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Figure 1. CT-derived surface models of a left capitate from each genus showing variation in external 
morphology. Capitates have been scaled to relative size. Rows: 1) Capitates are oriented dorso-radially 2) 

Capitates are oriented dorsally. Columns: A) Homo sapiens (DCW_AM_10_0_182), B) Pan troglodytes 
(SMF_4104), C) Gorilla gorilla (ZMB_83587), D) Pongo pygmaeus (ZMB_6948). Numbers representing 
anatomical features: ‘1’ MC2 articulation, ‘2’ Dorsal ridge, ‘3’ trapezoid articulation, ‘4’ radial-palmar 

expansion of the proximal capitate, ‘5’ MC3 styloid process articulation, ‘6’ waisted mid-capitate. 
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Figure 2. Images showing the morphological filters applied in medtool 4.3 for the whole-bone analysis. A) 
Original microCT of a Homo sapiens capitate, B) MicroCT scan after MIA-clustering segmentation, C) 
 Cortical thickness image stack, allowing analysis of the cortex only, D) Trabecular bone image stack, 

allowing analysis of the trabeculae (white) only, E) Combined mask overlay, identifying cortical (lightest 
grey), trabecular (mid-grey) and air (darkest grey internally and black externally) voxels, F) Sampling 
sphere (blue) moving across each node of the overlaid 3D grid (red) measuring bone parameters in the 

trabecular bone image stack. 
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Figure 3. Three cross-sections from the four study genera showing internal bone patterning. A) Y-Z 
dimension, radial-ulnar cross-section, slice taken from mid-section of bone. Distal is up; dorsal is left. B) X-Y 
dimension, proximal-distal cross-section, slice taken from proximal mid-capitate. Dorsal is up; radial is left. 
C) X-Z dimension, dorsal-palmar cross-section, slice taken from midsection of bone. Ulnar is up; proximal is 
left. D) Surface models of each bone showing the location of cross-section A, B and C. The red dotted line 

indicates where capitates were partitioned into a distal and proximal portion. Capitates are not to scale. Left 
capitates have been mirrored. 
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Figure 4. Split violin plots showing the distribution of trabecular results in the proximal and distal segments 
of each genus. Images are generated using ggplot2 in R (v. 1.2.1335) and utilize the default (Gaussian) 

kernel density estimation. Colored contours indicate the density of results across the data range. A) 
Trabecular bone volume to total volume; B) Degree of anisotropy; C) trabecular thickness; D) trabecular 
number; E) trabecular separation. Outliers are identified with ● and represent values 1.5 times above the 
fourth or below the first interquartile range. For all plots: significant pairwise comparisons are indicated by 
the square brackets for the distal tests (top of graph) and proximal tests (bottom of graph), * = p ≤ 0.05; 

** = p ≤ 0.001. 
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Figure 5. Boxplots of the five trabecular ratios for each genus as well as results for the intraspecific Wilcoxon 
signed-rank test and interspecific pairwise rank-sum tests. A) Ratio of distal to proximal trabecular BV/TV; 
B) Ratio of distal to proximal DA; C) Ratio of distal to proximal Tb.Th.; D) Ratio of distal to proximal Tb.N 

(green) and Tb.Sp (orange). For all figures: Values above the dotted line (ratio = 1) indicate greater 
trabecular variable in the distal capitate. Significant pairwise comparisons of the ratios are indicated by the 
square brackets. For D, the top brackets indicate the tests for Tb.N and the bottom brackets indicate those 
for Tb.Sp. * = p ≤ 0.05; ** = p ≤ 0.001. Significant intraspecific Wilcoxon signed-rank tests between the 

proximal and distal means are represented by the <span>♦</span> symbol thus indicate whether the 
difference between the mean distal and proximal trabecular variable was significantly different. 

<span>♦</span> = p ≤ 0.05; <span>♦</span><span>♦</span> = p ≤ 0.001. 
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Figure 6. A-B: Split violin plots showing the distribution of total BV/TV (A) and Ct.Th (B) results in the 
proximal and distal portion of each genus. Images are generated using ggplot2 in R (v. 1.2.1335) and utilize 
the default (Gaussian) kernel density estimation. Colored contours indicate the density of results across the 
data range. Outliers are identified with ● and represent values 1.5 times above the fourth or below the first 
interquartile range. Significant pairwise comparisons are indicated by the square brackets for the distal tests 
(top of graph) and proximal tests (bottom of graph), * = p ≤ 0.05; ** = p ≤ 0.001. C-D: Boxplots showing 
the distribution of the distal to proximal ratios of the total BV/TV (C) and Ct.Th (D) of each genus. Boxplots 

also show the results of the intraspecific Wilcoxon signed-rank test and interspecific pairwise rank-sum 
tests. Values above the dotted line (ratio = 1) indicate greater cortical variable in the distal capitate. 

Significant pairwise comparisons of the ratios are indicated by the square brackets, * = p ≤ 0.05; ** = p ≤ 
0.001. Significant intraspecific Wilcoxon signed-rank tests between the proximal and distal means are 

represented by the <span>♦</span> symbol thus indicate whether the difference between the mean distal 
and proximal trabecular variable was significantly different. <span>♦</span> = p ≤ 0.05; 

<span>♦</span><span>♦</span> = p ≤ 0.001. 
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Figure 7. Cross-sections from representative individuals of each genus showing relative trabeculae and 
cortex thickness across the capitate. A) Y-Z dimension, radio-ulnar cross-section. Distal is up; dorsal is left. 
B) X-Z dimension, dorsal-palmar cross-section. Ulnar is up; distal is left. C) X-Y dimension, proximal-distal 

cross-section. Cross-section taken at the proximal mid-capitate. Dorsal is up; radial is left. D) X-Y 
dimension, proximal-distal cross-section. Cross-section taken at the distal capitate. Dorsal is up; ulnar is 
left. E) Shows the positions of cross-sections A-D on a Pan specimen. Left capitates have been mirrored. 

Capitates not to scale. 
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Supplemmentary figure 1: Example of excluded Pan troglodytes specimen, accession ID: PC_ZVII_24, 
Powell-Cotton Museum. A) CT-derived surface model of Pan capitate showing the location of four cross-

sections. Cross-sections show dense and porous bone is continuous throughout the entire capitate.  B) Pan 
specimen visualized after medtool data collection. The whole bone is shown transparent in pink, allowing 
visualization of the constricted and discontinuous trabecular bone region within. Results of the medtool 

analysis of this specimen are given in the table. 
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Supplementary figure 2. Plots of the seven RMA regressions testing for allometry. Individual data points are 
colored by genus and the hominoid trend is indicated by the dotted black line and grey confidence interval. 

The log cube root of the volume (mm3) is seen across the x axis. A) Trabecular BV/TV; B) DA; C) Tb.Th.; D) 
Tb.N.; E) Tb.Sp.; E) Total BV/TV; G) Ct.Th. 
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Supplementary figure 2 - large print version. Plots of the seven RMA regressions testing for allometry. 
Individual data points are colored by genus and the hominoid trend is indicated by the dotted black line and 

grey confidence interval. The log cube root of the volume (mm3) is seen across the x axis. A) Trabecular 
BV/TV; B) DA; C) Tb.Th.; D) Tb.N.; E) Tb.Sp.; E) Total BV/TV; G) Ct.Th 
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13 Abstract

14 Morphological variation in the hominoid capitate has been linked to differences in habitual locomotor 

15 activity due to its importance in movement and load transfer at the mid-carpal joint proximally and 

16 carpometacarpal joints distally. While the shape of bones and their articulations are linked to joint 

17 mobility, the internal structure of bones has been shown experimentally to reflect, at least in part, the 

18 loading direction and magnitude experienced by the bone. To date, it is uncertain whether locomotor 

19 differences among hominoids are reflected in the bone microarchitecture of the capitate. Here, we 

20 apply a whole-bone methodology to quantify the cortical and trabecular architecture (separately and 

21 combined) of the capitate across bipedal (modern Homo sapiens), knuckle-walking (Pan paniscus, Pan 

22 troglodytes, Gorilla sp.), and suspensory (Pongo sp.) hominoids (n=69). It is hypothesized that variation 

23 in bone microarchitecture will differentiate these locomotor groups, reflecting differences in habitual 

24 postures and presumed loading force and direction. Additionally, it is hypothesized that trabecular 

25 and cortical architecture in the proximal and distal regions, as a result of being part of mechanically 

26 divergent joints proximally and distally, will differ across these portions of the capitate. Results 

27 indicate that the capitate of knuckle-walking and suspensory hominoids is differentiated from bipedal 

28 Homo primarily by significantly thicker distal cortical bone. Knuckle-walking taxa are further 

29 differentiated from suspensory and bipedal taxa by more isotropic trabeculae in the proximal capitate. 
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30 In all taxa, bone parameters across the two capitate regions consistently differ, suggesting a variable 

31 loading environment between the proximal and distal regions. An allometric analysis indicates that 

32 size is not a significant determinate of bone variation across hominoids, although sexual dimorphism 

33 may influence some parameters within Gorilla. Results suggest that partitioning the capitate (and 

34 possibly other short bones) into biomechanically meaningful segments may provide more informative 

35 functional analyses for future research. Additionally, while separating trabecular and cortical bone is 

36 normal protocol of current whole-bone methodologies, this study shows that when applied to carpals, 

37 removing or studying the cortical bone separately potentially obfuscates functionally relevant signals 

38 in bone structure. 

39 Key words: locomotion, cancellous bone, functional morphology, primates, wrist

40 Introduction
41 Primates use their hands in a diverse set of postures to manipulate and navigate their environment 

42 (Fragaszy & Crast, 2016). The many articulations within the wrist are central to the capacity of the 

43 hand to move through multiple planes of space and, in combination with soft tissue morphology, joint 

44 congruence determines the degree of stability, flexibility and dexterity within the wrist and hand (Orr, 

45 2010). The capitate articulates proximally with the scaphoid and lunate and distally with the trapezoid, 

46 hamate, and metacarpals 2, 3 and, sometimes, 4 (Kivell et al. 2016a). As such, the external morphology 

47 of the capitate plays a key role in the range of motion at the wrist as it is a central component of the 

48 mid-carpal joint proximally and the carpometacarpal joints distally (Jenkins & Fleagle, 1975; Lewis, 

49 1989; Jouffroy & Medina, 2002; Crisco, 2005; Kijima & Viegas, 2009; Orr et al. 2010; Orr, 2017).

50 The external morphology of the hominoid capitate has featured in hypotheses about the locomotor 

51 behavior in the last common ancestor of Pan and Hominini (Dainton & Macho, 1999; Richmond et al. 

52 2001; Begun, 2004; Tocheri et al. 2007; Kivell & Schmitt, 2009) and the evolution of hominin dexterity 

53 and tool-related behaviors (Marzke, 1983; Niewoehner et al. 1997; Wolfe et al. 2006; Rein & Harvati, 

54 2013). However, drawing locomotor or postural inferences based on external morphology is 

55 potentially confounded by the retention of primitive features that are no longer functionally 

56 significant (Lieberman, 1997; Ward, 2002; Pontzer et al. 2006; Ruff et al. 2006; Zeininger et al. 2011; 

57 Kivell, 2016b). Furthermore, making biomechanical inferences from external morphology requires in-

58 depth knowledge of the form-function relationship of the bone as well as its surrounding soft tissue 

59 and articular environment. This is a particular challenge for carpal research as understanding the 

60 kinematics and kinetics of the wrist is inherently difficult due to complications in imaging and analyzing 

61 the small, closely compacted bones without disrupting the normal kinematic chain (Wolfe et al. 2000; 

62 Wolfe et al. 2006; Brainerd et al. 2010; Gatesy et al. 2010; Orr, 2016). While advances in 3D imaging 
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63 and computational techniques have begun to improve our knowledge of human wrist biomechanics 

64 (see Orr, 2016 for review), our understanding of non-human ape biomechanics remains more limited 

65 (but see Orr, 2017 and 2018). Moreover, the functional relationship between cortical and trabecular 

66 tissue within short bones is not well understood and it is not clear how they may interact to provide 

67 whole bone functionality under the high mechanical loads of locomotion and manipulation. To date, 

68 it has yet to be determined whether the internal bone structure of the capitate might reflect 

69 differences in hand and wrist use across extant hominoids. Here we apply a whole-bone methodology 

70 to investigate how the internal cortical and trabecular bone structure potentially varies within the 

71 capitate in a broad sample of Homo (recent humans), Gorilla, Pan (chimpanzees and bonobos) and 

72 Pongo (orangutans).

73 Trabecular bone: the relationship between behavior and structure 

74 In addition to some important clade specific synapomorphies (Sarmiento, 1988; Lewis, 1989; Tocheri 

75 et al. 2008), the wrists of extant hominoids are adapted to their specialized behaviors and are 

76 habitually loaded in different ways. The Homo hand is conspicuous among the ape clade as the only 

77 species not to habitually utilize the hand for locomotion. Instead, the wrist experiences forces 

78 generated predominantly during tool use and other forms of manipulation. High compressive loads 

79 are imposed across the wrist by muscle contractions arising from the strong and forceful human 

80 thumb as well as flexion of the fingers (Napier, 1956; Marzke 1997; Tocheri, 2007; Marzke, 2009; Bardo 

81 et al. 2018). Bones must also withstand and transmit sheer and tensional strains as force is transferred 

82 radio-ulnarly across the wrist (Tocheri, 2007; Marzke, 2013). There is an abundance of clinical evidence 

83 to support the hypothesis that the Dart Throwers Motion (DTM) is the functional axis of human wrist 

84 movement (Crisco et al. 2005; Crisco et al. 2011; Schuind et al. 2013; Brigstocke et al. 2014). The DTM 

85 runs from radial deviation in extension to ulnar deviation in flexion and is used across numerous 

86 activities from throwing an object to pouring water from a jug (Brigstocke et al. 2014). During this 

87 movement, the capitate is very mobile against a stabilized proximal row, with the rotation axis 

88 perpendicular to the wrist movement (Crisco et al. 2005).  

89 In contrast, non-human apes utilize their forelimbs during locomotion. Pongo utilize a range of torso 

90 orthograde suspensory and climbing postures in an almost exclusively arboreal environment (Thorpe 

91 & Crompton, 2006; Thorpe & Crompton, 2009; Manduell et al. 2011). In these positions, the wrist 

92 experiences substantial tensile loading from gravitational forces and stabilising ligaments, as well as 

93 compressive stress from muscle contractions (Swartz et al. 1989; Isler & Thorpe, 2003). Gorilla and 

94 Pan are primarily terrestrial knuckle-walkers, but also engage in various types and frequencies of 

95 arboreal locomotion depending on the species, population or sex (van Lawick-Goodall, 1968; Hunt, 
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96 1992; Doran, 1993; Remis, 1995; Remis, 1998; Neufuss et al. 2017; Thompson et al. 2018). During 

97 knuckle-walking, the wrist must resist compressive loading from both muscle contractions stabilizing 

98 the joints and gravitation forces acting on the body mass (Carlson & Patel, 2006). However, the 

99 knuckle-walking posture differs somewhat between the two genera. When compared to Gorilla, Pan 

100 typically use more variable hand and forelimb postures, do not bear weight as evenly across the digits 

101 and more frequently engage a palm-in forelimb posture  (Inouye, 1994; Wunderlich & Jungers, 2009; 

102 Matarazzo, 2013; Finestone et al. 2018). Gorilla typically knuckle-walk on digits 2-5 and more regularly 

103 utilize a palm-backwards forelimb posture (Tuttle, 1969; Inouye, 1994; Matarazzo, 2013), although 

104 hand postures in the wild are more variable (Thompson et al. 2018).  Although Gorilla are hypothesised 

105 to use a more neutral, columnar wrist posture than Pan (Kivell & Schmitt, 2009), recent kinematic 

106 studies of captive African apes found that Gorilla and Pan were generally similar in their degree of 

107 wrist of extension during knuckle-walking (Finestone et al. 2018; Thompson et al. 2020). 

108 Bone functional adaptation describes the biological process of bone altering its structure to optimize 

109 resistance against peak mechanical loads habitually experienced throughout the lifetime of the 

110 individual (Martin et al. 1998; Ruff et al. 2006; Barak et al. 2011; Doube et al. 2011). Numerous 

111 experimental studies suggest that variation in structure reflects, at least in part, load experienced 

112 during life (see Kivell, 2016b for review) and thus provides an opportunity to draw behavioral 

113 inferences better linked to actual, rather than potential, behavior (Frost, 1987; Ruff & Runestad, 

114 1992).  Bone functional adaptation research can not only facilitate a greater understanding of the joint 

115 loading and kinematics of extant species but may also provide an informative avenue for behavioral 

116 reconstruction in fossil taxa (Griffin et al. 2010; DeSilva & Devlin, 2012; Skinner et al. 2015; Su & 

117 Carlson, 2017; Kivell et al. 2018; Dunmore et al. 2020; Georgiou et al. 2020). Previous studies of 

118 primate trabecular bone structure within the capitate have used a volume of interest (VOI) sampling 

119 sphere but have found limited functional correlation with locomotor behavior (Schilling et al. 2014; 

120 Ragni, 2020). However, using a whole epiphysis/bone methodology has been more functionally 

121 informative for hand bone studies (Tsegai et al. 2013; Stephens et al. 2016; Tsegai et al. 2017; Stephens 

122 et al. 2018; Dunmore et al. 2019; Dunmore et al. 2020). Furthermore, a whole-bone approach to carpal 

123 functional adaptation is preferable given their irregular shapes and variation across different taxa 

124 (Tsegai et al. 2013; Gross et al. 2014; Schilling et al. 2014).

125 However, inferring a form-function relationship between bone microarchitecture and behavior is not 

126 always straightforward due to several potentially confounding variables (for a comprehensive review 

127 and discussion see Kivell 2016b). Firstly, bone modelling (sensu Barak 2019) is influenced by the 

128 genetic blueprint of the individual, as well as life history factors such as lactation or pregnancy 

129 (Kalkwarf & Specker, 1995; Lieberman, 1996; Parsons et al. 1997; Lovejoy et al. 2003; Pettersson et al. 
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130 2010; Yeni et al. 2011; Paternoster et al. 2013; Tsegai et al. 2017). Systemic features such as these 

131 potentially undermine our ability to differentiate between functional and non-functional patterns 

132 expressed in bone structure across different individuals or species. Secondly, there is a higher capacity 

133 for functional adaptation to occur during the juvenile and young adult periods and the extent to which 

134 bone microarchitectural patterns can be linked to adult behavior has been debated (Bertram and 

135 Schwartz, 1991; Pearson & Lieberman, 2004; Ruff et al. 2006). This is particularly salient when 

136 analyzing African apes because locomotor behavior is known to differ across age categories (Doran, 

137 1992; Doran, 1997). Finally, there is also uncertainty regarding the loading frequency and magnitude 

138 necessary to induce a bone functional adaptation response (Frost, 1987; Ruff et al. 2006; Barak et al. 

139 2011; Wallace et al. 2015). Consequently, microarchitecture will never represent the mechanical ideal 

140 of the bone as competing demands on bone tissue will result in a compromise morphology (Ruff et al. 

141 2006).  

142 Cortical bone: contribution to bone structure and functional adaptation

143 Carpal bones function within an intricate biomechanical environment. The bones and ligaments are 

144 interdependent and work together making minor adjustments and movements in concert to create 

145 overall hand motion (Lewis, 1989; Kijima & Viegas, 2009; Orr, 2017). Among the carpus, the central 

146 role of the capitate within the mid-carpal joint and its articulation with the metacarpus makes it an 

147 ideal bone to investigate functional differences in wrist loading. The distal capitate is not only 

148 compressed via its carpometacarpal articulations but it also receives tensional strain via the 

149 attachment of several extrinsic (between carpals and other hand bones) and intrinsic (between carpal 

150 bones) ligaments (Schuind et al. 1995; Kijima & Viegas, 2009; Regal et al. 2020). In contrast, the 

151 proximal capitate does not receive any ligaments but forms the ‘ball’ component of the ball and socket 

152 mid-carpal joint within the highly mobile proximal row and is thus loaded predominantly in 

153 compression (Lewis, 1989; Garcia-Elias et al. 1994; Kivell, 2016a; Orr, 2017).

154 Unlike long bones, short bones like carpals generally have a thin cortical shell and the entire internal 

155 space is filled with trabeculae (Currey, 2002; Schilling et al. 2014). During movement, short bones are 

156 likely to bear a significant portion of the load imposed upon the region as they resist against 

157 compressive forces and transfer load through the bone from one joint articulation to another, while 

158 also being strained via tensional loads from attached ligaments (Currey, 2002; Yao et al. 2020). Cortical 

159 and trabecular bone have divergent material properties due to differences in porosity, mineralization 

160 and cellular constitution (Currey, 2002). Cortical bone is stiffer and stronger than trabecular bone 

161 (Martin et al. 1998; Guo, 2001), but due to its lower porosity, it is slower than trabecular bone to 

162 model and is less compliant (Martin et al. 1998; Hart et al. 2017). While the two tissues work together 
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163 to create the functionality of the whole bone, their relative contributions to stiffness, strength and 

164 homeostasis differs across regions of the same bone (Doube et al. 2009; Barak et al. 2010). It is not 

165 currently understood how cortical and trabecular bone work together to meet the mechanical 

166 demands of the carpus, particularly under the high mechanical demands of locomotion. 

167 By quantifying the internal bone architecture of the hominoid capitate using a whole-bone 

168 methodology, this study aims to investigate whether differences in trabecular and cortical 

169 architecture among hominoids may relate to the divergent hand use across the clade. We also 

170 examine the proximal and distal segments of the capitate separately, due to the differences in the soft 

171 tissue and articular relationships with the surrounding bones. 

172 Allometry: body size and bone structure

173 As functional adaptation research aims to identify markers of behavior rather than body size, analyzing 

174 bone parameters for allometric effects has been integral to interspecific analyses (Ruff, 1984). 

175 Decades of research across various species has yet to find consistent patterns, however some research 

176 suggests there may be a general pattern across mammals and birds whereby bone volume to total 

177 volume (BV/TV) and degree of anisotropy (DA) are independent of body mass (Cotter et al. 2009; 

178 Doube et al. 2011; Barak et al. 2013; Schilling et al. 2014; Christen et al. 2015; Tsegai et al. 2017; Kivell 

179 et al. 2018; Komza & Skinner, 2019) while trabecular thickness (Tb.Th), trabecular number (Tb.N) and 

180 trabecular separation (Tb.Sp) scale with negative allometry (Barak et al. 2013; Ryan & Shaw, 2013; 

181 Kivell et al. 2018; Ragni, 2020). Cortical thickness (Ct.Th) is often reported to be isometric or slightly 

182 positively allometric (Runestad, 1997; Demes et al. 2000; Fajardo et al. 2013). However, not all studies 

183 find BV/TV and DA to be independent of body mass (for example Fajardo et al. 2013; Ryan & Shaw, 

184 2013; Mielke et al. 2018; Ragni, 2020) nor the negative relationship with Tb.Th, Tb.N and Tb.Sp (for 

185 example Doube et al. 2011; Fajardo et al. 2013; Tsegai et al. 2017; Komza & Skinner, 2019.) Few 

186 allometric studies have been undertaken on short bones. Tsegai et al. (2017) found no correlation 

187 between trabecular parameters or Ct.Th with size in intraspecific analyses of the Homo and Pan talus. 

188 Similarly, an interspecific analysis in Schilling et al. (2014) of the primate capitate found only Tb.N to 

189 scale with negative allometry. Ragni (2020) found a greater number of significant relationships within 

190 the capitate of Pan and Gorilla with Tb.Th, Tb.N and Tb.Sp showing negative allometry and DA and 

191 BV/TV expressing isometry. These conflicting results may be due in part to methodological differences 

192 for sampling trabeculae or calculating size.  Nevertheless the effects of allometry on the hominoid 

193 capitate remain unclear. 
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194 Hominoid capitate morphology

195 Distal capitate

196 In all hominoids, the distal capitate is bound to the surrounding bones via strong ligaments which are 

197 often described as a unit that moves in unison during extension and flexion (Richmond et al. 2001; 

198 Moojen et al. 2003; Crisco et al. 2005; Richmond, 2006; Orr, 2010; Tang et al. 2011). The capitate 

199 articulates disto-radially with the trapezoid (although this articulation can be absent in Gorilla) and 

200 second metacarpal (Mc2), and distally with the third and sometimes fourth metacarpals (Lewis, 1989; 

201 Kivell, 2016a). The topology of the metacarpal joint surfaces in the distal row is more complex and 

202 irregular in Pan and Gorilla compared to the smoother surfaces in Pongo, however the capacity for 

203 extension is linked to the range of movement at the mid-carpal joint rather than at the 

204 carpometacarpal junction (Richmond et al. 2001; Begun, 2004; Orr, 2017). The distal capitate in 

205 modern Homo sapiens is considered to have several derived features linked to committed 

206 manipulation and increased efficiency of radio-ulnar force transfer (Tocheri, 2007, Tocheri et al. 2008). 

207 A distally-oriented capitate-Mc2 articulation allows pronation of the second finger towards the thumb 

208 facilitating precision grip, while a palmarly-positioned and expanded capitate-trapezoid articulation is 

209 thought to better resist high radio-ulnarly oriented forces incurred by the thumb during tool-related 

210 activities (Marzke, 1997; Tocheri, 2007; Tocheri et al. 2008). Furthermore, the disto-dorso-radial 

211 corner is truncated to accommodate the third metacarpal (Mc3) styloid process, providing a stable 

212 joint for transmitting high forces and resisting subluxation of the third ray during tool use (Marzke & 

213 Marzke, 1987; Riley & Trinkaus, 1989; Niewoehner et al. 1997; Tocheri et al. 2008; Ward et al. 2014). 

214 In non-human apes, load transfer also occurs radio-ulnarly as bones of the distal carpal row are 

215 compressed against one another. However, in contrast to humans, the orientations of the articular 

216 surfaces of the capitate (and distal carpal row more generally) indicate the wrist is better adapted to 

217 withstand and transfer proximo-distally oriented forces, which arise during use of the forelimb in 

218 locomotion (Tocheri, 2007; Tocheri et al. 2008). Only a small proportion of the dorsal surface of the 

219 distal capitate is without articular surfaces. In this distal segment, compression is induced at the distal, 

220 radial and ulna articular surfaces, while tension is induced by the supporting intrinsic ligaments 

221 surrounding these articulations. Tension further arises from the several intrinsic and extrinsic 

222 ligaments attached to the palmar and dorsal surfaces (Kijima & Viegas, 2009; Regal et al. 2020).

223 Proximal capitate

224 In great apes, the rounded proximal surface of the capitate articulates with the bones of the proximal 

225 row to form the crux of the mid-carpal joint (Kivell 2016b). No ligaments attach directly onto the 

226 proximal capitate thus compared to the distal row, the bones of the mid-carpal joint are able to move 
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227 more independently of one another (Moojen et al. 2003; Crisco et al. 2005; Kijima & Viegas, 2009; 

228 Regal et al. 2020). In Pongo, the proximal capitate is radio-ulnarly narrow in comparison to the other 

229 great apes (Fig. 1) (Richmond et al. 2001).  Notably, the os centrale is not fused to the scaphoid as it is 

230 in the other hominids, and thus excludes the scaphoid from articulating with the capitate resulting in 

231 relatively greater freedom of movement at the mid-carpal joint (Begun, 2004; Orr, 2018). In Pan and 

232 Gorilla, the proximal capitate is enlarged on the radial aspect, which produces a “waisted” mid-region 

233 forming an embrasure with the trapezoid (Richmond et al. 2001; Wolfe et al. 2006; Kivell, 2016a; Orr, 

234 2018). There is also a notable radio-ulnar ridge along the distal extent of the dorsal articular surface 

235 that extends onto the hamate (Richmond et al. 2001). These features contribute to the so called 

236 “screw-clamp mechanism” that describes the functional complex limiting extension at the mid-carpal 

237 joint. During extension, the scaphoid is wedged in between the capitate and trapezoid, providing 

238 stability between the proximal and distal row (Tuttle, 1969; Jenkins & Fleagle, 1975; Richmond et al. 

239 2001; Orr, 2005; Richmond, 2006; Orr, 2017). Homo also exhibits the fused scaphoid-os centrale and 

240 radially expanded proximal capitate, however an enlargement of the bone in the radial-palmar region 

241 results in a less dramatic “waisting” of the bone, resulting in a range of extension intermediate 

242 between the other hominoids (Lewis, 1977; Lewis, 1989; Orr, 2017). Notably, the proximal capitate is 

243 the crux of the functional axis of the DTM (Crisco et al. 2005). During motion, the rotation axis of the 

244 capitate is perpendicular to the movement of the DTM as it moves across a virtually motionless 

245 scaphoid and lunate (Crisco et al. 2005). Thus, although a small bone, the proximal and distal portion 

246 of the capitate functions within notably different ligamentous and articular environments.  

247 [FIGURE 1 ABOUT HERE]

248 Hypotheses 

249 This research centers on two interrelated hypotheses for both trabecular and cortical bone that are 

250 summarized in Table 1 and elaborated below.

251 [TABLE 1 HERE] 

252 Trabecular bone architecture

253 We predict that the capitate of knuckle-walking Gorilla and Pan will have high relative BV/TV and high 

254 DA (Table 1, hypothesis 1) due to the presumed high compressive forces and reduced mobility from 

255 their more extension-limiting mid-carpal joint. In contrast, we predict that the Pongo capitate will 

256 have intermediate BV/TV and low DA due to their predominantly suspensory behavior, resulting in 

257 reduced compression but greater mobility. We expect Homo to exhibit low BV/TV and intermediate 
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258 DA because their capitate is not loaded during locomotion and presumably has the least compressive 

259 loading but more predictable movement along the DTM axis. 

260 Given the differences in mobility and presumed loading between the proximal and distal portions of 

261 the capitate, we hypothesize that there will be differences in the trabecular bone structure between 

262 these segments (measured as ratios). It is predicted that the distal aspect will have higher BV/TV and 

263 DA compared to the proximal aspect across all species (Table 1, hypothesis 2). As there are no previous 

264 studies that have addressed this question for the capitate, we test the null hypothesis that these ratios 

265 will be similar among the study taxa. Although we report Tb.Th, Tb.N and Tb.Sp, we do not make 

266 explicit predictions about these parameters because all contribute, potentially in a variety of different 

267 combinations, to BV/TV. 

268 Cortical bone thickness

269 The contribution of cortical bone to the functional adaptation of the capitate in hominoids has never 

270 been investigated. Given the assumed loading differences described above, we predict that the 

271 cortical bone will be thickest in Gorilla and Pan, followed by Pongo, with Homo exhibiting the thinnest 

272 cortex (Table 1, hypothesis 1). Also following the predictions for trabecular bone, it is predicted that 

273 the cortex of the distal capitate should be significantly thicker than the proximal capitate for all genera. 

274 In long bones, the joint surface tends to have a thin layer of cortical bone covering a dense trabecular 

275 network that transfers load towards the thicker and stronger diaphyseal cortex (Currey, 2002). In short 

276 bones, the cortex is similarly described as thin, however the relationship between cortical and 

277 trabecular bone has never been quantified among hominoids. Additionally, it is unclear whether the 

278 behavioral differences among ape genera will result in different ratios of cortical to trabecular bone. 

279 Therefore this study will investigate the relative contribution of cortical bone to total bone volume, 

280 testing the null hypothesis that these ratios will be similar among the study taxa (Table 1, hypothesis 

281 2). 

282 Inter- and intraspecific allometry in internal bone structure 

283 As this study incorporates hominoids of diverse body size, inter- and intraspecific allometry is also 

284 investigated. Predictions are outlined in Table 1 (hypothesis 3) and follow the results of Schilling et al. 

285 (2014) for the interspecific and Tsegai et al. (2017) for the intraspecific predictions. 
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286 Materials and methods

287 Sample

288 The study sample includes capitates (n=69) from Homo sapiens (n=26), Pan troglodytes and Pan 

289 paniscus (n=14), Gorilla sp. (n=16) and Pongo sp. (n=13) (Table 2; Supp. Table 1). These taxa are 

290 categorized into three behavioral groups based on their most frequent locomotor behaviors: bipedal 

291 (Homo) knuckle-walking (Gorilla and Pan) and suspensory (Pongo). Capitates from non-human apes 

292 were wild-shot adults with no obvious signs of pathology. Consideration was given to ensuring a sex 

293 balance for each taxon when possible, however 16 specimens had unknown sex. 

294 [TABLE 2 HERE]

295 Computed tomography

296 Capitate specimens were scanned with either a BIR ACTIS 225/300 high-resolution microCT scanner 

297 or a Diondo D3 high-resolution microCT scanner at the Department of Human Evolution, Max Planck 

298 Institute for Evolutionary Anthropology, Germany, or a Nikon 225/XTH scanner at the Cambridge 

299 Biotomography Centre, University of Cambridge, United Kingdom. Specimens were scanned with an 

300 acceleration voltage of 100-160 kV and 100-140μA using a 0.2-0.5mm copper or brass filter. Images 

301 were reconstructed as 16-bit TIFF stacks. To ensure accurate post-scan segmentation of thin 

302 trabeculae, scan resolution was limited to a maximum of 0.048mm (average 0.032mm) for non-human 

303 apes, and 0.035mm (average 0.029mm) for the Homo sample. This resolution is below the suggested 

304 range for minimal error detection (Isaksson et al. 2011; Christen et al. 2016) Post-scanning, each 

305 capitate was positioned into approximately the same orientation using Avizo 6.0 (Visualization 

306 Sciences Group, SAS). Segmentation of trabecular bone, including identification and removal of 

307 extraneous non-bone material, used the medical image analysis (MIA) clustering method (Dunmore 

308 et al. 2018).  The MIA-clustering method increases the reproducibility of results by reducing subjective 

309 input parameters required for other segmentation methods (Dunmore et al. 2018).  

310 Data collection

311 This study uses the medtool 4.3 software package (http://www.dr-pahr.at/medtool/) to quantify bone 

312 parameters throughout the entire capitate  utilizing the method outlined in Gross et al. (2014). In brief, 

313 medtool utilizes a series of morphological filters to identify the cortical, trabecular, internal (marrow) 

314 and background elements of the segmented CT scans. After MIA segmentation, medtool projects a 

315 series of rays onto outside of the bone (Fig.2B) that continue to move internally through the bone 

316 until a non-bone voxel is reached (Pahr & Zysset, 2009a). By using a value of average trabeculae 
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317 thickness, morphological filters fill and close small holes present in the porous cortex allowing a 

318 smooth boundary contour between cortical and trabecular bone to be identified (Pahr & Zysset, 

319 2009a; Pahr & Zysset, 2009b; Gross et al. 2014). Two Gorilla, one Pan and two Pongo specimens were 

320 excluded from the sample as the internal cortical-trabecular boundary could not be confidently 

321 defined due to extreme cortical porosity (an example is provided in Supp. Figure 1). Medtool then 

322 superimposes the trabecular-cortical boundary to the original image such that the pores within the 

323 cortex are maintained for analysis. Porosity is important to maintain within the cortical bone when 

324 quantifying microarchitecture as it has been linked to strength and elastic modulus (see Cooper et al. 

325 2016 for review).  Unique scalars are applied to the background, cortical, trabecular and internal 

326 elements of the scan. A series of image stacks are created and include a cortex only stack (Fig. 2C), 

327 trabecular and internal only stack (Fig. 2D) and a trabecular and cortical combined stack (Fig. 2E). A 

328 3D grid with 2.5mm spaced nodes is then superimposed on an image stack and a 5mm sampling sphere 

329 moves from node to node to measure parameters across the entire bone (Fig. 2F) (Pahr & Zysset, 

330 2009a). 

331 BV/TV is calculated as the ratio of bone to non-bone voxels. DA is calculated via the Mean Intercept 

332 Length (MIL) method (Whitehouse, 1974) and is calculated as 1 – (min. eigenvalue/max. eigenvalue) 

333 which produces a number limited between 1 and 0, with 1 being complete anisotropy and 0 being 

334 complete isotropy. Tb.Th, Ct.Th and Tb.Sp are computed in a similar way to the more well-known 

335 BoneJ® plugin (Doube et al. 2010) for ImageJ. Spheres are grown within the trabecular or cortical bone 

336 and medtool calculates the diameter of the largest sphere that fits within the bone (Hildebrand & 

337 Rüegsegger, 1997). For the calculation of Tb.Sp, medtool inverts the greyscale values of the image 

338 stack (Fig. 2E) such that the ‘internal’ voxels are now represented by the ‘bone’ scalar. Similar to Tb.Th 

339 and Ct.Th, spheres are then grown within the internal voxels until a trabecular or cortical voxel is 

340 reached. The results of Tb.Sp and Tb.Th are used to calculate Tb.N using the formula 1/(Tb.Th+Tb.Sp). 

341 Cortical and trabecular parameters were quantified in the whole capitate, as well as proximal and 

342 distal VOIs. To produce these VOIs, each capitate was cut just distal to the ulnar-most point of the 

343 ridge delineating the extent of the lunate articulation on the dorsal proximal capitate, as per the 

344 measurement made in Richmond (2006) (Fig. 3D). These VOIs are subjected to the same data 

345 collection process as outlined in Fig. 2, quantifying all of the trabecular or trabecular and cortical bone 

346 within the proximal or distal segment. This delineation separates the proximal VOI as the section of 

347 the bone that does not contain any ligament attachment sites, from the distal VOI which does receive 

348 ligamentous attachments. To assess and compare the relative contribution of cortical bone to total 

349 bone volume, BV/TV was measured twice: firstly, in only the trabecular region of the bone (Fig. 3D) as 

350 determined using medtool (see above) and, secondly, in the original MIA segmented specimen in 
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351 which there is no partitioning between cortical and trabecular bone (Fig. 2B). This provides a measure 

352 of BV/TV that combines cortical and trabecular bone (referred to as ‘total BV/TV’ throughout). Relative 

353 thickness maps of Ct.Th and Tb.Th are generated by loading the Tb.Th output into ImageJ (1.50b) 

354 (https://imagej.nih.gov/ij/) and visualized using the 3D Volume Viewer plugin 

355 (http://rsb.info.nih.gov/ij/plugins/volume-viewer.html) 

356 [FIGURE 2 ABOUT HERE]

357 Statistical analysis 

358 Trabecular bone hypotheses

359 Mean differences in the proximal and distal trabecular parameters (trabecular BV/TV, DA, Tb.Th, Tb.N, 

360 Tb.Sp) were compared interspecifically using a Kruskal-Wallis one-way ANOVA and pairwise Wilcoxon 

361 rank-sum tests using the Holm p adjust method (R Core Team, stats package v3.6.1) (Table 1). A distal 

362 to proximal ratio was calculated for each parameter and a Wilcoxon signed-rank test was applied 

363 within-genus to test whether the mean values of the ratio were statistically significant. A Kruskal-

364 Wallis one-way ANOVA and pairwise Wilcoxon rank-sum test examined interspecific differences in the 

365 ratios. 

366 Cortical bone hypotheses

367 To test for differences in cortical bone, mean differences in total BV/TV and Ct.Th were compared 

368 interspecifically in the proximal and distal segments using a Kruskal-Wallis one-way ANOVA and 

369 pairwise Wilcoxon rank-sum tests using the Holm p adjust method (R Core Team, stats package v3.6.1). 

370 Within each genus, a distal to proximal ratio was calculated for each parameter and a Wilcoxon signed-

371 rank test was applied to test whether mean values of the ratio were statistically significant. 

372 Additionally, we examined taxonomic differences in these ratios using a Kruskal-Wallis one-way 

373 ANOVA and pairwise Wilcoxon rank-sum tests.

374 Two additional ratios were calculated in order to test for taxonomic differences in the relative 

375 proportion of cortical and trabecular bone. These ratios were compared between species, using a 

376 Kruskal-Wallis one-way ANOVA and pairwise Wilcoxon rank-sum tests using the Holm p adjust method 

377 (R Core Team, stats package v3.6.1). 

378 Inter- and intra-specific allometry 

379 To test for allometric trends in the capitate, each whole-bone cortical and trabecular parameter was 

380 inter- and intra-specifically analyzed in a reduced major axis regression (RMA). As a proxy for body 
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381 mass, the volume (mm3) of each capitate was calculated in Paraview (4.8.2) using the Integrate 

382 Variables filter. The logged cube root of the volume was regressed against the logged bone parameters 

383 using the lmodel2 package in R (v1.7-3; Legendre, 2018). Interpretation follows Ryan and Shaw (2013); 

384 the shape parameters of BV/TV, DA and Tb.N will have an isometric slope equal to 0; values greater 

385 than 0 indicate positive allometry while values less than 0 are indicative of negative allometry. Size 

386 parameters, such as Ct.Th, Tb.Th and Tb.Sp will have an isometric slope of 1; positive allometry is 

387 indicated by a value greater than one and negative allometry by values of less than 1. All statistical 

388 tests conducted for hypotheses 1, 2 and 3 are considered significant if p ≤ 0.05. 

389 Results

390 Trabecular bone

391 Cross-sections of each genera in Fig. 3 provide an example of the internal structure of the capitate 

392 within three planes of view. The red dotted line in Fig. 3D indicates where the capitate was partitioned 

393 into the proximal and distal segments. 

394 Bone volume to total volume

395 Proximal and distal trabecular BV/TV differ significantly across the study sample (p=<0.001 for both 

396 tests, Sup. Table 3). Gorilla has the highest proximal and distal BV/TV followed by Pan, then Pongo, 

397 with Homo having the lowest BV/TV values (Supplementary Table 2). Proximally, pairwise comparisons 

398 show that Pongo is not differentiated from any other taxa, while other pairwise comparisons are 

399 significant. Distally, all pairwise comparisons are significant except between Pongo and Pan (Fig. 4A, 

400 Sup. Table 3).   

401 Intraspecific comparisons of the BV/TV ratio (distal BV/TV relative to proximal BV/TV) reveal that all 

402 genera have greater trabecular BV/TV in the proximal aspect (Fig. 5A, Sup. Table 4, Sup. Table 5). The 

403 differences between the two VOIs reach statistical significance in Homo, Pan and Gorilla (p=<0.001 for 

404 three tests; Sup. Table 4) but are non-significant in Pongo. The Kruskal-Wallis test on the BV/TV ratio 

405 reveal that it does not differ significantly among the study sample (p=0.429) indicating that although 

406 BV/TV differs between the proximal and distal capitate, the way it differs is similar among the 

407 hominoids.  

408 [FIGURE 3 ABOUT HERE]
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409 Degree of anisotropy

410 Proximal DA differs significantly among the study sample (p=<0.001) however distal DA does not 

411 (p=0.593, Sup. Table 3). Notably, DA is the only trabecular parameter which has a different significance 

412 result for the proximal and distal VOI. Homo and Pongo have the highest proximal DA with 0.30 

413 followed by Pan and Gorilla, both with 0.24 (Fig. 4B, Sup. Table 2). Distal DA differs by only 0.02 

414 between the genera, with the highest value from Gorilla at 0.28 and lowest from Pan at 0.26 (Sup. 

415 Table 2). Pairwise comparisons reveal that proximally, Homo and Pongo are differentiated from Pan 

416 and Gorilla (p=<0.001 for all four significant tests). Distally, there are no significant pairwise results 

417 (Fig. 4B, Sup. Table 3). 

418 Both Gorilla and Pan have a higher DA in the distal VOI whereas Homo and Pongo both have higher 

419 DA in the proximal and the difference between the proximal and distal VOIs is significant for all genera 

420 (Fig. 5B, Sup. Table 4). The DA ratio differs significantly across the genera (p=<0.001) and pairwise 

421 comparisons reveal that Homo and Pongo are differentiated from Pan and Gorilla (p=<0.001 for all 

422 four significant tests, Sup. Table 4). 

423 Trabecular thickness

424 Tb.Th differs significantly across both the proximal and distal capitate of the study sample (p=<0.001 

425 for both tests, Sup. Table 3). Gorilla has the highest mean thickness followed by Pongo, with Homo 

426 having the thinnest (Supp. Table 2). Distally, all pairwise comparisons are significant except between 

427 Homo and Pan. Proximally, Gorilla is differentiated from all other taxa (Fig. 4C, Sup. Table 3). 

428 Homo, Pan and Gorilla have thicker trabeculae in the proximal aspect and Pongo in the distal aspect 

429 (Sup. Table 4 and 5). The difference between the two segments is statistically significant for Pan, 

430 Gorilla and Pongo but not for Homo (Fig. 5C, Sup. Table 4). The Tb.Th ratio differs significantly among 

431 the study sample (p=<0.001) and all pairwise comparisons are significant except between Homo and 

432 Gorilla (Sup. Table 4).  

433 Trabecular number

434 Proximal and distal Tb.N differs significantly among the study sample (p=<0.001 for both tests, Sup. 

435 Table 3). Gorilla has the lowest trabecular number while Pan has the highest number (Sup. Table 2). 

436 Distally, all pairwise comparisons are significant except between Pongo and Homo, and Pongo and 

437 Gorilla. Proximally, only Gorilla is differentiated from all other taxa (Fig. 4D, Sup. Table 3). 

438 The Tb.N ratio indicates that Homo, Gorilla and Pongo have a higher trabecular number in the proximal 

439 aspect, and Pan have a higher number in the distal (Fig. 5D). The differences between the proximal 
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440 and distal VOI is significant for all taxa. While the Tb.N ratio differs significantly among the study 

441 sample (p=<0.001) only Pan shows significant pairwise results with all other taxa (p=<0.001 for all 

442 three significant tests, Sup. Table 4 and 5). 

443 Trabecular separation

444 Tb.Sp differs significantly in the distal (p=<0.001) and proximal (p=0.038, Sup. Table 3) capitate of the 

445 study sample. Gorilla has the most widely spaced trabeculae, while Pan has the most tightly packed 

446 (Sup. Table 2). Pairwise comparisons indicate that distally, Pan is differentiated from all other taxa 

447 (Sup. Table 3). Proximally, the only significant pairwise result is between Pan and Gorilla (Fig. 4D).  

448 The Tb.Sp ratio shows that Homo, Gorilla and Pongo have greater trabecular separation in the distal 

449 capitate whereas Pan has greater separation in the proximal (Fig. 5D, Sup. Table 5). The difference 

450 between the separation in the distal and proximal capitate is significant for all genera (Sup. Table 4). 

451 The Tb.Sp ratio differs significantly among the study sample (p=<0.001) and the results of the pairwise 

452 comparisons mirror those of the distal segment as the only significant tests are between Pan and the 

453 other taxa (p=<0.001 for the three significant tests, Sup. Table 4).

454 [FIGURE 4 ABOUT HERE]

455 [FIGURE 5 ABOUT HERE]

456 Total relative bone volume

457 Total BV/TV, which incorporates both trabecular and cortical bone, differs significantly across the 

458 study sample for both the proximal and distal capitate (p=<0.001 for both tests, Sup. Table 3). Gorilla 

459 has the highest total BV/TV in both VOIs, followed by Pan, Pongo then Homo (Fig. 6A, Sup. Table 2). 

460 Pairwise comparisons reveal that distally, Homo has significantly lower total BV/TV than all other taxa 

461 (p=<0.001 for all tests, Sup. Table 3). Proximally, the results remain the same between Homo and 

462 Gorilla, and Homo and Pan, although in this region Homo is undifferentiated from Pongo. The only 

463 significant non-human pairwise comparison among the proximal and distal results is in the distal VOI 

464 between Pongo and Gorilla (p=0.014). 

465 The total BV/TV ratio of the proximal and distal capitate differs significantly across the study sample 

466 (p=<0.001). Pairwise comparisons reveal that Homo is differentiated from all non-human apes 

467 (p=<0.001 for all significant tests, Sup. Table 4) while the non-human apes are not differentiated from 

468 one another (p=0.51 for all three tests) (Fig. 6C, Sup. Table 4). The Wilcoxon signed-rank tests indicate 

469 that the differences in the total BV/TV between the two segments is statistically significant for all 

470 genera. As outlined in the above section, trabecular BV/TV is consistently higher in the proximal 
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471 segment compared to the distal segment in all genera (Fig. 4A, Sup. Table 2). However, when total 

472 BV/TV is measured, Pan, Gorilla and Pongo show significantly higher values in the distal capitate (Fig. 

473 6A, Sup Table 2 and 4). In contrast, Homo maintains the trabecular BV/TV pattern, with higher total 

474 BV/TV in the proximal segment. 

475 [FIGURE 6 AROUND HERE]

476 In the proximal capitate, the ratio of cortical bone to trabecular bone is similar among all genera, and 

477 pairwise comparisons reveal no significant results (Sup. Table 4 and 5). In this segment, the inclusion 

478 of cortical bone increases BV/TV by 24% in Gorilla, 29% in Pan, 28% in Homo and 24% in Pongo. 

479 Conversely, in the distal capitate the ratio of cortical bone to trabecular bone is statistically 

480 differentiated among the study sample (p=<0.001). Pairwise comparisons indicate this is driven by 

481 Homo, as the cortical bone represents a significantly lower proportion of total BV/TV compared to all 

482 other non-human apes (Sup. Table 4). The relative portions of distal cortical and trabecular bone are 

483 similar among the non-human apes with cortical bone contributing 59% of total BV/TV in Pan and 

484 Pongo and 58% for Gorilla. In Homo, cortical bone represents 38% of distal total BV/TV. 

485 Cortical bone thickness

486 Ct.Th differs significantly among the study genera in both proximal and distal capitate (p=<0.001 for 

487 both tests, Sup. Table 3). In both segments Gorilla has the thickest mean cortical bone, followed by 

488 Pan, Pongo and finally Homo (Fig. 6B, Sup. Table 2). In the distal capitate, Homo has significantly 

489 thinner Ct.Th than the non-human apes (p=<0.001 for all tests, Sup. Table 3), while the non-human 

490 apes are not differentiated from one another. In the proximal capitate, Homo has significantly thinner 

491 cortical bone than Pan and Gorilla (p=<0.001) but is undifferentiated from Pongo (p=0.386). Across 

492 the non-human apes, Pongo has significantly thinner cortical bone than Gorilla and Pan (p=0.001 for 

493 both) 

494 All genera have thicker cortical bone in the distal VOI and the difference between the proximal and 

495 distal segments is statistically significant in all genera (p=<0.001 for all tests) (Fig. 6D, Sup. Table 4 and 

496 5). Pongo has the greatest relative cortical thickening in the distal VOI with the distal cortex being 79% 

497 thicker than the proximal, followed by Gorilla (62% thicker), Pan (52% thicker) and finally Homo (12% 

498 thicker). Pairwise comparisons of the ratio indicate that Homo is differentiated from all non-human 

499 apes (p=<0.001 for all tests, Sup. Table 4). There are no significant pairwise comparisons between the 

500 non-human apes. The relative thickness of the cortex and trabeculae is visualized in Fig. 7. In non-

501 human apes, the thickest bone is consistently seen within the distal cortex. In Homo, the cortex and 

502 trabeculae have a similar thickness across the entire bone.  
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503 [FIGURE 7 AROUND HERE]

504 Allometry

505 The results of the allometry tests are reported in Table 3 and a figure plotting the regressions is 

506 provided in the supplementary material (Sup. Figure 2). Trabecular and total BV/TV show a significant 

507 positive allometric relationship with capitate volume across hominoids, however there are no 

508 significant allometric trends intraspecifically. In all inter- and intraspecific tests, DA is independent of 

509 capitate volume. Tb.Th shows significant positive allometry across the hominoids as well as in Homo 

510 and Pongo. In Gorilla, Tb.Th scales with isometry and in Pan it is uncorrelated. Across hominoids, Tb.N 

511 scales with negative allometry. Intraspecifically, only Gorilla has a significant relationship with Tb.N, 

512 scaling with negative allometry. Tb.Sp scales with positive allometry across hominoids. 

513 Intraspecifically only Gorilla has a significant relationship with Tb.Sp, scaling with positive allometry.  

514 Ct.Th scales with positive allometry across the hominoids, as well as in Homo, Gorilla and Pongo. 

515 [TABLE 3 HERE]

516 Discussion
517 This study quantified the internal bone structure of the hominoid capitate using a whole-bone 

518 methodology to examine 1) whether relative and absolute differences in trabecular and cortical 

519 parameters across hominoid taxa could be correlated to inferred habitual behavior and 2) how the 

520 parameters differed inter- and intra-specifically across the proximal and distal portion of the capitate.  

521 Allometry in the capitate

522 Interspecifically, the predictions for Tb.N and DA were supported while all others were rejected. The 

523 two parameters most strongly correlated with size were Tb.Th and Tb.N. This was particularly true for 

524 Gorilla, which had relatively strong positive scaling for Tb.Th, Tb.N and Tb.Sp, with r-squared values 

525 between 0.60-0.69. This suggests these parameters may be linked to sexual dimorphism, which is 

526 extreme in Gorilla (Smith & Jungers, 1997). Indeed, the largest Tb.Th and Tb.Sp, and smallest Tb.N 

527 values among the Gorillas were from males. Pan was the only genus that did not report at least one 

528 significant intraspecific allometric test. This indicates that capitate size differences (as a proxy for body 

529 mass differences) between Pan troglodytes and Pan paniscus have not influenced results.

530 The positive relationship found in BV/TV does not corroborate results of either previous study on 

531 allometry in the primate capitate (Schilling et al. 2014; Ragni, 2020) or the talus (Tsegai et al. 2017). 

532 Differences in results between this study and others may be driven by the variation in the 
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533 methodologies for calculating size or body mass. While this study used the cube root of the capitate, 

534 other studies have used the geometric mean (Schilling et al. 2014; Tsegai et al. 2017), body mass 

535 (Cotter et al. 2009; Barak et al. 2013), or linear dimensions of the bone (Ryan & Shaw, 2013). 

536 Furthermore, this study used a whole-bone mean of trabecular parameters whereas other studies 

537 have used a VOI sampling sphere (Cotter et al. 2009; Ryan & Shaw, 2013; Schilling et al. 2014; Ragni, 

538 2020). Results are likely also affected by the species constituting the study sample or the bone used 

539 for analysis (Ruff, 1987; Doube et al. 2009; Ryan & Shaw, 2013; Tsegai et al. 2017). Nevertheless, as 

540 BV/TV is widely reported as being independent of body mass/size, results here may indicate carpals 

541 are more likely than other skeletal elements to increase BV/TV in response to size, across hominoids. 

542 However, given the similarity in capitate size between Homo, Pan and Pongo, the positive relationship 

543 found here is likely driven by the larger size of Gorilla, rather than reflecting a hominoid trend. 

544 Ct.Th also scaled positively with size across hominoids and within Homo, Gorilla and Pongo. Notably, 

545 the r-squared value for Pongo and Gorilla were high relative to other significant tests with 0.42 and 

546 0.40 reported, respectively. These results may reflect sexually dimorphism in Gorilla, as the highest 

547 Ct.Th values were all found in males, however the results were not so clear-cut in Pongo, with females 

548 represented within some of the highest values. The four highest Ct.Th values in Homo were male, 

549 however, there was a large number of specimens with unknown sex. These results, particularly the 

550 relative strength of the r-squared value, deviate from other Ct.Th studies that, for example, reported 

551 isometry in the lumbar vertebrae (Fajardo et al. 2013), positive allometry with confidence intervals 

552 incorporating isometry in the femoral neck (Demes & Walker, 2000) or negative allometry in the radius 

553 and humerus (Doube et al. 2009). 

554 BV/TV and Ct.Th are a primary component of bone strength and are thus critical to inferring function 

555 and functional adaptation from form (Maquer et al. 2015). The positive allometric relationship of 

556 BV/TV and Ct.Th to size found in this study potentially limits the interpretive value of these measures. 

557 However, in both measurements the coefficient of determination was small at 0.13 and 0.27, 

558 respectively. Although the average Gorilla capitate volume is only 3000 cubic millimeters larger than 

559 the pooled average of the other taxa, the significant results may be strongly driven by this size 

560 difference. While the significant allometric relationships of Tb.Th, Tb.N and Tb.Sp are notable, these 

561 measures are highly correlated with BV/TV and thus each is less important as a single measure than 

562 that of BV/TV for understanding bone strength and drawing behavioral inferences. Allometry is 

563 undoubtedly complex and not yet fully understood by bone biologists. The generally low r-squared 

564 values found here indicate that size did not exert a strong influence on bone parameters in our sample, 

565 but these somewhat unexpected results indicate allometry cannot be overlooked in multispecies 

566 comparisons. 
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567 Can internal bone architecture differentiate locomotor modes of hominoids?

568 Predictions for BV/TV were broadly supported. In trabecular and total BV/TV, knuckle-walking African 

569 apes had the highest values, Homo had the lowest and Pongo generally fell out as intermediate 

570 between the two. These intermediate values in Pongo were not consistently differentiated from the 

571 other taxa. For example, although Pongo trabecular and total BV/TV in the distal capitate was 

572 significantly greater than that of Homo, it was not statistically different in the proximal capitate. This 

573 pattern was not predicted given the presumed higher forces acting on the Pongo capitate during 

574 locomotion compared with that of Homo manipulation. However, previous research has found similar 

575 results with BV/TV in Pongo being statistically undifferentiated from Homo within the capitate 

576 (Schilling et al. 2014) and other skeletal elements, including the talus (Desilva & Devlin, 2012; Tsegai 

577 et al. 2013), humerus (Kivell et al. 2018) and femur (Georgiou et al. 2019). 

578 DA in the capitate was predicted to be highest in Gorilla and Pan, intermediate in Homo and lowest in 

579 Pongo, and results did not support this prediction. DA in the distal capitate was not significantly 

580 different between the genera, suggesting that the numerous, relatively immobile articulations within 

581 this region result in a similar DA value, irrespective of hand use.  Homo and Pongo had higher DA in 

582 the proximal capitate compared to the distal segment, which statistically separated them from the 

583 knuckle-walking taxa. High DA is correlated with strength along predictable loading trajectories within 

584 joints (Cotter et al. 2009; Hart et al. 2017; Hammond et al. 2018.) In Homo, DA in the proximal capitate 

585 may be explained by load predictability as the DTM constitutes the path of motion in a large 

586 proportion of daily activities (Schuind et al. 1994; Crisco et al. 2005; Brigstocke et al. 2014; Moritomo 

587 et al. 2014; Kaufman-Cohen et al. 2019). However, the relatively high DA in the Pongo proximal 

588 capitate was unexpected as it was assumed that the highly mobile joint and presumed variability in 

589 wrist postures adopted during arboreal locomotion would result in diverse loading of the proximal 

590 capitate and low DA. High DA is potentially linked to methodological limitations in quantifying 

591 directionality due to high Tb.Th or low Tb.N encapsulated by the sampling sphere (Dunmore et al. 

592 2019). However, in this study, Pongo Tb.N and Tb.Th were intermediate between Gorilla and Pan, and 

593 thus this result is unlikely a consequence of methodological limitations. Although some trabecular 

594 functional adaptation studies have found low DA values for Pongo as predicted (Tsegai et al. 2013; 

595 Matarazzo, 2015; Kivell et al. 2018; Georgiou et al. 2018) others have also found higher than expected 

596 values (Dunmore et al. 2019; Georgiou et al. 2019).  Although arboreal locomotion is associated with 

597 mobile joints capable of receiving load from multiple directions, our knowledge of Pongo hand and 

598 wrist kinematics and kinetics is limited (but see Orr, 2010, 2017, 2018). The few studies of captive apes 

599 have provided invaluable data on the kinematics of vertical climbing (Isler, 2005; Isler & Thorpe, 2004) 
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600 and quadrupedal walking (Finestone et al. 2018; Watson et al. 2009), but these behaviors constitute 

601 a small proportion of the Pongo locomotor repertoire (Cant, 1987; Thorpe & Crompton, 2006). 

602 Additionally, we currently lack manual pressure research on Pongo similar to that by Wunderlich and 

603 Jungers (2009) or Matarazzo (2013) on African apes. This research landscape may be limiting our 

604 ability to predict and interpret functional adaptation in the wrist and hand of wild Pongo. 

605 Nevertheless, the DA results here indicate that Pongo may have less variation in its wrist or hand 

606 postures than predicted with bone aligning to high loads from a low number of habitual postures. 

607 The significantly more isotropic structure in the proximal capitate of knuckle-walkers was also 

608 unexpected as the low range of extension during knuckle-walking was assumed to result in high DA. 

609 Nevertheless, the DA results are contained within the range of values reported by Ragni (2020) for the 

610 Gorilla and Pan proximal capitate. Dunmore et al. (2019) similarly found the sub-articular trabecular 

611 structure of the metacarpophalangeal joint in African apes to be more isotropic than predicted. While 

612 African apes are categorized as terrestrial knuckle-walkers, they also utilize arboreal substrates 

613 variably across their lifetimes to nest and exploit high quality food resources (Remis, 1995; Thorpe & 

614 Crompton, 2006; Neufuss et al. 2017). The isotropic structure may be a reflection of diverse hand 

615 postures and loading patterns from their mixed terrestrial and arboreal locomotor repertoire. It is 

616 possible these isotropic results are an artefact of high BV/TV lowering overall DA measurements and 

617 indeed in this study the lower proximal BV/TV values of Homo and Pongo are associated with higher 

618 DA. However, the similar DA values in the distal capitate, despite diverse BV/TV values, suggests our 

619 method is able to capture variation in DA across a range of BV/TV values. 

620 This study also investigated potential differences in ratios of bone parameters across the proximal and 

621 distal capitate, testing the null hypothesis that these ratios would be similar across hominoids. This 

622 hypothesis was generally not supported as only two ratios were statistically similar across all genera: 

623 distal trabecular BV/TV relative to proximal trabecular BV/TV and proximal total BV/TV relative to 

624 proximal trabecular BV/TV.  Thus, although proximal Ct.Th in Homo and Pongo was significantly 

625 thinner than that of Pan and Gorilla, the relative proportion of cortex to trabeculae is similar across 

626 all taxa. Similarly, although eight of the 12 pairwise comparisons indicated statistically different 

627 trabecular BV/TV across the taxa (Fig. 4A), the way trabecular volume differs between the two 

628 segments is consistent across hominoids. Although it was not predicted that ratio calculations would 

629 differentiate locomotor groups, three ratios distinguished Homo from the suspensory and knuckle-

630 walking taxa: 1) distal total BV/TV relative to proximal total BV/TV, 2) distal total BV/TV relative to 

631 distal trabecular BV/TV, and 3) distal Ct.Th relative to proximal Ct.Th. Together, these ratios indicate 

632 that relatively low Ct.Th in the Homo distal capitate is distinctive compared with the thicker cortex in 

633 non-human apes. As Ct.Th is correlated to bone strength (Augat & Schorlemmer, 2006), the distal 
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634 capitate in non-human apes is likely to be better able to resist fracture or failure and withstand high 

635 mechanical loads imposed upon the region.

636 This distinctive cortical morphology in non-human apes may reflect arboreal behaviors. All non-human 

637 apes engage in suspensory locomotion and climb vertical supports (Remis, 1995; Thorpe & Crompton, 

638 2006; Neufuss et al. 2017), and in both behaviors the forelimbs are loaded in tension (Swartz et al. 

639 1989; Hunt et al. 1996; Hanna et al. 2017). The distal capitate has numerous ligament attachments 

640 that induce tensional strain onto the capitate (Kijima & Viegas, 2009; Regal et al. 2020). Bones loaded 

641 in tension have a lower failure point than those loaded in compression (Caler & Carter, 1989; Pattin 

642 et al. 1996) and therefore greater BV/TV or Ct.Th would be required to prevent failure at ligament 

643 attachment sites (Doube et al. 2009).  

644 When comparing differences in Tb.Th, Tb.N and Tb.Sp across our study sample, results were similar to 

645 those of previous studies of different skeletal elements; Pan had high Tb.N and low Tb.Th and Tb.Sp, 

646 Gorilla showed the inverse, while Homo and Pongo were intermediate for all of these measures 

647 (Scherf et al. 2013; Schilling et al. 2014; Ryan & Shaw, 2015; Georgiou et al. 2018; Kivell et al. 2018; 

648 Georgiou et al. 2019; Komza & Skinner, 2019; Ragni, 2020). The consistent pattern within these 

649 parameters may represent systemic, rather than strongly functionally adaptive features of bone. DA 

650 and BV/TV have been shown to account for up to 98% of bone’s elastic modulus (Maquer et al. 2015) 

651 and as Tb.Th, Tb.N and Tb.Sp interact via various combinations to produce BV/TV, individual measures 

652 of Tb.Th, Tb.N and Tb.Sp may be less useful for differentiating locomotor or postural modes.

653 Do the proximal and distal segments reflect divergent strain patterns across the 

654 capitate? 

655 Given differences in the articulations and mobility between the proximal and distal capitate, we 

656 hypothesized that each portion would show statistically different bone structure.  This hypothesis was 

657 broadly supported but there was only partial support for the specific predictions. With only two 

658 exceptions (Pongo distal BV/TV relative to proximal BV/TV, and Homo distal Tb.Th relative to proximal 

659 Tb.Th), bone parameters differed significantly between the proximal and distal regions. This suggests 

660 that the internal bone is subjected to different forces and functional adaptation responses across the 

661 capitate. Ct.Th, DA and BV/TV were predicted to be higher in the distal relative to the proximal capitate 

662 due to the immobility in the distal carpal row and numerous ligament attachments. Ct.Th results in all 

663 genera supported this prediction while the DA prediction was only supported for Gorilla and Pan. All 

664 genera had significantly higher trabecular BV/TV in the proximal capitate, however, due to the great 

665 cortical thickening in non-human apes, total BV/TV was higher in the distal capitate of Gorilla, Pan and 
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666 Pongo. In contrast, despite a 12% increase in distal Ct.Th, Homo maintained significantly higher total 

667 BV/TV in the proximal capitate. These differences in bone architecture were only revealed by 

668 holistically analyzing biomechanically meaningful sub-regions of the capitate, while whole-bone 

669 measures or the exclusion of cortical bone, likely would have obscured or failed to pick up these 

670 trends. 

671 While we argue that the results of this study indicate that force transfer differs across the proximal 

672 and distal capitate, additional analyses comparing different portions of the capitate are warranted to 

673 further test this conclusion. While this study averaged parameters across entire segments, bone 

674 volume distribution methods such as those used in Tsegai et al. (2013) and Tsegai et al. (2017) would 

675 allow more nuanced analysis between the regions under compression versus tension. Further, these 

676 methods would allow a deeper exploration of the biomechanical consequences of waisted versus non-

677 waisted capitates and whether this aspect of morphology impacts the functional independence of the 

678 proximal and distal regions. 

679 The relationship between trabecular and cortical bone in the capitate

680 This study reveals the importance of considering both cortical and trabecular bone in functional 

681 adaptation research, rather than investigating each tissue separately. As exhibited in Figures 6 and 7, 

682 and discussed above, the cortical bone of the non-human ape capitate varied substantially from that 

683 of humans. Thus, the null hypothesis that the ratios of cortical to trabecular bone would be similar 

684 across the hominoids was not supported. However, there was one notable exception, namely that all 

685 the study taxa had similar cortical to trabeculae ratios in the proximal capitate. 

686 The differences between the proximal and distal Ct.Th across the locomotor groups provide support 

687 for the hypothesis that thick distal cortex in the non-human apes is a result of functional adaptation. 

688 However, research indicates modern Homo sapiens have systemically low BV/TV and Ct.Th, which has 

689 been hypothesized to correlate with increased sedentism after the transition to an agricultural 

690 lifestyle (Ruff, 2005; Chirchir et al. 2015; Ryan & Shaw, 2015; Saers et al. 2016; Tsegai et al. 2018).  

691 Thus it would be valuable to assess the distal Ct.Th of pre-Holocene Homo sapiens to further 

692 interrogate whether thick distal Ct.Th can be correlated simply with higher loading more generally, or, 

693 as hypothesized here, is related to forelimb involvement in arboreal behavior among the non-human 

694 apes. Further, there are important limitations to our interpretation of cortical bone functional 

695 adaptation in short bones. Although cortical bone does model its structure during adulthood in 

696 response to load, the genetic blueprint and the process of modelling during ontogeny greatly 

697 determines cortical bone geometry (Martin et al. 1998; Lovejoy et al. 2003). Investigation on the 

698 changes to cortical bone geometry as a result of functional adaptation have predominantly focused 
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699 on changes at the mid-shaft of long bones (for examples and summary see Ruff et al. (2006) and 

700 references therein). In short bones there is unlikely to be the same capacity for the cortical bone to 

701 substantially change its geometry with modelling processes because, unlike the diaphysis of a long 

702 bone, there is not substantial room to expand (Martin et al. 1998). During adulthood, cortical bone 

703 commonly adapts its mechanical properties via changes to porosity, apparent mineral density or 

704 cellular anisotropy (Martin et al. 1998; Currey, 2002), changes that require different methodologies 

705 to assess (e.g histology). Finally, when segmenting different bone tissues, it can be challenging to 

706 identify the boundary between cortex and trabeculae, particularly when the cortex is porous or 

707 trabeculae are especially thick. This was a particular challenge in some of the non-human ape capitate 

708 specimens (see Sup. Figure 1) and will likely be a limitation for many short bones, depending on the 

709 question being addressed. 

710 Conclusion

711 The capitate of knuckle-walking African apes and suspensory Pongo was differentiated from bipedal 

712 Homo, primarily, by thick distal cortical bone. African apes were further differentiated from Pongo 

713 and Homo by relatively isotropic trabeculae in the proximal capitate, which was not expected given 

714 the (presumably) more stereotypical loading of the wrist during knuckle-walking. However this higher 

715 than expected DA of the capitate head in Homo may indicate preferential alignment of trabeculae 

716 along the DTM. Although the wrist is often conceptualized as broadly being under compression or 

717 tension, the differentiated bone architecture in the proximal and distal regions of the capitate 

718 suggests that the loading environment can differ significantly even within the small bones of the 

719 carpus and highly localized functional adaptation responses may be taking place. Further, differences 

720 in cortical bone were critical for differentiating Homo from non-human apes. While an unexpected 

721 positive relationship was found between bone volume and capitate size, the low coefficient of 

722 determination indicated size did not strongly influence group differences in bone microstructure. 

723 Given the complex biomechanical environment, and our limited understanding of inter-carpal motion, 

724 (particularly in non-human apes) functional adaptation research of the carpals should take a holistic 

725 approach, including incorporated analysis of cortical bone. 
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1079 Supplementary Table 1. Downloadable excel file recording specimen information and individual 
1080 parameter values.  Values are recorded for the whole bone as well as the proximal and distal 
1081 segments. The specimen column records the curatorial institutions as abbreviations; DCW = The 
1082 Duckworth Collection, University of Cambridge; INDEN = Georg-August-University Goettingen, 
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1089 Supplementary Table 2. Descriptive statistics for this study. Capitate size (mm3) is reported for the 

1090 whole bone. Trabecular and cortical bone parameters are reported for the proximal, distal and whole 

1091 bone separately. ± indicates one standard deviation above and below the mean.

Capitate size (mm3) Homo Pan Gorilla Pongo

Mean 2495 ± 652 2418 ± 505 5376 ± 2,403 2171 ± 568
Whole bone

Range 1190 – 3606 1670 – 3634 2452 – 10200 1452 – 3182

Trabecular BV/TV (%) Homo Pan Gorilla Pongo

Mean 0.29±0.07 0.38±0.04 0.43±0.06 0.36±0.10Proximal

Range 0.20-0.42 0.30-0.46 0.30-0.54 0.17-0.52

Mean 0.26±0.06 0.34±0.04 0.39±0.05 0.33±0.06Distal

Range 0.14-0.35 0.29-0.43 0.28-0.48 0.21-0.43

Mean 0.27±0.06 0.36±0.04 0.41±0.05 0.34±0.07Whole

Range 0.16-0.35 0.30-0.44 0.29-0.50 0.20-0.47

DA (0-1) Homo Pan Gorilla Pongo

Mean 0.30±0.04 0.24±0.03 0.24±0.03 0.30±0.04Proximal

Range 0.21-0.39 0.17-0.29 0.19-0.31 0.25-0.39

Mean 0.27±0.03 0.26±0.02 0.28±0.02 0.27±0.02Distal

Range 0.22-0.36 0.22-0.31 0.23-0.34 0.24-0.32

Mean 0.28±0.03 0.25±0.02 0.26±0.02 0.28±0.02Whole

Range 0.23-0.36 0.20-0.29 0.23-0.33 0.24-0.32

Tb.Th (mm) Homo Pan Gorilla Pongo

Mean 0.23±0.05 0.25±0.02 0.34±0.04 0.26±0.04Proximal

Range 0.16-0.33 0.21-0.29 0.23-0.43 0.16-0.36

Mean 0.22±0.04 0.24±0.04 0.33±0.04 0.28±0.03Distal

Range 0.16-0.33 0.20-0.38 0.24-0.39 0.20-0.35

Mean 0.22±0.04 0.24±0.02 0.34±0.04 0.27±0.03Whole

Range 0.17-0.32 0.20-0.28 0.23-0.41 0.19-0.35

Tb.N (mm-1) Homo Pan Gorilla Pongo

Mean 1.23±0.18 1.25±0.10 1.00±0.16 1.19±0.10Proximal

Range 0.88-1.63 1.09-1.49 0.64-1.33 1.03-1.34

Mean 1.13±0.15 1.33±0.09 0.95±0.17 1.04±0.10Distal

Range 0.76-1.45 1.19-1.56 0.62-1.24 0.82-1.17

Whole Mean 1.16±0.16 1.29±0.09 0.97±0.16 1.08±0.09
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Range 0.78-1.47 1.15-1.53 0.63-1.27 0.91-1.20

Tb.Sp (mm) Homo Pan Gorilla Pongo

Mean 0.59±0.12 0.54±0.05 0.67±0.15 0.57±0.07Proximal

Range 0.40-0.85 0.44-0.62 0.46-1.15 0.47-0.73

Mean 0.66±0.12 0.51±0.04 0.74±0.17 0.68±0.09Distal

Range 0.50-1.08 0.43-0.58 0.52-1.21 0.58-0.91

Mean 0.64±0.12 0.53±0.05 0.71±0.16 0.65±0.07Whole

Range 0.48-1.03 0.43-0.62 0.51-1.19 0.56-0.81

Total BV/TV (%) Homo Pan Gorilla Pongo

Mean 0.37±0.07 0.50±0.06 0.54±0.07 0.45±0.10Proximal

Range 0.26-0.50 0.38-0.62 0.41-0.67 0.24-0.61

Mean 0.35±0.07 0.55±0.07 0.62±0.07 0.53±0.08Distal

Range 0.23-0.49 0.44-0.68 0.48-0.74 0.34-0.66

Mean 0.36±0.06 0.53±0.06 0.60±0.06 0.51±0.08Whole

Range 0.25-0.46 0.43-0.65 0.47-0.71 0.32-0.66

Ct.Th (mm) Homo Pan Gorilla Pongo

Mean 0.27±0.05 0.37±0.06 0.41±0.08 0.28±0.04Proximal

Range 0.20-0.38 0.30-0.52 0.23-0.52 0.18-0.35

Mean 0.31±0.07 0.57±0.09 0.65±0.17 0.52±0.16Distal

Range 0.19-0.42 0.45-0.74 0.41-1.05 0.32-0.61

Mean 0.30±0.05 0.52±0.07 0.60±0.14 0.47±0.13Whole

Range 0.19-0.39 0.42-0.67 0.39-0.97 0.31-0.75
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1093 Supplementary Table 3. Results of the Kruskal-Wallis and post-hoc pairwise comparison tests of the 

1094 mean parameters in the proximal and distal segments. In the pairwise comparisons table, values 

1095 above the diagonal represent the pairwise results for the distal capitate and those below the diagonal 

1096 represent the results of the proximal. Significant results are in bold.

Kruskal-Wallis Proximal Distal

Trabecular BV/TV <0.001 <0.001

DA <0.001 0.593

Tb.Th <0.001 <0.001

Tb.N <0.001 <0.001

Tb.Sp 0.038 <0.001

Total BV/TV <0.001 <0.001

Ct.Th <0.001 <0.001

Pairwise Comparisons

Trabecular BV/TV Homo Pan Gorilla Pongo

Homo 0.001 <0.001 0.011

Pan <0.001 0.044 0.685

Gorilla <0.001 0.047 0.040

Pongo

Proximal

0.111 0.550 0.111

Distal

DA Homo Pan Gorilla Pongo

Homo 1 1 1

Pan <0.001 1 1

Gorilla <0.001 0.846 1

Pongo

Proximal

0.846 <0.001 <0.001

Distal

Tb.Th Homo Pan Gorilla Pongo

Homo 0.278 <0.001 0.004

Pan 0.072 <0.001 0.004

Gorilla <0.001 <0.001 0.007

Pongo

Proximal

0.069 0.650 <0.001

Distal

Tb.N Homo Pan Gorilla Pongo

Homo 0.001 0.004 0.173

Pan 1 <0.001 <0.001

Gorilla 0.001 <0.001 0.173

Pongo

Proximal

1 1 0.004

Distal
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Tb.Sp Homo Pan Gorilla Pongo

Homo <0.001 0.290 0.580

Pan 0.630 <0.001 <0.001

Gorilla 0.450 0.020 0.580

Pongo

Proximal

0.980 0.980 0.180

Distal

Total BV/TV Homo Pan Gorilla Pongo

Homo <0.001 <0.001 <0.001

Pan <0.001 0.034 0.519

Gorilla <0.001 0.202 0.014

Pongo

Proximal

0.112 0.220 0.089

Distal

Ct.Th Homo Pan Gorilla Pongo

Homo <0.001 <0.001 <0.001

Pan <0.001 0.360 0.360

Gorilla <0.001 0.386 0.110

Pongo

Proximal

0.386 0.001 0.001

Distal
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1098 Supplementary Table 4. Results of the nine ratios and the associated inter- and intraspecific Wilcoxon 

1099 tests. The results of the ratios are shown within the grey shaded cells on the diagonal. Results above 

1100 1 indicate the parameter is higher in the distal segment. Asterisks within these cells specify the results 

1101 of the intraspecific Wilcoxon signed-rank test indicating whether the proximal and distal results are 

1102 significantly different from one another; *  = p ≤ 0.05; ** = p ≤ 0.001. Below the diagonal, the ratio 

1103 values are the results of the interspecific pairwise comparisons of the ratio. Significant results are in 

1104 bold. Descriptive statistics of the ratios can be found in Supplementary Table 5. 

Segment (distal/proximal) differences Homo Pan Gorilla Pongo

Homo 0.87**

Pan 1 0.90**

Gorilla 1 1 0.91**
Trabecular BV/TV

Pongo 1 1 1 0.95

Homo Pan Gorilla Pongo

Homo 0.91**

Pan <0.001 1.09*

Gorilla <0.001 0.283 1.15**

DA

Pongo 0.981 0.001 <0.001 0.90*

Homo Pan Gorilla Pongo

Homo 0.99

Pan 0.001 0.92*

Gorilla 0.184 0.041 0.96*

Tb.Th

Pongo 0.041 <0.001 0.005 1.07*

Homo Pan Gorilla Pongo

Homo 0.92**

Pan <0.001 1.06**

Gorilla 0.513 <0.001 0.94*

Tb.N

Pongo 0.093 <0.001 0.039 0.87**

Homo Pan Gorilla Pongo

Homo 1.12**

Pan <0.001 0.94**

Gorilla 0.788 <0.001 1.11*

Tb.Sp

Pongo 0.356 <0.001 0.498 1.20**

Total BV/TV Homo Pan Gorilla Pongo
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Homo 0.94**

Pan <0.001 1.11**

Gorilla <0.001 0.51 1.15**

Pongo <0.001 0.51 0.51 1.21*

Homo Pan Gorilla Pongo

Homo 1.12**

Pan <0.001 1.52**

Gorilla <0.001 0.810 1.62**

Ct.Th

Pongo <0.001 0.380 0.400 1.79**

BV/TV (total/trabecular) differences Homo Pan Gorilla Pongo

Homo 1.28

Pan 1 1.29

Gorilla 0.22 0.29 1.24

Pongo 0.36 0.31 1 1.24

Proximal 

Homo Pan Gorilla Pongo

Homo 1.38

Pan <0.001 1.59

Gorilla <0.001 1 1.58

Distal

Pongo <0.001 1 1 1.59

1105
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1106 Supplementary Table 5. Descriptive statistics for the nine ratios calculated in this study. ± indicates 
1107 one standard deviation above or below the mean. 

Regional (distal/proximal) differences Homo Pan Gorilla Pongo
Mean 0.87±0.07 0.90±0.03 0.90±0.04 0.94±0.14

Trabecular BV/TV
Range 0.64-1.00 0.82-0.96 0.82-1.20 0.71-1.20
Mean 0.91±0.10 1.09±0.13 1.15±0.12 0.92±0.10

DA Range 0.69-1.14 0.92-1.44 0.95-1.41 0.73-1.11
Mean 0.99±0.06 0.92±0.04 0.96±0.04 1.07±0.06

Tb.Th Range 0.83-1.19 0.82-0.98 0.90-1.04 0.93-1.20
Mean 0.92±0.05 1.06±0.03 0.94±0.07 0.87±0.06

Tb.N
Range 0.78-1.00 1.00-1.11 0.83-1.19 0.73-0.97
Mean 1.12±0.09 0.94±0.03 1.11±0.11 1.20±0.14

Tb.Sp
Range 0.99-1.34 0.89-1.00 0.78-1.29 1.01-1.51
Mean 0.94±0.08 1.11±0.07 1.15±0.05 1.21±0.17Total BV/TV
Range 0.75-1.12 0.98-1.21 1.06-1.27 0.93-1.53
Mean 1.12±0.13 1.52±0.21 1.62±0.40 1.79±0.36Ct.Th
Range 0.92-1.46 1.13-2.00 1.23-2.80 1.35-2.45

BV/TV (total/trabecular) differences Homo Pan Gorilla Pongo
Mean 1.28±0.06 1.29±0.07 1.24±0.06 1.24±0.06

Proximal
Range 1.13-1.40 1.19-1.45 1.15-1.38 1.15-1.42
Mean 1.38±0.12 1.59±0.16 1.58±0.14 1.59±0.14

Distal Range 1.25-1.66 1.43-1.73 1.41-1.78 1.42-1.84
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1109 Supplementary figure 1. Example of excluded Pan troglodytes specimen, accession ID: PC_ZVII_24, 
1110 Powell-Cotton Museum. A) CT-derived surface model of Pan capitate showing the location of four 
1111 cross-sections. Cross-sections show dense and porous bone is continuous throughout the entire 
1112 capitate.  B) Pan specimen visualized after medtool data collection. The whole bone is shown 
1113 transparent in pink, allowing visualization of the constricted and discontinuous trabecular bone 
1114 region within. Results of the medtool analysis of this specimen are given in the table.
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1115 Supplementary figure 2. Plots of the seven RMA regressions testing for allometry. Individual data 
1116 points are colored by genus and the hominoid trend is indicated by the dotted black line and grey 
1117 confidence interval. The log cube root of the volume (mm3) is seen across the x axis. A) Trabecular 
1118 BV/TV; B) DA; C) Tb.Th.; D) Tb.N.; E) Tb.Sp.; E) Total BV/TV; G) Ct.Th. 

1119

1120
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1121 Tables
1122 Table 1. Summary of the hypotheses, predictions and statistical tests used in this study. 

Hypothesis Predictions Statistical tests
#1 Between species
Locomotor and behavioral 
differences among extant 
hominoids will result in 
significantly different 
trabecular and cortical 
architecture in their capitates

 Knuckle-walking taxa will exhibit 
high BV/TV and DA

 Pongo will show intermediate BV/TV 
and low DA

 Homo will exhibit low BV/TV and 
intermediate DA

 Cortical bone will be thickest in 
Gorilla and Pan, followed by Pongo, 
then Homo.

 Kruskal-Wallis 
one-way ANOVA

 Pairwise 
Wilcoxon rank-
sum tests

#2 Between species
 Distal to proximal ratios will be 

statistically undifferentiated among 
the study taxa

 Wilcoxon signed-
rank test

Within Species

Proximal and distal segments 
will show significantly 
differentiated internal bone 
architecture

 The distal aspect will have higher 
BV/TV and DA compared to the 
proximal aspect across all species

 The distal cortex will be significantly 
thicker than the proximal across all 
species

 Kruskal-Wallis 
one-way ANOVA 

 Pairwise 
Wilcoxon rank-
sum test

#3 Between species
 Only Tb.N will show a significant 

negative relationship to body size, 
while all other parameters will be 
uncorrelated

 Reduced major 
axis regression

Within species Within species

Allometry

 No parameters will exhibit 
significant correlations with body 
size

 Reduced major 
axis regression

1123

1124
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1125 Table 2. Summary of study sample

Side SexTaxon N

Right Left Female Male Unknown

Behavioral Group

Homo sapiens 26 14 12 5 9 12 Bipedal/Manipulative

Pan paniscus 8 5 3 4 4 Knuckle-Walking

Pan troglodytes 6 3 3 3 3 Knuckle-Walking

Gorilla beringei 1 1 1 Knuckle-Walking

Gorilla gorilla 15 8 7 7 7 1 Knuckle-Walking

Pongo abelii 2 1 1 1 1 Suspensory

Pongo pygmaeus 11 6 5 5 4 2 Suspensory

1126

1127
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1128 Table 3. RMA regression results of the inter- and interspecific allometry. CL- and CL+ indicate the 95% 

1129 lower and upper limits for the confidence interval. Significant test are in bold.

Variable Isometric 

slope

Slope CL- CL+ r2 Intercept p-value Allometry

BV/TV 0 1.800 1.440 2.250 0.133 -2.550 0.001 Positive

DA 0 -0.759 -0.966 -0.596 0.005 0.310 0.559 Uncorrelated

Tb.Th 1 1.480 1.240 1.770 0.460 -2.280 <0.001 Positive

Tb.N 0 -1.140 -1.390 -0.940 0.362 1.360 <0.001 Negative

Tb.Sp 1 1.290 1.040 1.600 0.187 -1.680 <0.001 Positive

Total BV/TV 0 1.830 1.460 2.280 0.150 -2.420 0.001 Positive

Whole 

sample

Ct.Th 1 2.430 1.980 2.980 0.278 -3.160 <0.001 Positive

BV/TV 0 2.600 1.760 3.840 0.095 -3.510 0.125 Uncorrelated

DA 0 1.190 0.799 1.760 0.068 -1.880 0.198 Uncorrelated

Tb.Th 1 1.970 1.370 2.810 0.244 -2.860 0.010 Positive

Tb.N 0 -1.630 -2.420 -1.100 0.066 1.900 0.205 Uncorrelated

Tb.Sp 1 1.990 1.320 2.990 0.009 -2.440 0.629 Uncorrelated

Total BV/TV 0 2.160 1.450 3.210 0.064 -2.880 0.212 Uncorrelated

Homo

Ct.Th 1 1.980 1.370 2.870 0.194 -2.760 0.024 Positive

BV/TV 0 -1.770 -3.140 -0.998 0.070 1.550 0.341 Uncorrelated

DA 0 1.390 0.785 2.470 0.070 -2.160 0.344 Uncorrelated

Tb.Th 1 -1.520 -2.710 -0.850 0.068 1.100 0.384 Uncorrelated

Tb.N 0 1.140 0.628 2.060 <0.001 -1.170 0.976 Uncorrelated

Tb.Sp 1 1.480 0.823 2.680 0.011 -1.950 0.071 Uncorrelated

Total BV/TV 0 -1.850 -3.310 -1.030 0.032 1.800 0.536 Uncorrelated

Pan

Ct.Th 1 -2.230 -4.000 -1.250 0.040 2.230 0.493 Uncorrelated

BV/TV 0 -1.010 -1.720 -0.597 0.064 0.859 0.342 Uncorrelated

DA 0 0.712 0.418 1.210 0.050 -1.450 0.403 Uncorrelated

Tb.Th 1 0.959 0.678 1.360 0.618 -1.650 <0.001 Isometry

Tb.N 0 -1.220 -1.670 -0.895 0.693 1.490 <0.001 Negative

Tb.Sp 1 1.450 1.020 2.070 0.602 -1.940 <0.001 Positive

Total BV/TV 0 -0.833 -1.430 -0.484 0.011 0.802 0.698 Uncorrelated

Gorilla

Ct.Th 1 1.670 1.080 2.560 0.402 -2.280 0.008 Positive

Pongo BV/TV 0 2.570 1.410 4.690 0.077 -3.320 0.358 Uncorrelated
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DA 0 -1.180 -2.010 -0.690 0.291 0.761 0.057 Uncorrelated

Tb.Th 1 1.690 1.010 2.850 0.328 -2.440 0.040 Positive

Tb.N 0 -1.030 -1.880 -0.567 0.079 1.180 0.351 Uncorrelated

Tb.Sp 1 1.330 0.711 2.470 <0.001 -1.660 0.980 Uncorrelated

Total BV/TV 0 2.040 1.160 3.580 0.203 -2.560 0.123 Uncorrelated

Ct.Th 1 3.250 2.000 5.280 0.425 -3.940 0.015 Positive

1130
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1131 Figure legends
1132 Figure 1. CT-derived surface models of a left capitate from each genus showing variation in external 

1133 morphology. Capitates have been scaled to relative size. Rows: 1) Capitates are oriented dorso-

1134 radially 2) Capitates are oriented dorsally. Columns: A) Homo sapiens (DCW_AM_10_0_182), B) Pan 

1135 troglodytes (SMF_4104), C) Gorilla gorilla (ZMB_83587), D) Pongo pygmaeus (ZMB_6948). Numbers 

1136 representing anatomical features: ‘1’ MC2 articulation, ‘2’ Dorsal ridge, ‘3’ trapezoid articulation, ‘4’ 

1137 radial-palmar expansion of the proximal capitate, ‘5’ Mc3 styloid process articulation, ‘6’ waisted 

1138 mid-capitate.

1139 Figure 2. Images showing the morphological filters applied in medtool 4.3 for the whole-bone analysis. 

1140 A) Original microCT of a Homo sapiens capitate, B) MicroCT scan after MIA-clustering segmentation, 

1141 C)  Cortical thickness image stack, allowing analysis of the cortex only, D) Trabecular bone image stack, 

1142 allowing analysis of the trabeculae (white) only, E) Combined mask overlay, identifying cortical 

1143 (lightest grey), trabecular (mid-grey) and air (darkest grey internally and black externally) voxels, F) 

1144 Sampling sphere (blue) moving across each node of the overlaid 3D grid (red) measuring bone 

1145 parameters in the trabecular bone image stack. 

1146 Figure 3. Three cross-sections from the four study genera showing internal bone patterning. A) Y-Z 

1147 dimension, radial-ulnar cross-section, slice taken from mid-section of bone. Distal is up; dorsal is left. 

1148 B) X-Y dimension, proximal-distal cross-section, slice taken from proximal mid-capitate. Dorsal is up; 

1149 radial is left. C) X-Z dimension, dorsal-palmar cross-section, slice taken from midsection of bone. Ulnar 

1150 is up; proximal is left. D) Surface models of each bone showing the location of cross-section A, B and 

1151 C. The red dotted line indicates where capitates were partitioned into a distal and proximal VOI. 

1152 Capitates are not to scale. Left capitates have been mirrored.

1153 Figure 4. Split violin plots showing the distribution of trabecular results in the proximal and distal VOI 

1154 of each genus. Images are generated using ggplot2 in R (v. 1.2.1335) and utilize the default (Gaussian) 

1155 kernel density estimation. Colored contours indicate the density of results across the data range. A) 

1156 Trabecular bone volume to total volume; B) Degree of anisotropy; C) trabecular thickness; D) 

1157 trabecular number; E) trabecular separation. Outliers are identified with ● and represent values 1.5 

1158 times above the fourth or below the first interquartile range. For all plots: significant pairwise 

1159 comparisons are indicated by the square brackets for the distal VOI tests (top of graph) and proximal 

1160 VOI tests (bottom of graph), * = p ≤ 0.05; ** = p ≤ 0.001.

1161 Figure 5. Boxplots of the five trabecular ratios for each genus as well as results for the intraspecific 

1162 Wilcoxon signed-rank test and interspecific pairwise rank-sum tests. A) Ratio of distal to proximal 
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1163 trabecular BV/TV; B) Ratio of distal to proximal DA; C) Ratio of distal to proximal Tb.Th.; D) Ratio of 

1164 distal to proximal Tb.N (green) and Tb.Sp (orange). For all figures: Values above the dotted line (ratio 

1165 = 1) indicate greater trabecular variable in the distal capitate. Significant pairwise comparisons of the 

1166 ratios are indicated by the square brackets. For D, the top brackets indicate the tests for Tb.N and the 

1167 bottom brackets indicate those for Tb.Sp. * = p ≤ 0.05; ** = p ≤ 0.001. Significant intraspecific Wilcoxon 

1168 signed-rank tests between the proximal and distal means are represented by the  symbol thus 

1169 indicate whether the difference between the mean distal and proximal trabecular variable was 

1170 significantly different.  = p ≤ 0.05;   = p ≤ 0.001. 

1171 Figure 6. A-B: Split violin plots showing the distribution of total BV/TV (A) and Ct.Th (B) results in the 

1172 proximal and distal VOI of each genus. Images are generated using ggplot2 in R (v. 1.2.1335) and utilize 

1173 the default (Gaussian) kernel density estimation. Colored contours indicate the density of results 

1174 across the data range. Outliers are identified with ● and represent values 1.5 times above the fourth 

1175 or below the first interquartile range. Significant pairwise comparisons are indicated by the square 

1176 brackets for the distal tests (top of graph) and proximal tests (bottom of graph), * = p ≤ 0.05; ** = p ≤ 

1177 0.001. C-D: Boxplots showing the distribution of the distal to proximal ratios of the total BV/TV (C) and 

1178 Ct.Th (D) of each genus. Boxplots also show the results of the intraspecific Wilcoxon signed-rank test 

1179 and interspecific pairwise rank-sum tests. Values above the dotted line (ratio = 1) indicate greater 

1180 cortical variable in the distal capitate. Significant pairwise comparisons of the ratios are indicated by 

1181 the square brackets, * = p ≤ 0.05; ** = p ≤ 0.001. Significant intraspecific Wilcoxon signed-rank tests 

1182 between the proximal and distal means are represented by the  symbol thus indicate whether the 

1183 difference between the mean distal and proximal trabecular variable was significantly different.  = 

1184 p ≤ 0.05;   = p ≤ 0.001.

1185 Figure 7. Cross-sections from representative individuals of each genus showing relative trabeculae and 

1186 cortex thickness across the capitate. A) Y-Z dimension, radio-ulnar cross-section. Distal is up; dorsal is 

1187 left. B) X-Z dimension, dorsal-palmar cross-section. Ulnar is up; distal is left. C) X-Y dimension, 

1188 proximal-distal cross-section. Cross-section taken at the proximal mid-capitate. Dorsal is up; radial is 

1189 left. D) X-Y dimension, proximal-distal cross-section. Cross-section taken at the distal capitate. Dorsal 

1190 is up; ulnar is left. E) Shows the positions of cross-sections A-D on a Pan specimen. Left capitates have 

1191 been mirrored. Capitates not to scale.
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Cortical and trabecular bone structure of the hominoid capitate

Emma E. Bird, Tracy L. Kivell, and Matthew M. Skinner.

Supplementary Table 1. Downloadable excel file recording specimen information and individual parameter values. The specimen column records the curatorial institutions as abbreviations; DCW = The Duckworth Collection, University of Cambridge; INDEN = Georg-August-University Goettingen, Anthropology Collection; MPI_TC
= Max Planck Institute for Evolutionary Anthropology Primatology, Tai Collection; MRAC = Royal Museum for Central Africa Tervuren; NGB = University of Kent; NHMW = Natural History Museum Vienna; NMNH = National Museum Natural History Smithsonian; PC = Powell-Cotton Museum; SMF = Senckenberg Natural History
Museum, Frankfurt; UNI_FL = University of Florence; ZMB = the Natural History Museum, Berlin; ZSM = Bavarian State Collection Zoology.

Specimen Taxon Sex Side Resolution Whole Trabecular BV/TV
DCW_AM_10_0_182 Homo sapiens Unknown Right 0.0314 0.2873
DCW_AM_10_0_183 Homo sapiens Unknown Right 0.0315 0.3465
DCW_AM_3_0_1 Homo sapiens Unknown Left 0.0345 0.1679
DCW_AM_3_0_2 Homo sapiens Unknown Left 0.0294 0.1884
DCW_OC_1_0_26 Homo sapiens Unknown Right 0.0264 0.2237
DCW_OC_31_0_1 Homo sapiens Unknown Left 0.0302 0.2214
DCW_OC_31_0_2 Homo sapiens Unknown Left 0.0306 0.2329
INDEN_113 Homo sapiens Male Right 0.0251 0.3483
INDEN_118 Homo sapiens Female Right 0.0251 0.3401
INDEN_243 Homo sapiens Male Left 0.0301 0.3333
INDEN_311 Homo sapiens Male Left 0.0301 0.3424
INDEN_323 Homo sapiens Unknown Right 0.0301 0.3260
INDEN_340 Homo sapiens Unknown Left 0.0301 0.2618
INDEN_91 Homo sapiens Male Right 0.0301 0.3482
MPI_TC_11778 Pan troglodytes Female Right 0.0251 0.3660
MPI_TC_11781 Pan troglodytes Male Right 0.0302 0.3598
MPI_TC_11789 Pan troglodytes Male Left 0.0302 0.3533
MPI_TC_14996 Pan troglodytes Female Left 0.0302 0.3004
MRAC_15293 Pan paniscus Female Right 0.0302 0.3292
MRAC_15294 Pan paniscus Male Left 0.0302 0.4011
MRAC_27696 Pan paniscus Male Right 0.0302 0.3146
MRAC_27698 Pan paniscus Female Left 0.0302 0.4496
MRAC_29042 Pan paniscus Female Left 0.0302 0.4306
MRAC_29044 Pan paniscus Male Right 0.0400 0.3807
MRAC_29045 Pan paniscus Female Right 0.0309 0.3368
MRAC_29052 Pan paniscus Male Right 0.0340 0.3731
NGB_89_SK15_1247 Homo sapiens Unknown Left 0.0300 0.3149
NHMW_J_2 Homo sapiens Male Right 0.0300 0.2325
NHMW_J3 Homo sapiens Unknown Left 0.0301 0.1979
NHMW_K_13_3 Homo sapiens Male Right 0.0300 0.3173
NHMW_K_41_2 Homo sapiens Unknown Left 0.0302 0.2768
NHMW_K18_2 Homo sapiens Female Right 0.0301 0.3026
NHMW_K24_2 Homo sapiens Female Right 0.0202 0.2053
NHMW_K5_II Homo sapiens Male Right 0.0301 0.3511
NHMW_K78_2 Homo sapiens Female Right 0.0319 0.2524
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NMNH_267325 Pongo abelii Male Left 0.0318 0.3774
PC_CAMI_230 Gorilla gorilla Male Left 0.0344 0.5094
PC_MER_138 Gorilla gorilla Female Left 0.0353 0.3770
PC_MER_174 Gorilla gorilla Male Right 0.0282 0.4488
PC_MER_264 Gorilla gorilla Male Right 0.0369 0.4212
PC_MER_300 Gorilla gorilla Female Right 0.0363 0.4253
PC_MER_372 Gorilla gorilla Male Right 0.0352 0.4536
PC_MER_696 Gorilla gorilla Female Right 0.0308 0.4554
PC_MER_856 Gorilla gorilla Female Left 0.0341 0.4760
PC_MER_879 Gorilla gorilla Male Left 0.0319 0.3780
PC_MER_95 Gorilla gorilla Female Left 0.0318 0.3646
PC_MERI_29 Gorilla gorilla Female Left 0.0301 0.4829
SMF_24510 Pongo pygmaeus Female Right 0.0318 0.2519
SMF_4104 Pan troglodytes Unknown Left 0.0316 0.3161
SMF_63976 Gorilla beringei Unknown Left 0.0301 0.4440
SMF_6999 Pongo abelii Female Right 0.0294 0.2078
SMF_84218 Pongo pygmaeus Female Left 0.0302 0.3625
UNI_FL_3127 Homo sapiens Male Left 0.0302 0.2525
UNI_FL_4865 Homo sapiens Male Right 0.0302 0.1955
UNI_FL_4887 Homo sapiens Female Left 0.0301 0.1737
ZMB_11647 Pongo pygmaeus Unknown Left 0.0481 0.3047
ZMB_18516 Gorilla gorilla Unknown Right 0.0302 0.3397
ZMB_6947 Pongo pygmaeus Male Left 0.0318 0.3347
ZMB_6948 Pongo pygmaeus Female Left 0.0321 0.2973
ZMB_83530 Gorilla gorilla Male Right 0.0302 0.2915
ZMB_83545 Gorilla gorilla Male Right 0.0301 0.3932
ZMB_83587 Gorilla gorilla Female Left 0.0409 0.3655
ZSM_1907_0622 Pongo pygmaeus Unknown Right 0.0293 0.3367
ZSM_1907_0629b Pongo pygmaeus Male Right 0.0284 0.4706
ZSM_1907_0633b Pongo pygmaeus Female Right 0.0293 0.4547
ZSM_1907_0660 Pongo pygmaeus Female Right 0.0284 0.3291
ZSM_1909_0801 Pongo pygmaeus Male Right 0.0343 0.3839
ZSM_AP_122 Pan troglodytes Male Right 0.0364 0.3958
ZSM_AP-120 Pongo pygmaeus Male Left 0.0284 0.3846
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Proximal Trabecular BV/TVDistal Trabecular BV/TVWhole DA Proximal DA Distal DA Whole Tb.Th
0.3145 0.2803 0.3047 0.3156 0.3019 0.1903
0.3979 0.3315 0.3145 0.3340 0.3088 0.2467
0.2304 0.1494 0.3681 0.3951 0.3601 0.2288
0.2164 0.1832 0.3185 0.3658 0.3098 0.1827
0.2397 0.2166 0.2474 0.2592 0.2423 0.1870
0.2311 0.2178 0.2892 0.3193 0.2780 0.2013
0.2890 0.2181 0.2527 0.2988 0.2406 0.2026
0.3705 0.3364 0.2860 0.3086 0.2739 0.2740
0.3526 0.3339 0.2645 0.2843 0.2546 0.3248
0.3654 0.3196 0.2837 0.3310 0.2635 0.2701
0.3721 0.3303 0.2906 0.3008 0.2865 0.3005
0.3573 0.3156 0.3058 0.3192 0.3014 0.2367
0.2888 0.2490 0.2773 0.2915 0.2706 0.2326
0.3726 0.3377 0.2997 0.3055 0.2973 0.2518
0.3891 0.3467 0.2525 0.2440 0.2596 0.2139
0.4003 0.3322 0.2735 0.2532 0.2873 0.2690
0.3809 0.3320 0.2550 0.2038 0.2946 0.2372
0.3078 0.2965 0.2881 0.2817 0.3013 0.2070
0.3599 0.3112 0.2675 0.2660 0.2684 0.2342
0.4242 0.3839 0.2367 0.2185 0.2503 0.2874
0.3245 0.3073 0.2570 0.2627 0.2528 0.2252
0.4652 0.4367 0.2567 0.2528 0.2601 0.2841
0.4553 0.4140 0.2636 0.2646 0.2629 0.2690
0.3902 0.3707 0.2367 0.2116 0.2319 0.2520
0.3453 0.3302 0.2618 0.2555 0.2668 0.2212
0.4004 0.3570 0.2777 0.2907 0.2699 0.2347
0.3194 0.3134 0.2438 0.2781 0.2329 0.2189
0.2606 0.2217 0.2951 0.2924 0.2971 0.2081
0.2352 0.1821 0.3281 0.3463 0.3186 0.1729
0.3176 0.3204 0.2750 0.3254 0.2545 0.3270
0.3137 0.2693 0.2606 0.2333 0.2667 0.2487
0.3178 0.2989 0.2365 0.2185 0.2385 0.2435
0.2152 0.2015 0.2722 0.3003 0.2530 0.2072
0.4291 0.3586 0.2553 0.2335 0.2574 0.2406
0.2242 0.2248 0.2470 0.3201 0.2234 0.2031

Cortical and trabecular bone structure of the hominoid capitate

Emma E. Bird, Tracy L. Kivell, and Matthew M. Skinner.

Supplementary Table 1. Downloadable excel file recording specimen information and individual parameter values. The specimen column records the curatorial institutions as abbreviations; DCW = The Duckworth Collection, University of Cambridge; INDEN = Georg-August-University Goettingen, Anthropology Collection; MPI_TC
= Max Planck Institute for Evolutionary Anthropology Primatology, Tai Collection; MRAC = Royal Museum for Central Africa Tervuren; NGB = University of Kent; NHMW = Natural History Museum Vienna; NMNH = National Museum Natural History Smithsonian; PC = Powell-Cotton Museum; SMF = Senckenberg Natural History
Museum, Frankfurt; UNI_FL = University of Florence; ZMB = the Natural History Museum, Berlin; ZSM = Bavarian State Collection Zoology.
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0.3693 0.3828 0.2527 0.2675 0.2428 0.3066
0.5434 0.4765 0.2543 0.2482 0.2602 0.3678
0.4158 0.3558 0.2798 0.2507 0.2958 0.2947
0.4875 0.4242 0.2432 0.1936 0.2748 0.2898
0.4692 0.3885 0.2756 0.2367 0.3021 0.4084
0.4620 0.4046 0.2456 0.2297 0.2516 0.3579
0.4826 0.4307 0.2529 0.2305 0.2706 0.4110
0.4709 0.4420 0.2429 0.2077 0.2733 0.3162
0.5182 0.4527 0.2700 0.2366 0.2885 0.3534
0.4105 0.3618 0.3323 0.2968 0.3499 0.3623
0.3757 0.3549 0.2415 0.2479 0.2359 0.3319
0.4774 0.4873 0.3144 0.3136 0.3152 0.3057
0.2274 0.2711 0.2601 0.2901 0.2500 0.2671
0.3428 0.3009 0.2029 0.1713 0.2209 0.2515
0.4521 0.4426 0.2361 0.2306 0.2553 0.3468
0.1800 0.2162 0.2894 0.2846 0.2909 0.1944
0.3667 0.3587 0.3266 0.3445 0.3093 0.2712
0.2724 0.2482 0.3221 0.3628 0.3024 0.1703
0.2230 0.1876 0.3086 0.3228 0.3045 0.2088
0.2010 0.1668 0.3264 0.3567 0.3105 0.1785
0.3085 0.3059 0.2548 0.2809 0.2439 0.2898
0.3546 0.3289 0.2643 0.2387 0.2829 0.2376
0.4355 0.3108 0.2987 0.2737 0.3060 0.2860
0.3176 0.2839 0.3108 0.3403 0.2902 0.2784
0.3011 0.2898 0.3081 0.3178 0.3065 0.3841
0.4234 0.3753 0.2442 0.2267 0.2546 0.3581
0.3915 0.3450 0.2587 0.2282 0.2828 0.3256
0.3688 0.3228 0.3213 0.3051 0.3240 0.2454
0.5289 0.4391 0.2903 0.3074 0.2821 0.3541
0.5254 0.4248 0.2735 0.2804 0.2838 0.3159
0.3119 0.3444 0.3286 0.3946 0.3029 0.2392
0.3980 0.3782 0.2447 0.2563 0.2401 0.2608
0.4149 0.3749 0.2969 0.2771 0.3188 0.2586
0.4546 0.3484 0.2983 0.3616 0.2657 0.2559
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Proximal Tb.Th Distal Tb.Th Whole Tb.N Proximal Tb.N Distal Tb.N Whole Tb.Sp
0.1846 0.1920 1.4483 1.6340 1.4081 0.5002
0.2553 0.2438 1.2003 1.3167 1.1748 0.5864
0.2574 0.2160 0.7891 0.8974 0.7687 1.0385
0.1863 0.1819 1.1019 1.2615 1.0772 0.7249
0.1879 0.1863 0.9849 1.0194 0.9759 0.8284
0.2054 0.1998 1.1256 1.1209 1.1273 0.6871
0.2126 0.1993 1.2257 1.3282 1.2050 0.6132
0.2782 0.2717 1.1200 1.1320 1.1151 0.6189
0.3322 0.3212 0.9757 0.9723 0.9773 0.7000
0.2821 0.2644 1.1612 1.1547 1.1653 0.5911
0.3045 0.2988 1.0698 1.1033 1.0580 0.6343
0.2393 0.2358 1.2971 1.3523 1.2816 0.5343
0.2347 0.2315 1.1173 1.1916 1.0875 0.6624
0.2473 0.2539 1.3095 1.4007 1.2762 0.5118
0.2241 0.2048 1.5312 1.4957 1.5631 0.4392
0.2976 0.2460 1.1528 1.0953 1.1993 0.5985
0.2557 0.2215 1.3327 1.2642 1.3904 0.5132
0.2111 0.2081 1.2014 1.2431 1.2628 0.6253
0.2501 0.2238 1.2215 1.1447 1.2706 0.5845
0.2974 0.2794 1.1602 1.1133 1.1973 0.5745
0.2285 0.2229 1.3430 1.2770 1.3921 0.5194
0.2942 0.2752 1.3009 1.2601 1.3370 0.4846
0.2833 0.2589 1.3372 1.2935 1.3680 0.4789
0.2534 0.2505 1.3207 1.2941 1.3488 0.5052
0.2233 0.2196 1.3604 1.3582 1.3627 0.5139
0.2510 0.2233 1.3351 1.2491 1.3958 0.5143
0.2219 0.2179 1.3860 1.3774 1.3888 0.5027
0.2084 0.2119 1.1091 1.2120 1.0529 0.6935
0.1861 0.1698 1.2094 1.2320 1.1905 0.6540
0.3265 0.3371 0.8599 0.8850 0.8409 0.8359
0.2554 0.2539 1.1441 1.2530 1.1041 0.6253
0.2298 0.2558 1.0568 1.2555 0.9831 0.7027
0.1993 0.2141 1.0839 1.1649 1.0433 0.7154
0.2510 0.2577 1.3788 1.5304 1.3161 0.4846
0.1677 0.2000 1.3532 1.5525 1.3246 0.5359

Cortical and trabecular bone structure of the hominoid capitate

Emma E. Bird, Tracy L. Kivell, and Matthew M. Skinner.

Supplementary Table 1. Downloadable excel file recording specimen information and individual parameter values. The specimen column records the curatorial institutions as abbreviations; DCW = The Duckworth Collection, University of Cambridge; INDEN = Georg-August-University Goettingen, Anthropology Collection; MPI_TC
= Max Planck Institute for Evolutionary Anthropology Primatology, Tai Collection; MRAC = Royal Museum for Central Africa Tervuren; NGB = University of Kent; NHMW = Natural History Museum Vienna; NMNH = National Museum Natural History Smithsonian; PC = Powell-Cotton Museum; SMF = Senckenberg Natural History
Museum, Frankfurt; UNI_FL = University of Florence; ZMB = the Natural History Museum, Berlin; ZSM = Bavarian State Collection Zoology.
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0.2874 0.3194 1.0659 1.1215 1.0315 0.6315
0.3810 0.3536 1.0076 1.0568 0.9742 0.6247
0.2983 0.2927 0.9936 1.0946 0.9504 0.7117
0.3056 0.2785 1.2493 1.2928 1.2300 0.5107
0.4320 0.3896 0.7752 0.8243 0.7524 0.8816
0.3689 0.3557 0.9626 0.9736 0.9452 0.6810
0.4265 0.3975 0.8516 0.8703 0.8406 0.7632
0.3305 0.3030 1.0994 1.1270 1.0794 0.5934
0.3555 0.3524 0.9928 1.0753 0.9562 0.6538
0.3647 0.3612 0.8120 0.8565 0.7935 0.8692
0.3294 0.3344 0.8838 0.9333 0.8464 0.7995
0.3140 0.2997 1.1178 1.0182 1.2139 0.5889
0.2379 0.2875 0.9909 1.0322 0.9598 0.7421
0.2641 0.2429 1.1863 1.1644 1.2014 0.5914
0.3647 0.3778 1.0437 1.0367 0.9375 0.6113
0.1666 0.2013 1.1636 1.3100 1.1265 0.6649
0.2665 0.2804 1.1542 1.1659 1.1328 0.5952
0.1757 0.1721 1.4796 1.5026 1.4584 0.5055
0.2087 0.2089 1.0047 1.0539 0.9924 0.7865
0.1764 0.1814 1.2533 1.3237 1.2265 0.6195
0.2785 0.3025 1.0292 1.0855 0.9908 0.6817
0.2323 0.2419 1.2793 1.3352 1.2446 0.5441
0.2773 0.2921 0.9573 1.2279 0.9062 0.7585
0.2637 0.2964 0.9134 1.0768 0.8254 0.8164
0.3860 0.3829 0.6332 0.6480 0.6241 1.1953
0.3503 0.3637 0.8957 1.0137 0.8443 0.7583
0.3382 0.3099 0.9748 0.9512 1.0030 0.7003
0.2439 0.2473 1.1840 1.3489 1.1344 0.5992
0.3625 0.3571 1.0402 1.1066 1.0027 0.6073
0.3347 0.3127 1.1339 1.2276 1.0701 0.5660
0.2127 0.2546 1.1801 1.2879 1.1392 0.6081
0.2575 0.2623 1.2092 1.2988 1.1778 0.5662
0.2714 0.2433 1.3084 1.2676 1.3576 0.5057
0.2627 0.2514 1.1202 1.2946 1.0608 0.6369
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Proximal Tb.Sp Distal Tb.Sp Proximal Total BV/TV Distal Total BV/TV Whole Ct.Th
0.4274 0.5182 0.3909 0.3652 0.2379
0.5042 0.6074 0.4511 0.4154 0.2973
0.8569 1.0849 0.3099 0.2336 0.3005
0.6064 0.7464 0.2888 0.2465 0.1969
0.7930 0.8384 0.3123 0.3023 0.2326
0.6868 0.6872 0.3245 0.3313 0.2663
0.5403 0.6306 0.4030 0.3623 0.2952
0.6052 0.6251 0.4322 0.4212 0.3413
0.6962 0.7020 0.4509 0.4359 0.3671
0.5839 0.5937 0.4595 0.4219 0.3751
0.6019 0.6464 0.4640 0.4328 0.3960
0.5002 0.5445 0.4542 0.4108 0.3142
0.6045 0.6881 0.3698 0.3445 0.2804
0.4666 0.5296 0.4545 0.4450 0.3618
0.4444 0.4349 0.5010 0.5622 0.4409
0.6154 0.5878 0.5569 0.5465 0.5448
0.5353 0.4977 0.5393 0.5629 0.5321
0.5934 0.5838 0.3870 0.4510 0.4434
0.6234 0.5632 0.4287 0.4454 0.4408
0.6008 0.5558 0.5234 0.6343 0.6250
0.5546 0.4954 0.4029 0.4791 0.5457
0.4993 0.4727 0.6253 0.6836 0.6767
0.4899 0.4721 0.5561 0.6038 0.5438
0.5193 0.4909 0.5491 0.6426 0.5760
0.5130 0.5143 0.4527 0.5406 0.6002
0.5496 0.4932 0.5170 0.5549 0.4229
0.5041 0.5021 0.4135 0.4085 0.2811
0.6167 0.7378 0.3315 0.3218 0.3280
0.6256 0.6702 0.3070 0.2523 0.2202
0.8034 0.8522 0.4017 0.4522 0.3881
0.5426 0.6518 0.3977 0.3791 0.2959
0.5667 0.7613 0.4088 0.4138 0.3298
0.6591 0.7445 0.2874 0.2929 0.2590
0.4025 0.5021 0.5091 0.4938 0.3821
0.4765 0.5550 0.3029 0.3137 0.2974

Cortical and trabecular bone structure of the hominoid capitate

Emma E. Bird, Tracy L. Kivell, and Matthew M. Skinner.

Supplementary Table 1. Downloadable excel file recording specimen information and individual parameter values. The specimen column records the curatorial institutions as abbreviations; DCW = The Duckworth Collection, University of Cambridge; INDEN = Georg-August-University Goettingen, Anthropology Collection; MPI_TC
= Max Planck Institute for Evolutionary Anthropology Primatology, Tai Collection; MRAC = Royal Museum for Central Africa Tervuren; NGB = University of Kent; NHMW = Natural History Museum Vienna; NMNH = National Museum Natural History Smithsonian; PC = Powell-Cotton Museum; SMF = Senckenberg Natural History
Museum, Frankfurt; UNI_FL = University of Florence; ZMB = the Natural History Museum, Berlin; ZSM = Bavarian State Collection Zoology.
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0.6043 0.6501 0.4447 0.5914 0.4403
0.5652 0.6729 0.6797 0.7405 0.7061
0.6153 0.7595 0.4955 0.5378 0.4103
0.4679 0.5345 0.5785 0.6519 0.4158
0.7812 0.9395 0.6040 0.6749 0.7450
0.6582 0.7023 0.5738 0.6253 0.6216
0.7225 0.7921 0.5728 0.6807 0.6200
0.5569 0.6235 0.5461 0.6256 0.3971
0.5744 0.6934 0.6643 0.7239 0.5640
0.8027 0.8990 0.5343 0.5686 0.6787
0.7421 0.8471 0.4786 0.5782 0.5596
0.6682 0.5241 0.6020 0.7127 0.5470
0.7309 0.7543 0.3247 0.4994 0.6061
0.5947 0.5895 0.4657 0.4863 0.4326
0.5998 0.6888 0.5489 0.6635 0.7222
0.5968 0.6864 0.2477 0.3483 0.3133
0.5913 0.6023 0.4352 0.5580 0.4588
0.4899 0.5136 0.3723 0.3509 0.2707
0.7402 0.7988 0.2920 0.2682 0.2666
0.5791 0.6340 0.2697 0.2441 0.2545
0.6427 0.7068 0.3978 0.5498 0.6941
0.5167 0.5615 0.4302 0.5173 0.4858
0.5371 0.8114 0.5608 0.5265 0.4781
0.6650 0.9152 0.3839 0.4902 0.4672
1.1571 1.2195 0.4177 0.4851 0.6852
0.6361 0.8207 0.5256 0.6716 0.9716
0.7131 0.6871 0.5020 0.6047 0.5475
0.4974 0.6342 0.4473 0.4599 0.3155
0.5411 0.6402 0.6130 0.6697 0.7569
0.4798 0.6218 0.6113 0.6460 0.5531
0.5637 0.6232 0.4150 0.5196 0.3788
0.5124 0.5868 0.4868 0.5408 0.3744
0.5175 0.4934 0.5071 0.6022 0.5143
0.5097 0.6913 0.5308 0.5548 0.3641

Page 68 of 70Journal of Anatomy



For Peer Review Only

Proximal Ct.Th Distal Ct.Th Size (mm3)
0.2176 0.2424 2862
0.2318 0.3105 2802
0.2734 0.3084 3522
0.2009 0.1959 2048
0.2207 0.2415 1902
0.2746 0.2639 1900
0.3081 0.2923 2284
0.2597 0.3722 2833
0.3327 0.3810 2258
0.3583 0.3823 3327
0.3861 0.3999 3606
0.3124 0.3151 2623
0.2766 0.2822 3305
0.3257 0.3736 3517
0.3323 0.4774 2524
0.5005 0.5662 3634
0.4174 0.5860 2854
0.3316 0.4950 2886
0.3171 0.4739 1825
0.4249 0.6625 1670
0.3014 0.6038 2362
0.5205 0.7484 1941
0.3635 0.6007 2708
0.4145 0.6455 2072
0.3616 0.6680 2418
0.3271 0.4535 2144
0.2680 0.2856 2277
0.2767 0.3517 2495
0.2420 0.2233 2531
0.2870 0.4214 2854
0.2690 0.3113 1558
0.3230 0.3396 2044
0.2499 0.2697 1692
0.3428 0.4201 2892
0.2247 0.2806 1714
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0.2780 0.4640 2974
0.5079 0.7867 5584
0.2928 0.4343 3888
0.3461 0.4291 3200
0.4740 0.8151 7341
0.4364 0.6797 4169
0.3820 0.6676 7459
0.3170 0.4179 4212
0.4700 0.5861 3277
0.5298 0.7179 10200
0.4013 0.6016 4658
0.4014 0.5875 2638
0.3179 0.6832 2424
0.3543 0.4652 2426
0.4485 0.8685 6882
0.1839 0.3294 1580
0.2650 0.5221 1957
0.2677 0.2796 1190
0.2334 0.2754 2746
0.2154 0.2675 2100
0.3228 0.7668 3078
0.2381 0.5407 2452
0.3402 0.5069 1756
0.2499 0.5188 1814.2
0.5265 0.7313 9888
0.3744 1.0518 5988
0.4354 0.5907 4187
0.2426 0.3375 1452
0.3473 0.8536 3182
0.3512 0.6188 1643
0.3037 0.4107 1914
0.2766 0.3928 2151
0.3390 0.5687 2397
0.2713 0.3817 2299
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