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Abstract: User authentication for an accurate biometric system is the demand of the hour in 

today‟s world. When somebody attempts to take on the appearance of another person by 

introducing a phony face or video before the face detection camera and gets illegitimate access, 

a face presentation attack usually happens. To effectively protect the privacy of a person, it is 

very critical to build a face authentication and anti-spoofing system. This paper introduces a 

novel and appealing face spoof detection technique, which is primarily based on the study of 

contrast and dynamic texture features of both seized and spoofed photos. Valid identification of 

photo spoofing is anticipated here. A modified version of the DoG filtering method, and local 

binary pattern variance (LBPV) based technique, which is invariant to rotation, are designated 

to be used in this paper. Support vector machine (SVM) is used when feature vectors are 

extracted for further analysis. The publicly available NUAA photo-imposter database is 

adapted to test the system, which includes facial images with different illumination and area. 

The accuracy of the method can be assessed using the false acceptance rate (FAR) and false 

rejection rate (FRR). The results express that our method performs better on key indices 

compared to other state-of-the-art techniques following the provided evaluation protocols 

tested on a similar dataset. 

1. Introduction 

The performance of face detection and recognition systems have improved drastically in the last few 

years. Therefore, this innovation is currently considered as a developed system and is used in 

numerous real-world applications from banking security to smart house systems and device 

authentication. However, several studies show that this kind of systems suffers from vulnerabilities to 

fake face spoofing attacks, a disadvantage that may restrict their use in many real-time scenarios. 

Indeed, it is a very tough task to protect against spoofs based on a static photo of a face, while the 

most effort of the present face recognition study has been focused on the “image matching” part of the 

system without noticing whether the corresponding face is live or fake [1]. Many face liveness 

detection techniques have been proposed to restrain the face recognition systems against this kind of 

occurrences. These techniques have shown good performances on the existing face presentation attack 

databases. Besides, their performances deteriorate radically under real-world variations (e.g., 

illumination and camera device variations). 
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These days, the requirement for reliable identification and authentication methods is a prime 

necessity in numerous applications from banking security to smart house systems and device 

authentication. Moreover, in our real-world applications, face detection, and recognition systems are 

getting increasing attention in the last few years, specifically with the growing use of smartphone 

devices. Thereafter, almost most of the smartphones are equipped with a suitable front-facing camera 

and their computing power has grown remarkably in the recent few years, and face recognition 

systems have been easily integrated into these devices. For example, Apple and Android have already 

mobilized face recognition systems into their smartphone operating systems to permit users to unlock 

their smartphones securely. The outlook of a human face can transform rapidly due to different 

lighting conditions, and there are also many camera-related factors that may control the nature of 

images, which makes it difficult to distinguish images from a fake photo and live person. Utilizing 

different image processing methods to extract features that reflect the variance between images from 

photographs and live human faces, can be another technique. 

Work on spoofing face detection capabilities is still inadequate, and a significant part of it is based 

on the planeness of the captured surface in front of the sensor during an attack. It is also correct for 

methods that observe the 3D nature of the face by engaging supplementary strategies, which is further 

accurate now with the overview of reasonable user depth cameras. With the help of the improvements 

in 3D manufacturing technologies, readily available facial masks take the spoofing attacks one step 

ahead and present new demands for countermeasure studies. The lack of defense against biometric 

spoofing attacks is not exclusive to face biometrics systems [2]. 

Basically, among many face liveness detection techniques, the facial motion detection category, 

and the facial texture analysis category, are the two major categories. Approaches which are based on 

facial motion detection, assume subjects to display certain facial gesture, and the liveness is 

determined by the detection. Throughout the imitation procedure, facial texture analysis methods 

believe that forged faces perhaps lack about high-frequency data, and real & phony faces can be 

appropriately classified by scrutinizing and learning the facial texture data. Here the term “texture” 

signifies the high-frequency specifics in face images, and without uncertainty, the study treats 

“texture” equally with “high-frequency information.” Moreover, representing the face images in 

various scales, the multi-scale filtering techniques also work as pre-processing against variables such 

as noise and illumination. Throughout this work, we present an in-depth analysis of the existing face 

liveness detection methods and propose solutions mainly for improving the texture-based methods and 

multi-scale filtering methods concerning classification accuracy and error rate. 

This paper is organized as follows: In section 2 we discuss related works on face spoofing attacks 

and countermeasures. The structure of the proposed approach is given in section 3. Section 4 describes 

the methodology, in which the specifications of the DoG filter are presented first. Next, the feature 

extraction using LBPV based algorithm is explained, and classification using SVM classifier is 

described. Finally, the selected NUAA photograph dataset is specified. Extensive experiments are 

conducted in Section V, consisting of analysis of results and comparison. Conclusions are provided in 

Section VI. 

2. Related work 

Although it is not impossible to spoof a face verification system using make-up, plastic surgery or 

forged masks; photographs and videos are undoubtedly the most common intimidations. Furthermore, 

due to the growing acceptance of social network websites, a great deal of hypermedia content, 

especially videos and photos, is accessible on the web that can be castoff to spoof a face authentication 

system. Many studies (e.g.,[3]) have shown that most of the present biometric systems are vulnerable 

to face presentation attacks. In [4], after downloading images from social media websites, six 

commercial face authentication systems were successfully attacked. In comparison to other systems, 

face recognition systems are more susceptible to spoofing attacks. To mitigate this kind of 

vulnerabilities, effective countermeasures against face spoofing must be needed to deploy. 
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The methods which are based on advanced senses and processing systems are most likely the most 

potent face liveness detection methods because the intrinsic gap among the live and fake faces in 3D 

structure [5] and (multi-spectral) reflectance [6] properties are directly adopted by the dedicated 

sensors. For example, planar spoofing detection becomes rather inconsequential if we can get the 

depth information [5], while near-infrared or thermal cameras are well-organized in face anti-spoofing 

as most of the displays in consumer electronics discharge only clear light. On the other hand, these 

kinds of special sensors are usually costly and not compact, thus not (yet) accessible in mobile 

devices, which prevents their full arrangement. 

It would be relatively tempting to conduct face spoofing detection by analyzing only the same data 

that is used for the actual bio-metric tenacities or additional data captured with the standard acquisition 

device. This kind of software-based systems can be largely divided into active (requiring user 

association) and passive methods. Further user interaction can be very effectively used for face 

liveness detection because humans can be actively collaborative, whereas a photo or video-replay 

attack cannot respond to randomly specified action requirements. Approaches based on a challenge-

response object at performing face spoofing detection based on whether the necessary action 

(challenge), e.g., facial appearance [7], aperture movement [7] or head alternation (3D structure) [8], 

was noticed within a predefined time window (reaction). Meanwhile, practical methods, which are 

based on software can be generalized well across diverse acquisition conditions and attack 

circumstances, at the cost of usability due to increased authentication time and system complexity. 

Preferably, unreceptive approaches based on software would be superior to face spoofing detection 

since they are quicker and less invasive than their active complements. Due to the growing number of 

public standard datasets, several passive methods based on software have been proposed for face 

liveness detection. Overall, passive approaches based on evaluating diverse facial properties, like 

occurrence content [9], texture-based ones [10] and excellence [11], or signal cues, alike eye blinking 

[12], facial expression variations [13], mouth actions [13], or even color disparity because of blood 

flow (pulse) [14], to distinguish fake objects from original ones. Reflexive systems based on software 

have revealed encouraging results on the widely available databases but the initial cross-database 

assessments, corresponding [15], exposed that the performance is likely to worsen radically when 

functioning in unknown circumstances. 

Of late, the study focusses on face anti-spoofing based on software has been progressively stirring 

into evaluating and refining the generalization proficiencies of the proposed and current approaches in 

a cross-dataset setup rather than operating merely on single datasets. Between hand-crafted methods 

based on features, image distortion analysis [16], mixture of texture and image quality analysis 

through interpupillary distance (IPD) based reject selection [17], active spectral domain analysis [18] 

and pulse recognition [14] have been applied in the situation of comprehensive face liveness detection 

but with solitary reasonable outcomes. 

In our study, we have mainly focused on recognized and effective texture operator termed Local 

Binary Pattern (LBP) [19] and its improved varieties. And to further enhance the discriminate power 

of the scheme, the Difference of Gaussian (DoG) filter methods are adopted. For data classification, 

multi-SVM classifiers were utilized to calculate the results. 
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3. Proposed System 

 

Figure 1. Block diagram of the proposed countermeasure.  

Figure 1 is the block diagram of our proposed system which shows the entire flow of this paper. In 

this paper, the proposed method uses DoG filtering as the pre-processing step, and in the later part, 

LBPV based technique is used for feature extraction. Subsequently associating the input image 

through all images in the dataset, it will distinguish whether it is an original face or fake face by 

separately passing all the features via SVM classifier. 

4. Methodology & Algorithm 

4.1. Pre-Processing Step of the Proposed Method 

A captured photo of a face has better image quality than a recaptured face photo; consequently, 

recaptured picture comprises less high-frequency materials [20]. This circumstance can be detected by 

evaluating the 2D Fourier spectra of the original face and fake ones. 

DoG filtering is applied to eradicate noise while conserving the high-frequency mechanisms, which 

are notably the image edges. In this method, rather than evaluating all high-frequency bands, the high-

middle band frequency spectrum is examined. For the DoG filter, a quite narrow Gaussian is built 

without presenting noise. To filter out false low spatial frequency information, little more outer 

Gaussian can be selected. This pre-processing procedure benefits to eradicate false info and noise; 

hereafter we can see the emphasis on the portion of the range which delivers essential information to 

differentiate among captured and fake face pictures. The consequence of applying DoG filtering as the 

pre-processing phase in the proposed method is also tested in the experimental analysis segment. Thus, 

the DoG filter is considered as a band-pass filter. This band-pass filter also uses two Gaussian filters 

with standard deviations as limits. Our purpose is to maintain the high-middle-frequencies to 

distinguish the boundaries, but not much, to eliminate the noise (which is also a high-frequency). In 

this paper, a relatively fine Gaussian (   = 0.6) is formed without presenting noise. To filter out 

misleading low spatial frequency information,    = 1 is selected for the outer Gaussian. This DoG 

filter is also proposed to improve the sturdiness of LBP features. Given an image I, the DoG image at 

the scale   defined by the two parameters    and    is given by: 

 (         )  ( (      )   (      ))   (   )                                                    (1) 

4.2. Feature Extraction Step of the Proposed Approach 

LBPV is an abridged and competent joint LBP and contrast rotation technique [21]. There is no data 

associated with variance in LBP calculation. The variance is also referred to as the texture feature, and 

usually, the high-frequency texture areas have higher variations and contribute more to the 

discrimination of images [21]. Since initially, DoG filtering is applied, the high-frequency areas are all 

removed after this step. Thus, it is easier to distinguish captured and spoofed pictures by utilizing the 

LBPV procedure on these areas which are derived by DoG filtering. The contrast and pattern of 
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texture are corresponding features. For the pattern histogram, LBPV adds extra contrast measures, and 

this delivers expressively better outcomes than LBP. Both LBP and LBPV are tested using diverse 

textures in [21], to establish the prerogative. In our study, these algorithms are used. 

LBPV calculation is entirely based on LBP calculation.        is calculated as follows: 

                                                ∑  (     ) 
               

                                                       (2) 

        ( )  {
      
      

                                                                          (3) 

       is computed such that for a specified central pixel in a photo, a pattern number is calculated 

by relating its value with those of its neighbors‟. The gray value of the central pixel is    , the 

neighbors‟ value is   , in radius R of a circle, the number of neighbors‟ is P in equation (1). 

In the calculation, the LBP pattern of each pixel (   ) is used to attain LBP histogram of an      

image. 

            ( )   ∑ ∑  (      (   )  )       [   ]       
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                                                                               (5) 

K is the absolute LBP pattern value in (3). Each LBP pattern has a weighting aspect of 1 in this 

histogram. To complement contrast information LBPV procedure is used here. In Eqs. (5) and (6), the 

variance is calculated for the P sample points around a circle of radius R. 

                
 

 
∑ (    )

 
             

                                                            (6) 

                   
 

 
∑                                      
                                                     (7) 

The LBPV gathers it into the LBP bin as the weighting factors [21] and calculates the variance 

from a local region. In Eqs. (7) and (8), LBPV histogram is computed. 

                         ( )   ∑ ∑  (      (   )  )       [   ]       
 
   

 
                        (8) 

                      (      (   )  )   {
      (   )          (   )   

                                
                                   (9) 

Uniform patterns can be used, instead of applying all LBPV patterns as features in the classification 

step. Uniform patterns are nominated according to the U value which is defined as 

       (       )  | (       )|  | (     )|  ∑ | (     )|
   
    | (       )|           (10) 

In the pattern, U value is the number of spatial conversions (bitwise 0/1 changes). In the globular 

binary presentation [21], the uniform LBPV pattern has limited development or disjointedness. The 

patterns which satisfy U ≤ 2 are selected as uniform patterns. The purpose of choosing uniform 

patterns is that „uniform‟ patterns are verified to be underlying patterns of local image texture. 

Sufficient information can be attained by using only uniform patterns, instead of using all patterns. 

In the proposed approach, a method which is robust to the rotation is ideal to detect recaptured 

images. It is entirely possible to make movements while holding photos. They can even be fixed to 

make them visually closer to a 3D face or to move horizontally or vertically to act as a live face. It 

means that a rotation-invariant system is essential for the case in this study. 

There are both local and universal rotation invariant systems in texture classification. In the 

proposed approach, a fusion method, which is based on globally rotation invariant matching with 

locally variant LBPV texture features [21], is applied to extract features for classification. In that way, 

both global spatial information and local texture information is well-maintained in classification. 

4.3. Classification using Support Vector Machine (SVM)   
Given that we aim to design an efficient face anti-spoofing system with good generalization ability 

and swift response, it is required to have a suitable classifier for the extracted features. In signal 

processing [22], pattern recognition, classification applications [23], and in many more areas SVM 

[24] is successfully applied. That‟s why we prefer to adopt SVM through the Lib-SVM Library [25]. 

There are also many discrepancies of SVM for handling large-scale classification problems, such as 

LIBLINEAR and ALM-SVM; though most of the publicly available face anti-spoofing datasets (as 
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well as the dataset which is used in our research) are of an inadequate size regarding the size of still 

imageries, and subjects. An SVM classifier with RBF kernel will be trained for each group of training 

data. Here, the final LBP feature vectors will be fed into linear SVM (LIBLINEAR) classifier. An 

SVM is defined by creating high margin hyperplane for the dataset which is linearly separable and 

belongs to one of two classes. The primary purpose of the support vector machine is to generate a 

hyperplane in between data sets to specify which category it belongs to. The primary test of SVM is to 

train the device to understand the data structure and mapping the right class label. The selected 

hyperplane‟s distance is most significant to the adjacent training data points of any class [24]. 

4.4. Brief Database Description 

This section provides the basic specifications of the selected NUAA imposter database [20]. There are 

only a few numbers of widely available photo impostor databases. NUAA is one of them. It is created 

by using a generic webcam. Location and illumination condition of each session are varied. Test and 

training sets are constructed from distinct sessions. The dataset consists of 15 subjects. In each session, 

the photos of both live subjects and their photos are captured with a frame rate of 20 fps. Five hundred 

images are collected for each item. Pictures are all frontal with a neutral expression. There are no 

deceptive movements like eye blink and head movements. Therefore, captured and recaptured images 

have more correspondences, which makes the spoofing detection problem more critical.  

A high definition photograph of each subject is captured using a Canon camera for the NUAA 

photo dataset. Photos are taken in two ways. 1
st
 way is to print them on a photographic paper with the 

general size of 6.8cm×10.2cm (trivial) and 8.9cm×12.7cm (more prominent), respectively. The other 

way is to print them on a 70g A4 size paper using a standard color HP printer. To make a thorough 

evaluation with the existing methods in [20], the same dataset is selected. In this approach, test images 

are selected from the test sets of NUAA dataset; whereas the client and imposter training sets of 

NUAA dataset are used as client and impostor model sets in this. 

5. Experimental analysis 

To test the effectiveness of our proposed approach, we evaluated two different types of spoof detection 

methods: LTP (Local Ternary Pattern) features (as used in [26]), and modified DoG-LBPV features 

(as proposed). We describe our performance evaluation on the NUAA dataset [20], which is designed 

specifically for face spoofing studies and contains various spoofing attacks as well. First, we calculate 

the classification accuracy of the proposed method on the test samples. The corresponding results are 

shown in Table 1. In the following, we describe the comparison of our method with previous 

approaches to this dataset. Precisely, we computed the half total error rate (HTER), which is half of 

the sum of the false rejection rate (FRR) and false acceptance rate (FAR) formulated as: 

                                      ( )  
   ( )    ( )

 
                                                            (11) 

Where   denotes the threshold value, which makes the ROC curve. The HTER results based on this 

value are shown in Table 1. The HTER values of the proposed method and LTP based method for test 

on the whole set are 0.39% and 7.50%, respectively. 

Table 1. Performance of LTP at the threshold value (  = 5) and modified DoG-LBP on the dataset 

Methods Accuracy HTER FAR FRR AUC 

LTP 91.1 7.4 5.1 9.7 0.886 

Mod. DoG- LBPV 99.22 0.39 0.35 0.43 0.990 

The rate of face liveness detection on test sets in the dataset is displayed in Table 1. in terms of 

Half Total Error Rate (HTER), Accuracy, and Area Under the Curve (AUC) along with False 

Rejection Rate (FRR) and False Acceptance Rate (FAR) at fixed threshold value of (  = 5) for the 

LTP method. 

The receiver operating characteristic (ROC) curve is presented in Figure 2 that displays the error 

graph of False Positive Rate against True Positive Rates. ROC curves are best for equating the 
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performance analysis of any two systems. In Figure 2, the ROC curve of modified DoG-LBPV 

compared with LTP tested on NUAA database is shown. 

 

Figure 2. ROC curve of LTP and DoG-LBPV on NUAA dataset 

The modified version of DoG-LBPV features is more strong across several illuminations, 

situations, and multiple textures than the features of LTP, which is indicated by the constant advanced 

performance in the test dataset of the ROC curve. 

According to the consequences, our proposed method achieves higher accuracy and lower error 

rate. This texture descriptor-based method outclasses in comparison to the general LTP descriptor-

based method, which is also specified by all the results. It can be detected that the proposed method of 

modified DoG-LBPV is more robust to noise with a uniform pattern. 

The outcome of higher accuracy and lower value of error rates shows that the modified DoG-LBPV 

texture descriptor computes more useful features, and also has stability in unlike scenarios and lighting 

effects. It is found to be more robust for several textures.  

Furthermore, a relative assessment of modified DoG-LBPV and LTP with other prevailing state-of-

the-art methods to texture-based analysis using NUAA dataset by implementing comparable 

experimental procedures to benchmark the consequences is presented in Table 2.  

Table 2. Performance comparison on NUAA dataset 

Techniques HTER (%) 

Local Binary Pattern (LBP) [19] 18.32, 19.03 and 13.17 

Local Binary Pattern Variance (LBPV) [27] 11.97 and 13.0 

Local Ternary Pattern (LTP) 7.4 

Dynamic Local Ternary Pattern (DLTP) 3.5 

Modified DoG-LBPV 0.39 

The results specify that the combination and variations in LBP extend to good performance for face 

anti-spoofing. As compared to the conventional and simple LBP, LTP progresses the results in face 

pattern analysis because of its noise resistance stuff by quantization of 3 levels. For making 

quantization levels further stable and reliable, the modified DoG-LBPV is introduced. As per 

expectations, from the achieved results, modified DoG-LBPV provides a better outcome for face 

liveness detection in the key indices in contrast to the state-of-the-art systems. 

6. Conclusion 

In this paper, we have proposed a presentation attack detection method, which is based on the analysis 

of various contrast and texture characteristics of original and spoofed photos and modified DoG 

filtering technique. When we compared the results with the other well-known methods using the same 

NUAA database, our proposed technique has shown excellent performance. LBP based techniques are 
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very famous, and they have been used in many unique areas. In our proposed extension method, an 

LBPV method with modified DoG filtering, which analyzes both LBP (texture) and variance (contrast) 

characteristics of photos has been applied. In this approach, it is also seen that LBPV with SVM 

classifier method gives better results than LBP with SVM classifier in presentation attack detection 

case because LBPV also uses contrast information in the classification of original and spoofed photos. 

Invariant rotation is one of the critical features of this approach. There‟s an absolute possibility of 

making movements when the fake faces are used for spoofing so that this feature provides significant 

benefits.  

As a future work, we can try to improve the test results for other well-known face spoof datasets, 

especially the face data taken from high-quality cell-phone display. Moreover, the performance of 

cross-database testing needs more development. The overall cross-database performance is relatively 

weak on almost all the face spoofing detection systems. 
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