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We construct the explicit solution of the initial value problem for sequences generated by the general
Somos-6 recurrence relation, in terms of the Kleinian sigma-function of genus 2. For each sequence there
is an associated genus 2 curve X , such that iteration of the recurrence corresponds to translation by a
fixed vector in the Jacobian of X . The construction is based on a Lax pair with a spectral curve S of
genus 4 admitting an involution σ with two fixed points, and the Jacobian of X arises as the Prym variety
Prym(S, σ).

Keywords: sigma function solution; general Somos-6 recurrence; Prym varieties; Lax represetation.

1. Introduction

Somos sequences are integer sequences generated by quadratic recurrence relations, which can be
regarded as non-linear analogues of the Fibonacci numbers. They are also known as Gale–Robinson
sequences, and as well as arising from reductions of bilinear partial difference equations in the theory
of discrete integrable systems, they appear in number theory, statistical mechanics, string theory and
algebraic combinatorics [1–4].

This article is concerned with the general form of the sixth-order recurrence

τn+6τn = ατn+5τn+1 + βτn+4τn+2 + γ τ 2
n+3, (1.1)

with three arbitrary coefficients α,β, γ . It was an empirical observation of Somos [5] that in the case
α = β = γ = 1 the initial values τ0 = · · · = τ5 = 1 generate a sequence of integers (A006722 in
Sloane’s Online Encyclopedia of Integer Sequences), which begins

1, 1, 1, 1, 1, 1, 3, 5, 9, 23, 75, 421, 1103, 5047, 41783, 281527, . . . . (1.2)

© The authors 2016. Published by Oxford University Press. This is an Open Access article distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution,

and reproduction in any medium, provided the original work is properly cited.
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2 Y. N. FEDOROV AND A. N. W. HONE

Consequently, the relation (1.1) with generic coefficients is referred to as the Somos-6 recurrence, and
the corresponding sequence (τn) as a Somos-6 sequence.

The first proof that the original Somos-6 sequence (1.2) consists entirely of integers was an unpub-
lished result of Hickerson (see [6]); it relied on showing that the Somos-6 recurrence has the Laurent
property, meaning that the iterates are Laurent polynomials in the initial data with integer coefficients.
To be precise, in the general case the iterates satisfy

τn ∈ Z[τ±1
0 , . . . , τ±1

5 ,α,β, γ ] ∀n ∈ Z,

which was proved by Fomin and Zelevinsky as an offshoot of their development of cluster algebras [4].
The latter proof made essential use of the fact that (1.1) is a reduction of the cube recurrence, a partial
difference equation which is better known in the theory of integrable systems as Miwa’s equation, or the
bilinear form of the discrete BKP equation (see [7], for instance). In the general case αβγ �= 0, (1.1)
does not arise from mutations in a cluster algebra, although it does appear in the broader framework of
Laurent phenomenon algebras [8].

As was found independently by several people (see, e.g. [9–12] and references), the sequences gen-
erated by general bilinear recurrences of order 4 or 5 are associated with sequences of points on elliptic
curves, and can be written in terms of the corresponding Weierstrass sigma-function. It was shown in
[13] that sequences (τn) produced by (1.1) are the first ones which go beyond genus 1: in general, they
are parameterized by a sigma-function in two variables. To be precise, given a genus 2 algebraic curve X
defined by the affine model

z2 =
5∑

j=0

c̄j sj with c̄5 = 4 (1.3)

in the (s, z) plane, let σ(u) denote the associated Kleinian sigma-function with u = (u1, u2) ∈ C
2,

as described in [14] (see also [15, 16]). It gives rise to the Kleinian hyperelliptic functions ℘jk(u) =
−∂j∂k log σ(u), which are meromorphic on the Jacobian variety Jac(X) and generalize the Weierstrass
elliptic ℘ function.

Theorem 1.1 ([13]) For arbitrary A, B, C ∈ C
∗, v0 ∈ C

2, the sequence with nth term

τn = ABnCn2−1 σ(v0 + nv)

σ (v)n2 (1.4)

satisfies the recurrence (1.1) with coefficients

α = σ 2(3v)C10

σ 2(2v)σ 10(v)
α̂, β = σ 2(3v)C16

σ 18(v)
β̂,

γ = σ 2(3v)C18

σ 18(v)

(
℘11(3v)− α̂℘11(2v)− β̂℘11(v)

)
, (1.5)

where

α̂ = ℘22(3v)− ℘22(v)
℘22(2v)− ℘22(v)

, β̂ = ℘22(2v)− ℘22(3v)
℘22(2v)− ℘22(v)

= 1− α̂, (1.6)
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SOMOS-6 RECURRENCE VIA HYPERELLIPTIC PRYM VARIETIES 3

provided that v ∈ Jac(X) satisfies the constraint

det

⎛⎝ 1 1 1
℘12(v) ℘12(2v) ℘12(3v)
℘22(v) ℘22(2v) ℘22(3v)

⎞⎠ = 0. (1.7)

The preceding statement differs slightly from that of Theorem 1.1 in [13], in that we have used an
alternative (but equivalent) expression for α̂ in (1.6), and have included an additional parameter C which
is needed in what follows. Now while the above result means that the expression (1.4) is a solution of
(1.1) with suitable coefficients, it does not guarantee that it is the general solution, in the sense that the
sequence (τn) can always be written in this way, for a generic choice of initial data and coefficients. The
ultimate purpose of this paper is to show that this is indeed the case. Our main result is the solution of
the initial value problem by explicit reconstruction of the parameters appearing in (1.4), which yields the
following.

Theorem 1.2 For a sequence of complex numbers (τn) generated by the recurrence (1.1) with generic
values of the initial data τ0, . . . , . . . τ5 and coefficients α,β, γ , there exists a genus 2 curve X with
affine model (1.3) and period lattice 	, points v0, v ∈ Jac(X) � C

2 mod 	 with v satisfying (1.7),
and constants A, B, C ∈ C

∗ such that the terms and coefficients are parameterized by the corresponding
Kleinian functions according to (1.4) and (1.5), respectively.

In order to solve the reconstruction problem, it will be convenient to work with a reduced version
of the Somos-6 recurrence. The parameters A, B in (1.4) correspond to the group of scaling symmetries
τn → ABnτn, which maps solutions to solutions, and considering invariance under this symmetry leads
to certain quantities xn, as described in the next paragraph. The parameter C corresponds to covariance
under the further scaling τn → Cn2

τn, which maps solutions of (1.1) to solutions of the same recurrence
with rescaled coefficients; in due course we will consider quantities that are also invariant with respect
to this additional symmetry.

1.1 The reduced Somos-6 map

Sequences generated by iteration of the Somos-6 recurrence (1.1) are equivalent to the orbits of the
birational map

ϕ : (τ0, τ1, . . . , τ5) �→ (τ1, τ2, . . . , τ6), τ6 = 1

τ0

(
ατ5τ1 + βτ4τ2 + γ τ 2

3

)
.

As was observed in [13], this map is Poisson with respect to the log-canonical bracket {τm, τn} = (m −
n)τmτn, which has four independent Casimir functions

xj = τj τj+2

τ 2
j+1

, j = 0, . . . , 3 (1.8)

these quantities are also invariant under the scaling transformation τn → ABnτn. The map ϕ induces a
recurrence of order 4 for a corresponding sequence (xn), that is

xn+4 x2
n+3 x3

n+2 x2
n+1 xn = α xn+3 x2

n+2 xn+1 + β xn+2 + γ , (1.9)
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4 Y. N. FEDOROV AND A. N. W. HONE

which is equivalent to iteration of a birational map ϕ̂ in C
4 with coordinates x = (x0, . . . , x3). We will

refer to ϕ̂ as the reduced Somos-6 map.
The map ϕ̂ defined by (1.9) preserves the meromorphic volume form

V̂ = 1

x0x1x2x3
dx0 ∧ dx2 ∧ dx2 ∧ dx3

for arbitrary values of α,β, γ , and has two independent rational first integrals, here denoted K1(x), K2(x),
which are presented explicitly in Section 2 below. According to [13], the map ϕ̂ is also integrable in
the Liouville–Arnold sense [17], at least in the case αβγ = 0. In this paper we are concerned with the
general case αβγ �= 0, where a symplectic structure for the map ϕ̂ is not known.

On the other hand, a genus 2 curve (1.3) and the corresponding sigma-function solution (1.4), (1.5)
of the Somos-6 map ϕ imply that the solution of (1.9) is

xn = C2σ(v0 + nv) σ (v0 + (n+ 2)v)
σ 2(v0 + (n+ 1)v) σ 2(v)

. (1.10)

In view of the addition formula for the genus 2 sigma-function [14], the right-hand side of (1.10) can be
written in terms of Kleinian ℘ functions as

xn = C2
(
℘22(u)℘12(v)− ℘12(u)℘22(v)+ ℘11(v)− ℘11(u)

)
=: F(u), (1.11)

where u = v0+ (n+1)v. Note that, when F is considered as a function on the Jacobian, F(u) is singular
if and only if u ∈ (σ ), the theta divisor in Jac(X) (using the notation in [15]). Then, upon setting n = 0,
we have the map

ψ : u �→
(
F(u), F(u+ v), F(u+ 2v), F(u+ 3v)

)
= (x0, x1, x2, x3), (1.12)

which is a meromorphic embedding ψ : Jac(X) \ (σ0123)→ C
4, where (σ0123) denotes the theta divisor

(σ ) together with its translates by v, 2v and 3v. Once Theorem 1.2 is proved (see Section 6), we are able
to recover C, v and u = v0 + v ∈ Jac(X) from the coefficients and initial data of the map, so that we
arrive at

Theorem 1.3 Generic complex invariant manifolds IK = {K1(x) = k1, K2(x) = k2} of the map ϕ̂ are
isomorphic to open subsets of Jac(X).

For the purposes of our discussion, it will be more convenient to describe the reduced Somos-6 map
in an alternative set of coordinates. We introduce the quantities

Pn = − δ1β

xnxn+1
, Rn = δ1γ

xnxn+1xn+2
, with δ1 =

√
− α

βγ
, (1.13)

so that xn = −γPn−2/(βRn−2), and P0, P1, R0, R1 are birationally related to x0, x1, x2, x3. Thus, after
conjugating ϕ̂ : C

4 → C
4 by a birational change of variables, we can rewrite it in the form

(P0, P1, R0, R1) �→ (P̃0, P̃1, R̃0, R̃1), where

P̃0 = P1, P̃1 = μR0R1

P0P1
, R̃0 = R1, R̃1 = (P0 + λR0R1 − λP0R1)

−1, (1.14)
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SOMOS-6 RECURRENCE VIA HYPERELLIPTIC PRYM VARIETIES 5

with the coefficients

λ = δ1β
2

α2
, μ = −δ1β

3

γ 2
. (1.15)

Observe that, from the analytic formulae (1.5) and (1.10), the quantities Pn, Rn and the coefficients λ,μ
are independent of the parameter C.

1.2 Outline of the paper

In the next section, we describe the first of our main tools, namely the 3×3 Lax pair for the map ϕ̂, which
(as announced in [13]) is obtained from the associated Lax representation for the discrete BKP equation.
The corresponding spectral curve S yields the first integrals K1, K2. However, S is not the required genus 2
curve X, but rather it is trigonal of genus 4, having an involution σ with two fixed points. Then it turns out
that the two-dimensional Jacobian of X , which is the complex invariant manifold of the map ϕ̂ according
to Theorem 1.3, can be identified with the Prym subvariety Prym(S, σ) of Jac(S). (An analogous situation
was described recently for an integrable Hénon–Heiles system [18].)

To obtain an explicit algebraic description of Prym(S, σ) and, therefore, of the curve X, we make use
of recent work by Levin [19] on the general case of double covers of hyperelliptic curves with two branch
points. All relevant details are given in Section 3.

In Section 4 it is shown how the discrete Lax pair allows a description of the map ϕ̂ as a translation on
Prym(S, σ) ⊂ Jac(S) by a certain vector. This translation is subsequently identified with a specific degree
zero divisor on X representing the required vector v ∈ Jac(X), and in Section 5 we also explicitly find
degree zero divisors on X representing the vectors 2v, 3v. This enables us to rewrite the determinantal
constraint (1.7) in terms of the above three divisors, and then observe that it is trivially satisfied.

In Section 6, all of the required ingredients are ready to present the reconstruction of the sigma-
function solution (1.4) from the initial data and coefficients, which proves Theorem 1.2. We also provide
a couple of explicit examples, including the original Somos-6 sequence (1.2). The paper ends with some
conclusions, followed by an Appendix which includes the derivation of the Lax pair and another technical
result.

2. The Lax pair, its spectral curve and related Jacobian varieties

The key to the solution of the initial value problem for the Somos-6 recurrence is the Lax representation
of the map ϕ̂.

Theorem 2.1 The map ϕ̂ : C
4 → C

4 is equivalent to the discrete Lax equation

L̃M =ML, (2.1)

with

L(x) =

⎛⎜⎜⎝
A2x2 + A1x

x + λ
A′2x2 + A′1x

x + λ
A′′1x + A′′0

x + λ
B2 x2 + B1x B′1x B′′1 x + B′′0
C2x2 + C1x C′2x2 + C′1x C′′1 x + C′′0

⎞⎟⎟⎠, (2.2)
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6 Y. N. FEDOROV AND A. N. W. HONE

M(x) = 1

R0

⎛⎝ −1 1 0
− x
λ
− 1 1 1

λ

0 (λP0R1R2 + 1)x −P0R2

⎞⎠, (2.3)

where R2 = R̃1 as in (1.14), and

A1 = P0

(
P1 + 1

R1
− P1

R0R1

)
+ μ

(
(R0P1 + 1)R1

P0P1
− R0 − R1

)
+ λ

(
R0 + R1 − P0 − P1 + P1R0R1 − P0P1R1 + P0P1 − 1

R0

)
+ λμ

(
R0R1 − (P1R0 + 1)R0R1

P0P1

)
+ μ
λ

,

A2 = P0 + P1 + λ(R0 − P0)R1 + 1

R0R1

(
R0 − P1 − 1

λ

)
+ μ

(R1 − P0 − P1)R0 − P0R1

P0P1
+ μ
λ

(
1

P0
+ 1

P1

)
+ λμ(P0 − R0)R0R1

P0P1
,

A′1 = λ
(

P0 − R1 − P0P1R1 + 1− P0P1

R0

)
+ μ

(
1− 1

P0P1

)
R1

+ λμ

(
1

P0P1
− 1

)
R0R1, A′2 = λP0R1 + μR1

P1
− λμR0R1

P1
,

A′′0 =
P0P1

R0R1
− P0P1 − P0

R1
+ μR0 − μ

λ
,

A′′1 =
P1

R0R1
− 1

R1
− P0 − P1 + μ

(
R0 − 1

λ

)(
1

P0
+ 1

P1

)
+ 1

λR0R1
,

B1 = R0 − P0 − P1 + P0P1 − 1

R0
+ 1

λ

(
P0(R0 − P1)

R0R1

)
, B2 = − P1

λR0R1
,

B′1 = P0 + 1− P0P1

R0
, B′′0 =

P0(P1 − R0)

λR0R1
, B′′1 =

P1

λR0R1
,

C1 = μ
(

R0P1 + 1

P0P1
− 1

)
R1 + μ

λ
,

C2 = P0 + λ(R0 − P0)R1 + μ(R0 − P0)R1

P0P1
− 1

λR0R1
+ μ
λ

(
1

P0
+ 1

P1

)
,

C′1 = μ
(

1− 1

P0P1

)
R1, C′2 = λP0R1 + μR1

P1
,

C′′0 = −
μ

λ
, C′′1 = −P0 + 1

λR0R1
− μ
λ

(
1

P0
+ 1

P1

)
.

Proof. The equation (2.1) can be checked directly with computer algebra. For the rather more
straightforward origin of this complicated-looking Lax pair, see the Appendix. �
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SOMOS-6 RECURRENCE VIA HYPERELLIPTIC PRYM VARIETIES 7

The characteristic equation det(L(x)− y1) = 0 defines the spectral curve S ⊂ C
2(x, y), which, after

elimination of the common factor 1/(x + λ), is given by

f (x, y) := (x + λ) y3 + (x K1 + μ+ x2 K2) y2 − (μ x4 + K1 x3 + x2 K2) y − λ x4 − x3 = 0, (2.4)

where K1, K2 are independent first integrals, namely

K1 = K̂1(P0, P1, R0, R1)

P0P1R0R1
, K2 = K̂2(P0, P1, R0, R1)

P0P1R0R1
, (2.5)

with K̂1 = λμR2
0R2

1(R0 P1 − P0 P1 + 1)

+ λR0 R1 P0 P1 (R1 P0 P1 + P0 − P1R0R1 − R1 + P1 − R0)

− μR0R1(R1 − P0 − R1 P0 P1 − R0 P0 P1 − P1 + P1 R0 R1)

− P0 P1 (P0 P1 R0 R1 − P0 P1 + 1+ P0 R0),

K̂2 = λμR0
2 R1

2 (R0 − P0)− λR0R2
1P0P1 (R0 − P0)

+ μR0 R1 (P0R1 − R1 R0 + P0R0 + R0 P1)

− P0 P1 (−R1 P0 P1 + P0 R0 R1 + P1R0R1 + R1 − P1 + R0). (2.6)

Remark 2.2 Replacing the variables P0, P1, R0, R1 by the expressions (1.13) yields the first integrals
K1(x), K2(x) of the reduced map ϕ̂ in the original variables x0, . . . , x3. These are seen to be rescaled
versions of the quantities H1, H2 derived in [13] from higher order bilinear relations, according to

K1 = βH1

αγ 2
, K2 = δ1βH2

αγ
. (2.7)

One can also verify that, for generic values of λ,μ, k1, k2, the complex invariant manifold IK =
{K1(x) = k1, K2(x) = k2} is irreducible given by (2.4).

The curve S is trigonal of genus 4 and has an interesting involution σ : (x, y) → (1/x, 1/y) with
two fixed points, namely (1, 1) and (−1, 1).

We compactify S by embedding it in P
2 with homogeneous coordinates (X : Y : Z), where x =

X/Y , y = Y/Z . The compact curve has a singularity at (0 : 1 : 0). After regularization, this point gives
two points at infinity: the first one is Ō = (x = ∞, y = ∞) with the Laurent expansion

x = 1

τ 2
+ O(τ−1), y = 1√

μτ 3
+ O(τ−2)

with respect to a local parameter τ near Ō; and the second is Ō1 = (x = −λ, y = ∞), with the Laurent
expansion

x = −λ+ O(τ ), y = −λ
τ
+ O(1).
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8 Y. N. FEDOROV AND A. N. W. HONE

The third point at infinity Ō2 = (x = ∞, y = −λ/μ) comes from (1 : 0 : 0) and has the expansion

x = 1

τ
+ O(1), y = − λ

μ
+ O(τ ).

Under the action of σ , these points are in involution with the following three finite points:

O = (x = 0, y = 0) with x = τ 2, y = τ 3

√
μ
+ O(τ 4);

O1 = (x = 0, y = −μ/λ) with x = τ ;

O2 = (x = −1/λ, y = 0) with y = τ + O(τ 2).

The above three pairs of points on S will play an important role, so we depict them on the diagram
below, with arrows denoting the involution σ . The curve S can be viewed as a three-fold cover of P

1 with

affine coordinate x. As follows from the above description, the points O, Ō are ordinary branch points of
the covering, and there is no branching at the points O1, Ō1, O2, Ō2. It follows that the divisors of zeros
and poles of the coordinates x, y on S are

(x) = 2O +O1 − 2Ō − Ō1, (y) = 3O +O2 − 3Ō − Ō2. (2.8)

Observe that a generic complex two-dimensional invariant manifold IK of the reduced Somos-6 map
ϕ̂ cannot be the Jacobian of S, as the latter has genus 4. The curve S is a two-fold covering of a curve
G = S/σ whose genus is 2, by the Riemann–Hurwitz formula. The involution σ extends to Jac(S)
which then contains two Abelian subvarieties: the Jacobian of G, which is invariant under σ , and the
two-dimensional Prym variety, denoted Prym(S, σ), which is anti-invariant with respect to σ . It will play
a key role in the description of the complex invariant manifolds of the map ϕ̂. For this purpose it is
convenient to recall some properties of Prym varieties corresponding to our case.

3. Hyperelliptic Prym varieties

3.1 Generic double cover of a hyperelliptic curve with two branch points

Consider a genus g hyperelliptic curve C: v2 = f (u), where f (u) is a polynomial of degree 2g + 1 with
simple roots. As was shown in [19], any double cover of C ramified at two finite points P = (uP, yP),
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SOMOS-6 RECURRENCE VIA HYPERELLIPTIC PRYM VARIETIES 9

Q = (uQ, yQ) ∈ C (which are not related to each other by the hyperelliptic involution on C, i.e. uP �= uQ)
can be written as a space curve of the form

C̃ : z2 = v + h(u), v2 = f (u), (3.1)

where h(u) is a polynomial of degree g+ 1 such that

h2(u)− f (u) = (u− uP)(u− uQ)ρ
2(u)

with ρ(u) being a polynomial of degree g. (Here uP or uQ may or may not coincide with roots of ρ(u).)
Thus C̃ admits the involution σ : (u, v, z) �→ (u, v,−z), with fixed points (uP, yP, 0), (uQ, yQ, 0) ∈ C̃.
Then the genus of C̃ is 2g, and it was shown by Mumford [20] and Dalaljan [21] that

• Jac(C̃) contains two g-dimensional Abelian subvarieties: Jac(C) and the Prym subvariety Prym(C̃, σ),
with the former invariant under the extension of σ to Jac(C̃), and the latter anti-invariant;

• Prym(C̃, σ) is principally polarized and is the Jacobian of a hyperelliptic curve C′.

It was further shown recently by Levin [19] that the second curve C′ can be written explicitly as

w2 = h(u)+ Z , Z2 = h2(u)− f (u) ≡ (u− uP)(u− uQ)ρ
2(u), (3.2)

which is equivalent to the plane curve w4− 2h(u)w2+ f (u) = 0. The latter can be transformed explicitly
to a hyperelliptic form by an algorithm given in [19].

In order to apply the above results to obtain an explicit description of the Prym variety Prym(S, σ) ⊂
Jac(S) in our case, we will need

Proposition 3.1 (1) The quotient of S by the involution σ is the genus 2 curve G ⊂ C
2(T , Y) given by

the equation

G(T , Y) := AY 3 + B(T)Y 2 + [C(T)− 3A]Y + D(T) = 0, (3.3)

where A = −μ2, B(T) = μ (−K2 T 2 + T K1 + 2 λ+ 2 K2 − T 3 + 3 T),

C(T) = λT 4 μ+ (K1 μ+ λ)T 3 + (λK2 − 4μλ− K2 μ+ K1)T 2

+ (K1 K2 − 3 λ− K2 − λK1 − μ− 3 K1 μ)T + 2μλ− λ2 − (K1
2 + K2

2 + 1)

− 2(K1 + λK2 − μK2),

D(T) = (μ2 + λ2)T 4 + 2 λT 3 K1 + (K1
2 − 4 λ2 − 4μ2 − 2 λK2 + 1)T 2

+ (−2 K1 K2 − 6 λK1 + 2 K2 − 2 λ)T + 2(λ2 + μ2)

− 2(K1
2 − K2

2 + 1)− 4(K1 − λK2).

The double cover π : S→ G is described by the relations

T = x

y
+ y

x
, Y = y + 1

y
, (3.4)
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10 Y. N. FEDOROV AND A. N. W. HONE

and the images of the branch points P = (x = 1, y = 1), Q = (x = −1, y = 1) ∈ S on G are
P = (T = 2, Y = 2), Q = (T = −2, Y = 2).

(2) The curve G is equivalent to the following curve C ⊂ C
2(u, v) in hyperelliptic form:

C : v2 = P6(u),

P6(u) = 1+ (4μ− 2 K2) u+ (4μλ+ K2
2 − 2 K1) u2

+ (2 λ− 10μ+ 2 K1 K2) u3 + (−8μλ+ K1
2 − 2 λK2 + 2μK2) u4

+ (4μ− 2 λK1 + 2μK1) u5 + (μ+ λ)2 u6. (3.5)

The birational transformation between G and C is described by the relations

T = −1

2

(λ+ μ)u3 + (2+ K1)u2 + (K2 + 2λ)u+ 1− v

u (1+ λ u)
, (3.6)

Y = − 1

2μ u3(1+ λ u)

[
(λ− μ)2u4 − (λ− μ)(K1 − 1)u3

+ ((μ− λ)K2 + 4λμ− K1)u
2 + (λ+ 3μ− K2)u+ 1− (1+ μu+ λu)v

]
. (3.7)

The branch points P = (T = 2, Y = 2), Q = (T = −2, Y = 2) ∈ G on C are, respectively, P =
(uP, vP), Q = (uQ, vQ) with

uP = −F2

F1
:= − 2+ λ− μ+ K2

2 λ+ 1+ 2μ+ K1
uQ = F̄2

F̄1

:= −2+ λ− μ+ K2

2 λ− 1+ 2μ− K1
, (3.8)

vP = 1

F3
1

(
F3

1 − (2+ λ+ μ)F2
1 F2 + (2λ− 2μ+ 1)F1F2

2 − (λ+ μ)F3
2

)
,

vQ = 1

F̄3
1

(
F̄3

1 + (−2+ λ+ μ)F̄2
1 F̄2 + (−2λ+ 2μ+ 1)F̄1F̄2

2 − (λ+ μ)F̄3
2

)
.

(3.9)

Proof. Applying the substitution (3.4) to the polynomial G(T , Y)we get the product f (x, y)f̃ (x, y)/(x4 y2),
where

f̃ = (x3 y2 − x y5)K1 + (x2 y4 − x2y3)K2 + λx4 y + μ x4 − x y4 + y3 x3 − y7 μ− λ y6,

and this product is zero due to the equation (2.4). Hence T , Y satisfy G(T , Y) = 0. The proof of the other
items is a direct calculation (which we made with Maple). �

Prym(S, σ) is isomorphic to the Jacobian of a second genus 2 curve C′, and in order to find its equation
by applying the algorithm of [19] described above, it is convenient to represent the curve S in a form
similar to (3.1).
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SOMOS-6 RECURRENCE VIA HYPERELLIPTIC PRYM VARIETIES 11

Proposition 3.2 The spectral curve S is equivalent to the space curve

C̃ : v2 = P6(u), w2 = 4μu6(1+ λu)2 (Y(u, v)− 2)(Y(u, v)+ 2) ≡ h(u)+ g(u)v, (3.10)

where P6(u) is given by (3.5), Y(u, v) by (3.7) and g(u), h(u) are polynomials of degree 5 and 8, respec-
tively, obtained by replacing v2 in the right-hand side of the second equation by P6(u). On C̃ the involution
σ is given by (u, v, w)→ (u, v,−w), and its fixed points are P = (uP, vP, 0), Q = (uQ, vQ, 0).

Explicit expressions for h(u), g(u) are relatively long and are not shown here. Observe that
h(u), g(u), P6(u) do not have common roots and that

h2(u)− g2(u)P6(u) = 16μ2 u6 (1+ λ u)2(F̄2 − uF̄1)(F2 + uF1) · Q2(u),

Q(u) = 2(λ− μ) u2 + (1− K1)u− K2 − λ+ μ, (3.11)

which, in view of the expressions (3.8) for uP, uQ, yields

h2(u)− g2(u)P6(u) = F1F̄1 (u− uP)(u− uQ) u6 (1+ λ u)2 Q2(u). (3.12)

Thus, the function w2 in (3.10) is meromorphic on the hyperelliptic curve C and has simple zeros only at
P, Q, and even order zeros elsewhere. It also has only even order poles at the two points at infinity on C.
Hence, C̃ is a double cover of C ramified at P, Q only, as expected.

The above description of the curves and coverings can be briefly summarized in the diagram below,
where the horizontal equals signs denote birational equivalence.

S C̃

2:1

⏐⏐� ⏐⏐�2:1

G C.

Proof of Proposition 3.2. In view of relations (3.4) and (3.7), the curve S can be written as

v2 = P6(u),
1

y
+ y = Y(u, v) ⇐⇒ 2y = Y(u, v)+

√
Y 2(u, v)− 4.

Under the birational transformation (u, v, y)→ (u, v, ŵ = 2y − Y(u, v)), the above reads

v2 = P6(u), ŵ2 = Y 2(u, v)− 4.

Then by the substitution ŵ = w/(2μu3(1+ λu)), the latter equations take the form (3.10). Next, since σ
leaves the curve C invariant, it does not change the coordinates u, v, so it only flips the sign of w. Finally,
since Y(P) = Y(Q) = 2, from (3.10) we get w(P) = w(Q) = 0. �

Observe that the equation (3.10) of C̃ does not have the same structure as that of the model curve
(3.1): the degrees of the corresponding polynomials do not match. Hence, the formula (3.2) for the second
hyperelliptic curve C′ is not directly applicable to (3.10). For this reason, below we adapt the derivation
of (3.2) to our situation.
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12 Y. N. FEDOROV AND A. N. W. HONE

3.2 Tower of curves and Jacobians

Following the approach of [21], consider the tower of curves

C
π←−−−− C̃

π̃←−−−− ˜̃C π1−−−−→ C′, (3.13)

where C̃ is given by (3.10) and ˜̃C is a double cover of C̃ given by

˜̃C : v2 = P6(u), w2 = h(u)+ g(u)v, w̄2 = h(u)− g(u)v. (3.14)

The covering ˜̃C → C̃ is ramified at the points on C̃ where the function w̄2 has simple zeros or poles. As
shown above, the function w2 = h(u)+ g(u)v has precisely two simple zeros P = (uP, vP), Q = (uQ, vQ)

and no simple poles on C. Hence, h(u)−g(u)v has only two simple zeros P̄ = (uP,−vP), Q̄ = (uQ,−vQ)

on C. Since C̃ is a double cover of C and P̄, Q̄ are not branch points of C̃ → C, the function w̄2 has four

simple zeros on C̃, namely P̄, Q̄, σ(P̄), σ(Q̄). Hence ˜̃C → C̃ is ramified at the latter four points, and so,

by the Riemann–Hurwitz formula, the genus of ˜̃C equals 9.

The ‘big’ curve ˜̃C has various involutions, one of which is

σ1 : (u, v, w, w̄)→ (u,−v, w̄, w),

and the last curve in the tower (3.13) is the genus 2 quotient curve C′ = ˜̃C/σ1. The corresponding

projection ˜̃C → C′ is denoted π1. The projections π̃ and π1 are explicitly given by

π̃(u, v, w, w̄) = (u, v, w), π1(u, v, w, w̄) = (u, W = (w+ w̄)/
√

2, Z = w · w̄). (3.15)

The tower (3.13) is a part of a tree of curves introduced in [21] for the general case of a genus g
hyperelliptic curve C. As was shown in [21], the tree of curves implies relations between the corresponding
Jacobian varieties described by the following diagram,

Jac(C′)
π∗1−−−−→ Jac(˜̃C)∥∥∥ π̃∗

�⏐⏐
Prym(C̃, σ) −−−−→ Jac(C̃)

π∗
�⏐⏐

Jac(C),

where arrows denote inclusions. The diagram indicates that Jac(C′) is isomorphic to Prym(C̃, σ).
Following [19], the curve C′ can be written in terms of u and the symmetric functions w+ w̄, ww̄. In

view of (3.14), we have

(w+ w̄)2 = 2h(u)+ 2w w̄, (w w̄)2 = h2(u)− v2g2(u).
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SOMOS-6 RECURRENCE VIA HYPERELLIPTIC PRYM VARIETIES 13

Setting here W = (w+ w̄)/
√

2, Z = w w̄, one obtains equations defining C′ in C
3(u, Z , W):

C′ : W 2 = h(u)+ Z , Z2 = h2(u)− g2(u)P6(u); (3.16)

this leads to the single equation C′ : W 4 − 2h(u)W 2 + g2(u)P6(u) = 0.

Remark 3.3 In the special case that the polynomial h2(u) − g2(u)P6(u) is a perfect square f 2(u), the
latter equation admits the factorization

(W 2 − h(u)− f (u))(W 2 − h(u)+ f (u)) = 0, (3.17)

and C′ is a union of two curves whose regularizations give elliptic curves. This situation will be considered
in detail elsewhere.

3.3 A hyperelliptic form of C′

We return to the general case when h2(u) − g2(u)P6(u) is not a perfect square. Using the factorization
(3.12), in (3.16) we can write

Z2 = 16μ2 u6 (1+ λ u)2 t2 (u− uP)
2F2

1 Q2(u), (3.18)

where we set

t2 := − F̄1

F1

(
u− uQ

u− uP

)
= −F̄1u+ F̄2

F1u+ F2
(3.19)

and Q(u) is specified in (3.12). Solving the last equation with respect to u, we get

u = F̄2 − t2F2

t2F1 + F̄1

. (3.20)

Then equation (3.16) reads

W 2 = h(u)+ 4μ t u3 (1+ λ u)Q(u) (F1u+ F2). (3.21)

Replacing u here by (3.20), we obtain

W 2 = 2H
P2(t)

(t2F1 + F̄1)8
(t + 1)2 R6(t), (3.22)

H = (λ+ μ)K2 + λ2 − μ2 − K1 − 1 = (λ+ μ)F2 − F1, (3.23)

where P(t) is a polynomial in t of degree 4, and R6(t) is specified below. We write

P(t) = 8H2

(F1u+ F2)2

(
2(μ− λ)u2 + (K1 − 1)u+ F2 − 2

)
− 2Ht(t2F1 + F̄1),

in a concise form, where u should be replaced by (3.20).
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14 Y. N. FEDOROV AND A. N. W. HONE

Removing perfect squares from the right-hand side of (3.22), i.e. introducing a new variable W such
that

W =
√

2H P(t)(t + 1)

(t2F1 + F̄1)4
W , (3.24)

we finally obtain C′ in hyperelliptic form as

W2 = R6(t) := c6t6 + c5t5 + · · · + c1t + c0, (3.25)

where c6 = (λ+ μ)F3
2 − (2λ− 2μ+ 1)F1F2

2 + (λ+ μ+ 2)F2
1 F2 − F3

1 ,
c0 = (λ+ μ)F̄3

2 − (2λ− 2μ− 1)F̄1F̄2
2 + (λ+ μ− 2)F̄2

1 F̄2 + F̄3
1 ,

c4 = F3
1 − (μ+ λ+ 6)F2

1 F2 − 8(μ+ λ− 1)F2
1 + (6λ− 6μ+ 1)F1 F2

2

+8(μ2 + 2μλ+ λ2 + 4μ− 1)F2 F1 − (μ+ λ)F3
2 + 8(μ2 − λ2 + μ+ λ)F2

2 ,

c2 = −F̄3
1 − (μ+ λ− 6) F̄2 F̄2

1 + 8(μ+ λ+ 1) F̄2
1 + (6 λ− 6μ− 1) F̄1 F̄2

2

+8(μ2 + 2μλ+ λ2 − 4μ− 1) F̄1 F̄2 − (μ+ λ) F̄3
2 + 8(μ2 − λ2 − μ− λ) F̄2

2 ,

c5 = 2H(F2
1 − F2

2 ), c3 = 4H(F1F̄1 + F2F̄2), c1 = 2H(F̄2
1 − F̄2

2 ).

Equivalently, the equation (3.25) can be written compactly by using both variables t and u, related by
(3.20):

(F2 + F1u)3W2

32H3
= (K1 + 1)u3 + (3μ− 3λ+ K2)u

2 + (K1 − 3)u

+ λ− μ+ K2 − t(F2 + F1u)(u2 − 1). (3.26)

We can summarize the results of this section with

Theorem 3.4 The Jacobian of the spectral curve S in (2.4) contains a two-dimensional Prym variety,
isomorphic to the Jacobian of the genus 2 curve C′ given by (3.25) or (3.26).

It is also worth mentioning the following relation between the roots of R6(t) and of the polynomial
P6(u) defining the first genus 2 curve C = S/σ .

Proposition 3.5 If t = t̂ is a root of R6(t) then (3.20) gives a root of P6(u).

Proof. For t = t̂ we have W = 0, which, in view of (3.24), implies W = 0 (provided that the denominator
in (3.24) does not vanish for t = t̂, and this condition always holds). In view of the definition W =
(w+ w̄)/

√
2, in this case w = −w̄, which by (3.14) gives g(u) v = 0. Next, since g(u), P6(u) do not have

common roots and deg g(u) = 5, the last equation defines 11 values of u, which, via (3.19), correspond
to 11 zeros of the right-hand side of (3.24). Further calculations show that P(t) (t + 1) = 0 implies
g(u) = 0. As a result, the six zeros of W correspond to the six zeros of v, i.e. the roots of P6(u). �

D
ow

nloaded from
 https://academ

ic.oup.com
/integrablesystem

s/article/1/1/xyw
012/2743518 by guest on 18 M

arch 2021



SOMOS-6 RECURRENCE VIA HYPERELLIPTIC PRYM VARIETIES 15

4. Translation on Prym(S, σ) and on Jac(C′)

Below we represent the reduced Somos-6 map ϕ̂ : C
4 → C

4 as a translation on the Jacobian of the
spectral curve S, given by a divisor V , and show that it belongs to Prym(S, σ). Then the translation will
be described in terms of degree zero divisors on the curve C′.

First, recall that the Jacobian variety of an algebraic curve X can be defined as the additive group of
degree zero divisors on X considered modulo divisors of meromorphic functions on X. Equivalence of
divisors D1, D2 will be denoted as D1 ≡ D2.

Let JK be the isospectral manifold, the set of all the matrices L(x) of the form (2.3) having the same
spectral curve S. Consider the eigenvector map

E : JK −→ Jac(S)

defined as follows: a matrix L(x) ∈ JK induces the eigenvector bundle P
2 → S; for any point p =

(x, y) ∈ S

p −→ ψ(p) = (ψ1(p),ψ2(p),ψ3(p))
T such that L(x)ψ(p) = yψ(p).

We assume that the eigenvector ψ(p) is normalized: 〈α,ψ(p)〉 = 1, for a certain non-zero α ∈ C
3. This

defines the divisor D of poles of ψ(p) on S. For any choice of normalization, such divisors form an
equivalence class {D}. The latter defines a point D−Np0 ∈ Jac(S)with a certain base point p0 ∈ S. Here
N = degree(D), and for the case at hand N = 6. Then E(L(x)) = D − 6p0.

Now let G be the maximal subgroup of PGL(3, C) which acts freely on JK by conjugations and
preserves the structure of L(x). For any g ∈ G the E-images of L(x) and L̂(x) = gL(x)g−1 give equivalent
divisors. As was shown in, e.g. [22, 23], the reduced eigenvector map E ′ : JK/G �→ Jac(S) is injective.
Note that, due to the specific structure of (2.3), in our case the subgroup G is trivial, and JK/G ∼= JK .

Theorem 4.1 Under the map E , the transformation L(x) → L̃(x) defined by the discrete Lax
representation (2.3) is the translation on Jac(S) given by the degree zero divisor

V = Ō −O,

where, as above, O = (x = 0, y = 0), Ō = (x = ∞, y = ∞) ∈ S.

Proof. As follows from the intertwining relation (2.1), if ψ(p) is a normalized eigenvector of L(x),
then ψ̂(p) = M(x)ψ(p) is an eigenvector of L̃(x) with the same eigenvalue. Note that, in contrast to
ψ(p), ψ̂(p) is not normalized, as all of its components may vanish at some points of S, so we consider
its normalization ψ̃(p) = f (p)−1ψ̂(p), f (p) = 〈α, ψ̂(p)〉 for a generic non-zero normalization vector
α ∈ C

3.
Compare the divisors D, D̃ of poles of ψ(p), ψ̃(p). Using (1.14) (or (A.11) in the Appendix) we have

det M(x) = R1R2

R2
0

x,

which implies that M(x), M−1(x) are non-degenerate apart from the points of S over x = 0 and x = ∞.
Then D, D̃ can differ only by the points O = (0, 0), O1 = (0,−μ/λ) and Ō = (∞,∞), Ō1 = (∞,−λ/μ)
or their multiples.
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16 Y. N. FEDOROV AND A. N. W. HONE

According to the structure of the matrix in (2.3), M(0) has eigenvalue 0 with multiplicity 2, with a
one-dimensional eigenspace spanned by the vector (1, 1, 0)T , and ψ(O) is parallel to (1, 1, 0)T , whereas
ψ(O1) is not. That is,

ψ̂(O) =M(0)ψ(O) = 0, ψ̂(O1) =M(0)ψ(O1) �= 0.

Further, for τ = √x being a local parameter on S near O, we have the expansion ψ(p) = (1+O(τ ), 1+
O(τ ), O(τ ))T . Then near O, ψ̂(p) = (O(τ ), O(τ ), O(τ ))T , hence the normalizing factor f = 〈α, ψ̂(p)〉
has a simple zero at O and does not vanish at O1.

Similarly, by considering the expansions of ψ(p) near the points Ō, Ō1 at infinity, one observes that
f (p) has a simple pole at Ō and no poles at Ō1. As a result,

(f ) = O + U −D − Ō,

for a certain effective divisor U . Then the divisor of poles of ψ̃(p) = f (p)−1ψ̂(p) equals U . Indeed, the
zeros of ψ̂(p) and f (p) at O, as well as their poles at D+ Ō cancel each other. Since f (p) is meromorphic
on S, we conclude that D̃ is equivalent to D + Ō −O. Thus the images of D, D̃ in Jac(S) differ by the
translation V . �

Clearly σ(V) = −V , hence the divisor V represents a vector in Prym(S, σ). Then, under the map E ,
any orbit obtained by iterations of L(x)→ L̃(x) belongs to a translate of Prym(S, σ) ⊂ Jac(S).

Now observe that in our case the manifold JK coincides with IK , which has dimension 2. Then, since
E is injective, IK must be an open subset of Prym(S, σ) or of a union of different translates of it. Note,
however, that the latter is not a connected complex manifold, whereas, as was mentioned in Remark 5,
IK is an irreducible complex algebraic manifold, hence a connected one. Therefore, in view of Theorem
3.4, we arrive at the following result.

Theorem 4.2 A generic complex invariant manifold IK of the map ϕ̂ is isomorphic to an open subset of
the Jacobian of the genus 2 curve C′ given by (3.25) or (3.26).

Upon comparing this result with the solutions (1.11) of ϕ̂ and with the properties of the embedding
ψ : Jac(X) \ (σ0123) → C

4, in the sequel it is natural to choose the genus 2 curve X in (1.3) to be
birationally equivalent to C′.

Now observe that for the special points O1, Ō1, O2, Ō2 ∈ S described in Section 2, the degree zero
divisors V1 = O1 − Ō1, V2 = O2 − Ō2 are also antisymmetric with respect to the involution σ , hence
they represent vectors in Prym(S, σ) and, therefore, in Jac(C′). Our next objective is to describe V , V1, V2

in terms of degree zero divisors on C′.

Theorem 4.3 Under the transformation of S to the canonical form C̃ given by (3.10), the points O, Ō
become

R1 = (u = 0, v = −1, w = 2), R2 = (u = 0, v = −1, w = −2). (4.1)

The points O1, Ō1 ∈ S become R′1, R′2 ∈ C̃, the two preimages of the infinite point∞2 ∈ {∞1,∞2} ⊂ C
specified by the Laurent expansions u = 1/τ , v = −(λ + μ)/τ 3 + O(τ−2) with the local parameter
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τ = 1/u. The expansions of w near R′1, R′2 are

w = ±2(λ2 − μ2)

τ 4
+ O(τ−3),

respectively. Also, O2, Ō2 become the points

R′′1,2 =
(

u = −1

λ
, v = κ

λ3
, w = ± 2μ

κ

λ4

)
, κ = λ3 + K2λ

2 − (K1 + 1)λ+ μ. (4.2)

Proof. Relations (3.4) describing the projection π : S → G imply that the coordinate Y has poles at
π(O),π(Ō) ∈ G. More precisely, in view of the behaviour (2.8), these are triple poles. On the other hand,
as follows from (3.4), (3.7), on the curve C the function Y(u, v) has a triple pole only at (u = 0, v = −1).
(In particular, at (u = 0, v = 1) this function has a pole of lower order, and it has no poles at the two
points at infinity on C.) Hence, O, Ō ∈ S are projected to the same point (u = 0, v = −1) on C. Since it
is not a branch point of C̃ → C, the point has two preimages on C̃. To find their w-coordinates, we note
that (3.7) implies

λμu3(1+ λu)Y(u, v)

∣∣∣∣
u=0,v=−1

= 2, λμu3(1+ λu)Y(u, v)

∣∣∣∣
u=0,v=1

= 0 (4.3)

and for u = 0, v = −1 the equation (3.10) gives w2 = 4, thus we get (4.1). The proof of the rest of the
theorem goes along similar lines. �

Now recall [20] that for a double cover of curves π : C2 → C1 with an involution σ : C2 → C2,
there are two natural maps between Jac(C2) and Jac(C1) ⊂ Jac(C2):

• the pullback π∗ : Jac(C1)→ Jac(C2);

degree 0 divisor D on C1 → degree 0 divisor D̃ = π−1(D) on C2;

• The projection (Norm map) NmC1 : Jac(C2)→ Jac(C1);

degree 0 divisor D̃ on C2 → degree 0 divisor π(D̃) on C1.

Notice that for any degree zero divisor D on C1, NmC1(π
∗(C1)) = 2 C1. This property should be under-

stood on the level of equivalence classes of divisors, that is, for a degree zero divisor D on C1, let D̃′ be
any divisor on C2 equivalent to D̃ = π−1(D). Then π(D̃′) ≡ 2D on C1. Then let A, Ã be the Abel maps
with images in Jac(C1), Jac(C2), respectively. Hence

Ã(D̃) = 1

2
Ã(π∗ ◦ NmC1(D̃

′)) and A(NmC1 D̃′) = 2 A(D). (4.4)

Now apply the above to the tower (3.13), introducing the map

NmC′ : Jac(˜̃C)→ Jac(C′) ⊂ Jac(˜̃C)
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18 Y. N. FEDOROV AND A. N. W. HONE

as follows: for a degree zero divisor Q on ˜̃C, NmC′(Q) = π1(Q). Next, consider the sequence of divisors

V = R2 −R1︸ ︷︷ ︸
∈Prym(C̃,σ)

π̃−1−−−−→ R̃+2 + R̃−2 − R̃+1 − R̃−1
π1−−−−→ S = S+2 + S−2 − S+1 − S−1︸ ︷︷ ︸

∈ Jac(C′)

, (4.5)

where R̃±j are the preimages of Rj on ˜̃C.
Let now A be the Abel map to Jac(C′) and V0 be a degree zero divisor on C′ such that the pullbacks

π̃−1(R2 −R1) and π−1
1 (V0) give equivalent divisors on ˜̃C. That is, the vector w = A(V0) ∈ Jac(C′) ⊂

Jac(˜̃C) coincides with the Abel image of R2−R1 in Prym(C̃, σ) ⊂ Jac(˜̃C). Then, in view of the property
(4.4),

w = 1

2
A(S+2 + S−2 − S+1 − S−1 ). (4.6)

Proposition 4.4 On the curve C′ written in the hyperelliptic form (3.25) the divisor V0 is determined by

S+1 = (t∗, W+
∗ ), S−1 = (−t∗, W−

∗ ), S+2 = (t∗,−W+
∗ ), S−2 = (−t∗,−W−

∗ ),

t∗ =
√

F̄2

F2
, W±

∗ = 4
H3/2

F2
(1± t∗) = 4

H3/2

F3/2
2

(
√

F2 ±
√

F̄2).

The proof of the proposition is quite technical and is reserved for the Appendix. Note that the squares
of W±

∗ given above coincide with the right-hand side of (3.26) for (u = 0, t = ±t∗), as expected.
One now can observe that the divisor S = S+2 + S−2 − S+1 − S−1 is anti-invariant with respect to the

hyperelliptic involution ι : (t, W)→ (t,−W) on C′. Hence, modulo period vectors of Jac(C′),

A(S+2 − S+1 ) = 2A(S+2 − P0), A(S−2 − S−1 ) = 2A(S−2 − P0),

where P0 is any Weierstrass point on C′. Then, using the relation (4.6), we arrive at

Theorem 4.5 The reduced Somos-6 map ϕ̂ is described by translation by the following vector on Jac(C′):

w =
∫ (t∗ ,−W+∗ )

P0

(ω1,ω2)
T +

∫ (−t∗ ,−W−∗ )

P0

(ω1,ω2)
T =

∫ (t∗ ,−W+∗ )

(−t∗ ,W−∗ )
(ω1,ω2)

T , (4.7)

where ω1,2 are holomorphic differentials on C′ and t∗, W±
∗ are given in Proposition 4.4.

Above we have chosen the genus 2 curve X of the form (1.3) to be birationally equivalent to C′, and
in the next section we shall see that the translation vector v ∈ Jac(X) in the sigma-function solution (1.4)
corresponds to the vector w written in an appropriate basis of holomorphic differentials on C′. Namely,
it satisfies the constraint (1.7). To show this it is convenient to describe also the degree zero divisors
V1 = O1 − Ō1, V2 = O2 − Ō2 on S, or equivalently, R′1 −R′2, R′′1 −R′′2 on C̃ (which are antisymmetric
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SOMOS-6 RECURRENCE VIA HYPERELLIPTIC PRYM VARIETIES 19

under σ ), in terms of divisors on Jac(C′). Namely, let V01, V02 be degree zero divisors on C′ such that the
vectors

w1 = A(V01), w2 = A(V02) ∈ Jac(C′) ⊂ Jac(˜̃C)
coincide with the Abel images of R′1 −R′2, R′′1 −R′′2, respectively, in Prym(C̃, σ) ⊂ Jac(˜̃C).
Theorem 4.6 The divisors V01, V02 are equivalent to

(t′∗, W+′
∗ )− (−t′∗,−W−′

∗ ) and (t′′∗ , W+′′
∗ )− (−t′′∗ ,−W−′′

∗ ),

respectively, that is,

w1 =
∫ (t′∗ ,W+

′
∗ )

(−t′∗ ,−W−′∗ )

(ω1,ω2)
t , w2 =

∫ (t′′∗ ,W+′′∗ )

(−t′′∗ ,−W−′′∗ )

(ω1,ω2)
t ,

where

t′∗ =
√
−F̄1

F1
, W±′

∗ = 4
H3/2

F1
(1± t′∗) = 4

H3/2

F3/2
1

(√
F1 ±

√
−F̄1

)
,

t′′∗ =
√
λF̄2 + F̄1

λF2 − F1
, W±′′

∗ =
4H3/2

λF2 − F1

(
λ− 1± (λ+ 1)t′′∗

)

=
4H3/2

(
(λ+ 1)

√
λF2 − F1 ± (λ− 1)

√
λF̄2 + F̄1

)
(λF2 − F1)3/2

.

(4.8)

The proof follows the same lines as that of Theorem 4.5; it uses Theorem 4.3 describing the coordinates
of the pairs R′1,2, R′′1,2 on C̃. For each pair we construct a sequence of degree zero divisors analogous to
(4.5), which gives rise to the divisors V01, V02 on C′ and, in view of the relation (4.6), the vectors w1, w2.

5. The shift vector and the determinantal constraint

The above vectors w, w1, w2 ∈ Jac(C′) arising from the three special involutive pairs
O, Ō, O1, Ō1, O2, Ō2 on the spectral curve S have the following remarkable property.

Proposition 5.1 The vectors in Theorems 4.5 and 4.6 are related by

w1 = 2w, w2 = 3w. (5.1)

Proof. Following (2.8), the divisor of the meromorphic function y/x on S is

(y/x) = O + Ō1 +O2 − Ō −O1 − Ō2 ≡ 0, (5.2)

so it corresponds to zero in Jac(S), in Prym(S, σ) = Prym(C̃, σ), and, therefore, in Jac(C′). By Theorems
4.5 and 4.6, the degree zero divisors Ō − O, O1 − Ō1, O2 − Ō2 with Abel image in Prym(S, σ) are
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20 Y. N. FEDOROV AND A. N. W. HONE

represented, respectively, by the divisors V0, V01, V02 on C′. Then (5.2) implies −V0 − V01 + V02 ≡ 0,
which, under the Abel map, yields −w − w1 + w2 = 0. Similarly, we have

(y/x2) = Ō + 2Ō1 +O2 −O − 2O1 − Ō2 ≡ 0,

which implies w − 2w1 + w2 = 0. These two relations prove the proposition. �

The divisors representing w1, w2 can also be derived (in a much more tedious way) by using addition
formulae on Jac(C′) described in terms of pairs of points on the hyperelliptic curve C′. These formulae
can be obtained algorithmically using the Bäcklund transformation presented in [24, 25], which also
allows us to calculate the divisor of the form (t′′′+ , W ′′′

+ )− (t′′′− , W ′′′
− ) corresponding to the vector 4w. Since

it will be needed in Section 6, here we simply record that t = t′′′± are the roots of the quadratic equation

(H(λ+ 1)+ F1) t2 + 2λH t + H(λ− 1)+ F̄1 = 0, (5.3)

and W ′′′
+ , W ′′′

− are recovered from the equation (3.25) with their signs determined by the condition

W ′′′
+W ′′′

− = 64H3 μ3 − μ2 λ3 + μ2 λ2 K2 − μ2 λK1 + μλ3 K2 + λ5

(H(λ+ 1)+ F1)3
(
4F1F2(λF2 − F1)− H(F1 + F2)2

) .

5.1 The sigma-function, Kleinian functions and the determinantal constraint

Now let an appropriate Möbius transformation t = T (s) take the curve C′ to a canonical odd order
form X given by (1.3) (there are several possible transformations of this kind). Choosing the canonical
basis of holomorphic differentials ds/z, s ds/z on X, define the Abel map for a degree zero divisor
(s1, z1)+ (s2, z2)− 2∞ by

u = (u1, u2)
T =

∫ (s1,z1)

∞

(
ds

z
,

s ds

z

)T

+
∫ (s2,z2)

∞

(
ds

z
,

s ds

z

)T

∈ Jac(X) .

It can be inverted by means of the the Bolza formulae

(s− s1)(s− s2) = s2 − ℘22(u)x − ℘12(u),

z1 = ℘222(u)s1 + ℘122(u), z2 = ℘222(u)s2 + ℘122(u),

which involve ℘jk�(u) = −∂j∂k∂� log σ(u) in addition to the Kleinian hyperelliptic functions ℘jk(u). In
particular, this yields

s1 + s2 = ℘22(u), s1s2 = −℘12(u), (5.4)

and for ℘11 there is also Klein’s formula

z1z2 = 1

2

2∑
k=0

(s1s2)
k
(

2c̄2k + (s1 + s2)c̄2k+1

)
− 2(s1 − s2)

2℘11(u). (5.5)
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SOMOS-6 RECURRENCE VIA HYPERELLIPTIC PRYM VARIETIES 21

Now let (s̄1, z̄1), (s̄2, z̄2) ∈ X be the images of the points (t∗,−W+
∗ ), (−t∗, W−

∗ ) ∈ C′ described
in Proposition 4.4, and let {(s̄′1, z̄′1), (s̄

′
2, z̄′2) }, { (s̄′′1, z̄′′1), (s̄

′′
2, z̄′′2) } ∈ X × X be the images of

{(t′∗, W+′
∗ ), (−t′∗,−W−′

∗ )}, {(t′′∗ , W+′′
∗ ), (−t′′∗ ,−W−′′

∗ )} ∈ C′ × C′, respectively, as specified in (4.8).

Theorem 5.2 The vector

v =
∫ (s̄1,z̄1)

(s̄2,z̄2)

(
ds

z
,

s ds

z

)T

∈ Jac(X) (5.6)

satisfies the determinantal constraint (1.7).

Corollary 5.3 For given values of K1, K2, λ,μ, take the associated genus 2 curve C′ from (3.25),
transform it into the canonical form X , as in (1.3), and pick the vector v ∈ Jac(X) defined by (5.6). Then
for the function σ(u) associated with X , and for any v0 ∈ Jac(X) and C ∈ C

∗, the expression (1.10)
produces a sequence (xn) satisfying the reduced Somos-6 recurrence (1.9) with coefficients given by (1.5)
and first integrals K1, K2.

Proof of Theorem 5.2. Observe that the vectors v and

v1 =
∫ (s̄′1,W̄1)

(s̄′2,W̄2)

(
ds

W
,

s ds

W

)T

, v2 =
∫ (s̄′′1 ,W̄1)

(s̄′′2 ,W̄2)

(
ds

W
,

s ds

W

)T

are just w, w1, w2 written in the coordinates corresponding to the canonical differentials on X. Hence, the
relations (5.1) imply v1 = 2v, v2 = 3v. Then, in view of the Bolza expressions (5.4), the determinant
constraint (1.7) can be written as

det

⎛⎝ 1 1 1
−s̄1s̄2 −s̄′1s̄′2 −s̄′′1 s̄′′2
s̄1 + s̄2 s̄′1 + s̄′2 s̄′′1 + s̄′′2

⎞⎠ = 0. (5.7)

Next, we apply the inverse Möbius transformation s = T −1(t) to each of the above s-coordinates, and
observe that, after dividing out common denominators from each column, the rows of the resulting matrix
are linear combinations of the rows of⎛⎝ 1 1 1

(t∗)2 (t′∗)
2 (t′′∗)

2

t∗ − t∗ t′∗ − t′∗ t′′∗ − t′′∗

⎞⎠. (5.8)

As the third row of the latter matrix is zero, the condition (5.7) is trivially satisfied. �

Remark 5.4 To give an exact transformation from the equation of C′ to the canonical form (1.3) for X
one needs to know at least one root of the degree 6 polynomial R6(t) in (3.25) (or, in view of Proposition
3.5, at least one root of P6(u) in (3.5)). Yet in general it appears that the equation R6(t) = 0 is not solvable
in radicals.
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22 Y. N. FEDOROV AND A. N. W. HONE

6. Solution of the initial value problem

Before proceeding with the proof of Theorem 1.2, it is worth commenting on the meaning of the word
‘generic’ appearing in its statement. Various non-generic situations arise:

• Some of the initial data or coefficients can be zero.

• For special values of λ,μ, K1, K2, the spectral curve S can acquire singularities (in addition to the
singularity at (0 : 1 : 0) ∈ P

2 for the projective curve).

• For special values of λ,μ, K1, K2, the curve C′ becomes a product of two elliptic curves given by the
factorization (3.17).

• For special values of λ,μ, K1, K2, one of the multiples 2v, 3v, 4v of the shift vector can lie on the theta
divisor (σ ) ⊂ Jac(X).

A set of non-zero initial data τ0, . . . , τ5 and coefficients α,β, γ determine the values of λ,μ, K1, K2,
and these in turn determine the spectral curve S, the curve C′ (hence X), and the vector v ∈ Jac(X). Yet
the sequence (τn) may contain zero terms; for instance, τ0 = 0 when v0 = 0 in (1.4). Iteration of the
recurrence (1.1) requires non-zero initial data, but if an isolated zero appears in the sequence, then the
Laurent phenomenon can be used to pass through this apparent singularity, by evaluating suitable Laurent
polynomials in order to avoid division by zero.

Another degenerate possibility is that one of α,β, γ is zero, in which case (1.1) can be obtained as a
reduction of the Hirota–Miwa (discrete KP) equation, and the solutions require a separate treatment in
each case. For each of these three special cases there is also an associated cluster algebra, and by results
in [26, 27] this means that a log-canonical symplectic structure is available for the reduced map (1.9)
(see [13] for details).

If v ∈ (σ ), so that σ(v) = 0, then the expression (1.4) does not make sense; in that case one should
replace σ(v) by σ2(v) = ∂2σ(v) in the denominator of the formula for τn, and then it satisfies a Somos-8
recurrence [28]. This situation is not relevant to our construction, since it can be checked directly that
for λ,μ, K1, K2 such that (3.25) defines a curve of genus 2, neither S+1 nor S−1 in Proposition 4.4 can be a
Weierstrass point on C′, hence v �∈ (σ ). However, it may happen that one of 2v, 3v or 4v ∈ (σ ), and in
each case the formulae in Theorem 1.1 and/or our method for solving the initial value problem require
certain adjustments. We illustrate this below in the case that 2v ∈ (σ ), which is needed for reconstruction
of the original Somos-6 sequence (1.2).

6.1 Reconstruction of the constant C and the initial phase v0

The attentive reader might wonder why the constant C in (1.4) should be necessary to represent the
general solution of the Somos-6 recurrence. Indeed, making the scaling s → ζ 2 s, z → ζ 5z in (1.3)
changes the coefficients c̄j but preserves the form of the curve X, and rescales the sigma-function so that
σ(u)→ ζ−3σ(u), which means that C can always be set to 1.

Note, however, that the curve C′ equivalent to X and given by (3.25) is defined up to a similar
rescaling t → ξ t, W → ξ 3W , under which the vector w in Theorem 4.5 produces a family of points
in Jac(C′) ∼= Jac(X). The latter is precisely the curve in Jac(X) specified by the constraint (1.7). Thus,
to obtain the general solution of the recurrence, it is necessary to allow different values of C in our
construction.

Now if a particular set of non-zero initial data τ0, . . . , τ5 and coefficients α,β, γ are given, then the
associated initial values x0, x1, x2, x3 for the reduced map ϕ̂ are found from (1.8). The latter values can be
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SOMOS-6 RECURRENCE VIA HYPERELLIPTIC PRYM VARIETIES 23

used in the formulae for H1, H2 in [13], and from (2.7) these produce the values of K1, K2; alternatively,
putting the xj into (1.13) yields P0, P1, R0, R1, and then K1, K2 can be obtained directly from the expressions
(2.5). The values of λ and μ are specified according to (1.15), and thus by Corollary 5.3 only C and v0

are needed to reconstruct the reduced sequence (xn).
Supposing that v, v0 and C have already been found for a particular initial value problem, the

parameters A and B are immediately obtained in the form

A = Cτ0

σ(v0)
, B = σ(v)τ1

Aσ(v0 + v)
= σ(v)σ (v0)τ1

Cσ(v0 + v)τ0
. (6.1)

Thus the only outstanding problem is the determination of C and v0.
As an intermediate step, we introduce the sequence (φ̃n) defined by

φ̃n = Cn2−1 σ(nv)

σ (v)n2 . (6.2)

Apart from the powers of C, the latter is the same as Kanayama’s phi-function introduced in [29] in
genus 2, and considered for hyperelliptic curves of arbitrary genus in [30]. The sequence (φ̃n) is a natural
companion to (τn): it satisfies the same Somos-6 recurrence (1.1) and produces the same values of
the first integrals K1, K2. In fact, it turns out that for each n, φ̃n is an algebraic function of the quantities
α,β, γ , H1, H2. (The proof will be presented elsewhere.) For our current purposes, it is enough to consider
only the first few terms of the sequence.

Lemma 6.1 The terms of the sequence (6.2) for n = 0, . . . , 4 are fixed up to signs by

φ̃0 = 0, φ̃1 = 1, φ̃2
2 =

α̂β

αβ̂
, φ̃2

3 =
β

β̂
, φ̃4 = φ̃−1

2 (αφ̃3 − γ ). (6.3)

Proof. For n = 0, 1 the result is immediate from the definition. The formulae for n = 2, 3 follow from
(1.5). To obtain φ̃4, set n = −2 in (1.1), replace τj with φ̃j throughout, and use the fact that φ̃−j = −φ̃j

for all j. �

Now from the coordinates of the points on C′ considered in Proposition 4.4 and Theorem 4.6, and
by applying the Möbius transformation t = T (s) followed by the Bolza formulae together with (5.5),
as in the proof of Theorem 18, the values of the hyperelliptic functions ℘jk(mv) for m = 1, 2, 3 are all
determined algebraically in terms of λ,μ, K1, K2. In turn, this allows α̂, β̂ to be found from (1.6), which
means that the expressions (6.3) determine φ̃2, φ̃3 and φ̃4, up to fixing the signs of φ̃2, φ̃3. Then, upon
rearranging the formula for γ in (1.5), we see that

C2 = γ

φ̃2
3

(
℘11(3v)− α̂℘11(2v)− β̂℘11(v)

)−1
, (6.4)

which determines C up to a choice of sign; and this sign is irrelevant, since from (6.1) the prefactor
ABnCn2−1 in (1.4) is seen to be invariant under sending C→ −C. Once C is known, the sign of φ̃3 can
then be fixed from an application of Baker’s addition formula, which gives the identity φ̃3 = φ̃2

2 F(2v),
where F is as in (1.11); the sign of φ̃2 will not be needed in what follows: it corresponds to the overall
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24 Y. N. FEDOROV AND A. N. W. HONE

freedom to send v→−v, v0 →−v0 in the solution, which is removed once the signs of the z coordinates
of the points in (5.6) are fixed.

Proof of Theorem 1.2. Given the six non-zero initial data for (1.1), with the associated values of
K1, K2, λ,μ being obtained as previously described, one finds the corresponding genus 2 curves C′, X
and the vector v ∈ Jac(X). If C is fixed from (6.4), then Theorem 1.1 says that for any A, B and
v0 the expression (1.4), with this choice of X and v, provides a solution of (1.1) with the appropriate
values of the coefficients α,β, γ . To find the correct value of v0, one should iterate the Somos-6 recur-
rence forwards/backwards to obtain additional terms, in order to calculate ratios of the form τjτ−j/τ

2
0 for

j = 1, 2, 3, 4. (By adjusting the offset of the index if necessary, a maximum of three iterations are needed
to obtain nine adjacent terms τ−4, τ−3, . . . , τ4 with generic initial data.) Matching these ratios with the
analytic formula (1.4), and using Baker’s addition formula, yields four linear equations for the quantities
℘jk(v0), namely

τjτ−j

τ 2
0

= C2φ̃2
j

(
℘12(jv)℘22(v0)− ℘22(jv)℘12(v0)+ ℘11(jv)− ℘11(v0)

)
(6.5)

for j = 1, 2, 3, 4. Now, observing that the first three equations are linearly dependent, due to the constraint
(1.7), it is necessary to use any two of the first three together with the fourth; for instance, picking j = 1, 3, 4
produces the 3× 3 matrix equation⎛⎝ ℘22(v) ℘12(v) 1

℘22(3v) ℘12(3v) 1
℘22(4v) ℘12(4v) 1

⎞⎠⎛⎝ −℘12(v0)

℘22(v0)

−℘11(v0)

⎞⎠ =
⎛⎝ C−2ρ1 − ℘11(v)

C−2ρ3 − ℘11(3v)
C−2ρ4 − ℘11(4v)

⎞⎠, (6.6)

where we set

ρj = τjτ−j/(φ̃jτ0)
2.

In order to make this formula effective, the values of ℘jk(4v) are required; these can be found by taking
the roots of (5.3) and transforming them with s = T −1(t) to the corresponding s-coordinates on X,
or by directly applying the Bäcklund transformation for the genus 2 odd Mumford system [24, 25] to
perform the addition 3v+ v = 4v on Jac(X). Upon solving (6.6), the quantities ℘jk(v0) are found, so that
v0 ∈ Jac(X) is

v0 =
∫ (s(0)1 ,z(0)1 )

∞

(
ds

z
,

s ds

z

)T

+
∫ (s(0)2 ,z(0)2 )

∞

(
ds

z
,

s ds

z

)T

, (6.7)

corresponding to the Abel map for the divisor D0 = (s(0)1 , z(0)1 ) + (s(0)2 , z(0)2 ) − 2∞ on X, where the
coordinates of the points (s(0)1 , z(0)1 ), (s

(0)
2 , z(0)2 ) are obtained by using (5.4) and (5.5) with u = v0. (An

overall choice of sign for z(0)j is left undetermined; this can be fixed by doing a single iteration, taking
v0 → v0 + v and checking the result.) Once v0 has been found, the appropriate values of A and B are
given by (6.1), and the initial value problem is solved. This completes the proof of Theorem 1.2. �

We now show how Theorem 1.3 is a corollary of this result.
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Proof of Theorem 1.3. Given a point (x0, x1, x2, x3) ∈ C
4 lying on a fixed invariant surfaceIK = {K1(x) =

k1, K2(x) = k2} of ϕ̂, we can iterate the map forwards/backwards to obtain ratios of xj which correspond
to the quantities on the left-hand side of (6.5), that is

x−1 = τ1τ−1

τ 2
0

, x−2x2
−1x0 = τ2τ−2

τ 2
0

,

and so on. This means that the initial vector v0 is also recovered from a point on IK , which yields a
vector u = v+ v0 ∈ Jac(X), so the map (1.12) is invertible on each invariant surface, giving the required
isomorphism on an open subset of Jac(X) (removing the theta divisor and its suitable translates). �

6.2 A numerical example

For illustration of the main result, we consider the following choice of initial data and coefficients:

(τ0, . . . , τ5) = (1, 1,−1, 1,−3,−3), α = 1, β = 2, γ = −2.

This produces an integer sequence which extends both backwards and forwards,

. . . , 1,−1, 1, 1, 1, 1,−1, 1,−3,−3, 1,−25, 49, 1, 385, 1489, 503, 10753,−82371, . . . , (6.8)

so that it has the symmetry τn = τ−n−1. The corresponding initial data for (1.9) are (x0, x1, x2, x3) =
(−1, 1, 3,−1/3), and so the first integrals presented in [13] take the values H1 = −12, H2 = 8. Then
(fixing a choice of square root) δ1 = 1/2, which gives

λ = 2, μ = −1, K1 = −6, K2 = −4. (6.9)

After rescaling W suitably, the curve C′ is found from (3.25) to be

C′ : W2 = (t2 − 1)(19t4 + 16t3 + 2t2 − 80t − 37). (6.10)

With the Möbius transformation t = T (s) = (2s− 5)/(2s+ 5) this is transformed to

X : z2 = 4s5 + 52s4 + 35s3 + 25s2 − 375

4
s. (6.11)

Now to obtain the vector v ∈ Jac(X) as in Theorem 5.2, we start from the points on C′ given in
Proposition 4.4, and applying the inverse Möbius transformation s = T −1(t) to find the degree zero
divisor D on X corresponding to v. This produces

D = (s1, z1)+ (s2, z2)− 2∞, v =
∫ (s1,z1)

∞

(
ds

z
,

s ds

z

)T

+
∫ (s2,z2)

∞

(
ds

z
,

s ds

z

)T

, (6.12)

where s1,2 = −5

2
e∓iπ/3, z1,2 = 25

√
2e±iπ/3.
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Table 1. Values of Kleinian functions at multiples of v for sequence (6.8)

m ℘12(mv) ℘22(mv) ℘11(mv)
1 −25/4 −5/2 −125/8
2 −25/4 −25/2 −25/8
3 −25/4 15/2 575/8
4 −25/36 −5/18 475/72

(Note that we slightly changed notation here compared with (5.6); in particular, we dropped bars on the
coordinates.) Similarly, by applying the same (inverse) Möbius transformation to the coordinates given
in (4.8) and (5.3), or via the Bäcklund transformation in [24, 25], we find the divisors corresponding
to 2v, 3v, 4v ∈ Jac(X), namely D′ = (s′1, z′1) + (s′2, z′2) − 2∞, D′′ = (s′′1, z′′1) + (s′′2, z′′2) − 2∞, D′′′ =
(s′′′1 , z′′′1 )+ (s′′′2 , z′′′2 )− 2∞, where

s′1,2 = −
5

4
(5±√21), z′1,2 =

25

2

√
2(5±√21), s′′1,2 =

5

4
(3±√5), z′′1,2 =

25

2

√
2(11± 5

√
5),

s′′′1,2 =
5

36
(−1± i

√
35), z′′′1,2 =

25

486

√
2(103∓ 13i

√
35).

Using the Bolza formulae (5.4) and (5.5), this allows us to calculate the values of the Kleinian functions
℘jk(mv) for m = 1, 2, 3, 4, as presented in Table 1.

The values in the latter table, together with (1.6), yield α̂ = −1, β̂ = 2, so from (6.3) we see that
φ̃2

2 = −1, φ̃2
3 = 1 and φ̃4 = φ̃−1

2 (φ̃3 + 2). From (6.4), this is enough to determine that C2 = −1/50, and
then from φ̃3 = φ̃2

2 F(2v) we find

φ̃2 = ±i, φ̃3 = 1, φ̃4 = ∓3i.

Then we have ρ1 = 1, ρ3 = −1, ρ4 = 1/3, which means that the linear system (6.6) can be solved for
℘jk(v0), to yield

C = i√
50

, ℘12(v0) = −5/4, ℘22(v0) = 3/2, ℘11(v0) = 175/8

(where we have recorded a particular choice of sign for C). Hence, after fixing signs of the z-coordinates
appropriately, the coordinates of the points in the divisor D0 are

s(0)1,2 =
1

4
(3± i

√
11), z(0)1,2 =

√
2(1∓ 3i

√
11),

so that v0 is given by (6.7). Finally, with these values of v0 and v, the constants A, B are found from (6.1)
to be A = i/(

√
50 σ(v0)), B = −i

√
50 σ(v0)σ (v)/σ (v0 + v).
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6.3 The special case where 2v ∈ (σ )
In order to illustrate the modifications that are needed in a degenerate case, we briefly consider the
situation where 2v lies on the theta divisor. This corresponds to having

2v =
∫ (s′ ,z′)

∞

(
ds

z
,

s ds

z

)T

, (6.13)

the image of a single point (s′, z′) under the Abel map based at infinity. The formula (1.4) still makes sense,
but (since ℘jk(2v) become singular) the expressions (1.5) for the coefficients are no longer appropriate,
and Theorem 1.1 requires a slight reformulation.

Theorem 6.2 For v ∈ Jac(X) such that 2v has the form (6.13) modulo periods, with arbitrary A, B, C ∈
C
∗, v0 ∈ C

2, the sequence with nth term (1.4) satisfies the recurrence (1.1) with coefficients given by

α = φ̃2
3

φ̂2
2

α̂, β = φ̃2
3 , γ = φ̃2

3 C2
(
℘11(3v)+ α̂(s′)2 − ℘11(v)

)
, (6.14)

where φ̂2 = C3 σ2(2v)/σ (v)4, σ2(u) = ∂2σ(u), α̂ = ℘22(v) − ℘22(3v), provided that v satisfies the
constraint

det

⎛⎝ 1 0 1
℘12(v) −s′ ℘12(3v)
℘22(v) 1 ℘22(3v)

⎞⎠ = 0.

The coefficients satisfy the condition

α2β = γ 2. (6.15)

Proof. The main formulae above arise from Theorem 1.1 by taking the limit σ(2v)→ 0 with σ2(2v) �= 0,
or directly by using Baker’s addition formula and its limiting case for a shift on the theta divisor [28]. For
the necessary condition (6.15) note that by (1.1) for n = −2 with τj = φ̃j for all j and φ̃2 = 0, the identity
αφ̃3 = γ holds; squaring both sides of the latter and comparing with β in (6.14) yields the condition. �

For the purpose of the reconstruction problem, we need an additional formula, namely

φ̃2
4 = α3 + H1. (6.16)

Its proof is based on the fact that the companion sequence also satisfies a Somos-10 recurrence (see
Proposition 2.5 in [13]), but we omit further details.

6.4 The original Somos-6 sequence

For the original sequence (1.2) considered by Somos, we choose to index the terms so that

(τ0, . . . , τ5) = (1, 1, 1, 3, 5, 9), α = 1, β = 1, γ = 1.
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28 Y. N. FEDOROV AND A. N. W. HONE

We have H1 = 19, H2 = 14, as noted in [13]. Then (upon fixing a sign) δ1 = i, giving

λ = i, μ = −i, K1 = 19, K2 = 14i. (6.17)

The curve C′, found from (3.25), takes the form

C′ : W2 = (t − 1)Q(t), (6.18)

where, after removal of a numerical prefactor, Q(t) = 159025t5 + · · · + 154607 + 37224i is a quintic
polynomial with Gaussian integer coefficients whose real and imaginary parts have five or six digits. The
Möbius transformation t = T (s) = (s − i)/(s + i) sends the root t = 1 to infinity, and transforms C′ to
the canonical quintic curve

X : z2 = 4s5 − 233s4 + 1624s3 − 422s2 + 36s− 1. (6.19)

As in the previous example, by rewriting the points in Proposition 4.4 in terms of points in X, we
obtain the divisor D and corresponding vector v ∈ Jac(X) in the form (6.12), where

s1,2 = −8±√65, z1,2 = 20i(129∓ 16
√

65).

The condition (6.15) clearly holds, but it is necessary, not sufficient for 2v ∈ (σ ). However, from the first
formula in (4.8) we find that (t′∗)

2 = 1, meaning that one of the points in the divisor V01 is the Weierstrass
point (1, 0) ∈ C′, and under the Möbius transformation this means that 2v has the form (6.13) with
(s′, z′) = (0,−i), corresponding to the divisor

D′ = (0,−i)−∞
on X. Application of the formula for t′′∗ in (4.8) leads to the divisor D′′ = (s′′1, z′′1) + (s′′2, z′′2) − 2∞
corresponding to 3v, where

s′′1,2 = −18± 5
√

13, z′′1,2 = 20i(−667± 185
√

13),

while for 4v we have D′′′ = 2D′. This means that the finite values of℘jk(mv) for m = 1, 3, 4, as presented
in Table 2, can be obtained in the usual way, except that (5.5) is no longer valid for u = 4v. Instead,
in order to find ℘11(4v), we use the equation of the Kummer surface (see, e.g. [14]), which provides a
quartic relation between the functions ℘jk(u).

From the identities in Theorem 6.2 and its proof we see that α̂ = 20 and φ̃3 = 1, giving φ̂2
2 = 20,

C2 = −1/20 from the first and last formulae in (6.14), and also φ̃2
4 = 20 by (6.16). The equation (6.5)

should be modified when j = 2, but is valid for j = 1, 3, 4, which means that we can still solve (6.6) with
ρ1 = 1, ρ3 = 3, ρ4 = 3/4, and (fixing the sign of C) we find

C = i√
20

, ℘12(v0) = −1, ℘22(v0) = 10, ℘11(v0) = 79/2.

Hence v0 is given by (6.7), where the associated divisor D0 contains the coordinates

s(0)1,2 = 5± 2
√

6, z(0)1,2 = 4i(71± 29
√

6).

Thus, from (6.1), we see that A = i/(
√

20 σ(v0)), B = −i
√

20 σ(v0)σ (v)/σ (v0 + v).
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Table 2. Values of Kleinian functions at multiples of v for
sequence (1.2)

j ℘12(jv) ℘22(jv) ℘11(jv)

1 1 −16 51/2
2 ∞ ∞ ∞
3 1 −36 11/2
4 0 0 49/2

7. Conclusion

The explicit solution (1.4) is equivalent to an expression τn = A Bn Cn2
�(z0 + nz) in terms of a Rie-

mann theta function in two variables, for suitable constants A, B, C and vectors z0, z ∈ C
2. In fact (see

http://somos.crg4.com/somos6.html), a numerical fit of (1.2) with a two-variable Fourier
series was performed by Somos some time ago.

There are a number of aspects of the solution that we intend to consider in more detail elsewhere. The
companion sequence (6.2) deserves more attention, since its properties should be helpful in proving that
other Somos-6 sequences consist entirely of integers, in cases where the Laurent property is insufficient;
for example, take

(τ0, . . . , τ5) = (2, 3, 6, 18, 54, 108), α = 18, β = 36, γ = 108,

which defines a sequence belonging to an infinite family found by Melanie de Boeck. We also propose
to examine Somos-6 sequences that are parameterized by elliptic functions, including the case where the
factorization (3.17) holds.

The solution of the initial value problem for (1.1) raises the further possibility of performing separation
of variables for the reduced map ϕ̂ defined by (1.9), and finding a 2×2 matrix Lax representation for it. In
principle, such a representation might also be used to obtain a symplectic structure for ϕ̂ when αβγ �= 0,
which could shed some light on the open problem of finding compatible Poisson or (pre)symplectic
structures for general Laurent phenomenon algebras (see [8]).
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Appendix A. Derivation of the Lax pair

The general Somos-6 recurrence arises by reduction from the discrete BKP equation, which is a given
by a bilinear relation for a tau function T(n1, n2, n3) that depends on three independent variables. For
convenience we use indices to write T(n1, n2, n3) = Tjk�, (n1, n2, n3) = (j, k, �), so that the discrete BKP
equation takes the form

Tj+1,k+1,�+1Tjk� − Tj+1,k,�Tj,k+1,�+1

+ Tj,k+1,�Tj+1,k,�+1 − Tj,k,�+1Tj+1,k+1,� = 0. (A.1)

Following [7], this equation arises as a compatibility condition of the linear triad

�j+1,k+1,� −�jk� = Tj+1,k,�Tj,k+1,�

Tj+1,k+1,�Tjk�

(
�j+1,k,� −�j,k+1,�

)
,

�j,k+1,�+1 −�jk� = Tj,k+1,�Tj,k,�+1

Tj,k+1,�+1Tjk�

(
�j,k+1,� −�j,k,�+1

)
,

�j+1,k,�+1 −�jk� = Tj+1,k,�Tj,k,�+1

Tj+1,k,�+1Tjk�

(
�j+1,k,� −�j,k,�+1

)
. (A.2)

Now construct a tau function which, apart from a gauge transformation by the exponential of a
quadratic form, depends only on the single independent variable

n = n1 + 2n2 + 3n3 = j + 2k + 3�; (A.3)

so we set

Tjk� = δk�
1 δ

j�
2 δ

jk
3 τn (A.4)

for some parameters δj, j = 1, 2, 3. Substituting this into (A.1) produces the Somos-6 recurrence for τn

with the coefficients

α = 1

δ2δ3
, β = − 1

δ1δ3
, γ = 1

δ1δ2
. (A.5)

The derivation of the Lax pair for Somos-6 is somewhat more involved, but proceeds by applying
an analogous reduction procedure to the system (A.2). We suppose that the wave function also depends
primarily on the same dependent variable n in (A.3), apart from a gauge factor, taking the form �jk� =
x−ky−� ψn, where x and y are spectral parameters. By imposing this form for the wave function, together
with (A.4), we find that (A.1) gives a scalar system for the reduced wave function ψn, namely

ψn+3 = −Pn ψn+2 + x Pn ψn+1 + xψn,

ψn+5 = −x Qn ψn+3 + y Qn ψn+2 + xyψn,

ψn+4 = −Rn ψn+3 + y Rn ψn+1 + yψn, (A.6)
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where we have introduced new dependent variables

Pn = 1

δ3

τn+1τn+2

τnτn+3
, Qn = 1

δ1

τn+2τn+3

τnτn+5
, Rn = 1

δ2

τn+1τn+3

τnτn+4
. (A.7)

After identifying the prefactors from (A.5), it is clear that the above formulae for Pn and Rn are the same
as (1.13) rewritten in terms of tau functions. Using the first equation to eliminate ψn+3, the third and
second equations in (A.6) provide expressions for ψn+4 and ψn+5, respectively, as linear combinations of
ψn, ψn+1 and ψn+2, that is

ψn+4 = PnRn ψn+2 − x PnRn ψn+1 − x Rn ψn + y φ(1)n ,

ψn+5 = x PnQn ψn+2 − x2 PnQn ψn+1 − x2 Qn ψn + y φ(2)n , (A.8)

where in each case we have isolated the coefficient of y as

φ(1)n = Rn ψn+1 + ψn, φ(2)n = Qn ψn+2 + xψn.

Now by shifting n→ n+1 and n→ n+2 in the first equation of (A.6), we obtain alternative expressions
for ψn+4 and ψn+5 as linear combinations of ψn, ψn+1 and ψn+2, which combine with (A.8) to yield a pair
of linear equations of the form

L(1)(ψn,ψn+1,ψn+2) = y φ(1)n , L(2)(ψn,ψn+1,ψn+2) = y φ(2)n . (A.9)

Next, setting φ(0)n = ψn, we have φ(0)n+1 = ψn+1 = (φ(1)n − φ(0)n )/Rn, and similar equations for the shifts
φ
(1)
n+1 and φ(2)n+1 and so, using a tilde to denote the shift n→ n+ 1, this produces the matrix equation

�̃ =M(x)�, � = (φ(0)n ,φ(1)n ,φ(2)n )
T , (A.10)

where M (for n = 0) is given by (2.3), including the parameter λ = Qn/(RnRn+1) = δ2
2/δ1 = δ1β

2/α2,
as in (1.15). To obtain the simplest-looking version of M we used

(λPnRn+1 − λRnRn+1 − Pn)Rn+2 + 1 = 0, (A.11)

which is equivalent to the Somos-6 recurrence (1.1) for τn.
The system (A.9) is incomplete, because it lacks an equation for y φ(0)n , but applying the shift n→ n+1

to the first equation of this pair, and using (A.10), we obtain the missing relation. This results in the
eigenvalue equation

L(x)� = y �, (A.12)

with the Lax matrix taking the form (2.2). Upon using (A.11) and introducing the additional parameter
μ = PnPn+1Pn+2/(RnRn+1) = δ2

2/δ
3
3 = −δ1β

3/γ 2, as in (1.15), the coefficients A2, . . . , C′′0 can be written
in terms of Pn, Pn+1, Rn, Rn+1 and the constants λ,μ, and for n = 0 the resulting expressions coincide
with those in Theorem 2.1.

Equations (A.10) and (A.12) form a linear system for�, whose compatibility condition is the discrete
Lax equation (2.1), or equivalently L̃ = MLM−1, meaning that the shift n → n + 1 is an isospectral
evolution. This explains the origin of Theorem 2.1.
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Appendix B. Proof of Proposition 4.4

By (3.14) and (4.1), w̄2 = h(u)− vg(u) = h(0)+ g(0) = 0 holds at R1, R2, hence

π̃−1(R1) = (u = 0, v = −1, w = 2, w̄ = 0), π̃−1(R2) = (u = 0, v = −1, w = −2, w̄ = 0).

However, observe that on C̃ the function w̄2 = h(u) − g(u)v has zeros of order 6 at R1, R2. Hence ˜̃C
is singular at the above two points. To regularize it, observe that near u = 0, v = −1 the coordinate w̄
admits two Taylor expansions

w̄(u) = ±μ (F2 + F̄2)

√
F2F̄2 · u3 + O(u4). (B.1)

As a result, on the regularized ˜̃C each of these points π̃−1(R1), π̃−1(R2) gives rise to a pair of points,
which we denote as R̃−j , R̃+j , j = 1, 2, according to the sign in (B.1).

Next, in view of (3.15), we have

π1 (R̃
±
1 ) = (u = 0, W = (2+ 0)/

√
2 = √2, Z = 0),

π1 (R̃
±
2 ) = (u = 0, W = (−2+ 0)/

√
2 = −√2, Z = 0),

which, by (3.19), gives

t2(S±1 ) = t2(S±2 ) =
F̄2

F2
= K2 − 2+ λ− μ

K2 + 2+ λ− μ , (B.2)

W(S±1 ) =
√

2, W(S±2 ) = −
√

2. (B.3)

To determine signs of t(S+1 ), . . . , t(S−2 ), we use the expression

t = W 2 − h(u)

4μu3 (1+ λ u)Q(u) (F1u+ F2)
(B.4)

obtained from (3.16). However, this expression gives the indeterminate result 0/0 for u = 0. To resolve
it, we use the Puiseux expansions (B.1) for w̄(u), as well as the expansion of w(u), and substitute them
into W = (w+ w̄)/

√
2 to get the expansions of W 2 − h(u) in powers of u. Near R̃±1 and R̃±1 we get

W 2 − h(u) = ±2μ (F2 + F̄2)

√
F2F̄2 · u3 + O(u4).

Putting this into (B.4) and taking the limit u→ 0, yields

t(S+1,2) = t∗ =
√

F̄2/F2, t(S−1,2) = −t∗.
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Finally, to find W(S±1 ), W(S±2 ), we substitute the values of t(S±1,2) and W(S±1,2) from (B.3) into (3.24).
After simplifications, we get

W(S±1 ) = 4
H3/2

F2
(1± t∗), W(S±2 ) = −4

H3/2

F2
(1± t∗),

which completes the proof. �
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