higher performers
although they are among the riskiest technologies in terms of environmental impact.

Table 7.2 Model 1 – Additive modelling of sustainability dimensions.

Technology Return Risk Score Rank
Gas (100-160) 0.08 11.02 0.3459 5
Gas (660) 0.1 10.85 0.4567 4
Coal (100-160) 0.08 15.48 0.2598 8
Coal (320) 0.09 16.02 0.2620 7
Hydro (>10) 0.17 8.19 1.0000 1
Hydro (<10) 0.14 27.46 0.2571 9
Wind (>0.1-2) 0.07 3.75 0.9669 2
PV (0.5-1) 0.02 4.02 0.3027 6
Biomass (<15) 0.06 12.57 0.2414 10
Nuclear (1100) 0.19 16.72 0.5459 3
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Next, the total return is decomposed with the three dimensions treated as
separate outputs and inputs in separate constraints as in the model 2 (7.12) with
the results presented in Table 7.3. Arnesano et al. (2012) do not provide estimates
for risk of the social (external) dimension due to unavailability of historical data.
As such, no risk constraint for the social dimension is included.

Table 7.3 Model 2 – Separating the sustainability dimensions.

Technology Return
Env.

Return
Soc.

Return
Eco.

Risk
Env.

Risk
Eco.

Score Rank

Gas (100-160) 2.36 0.4 0.1 0.86 10.99 0.4180 8
Gas (660) 2.36 0.4 0.14 1.12 10.8 0.5936 5
Coal (100-160) 1.23 0.17 0.18 1.75 15.38 0.5271 7
Coal (320) 1.23 0.17 0.2 1.83 15.92 0.5616 6
Hydro (>10) 5.81 2.94 0.18 0.75 8.15 1.0000 1
Hydro (<10) 5.81 2.94 0.16 0.64 27.45 0.2821 10
Wind (>0.1-2) 24.39 6.67 0.08 0.08 3.75 1.0000 1
PV (0.5-1) 3.68 6.25 0.03 0.18 4.02 0.8738 4
Biomass (<15) 4.27 0.38 0.08 0.38 12.56 0.2954 9
Nuclear (1100) 47.62 4.00 0.20 0.10 16.72 1.0000 1

From Table 7.3, the preference evaluation of the technologies is deemed relatively
more consistent with sustainability than previously shown in Table 7.2 since dimen-
sions are independently compared based on Pareto preference. However, in forming
an overall score, since each dimension is compared across technologies, the model will
be less discriminatory than the previous model. Additionally, technologies choose
which dimension more emphasis is placed on in their weighting. That explains why
gas (660) is among the better performers since it places more emphasis on its higher
economic performance. Coal (320) also places more weight on its low industrial
costs (high economic returns), though it has relatively poor performance on the
environmental and societal dimensions. This, however, does not conform with the
traditional idea of sustainability, since emphasis can be placed on one dimension to
the neglect of other ones.

The next table explores how interacting the expected returns for the sustainability
dimensions affect the scores and rankings. It is believed that these interactions align
more with the idea of sustainability than the additive model. Due to the relatively
higher risk scores on the economic dimension (see Table 7.3), the economic return
variable is transformed and replaced with the square root of the returns in Table
7.3, for each technology. Risks are estimated, with respect to Equation (7.7).
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Table 7.4 Model 3 – Multiplicative modelling of sustainability dimensions.

Technology Return Risk Score Rank
Gas (100-160) 0.30 0.1091 0.0060 7
Gas (660) 0.36 0.1694 0.0046 8
Coal (100-160) 0.09 0.1275 0.0015 9
Coal (320) 0.09 0.1398 0.0015 10
Hydro (>10) 7.32 0.9429 0.0170 6
Hydro (<10) 6.75 0.7491 0.0197 5
Wind (>0.1-2) 44.60 0.1474 0.6609 2
PV (0.5-1) 3.64 0.1754 0.0454 3
Biomass (<15) 0.44 0.0391 0.0248 4
Nuclear (1100) 84.49 0.1845 1.0000 1

Results, presented in Table 7.4, conform much better to a priori expectations
of the rankings, with most renewables and nuclear among higher performers and
fossil-based fuels among the lower performers. Among the top performers are wind,
nuclear, hydro and PV. This interaction between the dimensions allows for better
incorporation of all three dimensions of sustainability in the portfolio generation.
However, it must be noted that zero value on any dimension will mean no performance
score for that technology. A technology may have no environmental cost, for example,
if only direct emissions are considered and not the whole lifecycle emissions which
would account for embodied emissions.

To cater for the implication of a zero score on a dimension on the final score for
such special occasions, it is reasonable to use compromise solutions. Ranks generally
stay similar to those presented in Table 7.4 while catering for the possibility of zero
scores on a dimension. Table 7.5 shows the rankings using the two compromise
solutions that incorporate some level of interaction between the dimensions. For
both compromise solutions, renewables outperform non-renewable sources, which is
consistent with a priori expectations.

While pairwise interaction captures the joint effect between two dimensions at a
time, multilinear form captures both the joint effect of the three dimensions and
their marginal effects. Therefore, for pairwise interaction if there is a value of zero
on any one dimension, the expected return will comprise only the interaction of
the two remaining dimensions. Consequently, such a technology will not dominate
another technology with non-zero values. In the multilinear model, the expected
return of a technology comprises both the additive and multiplicative terms. Hence,
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Table 7.5 Model 4 and Model 5 – Compromise solutions.

Technology
Pairwise

Interaction
Multilinear

Score Rank Score Rank
Gas (100-160) 0.0869 7 0.0139 8
Gas (660) 0.0798 8 0.0142 7
Coal (100-160) 0.0573 10 0.0051 9
Coal (320) 0.0576 9 0.0050 10
Hydro (>10) 0.1340 6 0.0866 4
Hydro (<10) 0.1436 5 0.0285 5
Wind (>0.1-2) 1.0000 1 1.0000 1
PV (0.5-1) 0.4274 3 0.1632 3
Biomass (<15) 0.1710 4 0.0209 6
Nuclear (1100) 1.0000 1 0.4204 2

if a technology has zero value on any dimension, its expected return will be lower
since it will be made up of only the additive component.

7.5.2 Constructing optimal generation portfolios

It has been shown that the internal structure of the cost/return used for portfolio
optimisation can impact preference between technologies and their rankings. The
next question is whether changes in the internal structure of the cost/return affect
the optimal portfolio of technologies generated using the Markowitz approach. Two
portfolios, the maximum return and minimum risk portfolios are constructed for each
of the cost configurations examined in this section. For the maximum return portfolio,
the expected return of the portfolio of technologies is maximised given risk and
capacity constraints. Minimum risk portfolio constructs the optimal portfolio that
minimises the overall portfolio risk. The minimum risk portfolio is usually the most
diversified portfolio while the maximum return portfolio is least diversified (Arnesano
et al., 2012). For the Italian case, the minimum and maximum capacity constraints
showing the lower and upper bounds for the different technologies considered are
given in Appendix B.

In Figure 7.1, the optimal portfolios of technologies excluding nuclear energy
are presented. The current generation mix of Italy, for the period under study, had
no nuclear generation input, as such the portfolios presented in Figure 7.1 exclude
the nuclear option. CO2 emissions have been estimated based on the allocation of
gas and coal options using the emission factors of 55.82 kg/GJ and 94.073 kg/GJ
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respectively for an annual electricity demand of 314.57 TWh, which is consistent
with Arnesano et al. (2012). Full portfolio characteristics are presented in Appendix
B.

 

Figure 7.1 Optimal production mix and CO2 emissions (without nuclear option).

Maximum return portfolios for the additive (model 1) and multiplicative (model
3) options show a clear difference. The optimal portfolio based on an addition of
the sustainability dimensions has only 30% total allocation to renewable energy
sources, although maximum capacity constraints allow for at most 61% allocation to
renewable sources. PV even gets no allocation in the generation mix. The portfolio
is, therefore, dominated by non-renewable sources with gas (660) receiving the
highest allocation of about 48%. Compare that to the portfolio generated based on
the interaction of the components (model 3) of the total return for the technologies.
Here, 61% of the portfolio allocation has been given to renewable generation sources,
thereby, ensuring a massive reduction in the CO2 emissions based on the additive
model (model 1). Evidently, this is a cleaner generation mix compared to the additive
portfolio which allows for more non-renewable sources due to lower economic cost
alone.

For the minimum risk portfolio, it is seen that the additive model slightly
outperforms the multiplicative model, probably because no risk for the social
dimension was captured in the original data, although the expected returns reflect
the social dimension of sustainability. Note that discussions in the previous section
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Figure 7.2 Optimal production mix and CO2 emissions (with nuclear option).

were based on the maximisation of return and its implication on risk, however, the
portfolio generated by the multiplicative model for the minimum risk portfolio does
not seem very different from that generated by the additive model. Generally, the
allocations for the minimum risk portfolios are identical with renewables comprising
56% of the additive model and 51% in the multiplicative model. Figure 7.2 shows the
maximum return and minimum risk portfolios for the set of technologies including
nuclear energy. Regardless, renewable content in the multiplicative model is higher
than in the additive model. Observations made earlier for the minimum risk portfolio
remains the same when nuclear energy is included in the optimal portfolio.

Finally, in the case of zero data on some dimensions, compromise solutions based
on pairwise interaction and multilinear models are presented. The optimal portfolios
using these approaches have been presented for nuclear and no nuclear cases in Figure
7.3 and Figure 7.4, respectively. In the figures, the optimal solutions are compared
to the current Italian mix as well as the optimal solution in the multiplicative model.
Evidently, while the maximum return portfolios give similar emission levels, the
compromise solutions outperform even the multiplicative model in the minimum
risk case.
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Figure 7.3 Comparison of compromise solution with other solutions (with nuclear).

 

Figure 7.4 Comparison of compromise solution with other solutions (without nuclear).
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7.6 Chapter summary
This chapter examines how environmental and social cost indicators are considered
in the total generation cost for each available technology in a portfolio optimisation
model. Traditional approaches to this objective have generally adopted the mean-
variance analysis approach to incorporate external and environmental dimensions in
the estimation of the expected returns of the technology. However, it is shown that
the way in which these sustainability-oriented dimensions are incorporated into the
expected returns has the potential to erase the relevance of some of the dimensions.
This study, therefore, has significance in promoting the sustainability assessment of
energy generation systems. Environmental and external cost components (such as
social costs) in the generation cost can be combined with industrial (economic) costs
by exploring interactions and other relationships between the various components.

The nature of the interaction between the dimensions has an impact on the
performance score and rankings. It is shown that using an additive composite
total costs/returns will have an impact on the nature of the portfolio selected. If
the environmental and social impacts are to be appropriately modelled in terms
of sustainability performance, then it is important to examine how the various
dimensions interact with each other. The analyses show that current approaches
used have the potential of disadvantaging renewable energy sources in the modelling
and the optimal portfolio process especially based on maximum returns. It is not
surprising that deLlano Paz et al. (2017) observe that portfolio optimisation has
a limitation when it comes to assessing the impact of the inclusion of renewable
technologies in the portfolio.



Chapter 8

Conclusions and
Recommendations

This chapter provides a summary of the findings of the research conducted in this
thesis. Additionally, further research opportunities, based on the findings and ideas
from the thesis, are highlighted.

8.1 Summary and conclusions
The primary objective of the thesis was to develop DEA sustainability assessment
models of electricity generation and consumption that can incorporate differences in
generation portfolios, while providing a cross-country performance comparison in
the European context. This was undertaken in the prior seven chapters.

The first chapter of the study provided the foundation upon which the entire study
was based. It began with a brief background statement that provided an overview
of the sustainability problem and its relevance in energy systems. This was followed
by a problem statement that communicated the limitations with current literature.
Problems highlighted included the seeming disconnect between the production and
consumption assessment literature, the inherent limitations of some traditional
OR techniques in handling sustainability problems, and the peculiar challenges in
sustainability and performance assessment of energy systems. As a result of these
key research gaps, three research objectives were presented. Specifically, to:

a. explore DEA optimisation models that cater for differences in production port-
folios and the assessment of sustainability and resource efficiency in electricity
production of EU countries.
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b. integrate electricity production and use evaluations, economic development,
social development and environmental impact assessments into a single holistic
assessment procedure that caters for alternative views on sustainability.

c. examine the implication of sustainability in portfolio optimisation models
aimed at selecting an optimal mix of energy generation sources that ensures
affordable but clean energy system.

The chapter concluded with a discussion of the expected contributions of the thesis
and an outline of the thesis.

The second chapter was a review of the extant literature on the sustainable
energy system. The first section reviewed conceptual issues in the sustainability
literature. This included definitions and dimensions of sustainability and sustainable
development and systems thinking in sustainability. The second section provided
some conceptual and empirical literature on energy and sustainable development.
In this section, the relationship between energy and the three dimensions of sus-
tainability, namely the economy, society and the environment, were discussed. The
third section was dedicated to sustainability assessment literature. Methodological
issues in the production and consumption assessment literature were then discussed.
The chapter concluded with a section on systems thinking in sustainable energy
research. The chapter, therefore, provided the conceptual and empirical background
for model building and empirical assessment in subsequent chapters.

Since the thesis develops DEA models for sustainability assessment, it was im-
portant to provide some methodological review and determine the modelling choices.
Consequently, a synthesis of the DEA literature that related to the assessments to
be conducted in subsequent chapters was undertaken in Chapter 3. Specifically, the
DEA literature on models with unknown internal structure, network DEA models,
non-homogenous DEA, undesirable inputs/outputs, as well as alternative efficiency
measurement approaches were extensively reviewed. The NDEA literature was
essential in developing evaluation models that incorporate alternative generations
sources in the generation phase, different policy objectives in the consumption phase
and an integrated assessment that combines the generation and consumption phases.
In the generation phase, since different countries generate electricity from different
portfolios of energy sources, there were some non-homogeneity across countries. A
review of the DEA non-homogeneity literature revealed the absence of approaches
dealing with non-homogeneity in combination with sub-processes in a parallel NDEA
structure. This absence of an approach to handle this type of non-homogeneity
presented opportunity for model development in subsequent chapters.
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Chapters 2 and 3 provided a foundation for the thesis by defining clear objectives
and providing a discussion of conceptual, empirical and methodological literature to
understand the strengths and weaknesses of existing literature. The fourth chapter
brought together knowledge identified in previous chapters to structure the problem
in a manner that would guide model development and empirical assessment to
achieve the research objectives. This chapter employed causal loop diagrams to
develop conceptual models that reflect the necessary policy variables in sustainable
energy policy. This provided a systemic overview and a simplification of the complex
interrelationships in sustainable energy as captured in literature. From these causal
loop diagrams, NDEA conceptual frameworks were developed for the generation
phase, the consumption phase and the integration of these two phases. While the
generation phase resulted in a parallel network structure, the consumption phase was
a multi-stage series network with three stages. This meant that the entire system
was a mixed structure problem with parallel and multi-stage components.

Chapter 5 provided model development and empirical assessment of the consump-
tion phase of the energy system. This was objective one of the thesis - to explore
DEA optimisation models that cater for differences in the production portfolios
and for sustainable and resource efficient electricity production of EU countries. As
earlier indicated, due to differences in the generation portfolios of the countries, it
was important to ensure that models developed recognise such non-homogeneity. It
was shown that where there exists non-homogeneity in the sub-processes and there
exist shared inputs or outputs, then using traditional parallel NDEA models could
result in potential allocation to non-existing sub-processes. The consequences are
artificially lower inputs and outputs to existing sub-processes and the potential for
efficiency scores being computed for non-existing sub-processes. Two approaches for
handling such non-homogeneity and factor allocation were, therefore, proposed. The
first approach ensures that the optimal multipliers for each DMU are only determined
for existing sub-processes. This is achieved by eliminating non-existing sub-processes
in the evaluation of the DMU. The second approach maintains all sub-processes in
the industry but ensures that no allocation is made to non-existing sub-processes.
When both of these approaches were compared to a traditional NDEA, differences
in the overall scores and rankings were observed, which underscored the need to
correct such non-homogeneity problems.

The choice between the two proposed approaches depends on whether the DMU
has price controls in determining their optimal multipliers. If price-taking exists or
regulatory control determines prices, then approach two would be more appropriate.
The subsequent empirical assessment was based on the second approach since it uses
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the entire market data and DMUs have relatively similar regulatory environment
due to membership of a regional block. In the empirical assessment of the electricity
generation systems, evaluation models that employ transformation inputs, labour
and installed capacity of 11 generation sources to produce electricity and GHG
emissions for some sub-processes were developed. It was observed that half of EU
countries have a score lower than 50% on average for the 10-year study period.
Higher performers included Estonia, Poland, Greece and Austria. After averaging
the system scores across the countries, it was observed that resource efficiency
and sustainable electricity generation in the EU were within the 0.4 to 0.6 range
over the study period without a clear pattern towards performance improvement.
Country-specific decomposition of the overall efficiencies was also conducted and
reported. The contribution of this chapter is, therefore, the introduction of models,
which recognise differences in the generation portfolios of EU countries and the
examination of the performance of electricity production systems in EU countries.

Chapter 6 addressed the second objective of the study. This objective was to
integrate electricity production evaluation with policy areas in the consumption
phase while catering for alternative views on sustainability. This chapter, therefore,
addressed production and consumption sustainability in a single assessment. The
chapter was divided into two main parts. The first part developed models for
the consumption phase of the energy system. In this part, both the additive and
multiplicative decomposition of overall efficiency were used for the multi-stage series
network comprising social, economic and environmental sub-systems. It is believed
that while the additive decomposition in the assessment is consistent with the
weak sustainability viewpoint, the multiplicative decomposition is more consistent
with the strong sustainability view of sustainability. This is because the level of
compensation between the performance dimensions is higher in the additive model
than the multiplicative model. Therefore, there is the potential for more substitution
of low performance on one dimension for higher performance on other dimensions of
sustainability performance with additive decomposition. For both the additive and
multiplicative models, higher overall performers in the consumption phase included
Malta, Luxembourg, Cyprus, Ireland and Sweden. There were differences, however,
in the lower performing countries for the two models.

The second part of the assessment in Chapter 6 provided a holistic assessment
comprising both the production and consumption phases. As evident in the preceding
assessments, higher performers in the generation phase are not necessarily higher
performers in the consumption phase. Therefore, it was important to combine these
two phases to capture the interrelationship and complementarities in these two phases
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of the energy system. Using the multiplicative decomposition, a series of parallel
networks were used to characterise the system efficiency. This system efficiency
was further decomposed into the efficiencies of the generation sources, the policy
dimensions in the consumption phase and two-phase efficiencies. It was observed
that higher performance on a phase-specific assessment does not necessarily mean
higher performance on the system-wide assessment. This together with the differing
objectives of the phased and holistic assessments mean there is a utility in sometimes
conducted phased assessment. However, where decision support is required for
system-wide considerations then the holistic assessment is best placed to do that.
Decompositions of the holistic model revealed its results are generally consistent
with the phased assessment while providing more information than available in the
phased assessment. For example, it was observed that for most of the countries,
system-wide efficiency was mostly influenced by the generation phase rather than
the consumption phase.

Chapters 5 and 6 provided assessments pertaining to on secure and clean energy.
Chapter 7, meanwhile, examined economic, environmental and social cost dimensions
of sustainability. Renewable energy sources are characterised by high running costs
per KWh, however, they have an advantage in terms of lower costs to the environ-
ment and society as well as lower risk in most cases. This shows that renewables
outperform non-renewable generation sources in two of the three dimensions of
sustainability. However, it was shown in Chapter 7 that additive pooling of the costs
across dimensions when used in portfolio optimisation will disadvantage renewable
generation sources in favour of non-renewable sources. Therefore, alternative pooling
of the total cost per technology were examined to determine how economic, social and
environmental dimensions could be incorporated in portfolio optimisation of energy
mix planning in line with sustainability objectives. It was found that multiplicative
pooling of the total cost best conforms with the expectations on technology rankings
with a sustainability focus. Additionally, when technology costs determined through
multiplicative pooling were used in portfolio analyses with an affordable energy
focus, the resulting optimal portfolios achieved lower emissions and higher renewable
energy content than additive pooling. This chapter, therefore, addressed the third
objective of the study.

This thesis has, therefore, addressed all the dimensions of the energy trilemma
in energy policy by providing an assessment of secure energy supply, the production
and consumption of clean energy and the generation of an affordable energy system
with a sustainability focus. In doing this, novel DEA models have been developed
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and empirically implemented to examine the complex internal structures of units
under investigation.

8.2 Suggestions for further research
Although a comprehensive assessment and model development has been conducted in
this thesis, some opportunities for further research in different areas are highlighted
below.

In Chapter 4, causal loop diagrams were developed as the basis for understanding
the causal relationships studied in literature and structuring network models for DEA
assessment. Although loop diagrams were developed, DEA was used for assessment
since the focus was on the performance of the system in comparison with the same
system of other countries. Network DEA was the chosen DEA systems assessment
methodology. However, further research could explore the dynamic behaviour of the
energy systems using these causal diagrams. Systems dynamics could also be used
to explore the system behaviour of each country over time. In the DEA literature,
dynamic DEA can be useful for studying the dynamic performance of the energy
systems over time. This thesis did not specifically consider changes in performance
over time.

Secondly, it was shown that where DMUs in a parallel NDEA have a different set
of sub-processes, there is the potential of allocation to non-existing sub-processes.
To cater to the non-homogeneity, two approaches were proposed for handling such
non-homogeneity in parallel NDEA problems. Parallel NDEA was the focus of
the non-homogeneity problem in this thesis since the differences between countries
exist in the portfolio of concurrent electricity generation sources rather than the
serial relationships with other sub-systems. It is reasonable to believe that such
non-homogeneity may also exist in some serial problems. For example, countries can
have differences in electricity transmission systems. In such cases, the existence of
shared-flow factors in the model would present similar challenges as those discussed
in the thesis. Consequently, further research could explore approaches for handling
such non-homogeneity in serial and mixed structure network problems.

Some improvement can also be made to the empirical assessments in Chapters
5 and 6. Firstly, in the generation phase, no distinction about the importance of
gross electricity production from renewable and non-renewable sources was made.
Additionally, the weights of the sub-processes were determined using resource
consumption. Where available, external weighting of the importance of electricity
generation sources could be incorporated into an assessment of system sustainability
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and resource efficiency. This external weighting could also be incorporated into the
consumption phase as well as the integration of the phases. Secondly, while the
literature on assurance regions for multiplier restriction in DEA is well advanced,
multiplier restriction in this thesis was limited to minimum and maximum bounds. In
a practical application, it is possible to more extensively define assurance regions to
control the relative importance of optimal multipliers in a manner that is consistent
with actual factor prices. It is important to also note that this study focussed on
direct emissions from electricity production. Further research can explore indirect
emissions that is embodied in resources used in establishment power plants. This
can be achieved using lifecycle analysis.

Finally, in Chapter 7, various DEA models were developed to examine how the
pooling of costs along the sustainability dimensions affects the technology rankings
and the optimal portfolio. In the empirical assessment, data for the Italian case
described previously in the literature was used. The choice of this data was informed
by the existence of cost data on the three sustainability dimensions and the ability
to compare the findings with existing literature. Reliance on existing research data
resulted in some challenges with the determination of risks. The social (external)
dimension, for example, did not have a risk in the original application. Further
research could generate cost and risk data from historic data series or some forecasted
values. While the focus was on the composition of costs, similar arguments could be
made about the composition of risk, especially when it is considered that risk for an
energy technology does not only come from fuel cost but it is an amalgamation of
different dimensions, including CO2 cost volatilities. Additionally, the assessment
focussed on only the Italian case. It would be interesting to determine if there is the
potential for an optimal EU-wide generation mix. In such an assessment, countries
might choose to generate power from only sources they have sufficient cost, efficiency
and other comparative advantages for their operation. This comprehensive portfolio
optimisation might perhaps be useful in the EU’s transition towards a unified, smart
and decarbonised electricity grid. In the same chapter, new DEA models were also
developed. Further research could extend network DEA using these DEA models
developed based on multi-attribute utility theory.
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Appendix A

Optimal allocation of split
variables

A.1 Split factors without minimum bound

Country
Existing
Sources
(Out of 11)

Non-existent sources
Split Factor Proportionsa

Installed
Capacity

Transformation
Input

Labour

Austria 9 Nuclear n.a n.a 0*
Tide n.a 0* 0.0034

Belgium 9 Geothermal n.a 0* 0.6933
Tide n.a 0* 0.0002

Bulgaria 8 Geothermal n.a 0.0599 0.0909
Tide n.a 0* 0.0909
Waste & Biofuels [NR] 0.0035 n.a 0.0909

Croatia 6 Nuclear n.a n.a 0.0001
Solar n.a 0* 0.0001
Geothermal n.a 0.069 0.0001
Tide n.a 0* 0.0001
Waste & Biofuels [NR] 0.0009 n.a 0.0001

Cyprus 4 Solid Fuels 0.6449 n.a 0.5219
Gases 0.3535 n.a 0*
Nuclear n.a n.a 0*
Hydro n.a 0.4641 0*
Geothermal n.a 0.0466 0*
Tide n.a 0* 0*

Continued...
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Continuation of Table

Country
Existing
Sources
(Out of 11)

Non-existent sources
Split Factor Proportions

Installed
Capacity

Transformation
Input

Labour

Waste & Biofuels [NR] 0.0005 n.a 0*
Czech
Republic

9 Geothermal n.a 0.0623 0.0009
Tide n.a 0* 0.0009

Denmark 8 Nuclear n.a n.a 0*
Geothermal n.a 0* 0.0359
Tide n.a 0* 0.0017

Estonia 6 Nuclear n.a n.a 0*
Solar n.a 0.0292 0*
Geothermal n.a 0.013 0*
Tide n.a 0.0014 0*
Waste & Biofuels [NR] 0.2 n.a 0*

Finland 9 Geothermal n.a 0* 0.2032
Tide n.a 0* 0*

France 10 Geothermal n.a 0* 0.7055
Germany 10 Tide n.a 0* 0.0015
Greece 8 Nuclear n.a n.a 0*

Geothermal n.a 0.0466 0*
Tide n.a 0* 0*

Hungary 9 Geothermal n.a 0.0703 0.0909
Tide n.a 0 0.0909

Ireland 6 Nuclear n.a n.a 0*
Solar n.a 0* 0*
Geothermal n.a 0* 0.2335
Tide n.a 0* 0.0017
Waste & Biofuels [NR] 0.0022 n.a 0*

Italy 9 Nuclear n.a n.a 0.0002
Tide n.a 0* 0.0018

Latvia 6 Nuclear n.a n.a 0.0909
Solar n.a 0* 0.0909
Geothermal n.a 0.0499 0.0909
Tide n.a 0.0011 0.0909
Waste & Biofuels [NR] 0.0007 n.a 0.0909

Lithuania 7 Solar n.a 0* 0.0002
Geothermal n.a 0.1038 0.0002

Continued...
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Continuation of Table

Country
Existing
Sources
(Out of 11)

Non-existent sources
Split Factor Proportions

Installed
Capacity

Transformation
Input

Labour

Tide n.a 0* 0.0002
Waste & Biofuels [NR] 0.0028 n.a 0.0002

Luxembourg 7 Solid Fuels 0.0021 n.a 0.0102
Nuclear n.a n.a 0*
Geothermal n.a 0* 0.0455
Tide n.a 0* 0.0026

Malta 1 Solid Fuels 0.668 n.a 0*
Gases 0.33 n.a 0*
Nuclear n.a n.a 0*
Hydro n.a 0.4632 0*
Wind n.a 0.0454 0*
Biomass [R] 0.0014 0.4449 0*
Solar n.a 0* 0*
Geothermal n.a 0.0465 0*
Tide n.a 0* 0*
Waste & Biofuels [NR] 0.0003 n.a 0*

Netherlands 9 Geothermal n.a 0* 0.2303
Tide n.a 0* 0.0016

Poland 7 Nuclear n.a n.a 0.0005
Solar n.a 0* 0.0005
Geothermal n.a 0.0468 0.0005
Tide n.a 0* 0.0005

Portugal 9 Nuclear n.a n.a 0*
Tide n.a 0* 0.0055

Romania 8 Geothermal n.a 0.0581 0.0909
Tide n.a 0* 0.0909
Waste & Biofuels [NR] 0.0056 n.a 0.0909

Slovakia 8 Solar n.a 0* 0.0004
Geothermal n.a 0.1048 0.0004
Tide n.a 0* 0.0004

Slovenia 8 Wind n.a 0* 0.0001
Geothermal n.a 0.0899 0.0001
Tide n.a 0* 0.0001

Spain 9 Geothermal n.a 0* 0.1405
Continued...
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Continuation of Table

Country
Existing
Sources
(Out of 11)

Non-existent sources
Split Factor Proportions

Installed
Capacity

Transformation
Input

Labour

Tide n.a 0* 0.002
Sweden 9 Geothermal n.a 0* 0.0199

Tide n.a 0* 0.0007
United
Kingdom

10 Geothermal n.a 0* 0.2546

n.a: not applicable
* near zero score, but not zero



Appendix B

Portfolio optimisation

B.1 Correlations between technologies

Source 1 2 3 4 5 6 7 8 9 10
1 Gas (100-160) 1.000 0.449 0.029 0.029 0.010 0.010 0.003 -0.006 0.031 -0.048
2 Gas (660) 0.449 1.000 0.029 0.029 0.010 0.010 0.003 -0.006 0.031 -0.048
3 Coal (100-160) 0.029 0.029 1.000 0.449 -0.003 -0.003 0.041 0.071 0.011 0.004
4 Coal (320) 0.029 0.029 0.449 1.000 -0.003 -0.003 0.000 0.071 0.011 0.004
5 Hydro (>10) 0.010 0.010 -0.003 -0.003 1.000 0.000 0.000 0.000 0.034 0.074
6 Hydro (<10) 0.010 0.010 -0.003 -0.003 0.000 1.000 0.000 0.000 0.034 0.074
7 Wind (>0.1-2) 0.003 0.003 0.041 0.000 0.000 0.000 1.000 0.000 0.034 0.015
8 PV (0.5-1) -0.006 -0.006 0.071 0.071 0.000 0.000 0.000 1.000 -0.041 -0.059
9 Biomass (<15) 0.031 0.031 0.011 0.011 0.034 0.034 0.034 -0.041 1.000 -0.111
10 Nuclear (1100) -0.048 -0.048 0.004 0.004 0.074 0.074 0.015 -0.059 -0.111 1.000

B.2 Capacity constraints

Source Minimum Maximum
Gas (100-160) 0.02 0.20
Gas (660) 0.15 0.48
Coal (100-160) 0.00 0.07
Coal (320) 0.06 0.16
Hydro (>10) 0.11 0.18
Hydro (<10) 0.05 0.07
Wind (>0.1-2) 0.02 0.15
PV (0.5-1) 0.00 0.03
Biomass (<15) 0.03 0.18
Nuclear (1100) 0.10 0.40
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B.3 Emissions factors

kg/GJ kg/KW h
Gas (100-160) 55.8200 0.7030
Gas (660) 55.8200 0.7030
Coal (100-160) 94.0730 1.1850
Coal (320) 94.0730 1.1850

B.4 Optimal portfolios without nuclear option (weighted)

 

  Current Additive Multiplicative Pairwise Multilinear 

  Source 
Mix Max 

Ret a 

Min 
Risk b 

Max 
Ret 

Min 
Risk 

Max 
Ret 

Min 
Risk Max Ret 

Min 
Risk 

 Portfolio Allocations 
1 Gas (100-160) 0.18 0.02 0.14 0.02 0.14 0.02 0.20 0.02 0.14 
2 Gas (660) 0.42 0.48 0.15 0.31 0.15 0.31 0.15 0.31 0.15 
3 Coal (100-160) 0.04 0.04 0.07 0.00 0.07 0.00 0.07 0.00 0.07 
4 Coal (320) 0.10 0.16 0.07 0.06 0.13 0.06 0.06 0.06 0.07 
5 Hydro (>10) 0.15 0.18 0.18 0.18 0.11 0.18 0.11 0.18 0.18 
6 Hydro (<10) 0.04 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 
7 Wind (>0.1-2) 0.03 0.02 0.15 0.15 0.14 0.15 0.15 0.15 0.15 
8 PV (0.5-1) 0.003 0.00 0.03 0.03 0.03 0.03 0.03 0.03 0.03 
9 Biomass (<15) 0.03 0.03 0.15 0.18 0.18 0.18 0.18 0.18 0.16 
           

 Portfolio Characteristics 

 Portfolio Return 0.10 0.11 0.10 8.79 7.79 10.94 10.34 8.89 8.73 

 Portfolio Risk 6.42 6.64 4.56 0.19 0.12 0.19 0.14 5.21 4.67 
           

 % Renewables 0.26 0.30 0.56 0.61 0.51 0.61 0.52 0.61 0.57 

 % Non-Renewables  0.74 0.70 0.44 0.39 0.49 0.39 0.48 0.39 0.43 
           

  CO2 Emissions c 58.94 58.33 36.99 30.04 43.35 30.04 39.65 30.04 36.93 
a Maximum return portfolio 
b Minimum risk portfolio 
c Measured in million tons 
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B.5 Optimal portfolios with nuclear option (weighted)

 

 

 Current Additive Multiplicative Pairwise Multilinear 

  Source 
Mix Max 

Ret a 

Min 
Risk b 

Max 
Ret 

Min 
Risk 

Max 
Ret 

Min 
Risk Max Ret 

Min 
Risk 

 Portfolio Allocations 

1 Gas (100-160) 0.18 0.02 0.10 0.02 0.10 0.02 0.04 0.02 0.10 

2 Gas (660) 0.42 0.22 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

3 Coal (100-160) 0.04 0.00 0.05 0.00 0.07 0.00 0.01 0.00 0.05 

4 Coal (320) 0.10 0.06 0.06 0.06 0.10 0.06 0.06 0.06 0.06 

5 Hydro (>10) 0.15 0.18 0.18 0.14 0.11 0.11 0.11 0.14 0.18 

6 Hydro (<10) 0.04 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

7 Wind (>0.1-2) 0.03 0.02 0.15 0.15 0.11 0.15 0.15 0.15 0.15 

8 PV (0.5-1) 0.003 0.00 0.03 0.00 0.03 0.03 0.03 0.00 0.03 

9 Biomass (<15) 0.03 0.03 0.13 0.03 0.18 0.03 0.18 0.03 0.13 

10 Nuclear (1100) 0.00 0.40 0.10 0.40 0.10 0.40 0.22 0.40 0.10 
           

 Portfolio Characteristics 

 Portfolio Return 0.10 0.15 0.11 41.93 14.92 38.52 25.70 42.07 17.16 

 Portfolio Risk 6.42 7.72 4.29 0.17 0.12 0.13 0.13 7.44 4.40 
           

 % Renewables 0.26 0.70 0.64 0.77 0.58 0.77 0.74 0.77 0.64 

 % Non-Renewables d  0.74 0.30 0.36 0.23 0.42 0.23 0.26 0.23 0.36 
           

  CO2 Emissions c 58.94 23.77 30.43 18.89 36.98 18.89 21.65 18.89 30.36 
a Maximum return portfolio 
b Minimum risk portfolio 
c Measured in million tons 
d Percentage of non-renewable sources and nuclear energy 
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