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Abstract

This paper investigates welfare targeting for public goods in networks. First,

we show that a tax/subsidy scheme (not necessarily budget-balanced) affects each

consumer only insofar as it affects his neighbourhood. Second, we show that either a

Pareto-improving income redistribution can be found or there exist Negishi weights,

which we relate to the network structure. Third, in the case of Cobb–Douglas

preferences, we show that a law of welfare targeting holds and links two well-known

notions of the comparative statics of policy interventions: neutrality and welfare

paradoxical effects. Collectively, our findings uncover the importance of the −1

eigenvalue to economic and social policy: it is an indication of how consumers

absorb the impact of income redistribution.
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1 Introduction

Many major challenges facing modern societies (essential infrastructure, information ac-

quisition, emerging infectious disease) relate to enhancing public good provision across

different consumers. While market outcomes often provide scope for policy intervention,

central planners seldom have the luxury to completely change the state of the economy

and implement optimal outcomes. Instead, social planners typically aim to design welfare-

improving reforms — involving small changes as in the policy reform literature in the

tradition of Dixit (1975) and Guesnerie (1977), and with important policy implications

as in Ahmad and Stern (1984).

This paper explores welfare targeting with small tax/subsidy schemes, not necessarily

budget-balanced, which are traditionally viewed as a benchmark for broader policy in-

terventions, for the private provision of public goods in networks. In a key contribution,

Bramoullé and Kranton (2007) showed that the network context, where local influences

are heterogeneous among consumers, is a natural setting to examine the private provi-

sion of public goods. Bramoullé, Kranton and D’Amours (2014) investigated the whole

range of strategic substitution and identified a threshold of impact related to the lowest

eigenvalue of the network. Below the threshold, the uniqueness and stability of a Nash

equilibrium hold. Beyond it, multiple Nash equilibria will in general exist, and stability

holds only for corner equilibria. Allouch (2015) extended this model to the non-linear

case, with a condition on the normality of the public good which follows the classical

Bergstrom, Blume and Varian (1986) (henceforth BBV) approach, and showed that their

neutrality no longer holds for income redistribution in general networks. Galeotti, Golub

and Goyal (2020) analyse optimal policy interventions informed by the eigenvalues of

the underlying network of spillovers. Other recent and relevant contributions to the

network literature include those by: Galeotti, Goyal, Jackson, Vega-Redondo and Yariv

(2010); Ghiglino and Goyal (2010); Acemoglu, Malekian and Ozdaglar (2016); Bourlès,

Bramoullé and Perez-Richet (2017); Kinateder and Merlino (2017); López-Pintado (2017);

Chen, Zenou and Zhou (2018); Belhaj and Deröıan (2019); Elliott and Golub (2019); Al-

louch (2017); Allouch and King (2019); Akbarpour, Malladi and Saberi (2020); Ushchev

and Zenou (2020); Li, Zhou and Chen (2021), and Sun, Zhao and Zhou (2021).

First, we establish a property that is key to understanding the impact of welfare tar-

geting in networks. More specifically, we show that a tax/subsidy scheme affects each
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consumer only insofar as it affects the consumer’s neighbourhood, formed by himself and

his neighbours. That is, it is the neighbourhood scheme, rather than the tax/subsidy

scheme that affects consumption. Hence the policy implications can be derived by fo-

cusing just on the neighbourhood schemes. In particular, neutral tax/subsidy schemes

(budget-balanced or not) in general networks are those with null neighbourhood schemes,

or equivalently those that are the eigenvectors to the −1 eigenvalue.

Secondly, to inform/guide welfare targeting, we use an approach based on a weighted

utilitarian social welfare function. More specifically, the social planner maximises a

weighted sum of consumers’ utility functions. We find two mutually exclusive cases

— either there is a Pareto-improving income redistribution or, if not, there exist Negishi

welfare weights. These Negishi weights provide the implicit welfare weights at the initial

equilibrium. In particular, we find that a Pareto-improving income redistribution always

exists in the class of networks that has a neutral and budget-unbalanced tax/subsidy

scheme, since Negishi weights cannot exist. This finding is very much in the spirit of the

BBV neutrality result as it holds for any profile of preferences of consumers. Additionally,

in the case of Cobb–Douglas preferences, we show that the feasibility of Pareto-improving

reform turns out to be readily interpreted and easily checked from the network structure.

As a consequence, our analysis leads to a useful characterisation of welfare targeting.

Thirdly, we provide a link between key, but seemingly unrelated, notions of compara-

tive statics: neutrality and paradoxical welfare effects. In fact, by focusing on tax/subsidy

schemes that are also eigenvectors, our analysis shows that in the case of Cobb–Douglas

preferences, neutrality (or, equivalently, the −1 eigenvalue) corresponds to the point of

policy switch between tax/subsidy schemes where the utility levels of the donors and

the recipients move in the same direction as the scheme (normal welfare impact) and

tax/subsidy schemes where the utility levels of the donors and the recipients move in

the opposite direction (paradoxical welfare impact). In addition, we show that a law

of welfare targeting holds for more general tax/subsidy schemes determined by the −1

eigenvalue.

In different settings, our results highlight the importance of the −1 eigenvalue to

social and economic outcomes, since our findings identify it as a condition for neutral

tax/subsidy schemes, Pareto improvement, and the policy switch. In interpretation,

the −1 eigenvalue is an indication of how consumers, via their neighbourhood, absorb

the impact of tax/subsidy schemes, and hence of the welfare implications. Despite the
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frequency with which the -1 eigenvalue appears for many (but not all) networks, as far

as we know the −1 eigenvalue is not used as a common measure of network analysis

in any other fields, including sociology, computer science, and physics. Given that the

−1 eigenvalue provides a key to social and economic outcomes, perhaps its relationship

to the underlying network structure could usefully be studied alongside classic network

statistics such as the highest, the second, and lately the lowest eigenvalues.

The paper is structured as follows. Section 2 sets out the model and Section 3 in-

vestigates welfare targeting. Section 4 looks at Pareto improvement and Negishi weights

and Section 5 provides a new perspective on neutrality and paradoxical welfare effects.

Section 6 concludes the paper. An Appendix provides proofs of the propositions and

corollaries.

2 The model

We consider a society comprising n consumers in N = {1, ..., n} who occupy the nodes

of a fixed network g of social interactions. Let G = [gij] denote the adjacency matrix of

the network g, where gij = 1 indicates that consumer i 6= j are neighbours and gij = 0

otherwise. The adjacency matrix of the network, G, is symmetric with non-negative

entries and therefore has a complete set of real eigenvalues (not necessarily distinct),

denoted by λmax(G) = λ1 ≥ λ2 ≥ . . . ≥ λn = λmin(G), where λmax(G) is the largest

eigenvalue and λmin(G) is the lowest eigenvalue of G. By the Perron–Frobenius Theorem,

it holds that λmax(G) ≥ −λmin(G) > 0.

Consumer i’s neighbours in the network g are given by Ni. The preferences of each

consumer i are represented by a twice continuously differentiable, strictly increasing, and

strictly quasi-concave utility function ui(xi, qi + Q−i), where xi is consumer i’s private

good consumption, qi is consumer i’s public good provision, and Q−i =
∑

j∈Ni
qj is the

sum of public good provisions of consumer i’s neighbours in the society. Furthermore,

the public good can be produced from the private good via a unit-linear production

technology. That is, any non-negative quantity of the private good can be converted into

the same quantity of the public good. For simplicity, the prices of the private good and

the public good can be normalised to p = (px, pQ) = (1, 1). Each consumer i faces the
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utility maximisation problem

max
xi,qi

ui(xi, qi +Q−i)

s.t. xi + qi = wi and qi ≥ 0,

where wi is his income (exogenously fixed). The utility maximisation problem can be

represented equivalently as

max
xi,Qi

ui(xi, Qi)

s.t. xi +Qi = wi +Q−i and Qi ≥ Q−i,

where consumer i chooses his (local) public good consumption, Qi = qi +Q−i. Let γi be

the Engel curve of consumer i. Then consumer i’s local public good demand depends on

wi +Q−i, each consumer’s ‘social wealth as in Becker (1974):

Qi = max{γi(wi +Q−i), Q−i},

or equivalently

qi = Qi −Q−i = max{γi(wi +Q−i)−Q−i, 0}.

We will assume, throughout the paper, the following network-specific normality as-

sumption, which amounts to both the normality of the private good and a strong nor-

mality of the public good:

Definition 1. Network normality. Allouch (2015) For each consumer i = 1, . . . , n,

the Engel curve γi is differentiable and it holds that 1 + 1
λmin(G)

< γ′i(·) < 1.

Theorem 1. Allouch (2015) Assume network normality. Then there exists a unique

Nash equilibrium in the private provision of public goods on networks.

3 Welfare targeting

In this paper, we investigate welfare targeting by a social planner in networks. The

idea is that implementing a welfare-efficient outcome is typically unachievable because it

requires a significant change from the existing state of the economy. More realistic are

small tax/subsidy schemes, which induce infinitesimal changes that are welfare-improving
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and equilibrium-preserving as in Dixit (1975), Guesnerie (1977), and Ahmad and Stern

(1984).

Let q∗ = (q∗1, . . . , q
∗
n) be the Nash equilibrium associated with w = (w1, . . . , wn) and

let s = (s1, . . . , sn) denote a tax/subsidy scheme, where si < 0 is a tax and si ≥ 0

is a subsidy. Let qs = (qs1, . . . , q
s
n) be the Nash equilibrium associated with w + s =

(w1 + s1, . . . , wn + sn)T . Let also v∗ = (ui(x
∗
i , Q

∗
i ))i∈N denote the vector of utilities of all

consumers at the initial equilibrium, vs = (ui(x
s
i , Q

s
i ))i∈N denote the vector of utilities

after a tax/subsidy scheme s, and ∆v(s) = vs − v∗.

Typically, not all consumers will be contributing to public goods. Therefore, at a

Nash equilibrium, there will be possibly several components of contributors. We will

focus our analysis on just one component of contributors. For simplicity of notation,

by passing to the subnetwork, we will assume N is a component of contributors. Note

that, by doing so, we can no longer consider the public goods consumption or welfare of

non-contributors. Similarly, if we pass our analysis to several components of contributors,

while we can fully characterise the provision of public goods and welfare of contributors,

we can no longer consider the public good consumption or welfare of non-contributors.

Given a tax/subsidy scheme s, let S = (I + G)s denote the corresponding neighbour-

hood scheme. That is, the corresponding neighbourhood scheme S measures how the

tax/subsidy scheme s affects each consumer’s neighbourhood, formed by himself and his

neighbours. In particular, we say s is neighbourhood balanced whenever S = 0.

Proposition 1. Given a component of contributors, the change in consumers’ utili-

ties/welfare following a small tax/subsidy scheme s is

∆v(s) ≈ A−1(I + AG)−1AS,

where A = diag(1− γ′i(wi +Q∗−i))i∈N .

Proposition 1 shows that it is the corresponding neighbourhood scheme, rather than

the tax/subsidy scheme itself, that determines the welfare impact. That is, a tax/subsidy

scheme impacts each consumer’s welfare only insofar as it impacts his neighbourhood. As

a consequence, policy implications can be derived from focusing just on the correspond-

ing neighbourhood schemes. Note that a tax/subsidy scheme can yield a very different

corresponding neighbourhood scheme, for some consumers not only in terms of magni-
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tude but also in terms of direction of impact. For instance, there can be consumers who

are subsidized in the tax/subsidy scheme and taxed in the corresponding neighbourhood

scheme, or conversely.

In particular, neutral tax/subsidy schemes, defined as those that are neighbourhood

balanced, or equivalently, that have a null corresponding neighbourhood scheme, rep-

resent an important class. Neutral tax/subsidy schemes have no impact on consumers’

welfare, and therefore reduce the scope of policy intervention.

Corollary 1. Given a component of contributors, small and neutral tax/subsidy schemes

are the eigenvectors to the −1 eigenvalue.

Hence the eigenvectors to the −1 eigenvalue, not necessarily budget-balanced, char-

acterise neutral tax/subsidy schemes for any profile of preferences. This provides a link

between the network structure and the policy constraints faced by the policy maker.

There is a wealth of literature focusing on the neutrality of budget-balanced tax/subsidy

schemes, or equivalently income redistribution. It is worth noting that the neutrality of

BBV occurs as a limiting case, since only the complete network, which is equivalent

to pure public goods, reaches the highest possible number (n − 1) of linearly indepen-

dent eigenvectors to the −1 eigenvalue. Allouch (2015) shows that the neutrality of BBV

extends to subsets of consumers that are similar in structure to pure public goods. In gen-

eral, neutral tax/subsidy schemes can be either budget-balanced or budget-unbalanced

and can also occur in network structures that are very dissimilar from pure public goods,

as we illustrate in Figures 1 and 2.1

−1 1 0 −1 1 0 0 0 0 0

s S

Figure 1: A neutral and budget-balanced tax/subsidy scheme in a line component of five
contributors. On the left, s is the tax/subsidy scheme where some consumers are taxed
and others are subsidised. On the right, S = (I+G)s is the corresponding neighbourhood
tax/subsidy scheme. Note that S = 0, which implies that s has no welfare impact,
according to Proposition 1.

1We will provide an example of a neutral and budget-unbalanced tax/subsidy scheme in the next
section (Figure 3).
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−1 1 0 0 0 0 0 0 1 −1

s1 s2 = s1 − s

0 0 1 0 0

S1 = S2

Figure 2: Policy-equivalent tax/subsidy schemes in the line component of five contrib-
utors. Two tax/subsidy schemes s1 and s2 have identical corresponding neighbourhood
schemes S1 and S2. This means they are ‘policy-equivalent’ and would have the same
welfare impact. It is worth noting that the two schemes s1 and s2 seem unrelated since
the consumers involved with s1 are not adjacent to consumers involved with s2.

4 Pareto improvement vs Negishi weights

To inform welfare targeting, we follow an approach based on a weighted utilitarian social

welfare function with welfare weights given by r ∈ Rn
++. Hence the social welfare effect

of a tax/subsidy scheme s is r ·∆v(s).

An interesting set of welfare weights are Negishi weights (named after Negishi (1960)),

which neutralise any impact of policy change from income redistribution at the initial

equilibrium, and are hence defined by r ·∆v(s) = 0 for any budget-balanced tax/subsidy

scheme s. Negishi weights are often used in climate change economics models to ‘freeze’

income distribution between countries (Stanton, 2011; Abbott and Fenichel, 2014) and,

for example, to investigate magnitudes and directions of technological transfers (Yang

and Nordhaus, 2006).

Proposition 2. Given a component of contributors, and where R = r(I+G), there exist

Negishi weights if and only if there exists r ∈ Rn
++ such that

R = 1(I−A)−1(I + AG).

Proposition 2 relates the existence of Negishi weights to the network structure and

the preferences of consumers. It characterises whether the Negishi weights, defined by

r ·∆v(s) = 0 for any budget-balanced tax/subsidy scheme, can be found in our setting.
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In particular, Proposition 2 shows that it is the neighbourhood Negishi weights R which

matter for this existence result, which flows directly from the fundamental importance of

the neighbourhood effects of any tax/subsidy scheme, shown in Proposition 1.

Since Negishi weights neutralise any policy impact from income redistribution, a key

implication of their existence is that they rule out the possibility of a Pareto-improving

income redistribution. In an analogous approach, Ahmad and Stern (1984) use the ‘in-

verse optimum’ to identify welfare weights that represent the implicit weights at the

initial equilibrium. If these welfare weights do not exist, this implies that a Pareto im-

provement is possible. This method relates to an application of Motzkin’s Theorem of

the Alternative. The following result further links the existence of Negishi weights to

Pareto improvement, in our setting of redistribution in networks with public goods.

Proposition 3. Given a component of contributors, there are only two (mutually exclu-

sive) possibilities, (a) and (b):

(a) There exists a Pareto-improving income redistribution.

(b) There exist Negishi weights.

Proposition 3 shows that either a Pareto-improving income redistribution can be found

or there exist Negishi weights. Hence, in every network structure, Pareto improvement is

in conflict with the Negishi weights. Whenever they do exist, Negishi weights represent

the implicit welfare weights at the initial equilibrium.

4.1 Pareto improvement and the -1 eigenvalue

Proposition 3 provides a simple method based on the network structure to check whether

a Pareto-improving income redistribution can be found or not. In this regard, the link

between the budget balance requirement and the vector 1 highlights the role of main

eigenvalues in our analysis.2 A main eigenvalue is an eigenvalue that has an eigenvector

not orthogonal to the vector 1 Cvetkovic (1970).3

2Quite differently, Allouch (2015, 2017) show that the expression of Bonacich centrality in terms of
main eigenvalues has useful policy implications.

3By the Perron–Frobenius Theorem, the maximum eigenvalue of G has an associated eigenvector
with all its entries positive and which, therefore, is a main eigenvalue.
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Proposition 4. Given a component of contributors, if −1 is a main eigenvalue then

there exists a small Pareto-improving income redistribution.

Proposition 4 is very much in the spirit of the BBV neutrality since it holds for any

profile of preferences. In interpretation, if −1 is a main eigenvalue, then a corresponding

eigenvector is a neutral and budget-unbalanced tax/subsidy scheme. Therefore, Negishi

weights cannot exist given that, in their presence, only budget-balanced tax/subsidy

schemes are policy-neutral. On the other hand, the social planner can use the neutral and

budget-unbalanced tax/subsidy scheme to create tax revenue which can be redistributed

for Pareto improvement. More specifically, the social planner could either tax or subsidize

consumers according to their entries in the neutral and budget-unbalanced tax/subsidy

scheme and create a budget surplus, which can be redistributed for Pareto improvement.

Figure 3 illustrates this.

In the following, we provide an example of network structures where −1 is a main

eigenvalue.

Definition 2. A network is equal neighbourhood, if consumers can be partitioned into two

unequal-size groups such that the number of links of each consumer to his group members,

is equal to the number of his links to consumers in the other group minus one.

In interpretation, in an equal neighbourhood network each consumer has an equal

neighbourhood size in each group. Given that the groups are unequal in size, but con-

sumers have equal sized neighbourhoods in them, the tax/subsidy scheme where con-

sumers in one group are uniformly taxed and consumers in the other group are uniformly

subsidized is both neutral and budget-unbalanced, and hence is an eigenvector to the -1

eigenvalue. Therefore, -1 is a main eigenvalue. A corollary follows from this:

Corollary 2. Given an equal neighbourhood network, then −1 is a main eigenvalue.

Hence, there exists a small Pareto-improving income redistribution.

An example of equal neighbourhood networks is a special class of core-periphery

networks with c fully connected core consumers, where each core consumer has c periphery

consumers connected only to her.4 This is illustrated in Figure 3.

4More generally, several classes of core-periphery networks feature frequently in economic analysis,
including as the outcome of a public good network formation game by Galeotti and Goyal (2010).
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−1

1 1

−1 −1

−1 0

0 0

0 0

0

s S

Figure 3: A neutral and budget-unbalanced tax/subsidy scheme in a core-periphery com-
ponent of contributors, with two core consumers and four periphery consumers. We can
observe that the tax/subsidy scheme s such that sp = −1 for periphery consumers and
sc = 1 for core consumers is budget-unbalanced but policy-neutral since its impact is null
in each consumer’s neighbourhood. Note that s is an eigenvector to the main eigenvalue
−1. Therefore, the social planner could use the tax/subsidy scheme s as follows: take 1
unit of income from each of the four periphery consumers, then subsidise the two core
consumers with 1 unit of income each. This is policy-neutral and creates a budget surplus
of 2 units of income which can be redistributed for Pareto improvement.
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1+2a
3

1+2a
3

1+2a
3

1+2a
3

(a) A regular network

a

1

a

(b) A star network

Figure 4: Negishi weights in two networks. For the regular network with four consumers
in Figure 4a, the Negishi weights are r = (1+2a

3
, 1+2a

3
, 1+2a

3
, 1+2a

3
). (These also correspond

to the standard utilitarian approach in Allouch (2017)). For the star network with three
consumers in Figure 4b, let us designate the central consumer as 1 and the two periphery
consumers as 2 and 3. We can observe that r = (1, a, a) are Negishi weights.

4.2 Cobb-Douglas preferences

In the case of Cobb–Douglas preferences, (ui(xi, Qi) = xaiQ
1−a
i ), we can further relate the

feasibility of Pareto-improving reform to the network structure.

Corollary 3. Assume Cobb–Douglas preferences. There exist Negishi weights if and only

if there exists r ∈ Rn
++ such that R = 1 + ad, where d denotes degree.

Corollary 3 relates the existence of Negishi weights to the degree. It is easy to check

for the existence of Negishi weights in two canonical network structures, regular and star.

This is illustrated in Figure 4.

Corollary 4. Assume Cobb–Douglas preferences. If the component of contributors is

regular or star, then there exists no Pareto improvement.

5 Policy switch and the -1 eigenvalue

Next we show how welfare targeting in networks, which accounts for heterogeneity of local

interactions, provides a link between the neutrality and general welfare effects. Indeed,

observe that when a Pareto-improving income redistribution exists, it holds that the
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donors’ utility level must move in the opposite direction to the tax/subsidy scheme. In

fact, this is an example of a weak transfer paradox. On the contrary, a strong transfer

paradox corresponds to the case where the utility levels of both the donors and recipients

move in the opposite direction to the tax/subsidy scheme — that is, those who give are

better off and those who receive are worse off.

In order to further investigate welfare targeting in networks, we will focus our analysis

on Cobb–Douglas preferences such that ui(xi, Qi) = xaiQ
1−a
i .

Proposition 5. Assume Cobb–Douglas preferences. Given a component of contributors,

if the small tax/subsidy scheme s is an eigenvector to the eigenvalue λ, then, for some

κλ > 0, it holds that

∆v(s) = κλ (λ+ 1) s = κλ S.

Proposition 5 shows that, in the case of Cobb–Douglas preferences, if the tax/subsidy

scheme is an eigenvector, then its welfare impact is proportional to the corresponding

neighbourhood scheme. Proposition 5 has several implications.

As shown in Corollary 1, the eigenvectors to the −1 eigenvalue characterise neu-

tral tax/subsidy schemes. Observe that, the eigenvectors to the −1 either have no im-

pact on consumption, if budget-balanced, or have an impact on consumption, if budget-

unbalanced. In particular, a budget-unbalanced eigenvector to the −1 eigenvalue can be

used to create tax revenue while keeping welfare unchanged, which can be redistributed

for Pareto improvement, as shown in Proposition 4.

In addition, it holds that: (i) if the eigenvalue is greater than −1, then the utility

levels of both the donors and the recipients move in the same direction as the tax/subsidy

scheme, which corresponds to a ‘normal’ welfare impact and (ii) if the eigenvalue is

smaller than −1, then the utility levels of both the donors and the recipients move in

the opposite direction to the tax/subsidy scheme, which corresponds to a ‘paradoxical’

welfare impact. Therefore, the welfare impact changes from one direction to the other

depending on the eigenvalue, and the point at which the direction switches, −1, is the

point of policy neutrality.

In interpretation, the welfare impact can be thought of as a continuous policy function

that changes sign, so at some point it must equal zero, which is the point of policy

neutrality.
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The possibility of a paradoxical welfare effect may seem surprising. As shown in the

utility maximisation, the change in utility of each consumer is an increasing function of his

social wealth, wi +Q−i. So there will be two effects on a consumer’s utility after income.

As a direct effect, the endowment wi changes by si. There will also be an indirect effect on

the consumer’s social wealth because his neighbours’ public good provision Q−i changes

in the new equilibrium. Note that the direct effect always works in the direction of the

normal or non-paradoxical welfare outcome and that a subtle change in the neighbours’

public good provision is needed to generate the paradoxical welfare effect.

In the following we will show that the welfare effects can also be determined for a

more general class of tax/subsidy schemes. Indeed, let P+ (resp. P−) denote the linear

space spanned by the eigenvectors to eigenvalues greater (resp. smaller) than −1.

Proposition 6. Assume Cobb–Douglas preferences. Given a component of contributors

and a small tax/subsidy scheme s:

1. If s ∈ P+, then it holds that

∆v(s) · s > 0.

2. If s ∈ P−, then it holds that

∆v(s) · s < 0.

Proposition 6 shows that a Law of welfare targeting holds in the case of Cobb–Douglas

preferences. Indeed, it holds that if s ∈ P+ (resp. P−) then the utility levels of both the

donors and the recipients move in the same (resp. opposite) direction as (resp. to) the

tax/subsidy scheme, which corresponds to a normal (resp. paradoxical) welfare impact.

Hence, the −1 eigenvalue is the point where the overall welfare effects change direction.

6 Conclusion

In this paper, we have shown that welfare targeting, which accounts for heterogeneity

of local interactions, enables us to derive new results and policy insights. We have

also identified the −1 eigenvalue of the network as the condition for neutral tax/subsidy

schemes, a sufficient condition for Pareto improvement. and a policy switch point between

consumers acting on or counteracting policy intervention.
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−1

1 1

−1

0 0

−1

1 1

−1

0 0

s3 S3

0

0 0

0

1 −1

0

0 0

0

0 0

s4 S4

−1

1 −1

1

0 0

1

−1 1

−1

0 0

s6 S6

Figure 5: A network with six consumers. Since the tax/subsidy schemes we will consider
are also eigenvectors, in view of Proposition 5, we can measure their welfare impacts by
the neighbourhood schemes. At the top, the welfare impact of s3 is normal, as (λ3 = 0).
In the middle, the welfare impact of s4 is neutral, as λ4 = −1. At the bottom, the welfare
impact of s6 is paradoxical, as λ6 = −2.
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The −1 eigenvalue is not a common measure of network analysis in any other fields,

including sociology, computer science, and physics.5 Looking at tables of networks of at

most five nodes in Cvetkovic, Rowlinson and Simic (1997) and of six nodes in Cvetkovic

and Petric (1984), we notice that the −1 eigenvalue does occur frequently. More precisely,

it occurs in more than half of the listed networks, sometimes with multiplicity.6 That

said, even when the −1 eigenvalue is not present, its relative position in the spectrum is

key to the policy switch and the law of welfare targeting. Given the policy relevance of

the −1 eigenvalue, perhaps its presence and location in the spectrum could be usefully

studied alongside other important network measures.

More generally, our findings for the private provision of public goods in networks

highlight the interplay between strategic interactions of public goods in networks, whereby

each agent’s payoff depends on his own action and the sum of his neighbours’ actions, and

the underlying network structure. In this respect, we think our analysis could be useful for

a variety of similar strategic interactions as in Bramoullé, Kranton and D’Amours (2014),

Melo (2018), Parise and Ozdaglar (2018), and Galeotti, Golub and Goyal (2020). As a

consequence, our findings can provide clear testable predictions for many applications

including empirical and experimental work.

A Appendix: Proofs

Proof of Proposition 1 Given a tax/subsidy scheme s, adapting the proof of Propo-
sition 1 in Allouch (2015) we have that

qs − q∗ = (I + AG)−1(I−A)s,

5We are not aware of any mathematical or graph theory research on the relationship between the
network structure and the −1 eigenvalue— with the exception of Aouchiche, Caporossi and Hansen
(2013), Royle (2003), and Bıyıkoglu, Simic and Stanic (2011). All exceptions have a similar network
structure to pure public goods. Nonetheless, as we have shown in several examples, the −1 eigenvalue
can also have a significant welfare impact in a network structure that is very dissimilar from pure public
goods.

6In a private communication, Sebastian Bervoets very kindly provided us with the remaining propor-
tions with the −1 eigenvalue among networks of at most ten nodes, which are 0.504 for N = 7, 0.44 for
N = 8, 0.36 for N = 9, and 0.27 for N = 10. While the ratios are clearly decreasing, they still remain
significant, especially given the large number of networks.
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where A = diag(1− γ′i(wi +Q∗−i))i∈N . Since we normalised prices to (1, 1) and confined
our analysis to a component of contributors, without loss of generality it holds that

∇xu =
(∂ui
∂xi

)
i∈N

= ∇Qu =
( ∂ui
∂Qi

)
i∈N

= 1.

Next, we use xs − x∗ + qs − q∗ = s and Taylor approximation so that

∆v(s) ≈ ∇xu(xs − x∗) +∇Qu(Qs −Q∗)

= xs − x∗ + Qs −Q∗

= s + Qs
−i −Q∗−i

= s + G(qs − q∗)

= s + G(I + AG)−1(I−A)s

= s + G(I + AG)−1(I + AG−A−AG)s

= A−1(I + AG)(I + AG)−1A(I + G)s−G(I + AG)−1A(I + G)s

= A−1(I + AG)(I + AG)−1A(I + G)s−A−1AG(I + AG)−1A(I + G)s

= A−1(I + AG)−1A(I + G)s

= A−1(I + AG)−1AS.

Proof of Corollary 1 Observe that a small tax/subsidy scheme s is neutral if and
only if S = (I + G)s = 0, which is also equivalent to s being an eigenvector to the −1
eigenvalue.

Proof of Proposition 2 First, observe that

A−1(I + AG)−1A(I + G) = A−1(I + AG)−1(A− I + I + AG)

= A−1(I + AG)−1(A− I) + A−1

= A−1(A− I)−1(A− I)(I + AG)−1(A− I)

+ A−1(A− I)−1(I + AG)(I + AG)−1(A− I)

= A−1(A− I)−1[(A− I) + (I + AG)](I + AG)−1(A− I)

= (A− I)−1(I + G)(I + AG)−1(A− I)

= (I−A)−1(I + G)(I + AG)−1(I−A).

Therefore, there exist Negishi weights if and only if there exists r′ ∈ Rn
++ such that for

any budget-balanced s it holds that

r′ ·∆v(s) ≈ r′(I−A)−1(I + G)(I + AG)−1(I−A)s = 0,
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which is equivalent to there exists α > 0 such that

r′(I−A)−1(I + G)(I + AG)−1(I−A) = α1.

Let

r =
1

α
r′(I−A)−1.

Then, there exist Negishi weights if and only if

r(I + G)(I + AG)−1(I−A) = 1,

which is equivalent to
R = 1(I−A)−1(I + AG).

Proof of Proposition 3 Let V denote the linear subspace spanned by utility changes
from budget-balanced tax/subsidy schemes:

V = {∆v(s) ∈ Rn | ∆v(s) = A−1(I + AG)−1A(I + G)s for a budget-balanced s}.

Therefore, it follows from Corollary 3′ of Ben-Israel (1964) that there are only two (mu-
tually exclusive) possibilities, (a) and (b):

(a) V ∩ Rn
+ 6= {0} ⇐⇒ V⊥ ∩ Rn

++ = ∅.
(b) V ∩ Rn

+ = {0} ⇐⇒ V⊥ ∩ Rn
++ 6= ∅.

If (a) then there exists a Pareto-improving income redistribution in the subspace V .

If (b) then V⊥ contains r′ ∈ Rn
++ such that r′ ·∆v(s) = 0 for any budget-balanced s,

which is equivalent to the existence of Negishi weights.

Proof of Proposition 4 Suppose there exists no Pareto-improving income redistribu-
tion. Then there exist Negishi weights, or equivalently there exist r ∈ Rn

++ such that

R = 1(I−A)−1(I + AG),

or equivalently,
R(I + AG)−1(I−A) = 1.

Since −1 is a main eigenvalue, there exists an eigenvector s to the −1 eigenvalue such
that 1 · s 6= 0. Then it holds that

0 = r · S(I + AG)−1(I−A) = s ·R(I + AG)−1(I−A) = s · 1 6= 0.

which is a contradiction.
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Proof of Corollary 2 Note that, in an equal neighbourhood component of contributors,
the vector with all 1 entries in one group and all −1 entries in the other group is an
eigenvector to the −1 eigenvalue. This eigenvector to the −1 eigenvalue is also budget-
unbalanced since the two groups have unequal sizes. Hence, −1 is a main eigenvalue.
The existence of Pareto-improving income redistribution follows from Proposition 4.

Proof of Corollary 3 Given Cobb–Douglas preferences, ui(xi, Qi) = xaiQ
1−a
i , for each

consumer i = 1, . . . , n,, then it holds that γ′i(·) = 1 − a. Hence A = aI. It follows from
Proposition 2 there exist Negishi weights if and only if there exists r∗ ∈ Rn

++ such that

R∗ =
1

1− a
1(I + aG) =

1

1− a
(1 + ad).

Let r = (1 − a)r∗. Then, there exist Negishi weights if and only if there exists r ∈ Rn
++

such that
R = 1 + ad.

Proof of Corollary 4 For a regular network, consider r = 1+ad
1+d

1, where d is each
consumer’s degree. For a star network, consider r such that rc = 1 for the central
consumer and rp = a for the periphery consumers.

Proof of Proposition 5 From the proof of Proposition 2, it follows that

∆v(s) = (I + aG)−1(I + G)s.

Therefore, if the the tax/subsidy scheme s is an eigenvector to the eigenvalue λ, then it
holds that

∆v(s) = κλ (λ+ 1) s = κλ S,

where κλ = 1
1+aλ

. Having assumed network normality, we note that this is equivalent to

a ∈]0,− 1
λmin(G)

[ in the Cobb–Douglas preferences case, which ensures that κλ is positive.

Proof of Proposition 6 Let s ∈ P+ (resp. s ∈ P−). Then there exist (sk)k∈K that are
eigenvectors to eigenvalues (λk)k∈K such that λk > −1 (resp. λk < −1) and real numbers
(µk)k∈K such that s =

∑
k∈K µksk. From Proposition 5, it follows that

∆v(s) = ∆v(
∑
k∈K

µksk) =
∑
k∈K

µk∆v(sk) =
∑
k∈K

µkκλk (λk + 1)sk.

Therefore, it holds that

∆v(s) · s = (
∑
k∈K

µkκλk (λk + 1)sk) · (
∑
k∈K

µksk) =
∑
k∈K

µ2
k κλk (λk + 1) > 0 (resp. < 0).

19



References

Abbott, Joshua K. and Eli P. Fenichel (2014) “Following the golden rule: Negishi welfare

weights without apology,” Unpublished manuscript.

Acemoglu, Daron, Azarakhsh Malekian, and Asu Ozdaglar (2016) “Network security and

contagion,” Journal of Economic Theory, Vol. 166, pp. 536–585.

Ahmad, Ehtisham and Nicholas Stern (1984) “The theory of reform and Indian indirect

taxes,” Journal of Public Economics, Vol. 25, pp. 259–298.

Akbarpour, Mohammad, Suraj Malladi, and Amin Saberi (2020) “Just a Few Seeds More:

Value of Network Information for Diffusion,” SSRN Scholarly Paper ID 3062830, Social

Science Research Network, Rochester, NY.

Allouch, Nizar (2015) “On the private provision of public goods on networks,” Journal

of Economic Theory, Vol. 157, pp. 527–552.

(2017) “The cost of segregation in (social) networks,” Games and Economic

Behavior, Vol. 106, pp. 329–342.

Allouch, Nizar and Maia King (2019) “Constrained public goods in networks,” Journal

of Public Economic Theory, Vol. 21, pp. 895–902.

Aouchiche, Mustapha, Gilles Caporossi, and Pierre Hansen (2013) “Open problems on

graph eigenvalues studied with AutoGraphiX,” EURO Journal on Computational Op-

timization, Vol. 1, pp. 181–199.

Becker, Gary S. (1974) “A theory of social interactions,” Working Paper 42, National

Bureau of Economic Research.
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