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Abstract   12 

Corrective maintenance (CM) is carried out to correct failures while preventive maintenance (PM) is 13 

to avert failure. They both play an important role in asset management. Accurately estimating the 14 

effectiveness of PM is needed as it has an impact on system health management. Given failure times 15 

and maintenance related data, it is possible to estimate maintenance effectiveness. This paper 16 

proposes PM and CM models based on the different combinations of the type of maintenance carried 17 

out, estimates the parameters in those models, simulates their failure intensities and then studies 18 

maintenance effectiveness using maintenance data of industrial equipment. 19 
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NHPP Nonhomogeneous Poisson process 

PLP Power law process 

PM Preventive maintenance 

 23 

Notation 24 

𝜆(𝑡|𝐻𝑡−) Intensity of the failure process of the repairable system given 𝐻𝑡−  

𝐻𝑡− History of the failure process prior to time 𝑡 which includes the number of failures / 

PMs, and failure times / PM times 

𝐶𝑘 𝑘th maintenance time 

𝑊𝑘 Time between the 𝑘th and the (𝑘 − 1)th maintenance 

𝐾𝑡− Number of maintenance actions (PMs and CMs) before time 𝑡 

𝑇𝑖 𝑖th failure / CM time 

𝑋𝑖  time between the 𝑖th and the (𝑖 − 1)th failures / CMs, 

𝑁𝑡− number of failures before time 𝑡 

𝜏𝑗 𝑗th PM time 

𝜒𝑗  time between the 𝑗th and the (𝑗 − 1)th PMs 

𝑀𝜏−  number of PMs before time 𝑡 

𝑈𝑘  𝑈𝑘 = 0 if the 𝑘 th maintenance time is CM and 𝑈𝑘 = 1 if the 𝑘th maintenance time is 

PM 

𝜌 Degree of maintenance for imperfect maintenance models, 𝜌𝐶  for CM and 𝜌𝑃 for PM 

 25 

1. Introduction 26 

1.1 Background  27 

Corrective maintenance (CM) or repair is carried out to bring a failed system back to its operating 28 

status. In the reliability community, maintenance effectiveness is categorized into perfect, imperfect, 29 

and minimal. A perfect maintenance brings the system to a good-as-new status, a minimal 30 

maintenance restores the system to the status immediately before its failure (or as bad as old), and 31 

an imperfect maintenance brings the system to the status between good as new and bad as old 32 

(Syamsundar and Naikan, 2009; Syamsundar et al., 2011; and Doyen et al., 2017). Sometimes 33 

maintenance can lead to a situation that leaves the system worse than it was before, which may 34 

largely be due to failures being ill-maintained by undertrained maintenance professionals, or to a 35 

situation that improves the reliability of the system better than that of a new system, which is 36 

normally due to technological advance. 37 
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Preventive maintenance (PM) can be time- or condition- based. Time-based PM is carried out at 38 

scheduled times and condition-based PM is conducted based on the condition of the item under 39 

study. Time based PM can comprise of minor, medium or major maintenances, or can be routine 40 

activities such as inspection, cleaning and bolt tightening.  41 

 42 

PM is needed to reduce the probability of failures so that the overall costs can be optimized. If no 43 

PM is conducted and only CM is carried out upon failures, the incurred cost will include maintenance 44 

cost and other failure related costs such as lost production on account of untimely disruption and 45 

increased delivery times leading to a loss of reputation. This may lead to unviable operations due to 46 

the relevant high cost and is only possible if the PM is effective.  47 

Obtaining an accurate estimate of the effectiveness of PM is vital for understanding its impact and 48 

for deciding the maintenance strategy so that the health of the technical system is improved and the 49 

relevant costs can be minimized. This is only possible with appropriate modelling of the PM and CM 50 

process.  51 

1.2 Related Literature 52 

The failure process of a repairable system is usually modelled by stochastic processes, which can be 53 

categorized into two classes: 54 

a) local time based, in which a model is a function of the time since the last failure, and  55 

b) global time based, in which a model is a function of the time since the inception of the failure 56 

process.  57 

Examples of the local time based models include, the renewal process model, the Kijima models I 58 

& II (Kijima and Sumita, 1986; Kijima, 1989; Brown et al., 1983), the geometric process (Lam, 1988), 59 

the geometric failure rate reduction (GFRR) model (Finkelstein, 2008), and the doubly geometric 60 

process (Wu, 2018).  61 

Examples of the global time based models include:  62 

 the non-homogeneous Poisson process (Syamsundar and Naikan, 2009),  63 

 arithmetic reduction of age (ARA) and arithmetic reduction of intensity (ARI) models (Doyen 64 

and Gaudoin, 2004),  65 

 the Calabria-Pulcini (CP) model (Calabria and Pulcini, 1999),  66 

 the proportional intensity model (Percy and Alkali, 2007),  67 

 the geometric reduction of age (GRA) model (Doyen et al., 2017), and  68 

 failure process models with the exponential smoothing of intensity functions (Wu, 2019). 69 
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As time-based PMs are pre-scheduled, they do not form stochastic processes. Modelling of the 70 

effectiveness of PM started with the formulation of PM policies, which are extensively covered in 71 

review papers, see Wang (2002), Wu and Zuo (2010), and Tadj et al. (2011), for example. Optimal PM 72 

schedules are arrived at using various PM policies by minimizing the expected cost or maximizing 73 

the reliability as the criterion. Examples of research dealing with PM optimisation under various 74 

conditions include Liu et al. (2012), Wang et al. (2017), Cao et al. (2018), Levitin et al. (2018), Shen 75 

et al. (2019), Sun et al. (2019) and Yang et al. (2019). Between adjacent PM activities, CM is 76 

conducted.  77 

Liu et al. (2012) assume various levels of the maintenance effectiveness of imperfect Kijima I & II, 78 

Nakagawa and non-linear PM models where CM actions are assumed minimal.  Wang et al. (2017) 79 

develop an optimal preventive maintenance policy using a generalised geometric process and 80 

assume the generalised maintenance effectiveness as 𝑒𝑥𝑝(0.01𝑛). Cao et al. (2018) discuss a selective 81 

maintenance model where imperfect maintenance is possible, however, they do not consider the 82 

effectiveness of imperfect maintenance. Levitin et al. (2018) propose a preventive policy for a 1 out 83 

of N: G warm standby system subject to internal failures and external shocks with a linear cumulative 84 

exposure model.  They assume the effectiveness parameter to be 0 to 0.4 in increments of 0.1 for their 85 

example. Shen at al. (2019) develop an improvement factor model for degrading systems in a 86 

dynamic environment and assume that the system is subject to imperfect maintenance actions before 87 

replacement. They develop an optimal maintenance policy for the system by assuming a maintenance 88 

effectiveness of 0.8. Sun et al. (2019) consider the saturation effect while scheduling preventive 89 

maintenance with a virtual age model and assume maintenance effectiveness as  an s-shaped function 90 

with a lower limit of 0.7. Yang et al. (2019) investigate a novel two-phase preventive maintenance 91 

policy for a single-component system with an objective of maximizing the revenue generated by the 92 

performance-based contracting (PBC) using a proportional age reduction model. They consider a 93 

maintenance effectiveness of 0.4 in their case study.  94 

In existing research, optimisation of PM policies is carried out under assumptions that PM is 95 

subject to a level of maintenance effectiveness, while CM is usually considered to be minimal.  Neither 96 

modelling of the PM-CM process under different maintenance assumptions nor actual estimation of 97 

the model parameters for real technical systems data has been carried out, which will lead to sub-98 

optimisation of PM policy. 99 

Time-based PM models and CM processes with application to fit failure data of repairable systems  100 

are covered in Percy and Alkali (2007) and Doyen and Gaudoin (2011), respectively. Doyen and 101 

Gaudoin (2011) propose PM-CM models with PM and CM being different levels of maintenance.  102 
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However, they apply ARA1 and ARI∞ models to two data sets. The proportional Intensity imperfect 103 

maintenance model is proposed in Percy and Alkali (2007) and applied to a dataset of PM and CM 104 

times. Other combinations of imperfect maintenance models have not been investigated, nor are the 105 

choice of models and the best fit model. Apart from this, there is little research estimating 106 

maintenance effectiveness in a model with a consideration of both PM and CM. properly researching 107 

into it will lead to more cost-effective decisions on maintenance policies. 108 

Estimation of maintenance effectiveness is model dependent. Unless a correct choice of the model 109 

is made, a correct estimation of maintenance effectiveness is not possible. For this reason, we need 110 

to apply models with all possible combinations of maintenance types to obtain proper estimates. This 111 

presupposes that modelling of the PM-CM process has been carried out covering all the combinations.   112 

.  113 

1.3 Novelty and Contribution 114 

This work deals with the estimation of maintenance effectiveness of a repairable system. The 115 

novelty and contributions of the paper are listed below. 116 

 Firstly, various combinations of types of PM and CM maintenance activities are listed and their 117 

implications explained; 118 

 Secondly, modelling of the PM-CM process for all combinations of maintenance activities is 119 

carried out. In addition, a simple method for converting any imperfect CM model to a PM-CM 120 

model is proposed. This method has not been explored in existing literature This also leads to 121 

a new definition of the ARA1 and ARA∞ PM-CM models, which is different from those models 122 

developed in Doyen and Gaudoin (2011).  123 

 Thirdly, the estimates of maintenance effectiveness for the particular dataset of PM and CM 124 

times is obtained. A model selection procedure based on the corrected Akaike Information 125 

Criterion and a goodness of fit test are proposed to obtain the best fit model to the dataset of 126 

PM and CM times. This validates the estimate of maintenance effectiveness derived from 127 

system failure datasets.  128 

 129 

1.4 Overview 130 

This remainder of the paper is structured as follows. Section 2 describes the PM-CM  process models 131 

and their parameter estimation. Section 3 simulates intensities with various PM-CM models. Section 132 

4 applies the models to repairable systems for assessment of their PM-CM process carried out. 133 

Section 5 concludes the work.  134 

 135 
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2. PM and CM models and their inference  136 

This section describes a typical PM-CM process along with notation. 137 

2.1 PM-CM Process 138 

It is known that PM is planned and CM is conducted upon failures. A maintenance process, which 139 

includes both PM and CM, therefore forms a PM model and CM stochastic process, denoted by a PM-140 

CM process.  141 

PM and CM times and the PM-CM process along with notation are described in Fig. 1. The centre 142 

line represents that CMs and PMs are carried out on the system at specific instances of time. 143 

 144 

Fig. 1: PM and CM times and the PM-CM process 145 

Failures followed by CMs occur at times 𝑇𝑖 , 𝑖 = 1, 2, 3, … , 𝑛 with 𝑇0 = 0, and inter failure times are 146 

denoted by 𝑋𝑖+1 = 𝑇𝑖+1 − 𝑇𝑖 . 𝑁𝑡− denotes the number of failure just before time 𝑡. In Fig. 1, 𝑡1 and 𝑡2 147 

represent the times to failures and hence CMs 1 and 2 since inception while 𝑥1 and 𝑥2 represent the 148 

inter failure times. 149 

PMs occur at times 𝜏𝑗, 𝑗 = 1,2,3 … 𝑚 with 𝜏0 = 0, and inter PM times are denoted by 𝜒𝑗+1 = 𝜏𝑗+1 −150 

𝜏𝑗.  𝑀𝜏−  denotes the number of failures before time 𝜏. In Fig. 1, 𝜏1 and 𝜏2 represent the times to PMs 151 

1 and 2 since inception while 𝜒1 and 𝜒2 represent the inter PM times. 152 

A combination of PM and CM maintenance events forms the PM-CM process, in which the 153 

maintenance events occur at times 𝐶𝑘 , 𝑘 = 1,2,3, … (𝑚 + 𝑛) with 𝐶0 = 0, and inter event times are 154 

denoted by 𝑊𝑘+1 = 𝐶𝑘+1 − 𝐶𝑘. 𝐾𝑡− denotes the number of maintenance events before time 𝑡. In Fig. 155 
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1, 𝑐1 , 𝑐2 , 𝑐3 and 𝑐4 represent the times to maintenance events, i.e., PMs 1 and 2 and CMs 1 and 2 since 156 

inception while 𝑤1 , 𝑤2 , 𝑤3 and 𝑤4 represent the inter maintenance event times. 157 

2.2 PM and CM Models 158 

It is incomprehensive to investigate a couple of typical levels of maintenance effectiveness in 159 

research as the real practice can have all possible scenarios. As such, this section considers all 160 

possible combinations of maintenance effectiveness on CM and PM. 161 

PM and CM models can be built considering perfect, minimal and imperfect maintenance. Nine 162 

different combinations of such repairs are possible as given in Table 1 along with their usefulness. 163 

Table 1: Different combinations of PM and CM Maintenances  164 

Sl. 
No. 

Type of 
maintenance at 

CM 

Type of 
maintenance at 

PM 

Practical implication 

1 Perfect Perfect When complete replacement takes place at PM 
and CM e.g., replacement of components, sub-
systems 

2 Perfect Minimal When complete replacement takes place at CM 
but minor maintenance at PM 

3 Minimal Minimal When minor maintenance take place and the 
failure intensity remains the same after 
maintenance 

4 Minimal  Perfect When minor maintenance takes place at CM and 
complete replacement at PM 

5 Imperfect Imperfect When partial replacement and maintenances 
take place at both CM and PM 

6 Imperfect Perfect When partial replacement and maintenances 
take place at CM and complete replacement at 
PM 

7 Perfect Imperfect When complete replacement takes place at CM 
partial replacement and maintenances take 
place at PM  

8 Imperfect Minimal When partial replacement and maintenances 
take place at CM and minor maintenance at PM 

9 Minimal Imperfect When minor maintenance take place at CM and 
partial replacement and maintenances take 
place at PM 

 165 

Different combinations of maintenances lead to different types of PM and CM models as given in 166 

the sub-sections below.  167 

PM-CM models can be categorized as local and global models based on whether their intensity 168 

functions are based on local times or global times. Local time is defined as the time since previous 169 

maintenance and is designated by 𝑡 − 𝐶𝐾𝑡− , and global time as time since the inception of the system 170 

and is designated by 𝑡. 171 
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Denote 𝑈𝐾 as an indicator such that, 𝑈𝐾 = 0 if the 𝑘𝑡ℎ maintenance is a CM and 𝑈𝐾 = 1 if the 𝑘𝑡ℎ 172 

maintenance is a PM, 𝜌𝐶  as the parameter representing the effectiveness of CM, and 𝜌𝑃  as the 173 

parameter representing the effectiveness of PM. The parameter 𝜌  is chosen so that 𝜌𝐶 , 𝜌𝑃 = 0 174 

represents minimal maintenance and 𝜌𝐶 , 𝜌𝑃 = 1 represents perfect maintenance.  175 

𝜆(𝑡|𝐻𝑡−)  denotes the intensity of the failure process of the repairable system, given 𝐻𝑡−  the 176 

history of the failure process prior to time 𝑡, which includes the number of failures / PMs, and failure 177 

times / PM times 178 

 179 

2.2.1 Perfect and Minimal  PM and CM Models 180 

PM and CM models that are generated to model different maintenance types of combinations 1 to 4 181 

in Table 1 are given below. 182 

If the maintenance effectiveness of both CM and PM is perfect, both parameters 𝜌𝐶  and 𝜌𝑃  are 183 

equal to 1. The intensity for this process is a function of the local or inter failure times, 𝑡 − 𝐶𝐾𝑡− , and 184 

is given by Doyen and Gaudoin (2011): 185 

 𝜆(𝑡|𝐻𝑡−) = 𝜆(𝑡 − 𝐶𝐾𝑡− ) (1) 186 

When a renewal takes place at CM and minimal maintenance is carried out at PM, we get a perfect  187 

CM and minimal  PM, where 𝜌𝐶  = 1 and 𝜌𝑃 = 0. The intensity for this process is a function of the local 188 

or inter failure times for CM, 𝑡 − 𝑇𝑁𝑡−  and is given by Doyen and Gaudoin (2011): 189 

                                                           𝜆(𝑡|𝐻𝑡−) = 𝜆(𝑡 − 𝑇𝑁𝑡− )                                                                       (2) 190 

Widely considered models for the renewal process include the models with the inter-failure times 191 

following the Weibull distribution and the Gumbel distribution, respectively. 192 

If the maintenance effectiveness of both CM and PM are minimal, both parameters 𝜌𝐶  and 𝜌𝑃 equal 193 

to 0. The intensity for this process is a function of the global time or times to failure and is given by 194 

Doyen and Gaudoin (2011): 195 

 𝜆(𝑡|𝐻𝑡−) = 𝜆(𝑡)                                                                     (3) 196 

When CM is minimal and PM is perfect, then parameter 𝜌𝐶  = 0 and 𝜌𝑃 = 1. The intensity for this 197 

process is given by Doyen and Gaudoin (2011): 198 

 𝜆(𝑡|𝐻𝑡−) = 𝜆(𝑡 − 𝜏𝑀𝑡− )     (4) 199 

However, as the intensity of the process is defined in terms of the failure process, the intensity for 200 

the process with minimal maintenance CM interspersed between maximal PMs is given by: 201 

𝜆(𝑡|𝐻𝑡−) = 𝜆(𝑡 − 𝜏𝑀𝑡− ) = ∏ 𝜆𝑗(𝑡)
𝑀𝑡
𝑗=1                                                          (5) 202 
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The NHPP (non-homogeneous Poisson process) with the power law model and the NHPP with the 203 

log linear model can be used to model the failure process with minimal maintenance in the models 204 

(3), (4) and (5). 205 

All the perfect and minimal maintenance PM and CM models are summarized in Table 2.  206 

Table 2: Perfect and Minimal Maintenances PM and CM Model 207 

Sl. 
No. 

Type of 
maintenance at 

CM 

Type of 
maintenance at 

PM 

Intensity of 
failure 

Source Model 
properties 

1 Perfect Perfect 𝜆(𝑡|𝐻𝑡−)
= 𝜆(𝑡 − 𝐶𝐾𝑡− ) 

Doyen and 
Gaudoin 
(2011) 

𝜌𝐶  = 1  
𝜌𝑃 = 1 

2 Perfect Minimal 𝜆(𝑡|𝐻𝑡−)
= 𝜆(𝑡 − 𝑇𝑁𝑡− ) 

Doyen and 
Gaudoin 
(2011) 

𝜌𝐶  = 1  
𝜌𝑃 = 0 

3 Minimal Minimal 𝜆(𝑡|𝐻𝑡−)
= 𝜆(𝑡) 

Doyen and 
Gaudoin 
(2011) 

𝜌𝐶  = 0  
𝜌𝑃 = 0 

4 Minimal  Perfect 𝜆(𝑡 − 𝜏𝑀𝑡− ) 

= ∏ 𝜆𝑗(𝑡)
𝑀𝑡
𝑗=1   

Doyen and 
Gaudoin 
(2011) 

𝜌𝐶  = 0  
𝜌𝑃 = 1 

 208 

2.2.2 Imperfect  PM and CM Models 209 

A simple method is used to develop the imperfect  PM and CM models with indicator 𝑈𝐾  and 210 

effectiveness parameters 𝜌𝐶  and 𝜌𝑃, respectively. Then we have the following analyses. 211 

 If the 𝑘𝑡ℎ  maintenance is a CM, 𝑈𝐾 = 0  and the maintenance effectiveness parameter is  212 

(𝜌𝑃)0(𝜌𝐶)1−0, i.e., 𝜌𝐶 .  213 

 If the 𝑘𝑡ℎ maintenance time is a PM, 𝑈𝐾 = 1 and the maintenance effectiveness parameter is  214 

(𝜌𝑃)1(𝜌𝐶)1−1, i.e., 𝜌𝑃. 215 

That is, a model developed for an imperfect CM process can be extended to a PM-CM model by 216 

replacing the parameter 𝜌 in the model with (𝜌𝑃)𝑈𝐾(𝜌𝐶)1−𝑈𝐾 . 217 

PM and CM models generated for combination 5 of Table 1 are given below. 218 

Examples of imperfect maintenance processes considered in local time include Kijima model I 219 

(Kijima and Sumita, 1986; Kijima. 1989), Kijima model II (Kijima, 1989; Brown et al., 1983), 220 

geometric process (Lam, 1988), and GFRR (Finkelstein, 2008). In all these processes, we replace the 221 

maintenance effectiveness parameter 𝜌 with (𝜌𝑃)𝑈𝐾 (𝜌𝐶)1−𝑈𝐾 . 222 

The failure intensity of the Kijima I model (Kijima and Sumita, 1986; Kijima. 1989) is given by; 223 

𝜆(𝑡|𝐻𝑡−) = 𝜆(𝑡 − 𝑇𝑁𝑇− + (1 − 𝜌) ∑ 𝑥𝑖
𝑁𝑡−

𝑖=1 )                                                           (5) 224 
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By replacing (1-𝜌) in the model with (1 − 𝜌𝑃)𝑈𝐾 (1 − 𝜌𝐶)1−𝑈𝐾  , 𝑇𝑁𝑇−  with 𝐶𝐾𝑡− , and 𝑥𝑖 with 𝑤𝑖, the 225 

failure intensity for the Kijima I with imperfect CM and imperfect PM is given by; 226 

 𝜆(𝑡|𝐻𝑡−) = 𝜆(𝑡 − 𝐶𝐾𝑡− + ∑ (1 − 𝜌𝑃)𝑈𝑖(1 − 𝜌𝐶)1−𝑈𝑖𝑤𝑖
𝐾𝑡−

𝑖=1 ). (6) 227 

The failure intensity of the Kijima model II (Kijima, 1989; Brown et al., 1983) is given by; 228 

𝜆(𝑡|𝐻𝑡−) = 𝜆(𝑡 − 𝑇𝑁𝑇− + ∑ (1 − 𝜌)𝑁𝑡−+1−𝑖𝑥𝑖
𝑁𝑡−

𝑖=1 )                                                    (7) 229 

Here 𝑁𝑡− + 1 − 𝑖  = 𝑁𝑡− − (𝑖 − 1)  becomes 𝑀𝑡− − 𝑀𝐶𝑖−1
 for PM actions and 𝑁𝑡−

− 𝑁𝐶𝑖−1
for CM 230 

actions. By replacing (1 − 𝜌)𝑁𝑡−+1−𝑖 with (1 − 𝜌𝑃)𝑀𝑡−−𝑀𝐶𝑖−1 (1 − 𝜌𝐶)𝑁𝑡−−𝑁𝐶𝑖−1 , 𝑇𝑁𝑇−  with 𝐶𝐾𝑡− , and 𝑥𝑖 231 

with 𝑤𝑖 the failure intensity for the Kijima II model with imperfect CM and imperfect PM is given by; 232 

 𝜆(𝑡|𝐻𝑡−) = 𝜆(𝑡 − 𝐶𝐾𝑡− + ∑ (1 − 𝜌𝑃)𝑀𝑡−−𝑀𝐶𝑖−1 (1 − 𝜌𝐶)𝑁𝑡−−𝑁𝐶𝑖−1 𝑤𝑖
𝐾𝑡−

𝑖=1 ). (8) 233 

For 𝜌𝐶 , 𝜌𝑃 = 1, models (6) and (8) reduce to (1) and for 𝜌𝐶 , 𝜌𝑃 = 0 the models reduce to (3). 234 

The failure intensity of the GP model (Lam, 1988) is given by; 235 

𝜆(𝑡|𝐻𝑡−) = 𝜌𝑁𝑡− 𝜆 (𝜌𝑁𝑡− (𝑡 − 𝑇𝑁𝑡− )).                                                           (9) 236 

By replacing 𝜌 with (𝜌𝑃)𝑈𝐾 (𝜌𝐶)1−𝑈𝐾 , 𝑁𝑡−
 with 𝐾𝑡− , 𝑇𝑁𝑡−  with 𝐶𝐾𝑡− , the failure intensity for GP with 237 

imperfect CM and imperfect PM is given by; 238 

 𝜆(𝑡|𝐻𝑡−) = 𝜆 (∏ (𝜌𝑃)𝑈𝑖(𝜌𝐶)1−𝑈𝑖
𝐾𝑡−

𝑖=1 (𝑡 − 𝐶𝐾𝑡− ))                                            (10) 239 

           = 𝜆 ((𝜌𝑃)𝑀𝑡− (𝜌𝐶)𝑁𝑡− (𝑡 − 𝐶𝐾𝑡− ))  240 

The failure intensity of the GFRR model (Finkelstein, 2008) is given by; 241 

𝜆(𝑡|𝐻𝑡−) = 𝜌𝑁𝑡− 𝜆(𝑡 − 𝑇𝑁𝑡− ).                                                               (11) 242 

By replacing 𝜌 with (𝜌𝑃)𝑈𝐾(𝜌𝐶)1−𝑈𝐾 , 𝑁𝑡−
 with 𝐾𝑡− , 𝑇𝑁𝑡−  with 𝐶𝐾𝑡− , the failure intensity for GFRR 243 

with imperfect CM and imperfect PM is given by; 244 

 𝜆(𝑡|𝐻𝑡−) = ∏ (𝜌𝑃)𝑈𝑖(𝜌𝐶)1−𝑈𝑖
𝐾𝑡−

𝑖=1 𝜆(𝑡 − 𝐶𝐾𝑡− )                                                (12)                                   245 

          = (𝜌𝑃)𝑀𝑡− (𝜌𝐶)𝑁𝑡− 𝜆(𝑡 − 𝐶𝐾𝑡− ) 246 

For 𝜌𝐶 , 𝜌𝑃 = 1, models (10) and (12) reduce to (1). For the models at (10) and (12) minimal 247 

maintenance is not defined. 248 

Widely considered models for the renewal process are the with power law and log linear 249 

processes, which also form the baseline process for local imperfect maintenance models. 250 

Examples of  imperfect maintenance processes considered in global time include ARA1 , ARA∞ , 251 

ARI1 , ARI∞ (Doyen and Gaudoin, 2004), CP  (Calabria and Pulcini, 1999; Percy and Alkali, 2007), and 252 

GRA – CP (Doyen et al., 2017). In all these processes, we replace the maintenance effectiveness 253 

parameter 𝜌 with (𝜌𝑃)𝑈𝐾(𝜌𝐶)1−𝑈𝐾 . 254 
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The failure intensity of the ARA1 model (Doyen and Gaudoin, 2004) is given by: 255 

𝜆(𝑡|𝐻𝑡−) = 𝜆(𝑡 − 𝜌𝑇𝑁𝑡− ).                                                                      (13) 256 

By replacing 𝜌 with (𝜌𝑃)𝑈𝐾 (𝜌𝐶)1−𝑈𝐾  , and 𝑇𝑁𝑇−  with 𝐶𝐾𝑡− , the failure intensity for the ARA1-PM and 257 

ARA1-CM is given by: 258 

𝜆(𝑡|𝐻𝑡−) = 𝜆(𝑡 − (𝜌𝑃)𝑈𝑖(𝜌𝐶)1−𝑈𝑖𝐶𝐾𝑡− ).                                                  (14) 259 

The failure intensity of the ARA∞ model (Doyen and Gaudoin, 2004) is given by; 260 

𝜆(𝑡|𝐻𝑡−) = 𝜆 (𝑡 − 𝜌 ∑ (1 − 𝜌)𝑁𝑡−−𝑗𝑇𝑗)
𝑁𝑡−−1
𝑗=0 ),                                                  (15) 261 

where 𝑁𝑡− − 𝑗  with 𝑗  starting from 0 becomes 𝑀𝑡− − 𝑀𝐶𝑗−1
 for PM actions and 𝑁𝑡−

− 𝑁𝐶𝑗−1
 with 𝑗 262 

starting from 1 for CM actions. By replacing 𝜌  with (𝜌𝑃)𝑈𝐾(𝜌𝐶)1−𝑈𝐾  , (1 − 𝜌)𝑁𝑡−−𝑗  with (1 −263 

𝜌𝑃)
𝑀𝑡−−𝑀𝐶𝑗−1 (1 − 𝜌𝐶)

𝑁𝑡−−𝑁𝐶𝑗−1 , and 𝑇𝑗  with 𝐶𝑗  the failure intensity for ARA∞-PM and ARA∞-CM is 264 

given by: 265 

𝜆(𝑡|𝐻𝑡−) = 𝜆 (𝑡 − (𝜌𝑃)𝑈𝐾𝑡− (𝜌𝐶)1−𝑈𝐾𝑡− ∑ ∏ (1 − ((𝜌𝑃)
𝑀𝑖−𝑀𝐶𝑗−1 (𝜌𝐶)

𝑁𝑖−𝑁𝐶𝑗−1 )) 𝐶𝑗
𝑖
𝑗=1

𝐾𝑡−−1
𝑖=1 ).  (16) 266 

For 𝜌𝐶 , 𝜌𝑃 = 1, models (14) and (16) reduce to (1) and for 𝜌𝐶 , 𝜌𝑃 = 0 and the models reduce to 267 

(3). 268 

The failure intensity of the ARI1 model (Doyen and Gaudoin, 2004) is given by: 269 

𝜆(𝑡|𝐻𝑡−) = 𝜆(𝑡) − 𝜌(𝜆( 𝑇𝑁𝑡− ) − 𝜆(0))                                                         (17) 270 

By replacing 𝜌  with (𝜌𝑃)𝑈𝐾(𝜌𝐶)1−𝑈𝐾  , and 𝑇𝑁𝑇−  with 𝐶𝐾𝑡− the failure intensity for ARI1 with 271 

imperfect CM and imperfect PM is given by; 272 

 𝜆(𝑡|𝐻𝑡−) = 𝜆(𝑡) − (𝜌𝑃)𝑈𝑖(𝜌𝐶)1−𝑈𝑖(𝜆(𝐶𝐾𝑡− ) − 𝜆(0)) (18) 273 

The failure intensity of the ARI∞ model (Doyen and Gaudoin, 2004) is given by: 274 

𝜆(𝑡|𝐻𝑡−) = 𝜆(𝑡) − 𝜌 ∑ (1 − 𝜌)𝑁𝑡−−𝑗 𝑁𝑡−−1
𝑗=0 (𝜆(𝑇𝑗) − 𝜆(0))                                     (19) 275 

Here 𝑁𝑡− − 𝑗 with 𝑗 starting from 0 becomes 𝑀𝑡− − 𝑀𝐶𝑗−1
 for PM actions and 𝑁𝑡−

− 𝑁𝐶𝑗−1
 with 𝑗 276 

starting from 1 for CM actions. By replacing 𝜌  with (𝜌𝑃)𝑈𝐾(𝜌𝐶)1−𝑈𝐾  , (1 − 𝜌)𝑁𝑡−−𝑗  with (1 −277 

𝜌𝑃)
𝑀𝑡−−𝑀𝐶𝑗−1 (1 − 𝜌𝐶)

𝑁𝑡−−𝑁𝐶𝑗−1 , and 𝑇𝑗 with 𝐶𝑗 the failure intensity ARI∞-PM and ARI∞-CM is given by: 278 

𝜆(𝑡|𝐻𝑡−) = 𝜆(𝑡) − (𝜌𝑃)𝑈𝐾𝑡− (𝜌𝐶)1−𝑈𝐾𝑡− ∑ ∏ (1 − ((𝜌𝑃)
𝑀𝑖−𝑀𝐶𝑗−1 (𝜌𝐶)

𝑁𝑖−𝑁𝐶𝑗−1 )) 

𝑖

𝑗=1

𝐾𝑡−−1

𝑖=1

 279 

                                (𝜆(𝐶𝑗) − 𝜆(0))                                                                                                                            (20) 280 

For 𝜌𝐶 , 𝜌𝑃 = 0, models (18) and (20) reduce to (3). 281 

The failure intensity of the GRA-CP model (Doyen et al. 2011) is given by; 282 
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𝜆(𝑡|𝐻𝑡−) = (1 − 𝜌)𝑁𝑡− 𝜆((1 − 𝜌)𝑁𝑡− 𝑡)                                                                    (21) 283 

By replacing (1 − 𝜌) with (1 − 𝜌𝑃)𝑈𝐾 (1 − 𝜌𝐶)1−𝑈𝐾 , and 𝑁𝑡−
 with 𝐾𝑡− , the failure intensity for GRA 284 

– CP with imperfect CM and imperfect PM is given by; 285 

 𝜆(𝑡|𝐻𝑡−) = 𝜆(∏ (1 − 𝜌𝑃)𝑈𝑖(1 − 𝜌𝐶)1−𝑈𝑖
𝐾𝑡−

𝑖=1 𝑡) = 𝜆((1 − 𝜌𝑃)𝑀𝑡− (1 − 𝜌𝐶)𝑁𝑡− 𝑡) (22) 286 

The failure intensity of the CP model (Calabria and Pulcini, 1999) is given by; 287 

𝜆(𝑡|𝐻𝑡−) = (1 − 𝜌)𝑁𝑡− 𝜆(𝑡)                                                                    (23) 288 

By replacing (1 − 𝜌) with (1 − 𝜌𝑃)𝑈𝐾 (1 − 𝜌𝐶)1−𝑈𝐾 , and 𝑁𝑡−
 with 𝐾𝑡− , the failure intensity for CP 289 

with imperfect CM and imperfect PM is given by [26]; 290 

 𝜆(𝑡|𝐻𝑡−) = ∏ (1 − 𝜌𝑃)𝑈𝑖(1 − 𝜌𝐶)1−𝑈𝑖
𝐾𝑡−

𝑖=1 𝜆(𝑡) = (1 − 𝜌𝑃)𝑀𝑡− (1 − 𝜌𝐶)𝑁𝑡− 𝜆(𝑡)    (24) 291 

For 𝜌𝐶 , 𝜌𝑃 = 0, models (22) and (24) reduce to (3). For the models at (22) and (24), maximal 292 

maintenance is not defined. 293 

All the imperfect maintenance PM and CM models are summarized in Table 3.  294 

Table 3: Imperfect Maintenance PM and CM Models  295 

Sl. 
No. 

CM 
Model 

PM 
Model 

Intensity of failure Model Properties 

5 Kijima 
1 

Kijima 1 𝜆(𝑡 − 𝐶𝐾𝑡− + ∑ (1 − 𝜌𝑃)𝑈𝑖(1 − 𝜌𝐶)1−𝑈𝑖𝑤𝑖
𝐾𝑡−

𝑖=1 )  For 𝜌𝐶  = 1, 𝜌𝑃 = 1 
the models reduce 
to (1), for 𝜌𝐶  = 0, 𝜌𝑃 
= 0 the models 
reduce to (3) 

Kijima 
2 

Kijima 2 𝜆(𝑡 − 𝐶𝐾𝑡− + ∑ (1 − 𝜌𝑃)𝑀𝑡−−𝑀𝐶𝑖−1 (1 −
𝐾𝑡−

𝑖=1

𝜌𝐶)𝑁𝑡−−𝑁𝐶𝑖−1𝑤𝑖)   

GP GP 𝜆 ((𝜌𝑃)𝑀𝑡− (𝜌𝐶)𝑁𝑡− (𝑡 − 𝐶𝐾𝑡− ))  For 𝜌𝐶  = 1, 𝜌𝑃 = 1 
the models reduce 
to (1) GFRR GFRR (𝜌𝑃)𝑀𝑡− (𝜌𝐶)𝑁𝑡− 𝜆(𝑡 − 𝐶𝐾𝑡− ) 

ARA1 ARA1 𝜆(𝑡 − (𝜌𝑃)𝑈𝑖(𝜌𝐶)1−𝑈𝑖𝐶𝐾𝑡− ) For 𝜌𝐶  = 1, 𝜌𝑃 = 1 
the models reduce 
to (1), for 𝜌𝐶  = 0, 𝜌𝑃 
= 0 the models 
reduce to (3) 

ARA∞ ARA∞ 𝜆 (𝑡 − (𝜌𝑃)𝑈𝐾𝑡− (𝜌𝐶)1−𝑈𝐾𝑡− ∑ ∏ (1 −𝑖
𝑗=1

𝐾𝑡−−1
𝑖=1

((𝜌𝑃)
𝑀𝑖−𝑀𝐶𝑗−1 (𝜌𝐶)

𝑁𝑖−𝑁𝐶𝑗−1)) 𝐶𝑗)  

ARI1 ARI1 𝜆(𝑡) − (𝜌𝑃)𝑈𝑖(𝜌𝐶)1−𝑈𝑖(𝜆(𝐶𝐾𝑡− ) − 𝜆(0)) For 𝜌𝐶  = 0, 𝜌𝑃 = 0 
the models reduce 
to (3) 

ARI∞ ARI∞ 𝜆(𝑡) − (𝜌𝑃)𝑈𝐾𝑡− (𝜌𝐶)1−𝑈𝐾𝑡− ∑ ∏ (1 −𝑖
𝑗=1

𝐾𝑡−−1
𝑖=1

((𝜌𝑃)
𝑀𝑖−𝑀𝐶𝑗−1 (𝜌𝐶)

𝑁𝑖−𝑁𝐶𝑗−1)) (𝜆(𝐶𝑗) − 𝜆(0))   

GRA-CP GRA-CP 𝜆((1 − 𝜌𝑃)𝑀𝑡− (1 − 𝜌𝐶)𝑁𝑡− 𝑡) For 𝜌𝐶  = 0, 𝜌𝑃 = 0 
the models reduce 
to (3) 

CP CP (1 − 𝜌𝑃)𝑀𝑡− (1 − 𝜌𝐶)𝑁𝑡− 𝜆(𝑡) 

 296 

2.2.3 Other Combinations of PM and CM Models 297 
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Other combinations such as imperfect  CM with either perfect or minimal PM and either perfect or 298 

minimal  CM with imperfect PM for  type combinations 5 to 8 of Table 1 can also be worked out. A 299 

few typical PM and CM models are given below. 300 

The failure intensity for an imperfect Kijima I CM and perfect maintenance PM model is given by; 301 

𝜆(𝑡|𝐻𝑡−) = ∏ 𝜆𝑗(𝑡 − 𝑇𝑁𝑡− + ∑ (1 − 𝜌𝐶)1−𝑈𝑖𝑥𝑖
𝑁𝑡−

𝑖=1 ).
𝑀𝜏
𝑗=1                               (25) 302 

The failure intensity for the perfect CM and imperfect Kijima I PM model is given by; 303 

 𝜆(𝑡|𝐻𝑡−) = 𝜆(𝑡 − 𝐶𝐾𝑡− + ∑ (1 − 𝜌𝑃)𝑈𝑖𝑤𝑖
𝐾𝑡−

𝑖=1 ). (26) 304 

The failure intensity for an imperfect ARA1-CM and minimal PM model is given by: 305 

𝜆(𝑡|𝐻𝑡−) = 𝜆(𝑡 − 𝜌𝐶𝑇𝑁𝑡− )                                                        (27) 306 

The failure intensity for the minimal CM and imperfect ARA1-PM model is given by: 307 

𝜆(𝑡|𝐻𝑡−) = 𝜆(𝑡 − 𝜌𝑃𝑢𝑖𝐶𝐾𝑡− )                                                        (28) 308 

Some other combinations of PM and CM models are summarized in Table 4 below. These are 309 

further not considered here as they are special cases of imperfect  CM and imperfect PM models. 310 

Table 4: Other combinations of PM and CM Models  311 

Sl. 
No. 

Type of 
maintenance 

at CM / Model 

Type of 
maintenance at 

PM / Model 

Intensity of failure Model 
Properties 

6 Imperfect / 
Kijima 1 

Perfect 

∏ 𝜆𝑗 (𝑡 − 𝑇𝑁𝑡− + ∑(1 − 𝜌𝐶)1−𝑈𝑖𝑥𝑖

𝑁𝑡−

𝑖=1

)

𝑀𝜏

𝑗=1

 

𝜌𝐶  = 
Imperfect  
𝜌𝑃 = 1 

7 Perfect Imperfect / 
Kijima 1 𝜆 (𝑡 − 𝐶𝐾𝑡− + ∑(1 − 𝜌𝑃)𝑈𝑖𝑊𝑖

𝐾𝑡−

𝑖=1

) 

𝜌𝐶  = 1  
𝜌𝑃 = 
Imperfect 

8 Imperfect / 
ARA1 

Minimal 𝜆(𝑡 − 𝜌𝐶𝑇𝑁𝑡− ) 𝜌𝐶  = 
Imperfect 
𝜌𝑃 = 0 

9 Minimal Imperfect / 
ARA1 

𝜆(𝑡 − 𝜌𝑃𝑈𝑖𝐶𝐾𝑡− ) 𝜌𝐶  = 0  
𝜌𝑃 = 
Imperfect 

 312 

2.3 Parameter estimation 313 

The most commonly used method of inferring the parameters of the failure process of a repairable 

314 

system is the method of maximum likelihood estimation as given in Lindqvist (2006), as this method 

315 

is easily tractable and possesses the some good statistical properties. 

316 

The likelihood (Doyen and Gaudoin, 2011) of the PM-CM process is given by: 317 

 𝐿𝑡(𝜃) = ∏ (𝜆𝐶𝑖
(𝑖 − 1, 𝑊𝑖−1, 𝑈𝑖−1))

1−𝑈𝑖𝐾𝑡−

𝑖=1 𝑒𝑥𝑝 (− ∑ ∫ 𝜆𝑠
𝑐𝑗

𝑐𝑗−1
(𝑗 − 1, 𝑊𝑗−1, 𝑈𝑗−1)𝑑𝑠

𝐾𝑡−+1
𝑗=1 ) (29) 318 
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where 𝐶𝐾𝑡−+1is set equal to 𝑡. 319 

The likelihood for the minimal  CM and minimal  PM process at (3) with a power law as the initial 320 

failure intensity is given by: 321 

 𝐿(𝜃) = ∏ (𝛼𝛽𝑡𝑖
𝛽−1

)
1−𝑢𝑖𝑘

𝑖=1 𝑒𝑥𝑝( − 𝛼𝑡𝑛
𝛽

) (30) 322 

The likelihood for the ARA1 CM and ARA1 PM process at (14) with a power law process as the 323 

initial failure intensity is given by: 324 

𝐿(𝜃) = ∏ (𝛼𝛽)(1−𝑢𝑖)𝑘
𝑖=1 𝑐1

(1−𝑢1)(𝛽−1) ∏ ((𝑐𝑖 − 𝜌𝑃
𝑢𝑖𝜌𝐶

(1−𝑢𝑖)
𝑐𝑗)(1−𝑢𝑖))

𝛽−1
𝑘
𝑖=2 𝑒𝑥𝑝 (−𝛼𝑐1

𝛽 −325 

𝛼 ∑ (
(𝑐𝑖 − 𝜌𝑃

𝑢𝑖𝜌𝐶
(1−𝑢𝑖)

𝑐𝑗)𝛽

−(𝑐𝑖−1 − 𝜌𝑃
𝑢𝑖𝜌𝐶

(1−𝑢𝑖)
𝑐𝑗)𝛽

)𝑘
𝑖=2 )                                            (31) 326 

The model with the maximum log likelihood function  may provide the model with the best fit 

327 

among the alternatives chosen. A better check for models will be the Akaike likelihood criterion (AIC), 

328 

which favours models with large likelihood function and the small number of parameters. The 

329 

criterion is given by: 

330 

    𝐴𝐼𝐶(𝑘) = −2 𝑙𝑛 𝐿 + 2𝑘                                                                  (32) 331 

where 𝑘 is the number of parameters of the model. 332 

The model with the minimum AIC estimate is considered as the model with a better fit. 333 

However, when p is large as compared to n the sample size, a corrected version of the AIC, called 334 

AICC should be used for obtaining better model fit. The AICC is given by: 335 

    𝐴𝐼𝐶𝐶(𝑘) = −2 𝑙𝑛 𝐿 + 2𝑘 +
2𝑘(𝑘+1)

(𝑛−𝑘−1)
.                                                      (33) 336 

The goodness-of-fit test for obtaining the model with the best fit using the residual process can be 337 

use, see Wu,( 2019), for example. The residual process for the above models is given by; 338 

𝜀̂(𝑡) = 𝑁(𝑡) − Λ(𝑡|𝐻𝑡−).                                                              (34) 339 

The process {𝜀(𝑡), 𝑡 ≥ 0} should follow the normal distribution and have uncorrelated increments 340 

if the failure process model with intensity 𝜆(𝑡|𝐻𝑡−) is correctly specified. The Cramer von Mises 341 

(CvM) test can be used to test for normality and the Breusch-Godfrey (BG) test to test the serial 342 

correlation of the increments of the error process. 343 

A two step methodology is proposed to obtain the model with the best fit to the data set. First the 

344 

log-likelihood, AIC and AICC values of the model are estimated and the model with the least AICC value 

345 

is chosen and checked for goodness of fit. If the goodness of fit test is passed, the model is chosen as 

346 
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the best fit model to the dataset. If the goodness of fit test fails, the model with the next least AICC 

347 

value is chosen and again checked for the goodness of fit. This process is repeated till a model passes 

348 

the goodness of fit test and this model is chosen as the model with the best fit to the dataset. 

349 

The best-fit model and its estimated parameters are used to understand the features of the PM-350 

CM process of the system and then to optimise its maintenance policies.  351 

The parameters of interest to the maintenance personnel such as the expected times to failure 352 

and the expected number of failures can be obtained through simulation of the best-fit model using 353 

the inverse transform method. The probability )( itF is generated as a uniform random variable in 354 

(0, 1).  355 

The failure time 𝑡𝑖+1 for the GRA-CP CM and GRA-CP PM process at Eq. (21) with a log linear 356 

process as its initial failure intensity is then given by: 357 

𝑡𝑖+1 =
𝑙𝑛(−𝛽 ∏ (𝜌𝑃)

𝑈𝑗(𝜌𝐶)
1−𝑈𝑗𝑖

𝑗=1 𝑙𝑛(1−𝑢)+𝑒𝑥𝑝(𝛼+𝛽 ∏ (𝜌𝑃)
𝑈𝑗(𝜌𝐶)

1−𝑈𝑗𝑖
𝑗=1 𝑡𝑖))−𝛼

𝛽 ∏ (𝜌𝑃)
𝑈𝑗(𝜌𝐶)

1−𝑈𝑗𝑖
𝑗=1

.                 (35) 358 

As PM times are planned, the failure times obtained through simulation are compared to the next 359 

planned PM time. If the simulated failure time is greater than the PM time, then the PM time is 360 

considered in its place and the simulation continued. To obtain the expected times to failures, the 361 

average of 1000 sets of simulated failure times is considered. 362 

3. Simulation 363 

All the PM-CM process models proposed in the previous sections are simulated and the failure 364 

intensities are plotted in Figs. 2 to 15. Only the NHPP with the power law intensity function with 365 

shape parameter β=3 is considered with all the models, the  renewal process with inter-failure times 366 

following the Gumbel distribution  𝛼3𝑥2 with local time PM and CM models and power law NHPP 367 

𝛼3𝑡2 with global time PM and CM models. The scale parameter α is so chosen as to have the timeline 368 

within 30 units of time maximum for all the models. Planned PM times are considered at every 5 time 369 

units for the simulated data sets i.e., at 5, 10, 15, 20, 25 units of time. It is also considered that the 370 

effectiveness of PM is better than that of CM. Hence 𝜌𝑝 >  𝜌𝐶  in all cases. A vertical dashed line is used 371 

to indicate the PM times in the failure intensity plots. The parameters considered for plotting the 372 

intensities are given in Table 5. 373 

Table 5: Parameters of PM and CM models used for simulating their failure intensities 374 

Parameter/ 

Model No 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Apha 0.2 0.2 0.02 0.02 0.01 0.01 1 1 0.02 0.02 0.02 0.02 0.02 0.02 
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 375 

All CM actions are carried out upon failures while PM actions are scheduled. and time based and 376 

censor the failure process. 377 

 378 

Fig. 2: Intensity of failure vs times to  Fig. 3: Intensity of failure vs times to   379 
failure for simulated data with PM and CM  failure for simulate data with PM and CM 380 
Model 1 with Renewal Process PLP   Model 2 with Renewal Process PLP 381 
 382 
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Beta 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

Rho_C 1 1 0 0 0.3 0.3 0.7 0.7 0.5 0.5 0.5 0.5 0.05 0.1 

Rho_P 1 0 0 1 0.7 0.7 0.9 0.9 0.7 0.7 0.7 0.7 0.3 0.3 
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Fig. 4: Intensity of failure vs times to  Fig. 5: Intensity of failure vs times to   384 
failure for simulated data with PM and CM  failure for simulate data with PM and CM 385 
Model 7 with NHPP PLP     Model 8 with NHPP PLP 386 

 387 

Fig. 6: Intensity of failure vs times to  Fig. 7: Intensity of failure vs times to   388 
failure for simulated data with PM and CM  failure for simulate data with PM and CM 389 
Model 3 with Kijima 1 Process PLP    Model 4 with Kijima 2 Process PLP 390 

 391 

Fig. 8: Intensity of failure vs times to  Fig. 9: Intensity of failure vs times to   392 
failure for simulated data with PM and CM  failure for simulate data with PM and CM 393 
Model 5 with GP PLP     Model 6 with GFRR PLP 394 

 395 
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  396 

Fig. 10: Intensity of failure vs times to  Fig. 11: Intensity of failure vs times to   397 
failure for simulated data with PM and CM  failure for simulate data with PM and CM 398 
Model 9 with ARA 1 PLP     Model 10 with ARA Inf PLP 399 

  400 

Fig. 12: Intensity of failure vs times to  Fig. 13: Intensity of failure vs times to   401 
failure for simulated data with PM and CM  failure for simulate data with PM and CM 402 
Model 11 with ARI 1 PLP     Model 12 with ARI Inf PLP 403 
 404 

 405 
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 406 

Fig. 14: Intensity of failure vs times to  Fig. 15: Intensity of failure vs times to   407 
failure for simulated data with PM and CM  failure for simulate data with PM and CM 408 
Model 13 with GRA-CP PLP     Model 14 with CP PLP 409 
 410 
Fig. 2 depicts the failure intensity where both CM and PM are perfect. The failure intensity starts 411 

at zero and proceeds at an increasing rate till either CM or PM is carried out when it is reset to zero 412 

after a perfect maintenance. This occurs usually when a complete replacement takes place at CM or 413 

PM.  414 

Fig. 3 depicts the failure intensity where CM is perfect and PM is minimal. The failure intensity 415 

starts at zero and proceeds at an increasing rate till a CM occurs when it is reset to zero after a perfect 416 

maintenance. Scheduled PM actions take place in between but do not affect the failure process that 417 

continues after PM at the same level at which it was prior to the PM. This occurs usually when a 418 

complete replacement takes place at CM but only minor maintenances are carried out at PM.  419 

Fig. 4 depicts the failure intensity where both CM and PM are minimal. The failure intensity starts 420 

at zero and proceeds at an increasing rate. Neither CM nor PM affects the failure intensity, which 421 

remains at the same level as it was prior to the CM or PM  action. This occurs usually when only minor 422 

maintenances take place at CM or PM.  423 

Fig. 5 depicts the failure intensity where CM is minimal and PM is perfect. The failure intensity 424 

starts at zero and proceeds at an increasing rate till a PM occurs when it is reset to zero after a perfect 425 

maintenance. CM takes place in between when any failure occurs but does not affect the failure 426 

process that continues after CM at the same level at which it was prior to the CM. This occurs usually 427 

when a complete replacement takes place at PM but only minor maintenances are carried out at CM.  428 
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Figs. 6 to 15 depict the failure intensities of different types of imperfect maintenance models 429 

applied to the PM and CM maintenance processes. The PM maintenance actions have been assumed 430 

to be more effective as compared to the CM maintenance actions as given in Table 5. Figs. 6 to 9 431 

represent local time imperfect maintenance processes where the time to first failure follows a 432 

renewal process. Figs. 10 to 15 depict global time imperfect maintenance processes. 433 

Figs. 6 and 7 depict the failure intensity of the Kijima 1 and Kijima 2 PM and CM  processes 434 

respectively. Here the maintenance factor acts linearly on the process and the failure intensity drops 435 

to a lower level after maintenance at PM times as compared to CM times as PM has been assumed to 436 

be more effective and improves the virtual age to a younger level.  437 

Figs. 8 and 9 depict the failure intensity of the geometric process and geometric failure rate 438 

reduction process, respectively. Here as the maintenance factor acts geometrically on the process 439 

and the maintenance action at PM being more effective slows down the failure process as compared 440 

to the maintenance action at CM time. 441 

Figs. 10 to 13 depict the failure intensity of the ARA1, ARA∞, ARI1 and ARI∞ imperfect maintenance 442 

models, respectively. Here the maintenance factor acts linearly on the process and in all the cases the 443 

PM  action causes the failure intensity to drop to a lower level as compared to the CM  action. It can 444 

be seen that this sometimes causes the intensity of the failure process to increase after a CM  action 445 

in ARA1 and ARI1 imperfect maintenance models thus increasing its virtual age.  446 

Figs. 14 and 15 depict the failure intensity of the GRA-CP and CP imperfect maintenance models, 447 

respectively. Here again the maintenance factor acts geometrically on the process and the PM action 448 

being more effective not only lowers but also improves the failure intensity, as compared to the CM 449 

maintenance action. 450 

Similar figures can be developed for failure intensities with log linear process also. 451 

 452 
4. Case studies 453 

Three datasets of PM and CM times from repairable systems are considered for analysis and 454 

assessment of maintenance effectiveness in this section. The three datasets are, as shown in Table 3 455 

 Stubs within a heat exchanger that warms up the feed water of a fossil fired thermal power 456 

plant (Doyen and Gaudoin, 2011),  457 

 Component 2 used in a continuous process industry (Ascher and Kobbacy, 1995) and   458 

 Roller Mill of a Cement Plant (Love and Guo, 1991).  459 

 460 

Table 3: Data Sets of Repairable Systems used in this paper 461 
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Sl. No. Dataset No of CMs and PMs Data Source 

1 Stubs 7 CM + 4 PM Doyen and Gaudoin (2011) 

2 Component 2 11 CM + 18 PM Ascher and Kobbacy (1995) 

3 Roller Mill 18 CM + 13 PM Love and Guo (1991) 

 462 

All the models given above with different combinations of PM and CM  effects are applied to these 463 

datasets. The results and analysis are presented in the sub-section below. 464 

4.1 Analysis of Stubs Dataset 465 

The dataset of PM and CM in the number of cold starts given in Krit (2006) and Doyen and Gaudoin 466 

(2011) of stubs within a heat exchanger that warms up the feed water of a fossil fired thermal power 467 

plant covering a period from 1997 to 2006 is considered for analysis. This dataset consists of 7 CM 468 

and 4 PM actions and is a very small dataset. Stubs are joined by a welded connection that are 469 

subjected to thermal fatigue, especially during cold starts, and tend to crack and leak. This 470 

necessitates the boiler to be shutdown for repairing the leaks and can lead to costly outages of the 471 

power plant. To mitigate this, inspections are carried out for detecting cracks, which, if found, are 472 

gouged out and preventively repaired. As cold starts have a great bearing on the development of 473 

cracks due to differential thermal expansion between the shell and tubes, the CM and PM  actions are 474 

measured in terms of the number of cold starts. 475 

Applying all the PM and CM models at (1) to (14) to this dataset, the results are tabulated in Table 476 

4. No convergence is obtained for ARI1 model (11) with this data set.  477 

Table 4: Parameters of Models fitted to the dataset of PMs and CMs of stubs 478 

Sl 
No 

CM 
Maintenance 

Effect 

PM 
Maintenance 

Effect 

Maintenance 
Model / 
Baseline 

Log 
Likeli-
hood 

AIC 
 

AICC Parameter Estimates 

𝜶 𝜷 𝝆𝒄 𝝆𝒑 

1 Perfect Perfect Renewal / 
Weibull 

31.6 67.2 68.7 3.48 x10-3 1.60 -- -- 

2 Perfect Perfect Renewal / 
Log Linear  

30.17 64.3 65.8 -5.05 7.40x10-2 -- -- 

3 Perfect Minimal Renewal / 
Weibull 

32.3 68.6 70.1 0.013 1.20 -- -- 

4 Perfect Minimal Renewal / 
Log Linear 

32.1 68.2 69.7 -4.09 0.018 -- -- 

5 Minimal Minimal NHPP / PLP 32.2 68.4 75.07 5.65 x10-3 1.28 -- -- 

6 Minimal Minimal NHPP / LLP 32.4 68.8 75.47 -3.60 -2.21x10-

4 
-- -- 

7 Minimal Perfect NHPP / PLP 31.2 66.4 73.07 0.001 1.74 -- -- 

8 Minimal Perfect NHPP / LLP 31.8 67.6 74.27 -4.25 0.013 -- -- 

9 Imperfect Imperfect Kijima 1 / 
Weibull 

30.7 69.4 76.07 1.76 x10-4 2.36 0.94 1 

10 Imperfect Imperfect Kijima 1 / 
Log Linear 

29.8 67.6 74.27 -4.64 0.085 0.96 1.39 
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Sl 
No 

CM 
Maintenance 

Effect 

PM 
Maintenance 

Effect 

Maintenance 
Model / 
Baseline 

Log 
Likeli-
hood 

AIC 
 

AICC Parameter Estimates 

𝜶 𝜷 𝝆𝒄 𝝆𝒑 

11 Imperfect Imperfect Kijima 2 / 
Weibull 

29.5 67 73.67 1.09x10-5 3.06 0.56 1 

12 Imperfect Imperfect Kijima 2 / 
Log Linear 

29.5 67 73.67 -5.26 0.078 0.73 1.29 

13 Imperfect Imperfect GP / Weibull 31.3 70.6 77.27 3.22x10-3 1.59 0.87 1.4 

14 Imperfect Imperfect GP / Log 
Linear 

29.7 67.4 74.07 -5.02 0.065 0.89 1.31 

15 Imperfect Imperfect GFRR / 
Weibull 

31.3 70.6 77.27 3.22x10-3 1.59 0.79 1.7 

16 Imperfect Imperfect GFRR / Log 
Linear 

29.9 67.8 74.47 -5.03 0.072 0.81 1.55 

17 Imperfect Imperfect ARA1 / PLP 29.7 67.4 74.07 2.35 x10-5 2.88 0.91 1 

18 Imperfect Imperfect ARA1 / LLP 29.3 66.6 73.27 -5.13 0.08 0.98 1.07 

19 Imperfect Imperfect ARA∞ / PLP 28.8 65.6 72.27 6.11x10-8 4.15 0.41 0.53 

20 Imperfect Imperfect ARA∞ / LLP 28.8 65.6 72.27 -7.02 7.79x10-2 0.38 0.49 

21 Imperfect Imperfect ARI∞ / PLP 29.5 67 73.67 4.78x10-4 1.99 0.40 0.74 

22 Imperfect Imperfect ARI∞ / LLP 29.5     67 73.67 -2.25 9.59x10-3 0.75 0.19 

23 Imperfect Imperfect GRA-CP / PLP 28.4 64.8 71.47 1.7 x10-13 7.05 0.07 0.12 

24 Imperfect Imperfect GRA-CP / LLP 28.19 64.4 71.07 -11.6 0.14 0.16 0.12 

25 Imperfect Imperfect CP / PLP 28.4 64.8 71.47 1.7 x10-13 7.05 0.68 0.53 

26 Imperfect Imperfect CP / LLP 29.4 66.8 73.47 -5.5 0.074 0.82 0.75 

27 Imperfect Perfect Kijima  2 / 
Weibull 

29.5 65 68.43 1.16x10-5 3.05 0.57 1 

 479 

This dataset has been analysed by Doyen and Gaudoin (2011). They applied only ARA1-PM and 480 

ARA1-CM, which are equivalent to Kijima 1-PM and Kijima 2-CM (5), and ARA∞-PM and ARA∞-CM, 481 

which are equivalent to Kijima 2-PM and Kijima-2 CM (6) to this dataset. They arrived at the 482 

conclusion that PM is perfect and renews the intensity while CM renews the intensity by half. They 483 

proposed that a perfect PM with imperfect Kijima 2 CM will suit the dataset best. The estimated 484 

parameters with this model is given at Sl. No. 27 of Table 4.  485 

As can be seen from the table, however, the minimum AICC value is obtained for the log Linear 486 

model with perfect CM and perfect PM combination and hence this model provides the best fit to the 487 

data. Both indicate perfect maintenance. The residuals from the models were checked for normality 488 

and serial correlation. The CvM test gives a p-value of 0.95 and p-value with BG test for order 1 is 489 

0.40. Hence, the model provides a good fit to the data.  490 

The intensity of failures and cumulative intensity of failures with perfect maintenance log linear 491 

renewal process is given in Figs. 16 and 17, respectively. 492 
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 493 

Fig. 16: Intensity of failure vs cold starts to  Fig. 17: Cumulative intensity of failure vs    494 
failure for Stubs failure data with log linear cold starts to failure for Stubs failure data  495 
renewal process considering CM and PM   with log linear renewal process considering 496 

CM and PM  497 
 498 

 499 

Fig. 18: Expected cold starts to failure vs observed cold starts to failure for Stubs failure data 500 
with log linear renewal process considering CM and PM 501 

 502 

The expected cold starts to failure are obtained through simulation. The expected cold starts are 503 

obtained as the average of 1000 simulations. The expected cold starts to failures with the log linear 504 
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renewal process for Stubs failure data with CM and PM is given in Fig. 18. It can be seen that it is good 505 

fit to the observed cold starts to failure. 506 

If two PMs are considered to be carried out at 330 and 396, i.e. 66 cold starts each from the last 507 

PM considered at 264 cold starts, the expected number of cold starts obtained as the average of 1000 508 

simulations are given in Table 5. It can be seen that each of the two CMs occur between the PMs. 509 

Inspection may be further enhanced in a planned manner and PM may be carried out earlier, to 510 

reduce the number of failures.  511 

Table 5: Expected number of cold starts considering PM every 66 cold starts 512 

Sl. No. Expected number of cold starts with planned PM  

 1 264(PM), 274, 311, 330(PM), 346, 380, 396(PM)  

 513 

The best-fit model being perfect  CM and perfect PM changes the perspective with which the 514 

maintenance process has been viewed in Doyen and Gaudoin (2011) and has implications on the 515 

further maintenance strategy to be followed.  516 

In the first place the dataset is probably too small to fit an imperfect maintenance model which is 517 

brought out by the AICC values. Though, Doyen and Gaudoin (2011) propose the models as given at 518 

(1) to (4) and listed in Table 2, they have not used these models to analyse the dataset.  519 

On analysing the estimated values of parameters, it can be seen that the 𝛽′𝑠 value indicates that 520 

the stubs are in the wear out phase, thus carrying out PM should be effective in this case. Here CM is 521 

also found to be perfect along with PM and is as effective as PM and not half as effective as given in 522 

Doyen and Gaudoin (2011). Given that both CM and PM have the same effect, either can be used for 523 

maintenance of these stubs. However, considering disruption in production and the costly resultant 524 

outage of the plant, if a failure takes place during operating time, it may be better to optimize the 525 

inspection schedule of the stubs so as to reduce the failures. Presently, the PMs are being carried out 526 

at an average of approximately 66 cold starts. Inspection may be further enhanced in a planned 527 

manner and PM may be carried out earlier, to reduce the number of failures. 528 

4.2 Analysis of Component 2 Dataset 529 

The dataset of PM and CM times of Component 2, as given in Ascher and Kobbacy (1995), is 530 

considered for analysis. Component 2 is used in a continuous-process industry where the equipment 531 

is run continuously for twenty four hours a day and only stopped for CM or PM. This dataset consists 532 

of 11 CM and 18 PM actions. The type of components or the nature of PM and CM actions carried out 533 

on the system are not known in this case. All that is known is that all PM actions are of one hour 534 
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duration and carried out at an average of 206 hours. CM durations are of varying times ranging from 535 

4 to 29 hours. 536 

Applying all the PM and CM models at (1) to (14) to this dataset in Ascher and Kobbacy (1995), 537 

the results are shown in Table 6. No convergence is obtained for ARI∞ model (12) with a log linear 538 

baseline for this data set.  539 

Table 6: Parameters of Models fitted to the dataset of PMs and CMs Of Component 2 540 

Sl 
No 

CM 
Maintenance 

Effect 

PM 
Maintenance 

Effect 

Maintenance 
Model / 
Baseline 

Log 
Likeli-
hood 

AIC 
 

AICC Parameter Estimates 

𝜶 𝜷 𝝆𝒄 𝝆𝒑 

1 Perfect Perfect Renewal / 
Weibull 

72.6 149.2 149.66 0.025 0.58 -- -- 

2 Perfect Perfect Renewal / 
Log Linear  

73.16 150.32 150.78 -5.073 -
9.86x10-

3 

-- -- 

3 Perfect Minimal Renewal / 
Weibull 

69.86 143.72 144.18 0.067 0.50 -- -- 

4 Perfect Minimal Renewal / 
Log Linear 

72.63 149.26 149.72 -5.054 -
2.57x10-

3 

-- -- 

5 Minimal Minimal NHPP / PLP 74.21 152.42 152.88 0.0367 0.69 -- -- 

6 Minimal Minimal NHPP / LLP 71.35 146.7 147.16 -4.625 -
8.53x10-

4 

-- -- 

7 Minimal Perfect NHPP / PLP 75.03 154.06 154.52 0.0025 1.029 -- -- 

8 Minimal Perfect NHPP / LLP 74.5 153 153.46 -5.4 -
3.79x10-

3 

-- -- 

9 Imperfect Imperfect Kijima 1 / 
Weibull 

71.43 150.86 152.53 0.213 0.287 0.96 0.995 

10 Imperfect Imperfect Kijima 1 / 
Log Linear 

70.22 148.44 150.11 -4.235 -
8.37x10-

3 

0.71 0.98 

11 Imperfect Imperfect Kijima 2 / 
Weibull 

69.54 147.08 148.75 0.11 0.403 0.998 0.43 

12 Imperfect Imperfect Kijima 2 / 
Log Linear 

70.92 149.84 151.51 -4.307 -0.0101 0.78 0.53 

13 Imperfect Imperfect GP / Weibull 70.16 148.32 149.99 0.054 0.624 0.92 0.86 

14 Imperfect Imperfect GP / Log 
Linear 

68.63 145.26 146.93 -2.788 -0.057 0.8 0.85 

15 Imperfect Imperfect GFRR / 
Weibull 

70.16 148.32 149.99 0.054 0.624 0.95 0.91 

16 Imperfect Imperfect GFRR / Log 
Linear 

70.73 149.46 151.13 -4.197 -
8.85x10-

3 

0.95 0.91 

17 Imperfect Imperfect ARA1 / PLP 68.9 145.8 147.47 0.22 0.31 1 0.9 

18 Imperfect Imperfect ARA1 / LLP 70.2 148.4 150.07 -4.23 -
8.89x10-

3 

0.94 0.91 

19 Imperfect Imperfect ARA∞ / PLP 71.2 150.4 152.07 0.22 0.28 0.86 0.84 



26 
 

Sl 
No 

CM 
Maintenance 

Effect 

PM 
Maintenance 

Effect 

Maintenance 
Model / 
Baseline 

Log 
Likeli-
hood 

AIC 
 

AICC Parameter Estimates 

𝜶 𝜷 𝝆𝒄 𝝆𝒑 

20 Imperfect Imperfect ARA∞ / LLP 71.2 150.4 152.07 -4.2 -
1.11x10-

2 

0.61 0.60 

21 Imperfect Imperfect ARI1 / PLP 73.7 155.4 157.07 0.028 0.77 0 0.46 

22 Imperfect Imperfect ARI1 / LLP 73.2 154.4 156.07 -3.77 -0.95 0.24 0.09 

23 Imperfect Imperfect ARI∞ / PLP 71.9 151.8 153.47 9.42x10-

3 

0.99 0.07 0.08 

24 Imperfect Imperfect GRA-CP / PLP 67.33 142.66 144.33 9.61x10-

14 
5.16 0.12 0.11 

25 Imperfect Imperfect GRA-CP / LLP 67.24 142.48 144.15 -12.31 0.024 0.10 0.11 

26 Imperfect Imperfect CP / PLP 67.33 142.66 144.33 9.61x10-

14 
5.16 0.41 0.38 

27 Imperfect Imperfect CP / LLP 67.57 143.14 144.81 -4.605 -0.0101 -0.15 -5.19 

 541 

Minimal maintenance is considered for CM and PM schedules are optimised considering perfect 542 

maintenance (4) and minimal maintenance (3) for PM in Ascher and Kobbacy (1995). However, as 543 

can be seen from the table, the minimum AICC value is obtained for the GRA – CP model with imperfect 544 

CM and imperfect PM combination for a log linear baseline process. The residuals from the models 545 

were checked for normality and serial correlation. The CvM test gives a p-value of 0.73 and the p-546 

value with BG test for order 1 is 0.77. Hence, the model provides a good fit to the data.  547 

The intensity of failures and cumulative intensity of failures with the GRA – CP model for a log 548 

linear baseline process is given in Figs. 19 and 20 respectively. 549 

 550 

Fig. 19: Intensity of failure vs times to  Fig. 20: Cumulative intensity of failure vs    551 
failure for Component 2 failure data with  times to failure for Component 2 failure 552 
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GRA – CP LLP considering PM and CM  data with GRA – CP LLP considering PM and 553 
CM  554 

 555 

Fig. 21: Expected times to failure vs observed times to failure for Component 2 failure data with 556 
GRA – CP LLP considering CM and PM 557 

 558 

The expected times to failure are obtained through simulation with (25). The expected times are 559 

obtained as the average of 1000 simulations. The expected times to failures with the GRA CP – LLP 560 

model for Component 2 failure data considering CM and PM is given in Fig. 21. It can be seen that it 561 

is close match to the observed times to failure. 562 

Presently the PMs are being carried out at an average of approximately 206 days. Hence, 563 

considering two PMs to be carried out at 3919 and 4125 i.e., 206 days each from the last PM time 564 

3713, the expected times to failures obtained as the average of 1000 simulations are given in Table 565 

7. It can be seen that no CMs before either PM. The next CM is expected at 4157 days. This further 566 

confirms the improving trend in the maintenance of Component 2.   567 

Table 7: Expected times to failure considering PM every 206 days 568 

Sl. No. Expected times to failures with planned PM times 

 1 3919(PM), 4125(PM), 4157  

 569 

Analysis of the estimated parameter values indicates a 𝛽  value, which shows a slightly 570 

deteriorating system. However, in combination with 𝜌𝑐  and 𝜌𝑝  values, the 𝛽  value for this model 571 

indicates an improving system. This can also be seen in general from the 𝛽 values obtained with the 572 
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other models.  Figs. 20, 21 and 22 show an improving trend for the failure intensity. Both PM and CM 573 

are equally effective. However, considering disruption in production, if a failure takes place during 574 

operating time, it may be better to preventively maintain component 2 to an optimum schedule so as 575 

to reduce the failures. 576 

4.3 Analysis of Roller Mill Dataset 577 

The dataset of PM and CM times given in Love and Guo (1991) of a Roller Mill in a Cement Plant is 578 

considered for analysis. The data consist of 13 PM and 18 CM observations for the period November 579 

1988 to March 1989. Applying all the PM and CM models at (1) to (14) to this dataset, the results are 580 

tabulated in Table 8.  581 

Table 8: Parameters of Models fitted to the dataset of PMs and CMs of Roller Mill 582 

Sl 
N
o 

CM 
Maintenanc

e Effect 

PM 
Maintenanc

e Effect 

Maintenanc
e Model / 
Baseline 

Log 
Likeli
-hood 

AIC 
 

AICC Parameter Estimates 

𝜶 𝜷 𝝆𝒄 𝝆𝒑 

1 Perfect Perfect Renewal / 
Weibull 

106.4 216.
8 

217.2
3 

1.26x10
-4 

0.87 -- -- 

2 Perfect Perfect Renewal / 
Log Linear  

108.3 220.
6 

221.0
3 

-5.73 -
7.95x10-

3 

-- -- 

3 Perfect Minimal Renewal / 
Weibull 

101.3 206.
6 

207.0
3 

1.38x10
-6 

0.77 -- -- 

4 Perfect Minimal Renewal / 
Log Linear 

102.3 208.
6 

209.0
3 

-6.66 -
4.24x10-

3 

-- -- 

5 Minimal Minimal NHPP / PLP 109.5 223 223.4
3 

4.77x10
-4 

1.61 -- -- 

6 Minimal Minimal NHPP / LLP 109.6 223.
2 

223.6
3 

-5.58 5.09x10
-4 

-- -- 

7 Minimal Perfect NHPP / PLP 110.1 224.
2 

224.6
3 

7.21x10
-3 

1.22 -- -- 

8 Minimal Perfect NHPP / LLP 109.5 223 223.4
3 

-4.78 2.82x10-

3 
-- -- 

9 Imperfect Imperfect Kijima 1 / 
Weibull 

106.2 220.
4 

221.9
4 

7.37x10
-6 

0.83 1 1 

10 Imperfect Imperfect Kijima 1 / 
Log Linear 

105.5 219 220.5
4 

-6.98 -2.3x10-

3 
0.25 2.95 

11 Imperfect Imperfect Kijima 2 / 
Weibull 

100.7 209.
4 

210.9
4 

7.81x10
-9 

2.42 0.04 0.01 

12 Imperfect Imperfect Kijima 2 / 
Log Linear 

101.6 211.
2 

212.7
4 

-7.52 -
6.56x10-

3 

0.84 0.16 

13 Imperfect Imperfect GP / Weibull 104.3 216.
6 

218.1
4 

3.33x10
-5 

0.91 0.91 1.47 

14 Imperfect Imperfect GP / Log 
Linear 

106.3 220.
6 

222.1
4 

-6.50 -
2.17x10-

4 

0.91 1.47 

15 Imperfect Imperfect GFRR / 
Weibull 

104.3 216.
6 

218.1
4 

3.33x10
-5 

0.91 0.92 1.43 

16 Imperfect Imperfect GFRR / Log 
Linear 

106.4 220.
8 

222.3
4 

-6.88 -
4.75x10-

3 

0.92 1.42 
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Sl 
N
o 

CM 
Maintenanc

e Effect 

PM 
Maintenanc

e Effect 

Maintenanc
e Model / 
Baseline 

Log 
Likeli
-hood 

AIC 
 

AICC Parameter Estimates 

𝜶 𝜷 𝝆𝒄 𝝆𝒑 

17 Imperfect Imperfect ARA1 / PLP 101.5 211 212.5
4 

5.14x10
-7 

1.57 0 0.42 

18 Imperfect Imperfect ARA1 / LLP 103.3 214.
6 

216.1
4 

-6.66 -
5.13x10-

3 

1.09 1.08 

19 Imperfect Imperfect ARA∞ / PLP 104.0 216 217.5
4 

0.014 2.47 0.04
1 

0.04
0 

20 Imperfect Imperfect ARA∞ / LLP 102.3 212.
6 

214.1
4 

-6.89 6.43x10-

3 

0.05
1 

0.05
0 

21 Imperfect Imperfect ARI1 / PLP 101.5 211 212.5
4 

2.19x10
-6 

1.56 0 0.26 

22 Imperfect Imperfect ARI1 / LLP 103.9 215.
8 

217.3
4 

-5.81 -0.95 0.44 0.24 

23 Imperfect Imperfect ARI∞ / PLP 102.1 212.
2 

213.7
4 

6.51x10
-6 

2.1 0.03
9 

0.03
7 

24 Imperfect Imperfect ARI∞ / LLP 108.7 225.
4 

226.9
4 

-6.03 -
2.13x10-

3 

0.16 0.32 

25 Imperfect Imperfect GRA-CP / 
PLP 

108.6 225.
2 

226.7
4 

2.33x10
-4 

1.85 0.09 -0.33 

26 Imperfect Imperfect GRA-CP / 
LLP 

102.9 213.
8 

215.3
4 

-5.62 2.25x10-

3 

0.05 -0.1 

27 Imperfect Imperfect CP / PLP 108.4 224.
8 
 

226.3
4 

3.20x10
-3 

1.85 0.08 -0.26 

28 Imperfect Imperfect CP / LLP 100.9 209.
8 

211.3
4 

-8.31 9.59x10-

3 
0.26 0.28 

 583 

Love and Guo (1991) analysed the data considering perfect PM with perfect CM and minimal  CM 584 

with other covariates to optimize the PM schedules, respectively.  585 

As can be seen from the table, the minimum AICC value is obtained for perfect CM with Weibull 586 

Renewal process and Minimal PM model. The residuals from the models were checked for normality 587 

and serial correlation. The CvM test gives a p-value of 0.65 and p-value with BG test for order 1 is 588 

0.81. Hence, the model provides a good fit to the data.  589 

The intensity of failures and cumulative intensity of failures with perfect CM with Weibull renewal 590 

process and minimal PM model are given in Figs. 22 and 23, respectively. 591 

The expected times to failure are obtained through simulation. The expected times are obtained 592 

as the average of 1000 simulations. The expected times to failures with perfect CM with the Weibull 593 

renewal process and minimal PM model for Roller Mill failure data considering CM and PM is given 594 

in Fig. 24. It can be seen that it is a reasonably close match to the observed times to failure. 595 
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  596 

Fig. 22: Intensity of failure vs times to  Fig. 23: Cumulative intensity of failure vs    597 
failure for Roller Mill failure data   times to failure for Roller Mill failure data                     598 
with perfect CM and minimal PM    with perfect CM and minimal PM  599 

 600 

Fig. 24: Expected times to failure vs observed times to failure for Roller Mill failure data perfect 601 
CM and minimal PM 602 

 603 

Presently the PMs are being carried out at an average of approximately 231 days. Hence 604 

considering two PMs to be carried out at 3234 and 3465 i.e., 231 days each from the last PM time 605 

3003, the expected times to failures obtained as the average of 1000 simulations are given in Table 606 

9. It can be seen that one CM before PM at 3234 and two CMs before PM at 3465 are expected.  607 
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Table 9: Expected times to failure considering PM every 231 days 608 

Sl. No. Expected times to failures with planned PM times 

 1 3003(PM), 3114.3, 3234(PM), 3278.5, 3441.7, 3465(PM)  

 609 

The best fit model being GRA-CP CM and PM changes the perspective with which the maintenance 610 

process has been viewed in Love and Guo (1991) and has implications on the further maintenance 611 

strategy to be followed. It can be seen from the table that for the models where PM has been 612 

considered perfect as given at sl. No. 1, 2, 7 and 8 the AICC values are much higher. The effectiveness 613 

of PM is minimal and considering PM perfect as in Love and Guo (1991) will provide the wrong 614 

results.  615 

Analyzing the estimated values of parameters it can be seen that the 𝛽 value indicates that the 616 

failure intensity of the Roller Mill is increasing with time. Considering the fact that CM is perfect, and 617 

the effectiveness of PM is minimal, here CM can be used a strategy for carrying out maintenance if 618 

the cost of failure and consequent disruption of production is not high. PM work can be dropped all 619 

together. In case the cost of failure is not acceptable, then a much improved and more effective PM 620 

work has to be designed for the Roller Mill.   621 

5. Conclusion  622 

A systematic process has been adopted to assess the maintenance effectiveness with PM and CM for 623 

a repairable system. Once a good-fit model is arrived at, the model output can be interpreted to obtain 624 

an understanding of the maintenance effectiveness of PMs and CMs being carried out on the system.  625 

The case studies clearly indicate that assumptions regarding models to be used for PM and CM 626 

data and maintenance effectiveness lead to sub-optimal results when  optimizing maintenance. In all 627 

the case studies, the models originally fitted to the datasets proved to be different to the models 628 

arrived at using the methodology in this paper. Consequently, the estimation of maintenance 629 

effectiveness has also been changed. This has resulted in a changed maintenance strategy to be 630 

followed for the repairable systems under consideration.  631 

Here only statistical fit of the models to the data is considered for understanding maintenance 632 

effectiveness with PM and CM models. The results are to be correlated with the feedback from the 633 

engineers / maintainers at site. Additionally, the properties of the models and their estimators are to 634 

be studied to obtain a better understanding of the modelling process. The estimated models can be 635 

further used to obtain quantities such as the expected number of failures based on the PM policy, 636 

which may be interesting to maintenance engineers . Only time based scheduled PM is considered 637 

here. This can be extended to condition based maintenance. There can be different types of PMs on 638 
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the same system consisting of different sets of activities e.g., PM 1 consisting of inspection, cleaning, 639 

lubrication and routine maintenances, PM 2 consisting of replacement of some parts, and PM 3 640 

consisting of thorough overhaul. PM 2 may include PM 1 activities and PM 3 may include PM 1 and 641 

PM 2 activities. The PM and CM models developed above can also be extended to such situations. 642 
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