
USING PARTICLE SWARM OPTIMIZATION FOR
MARKET TIMING STRATEGIES

a thesis submitted to

The University of Kent

in the subject of computer science

for the degree

of doctor of philosophy.

By

Ismail Mohamed Anwar Abdelsalam Mohamed

March 2021

© Copyright 2021

by

Ismail Mohamed Anwar Abdelsalam Mohamed

ii

Abstract

Market timing is the issue of deciding when to buy or sell a given asset on the

market. As one of the core issues of algorithmic trading systems, designers of such

system have turned to computational intelligence methods to aid them in this task.

In this thesis, we explore the use of Particle Swarm Optimization (PSO) within

the domain of market timing.

PSO is a search metaheuristic that was first introduced in 1995 [28] and is

based on the behavior of birds in flight. Since its inception, the PSO metaheuris-

tic has seen extensions to adapt it to a variety of problems including single objec-

tive optimization, multiobjective optimization, niching and dynamic optimization

problems.

Although popular in other domains, PSO has seen limited application to the is-

sue of market timing. The current incumbent algorithm within the market timing

domain is Genetic Algorithms (GA), based on the volume of publications as noted

in [40] and [84]. In this thesis, we use PSO to compose market timing strategies

using technical analysis indicators. Our first contribution is to use a formulation

that considers both the selection of components and the tuning of their parame-

ters in a simultaneous manner, and approach market timing as a single objective

optimization problem. Current approaches only considers one of those aspects at

a time: either selecting from a set of components with fixed values for their param-

eters or tuning the parameters of a preset selection of components. Our second

contribution is proposing a novel training and testing methodology that explicitly

exposes candidate market timing strategies to numerous price trends to reduce

the likelihood of overfitting to a particular trend and give a better approxima-

tion of performance under various market conditions. Our final contribution is to

consider market timing as a multiobjective optimization problem, optimizing five

i

financial metrics and comparing the performance of our PSO variants against a

well established multiobjective optimization algorithm. These algorithms address

unexplored research areas in the context of PSO algorithms to the best of our

knowledge, and are therefore original contributions. The computational results

over a range of datasets shows that the proposed PSO algorithms are competitive

to GAs using the same formulation. Additionally, the multiobjective variant of

our PSO algorithm achieved statistically significant improvements over NSGA-II.

ii

Acknowledgements

I would like to thank Dr. Fernando Otero and Prof. Peter Rodgers for their

guidance and mentoring throughout the whole process. I would also like to thank

my parents, my wife, my daughter, my family and my friends for supporting me

throughout the entire journey. This is for you.

iii

iv

Contents

Abstract i

Acknowledgements iii

Contents v

List of Tables viii

List of Figures xi

1 Introduction 1

1.1 Thesis Structure . 5

1.2 Publications . 5

2 Market Timing and Financial Metrics 9

2.1 Market timing . 9

2.1.1 Technical Analysis . 11

2.1.2 Fundamental Analysis . 13

2.1.3 Discussion . 14

2.2 Backtesting . 15

2.3 Financial Performance Metrics . 17

2.3.1 Annualized Rate of Returns (AROR) 18

2.3.2 Annualized Portfolio Risk 18

2.3.3 Value at Risk (VaR) . 19

2.3.4 Solution Length . 19

2.3.5 Transactions Count . 20

v

2.3.6 Sharpe Ratio . 21

3 Particle Swarm Optimization (PSO) 23

3.1 What is a Metaheuristic? . 23

3.2 Optimization . 25

3.2.1 Single Objective Optimization 25

3.2.2 Multiobjective Optimization 25

3.3 Particle Swarm Optimization (PSO) 29

3.3.1 Nuances of Implementing PSO 31

3.3.2 Variations and Extensions 35

4 Related Work in Market Timing 49

4.1 Market Timing . 49

4.2 Other Uses of PSO . 56

4.3 Critique . 57

4.3.1 Volume of PSO Publications 57

4.3.2 PSO Methodology . 58

4.3.3 Limitations of Previous PSO Works 58

5 Composing Strategies with PSO 61

5.1 Encoding Strategy . 62

5.2 PSO to Tackle Market Timing . 62

5.3 Experimental Setup . 65

5.4 Results . 69

5.5 Summary . 72

6 Trend Representative Testing 75

6.1 Trend Representative Testing . 76

6.2 Computational Experiments . 79

6.2.1 Genetic Algorithm Benchmark 80

6.2.2 Comparison With Step Forward Testing 83

6.2.3 Extended Experiments . 98

6.3 Revisiting Pruning . 101

6.4 Summary . 114

vi

7 Multiobjective Market Timing 117

7.1 Expansion of Metric Set . 118

7.2 Algorithms . 119

7.2.1 General Modifications . 119

7.2.2 GA Modifications . 120

7.2.3 PSO Modifications . 123

7.3 Experimental Setup . 124

7.4 Computational Results . 126

7.5 Comparison Against NSGA-II and MACD 134

7.6 Diversity of the Pareto Front . 148

7.7 Summary . 151

8 Conclusions and Future Research 153

8.1 Contributions . 155

8.1.1 Market Timing Strategies with PSO 155

8.1.2 Trend Representative Testing 156

8.1.3 Multiobjective Optimization 158

8.2 Suggestions for Future Research . 160

8.2.1 Extending the Capabilities of the Current Algorithms 160

8.2.2 Expanding the Scope of How Market Timing is Tackled . . . 161

Bibliography 163

Appendix I: Box Plots – SF vs TRT 175

Appendix II: RadViz Plots 207

vii

viii

List of Tables

1 Publications of work done multiobjective optimization using PSO. . 48

2 PSO variants used in the experiments. 69

3 Min, Mean, Max and Buy & Hold Sharpe values for Step Forward

PSO . 70

4 Rankings of algorithms based on the Friedman non-parametric test

with Holm post-hoc correction using mean fitness. 73

5 Technical Indicators used in SF vs TRT 84

6 IRace Parameters . 85

7 IRace: SF vs TRT . 86

8 Experiment Training and Testing Data 87

9 Freidman Test: SF vs TRT, Minimum Fitness 94

10 Freidman Test: SF vs TRT, Median Fitness 95

11 Freidman Test: SF vs TRT, Mean Fitness 96

12 Freidman Test: SF vs TRT, Maximum Fitness 97

13 IRace discovered configurations for each of the algorithms tested. . 99

14 Data strands used for training and testing. 102

15 Overall average fitness by trend for each algorithm. 103

16 Friedman Test: PSOS, PSO and GA with TRT 103

17 Extended set of Technical Indicators for TRT 104

18 Computational Results: PSOS, GA and PSO with TRT 107

19 IRace: PSOSP . 109

20 Overall average fitness by trend for each algorithm. 109

21 Computational Results: GA, PSO, PSOS and PSOSP with TRT . . 112

22 Friedman Test: GA, PSO, PSOS and PSOSP with TRT 114

23 IRace Search Space for Multiobjective Algorithms 128

ix

24 IRace configurations: λ-PSO, λ-PSOSP, λ-GA 129

25 Leaderboard: λ-PSOSP, λ-GA, λ-PSO 131

26 Hypervolume: λ-PSOSP, λ-GA, λ-PSO 132

27 AROR Comparison: PSOS, λ-PSOSP, GA, λ-GA, PSO, λ-PSO . . . 133

28 Friedman Test: λ-GA, λ-PSO, λ-PSOSP 134

29 IRace Configurations: NSGA-II, MACD 137

30 Hypervolume: λ-PSOSP, λ-GA, λ-PSO, NSGA-II, MACD 138

31 Leaderboard: λ-PSOSP, λ-PSO, λ-GA, NSGA-II, MACD 139

32 AROR Comparison: λ-PSOSP, λ-GA, λ-PSO, NSGA-II, MACD . . 140

33 Friedman Test: λ-PSOSP, λ-PSO, λ-GA, NSGA-II, MACD 146

x

List of Figures

1 MACD example on QQQ. 13

2 Step-forward Testing . 17

3 Pareto dominance. 27

4 Publications by algorithm and year for CI in finance. 50

5 Strategy encoding. 62

6 Scatter Plot – Fitness vs Length for PSOSR 72

7 Trend Representative Testing – A Visual Example 77

8 Trend Representative Testing – Usage 78

9 An example of a crossover operation. 81

10 Minimum Fitness Heat Map . 89

11 Median Fitnesses Heat Map . 90

12 Mean Fitnesses Heat Map . 91

13 Maximum Fitnesses Heat Map . 92

14 Fitnesses Standard Deviation Heat Map 93

15 Histogram – Solution Lengths for PSOSP 113

16 Violin Plot - AROR for all MO Algorithms 141

17 Violin Plot - Portfolio Risk for all MO Algorithms 142

18 Violin Plot - VaR for all MO Algorithms 143

19 Violin Plot - Transactions Count for all MO Algorithms 144

20 Violin Plot - Solution Length for all MO Algorithms 145

21 RadViz Interpretation . 150

22 Algorithm box plots for AVNW2 176

23 Algorithm box plots for AVNW4 177

24 Algorithm box plots for AVNW6 178

25 Algorithm box plots for BSX2 . 179

xi

26 Algorithm box plots for COMT2 180

27 Algorithm box plots for COWN10 181

28 Algorithm box plots for COWN12 182

29 Algorithm box plots for COWN2 183

30 Algorithm box plots for COWN4 184

31 Algorithm box plots for COWN6 185

32 Algorithm box plots for COWN8 186

33 Algorithm box plots for ED2 . 187

34 Algorithm box plots for ED4 . 188

35 Algorithm box plots for ETV2 . 189

36 Algorithm box plots for EXC2 . 190

37 Algorithm box plots for IAG2 . 191

38 Algorithm box plots for IAG4 . 192

39 Algorithm box plots for IAG4 . 193

40 Algorithm box plots for IAG6 . 194

41 Algorithm box plots for IAG8 . 195

42 Algorithm box plots for JBLU2 . 196

43 Algorithm box plots for JBLU4 . 197

44 Algorithm box plots for JBLU6 . 198

45 Algorithm box plots for JBLU8 . 199

46 Algorithm box plots for KFY2 . 200

47 Algorithm box plots for LUV2 . 201

48 Algorithm box plots for LUV4 . 202

49 Algorithm box plots for LUV6 . 203

50 Algorithm box plots for LUV8 . 204

51 Algorithm box plots for MGA2 . 205

52 Algorithm box plots for MGA4 . 206

53 RadViz – IAG1 . 208

54 RadViz – MGA4 . 209

55 RadViz – IAG2 . 210

56 RadViz – BSX1 . 211

57 RadViz – LUV1 . 212

58 RadViz – KFY1 . 213

xii

59 RadViz – EXC1 . 214

60 RadViz – LUV2 . 215

61 RadViz – KFY2 . 216

62 RadViz – AVNW2 . 217

63 RadViz – PUK1 . 218

64 RadViz – LUV3 . 219

65 RadViz – KFY3 . 220

66 RadViz – EXC2 . 221

67 RadViz – LUV4 . 222

68 RadViz – EXC3 . 223

69 RadViz – PUK2 . 224

70 RadViz – MGA1 . 225

71 RadViz – ED1 . 226

72 RadViz – EXC4 . 227

73 RadViz – PUK3 . 228

74 RadViz – BSX2 . 229

75 RadViz – ED2 . 230

76 RadViz – JBLU1 . 231

77 RadViz – MGA2 . 232

78 RadViz – MGA3 . 233

79 RadViz – ATRO1 . 234

80 RadViz – AVNW2 . 235

81 RadViz – EXC5 . 236

82 RadViz – AVNW3 . 237

xiii

xiv

List of Algorithms

1 Basic PSO . 31

2 PSO algorithm adapted to tackle market timing. 66

3 PSOS and PSOSR algorithms. 67

4 PSOS and PSOSR algorithms continued. 68

5 Pruning Procedure for PSOSR . 68

6 Calculating Fitness using Trend Representative Testing 80

7 GA Benchmark Algorithm . 82

8 PSOSP with updated pruning procedure. 110

9 PSOSP with updated pruning procedure continued. 111

10 Updated Pruning Procedure . 111

11 Archive used to maintain non-dominated solutions. 121

12 λ-GA Algorithm . 122

13 Tournament Selection Procedure for λ-GA 123

14 λ-PSO Algorithm. 125

15 Get Neighbor function used to select a neighborhood guide for mul-

tiobjective PSO algorithms. 126

16 λ-PSOS and λ-PSOSP algorithms. 127

17 λ-PSOS and λ-PSOSP algorithms continued. 128

xv

Chapter 1

Introduction

“There is nothing more difficult to take in hand, more perilous to conduct, or

more uncertain in its success, than to take the lead in the introduction of a

new order of things.”

– Nicolo Machiavelli

Trading in financial markets traces its history as far back as the early 13th cen-

tury. From humble beginnings where traders met to exchange basic commodities,

financial markets have since evolved where securities, stocks, bonds, commodi-

ties, currencies and other financial instruments are traded electronically at minute

fractions of a second. After the market crash of 1987 in the USA, measures were

taken by the U.S. Securities and Exchange Commission (SEC) to prevent bro-

kers abstaining from responding to investor orders to buy and sell, which further

exasperated their losses. One of these measures introduced the Small Order Exe-

cution System (SOES). This allowed investors, bar institutions, to use computers

to submit orders on the Nasdaq exchange that were automatically matched and

executed. For the first time, traders could side step middle men and market makers

and deal with the exchange directly. Traders quickly figured that they could use

technology to submit orders and trade on the stock exchange, and that the conduit

was widely available. With time, a new kind of trader emerged: the day trader;

one that trades through the day and closes out the day with no held securities. By

the mid 1990’s, the SEC introduced another set of measures that allowed institu-

tions besides the established exchanges, such as Nasdaq and the New York Stock

1

2 CHAPTER 1. INTRODUCTION

Exchange (NYSE), to avail exchanges that electronically matched and executed

orders, known as Electronic Communication Networks (ECN). Although originally

intended as alternative trading venues , and underestimated by the established ex-

changes, electronic exchanges and ECNs grew exponentially to process roughly a

quarter of all exchange trades in the US by the early 2000s. By then, the ma-

jor exchanges such as Nasdaq and NYSE gave in and acknowledged the potential

of electronic exchanges, and through a series of mergers and acquisitions, availed

their own [73].

The birth of electronic exchanges and ECNs also ushered in a new form of trad-

ing: algorithmic trading. Traders wishing to outsmart and beat their competitors

to the market started using algorithms to embody trading strategies and submit

orders directly to the exchange. The sophistication and speed of these systems

grew with time, and started using computational and artificial intelligence tech-

niques by the late 1990s and traded with massive volume at fractions of a second

by the mid 2000s.

In order to design a trading system, algorithmic or otherwise, a designer has

to tackle five basic issues. The first issue is the “why” behind the trading. This

concerns the objectives the designer wants to achieve from their trading. These

objectives are usually defined in terms of profits, exposure to risk and the length

of time the designer wants to achieve their goals over. The objectives can be

constrained (e.g., “Double the initial capital, while allowing maximum losses of

25% over the next six months”) or open-ended (e.g. “Maximize profits while

minimizing losses for the foreseeable future using the initial capital provided”).

Once the objectives are set, the designer now has to contend with which assets or

securities to trade in, or the “what” behind trading. This issue is also known as

portfolio optimization. Deciding what to trade in is usually based on what best

serves the objectives defined by the designer, and again can be either constrained

(e.g., trading in the securities that belong only to a particular sector of the market)

or unconstrained. Having decided on why we are trading, and what securities we

are trading, the designer then has to answer “when” to actually buy or sell a

given security. This issue is known as market timing. The fourth issue a designer

has to contend with is “how”. This is also known as execution optimization, and

is concerned with how to best form and execute orders for buying or selling a

3

given security once such a decision comes so as to best serve the objectives set out

by the designer. The final issue a designer has to consider is the “frequency” of

trading. This can be anywhere in between numerous executions per second (High

Frequency Trading) to a few trades being executed every few months or longer

(Value Trading).

A large number of computational intelligence techniques were used in the de-

velopment of algorithmic trading systems, and one of these methods is Particle

Swarm Optimization [40][84]. Particle Swarm Optimization (PSO) is a search

metaheuristic first proposed by Eberhart and Kennedy in 1995 [28]. Originating

from simulations of flocks of birds in flight, PSO uses the emergent properties of

a swarm of entities, called particles, as they traverse a solution landscape seeking

optimal positions while interacting with the those around them. Each particle in

the swarm represents a candidate solution to the problem being solved. The parti-

cles follow a relatively simple dynamic in their search. First, particles will consider

their previous movement across the solution landscape, and will follow that with

a diminishing bias. Second, the particles would consider their last position across

the landscape where they fared best and how far away they have wandered. Fi-

nally, the particles would consider their neighbors, how far better they are faring

in their search for an optimum solution and will try to inch closer to the better

performing ones. By continuously factoring in these three aspects, particles start

from being randomly scattered across the solution landscape to quickly converging

on an optimum, or as close an approximation to it. PSO was first proposed as a

nonlinear function optimizer, and counted the optimization of weights on connec-

tions in a neural network as one of its first applications. Since then it has been

vastly extended to solve multiple classes of optimization problems, including single-

objective optimization, multiobjective optimization, constrained optimization and

dynamic optimization problems. A lot of extensions have also been introduced

that fused PSO with other metaheuristic paradigms to form hybrid approaches

[30].

Despite its popularity in other domains, PSO has seen limited use in the fi-

nancial domain and, in particular, within the market timing space. As mentioned

earlier, market timing is the issue of identifying when to buy or sell a given trad-

able item in a market. This observation is in comparison to other metaheuristics

4 CHAPTER 1. INTRODUCTION

such as genetic algorithms (GA) and genetic programming (GP)[40][84]. Within a

few years of the introduction of electronic exchanges and trading in the mid 1990s,

GA has become the most used metaheuristic to guide trading decisions and form

the core of market timing strategies based on the sheer volume of publications

alone [40][84]. The earliest PSO approach to market timing, on the other hand,

was introduced in 2011. Despite showing competitive performance with GA in

some applications [49][29], the application of PSO to the domain of market timing

has not been thoroughly investigated in comparison to GA.

In this thesis, we explore the use of PSO to tackle market timing. Current

approaches to market timing will either consider the tuning of the parameters of

a preset selection of components that constitute a market timing strategy, or se-

lect from a set of components with predefined parameter values. This has been

observed regardless of the algorithm being used as noted by Hu et al. [40]. Be-

ing constrained to only performing one of the functions (selection of components

or the tuning of their parameters) limits the scope of components a designer can

consider for their market timing strategy both in terms of quantity and type. We

start by addressing this limitation via the introduction of a new formulation that

considers both the selection of components that form a market timing strategy

and the tuning of their parameters in a simultaneous fashion. We then adapt

PSO to tackle market timing based on this formulation while only optimizing a

single financial metric. Another limitation to current approaches in market timing

pertains to how the algorithms are trained and tested, leaving them liable to over-

fitting to particular market trends. This leads to a suboptimal performance when

these algorithms are deployed in live trading and encounter market trends that

are different from the ones they have overfit to during development. We address

this limitation by adopting a novel approach for training and testing that we call

Trend Representative Testing. This proposed methodology is then evaluated by

comparing the performance of our PSO algorithms against a Genetic Algorithm

(GA) that was adapted to tackle market timing using the same formulation as our

PSO models in an extensive test. So far, we have considered market timing as a

single objective optimization problem whereby a single financial metric is being

optimized. This is not the case in real trading and designers of algorithmic trading

systems would seek to optimize a number of financial metrics representing various

1.1. THESIS STRUCTURE 5

aspects of profits, losses and exposure to risk. As a result, our final contribution in

this thesis is considering market timing as a multiobjective optimization problem

and adapting our PSO and GA algorithms to tackle it accordingly.

1.1 Thesis Structure

The remainder of this thesis is structured as follows. We begin by introducing the

reader to the issue of market timing and discuss current approaches in Chapter

2. We also consider how market timing performance is evaluated and introduce

the financial metrics that are to be optimized by our algorithms. In Chapter 3

we discuss the basis of the algorithms to be used in building market timing strate-

gies and discuss the concepts of single and multi- objective optimization. This is

followed by a look at the related work to PSO, GA and multiobjective optimiza-

tion in Chapter 4. Chapter 5 describes how we adapted PSO to tackle market

timing while using a formulation that considers both the selection of the compo-

nents that constitute a strategy as well as tune their parameters in a simultaneous

fashion. Chapter 6 introduces a novel training and testing approach for market

timing strategies as well provide an extensive comparison between the performance

of PSO and GA in composing such strategies. Chapter 7 shows the transition

from considering market timing as a single objective optimization problem to a

multiobjective one, and shows the adaptations that were needed in terms of the

algorithms to make this transition possible. Finally, in Chapter 8 we conclude

by providing a summary of our contributions and suggestions for future research.

1.2 Publications

During work on this thesis, a number of publications were produced and these

form the basis of some of the material discussed in the following chapters. These

publications are listed below along with which chapters they influenced.

� Ismail Mohamed and Fernando E. B. Otero (2018). Using Particle Swarms to

Build Strategies for Market Timing: A Comparative Study. In Swarm Intel-

ligence: 11th International Conference, ANTS 2018, Rome, Italy, October

6 CHAPTER 1. INTRODUCTION

29-31, 2018, Proceedings, Springer International Publishing, pp. 435–436.

This was the first publication and took the form of an extended abstract. It

describes the first attempt at adapting PSO to tackle market timing based

on a formulation that considers both the selection of components that make

up a strategy as well as the tuning of their parameters. This work influenced

Chapter 5.

� Ismail Mohamed and Fernando E. B. Otero (2019) Using population-based

metaheuristcs and trend representative testing to compose strategies for mar-

ket timing. In Proceedings of the 11th International Joint Conference on

Computational Intelligence - Volume 1: ECTA, (IJCCI 2019), INSTICC,

SciTePress, pp. 59-69. This is a full paper that introduces a novel train-

ing and testing approach known as trend representative testing as well as

an extensive test comparing the performance of PSO and GA in producing

market timing strategies. This influenced the material seen in Chapter 6.

This paper was shortlisted for the best student paper award.

� Ismail Mohamed and Fernando E. B. Otero (2021) Building Market Timing

Strategies Using Trend Representative Testing and Computational Intelli-

gence Metaheuristics. In Computational Intelligence, IJCCI 2019, Revised

Selected Papers (Book Chapter). This is an extended version of the ECTA

2019 paper and influences Chapter 6 as well.

� Ismail Mohamed and Fernando E. B. Otero. (2020) A multiobjective opti-

mization approach for market timing. In Proceedings of the 2020 Genetic and

Evolutionary Computation Conference (GECCO ’20). Association for Com-

puting Machinery, New York, NY, USA, 22–30. This is a full paper that sees

the transition to considering market timing as a multiobjective optimization

problem. This paper influences the material in Chapter 7. This paper was

shortlisted for a best paper award in its track within the conference.

� Ismail Mohamed and Fernando E.B. Otero (2021). A Novel Multiobjective

Particle Swarm Optimization Algorithm for Market Timing. In Transactions

on Evolutionary Computation (Submitted). This is an extended version of

1.2. PUBLICATIONS 7

the GECCO ’20 paper and includes comparisons with two additional bench-

marks. This journal paper also influences the material in Chapter 7.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Market Timing and Financial

Metrics

“The public, as a whole, buys at the wrong time and sells at the wrong time.”

– Charles Dow

As alluded to in the previous chapter, market timing is concerned with deciding

when to buy or sell a given security on the market and forms the central problem

being tackled by the algorithms in this thesis. In this chapter, we take a deeper

look at what market timing means, how market timing strategies are formed and

how their performance can be evaluated.

2.1 Market timing

Market timing can be formally defined as the problem of deciding when to buy or

sell a given security on the market based on expectations of future price movements.

Expectations of where prices could be in the near future can be used to guide a

trader’s actions. For example, if the expectation on a given asset on the market is

that prices will go up, a trader can choose to buy the given asset and sell at a future

date when the prices have gone up to expectation, profiting from the difference in

prices. If the expectation for the price is to go down, a trader can choose to sell

any held assets to avoid incurring a potential loss. If the trader does not hold any

9

10 CHAPTER 2. MARKET TIMING AND FINANCIAL METRICS

assets that are affected by an expected downturn in prices, the trader might choose

to sell the affected assets by loaning them from another trading entity and then

redeeming them at a lower price, thus profiting from the downturn. This practice

is known as short selling. The issue of market timing is one of the core issues

faced by the designer of a trading system along with defining system objectives,

securities traded (also known as portfolio composition) and execution optimization

as mentioned in the previous chapter.

A common strategy to tackle market timing is to use a collection of components,

where every component t consumes information regarding a security and returns

a signal indicating whether to buy or sell [44]. A component’s signal is limited to

three values: 1 for a buy recommendation, −1 for a sell recommendation and 0 for

a hold recommendation. Every component has a weight and a set of parameters.

The parameters control the behavior of a component and they are unique to each

component type. The weight controls how much influence the component has on

the overall signal produced by the candidate market timing strategy or solution.

The overall signal of the candidate solution is taken as the aggregation of weighted

components, and interpreted as follows: buy when positive, sell when negative or

hold otherwise. Formally, we can present this formulation as follows:

solution = {w1t1, ..., wntn},∀ti : {t1i , ..., txi } (1)

signal =
n∑
i=1

witi (2)

where x denotes the number of parameters for the component at hand, w represents

the weight assigned to the component at hand, t represents a single component

and n is total number of components within the solution. The weights for the

components are all normalized to be between 0 and 1, and have a total sum of

1. The varying combinations of components, along with varying values for com-

ponent weights and parameters, produce a rich landscape of candidate solutions

that return different signal values for the same market conditions.

Traders in financial markets have continuously looked for ways to best decide

when to take action with a given security, and over time developed numerous

components that can digest market context and produce signals [44]. Two distinct

2.1. MARKET TIMING 11

schools of thought have emerged over time in terms of how market context should

be processed, and hence how signals are produced. The components we have

available today can be categorized to belonging to either one of these schools.

These schools are technical analysis and fundamental analysis. Over the next few

subsections, we discuss the reasoning behind each of these schools of thought,

how traders would build market timing strategies based on components from each

school and our choice in how we use components in this thesis.

2.1.1 Technical Analysis

Technical analysis can be defined as the analysis of a security’s historical price

and volume movements, along with current buy and sell offers, for the purposes of

forecasting its future price [44][74]. Technical analysis can trace its roots to the 17th

and early 18th century with the work of Joseph De La Vega on the Amsterdam

stock exchange and Homna Munehisa on the rice markets of Ojima in Osaka.

Charles Dow helped set the foundations of modern technical analysis with his

Dow Theory, introduced in the 1920s. The philosophy behind technical analysis

is built upon three pillars: price discounts all the information we need to know

about the traded security, prices move in trends and history has a likelihood of

repeating itself. The first pillar assumes that all the forces that can affect the price

of a security have been accounted for and already exerted their influence when

the actual trade took place. This includes the psychological state of the market

participants, the expectations of the various entities trading in that particular

security, the forces of supply and demand and the current state of the entity which

the stock represents amongst other factors. It is therefore sufficient to only consider

price movements and their history, as they are a reflection of all these forces and

their influence. The second pillar assumes that prices move in trends based on the

actions of traders currently dealing in that security and their expectations. For

example, if traders expect that demand will increase for a particular stock they

would buy that particular stock in order to resell at a higher price for profit. As

more traders react to this behavior by buying into the security themselves, hoping

to generate a profit in the same manner, the price of the security is driven higher

and higher in a cascade. The security is then considered to be in an uptrend. The

12 CHAPTER 2. MARKET TIMING AND FINANCIAL METRICS

trend takes its course, and an opposite cascade of selling occurs, the security is

considered to be in an downtrend. Being able to identify the trend a security is

currently in will enable the trader to take the correct course of action within the

confines of their strategy. The third pillar assumes that markets, presented with

an almost similar set of stimuli and circumstances, have a tendency of reacting in

the same fashion as it had in previous exposures. This was proven empirically in

the histories of various securities across many markets over time as traders react

in the same consistent fashion to shifts in price [44].

Techniques employing technical analysis will often take the form of functions

known as indicators. Indicators will take in price history, along with a set of pa-

rameters that govern various aspects of an indicator’s behavior, and return a signal

– an indication of whether it is favorable to buy or sell at the current moment.

An example of a technical analysis indicator is the Moving Average Converge Di-

verge (MACD) indicator [67]. MACD depends on studying the exponential moving

averages of the price data in an attempt to identify the momentum behind the un-

derlying trend in the price. The MACD indicator uses two exponential moving

averages, a fast one and another slow one, and the period of both being user-defined

parameters. By subtracting the fast moving average from its slow counterpart, we

arrive at a new series called the MACD series. We then further smooth the MACD

series by a user defined parameter to generate what is known as the Signal line.

Crossover points between the Signal line and the MACD series indicate an immi-

nent change in momentum and a subsequent change in the direction of the current

price trend. Depending on the direction of the crossover, we either buy (when the

signal crosses up) or sell (when the signal line crosses down). An example of this

can be seen in Figure 1.

As an exhaustive list of all indicators currently available to the modern trader

would easily fill multiple volumes, it is beyond the scope of this thesis. Instead, the

reader is directed to the works of Pring [76] and Kaufman [44] for a more detailed

look at the world of technical analysis.

2.1. MARKET TIMING 13

Figure 1: An example of the MACD indicator1. The top chart shows the raw
price data of the Nasdaq 100 ETF (QQQ). The bottom chart shows the MACD
technical indicator applied on the QQQ data. The blue and red lines represent the
MACD series and the Signal line respectively. Two crossover events were detected
and are marked by the arrows. The first event shows the Signal line crossing down
over the MACD series, indicating that the momentum for the upwards movement
has ended and we are now in a downtrend, hence generating a sell signal. The
opposite of these circumstances are detected in the subsequent event, generating
a buy signal.
1 Image from Yahoo! Finance

2.1.2 Fundamental Analysis

Fundamental analysis is the process of deriving the value of a security by analysis

of the financial state of the company it represents [74]. This will include ana-

lyzing current and previous financial documents and accounting records for the

company, considering current management personnel and their performance in the

past, sales performance history, earning history, current market sentiment towards

the company and macroeconomic conditions amongst many other factors. After

considering these factors, analysts can arrive at a fair value for the security and

a projection for it moving forward. Fundamental analysis is built on the core

assumption that a discrepancy occurs between a security’s fair price and market

price as the market moves to close that gap. Recommendations for buying or sell-

ing the security are therefore based on identifying this discrepancy and how best

to utilize it to achieve returns.

Although the more traditional of both approaches, fundamental analysis is not

without its caveats. A major issue with fundamental analysis is the rate of release

14 CHAPTER 2. MARKET TIMING AND FINANCIAL METRICS

of information for the sources of analysis. Sales and Revenue reports are usually

released on a quarterly schedule, while tax filings are only published annually. This

could be problematic for strategies working on smaller time horizons, such as trad-

ing on a daily or second-by-second basis. In efforts to work around this limitation,

fundamental analysis has expanded to include the emergent field of social media

sentiment analysis [68][93]. Sentiment analysis on social media networks is the

process of mining these networks for the sentiment of their participants towards

all aspects, micro or macro, that could affect a traded security. As contribution

on social media occurs at a much higher frequency than the publication of finan-

cial documents and reports, traders can act much faster and utilize fluctuations in

sentiment to guide buy and sell decisions.

2.1.3 Discussion

The existence of these two methods leaves us with a choice: should a trader build

their strategy on technical methods or fundamental ones? Although experts on

each side would stand by their purest approaches to use one school of thought

over the other, a large number of traders would base their strategies on techniques

from both sides. It is also quite common for traders to use fundamental analysis

for portfolio composition, then use technical analysis for market timing. It would

actually be prudent to use methods from both schools as that would hedge the

trader’s risk in one or more of the components being mistaken or fed false data1,

and thus produce signals that might result in losses. At the end of the day, it

depends on what a trader is comfortable with using and their financial objectives to

choose components from either or both schools. For practical aspects, we limit our

choice of components in this thesis to those of the technical analysis nature. The

reasons behind that is that open-sourced implementations of numerous technical

indicators are widely available and the data required to use these components

(price histories) is freely available. Fundamental analysis components, on the

other hand, require the use of market data that is not as freely available as their

technical analysis counterparts.

1An example of this would be using a purely fundamental approach while trading Enron
before its crash and bankruptcy in late 2001. A post-mortem investigation by the U.S. Securities
and Exchange Commision (SEC) showed that the information published in the firm’s financial

2.2. BACKTESTING 15

2.2 Backtesting

Before deploying a market timing strategy, it is important to validate that the

concepts behind it are sound and that it is likely to reach the financial goals it was

set out to achieve. This is done via backtesting: a process where the strategy’s

recommendations are executed against historical data with the aims of simulating

a real market. During this process of emulated market trading, we keep track of

a number of metrics, discussed in the next section, that represent attained profits

and losses incurred. We start with a stream of price action data pertaining to a

particular security traded on the stock market. The data points on this stream

could represent the prices at the end of every second, minute, day or other time

interval depending on the type of trading we want to emulate. A window of the

previous (n− 1) prices is then fed to all the components that constitute a strategy

in order to arrive at a recommendation or signal for the current time interval (n).

To get the overall signal for time interval n, we simply aggregate the individual

signals produced by each component of the strategy multiplied by its respective

weight. If the overall signal is to buy, then a buy order is generated and executed

against the price data, and vice versa. During order execution, we keep track of

the impact that has on the capital alloted for investment and the shares currently

held. This process is played forward until the price stream is consumed. For the

purposes of this thesis, we emulate a day trading process whereby the data points

on our price streams represent the prices achieved by a particular security at the

end of the day. As for the types of orders, we use a simple market order type with

immediate execution. When a buy signal is attained, the backtesting procedure

would use all available capital to buy shares at current market price. When a sell

signal is received, all current shares are liquidated at current market price. If no

shares are held, the available capital is used to sell the maximum amount of shares

possible on credit only to buy them back and repay the creditor (the system in

this case) at the next buy signal. This is also known as short selling. Any shares

held at the end of the backtesting procedure are liquidated at the last market price

observed on the last time interval in the testing price stream.

documentation were false and misleading, leading to investments by market participants that
were built on inaccurate assumptions.

16 CHAPTER 2. MARKET TIMING AND FINANCIAL METRICS

This leads us to the questions: Which market data to use to simulate the mar-

ket? How much data should be used? The typical process is to start with a strand

of historical prices at the time interval to be used for backtesting. The strand

of history is then partitioned into two: training and testing, with the training

partition taking a chronologically earlier section of the strand than testing. The

training section is exposed to the strategy and trades are executed against it. The

performance of the system is then assessed and if found unsatisfactory, the strat-

egy is tuned and adjusted. Once satisfactory, the system is then run against the

testing section of the strand. If at this point the system fails to achieve its goals,

then there is something fundamentally amiss with the core strategy and the trader

should rethink it. This style of backtesting is known as Step Forward Testing [44],

and it is the incumbent method in training and testing when it comes to pub-

lications using computational intelligence techniques for market timing [84, 40].

The problem with Step Forward testing is that the system might not be exposed

to a variety of price movement trends. It might only be exposed to say, an up-

trend, that persists throughout training and testing. Although performing well

in backtesting, the system is likely to suffer when encountering a downtrend or a

sideways movement of prices during live trading. An example of this can be seen

in Figure 2. As we can see here, the underlying trend persistent throughout both

the training and testing sections of the data is an upwards movement. We can

therefore expect the market timing strategy to perform well when encountering an

upwards trend in live trading, but the performance will suffer if we encounter a

downwards trend for example. This liability of overfitting has been noted in sur-

veys on the use of computational intelligence techniques for market timing [84, 40]

and in publications regarding the synthesis of trading systems [44]. To remedy

this problem, a trader might opt to backtest against a longer strand of history,

where multiple trends can be seen across time. But what if the history of the

security selected for backtesting does not have a variety of trends? An alternative

approach would be to backtest against multiple strands of history, from multiple

securities, that explicitly undergo various price movement trends and the average

performance across these various strands is taken as indicator of the strategy’s

quality. The latter approach is seen as the superior of the two, and it is the cur-

rent recommendation by market professionals such as Kaufman [44]. We explore

2.3. FINANCIAL PERFORMANCE METRICS 17

Figure 2: An example of dividing price data for step-forward testing1. The data
shown here represents daily prices for the Microsoft (MSFT) security on the NAS-
DAQ market between 2016 and early 2019. The red line represents the point of
division, with the first two years of data being used for training, and the later
year used for testing. The data represents an example of the liability for Step For-
ward testing to overfit, as the entirety of data shown here represents an extended
upwards trend. Algorithms trained and tested on this data are liable to perform
poorly when exposed to a downtrend.
1 Image from Yahoo! Finance

the use of backtesting using Step Forward testing in Chapter 5 and the transition

to a more robust training and testing methodology that attempts to remedy the

shortcomings of Step Forward testing in Chapter 6.

2.3 Financial Performance Metrics

As mentioned in the previous section, backtesting is used to assess the perfor-

mance of a candidate market timing strategy based on one or more financial met-

rics. These financial metrics measure the effects the transactions produced by the

market timing strategy on the initial capital committed to investment in terms of

profits gained, losses incurred, exposure to risk and confidence in these measures.

An underlying assumption adopted by all the metrics presented in this section is

that they follow a Normal or Gaussian distribution. This assumption affects how

18 CHAPTER 2. MARKET TIMING AND FINANCIAL METRICS

the metrics are scaled to annual levels, the default values of confidence factors

selected and the impact of data sample size on error. In the following subsec-

tions, we discuss the financial metrics we use during backtesting in one or more

of the experiments in this thesis. These metrics are therefore considered as viable

objectives to optimize either individually or simultaneously.

2.3.1 Annualized Rate of Returns (AROR)

The Annualized Rate of Returns (AROR) is defined as the amount of returns on

initial capital invested adjusted to reflect an annual rate. AROR can be calculated

as follows:

ARORsimple =
En
E0

× 252

n
(3)

where En is final equity or capital, E0 is initial equity or capital, 252 represents

the number of trading days in a typical American calendar and n is the number

of days in the backtesting period. AROR values are interpreted based on initial

capital, final capital and the length of the backtesting period. For example, given

an initial and final capital of 1000000, and a backtesting period of 252, a value of

one would indicate breakeven. Values above one would indicate gains, while values

below one indicate losses. When used as a metric to be optimized, AROR values

are maximized.

2.3.2 Annualized Portfolio Risk

Annualized portfolio risk is defined as the volatility of returns encountered during

trading within a specific time period. Annualized portfolio risk is calculated as

follows:

Risk = σ(returns)×
√

252 (4)

where σ(returns) is the standard deviation of the returns on the trades performed

during backtesting. The standard deviation is multiplied by the square root of 252

(the typical number of trading days in an American calendar) to return an annu-

alized figure. Since the annualized portfolio risk is presented in units of currency,

ideally you would want to minimize this variance in returns as much as possible. A

strategy with low variance means that the gains obtained were evenly distributed

2.3. FINANCIAL PERFORMANCE METRICS 19

across the transactions that were made throughout the lifetime of the strategy.

This would indicate that the strategy is stable – more or less of such transactions

would result in gains or losses that can be easily estimated. On the other hand,

a strategy with a relatively high variance means that some transactions resulted

in low gains or losses, while others resulted in much higher gains or losses. A

change in the volume of transactions would result in an unknown number of gains

or losses, as we would be unable to estimate the impact of a single transaction

based on previous results. This would indicate that the strategy we have at hand

is an unstable one. It is, therefore, important that we reduce Portfolio Risk as

much as possible. When used as a metric to be optimized, Portfolio Risk values

are minimized.

2.3.3 Value at Risk (VaR)

Value at risk represents the likely value of the initial capital in terms of units of

currency we are liable to lose based on a given confidence level. This is calculated

as follows:

VaR = µ(daily returns)− cσ(daily returns) (5)

where daily returns represents the returns achieved day by day during backtesting,

µ represents the mean of those returns and σ represents the standard deviation

of the daily returns. The confidence level c is a user controlled parameter that

represents the statistical confidence of losses the user would like to see. A default

value of 1.65 (representing 95% confidence) is the most used one. When used as a

metric to be optimized, VaR values are minimized. Since VaR values are negative

in nature, they are usually multiplied by −1 as a matter of convenience during

optimization.

2.3.4 Solution Length

Solutions that are longer in length imply the involvement of a large number of

signal generating components. The solution length is determined by counting the

number of components within the solution that have a weight above zero, i.e.

components that have a positive contribution towards the aggregate signal that is

20 CHAPTER 2. MARKET TIMING AND FINANCIAL METRICS

generated. Any components that have a weight of zero have their contributions to

the aggregate signal nullified, and are therefore not considered for solution length.

When used as a metric to be optimized, solution length is usually minimized.

This is based on the fact that shorter solutions imply the use of a fewer number of

components and thus would incur less of a computational cost compared to longer

solutions. Shorter solutions are also more comprehensible by the end user when

compared to their longer counterparts, and thus more desirable. It is for these two

reasons that solution length are usually minimized when used as a metric.

2.3.5 Transactions Count

The number of transactions produced by a market timing strategy is significant in

that it gives an indication of how stable that strategy is, and that is based on the

concept of sample error. Given a set of returns, the approximate error in that set

can be gauged using standard deviation. Higher values of standard deviation would

indicate that the returns are erratic or volatile, and that measure is calculated in

a form under the Annualized Portfolio Risk. Our confidence in that measure of

volatility increases as the number of available data points increases, which in turn

reduces the sample error. Sample error can be calculated as follows:

Sample Error =
1√
N

(6)

where N is the number of data points, where a data point represents a single

transaction. It is therefore advantageous to maximize the number of data points

available, and hence maximize the number of transactions generated by the mar-

ket timing strategy when using transaction count as a metric to be optimized. As

transactions have a cost in real trading, a system that generates a disproportion-

ate number of transactions would result into a hefty cost that could obliterate

any returns gained. In order to avoid such situations, and reach reasonable trade-

offs, we simulated transaction cost while backtesting based on a fixed commission

model. To calculate this value, we first calculate a working commission, which is

a fixed value charged per share being bought or sold in the transaction. If the

2.3. FINANCIAL PERFORMANCE METRICS 21

working commission does not drop below a minimum threshold or exceed a max-

imum threshold, then the working commission is considered the transaction cost;

otherwise, the minimum or maximum threshold is considered the transaction cost

depending on whether the working commission was below the former or exceeded

the latter. This fixed commission model is based on Interactive Brokers (IB) fixed

commission model 2. The values used for the parameters of the commission model

are:

� Per share: $0.005

� Minimum Threshold: $1.0

� Maximum Threshold: 1% of total transaction value.

2.3.6 Sharpe Ratio

Described by William F. Sharpe in [81], the Sharpe Ratio is a composite metric

that combines both the rate of returns (AROR) and portfolio risk. The Sharpe

Ratio is calculated as follows:

Sharpe Ratio =
AROR− Benchmark Returns

Annualized Portfolio Risk
(7)

The benchmark returns in the above equation represents risk free returns that

would have been obtained for the same trading period had no trading action have

taken place. A usual benchmark used to model this would be investments in fixed

rate government bonds over the same period of trading in question. A variation

of the Sharpe Ratio exists that uses a benchmark with some inherit risk, such as

investing in an Exchange Traded Fund (ETF), and is known as the Information

Ratio.

2https://www.interactivebrokers.com/en/index.php?f=1590&p=stocks1

22 CHAPTER 2. MARKET TIMING AND FINANCIAL METRICS

Chapter 3

Particle Swarm Optimization

(PSO)

“How does nature amplify the intelligence of groups? It forms swarms.”

– Louis B. Rosenberg

In this chapter, we take a deep look into the Particle Swarm Optimization

(PSO) metaheuristic. We start by defining what a metaheuristic is in general, and

the two types of optimization problems metaheuristics are used to solve. This is

followed by a discussion of the inception of the PSO algorithm and the practical

issues involved in its implementation. We then end our look into PSO by present-

ing the various extensions to the algorithm introduced in the literature to either

improve its performance or adapt it to solve particular categories of problems.

3.1 What is a Metaheuristic?

While heuristics are problem specific strategies to find solutions, metaheuristics are

algorithms that exist at a higher level of abstraction. Metaheuristics are strategies

that guide a search over a solution landscape, agnostic of the actual fitness function

[10]. Metaheuristics will often strike a balance between exploring the overall land-

scape, and exploiting regions of high quality solutions. Research in metaheuristics

23

24 CHAPTER 3. PARTICLE SWARM OPTIMIZATION (PSO)

can be traced as far back as the 1980s, with the introduction of the Simulated An-

nealing algorithm. Since then, more metaheuristics were introduced to the scene,

including Genetic Algorithms, Genetic Programming, Greedy Randomized Adap-

tive Search Procedure (GRASP), Tabu Search, Memetic Algorithms, Ant Colony

Optimization (ACO) and Particle Swarm Optimization (PSO).

Although many taxonomies were introduced in literature to categorize meta-

heuristics, the one proposed by Glover and Sörensen in [34] was found to be quite

succinct. In it, a metaheuristic can be categorized as belonging to one of the

following categories:

� Local search metaheuristics: These algorithms iteratively make small changes

to the solution representation in an attempt to improve solution quality. In

effect, the algorithm searches the immediate neighbors of the solution at

hand for a better candidate, and hence the moniker local search. Simulated

Annealing and Tabu search are examples of such metaheuristics.

� Constructive metaheuristics: These algorithms start with a single compo-

nent and progressively add other components till a full candidate solution is

attained. Greedy Randomised Adaptive Search Procedure (GRASP) is an

example of such a metaheuristic [38].

� Population based metaheuristics: These algorithms rely on a collection of

entities, where each entity represents a candidate solution. The entities then

interact in order to arrive at new candidates, and the process continues

till improvement in the candidates produced ceases, or some other stopping

criteria is reached. Genetic Programming [53] and Genetic Algorithm [37]

were among the first population based metaheuristics .

� Hybrids: These metaheuristics combine the dynamics of one or more of the

aforementioned categories. Particle Swarm Optimization (PSO) [28] can be

considered a hybrid metaheuristic as it combines elements from both local

search and population based approaches.

3.2. OPTIMIZATION 25

3.2 Optimization

When considering search over a solution landscape, metaheuristics are designed to

seek areas of optimality. These areas are defined by providing optimum values for

one or more objective functions – a quantity that is either minimized or maximized

in order to find a solution to the problem being tackled by the metaheuristic.

We can, therefore, look at search metaheuristics as tools for solving optimization

problems. Optimization problems are generally categorized into either being single

objective or multiobjective optimization problems. In the following two subsections

we will look into what is entailed by each type of optimization problem in terms

of requirements from a metaheuristic to tackle each type.

3.2.1 Single Objective Optimization

Single objective optimization problems are defined as those with a single point

of optimality on their solution landscapes. If the problem is of the minimization

variety, then that point would the one that produces the least value, compared

to all other points, from the fitness function related to that problem. Let x∗

denote the point of most optimality, then the previous statement can be presented

formally as:

f(x∗) < f(x),∀x ∈ S (8)

where x represents all valid points on the search landscape S. If the problem is

of the maximization variety, then the less than sign is exchanged for a greater

than sign in the previous equation. The aim of a metaheuristic tackling a single

objective optimization problem is to locate x∗, or come as close to it as it can.

3.2.2 Multiobjective Optimization

Multiobjective Optimization Problems (MOPs) are defined as problems that entail

the optimization of more than one fitness metric [30]. Assuming minimization, this

can be represented as:

26 CHAPTER 3. PARTICLE SWARM OPTIMIZATION (PSO)

minimize F (x) = [f1(x), f2(x), ..., fk(x)]

subject to gi(x) ≤ 0, for i = 1, 2, ..., n

hi(x) = 0, for i = 1, 2, ...,m

where

� x represents a candidate solution to the problem being solved.

� F (x) represents the set of k objectives being optimized.

� gi(x) represents the set of n inequality constraints.

� hi(x) represents the set of m equality constraints.

As multiple fitness metrics are being optimized, it is likely that scenarios would

arise where some of the objectives will be in contradiction to one another. This

means that optimizing one metric could be detrimental to another in the set of

metrics being optimized. This complicates the notion of which solution would

be considered optimal. The notion of optimality in the context of multiobjective

optimization problems is discussed next.

3.2.2.1 Optimality, Dominance and Pareto Fronts

Hypothetically, let us assume that we are tackling a multiobjective optimization

problem to minimize two fitness metrics. We are presented with three candidate

solutions to the problem: x1(3, 4), x2(4, 3) and x3(5, 5). Which solution would

be considered the more optimal one? This leads us to the notion of dominance.

Dominance between solutions can be defined as:

Definition 1. Dominance: Given two solutions, x and y, we can say that solu-

tion x dominates solution y (x ≺ y) if:

� x is not worse than y across all fitness metrics being optimized.

� x performs better than y in at least one fitness metric.

3.2. OPTIMIZATION 27

Figure 3: A graph showing an example of dominance. Both solutions x1 and x2
dominate solution x3 when it comes to minimizing both the O1 and O2 fitness
metrics. The shaded region shows the area dominated by x1 and x2.

From our example, we can say that both x1 and x2 are better than x3 in terms

of fitness, as both have lower values for both metrics being optimized. They also

show dominance to solution x3 according to definition 1. This can be seen in Fig-

ure 3. Dominance is therefore the primary measure of optimality in multiobjective

domains. This is in contrast with single objective optimization that have a simpler

measure of optimality: the value of the metric itself. Then, what about x1 and x2,

which would be considered the more dominant, and hence more optimal? Both

x1 and x2 have an advantage over the other in one of the metrics, and thus both

do not comply to definition 1. Both solutions are considered non-dominated, and

hence both are considered as viable solutions to the problem. In this sense, solving

multiobjective optimization problems becomes a search for all non-dominated so-

lutions within the search space. This leads us to the notion of Pareto Optimality:

a solution is considered Pareto optimal if there exists no other solution within the

search space that dominates it. The set of all Pareto optimal solutions is known as

a Pareto set, and their corresponding fitness values is known as the Pareto front.

28 CHAPTER 3. PARTICLE SWARM OPTIMIZATION (PSO)

The discovery of this set, and hence its corresponding front, is then the goal of all

metaheuristics tackling multiobjective optimization problems.

3.2.2.2 Schemes for Solving Multiobjective Optimization Problems

Although discovering the Pareto Front within a multiobjective optimization prob-

lem’s search space is the theoretical answer, it is not the only practical way in

tackling such problems. In this section, we list the types of schemes used to tackle

MOPs across the literature. These definitions are based on [30, 79].

� Aggregation Schemes – One of the simplest ways in tackling MOPs is

to combine the fitness metrics into a new single metric that is optimized.

This recasts the problem as a single optimization problem, and allows meta-

heuristics that are designed to solve single optimization problems to tackle

MOPs. The various fitness metrics can be assigned either static weights in

the new unified metric that do not change over the course of the search, or

dynamic ones whose values do change throughout the search process. The

issue with using the aggregation scheme is that metaheuristics that employ

such a scheme will be geared towards single objective optimization, and thus

will return a single answer. Measures will have to be taken to return an

approximation of the Pareto front. This could include running the meta-

heuristic a number of times instead of just once, or using a niching variant

of the metaheuristic to return solutions from different regions of the search

space.

� Criterion or Lexicographic Schemes – In this scheme, the fitness metrics

involved in the MOPs are first ranked in terms of priority. The metaheuristics

then optimize the objectives according to the rank, from highest to lowest.

The optimization process might tackle the objectives separately in order of

priority, or use different objectives in different stages of the metaheuristic

based on priority.

� Dominance Based Schemes – In this scheme, metaheuristics tackling

MOPs seek to discover as much of the Pareto Front as possible based on the

3.3. PARTICLE SWARM OPTIMIZATION (PSO) 29

concepts of dominance and Pareto Optimality as discussed earlier. Meta-

heuristics using such a scheme would usually employ an archive to keep track

of the non-dominated solutions discovered. The occupants of the archive at

the end of the metaheuristic’s run would then be considered as the Pareto

set discovered.

3.3 Particle Swarm Optimization (PSO)

Eberhart and Kennedy first described the Particle Swarm Optimization (PSO)

metaheuristic in 1995 [28, 47]. Tracing its inspiration to the behavior of a flock of

birds in flight, PSO utilizes the emergent behavior of a swarm of entities, called

particles, as they traverse a solution landscape in search of a global optimum.

Each particle in the swarm continuously goes through a process of evaluation,

comparison and imitation, and the emergent property of this behavior is that

the swarm as a collective converges on areas in the search landscape of optimal

quality, or as close as possible to them. Given a swarm of n particles, each particle

maintains a position x over the solution landscape which represents a candidate

solution to the problem being solved. The representation, or particle state, takes

the form of a vector of values, where each values stands in for one component

making up the candidate solution. The quality of a candidate solution, and hence

a particle, is determined by a fitness function f(x) that is problem dependent.

With every time step t, a particle would update its position using the following

equation:

xi(t+ 1) = xi(t) + vi(t+ 1) (9)

where v is velocity, the direction the particle is currently pursuing across the

landscape and its speed. Velocity for the next time step is calculated as follows:

vij(t+ 1) = αvij(t) + c1r1(yij(t)− xij(t)) + c2r2(ŷij(t)− xij(t)) (10)

where

� i: the current particle

� j: the current component within the vector

30 CHAPTER 3. PARTICLE SWARM OPTIMIZATION (PSO)

� α : Inertia or Bias. A diminishing function of a particle’s previous velocity.

� (yij(t)− xij(t)) : Cognitive Component. The difference between a particle’s

current candidate solution and its previous personal best, determined by

f(x). This is applied across every component of the state vectors.

� (ŷt − xt): Social Component. The difference between a particle’s current

candidate solution and its best performing neighbor, determined by f(x). As

with the cognitive component, this is also applied across every component

of the state vectors.

� c1 and c2: Cognitive and Social coefficients respectively. This controls whether

the swarm favors one component over the other in influence by assigning them

weights.

� r1 and r2: random coefficients assigned to Cognitive and Social components.

These add a stochastic element to the swarm’s behavior.

Depending on the representation of the problem being solved, and hence the par-

ticle state or position, the velocity equation may be applied as stated, or an extra

modifier step would be required. If the problem being solved is from a continuous

domain, and thus the particle’s state is represented as real values, then equation

10 is applied directly to update velocity. If, however, the problem being solved is

from a binary domain, and thus the particle’s state is represented using boolean

values, then the next state of x is determined using a probabilistic function of

vij(t+ 1):

Pr(xij(t+ 1))→ 1 :
1

1 + e−vij(t+1)
(11)

By following this simple dynamic, the particles start from being scattered across

the search landscape, to converging on a global optima, or as close an approxima-

tion of it. The pseudocode basic PSO can be seen Algorithm 1.

As things are rarely this simple, there are some nuances in implementing PSO,

and these are discussed next.

3.3. PARTICLE SWARM OPTIMIZATION (PSO) 31

Algorithm 1 Basic PSO

1. initialize swarm S

2. repeat

3. for every particle xi in S do

4. if f(xi) > personal best(xi) then

5. personal best(xi)← f(xi)

6. end if

7. for every component j in particle i do

8. bias← αvij(t)

9. cognitive← c1r1(yij(t)− xij(t))
10. social← c2r2(ŷij(t)− xij(t))
11. vij(t+ 1)← bias+ cognitive+ social

12. if j ∈R then

13. xij(t+ 1)← xij + vij(t+ 1)

14. else if j ∈ [0, 1] then

15. Pr(xij(t+ 1))→ 1 : sigmoid(vij(t+ 1))

16. end if

17. end for

18. end for

19. until stopping criteria met

20. return fittest particle

3.3.1 Nuances of Implementing PSO

3.3.1.1 Neighborhoods

The social component of the velocity update equation relies on measuring the dis-

tance between a current particle’s solution and that of its fittest neighbor, but

how are neighbors selected? What defines a neighborhood? The very first imple-

mentations of PSO considered two simple neighborhood structures: the entirety

of the swarm is considered as a single neighborhood or the l adjacent particles to

the one at hand could be considered its neighborhood. The implementations using

those two neighborhood models became known as gbest and lbest PSO respectively

[48]. gbest and lbest are also known as star and ring neighborhoods based on the

32 CHAPTER 3. PARTICLE SWARM OPTIMIZATION (PSO)

topology the particle at hand forms with the rest of the swarm. gbest implementa-

tions favors exploitation over exploration, as information regarding the currently

located regions of quality is disseminated quickly. This can lead to premature

convergence or the swarm getting stuck on local optima. On the other hand, lbest,

with a relatively low valued l, spreads information regarding high quality regions

of the solution landscape explored so far more slowly, and as such favors explo-

ration over exploitation. This, however, can have the side effect that convergence

can take longer than gbest implementations. A remedy for that would be to pro-

gressively increase the size of an lbest implementation’s neighborhood, in order to

favor exploitation in the later stages of the algorithm’s runtime.

Besides gbest and lbest, other neighborhoods models have been devised. These

include static neighborhood structures, such as the wheel [48], pyramid [30] and

hyper-cube [1], and more sophisticated, dynamic structures that rely on fitness

and spatial location [30]. Although some neighborhood structures have outper-

formed others when applied to certain problems, no one model has shown complete

supremacy over the rest, and it falls to the implementer to fine tune the neighbor-

hood structure used to best suit the problem being tackled. A discussion of the

various neighborhood structures and their performance can be found in [30].

3.3.1.2 Particle Movement Bounds

Left to their own devices, particles in the swarm have been noticed to quickly move

to the edges of the search space, and sometimes worse, beyond it. The particles

would continue pushing the edges, so to speak, never converging. This is especially

true when the particles have been initialized with significant initial velocities. In

order to curb this behavior, and to promote convergence, the following measures

were introduced over time:

� Initializing velocity to near-zero: By initializing velocity to zero or a very

small value, particles are not liable to explosively shoot off in various di-

rections in the beginning of the algorithm’s runtime. This will prevent the

particles from jumping to the edges of the search space within the first few

iterations.

� Velocity Clamping: This measure imposes a limit to the value vij(t+ 1) can

3.3. PARTICLE SWARM OPTIMIZATION (PSO) 33

take by clamping it to be between Vmin and Vmax, which are usually defined

as fractions of the domain of valid values xij can take. This has the effect of

limiting the step a particle can take with every iteration. Though effectively

preventing the swarm from seeking the edges of the search space and aiding

in its convergence, using too tight a clamp can result in the particles getting

stuck in wells of local optima. This risk can be mitigated by loosening the

clamps on velocity when stagnation arising from this issue occurs.

� Decaying α: By relying less on previous velocity vectors, particles are more

influenced by the cognitive and social components in calculating the velocity

for their next position update. This is implemented as a decaying function

weighing previous velocity, designated as α, and can be seen in equation

10 [82, 83]. This has the effect of promoting convergence as the algorithm

proceeds, striking a good balance between exploration and exploitation, and

preventing the particles from wandering beyond the viable search space.

� Clerk’s Constriction: Devised as an alternative to velocity clamping and de-

caying α, Clerc devised a coefficient that is multiplied by the velocity update

equation after removing α, r1 and r2. These parameters are instead used in

the equation used to calculate the constriction coefficient. Under certain

parameter constraints, PSO implementations that use Clerc’s Constriction

Coefficient are guaranteed to converge. More on Clerc’s Constriction Coeffi-

cient can be found in [48].

3.3.1.3 Cognitive Versus Social

In order to establish the effect the cognitive and social components have on con-

trolling a particle’s behavior, and the swarm’s in general, Kennedy studied the

effect each component has by testing models that solely relied on one over the

other [45]. Tuning how much each component influences velocity update can be

achieved via the c1 and c2 coefficients. In the study, Kennedy observed that rely-

ing on the cognitive component alone resulted in swarms that essentially collapsed

into multiple local search and displayed worse performance. On the other hand,

relying on the social component alone resulted in swarms with a rapid convergence

34 CHAPTER 3. PARTICLE SWARM OPTIMIZATION (PSO)

profile. This was also confirmed by studies done by Carlisle and Dozier [19]. The

effects of balancing influence between the cognitive and social components, and

their effect on swarm behavior, is further discussed in [30].

3.3.1.4 Initialization, Stopping Criteria, Convergence and Stagnation

Sufficiently sampling the search landscape is essential to locating areas of optimal-

ity by a metaheuristic. This also holds true for PSO. A swarm’s particles need to

be evenly scattered across the solution landscape in the early stages of the algo-

rithm’s runtime to ensure that enough of the landscape has been sampled before

the swarm starts to converge. This reduces the chances of the swarm getting stuck

on a local optima and increases the likelihood that a global optima is found.

As for the issue of defining stopping criteria, the simplest method would be

to set a quota of iterations that once met results in the algorithm stopping and

the fittest particle returned. The quota of iterations needs not to be too low that

results in the algorithm terminating prematurely before convergence is attained,

or too high that needless computational complexity is added without commensu-

rate improvements in quality. Another popular stopping criteria is convergence.

This occurs when all particles within the swarm share the same state, in effect

occupying the same space on the solution landscape. This is not to be confused

with stagnation, which occurs when the particles show no improvement in solu-

tion quality over the last few iterations, and yet this quality is no where near the

acceptable minimum levels. This can occur when swarms are attracted to wells of

local optimality which they are unable to escape. While convergence is a valid exit

for the algorithm, stagnation is not. In order to recover from a stagnation event,

one could pursue one or more of the following strategies:

� Restart the algorithm by reinitializing the swarm. This rescatters the par-

ticles across the solution landscape, and as the algorithm progresses, it is

probable that the swarm might avoid the area where it last stagnated due

to the stochastic properties of the algorithm.

� Increase the size of the particle step. This can be done by either adopting a

growing α or loosening the velocity clamps, as discussed earlier. Widening a

particle’s step increases its chances to escape the area of stagnation and puts

3.3. PARTICLE SWARM OPTIMIZATION (PSO) 35

it on a trajectory towards other regions of the solution landscape. If enough

particles escape the stagnation area to other areas of promising quality, then

the rest of the swarm will follow via the mechanics of the velocity update

equation.

� Upon detecting areas of stagnation, a utility function can mark this area

as undesirable to the particles in the swarm by giving positions within that

region reverse fitness, for example. This will result in the particles within the

swarm to be repulsed by this region and seek other locations on the solution

landscape.

� Move the current fittest particle in the swarm into a new random position

within its current locus. This is the basis of a variation of PSO known as

Guaranteed Convergence PSO (GCPSO), first described by Ven den Bergh

in [89]. The idea behind this strategy is that by moving the current global

best, then the mechanics of the velocity update equation would attract the

rest of the swarm out of the area of stagnation.

The measures outlined above to recover from stagnation can be used on their own

or in combination. If measures to recover from a stagnation fail repeatedly, then

and only then, can we consider that the swarm has converged. In that case, the

metaheuristic has found the closest approximation it can of the global optima. For

a more detailed argument on convergence and stagnation, the reader is directed

to the work of Ven der Bergh in [89] and its elaboration by Engelbrecht in [30].

3.3.2 Variations and Extensions

Having covered the dynamics of the basic PSO metaheuristic, we now turn our

attention to extensions and variations developed over time in order to improve

performance or address different classes of optimization problems. We first look

into extensions and variations to improve the performance of single objective PSO.

We then look into extensions to PSO that allow it to tackle niching problems. This

is followed by looking into some hybrid approaches that fuse concepts from PSO

with other metaheuristic paradigms. Finally, we close our discussion of extensions

and variations by looking at approaches to tackling multiobjective optimization

36 CHAPTER 3. PARTICLE SWARM OPTIMIZATION (PSO)

problems. The variations and extensions discussed in the following subsections are

not meant to be an exhaustive list of all developments in PSO since its inception.

Instead they are meant to be a sampling to illuminate how PSO can (and has

been) adapted to tackle a variety of problem types.

3.3.2.1 Single Objective Optimization

The basic PSO model discussed in the previous section is designed to tackle single

optimization problems. Though some extensions and variations were mentioned,

they mainly addressed shortcomings in the original algorithm design, controlled

particle behavior and promoted convergence. The extensions and variations dis-

cussed in the next few paragraphs are more aimed at improving the performance

of the PSO metaheuristic by returning better quality solutions.

Fully-Informed PSO (FIPS) was introduced by Kennedy et al. in [46, 60].

Instead of only being influenced by one neighbor in the velocity update equation,

particles in FIPS are influenced by all of their neighbors. Particles in FIPS could

either be influenced equally by all of their neighbors, or the influence can be

weighted by the fitness of each neighbor. Kennedy et al. observed that both

modes of operation outperformed the basic PSO model, with the latter model,

where influence is weighted by fitness, performing better than the former.

In an attempt to strike a better balance between exploitation and exploration,

Blackwell and Bentley imbued the particles in the swarm with a charge, analogous

to electrostatic charges [11] [59]. Naming their approach Charged PSO, the idea

was that particles carrying a charge would repel each other, yet the entire swarm

would be attracted to its center of mass. The repulsion between the particles

would aid in exploration, while the attraction towards the swarm’s center of mass

would promote exploitation and convergence. The repulsive force is encoded as an

extra component in the velocity update equation. Blackwell and Bentley proposed

three models within their approach: a neutral swarm, where non of the particles

carried a charge; a charged swarm where all of the particles in the swarm carried a

charge and an atomic swarm, where only half of the particles in the swarm carried

a charge. A neutral swarm is essentially a regular particle swarm, with behavior

identical to the one described in the previous section. Among the three models,

3.3. PARTICLE SWARM OPTIMIZATION (PSO) 37

atomic swarms performed better than both charged and neutral swarms. The

explanation behind that is that although explorative of the solution landscape, a

fully charged swarm will have difficulty converging as the particles would continue

to repel each other. An atomic swarm on the other hand will have the non-charged

particles fall to the center of the swarm, on the area of optimality, while the

charged particles continue to roam the regions on the periphery. This particular

property also makes the Charged PSO model suitable for dynamic optimization

problems, where the region of optimality shifts over time. A swarm with particles

continuously roaming the landscape, as in Charged PSO, would be faster to pick

up on such a shift and respond by migrating the center of the swarm’s mass.

Another interesting class of extensions to PSO is one that uses sub-swarming.

Instead of using one single, contiguous body of particles, sub-swarming utilized

multiple collections of particles, each collection considered a smaller swarm form-

ing part of the whole. These collections, or sub-swarms, could then work together,

cooperatively towards locating a global optima, or they could compete. An exam-

ple of a cooperative, sub-swarming technique is the Multi-phase PSO introduced

by Al-Kazemi and Mohan in [3]. In Multi-Phase PSO, the swarm is divided into

two equally sized sub-swarms, with the particles being randomly assigned to one of

the two swarms. The sub-swarms then alternate between two phases of operation:

attraction and repulsion. During the attraction phase, particles in a sub-swarm will

be attracted towards the global best solution found by both sub-swarms. On the

other hand, during repulsion, particles move away from the global best. Sharing

the global best amongst the sub-swarms is the mechanism that allows cooperation.

Controlling the particles’ behavior during the phases is done by manipulating the

cognitive and social coefficients, c1 and c2 respectively. During attraction, c1 = 1

and c2 = −1, while in repulsion the values are reversed. Multi-Phase PSO par-

ticles also do not rely on memory of a personal best position in their cognitive

component. Instead, they only move when vt+1 takes them to a better place on

the solution landscape. Multi-Phase PSO has shown better performance in train-

ing feed forward neural networks when compared with backpropagation and basic

PSO.

38 CHAPTER 3. PARTICLE SWARM OPTIMIZATION (PSO)

3.3.2.2 Niching

Niching optimization problems are defined as those with multiple regions of opti-

mality in their solution landscapes, and it is a requirement to locate as many of

them as possible. Since basic PSO is capable of locating global optima, then it

is feasible that by running it numerous times it would be able to locate all of the

optima dotted across the solution landscape. There is no guarantee, however, that

the swarm will not continuously converge on a previously discovered optimum. In

order to avert this behavior, the fitness function can be modified after every opti-

mum discovered to penalize the locus of that optimum on the solution landscape.

A similar approach is used by Kassabalidis et al. [43] in inverting neural networks

after training with success.

Another approach for adapting PSO to niching problems is that of Parsopoulos

et al. [70, 72]. Dubbed Deflating PSO, Parsopoulos et al. modify the fitness

function so that all points on the solution landscape in the vicinity of a recently

discovered optimum have a fitness equal to, or more than, that of points outside

the well of optimality. This has the effect of removing that particular well of

optimality without affecting the rest of the solution landscape. This process is

repeated until all wells, and thus optima, are discovered and removed.

So far, the methods of adapting PSO to solve niching problems has been se-

quential in nature. Optima are located one after the other, with the algorithms

resetting their search between discoveries, till the solution landscape is consumed.

In contrast, NichePSO, developed by Brits et al. in [14, 15], is one of the first

PSO-based approaches that operates in parallel. Particles in NichePSO starting

their life belonging to a singular swarm. The swarm roams the solution landscape

searching for optima. When one possible optimum is located, a group of particles

breaks off from the main swarm to form a sub-swarm to further discover the re-

cently discovered well of optimality while the rest of the swarm moves on. This

continues until the main swarm is completely divided into sub-swarms, and the

sub-swarms operate in parallel to find the optima within their respective wells.

Convergence occurs when all the sub-swarms are no longer capable of finding bet-

ter solutions within their assigned regions of the solution landscape.

3.3. PARTICLE SWARM OPTIMIZATION (PSO) 39

3.3.2.3 Hybrid Approaches

Hybrid approaches, those combining PSO with aspects from other metaheuristic

paradigms, were developed soon after the introduction of PSO. The aims of hy-

bridization is to improve the performance of the basic PSO algorithm and strike

a better balance between exploration and exploitation. In this subsection, we

will discuss hybrids of PSO with Genetic Algorithms (GA), Genetic Programming

(GP) and Estimation of Distribution Algorithms (EDA).

One of the first approaches to combine PSO with aspects from GA, and in fact

one of the first PSO hybrids, is that of Angeline in [5]. In attempts to improve

the accuracy of the solutions discovered, Angeline proposed to use a tactic similar

to selection that occurs in GA algortihms. During the algorithms runtime, a

random subset of particles from the swarm would be selected as a benchmark of

performance. The rest of the particles in the swarm are then compared against this

benchmark and ranked accordingly. The bottom half of the particles according to

rank, i.e. particles that are performing poorly when compared to the benchmark,

is replaced with the top half. The personal best positions of the replacing particles

is maintained throughout this process. Angeline’s adaptation showed that it had

better local search capabilities when compared to the basic PSO algorithm. It

also had the undesirable side effect of vastly reducing diversity with the swarm, as

with every time this process was applied, the diversity in the swarm fell by 50%.

In an attempt to remedy this side effect, Koay and Srinivasan [51] proposed to

replace the bottom half of the particles with mutated copies of the top half. Koay

and Srinvasan also added the further constraint that replacement will only occur

if the replacing particle has a higher fitness than the one being replaced. Another

approach that utilizes concepts from GA is Cheap-PSO by Clerc [23]. In Cheap-

PSO, the particles are capable of adjusting their step size, spawning new particles

or terminating their existence based on the current status of the swarm as a whole.

Particles would spawn a new particle and add it to the swarm when it senses a

stagnation in its immediate neighborhood and that not enough improvement in

the quality of solutions being detected is being achieved. On the other hand, if

enough improvement is being achieved from the immediate neighborhood, then

the particle with the poorest performance is terminated. The step size is adjusted

40 CHAPTER 3. PARTICLE SWARM OPTIMIZATION (PSO)

according the current performance of the particle, with larger steps being taken

when not enough improvement is being achieved and vice versa. Cheap-PSO also

does not use the cognitive component in its velocity update model, and relies solely

on bias and the social component.

Moraglio et al developed hybrids of PSO and GP culminating a framework

coined Particle Swarm Programming (PSP) [64, 87]. The aim of PSP is to imbue

PSO with the capacity of working with GP expression trees over combinatorial

search spaces. In order to do so, Moraglio et al. introduced new cross over op-

erators to be used instead of the regular cognitive and social components in the

velocity and position update equations. The performance of PSP was compared

to GP benchmarks and was found to be competitive.

Closing out our discussions of PSO hybrids is those that combine aspects of

Estimation of Distribution Algorithms (EDA). EDA progressively samples solu-

tions from the vicinity of the best ones in a population of candidates on the search

landscape in order to arrive at a global optima. Zhou et al. use PSO to enhance

the search process of EDA by allowing the swarm to learn the distribution function

[95]. Zhou et al applied their approach to a benchmark of discreet optimization

problems and found their approach to perform better than other PSO models for

discreet optimization. Bengoetxea and Larrañaga also developed an EDO-PSO

hybrid in [7]. Their approach relies on two sub-populations: an EDA populaiton

and a PSO population. The EDA population is then subdivided into chunks, were

each chunk applies the EDA on its own. The chunks are then considered as par-

ticles in a PSO swarm, and PSO is used to optimize the chunk centers of mass.

The process then repeats until convergence is attained or the stopping criteria are

fulfilled. The performance of Bengoetxea and Larrañaga’s model was evaluated

on a number of benchmarks against prototypical EDA models and the hybrid’s

performance has shown to be competitive in general and better on some of the

benchmarks.

3.3.2.4 Multiobjective Optimization

The earliest approach to adapt PSO to tackle multiobjective optimization prob-

lems is the one by Moore and Chapman in 1999 [63]. This approach followed

3.3. PARTICLE SWARM OPTIMIZATION (PSO) 41

a dominance based scheme to attaining a Pareto front and employed the use of

archives at two levels. The first archive is maintained per particle in the swarm

and is used to track the non-dominated solutions discovered by each particle. The

second (global) archive is used to track globally non-dominated solutions discov-

ered by the swarm and, at the end of the algorithm run, it is used to represent the

Pareto set discovered. When updating the state of particles via the PSO velocity

equation, the authors would use a randomly selected solution from a particle’s

individual archive to stand in for a personal best. As for the neighborhood best,

the selection is based on random selection amongst all the individual archives

maintained by the neighbors of a given particle.

The year 2002 saw a flurry of activity in applying PSO to multiobjective op-

timization problems. Hu and Eberhart proposed a lexicographical approach for

PSO to multiobjective optimization problems in [39]. Here, the authors set out

to solve a MOP that utilized two fitness metrics. The authors used the simpler

fitness metric to define the neighbors in a dynamic neighborhood of any given

particle, and use the more complex fitness metric to select the neighborhood best.

Personal bests in this scenario are the latest non-dominated solutions discovered

by the particles as they traverse the search landscape. As this approach is lim-

ited to only being capable of optimizing two objectives, the authors revisited this

scheme in [91] and adopted a dominance based scheme. An archive was added to

keep track of non-dominated solutions discovered during the run of the algorithm,

while measures were taken to improve the exploration aspect of the algorithm and

allow it reach regions of the search landscape that were unreachable by the earlier

algorithm.

Within the same year, Pasopoulos and Vrahatis also presented another contri-

bution to the domain in the form of the Vector Evaluated PSO in [71]. This was

later extended in [52]. In this dominance based scheme, the authors would use

two subswarms to optimize a multiobjective optimization problem consisting of

two objectives. Each subswarm would specialize in optimizing a single objective.

Particles within each subswarm would use the global best of the other subswarm

as the neighborhood best in a co-evolutionary fashion, and this is how the authors

proposed tackling the MOP. The obvious shortcoming of this scheme is that it is

limited to only tackling MOPs that consist of two objectives. Coello Coello and

42 CHAPTER 3. PARTICLE SWARM OPTIMIZATION (PSO)

Lechga proposed Multiobjective PSO (MOPSO), which is a dominance based al-

gorithm to tackle MOPs [17]. The main feature of MOPSO is that it maintained

a truncated archive, where priority in admission is given to new non-dominated

solutions that occupy less densely populated regions of the Pareto front discovered

so far. Personal bests are defined as the latest non-dominated solutions discovered

by a given particle so far, while neighborhood bests are probabilistically selected

from sparsely populated regions of the Pareto front. In an attempt to reduce the

costs of maintaining an unbounded archive in a dominance based scheme, Field-

send and Singh proposed a novel data structure to represent the archive known as

a “dominated tree” in [31]. This new data structure defines how a neighborhood

best is selected based on a composite point from the tree and the closest individual

in the search space. Personal bests are managed as mini-archives maintained per

particle for its discovered non-dominated solutions from which a random selection

is made.

In 2003, Zhang et al proposed a lexicographical based approach for tackling

MOPs using PSO [54]. Here the authors maintained separate global and personal

bests for every objective being optimized. Neighborhood bests are a synthetic

average of all the objectives begin optimized. Personal bests could either be con-

structed in the same fashion or selected at random from the set of tracked personal

bests across all objectives. Within the same year, Mostaghim and Teich attempted

to improve the performance of MOPSO proposed by Coello Coello and Lechuga

[65]. Their contribution can be summed up as the introduction of new measure to

improve the selection of neighborhood bests that lead to a faster convergence and

improved diversity in the Pareto front returned. Another PSO variant proposed in

2003 is that of Zhang and Huang [94]. The main contribution of the authors here

is that selection of a neighborhood best is based on probabilistic choice amongst

solutions maintained in the archive that considers their distance from the parti-

cle at hand, favoring closer solutions. Personal bests in this scenario are the last

non-dominated solutions discovered by the particles throughout the run of the

algorithm.

Yen and Lu proposed a dominance based approach to tackling MOPs in 2003

[92]. The authors in this paper divided the search space into a grid of cells, where

3.3. PARTICLE SWARM OPTIMIZATION (PSO) 43

each cell is represented by a centroid (a calculated coordinate representing the cen-

tral point of the grid). Particles are assigned to the cells they are closest to based

on their distance from the centroid. The cells are ranked based on dominance and

occupancy of particles, with densely populated cells that contain non-dominated

solutions receiving higher ranks. Neighborhood bests are then selected from the

top ranked cells, while personal bests are selected at random from the occupants

of the cell to which a particle belongs.

An interesting aggregate based approach was proposed by Baumgartner et al in

2004 [88]. The authors divided the main swarm into a number of subswarms, where

each subswarm represented a different configuration for the weights used in the

weighted sum composing all the fitness metrics being optimized. Each subswarm

is then allowed to traverse the search landscape as it sees fit, while the main swarm

kept track of the global bests discovered by each subswarm.

In 2009, Abido proposed using a multiobjective PSO variant to tackle the

environmental/economic dispatch problem [2]. Here, the author’s aim was to min-

imize two competing metrics: fuel cost and emissions, whilst complying to a set of

constraints. The author introduces three types of archives to the basic PSO algo-

rithm: an archive maintained at the particle level to maintain the non-dominated

solutions encountered by each particle during the search process, a global archive

used in selecting neighborhood bests and external archive to produce a Pareto set

at the end of the algorithm’s run. The global archive is formed by merging all

the particle archives and filtering out dominated solutions. To select the personal

and neighborhood bests for velocity update, the distances between the members

of the particle’s archive and the global archive are measured, and the pair with

the shortest distance are selected as the personal and neighborhood bests respec-

tively. After performing state update, the new solution represented by the particle

is considered for admittance to the particle and external archives based on the

concept of dominance. All the aforementioned archives are bounded, and when

the archives exceed a certain size limit, solutions in the archives are removed based

on the results of a clustering procedure. The results of using this approach showed

to be superior to other algorithms in terms of both quality and diversity of the

solutions in the returned Pareto fronts.

In 2012, Mousa et al proposed a hybrid approach to tackling multiobjective

44 CHAPTER 3. PARTICLE SWARM OPTIMIZATION (PSO)

optimization problems using aspects of both PSO and Genetic Algorithms (GA)

[66]. The authors here use a phased approach to arrive at a final Pareto front. In

the first phase of algorithm, PSO and GA are used in alternating succession to

explore the search space and locate non-dominated solutions. The PSO operates

to a manner similar to [2] in selecting local and neighborhood bests during velocity

update in that it considers the Euclidean distances between the constituents of a

particle’s non-dominated archive and the constituents of a global non-dominated

archive, and then selecting the pair with shortest distance as the local and neigh-

borhood bests respectively. After the PSO updates the positions of the particles,

the swarm is then considered as the population of individuals for the GA algo-

rithm. The GA algorithm aggregates the fitness metrics into a weighted sum, and

evolves a second generation from the current individuals. After GA evolves the

subsequent generation, the individuals are treated again as particles in a swarm

for the PSO to operate on. This process is repeated, alternating between PSO

and GA, until the stopping criteria are satisfied. The surviving non-dominated

solutions are then refined by a local search metaheuristic in the second and final

phase of the algorithm to produce the Pareto front.

More recent approaches include [40], [6], [61], [77], [69], [80] and [57]. In an

attempt to improve the diversity of solutions in the Pareto front and prevent

premature convergence, the author in [40] propose a multiobjective PSO with novel

measures to address these challenges. Based on a dominance-based approach, the

authors utilize a bounded external archive to maintain the non-dominated solutions

discovered during the search. Each particle also maintains a personal archive of

non-dominated solutions, from a which a personal best is selected to participate

in velocity and state update. With each iteration, a subset of the members in

the external archive is selected to form candidates from which a neighborhood

best is selected to participate in velocity update. These candidates are selected

based on density and potential metrics, where density estimates how close a given

solution is to other solutions on the current Pareto front and potential estimates

how close a given solution would be to the true Pareto front. The candidates in

this subset are then scored based on entropy, and one is probabilistically chosen to

represent the neighborhood best per particle. As for selecting a personal best, one

is chosen from the personal archive that minimizes the hyperbox formed between

3.3. PARTICLE SWARM OPTIMIZATION (PSO) 45

the current particle’s state, its previous velocity, its neighborhood best and the

current contents of its archive. With the influence of density, potential and entropy,

the multiobjective PSO traverses the solution landscape and returns the contents

of the external archive at the end of the search as the discovered Pareto front.

Another unique feature about this approach is that it is capable of adjusting its

intertia, cognitive and social biases dynamically based on the delta of entropy

displayed by the positions of the particles in the swarm between every iteration.

In [6], the authors proposed a PSO algorithm to perform clustering in a multi-

objective fashion. The swarm’s goal is to minimize the distance between two data

points within a cluster (cohesion) and maximize the number of clusters within the

dataset (connectivity). A particle here represents a possible assignment of a data

point to a cluster. Using a dominance-based approach, the authors maintain an

archive per particle that keeps track of the last discovered non-dominated solution

discovered by each particle. The neighborhood best is selected at random from

an archive formed by the union of all the particle archives. An external archive

is used to keep track of all the non-dominated solutions discovered by the swarm,

and at the end of algorithm’s run, is used to represent the discovered Pareto front.

In [61], authors proposed dubbed Vortex Multi-Objective Particle Swarm Op-

timization (MOVPSO). The main shortcoming identified by the authors in typical

dominance-based approaches of PSO (mainly based on the model defined in [63]) is

the lack of diversity in the Pareto front. To address this shortcoming, the proposed

algorithm traverses the search space using two alternating behaviors: convergence

and dispersion. During convergence, the positions of the particles in the swarm is

evaluated, and the swarm is attracted to positions that are furthest away from the

swarm’s center of mass based on Euclidean distance. The trajectories taken during

convergence are linear. After convergence, the particles undergo dispersion from

that previous convergence point, in trajectories that are circular in motion, with

an ever increasing radius. With the constant alternation between convergence and

dispersion, the authors hoped that the algorithm would be better in discovering

the search space and returning a Pareto front with a higher diversity than the

typical approaches.

Using a dominance-based hybrid approach, Rahimi et al proposed a multi-

objective PSO to improve the detection of communities within complex networks

46 CHAPTER 3. PARTICLE SWARM OPTIMIZATION (PSO)

[77]. In their approach, the authors incorporate concepts from Genetic Algorithms

(GA) to assist in their goal to minimize two measures of community quality. Dur-

ing initialization, the particles in the swarm are set as their own personal bests.

With each iteration, the particles update their personal bests, perform the velocity

update and subsequent state updates and a final mutation operator as a refine-

ment. To update their personal state, the current state of a particle is crossed over

with its last personal best in a fashion similar to Genetic Algorithms (GA) to pro-

duce two offspring. The non-dominated solution in the offspring is considered the

new personal best. In the case of a tie, the offspring are scored using a community

quality based metric, and the state with the highest score is considered the new

personal best. To get the global best, and thus the neighborhood best that is to be

used in the velocity update of the swarm particles, first all the current states are

added to a non-dominated archive, and then the particle with the highest score

based on the metric that was used in the personal state updates is chosen as the

global best. Having newly defined personal and global (neighborhood) bests, the

particles in the swarm perform velocity and state updates. As a final refinement

step in the iteration, each particle will undergo a mutation procedure where by it

replaces a component of its state with a possible value from any of the neighboring

particles. The new resultant state is compared with the particle’s personal best in

terms of dominance and if found dominant replaces the particle’s current personal

best. This process repeats until a preset number of iterations is exhausted, and

the Pareto front returned is the non-dominated archive formed from the particles

states at the end of the search.

In [69] the authors attempt to simplify the state update mechanism and improve

diversity of solutions discovered with their Diversity Enhanced Multiobjective PSO

(DEMPSO). In DEMPSO, the velocity update equation drops the cognitive com-

ponent and relies solely on the bias and social components. A global archive is

used to maintain all the non-dominated solutions discovered in DEMPSO. The

neighborhood best for each particle is based on the member of the global archive

that has the farthest cosine distance from its current position. The algorithm also

balances exploration and exploitation by dynamically shifting between the two

behaviors based on the current particles’ velocities.

3.3. PARTICLE SWARM OPTIMIZATION (PSO) 47

In [80] the authors address the shortcomings of the VEPSO model first in-

troduced in [71] by introducing a new model called Multi-guide PSO (MGPSO).

MGPSO uses multiple swarms, each optimizing a single objective from the set of

objectives being optimized. Instead of relying on a neighborhood guide from an

alternate swarm as in VEPSO, the MGPSO model keeps the neighborhood guide

from within the same subswarm as the current particle and adds a third compo-

nent to the velocity update function that represents a guide from an archive of all

the non-dominated solutions discovered. The authors present a stability study on

their newly introduced model within the same publication and compare its perfor-

mance both to existing VEPSO variants and non-PSO multiobjective optimization

algorithms including NSGA-II, MOEA/D and PESA-II. The results show that the

MGPSO model is highly competitive with all the algorithms it was compared

against, and in some circumstances supersedes them in terms of performance.

Finally, in [57], the authors tackle multiobjective problems with a relatively

high number of objectives using a proposed PSO approach that promotes diver-

sity in the Pareto front by utilizing multiple subswarms. Considered as a hybrid

between dominance-based and lexicographical approaches, the proposed algorithm

uses a set of subswarms in its search process, one for each objective function to

be optimized. Each subswarm specializes in optimizing a single objective func-

tion. An external, bounded archive is used to keep track of all non-dominated

solutions discovered across all the particles in all of the subswarms. When select-

ing a neighborhood best for velocity update, a particle considers a non-dominated

solution from the archive based on only two objective functions. The first is the

objective being optimized by the current subswarm. For the second, we consider

the remaining objectives being optimized and normalize their values based on the

solutions in the archive. We then compare the performance of the current particle

against the normalized values of these objectives and select the objective where

the current particle is doing the worst. The neighborhood best is then chosen out

of the archive where it dominates the current particle based on these two objec-

tives. Personal bests are considered to be the last best solution encountered in

terms of the objective function being optimized by the particle’s subswarm. This

coevolutionary particle swarm based approached showed promising performance

when compared against a number of other multiobjective optimization algorithms

48 CHAPTER 3. PARTICLE SWARM OPTIMIZATION (PSO)

while testing them using two standard testing suites.

A summary of the multiobjective particle swarm optimization techniques dis-

cussed in this chapter can be seen in Table 1.

Table 1: Publications of work done multiobjective optimization using PSO.

Citation Authors Year Approach

[63] J. Moore and R. Chapman 1999 Dominance-based

[71] K. E. Parsopoulos and M. N. Varhatis 2002 Dominance-based

[39] X. Hu and R.C. Eberhart 2002 Lexicographical

[17] C.A. Coello Coello, E.H.N. Luna and A.H.N.

Aguirre

2002 Dominance-based

[31] J. E. Fieldsend and S. Singh 2002 Dominance-based

[91] X. Hu, R.C. Eberhart and Y. Shi 2003 Dominance-based

[54] L. Zhang, C. Liu, Z. Ma, M. Ma and Y. Liang 2003 Lexicographical

[65] S. Mostaghim and J. Tiech 2003 Dominance-based

[94] Y. Zhang and S. Huang 2003 Dominance-based

[92] G.G. Yen and H. Lu 2003 Dominance-based

[52] K. E. Parsopoulos, M. N. Varhatis and D.K.

Tasoulis

2004 Dominance-based

[88] U. Baumgartner, C. Magele and W. Renhart 2004 Aggregate

[2] M.A. Abido 2009 Dominance-based

[66] A.A. Mousa, M.A. El-Shorbagy and W.F.

Abd-El-Wahed

2012 Dominance-based, Hybrid

[40] W. Hu and G. G. Yen 2015 Dominance-based

[6] G. Armano and M. R. Farmani 2016 Dominance-based

[61] J. Meza, H. Espitia, C. Montenegro, E.

Gimenez and R. Gonzalez-Crespo

2017 Dominance-based

[77] S. Rahimi, A. Abdollahpouri and P. Moradi 2018 Dominance-based, Hybrid

[69] A. Pan, L. Wang, W. Guo and Q. Wu 2018 Dominance-based

[80] C. Scheepers, A.P. Engelbrecht and C.W.

Cleghorn

2019 Dominance-based

[57] X. Liu, Z. Zhan, Y. Gao, J. Zhang, S. Kwong

and J. Zhang

2019 Dominance-Based, Lexicographi-

cal, Hybrid

Chapter 4

Related Work in Market Timing

“Examine the present and learn from the past to see how the future will unfold.

Too often we just look at the present and base our actions solely on that.”

–Shinjo Ito

In this chapter we look at the current state of the involvement of computational

intelligence in the market, with a particular focus on market timing. We will

briefly consider work done using the current incumbent metaheuristic (Genetic

Algorithms) to tackle that issue, before covering the work done using Particle

Swarm Optimization (PSO). We will then briefly cover other uses of PSO within

the financial domain before concluding with a critique of the current research and

identifying rooms for improvement.

4.1 Market Timing

As you may recall form Chapter 2, market timing is the issue of when to buy and

sell a given security on a stock exchange. In two recent and comprehensive studies,

Hu et al. [40] and Soler-Dominguez et al. [84] investigate the use of computational

intelligence techniques in finance. While the study by Soler-Dominguez et al. was

more holistic in its coverage, the study done by Hu et al. was focused on the use

of computational intelligence in the discovery of trading strategies. Both stud-

ies considered a large number metaheuristics to belong under the computational

49

50 CHAPTER 4. RELATED WORK IN MARKET TIMING

Figure 4: Publications by Algorithm and Year based on the [40] and [84] surveys
of literature on the use of computational intelligence in finance. These surveys
cover a time span between 1999 and 2017.

intelligence umbrella, and that included evolutionary algorithms (Genetic Algo-

rithms, Genetic Programming, Differential Evolution), swarm intelligence (Particle

Swarm Optimization, Ant Colony Optimization, Artificial Bee Colony Optimiza-

tion), stochastic local search (Simulated Annealing, Iterated Local Search, Tabu

Search, GRASP), fuzzy systems and neural networks amongst others. Both stud-

ies cover a combined time span starting with the early 1990’s and ending with

current times. Figure 4 shows a graph of publications by metaheuristic and year.

By surveying the techniques covered in both studies, we can see that generic

algorithms (GA), and to a slightly lesser extent genetic programming (GP), are the

most applied metaheuristics when it comes to the issue of market timing based

on volume of publications alone. In the next two subsections we will look into

applications of genetic approaches to market timing, with particular attention to

Genetic Algorithms, and compare them to PSO based approaches to market tim-

ing. Since applications using GA are much more numerous compared to their PSO

4.1. MARKET TIMING 51

counterparts, the related work for GA described next is meant to be a sampling of

the different approaches taken in using GA to tackle market timing. For a more

exhaustive look on the use of GA in market timing, we direct the reader to [40, 84].

As for PSO, we cover all the work done in relation to market timing up to and

including 2017, where work on this thesis began.

4.1.0.1 Genetic Algorithms

One of the earliest work done based on GA was by Allen and Karjalanien in 1999

[4]. Here, the authors opted to use Genetic Programming (GP), an extension of

GA, to discover both the structure and the parameters of possible trading rules that

optimize a single financial fitness metric. The genetic structure of the individuals

in the population represents possible trading rules modeled as trees. The roots of

these trees are always Boolean functions that generate a buy signal when evaluating

to true, and sell otherwise. The trees are built from a set of building blocks

that include functions to calculate moving averages of past prices, functions that

return the last trading prices, functions that return the maxima and minima of

past prices, functions returning the absolute value of a difference between two

numbers, various arithmetic operators (addition, subtraction, multiplication and

division), logical operators (if-then-else, and, or, not), comparison operators (<,

>) as well as various numerical and Boolean constants. Standard GP crossover and

mutation operators are used to manipulate the individuals in the population in a

continuous evolution scheme to evolve trading rules over the run of the algorithm.

The performance of candidate solutions in the populace are evaluated against a

reserved subset of the training data (which the authors call a “selection” period)

and an elitist strategy is used to keep track of the best performing candidates.

The training and testing procedure is a Step Forward one based on the data of the

S&P500 index between January 1928 and December 1995 The metric optimized

was excess returns in relation to a buy-and-hold strategy on the S&P500 index.

The results show that the majority of the rules discovered had negative returns

after accounting for transaction costs. The authors do however note that the

trading rules discovered exhibit low volatility which might make them of interest to

risk averse traders. The components available to the algorithm are rather simple,

52 CHAPTER 4. RELATED WORK IN MARKET TIMING

and the authors suggest that one possible avenue of improvement is to provide

the algorithm with more complex components to build the trees from including

components based on fundamental analysis.

In [12], the authors use grammatical evolution to evolve trading rules for foreign

exchange currency pairings. Related to GA from a genetic perspective, grammat-

ical evolution (GE) relies on a linear representation of a genome that encodes the

information required to generate rules from a Backus Naur Form (BNF) grammar.

This is opposed to the tree syntax utilized by GP in evolving rules, as can be seen

in [4]. The inspiration for GE comes from how proteins are synthesized from DNA

genetic material. The grammar from which the trading rules can be evolved is

composed of three technical indicators, along with standard arithmetic operators,

binary operators, unary operators and the current price. The values generated

by the rules are translated into sell, hold or buy based on predefined bands. An

initial population of randomly generated individuals represents possible means of

building trading rules using the grammar after decoding them from their nature as

integer sequences. The algorithm proposed by the authors then repeatedly applies

the mutation, crossover and duplication operators of GA to continuously improve

upon the population and converge on a solution of optimal fitness. The authors

tested their solution using Step Forward testing on data from three currency pairs

and benchmarked the results against a buy-and-hold strategy. The results showed

that the proposed system was superior to the benchmark in five out of six testing

scenarios.

Another approach is to use GA to directly optimize the parameters of one or

more financial analysis indicators, be they fundamental or technical in nature.

Examples of such an approach can be seen in the work of Garrido et al. [24]

and Subramanian et al. [85]. In [24], the authors encode the parameters of three

technical indicators into a chromosome, and use GA to find the best parameter

configuration that maximizes profit. In Subramanian et al. [85], the authors

experimented with two approaches to arrive at market timing trading rules. Their

first approach was to use a GA to optimize the weights of four technical indicators

in order to maximize one of two financial metrics: either the Sharpe ratio or a

modified version of the Sortino ratio. Their second approach was to use a GP

to combine the aforementioned four indicators to form trading rules based on the

4.1. MARKET TIMING 53

AND, OR and XOR Boolean operators. These approaches were evaluated in a

trading simulation and results show that the GA approach yielded significantly

better returns when compared to their GP counterpart. The authors also noted

that the choice of financial metric used while training has a significant effect on

the efficacy of the generated trading rules.

Other approaches since then use GA to improve the fitness of another pri-

mary metaheuristic in charge of producing the trading signals by optimizing its

parameters. These primary, signal-producing metaheuristics included fuzzy sys-

tems, neural networks, self-organizing maps (SOM) and a variety of classification

algorithms. One such example is [18]. In [18] the authors aim to improve he fore-

casting of price movements using a hybrid fuzzy time series (FTS) – GA algorithm.

FTS was devised as a method to overcome the limitations of using traditional time

series analysis methods via the incorporation of fuzzy mathematics. An important

aspect for the performance of FTS is how the data is partitioned into intervals to

formulate the universe of discourse. The authors used a GA model to optimize the

intervals to be used in the universe of discourse for FTS by using an initial ran-

domly generated population representing potential interval definitions, then using

selection, crossover and mutation to continuously push the population to reach a

convergence point. The fitness of candidate solutions from GA was based on the

root mean square error of the forecasted series in relation to the actual data. The

authors tested their hybrid FTS-GA system on data from TAIEX stock market

and reported favorable results when compared to other FTS systems. A thorough

breakdown of such synergistic approaches can be seen in [40].

More recent approaches for the use of GA to tackle market timing can be seen

in the work of Kampouridis and Otero [41] and Kim et al. [50].

4.1.0.2 Particle Swarm Optimization

On the other hand, Particle Swarm Optimization (PSO) has not seen the pop-

ularity of GA and GP in the space of market timing. Though introduced much

later than GA, PSO has started seeing some adoption in the space, and over the

next few paragraphs we examine the work done by PSO to tackle market timing

in chronological order.

54 CHAPTER 4. RELATED WORK IN MARKET TIMING

The earliest PSO approach to tackle market timing was that of Briza and

Naval, Jr. [16] in 2011. Inspired by [85], the authors optimized the weights of five

technical indicators: the Directional Movement Index, Linear Regression, Moving

Average Converge Diverge (MACD), Moving Averages and Parabolic Stop and

Reverse. The values used for the parameters of each of the technical indicators

involved was preset to industry standard values commonly used in literature. The

authors approached market timing as a multiobjective optimization problem, and

aimed to maximize two metrics of fitness: percent profit and the Sharpe Ratio. The

signal used to decide when to buy or sell is then based on aggregating the individual

signals produced by the individual indicators multiplied by their respective weights.

If the aggregate value is positive and exceeds half the sum of the weights then

a buy signal is generated, otherwise a sell signal is generated. Accrued profits

from trades are not allowed to be used in reinvestment and transaction costs were

not considered in the trading simulations. An individual particle in the swarm

represents a candidate weight configuration for the five technical indicators used.

The algorithm governing the interaction between the particles is based on MOPSO-

CD [78], a multiobjective particle swarm that adopts the crowding distance metric

from NSGA-II to maintain diversity in the Pareto set discovered. The authors

used a Step Forward procedure for training and testing their model using daily

data from the Dow Jones Industrial Average index (DJIA). To select the data for

training and testing, the authors resorted to using three overlapping periods of the

DJIA index with an ever increasing size in an attempt to capture varying market

conditions, with the training and testing portions used to be of equal size. The

authors then used these training and testing windows of data in experiments with

various values for population size and iterations to be used in order to find the

best values to use for the market timing system. The performance of their model

was compared to that of NSGA-II and a Buy-and-hold strategy, and showed better

performance than either of the benchmark strategies.

In 2012, PSO was used as a secondary metaheuristic to optimize the parameters

of a primary signal generating one for the purposes of market timing. Chakravarty

and Dash [20] approach market timing as a financial time series issue: if we are

capable of forecasting movements in prices as a time series, then we can leverage

that knowledge into arriving at decisions of when to buy or sell a given security

4.1. MARKET TIMING 55

on the market. The authors note that statistical techniques of modeling, such

as Autoregressive Moving Average (ARMA); Autoregressive Integrated Moving

Avergae (ARIMA); Autoregressive Conditional Heteroscedasticity (ARCH) and

Generalized Autoregressive Conditional Heteroscedasticity (GARCH), do not per-

form well unless supplied with relatively large datasets, which comes with a large

computational cost. On the other hand, the authors note that computational in-

telligence techniques such as neural networks, fuzzy set theory, genetic algorithms

and particle swarm optimization are better equipped in terms of performance to

tackle forecasting time series of a such a chaotic nature as price data in the stock

market. The authors in this paper compare the forecasting capacity of three hy-

brid neural models: Local Linear Wavelet Neural Network (LLWNN), Functional

Link Artificial Neural Network (FLANN) and Functional Link and Interval Type

2 Fuzzy Neural System (FLIT2FNS). In order to train and optimize the weights

used on the neural networks for the three models, the authors compared the perfor-

mance of backpropagation versus Particle Swarm Optimization. The forecasting

capability of the three models with either backpropagation or particle swarm opti-

mization was then evaluated using data from the Standard’s and Poor’s 500 index

(S&P500), Down Jones Industrial Average index (DJIA) and Bombay Stock Ex-

change (BSE). The experiments showed that Particle Swarm Optimization was

the superior training algorithm, with the winning combination of model and train-

ing algorithm to be FLIT2NFS with PSO as shown by the experiment results. A

similar approach can be seen in the work of Liu et al. [56]. Here, the authors

used PSO to optimize the antecedent and consequent parameters in the rules of

a type-2 neuro-fuzzy model. The model was evaluated using data from American

and Taiwanese stock exchanges, and the accuracy of the proposed model shows to

be favorable when compared with fuzzy time series variants based on root mean

squared error.

The year 2013 brought us two attempts to use PSO for market timing. The

first attempt, by Chen and Kao [21], uses PSO to optimize a system that relied

on fuzzy time series and support vector machines (SVM) to forecast the prices of

an index for the purposes of market timing. This approach showed an edge when

compared against other contemporary methods for forecasting the index price that

was used in that research. The second attempt, by Ladyzynski and Grzegorzewski

56 CHAPTER 4. RELATED WORK IN MARKET TIMING

[55], uses a combination fuzzy logic and classification trees to identify price chart

patterns, while PSO is used to optimize the parameters of the aforementioned

hybrid approach. In their results, the authors have noted that use of PSO vastly

improved the predictive capacity of the fuzzy logic and classification tree hybrid,

and that the overall system proved to be promising.

In 2014, another two attempts were made to use PSO for market timing. Wang

et al. [90] use a combination of a reward scheme and PSO to optimize the weights of

a two technical indicators. The Sharpe ratio was used to measure the performance

of the hybrid, and in their results, the authors note that their system outperformed

other methods such as GARCH. Bera et al [8] used PSO to only optimize a single

technical indicator. Although trading on the foreign exchange instead of the stock

exchange, the authors note that their system has shown to be profitable in testing.

Finally, 2015 and 2016 showed only a single attempt per year. Sun and Gao [86]

used PSO to optimize the weights on a neural network that predicted the prices of

securities on an exchange. The authors note that their system was able to predict

the price with an error rate of around 30% when compared to the actual prices.

Karathanasopoulos, Dunis and Khalil [42] use PSO to optimize the weights on a

radial basis function neural network (RBF-NN) that is capable of predicting the

price of crude oil, a commodity. Though not on the stock exchange, the trading of

commodities occurs on similar exchanges and uses many of the same market timing

techniques. Compared to two classical neural network models, the authors note

that their PSO-augmented approach significantly outperformed them in prediction

capacity.

4.2 Other Uses of PSO

Besides market timing, PSO has also shown utilization in other areas within the

financial domain. One of the most popular uses of PSO has been and still is port-

folio optimization. A related problem to market timing, portfolio optimization is

about finding the best combination of securities to build up trading portfolio in

order to maximize returns while using a fixed trading strategy. Portfolio optimiza-

tion remains to be one of the most popular uses of PSO in finance, where PSO

has shown a strong competitive edge against other metaheuristics. Other uses of

4.3. CRITIQUE 57

PSO include option pricing, feature selection for classification in financial domain

applications and credit risk optimization. For a good breakdown of the uses of

PSO in those spaces, refer to the study by Soler-Dominguez et al. [84].

4.3 Critique

Our critique of the work done in market timing using PSO will be based on the

following factors:

� Volume: The quantity of publications using the metaheuristic.

� Methodology: We discuss the categories of approaches used to utilize PSO

in market timing.

� Limitations: We discuss the limitations identified by the authors of the pub-

lications themselves, as well limitation trends identified by the authors of

computational intelligence studies mentioned earlier.

The aspects of critique are discussed in the next few subsections.

4.3.1 Volume of PSO Publications

The amount of publications that utilize PSO in one form of the other for the pur-

poses of market timing is 9 publications, with the earliest being in 2011 and the

latest in 2016 as of the time of when research in this thesis began. This largely

pales in comparison with the market incumbent, GA, with 46 publications and

ranging in time from the late 1990’s to 2017 as of the time when research in this

thesis began. One possible factor that can help us explain this massive difference is

that genetic algorithms were introduced far earlier than particle swarm optimiza-

tion, late 1970’s versus mid 1990’s respectively. Using PSO for other applications

in finance is a different story however, with the most popular application being

portfolio optimization. We can perhaps attribute this to the fact that the pub-

lications on PSO as a subject matter by its original authors [48] contained a lot

of explanations and examples of the binary variant. This might have led to the

58 CHAPTER 4. RELATED WORK IN MARKET TIMING

popularization of PSO as a combinatorial optimizer, leading to the natural appli-

cation of it on portfolio optimization, a combinatorial optimization problem at its

core.

4.3.2 PSO Methodology

From the 9 publications on the use of PSO in market timing, we can see a salient

trend: PSO is used in a secondary role to optimize a primary metaheuristic or

computational intelligence technique that is responsible for signal generation. The

only three exemptions to that are the works of Briza and Naval, Jr. [16], Wang et

al. [90] and Bera et al [8]. In these three publications, the authors used PSO as

the only metaheuristic.

We also note that Step Forward backtesting is the only backtesting method

used, and that buy-and-hold is the most common benchmark. No publication on

market timing, whether involving PSO or otherwise, uses the style of backtesting

recommended by Kaufman [44] and other market professionals. It was also noted

by Hu et al. in their study [40] that a small percentage of all the publications

surveyed (including GA) only compare the performance of their algorithm against

a simpler version of the same metaheuristic, versus comparing its performance to

another kind of metaheuristic. And while we are on the topic of testing, we also

note that no PSO publication tests their algorithm in a live trading environment.

4.3.3 Limitations of Previous PSO Works

In the study by Hu et al. [40], the authors observe that most of publications

displayed a performance that favored only one type of price trend, with the ma-

jority showing good performance in downtrends and suffering in uptrends. In both

studies [40, 84], the authors find that the number of signal generating components

used was kept rather low with rarely any publication using more than five unique

components. It was also found that the majority of publications used technical

analysis, with only two publications using fundamental analysis and four using a

components from both schools. None of the PSO publications found used fun-

damental analysis. The authors speculate that perhaps using a more balanced

selection of technical and fundamental components could lead to a more steady

4.3. CRITIQUE 59

performance across the various price trends. The authors of both studies also

note that publication authors underestimate the impact of transaction cost on

performance. Transaction cost in this context is used to refer to transaction fees,

commissions, slippage and the availability of liquidity. This underestimation man-

ifests itself as vague estimations of transaction fees, and no explicit account of

the other contributing factors mentioned. As transaction costs can have a sizable

impact on performance, turning a winning strategy in the lab to a losing one on

the market, the authors of the studies lament that not enough attention is paid to

transaction costs and its impact.

60 CHAPTER 4. RELATED WORK IN MARKET TIMING

Chapter 5

Using Particle Swarms to

Compose Strategies for Market

Timing

“If we wait for the moment when everything, absolutely everything is ready, we

shall never begin.”

–Ivan Turgenev

In this chapter, we will introduce our first PSO algorithm to tackle market

timing using a formulation that considers both the selection of trading signal gen-

eration components and the tuning of their parameters in a simultaneous fashion.

We approach market timing as a single objective optimization problem, and the

work in this chapter serves as a proof of concept: can we use PSO to tackle market

timing in the aforementioned formulation? We begin by proposing an encoding

strategy that enables this formulation, then proceed in describing the necessary

modifications to basic PSO to use this encoding and optimize a single financial

metric. We also describe two novel PSO algorithms that are meant to address

limitations of the current PSO in exploring the search landscape and returning

the least sufficing subsets to meet a particular objective. This is then followed by

a description of the experimental setup used to test these PSO algorithms and a

discussion of the results obtained and their implications.

61

62 CHAPTER 5. COMPOSING STRATEGIES WITH PSO

Figure 5: An example of a strategy encoded as an associative array. This example
has instances of three technical indicators: MACD, RSI and the Chaikin oscillator.
Each indicator has a weight and a set of parameters associated with it. For more
on how the technical indicators generate signals, please refer to [76], [67] and [44]

5.1 Encoding Strategy

The first step in adapting a metaheuristic to tackle a particular problem is to find a

suitable encoding for its candidate solutions. A candidate market timing strategy,

and hence a candidate solution, is composed of one or more signal generating com-

ponents, where each component has a weight and a set of parameters associated

with it. Since components used in this thesis are of the technical analysis variety,

all components encoded here represent instances of technical analysis indicators.

We chose to encode our candidate strategies as associative arrays, sometimes im-

plemented as dictionaries in particular programming languages. The first associate

level identifies a certain indicator type, while the second identifies the weight and

parameters associated with a given instance of that indicator. An example of this

can be seen in Figure 5. In this example, our candidate strategy is composed of

three technical indicators: the Moving Average Converge Diverge (MACD), the

Relative Strength Indicator (RSI) and the Chaikin oscillator. Each of these indica-

tors has a weight associated with it, and a set of unique parameters. This encoding

strategy is used by our PSO algorithms in the representation of particles.

5.2 PSO to Tackle Market Timing

In order to adapt the basic PSO algorithm, presented in Chapter 3 (Algorithm

1), to tackle market timing in such a manner that considers both the selection

5.2. PSO TO TACKLE MARKET TIMING 63

of components and the tuning of their parameters in a simultaneous fashion, we

performed a number of modifications in its implementation. In order to be agnos-

tic to the types of signal generating components and their parameters, the first

modification was to push down the implementation of the addition, subtraction

and multiplication operators required by the velocity update mechanism (lines 8

– 15) to be at the component level and not the metaheuristic level. This would

no longer limit the parameter types to either be in the binary or real domains. A

trader is now free to include a signal generating component of an arbitrary number

of parameters and parameter types, as long as the implementation of that com-

ponent overrides the necessary operators. Secondly, we also adopted a number

of measures to promote convergence within the swarm and prevent velocity ex-

plosion. The first of these measures is that we used a decreasing inertia schedule.

This means that for every step of the algorithm, inertia for every particle decreases

by an amount defined by a function based on the number of iterations left. The

second measure we adopted was that we scaled down vij(t+ 1) before updating a

particle’s state by a user defined factor. As an alternative to velocity scaling, we

also considered Clerc’s Constriction as defined in [22]. The PSO algorithm would

now be able to optimize both the parameters and weights of these components in

relation to a financial fitness metric. The pseudocode for the adapted PSO can be

seen in Algorithm 2.

The PSO algorithm described so far might not provide the best balance be-

tween exploration and exploitation. The presence of a local optima in the vicinity

of the swarm can quickly pull the swarm’s center of mass towards it. This is

especially evident when the PSO algorithm uses a network structure that allows

for the broad dissemination of information regarding current best discovered solu-

tions, as is the case with the star or g-best topology. This can lead to the swarm

of particles converging on suboptimal regions within the search space. Multiple

measures have been devised since the introduction of the basic model to remedy

that problem with varying degrees of success. We have discussed some of the mea-

sures in Chapter 3, and for further insight on the breadth of these measures, the

reader is directed to [30]. Furthermore, the current PSO algorithm cannot grow or

shrink the size of its candidate solution. This limits the market timing strategy to

a preset number of signal generating components that form up the solution. This

64 CHAPTER 5. COMPOSING STRATEGIES WITH PSO

can lead to a scenario where some of the components in a candidate solution being

a load by not contributing significantly to the overall fitness yet still incurring a

computational cost. In an attempt to address these two shortcomings, we intro-

duce two modifications aiming to strike a better balance between exploration and

exploitation while progressively shrinking the solutions represented by the swarm

until a least sufficing subset of components is attained. We have dubbed these new

algorithms as PSO with Stochastic State Update (PSOS) and PSOS with State

Reduction (PSOSR) 1.

Every particle x in the swarm S represents a candidate solution. From our

discussion earlier, this means that a particle state is a collection of weighted com-

ponents, where each component has its own set of parameters. A particle starts

out with an instance of all the available signal generating components, each instan-

tiated with random weights and parameter values. In contrast with the basic PSO

algorithm, in PSOS, the cognitive and social components of the velocity update

equation are modified to be calculated as follows:

vt+1(Cognitive) =

yij(t)− xij(t) , if rand() < | f(yij(t))

f(xij(t))+f(yij(t))
|

0 , otherwise
(12)

vt+1(Social) =

ŷij(t)− xij(t) , if rand() < | f(ŷij(t))

f(xij(t))+f(ŷij(t))
|

0 , otherwise
(13)

where:

� x: particle

� i: current particle index

� j: trading component index within current particle

� y: personal best

� ŷ: neighborhood best

1In [62], the newly introduced models were referred to as PSO-FInSSUP, with PSOS being
referred to as F- and PSOSR referred to as F+

5.3. EXPERIMENTAL SETUP 65

� f(x): the fitness of x

That means the cognitive and social components will only stochastically influence

velocity update if there is an improvement in fitness, in a hill climbing fashion. The

PSO algorithm implementing the Stochastic State Update procedure is referred to

as PSOS.

The second modification we introduced to the basic algorithm is that with

every preset number of iterations, we prune the least effective components based

on their contribution to fitness. We start by aggregating the weighted fitness for

every component across all particles in the swarm. This list of contributions by

component is then normalized, and any components falling below a threshold Γ is

removed from the swarm, resulting in a reduction in the size of the state represented

by the particles. After a pruning event, the weights of the surviving components

within the particles are renormalized between 0 and 1. The algorithm for this

pruning procedure can be seen in Algorithm 5. The idea behind this procedure

is that we want to shrink the solutions in search for the least sufficing set of

components that maximizes our fitness metric, without largely impacting fitness.

The PSO algorithm implementing both the Stochastic State Update procedure

and this state reduction is referred to as PSOSR. Pseudocode for both PSOS and

PSOSR can be seen in Algorithm 3.

5.3 Experimental Setup

In order to measure the effectiveness of PSO in discovering market timing strate-

gies, we tested the variations identified in Table 2. For variants using the ring

neighborhood structure, 5% of the swarm lying on either side of the particle is

considered to be within its neighborhood. PSO algorithms employing velocity

clamping as part of their convergence mechanism use a factor of 0.5, a value de-

duced empirically. For all variants of PSO, we used a swarm size of 100 particles.

Each experiment was allowed to run for a 100 iterations, and this was repeated

20 times to gather data for statistical significance tests. The metric optimized by

all PSO variants was the Sharpe Ratio. We follow an elitist approach, and the

algorithms return the best solution they discovered over their run.

66 CHAPTER 5. COMPOSING STRATEGIES WITH PSO

Algorithm 2 PSO algorithm adapted to tackle market timing.

1. archive: an archive used to keep track of elite particles

2. S: swarm

3. N : swarm size

4. x: particle state

5. y: particle personal best

6. calculate fitness: a function used to perform backtesting using particle states and

returns associated fitnesses

7. initialize swarm S

8. repeat

9. for every particle xi in S do

10. for every component j in particle i do

11. bias← αvij(t)

12. cognitive← c1r1(yij(t)− xij(t))
13. social← c2r2(ŷij(t)− xij(t))
14. vij(t+ 1)← cognitive+ social

15. if clamp = Clerc then

16. vij(t+ 1) = vij(t+ 1)× clerc coefficient
17. else if clamp = Factor then

18. vij(t+ 1)← vij(t+ 1) + bias

19. vij(t+ 1) = vij(t+ 1)× velocity clamp factor
20. end if

21. vij(t) = vij(t+ 1)

22. xij = xij + vij(t)

23. end for

24. end for

25. f(S)← calculate fitness(S)

26. for i: 1 to N do

27. if f(xi) ≥ f(yi) then

28. yi ← xi

29. end if

30. end for

31. archive← archive∪ fittest particle in S

32. until stopping criteria met

33. return fittest particle in archive

5.3. EXPERIMENTAL SETUP 67

Algorithm 3 PSOS and PSOSR algorithms. If Pruning is enabled, then we have
a PSOSR algorithm. Otherwise, it is considered a PSOS algorithm. Pruning is a
user controlled parameter.

1. archive: an archive used to keep track of elite particles

2. S: swarm

3. N : swarm size

4. x: particle state

5. y: particle personal best

6. calculate fitness: a function used to perform backtesting using particle states and

returns associated fitnesses

7. initialize swarm S

8. repeat

9. for every particle xi in S do

10. for every component j in particle i do

11. bias← αvij(t)

12. if random() <
f(yij(t))

f(xij(t))+f(yij(t))
then

13. cognitive← c1r1(yij(t)− xij(t))
14. else

15. cognitive← 0

16. end if

17. if random() <
f(ŷij(t))

f(xij(t))+f(ŷij(t))
then

18. social← c2r2(ŷij(t)− xij(t))
19. else

20. social← 0

21. end if

22. vij(t+ 1)← cognitive+ social

23. if clamp = Clerc then

24. vij(t+ 1) = vij(t+ 1)× clerc coefficient
25. else if clamp = Factor then

26. vij(t+ 1)← vij(t+ 1) + bias

27. vij(t+ 1) = vij(t+ 1)× velocity clamp factor
28. end if

29. vij(t) = vij(t+ 1)

30. xij = xij + vij(t)

31. end for

32. end for

68 CHAPTER 5. COMPOSING STRATEGIES WITH PSO

Algorithm 4 PSOS and PSOSR algorithms continued.

33. f(S)← calculate fitness(S)

34. for i: 1 to N do

35. if f(i) ≥ f(yi) then

36. yi ← xi

37. end if

38. end for

39. archive← archive∪ fittest particle in S

40. if Pruning is Enabled then

41. if current iteration meets pruning deadline then

42. prune() . Refer to Algorithm 5

43. end if

44. end if

45. until stopping criteria met

46. return fittest particle in archive

Algorithm 5 Pruning Procedure for PSOSR

1. for every particle xi in S do

2. for every component j in xi do

3. Cj ← Cj + wij(t)f(xij(t))

4. end for

5. end for

6. normalize(C)

7. for every contribution cj in C do

8. if cj < Γ then

9. remove component j from all x in S

10. end if

11. end for

The daily trading data of four assets from the US stock markets was used for

both training and testing. The assets used were: Microsoft Corporation (MSFT),

British Petroleum p.l.c (BP), Tesla Incorporated (TSLA) and Alphabet Incorpo-

rated (GOOG, formerly Google). The portion used for training is daily prices

5.4. RESULTS 69

Table 2: PSO variants used in the experiments.

Neighborhood Convergence

Shorthand Algorithm Structure Mechanisms

LB-V PSO l-best Velocity Clamping, De-

creasing Inertia

LB-C PSO l-best Clerc’s Constriction

GB PSO g-best Velocity Clamping, De-

creasing Inertia

PSOS PSO with Stochastic

State Update

l-best Velocity Clamping,

Decreasing Inertia,

Stochastic State Up-

date

PSOSR PSO with Stochas-

tic State Update and

State Reduction

l-best Velocity Clamping,

Decreasing Inertia,

Stochastic State Up-

date

between the beginning of 2015 and the end of 2016, and the portion used for test-

ing was daily prices for the year 2017 in a Step Forward fashion, as discussed in

Section 2.2.

Six technical analysis indicators were used to form a gallery of components

from which particles could build candidate solutions: Moving Average Converge

Diverge (MACD), Aroon, Relative Strength Indicator (RSI), Stochastic Oscillator,

Chaikin Oscillator and On Balance Volume (OBV). Where these components took

parameters that affected periods of data to look at, a hard upper limit of 45 was

set, so that we could get at least 5 trading signals with a single trading year

(which is on average comprised of 252 trading days in the US market). Any other

parameters were initialized to random values, and the best performing setting is

discovered by the particles in the swarm as they traverse the solution landscape.

5.4 Results

Table 3 shows the mean Sharpe Ratio values attained by each PSO variant and

asset combination on the testing data. Overall, we can see that algorithms that

used ring-based networks fared better on average than star-based neighborhoods,

70 CHAPTER 5. COMPOSING STRATEGIES WITH PSO

Table 3: Minimum, Mean and Maximum Sharpe Ratio values for each PSO variant
calculated over 20 runs. We also show the Sharpe value for a Buy and Hold strategy
applied per each asset’s testing period. The highest value achieved per algorithm
is highlighted in bold. The mean values observed per algorithm are considerably
lower than the Buy and Hold values for the same testing periods, indicating a
subpar performance.

Asset Algorithm Min Mean Max Std

MSFT LB-V 0.2043 0.6923 1.2371 0.3875

LB-C -0.5977 0.3485 0.6592 0.4592

GB 0.4451 0.6907 1.0406 0.2949

PSOS 0.2195 0.6630 1.3042 0.3778

PSOSR -0.5052 0.7382 1.6543 0.5360

Buy & Hold – 2.36 – –

GOOG LB-V 0.5413 1.1565 2.1562 0.6913

LB-C -0.3693 0.0999 1.1802 0.6582

GB 0.1669 0.1669 0.1669 0.0000

PSOS 0.2326 1.0974 1.8891 0.6369

PSOSR -0.6660 0.7329 2.2556 0.7975

Buy & Hold – 2.00 – –

BP LB-V -0.7375 0.1915 1.1866 0.6949

LB-C -0.6892 0.3967 1.3689 0.6449

GB -0.4452 -0.0980 0.3909 0.2493

PSOS -0.6802 -0.0605 1.1502 0.6063

PSOSR -1.1122 -0.1977 1.2637 0.5649

Buy & Hold – 1.10 – –

TSLA LB-V -0.3387 0.3374 0.7313 0.3591

LB-C 0.8516 0.8516 0.8516 0.000

GB 0.2190 0.5800 0.8697 0.2961

PSOS -0.3599 0.2575 1.1583 0.4643

PSOSR -0.5190 0.1568 0.6924 0.3103

Buy & Hold – 1.24 – –

with GB ranking second to last according to a Friedman test using Holm’s post-

hoc correction (See Table 4). The fact that there is no statistical difference, as

can be seen in Table 4, means that the results from the various PSO algorithms

are competitive, suggesting the viability of the newly introduced PSO variants.

From Table 3, we can also see that the standard deviation of the all PSO variants

5.4. RESULTS 71

tested are relatively large when compared to their means. This means that none

of the algorithms tested so far was unable to identify specific regions of optimality

within the search space, and instead solutions obtained when the stopping criteria

were achieved are from various locations of the search space with a wide range of

fitness values.

When considering the Sharpe Ratio values attained, we can see that the average

Sharpe Ratio values rarely reached a value of 1 or more. Sharpe Ratio values of 1

and above are considered satisfactory, and values greater than three are considered

excellent when the Sharpe Ratio is used to evaluate trading performance. The

fact that the average values rarely achieved satisfactory levels suggests that the

solutions discovered by PSO so far would be considered sub par. This is further

exacerbated when comparing with a simple buy-and-hold strategy (as seen in Table

3), which represents a passive investor who bought the asset at the beginning of the

testing period and held on to it. One can deduce from the Sharpe Ratio values of

the buy-and-hold benchmarks that the trends witnessed during testing are either

uptrends (MSFT and GOOG) or sideways (BP and TSLA). This highlights the

need to be more prudent and subject algorithms to a more varied collection of

testing periods that contain up, down and sideways trends to various degrees in

order to get a more representative measure of how our approaches would perform

in live trading. This will be addressed in the upcoming chapters.

In order to see if the pruning procedure in PSOSR is effective in producing

shorter solutions, we analyzed the results of the 80 experiments where this algo-

rithm was involved and counted the number of the components in the solutions

returned. Of the 80 returned solutions, only 18 solutions were affected by pruning

reducing their length from 6 components to 5. The quality of those solutions was

also affected, achieving only a maximum Sharpe ratio of 1.26 compared to a value

of 2.26 where the solutions retained all 6 components. This can be seen in Figure

6, where we render the solutions returned by PSOSR as a scatter plot showing

fitness against solution length. Based on these observations, it seems that the

pruning procedure in PSOSR is ineffective in producing shorter solutions that are

competitive to their unpruned counterparts in its current form.

From the results seen so far, we can see that representing the issue of market

timing in a form that considers both the weight of the constituent components

72 CHAPTER 5. COMPOSING STRATEGIES WITH PSO

and the value of its parameters and uses PSO to optimize their values is a feasible

approach.

Figure 6: Scatter Plot showing Solution Length and Fitness achieved by PSOSR.
Out of 80 experiments, 62 solutions returned were not affected by the pruning,
while the remaining 18 only lost one component. The 18 solutions of shorter
length also show a reduced fitness when compared to the solutions that were not
affected by pruning, indicating that the pruning procedure in PSOSR is ineffective.

5.5 Summary

In this chapter, we presented a strategy to tackle market timing as a single objec-

tive optimization problem using PSO in a manner that considers both the selection

of signal generating components (by way of adjusting their weights) and the tun-

ing of their parameters simultaneously. We introduced two novel PSO algorithms:

PSOS and PSOSR, and tested them along with classical PSO algorithms in opti-

mizing the Sharpe Ratio using 6 technical indicators against data from 4 securities.

5.5. SUMMARY 73

Table 4: Rankings of algorithms based on the Friedman non-parametric test with
Holm post-hoc correction using mean fitness.

Algorithm Ranking p Holm

LB-V 2.25 – –

PSOSR 2.75 0.6547 0.05

LB-C 3.0 0.5023 0.025

GB 3.25 0.3711 0.0167

PSOS 3.75 0.1797 0.0125

Although the results showed that the two new algorithms were competitive to clas-

sical PSO, none of the algorithms was able to achieve good values for the Sharpe

Ratio using the current experimental setup and Step Forward testing. Neverthe-

less, the work presented in this chapter proves that it is possible to consider the

composition of market timing strategies in such a manner that addresses the se-

lection of components and the tuning of their parameters in one fell swoop when

compared to previous approaches that attempted to either select from a gallery of

components with preset parameters or tune the parameters of a preset selection,

but not both at the same time. We also showed that it is possible to do this using

PSO, an algorithm that is not as extensively used within the domain of market

timing as the current incumbent genetic algorithms. In the next chapters, we ad-

dress the current limitations, improving the methodology of training and testing

then move on to tackling market timing as a multiobjective optimization problem

that involves a number of competing financial performance metrics.

74 CHAPTER 5. COMPOSING STRATEGIES WITH PSO

Chapter 6

Trend Representative Testing

“You can only fight the way you practice.”

–Miyamoto Musashi

As mentioned in Chapter 2, the current incumbent method of training and

testing used when building market timing strategies in the literature surveyed is

a procedure known as Step Forward testing [44, 40, 84]. Step Forward testing

starts by acquiring a stream of price data for a particular tradable asset and then

arbitrarily spliting this stream into two sections: the chronologically earlier section

being used for training, while the later is used for testing. A common practice

followed by users of this testing methodology is to ensure that the training section

is proportionally twice the size of the testing section in terms of the number of data

points contained within each section. The main issue with Step Forward testing

is that while training your algorithm, you are confined to the price movements or

trends observed from the data points within the training section. This means that

the algorithm is only exposed to the upwards, downwards and sideways trends

currently manifest in the training data in terms of both length and intensity.

This introduces the likelihood of overfitting to these particular trends, and when

faced with different types of trends (those with different lengths and intensities)

in real life trading, all the profits that were seen while training and testing quickly

evaporate. A simple example would be if an algorithm only sees upward trends

during both training and testing, and then is exposed to a downwards trend in

75

76 CHAPTER 6. TREND REPRESENTATIVE TESTING

real life trading, as illustrated in Chapter 2, Figure 2. This shortcoming has been

reported in both the studies by Hu et al. [40] and Soler-Dominguez et al. [84], as

well as in literature from the trading domain such as [44]. Furthermore, trying to

apply standard tactics to avoid overfitting such as k-fold cross validation are not

easy due to the structure of the data. In this chapter we propose a novel training

and testing methodology, called Trend Representative Testing, to address these

shortcomings.

6.1 Trend Representative Testing

The primary philosophy behind Trend Representative Testing is that by exposing

an algorithm during training and testing to a variety of upwards, downwards and

sideways movements, we reduce the chance of the algorithm overfitting to any sin-

gle one of those trends and have a better estimation of the algorithm’s performance

in real-life trading. This is based on the suggestions of domain experts in [44]. Our

objective is then to build a library containing numerous examples of each type of

trend, with various intensities and time lengths, and define an approach on the

use of this library in training and testing.

The process of building a dataset for Trend Representative Testing is a system-

atic approach of analyzing raw price streams, identifying usable subsections with

known trends and then storing them within a library so as to have a multitude

of uptrends, downtrends and sideways movements for use in training and testing.

The first step of this process is to acquire a vast amount of raw price data, over

an extended time frame to improve our chances of capturing the largest variety of

trends in terms of direction, intensity and length. For our library, we acquired the

raw price data for all securities exchanged on the Nasdaq and NYSE 1 markets

traded from 1990 to 2018. Each individual price stream is then scanned for price

shocks, and upon detection, the raw price stream is divided into two sub-streams

known as cords: one cord representing the data occurring before the price shock

and the other representing the data occurring after the price shock. The reason we

remove price shocks is that they are outlier events, categorized by a sudden change

1Data retrieved from https://www.alphavantage.co/

6.1. TREND REPRESENTATIVE TESTING 77

Figure 7: A visual example1 of the process behind generating a Trend Represen-
tative Testing dataset. The data shows the price data for the Dow Jones index
between July 1987 and January 1988. In (A) we can see the raw price data, with
the tall black rectangular highlighting the price shock caused by the events of
Black Monday on October 19, 1987. This price shock is confirmed in spikes of
Average True Range and True Range depicted directly under the top chart. Upon
the identification of the price shock, the raw stream of data is divided into two
streams we call cords: one before the price shock (B), and the other after the price
shock (C). The cords are then subsampled using sliding windows of various sizes to
produce what we call strands (D). Strands are then analyzed using the Directional
Index technical indicator to identify the underlying trends and stored in library
that forms the Trend Representative Testing dataset.
1 Images from Yahoo! Finance

78 CHAPTER 6. TREND REPRESENTATIVE TESTING

Figure 8: Using triplets of strands for training and testing in Trend Representative
Testing. A triplet is composed of three strands: an uptrend, sideways movement
and a downtrend. A set of triplets is divided into a training subset and testing
subset. During training, an algorithm will pick a triplet at random from the
training subset at each iteration, backtest a given candidate solution against each
strand within the triplet and report the average performance. A similar process is
followed during the testing phase.

in price in response to an event. Price shocks are highly unpredictable and disrup-

tive events. Including these sudden and disruptive changes in the training data

would imply that our trained market timing strategies are capable of predicting

price shocks and correctly responding to them, which is not the problem that we

are focusing on. This is the main reason why we elect to remove price shocks from

training and testing data. Besides being catastrophic events, price shocks are rare

and training a strategy to use them would be highly impractical. Price shocks can

6.2. COMPUTATIONAL EXPERIMENTS 79

be defined as price actions that are three times the Average True Range (ATR)

within a short period of time [44]. In the second step, each generated cord is then

subsampled using sliding windows of various sizes to produce strands. Each strand

is then analyzed to identify the direction of the underlying trend represented (up-

wards, downwards or sideways) and intensity using the Directional Index technical

indicator [76] and finally added to the library. A visual example of this process

can be seen Figure 7.

In order to use this new dataset, we first start by building two sets: a training

set and a testing set. A training set is composed of n triplets, where a triplet is

a set of three strands: one uptrend, one downtrend and one sideways trend. A

testing set is composed of a single triplet. During training, we randomly select a

triplet from the training set with each iteration, and this triplet is used to assess

the performance of all candidate solutions within the iteration. To measure the

performance of a candidate solution, we evaluate the performance of the candidate

solution at hand against each constituent strand within the triplet designated for

the current iteration and report the average fitness. This process is repeated until

the training criteria are met or a set of training iterations are exhausted. For

testing, the triplet from the testing set is used in a similar fashion to assess the

performance of the solutions from the algorithm. An illustration of training and

test sets can be seen in Figure 8. Pseudocode for how trend representative testing

is used to calculate fitness can be seen in Algorithm 6. The idea behind trend

representative testing is that we want to discourage niching or specializing in one

particular trend type and instead promote discovering market timing strategies

that fair well against various market conditions.

6.2 Computational Experiments

Having explored the motivation behind Trend Representative Testing, its method-

ology and how datasets are generated, we now move on to experimentation. Our

first set of experiments compares Trend Representative Testing with the current

incumbent method: Step Forward testing. This comparison used a limited set

of technical indicators to see if using trend representative testing produces more

resilient market timing strategies. Our second set of experiments is designed to see

80 CHAPTER 6. TREND REPRESENTATIVE TESTING

Algorithm 6 Calculating Fitness using Trend Representative Testing

1. function calculate fitness(population)

2. U : Set of all strands representing upwards trends

3. S: Set of all strands representing sideways trends

4. D: Set of all strands representing downwards trends

5. triplet ← U [random(1, length(U))] ∪ S[random(1, length(S))] ∪
D[random(1, length(D))]

6. fitnesses← {}
7. for i = 1 to length(population) do

8. fitness← {}
9. for strand in triplet do

10. fitness← fitness ∪ backtest(strand, population[i])

11. end for

12. fitnesses← fitnesses ∪mean(fitness)

13. end for

14. return fitnesses

15. end function

if our PSO variants, presented in Chapter 5, are capable of producing competent

market timing strategies using trend representative testing. They use a much ex-

tended set of technical indicators. To provide more context for the performance of

the market timing strategies produced by our PSO variants, we benchmark them

in both sets of experiments against those produced by a Genetic Algorithm (GA).

The reason we chose GA as the benchmark algorithm is because it is the most

used algorithm within the domain of market timing, as discussed in Chapter 4.

The design of the GA benchmark is discussed next.

6.2.1 Genetic Algorithm Benchmark

In order to apply genetic algorithms (GA) to tackle market timing using our pro-

posed formalization, we started with a typical implementation of GA and modified

its operators in order to accommodate how we encode candidate solutions. First,

individuals selected for crossover are chosen using a typical tournament procedure,

with the tournament size being a user-defined parameter. A crossover point is then

6.2. COMPUTATIONAL EXPERIMENTS 81

Figure 9: An example of a crossover operation.

selected at random such that it lands between the definition of two components

but not within them. This would ensure that the components in the resulting

genotypes are valid, with the correct number of parameters, parameter values are

within valid ranges and the constraints on the parameters for each component are

maintained. Using the example from Chapter 5, we can generate a crossover point

either between the definition of MACD and RSI, or between RSI and Chaikin.

An example of a crossover operation can be seen in Figure 9. When a mutation

event is triggered, a random component in an individual’s genotype is replaced by

a newly instantiated copy of the same component type. This newly instantiated

copy would use random values for the constituent parameters within the valid

range.

Crossover and mutation are used to generate a new population for the next

generation, and this procedure continues until the allocated budget of generations

is exhausted. An archive is used to keep track of the elite individuals per genera-

tion, with the most fit individual in the archive reported at the end of the GA run

as the proposed solution.

82 CHAPTER 6. TREND REPRESENTATIVE TESTING

Algorithm 7 GA Benchmark Algorithm

1. N : population size

2. M : mutation probability

3. C: crossover probability

4. population: a population of candidate solutions

5. fitnesses: fitnesses associated with population at time t

6. fittest(): function that searches a given population and its associated fitnesses and

returns the fittest individual

7. archive: an elitist archive used to keep track of fittest solutions per generation

8. populationt ← populate with candidate solution of size N

9. fitnessest ← calculate fitness(populationt) . refer to Algorithm 6

10. repeat . main loop

11. archive← archive ∪ fittest(populationt, fitnessest)
12. populationt+1 ← {}
13. i← 0

14. repeat

15. if random() < M then

16. selected← tournament selection(populationt)

17. mutated← mutate(selected)

18. populationt+1 ← populationt+1 ∪mutated
19. i← i+ 1

20. end if

21. if random() < C then

22. p1 ← tournament selection(populationt)

23. p2 ← tournament selection(populationt)

24. populationt+1 ← populationt+1 ∪ crossover(p1, p2)
25. i← i+ 1

26. end if

27. until i = N

28. populationt+1 ← populationt+1 ∪ fittest(populaitont, fitnessest)
29. populationt ← populationt+1

30. fitnessest ← calculate fitness(populationt) . refer to Algorithm 6

31. until stopping criteria met

32. return return fittest member in archive

6.2. COMPUTATIONAL EXPERIMENTS 83

6.2.2 Comparison With Step Forward Testing

The first set of experiments are designed to answer the question Is Trend Rep-

resentative Testing better than Step Forward testing in producing resilient market

timing strategies? The algorithms used in this set of experiments are GA, PSO,

PSOS and PSOSR. All algorithms have access to 15 technical indicators – a list

of the indicators can be found in Table 5. Since the algorithms being tested have

parameters of their own, the first step in our experimental setup consists of per-

forming hyperparameter optimization. As the pruning parameter is a tunable

option, our novel PSO variants introduced in Chapter 5 are translated to either

PSOS, when the pruning is turned off, and PSOSR, when pruning is turned on.

The IRace algorithm [58] was used to perform hyperparameter optimization for

the aforementioned algorithms for both Step Forward and Trend Representative

testing, resulting in six distinct configurations. To generate data for IRace to train

and test on, we start with the data for the Trend Representative testing method.

We selected 30 strands at random from the strand repository created for the Trend

Representative dataset. A strand also has a trend direction and an intensity as-

sociated with them. These 30 strands are selected such that we end up with 10

uptrends, 10 sideways and 10 downtrends. The 30 strands are then divided into 10

triplets, where each triplet contains a single uptrend, a single sideways movement

and a downtrend. For training, the algorithm would use 9 triplets and hold out

the last triplet for testing. This is repeated in a round-robin fashion until each

triplet has played both a role in training and testing. For the Step Forward set of

IRace runs, four distinct datasets were built: one consisting of all uptrends, one

consisting of all downtrends, one consisting of all sideways trends and finally one

consisting of random trends. The price streams selected for each of these datasets

are divided into training and testing data such that training would be the earlier

70% of the strand, while testing would be the latter 30%. The parameters for each

algorithm and the results of the IRace run can be seen in Table 6 and Table 7

respectively.

For the training and testing datasets used in experiments we performed a sim-

ilar exercise as with the hyperparameter optimization datasets. We start with the

84 CHAPTER 6. TREND REPRESENTATIVE TESTING

Table 5: Technical Indicators used in Step Forward versus Trend Representative
Testing. All parameters are of type integer, with the exception of weight, which
is of the type double. Information regarding how these indicators generate signals
can be found in [67], [76] and [44].

Indicator Parameters

Moving Average Converge Diverge

(MACD)

Weight, Short Period, Long Period, Signal Pe-

riod

Aroon Oscillator Weight, Period, Lookback

Relative Strength Indicator Weight, Overbought Threshold, Oversold

Threshold, Period

Stochastic Oscillator Weight, Fast K Period, Slow K Period, Slow D

Period

Chaikin Oscillator Weight, Fast Period, Slow Period

On Balance Volume (OBV) Weight, Period

Mat Hold Pattern Weight, Trend Period, Smooth Period

Rising Falling Three Methods Pattern Weight, Trend Period, Smooth Period

Separating Lines Pattern Weight, Trend Period, Smooth Period

Doji Star Pattern Weight, Trend Period, Smooth Period

Engulfing Pattern Weight, Trend Period, Smooth Period

Three Outside Pattern Weight, Trend Period, Smooth Period

Three Black Crows Pattern Weight, Trend Period, Smooth Period

Three White Soldiers Weight, Trend Period, Smooth Period

Morning Star Pattern Weight, Trend Period, Smooth Period

Trend Representative set, and obtain data in a similar fashion but with the stip-

ulation that none of the selected strands were used with IRace. The 30 strands

selected for experimentation are also divided into 10 triplets, were each triplet

contains a single uptrend, a single sideways trend and a single downtrend. To

obtain the data for the Step Forward training set, the 30 strands are considered as

the testing section, and we retrieve the chronologically preceding data per strand

to complete the training set. The amount of preceding data retrieved per strand

is done in such a manner to maintain 70% training to 30% testing in the Step

Forward scheme. This leaves us with 30 pairs for training and testing in a Step

Forward fashion, and 10 triplets for training and testing in a Trend Representative

fashion. The data used by the experiments can be seen in Table ??. The trends

6.2. COMPUTATIONAL EXPERIMENTS 85

Table 6: IRace Parameters

Parameter Algoritm Range Condition

Population Size All 20 - 100

Iterations All 20 - 300

Mutation Probability GA 0 - 1

Crossover Probability GA 0 -1

Tournament Size GA 2 - 50

Neighborhood Size PSO, PSOS, PSOSR 2 - 100

c1 PSO, PSOS, PSOSR 2 - 4

c2 PSO, PSOS, PSOSR 2 - 4

Clamp PSO, PSOS, PSOSR Clerc or Factor

Factor PSO, PSOS, PSOSR 0 - 1 Only if Clamp = Factor

Pruning PSOSR True or False

Pruning Threshold PSOS, PSOSR 0 - 1 Only if Pruning = True

Pruning Deadline PSOS, PSOSR 1 - n
Only if Pruning = True

and n ≤ Iterations

of the Step Forward training datasets were discovered post-hoc, and the fact that

they all turned out to be sideways is coincidental. Both testing strategies are

performed by the four algorithms as configured by IRace and each experiment is

repeated 10 times to cater for effects of stochasticity.

Figures 10 to 14 show the minimum, median, mean and maximum fitnesses

achieved for each strand and algorithm, along with standard deviation. From look-

ing at the heatmaps, we can see that the highest minimum fitness was achieved by

Trend Representative PSOSR. Median and mean fitnesses for the different algo-

rithms show a clear advantage for Trend Representative PSOSR with the AVNW2

(Refer to Table 8) test strand. Beside these two particular data points, median

and mean fitnesses for all algorithms are close in value, and this is further cor-

roborated by the Friedman test performed on mean fitnesses for the algorithms.

Maximum fitnesses achieved by the algorithms display two particular hot spots

where fitnesses are significantly larger than the rest of the data points. These

two hot spots occur with the AVNW2 and AVNW6 test strands. With AVNW2,

Trend Representative GA, Trend Representative PSOSR, Step Forward (Random)

T
ab

le
7:

A
lg

or
it

h
m

ic
co

n
fi
gu

ra
ti

on
s

af
te

r
IR

ac
e

fo
r

S
te

p
F

or
w

ar
d

ve
rs

u
s

T
re

n
d

R
ep

re
se

n
ta

ti
ve

T
es

ti
n
g

ex
p

er
im

en
ts

.

P
a
ra
m
et
er

S
te
p
F
o
rw

a
rd

(D
ow

n
)
S
te
p
F
o
rw

a
rd

(R
a
n
d
o
m
)

S
te
p
F
o
rw

a
rd

(S
id
e)

S
te
p
F
o
rw

a
rd

(U
p
)

T
re
n
d
R
ep

re
se
n
ta
ti
v
e

P
S
O

S
R

G
A

P
S
O

P
S
O

S
G
A

P
S
O

P
S
O

S
R

G
A

P
S
O

P
S
O

S
G
A

P
S
O

P
S
O

S
R

G
A

P
S
O

P
o
p
u
la
ti
o
n
S
iz
e

6
5

5
1

5
8

4
5

4
3

8
1

3
1

3
7

8
7

7
0

7
9

7
4

4
5

2
9

3
2

It
er
a
ti
o
n
s

2
6

1
8
7

2
7
4

1
9
2

2
3
0

1
4
2

1
6
5

1
2
5

2
5
5

3
7

2
7
6

3
3

2
8
9

2
6
2

1
8
5

M
u
ta
ti
o
n
P
ro
b
a
b
il
it
y

–
0
.5
8
1

–
–

0
.5
6
6
8

–
–

0
.9
3
4
6

–
–

0
.4
0
3
5

–
–

0
.4
5
1
3

–

C
ro
ss
ov
er

P
ro
b
a
b
il
it
y

–
0
.7
5
2
5

–
–

0
.0
9
3
2

–
–

0
.5
2
4
6

–
–

0
.7
0
1

–
–

0
.9
2
1
8

–

T
o
u
rn
a
m
en

t
S
iz
e

–
3
0

–
–

3
3

–
–

1
7

–
–

3
6

–
–

5
–

N
ei
g
h
b
o
rh
o
o
d
S
iz
e

9
9

–
5
8

2
4

–
6
3

3
1

–
4
0

6
8

–
7
4

1
9

–
3
2

c1
2
.6
2
5
3

–
2
.6
3
1
9
3
.2
9
8
3

–
3
.2
8
5
3

2
.5
5
3
8

–
3
.6
9
6
3
2
.7
4
6
9

–
2
.0
2
2
7

3
.2
9
6
3

–
2
.5
8
9
3

c2
2
.8
7
8
7

–
3
.3
5
7
7
3
.3
6
1
4

–
3
.0
8
5
9

2
.1
4
2
5

–
2
.3
6
8
7
2
.2
2
1
7

–
2
.7
5
7
9

2
.5
1
9
5

–
2
.2
1
3
9

C
la
m
p

C
le
rc

–
C
le
rc

C
le
rc

–
C
le
rc

C
le
rc

–
C
le
rc

C
le
rc

–
F
a
ct
o
r

C
le
rc

–
C
le
rc

F
a
ct
o
r

–
–

–
–

–
–

–
–

–
–

–
0
.8
2
8
1

–
–

–

P
ru
n
in
g

T
ru
e

–
–

F
a
ls
e

–
–

T
ru
e

–
–

F
a
ls
e

–
–

T
ru
e

–
–

P
ru
n
in
g
T
h
re
sh
o
ld

0
.1
5
4
3

–
–

–
–

–
0
.2
2
2
2

–
–

–
–

–
0
.3
1
5
2

–
–

P
ru
n
in
g
D
ea
d
li
n
e

1
1
7

–
–

–
–

–
8
5

–
–

–
–

–
2
8
5

–
–

86

6.2. COMPUTATIONAL EXPERIMENTS 87

Table 8: Experiment Training and Testing Data. The Id is formed by concatenat-
ing the asset symbol and a numerical identifier.

Id Begin Date End Date Length Trend Is Training? Is Testing? Fold

ED2 9/8/14 1/14/15 90 ↑ Yes Yes 0
ETV2 3/18/13 7/24/13 90 ↔ Yes Yes 0
LUV2 7/31/08 1/21/09 120 ↓ Yes Yes 0
JBLU2 8/1/06 12/6/06 90 ↑ Yes Yes 1
LUV4 11/18/08 10/30/09 240 ↔ Yes Yes 1
LUV6 11/4/08 3/30/09 100 ↓ Yes Yes 1
COWN2 2/2/15 7/9/15 110 ↑ Yes Yes 2
JBLU4 4/17/08 6/15/10 545 ↔ Yes Yes 2
AVNW2 4/27/11 12/12/11 160 ↓ Yes Yes 2
KFY2 7/22/16 12/27/16 110 ↑ Yes Yes 3
JBLU6 9/12/08 5/3/11 665 ↔ Yes Yes 3
COWN4 8/1/11 12/28/11 105 ↓ Yes Yes 3
COMT2 1/26/16 6/9/16 95 ↑ Yes Yes 4
EXC2 2/24/14 2/24/16 505 ↔ Yes Yes 4
IAG2 1/31/12 6/7/12 90 ↓ Yes Yes 4
MGA2 3/4/13 8/14/13 115 ↑ Yes Yes 5
IAG4 1/26/11 7/25/11 125 ↔ Yes Yes 5
IAG6 4/18/16 8/30/16 95 ↓ Yes Yes 5
AVNW4 5/26/05 1/5/06 155 ↑ Yes Yes 6
ED4 8/5/16 12/27/16 100 ↔ Yes Yes 6
COWN6 7/7/14 11/10/14 90 ↓ Yes Yes 6
BSX2 9/7/12 6/26/13 200 ↑ Yes Yes 7
COWN8 5/3/12 1/14/13 175 ↔ Yes Yes 7
AVNW6 4/1/11 11/9/11 155 ↓ Yes Yes 7
MGA4 3/26/13 10/18/13 145 ↑ Yes Yes 8
JBLU8 1/11/11 11/7/12 460 ↔ Yes Yes 8
COWN10 7/15/11 12/5/11 100 ↓ Yes Yes 8
IAG8 11/18/15 4/6/16 95 ↑ Yes Yes 9
COWN12 11/15/10 10/5/11 225 ↔ Yes Yes 9
LUV8 7/9/08 11/19/08 95 ↓ Yes Yes 9
ED1 11/5/13 9/5/14 210 ↔ Yes No NA
ETV1 5/14/12 3/15/13 210 ↔ Yes No NA
LUV1 6/21/07 7/30/08 280 ↔ Yes No NA
JBLU1 9/29/05 7/31/06 210 ↔ Yes No NA
LUV3 8/29/06 11/17/08 560 ↔ Yes No NA
LUV5 12/3/07 11/3/08 233 ↔ Yes No NA
COWN1 1/27/14 1/30/15 256 ↔ Yes No NA
JBLU3 3/31/03 4/16/08 1271 ↔ Yes No NA
AVNW1 11/2/09 4/26/11 373 ↔ Yes No NA
KFY1 7/17/15 7/21/16 256 ↔ Yes No NA
JBLU5 7/17/02 9/11/08 1551 ↔ Yes No NA
COWN3 8/11/10 7/29/11 245 ↔ Yes No NA
COMT1 3/11/15 1/25/16 221 ↔ Yes No NA
EXC1 6/18/09 2/21/14 1178 ↔ Yes No NA
IAG1 3/31/11 1/30/12 210 ↔ Yes No NA
MGA1 2/6/12 3/1/13 268 ↔ Yes No NA
IAG3 11/30/09 1/25/11 291 ↔ Yes No NA
IAG5 6/2/15 4/15/16 221 ↔ Yes No NA
AVNW3 12/18/03 5/25/05 361 ↔ Yes No NA
ED3 9/2/15 8/4/16 233 ↔ Yes No NA
COWN5 9/4/13 7/3/14 210 ↔ Yes No NA
BSX1 11/2/10 9/6/12 466 ↔ Yes No NA
COWN7 9/21/10 5/2/12 408 ↔ Yes No NA
AVNW5 10/26/09 3/31/11 361 ↔ Yes No NA
MGA3 11/16/11 3/25/13 338 ↔ Yes No NA
JBLU7 10/6/06 1/10/11 1073 ↔ Yes No NA
COWN9 8/12/10 7/14/11 233 ↔ Yes No NA
IAG7 1/5/15 11/17/15 221 ↔ Yes No NA
COWN11 10/15/08 11/12/10 525 ↔ Yes No NA
LUV7 8/22/07 7/8/08 221 ↔ Yes No NA

88 CHAPTER 6. TREND REPRESENTATIVE TESTING

GA and Trend Representative PSO show a clear advantage over the other algo-

rithm variants in this order. In AVNW6, the Trend Representative variants show

the clear advantage over Step Forward ones.

The results obtained from the experiments were also rendered in the form of

box plots of fitnesses for the various algorithms and test strands, and can be

seen in Appendix I. Figures 22 to 52 show box plots of fitnesses for the various

algorithms and test strands. This helps us get a deeper look at the performance of

the algorithms tested. The salient trend that can be seen from the box plots is that

the algorithms show stability around a relatively narrow band of fitness, with one or

two algorithms outperforming the remaining ones. This can be seen, for example,

with BSX2, COWN2, EXC2, IAG4, JBLU4, LUV6, and MGA4. In some of these

instances, Trend Representative algorithms are at a clear advantage, such as in the

cases of AVNW2, AVNW6, COWN6, ED2, ED4, JBLU4, and JBLU6. In other

instances, Trend Representative algorithms are performing worse than their Step

Forward counterparts, such as in the cases of COWN12, COWN4, IAG6, KFY2,

LUV2, LUV6 and MGA4. It can be observed that algorithms that employ Trend

Representative testing have a higher tendency to produce a wider distribution

of fitness values when compared to algorithms that employ Step Forward testing.

This can be advantageous if a market timing strategy is to be built using maximum

fitness and the designer of the strategy can afford the cost of running the algorithm

numerous times. No clear correlation between the performance of a particular type

of algorithm and the underlying trend type of a test strand was observed.

In order to see whether statistical significance has been attained or not, we

conducted a Friedman non-parametric test with the Holm post-hoc correction[27,

33] on minimum, median, mean and maximum fitnesses. The results can be seen

in Tables 9 to 12. No statistical differences at the significance level 5% level were

observed to identify whether Trend Representative Testing has an edge over Step

Forward Testing based on current experimental setup. Given that Step Forward

and Trend Representative Testing perform equally from a statistical perspective,

we opt to use Trend Representative Testing. The reasoning behind this is that

Trend Representative testing explicitly exposes an algorithm to multiple trend

types during training and testing, and that allows us to have an estimation of its

performance when encountering unforeseen trends during deployment.

6.2. COMPUTATIONAL EXPERIMENTS 89

Figure 10: Minimum Fitnesses Heat Map. Darker colors indicate a higher fitness
and thus better solutions.

90 CHAPTER 6. TREND REPRESENTATIVE TESTING

Figure 11: Median Fitnesses Heat Map. Darker colors indicate a higher fitness
and thus better solutions.

6.2. COMPUTATIONAL EXPERIMENTS 91

Figure 12: Mean Fitnesses Heat Map. Darker colors indicate a higher fitness and
thus better solutions.

92 CHAPTER 6. TREND REPRESENTATIVE TESTING

Figure 13: Maximum Fitnesses Heat Map. Darker colors indicate a higher fitness
and thus better solutions.

6.2. COMPUTATIONAL EXPERIMENTS 93

Figure 14: Fitness Standard Deviation Heat Map. Darker colors indicate an in-
creased range implying a decreased stability in an algorithm with a particular
testing strand.

94 CHAPTER 6. TREND REPRESENTATIVE TESTING

Table 9: Average Rankings of each algorithm according to the Friedman non-
parametric test with the Holm post-hoc correction over minimum fitness. No
statistical differences at the significance level 5% level were observed to identify
whether Trend Representative Testing has an edge over Step Forward Testing
based on current experimental setup.

Algorithm Ranking p Holm

Step Forward (Up) PSO 5.98333 – –

Step Forward (Side) PSO 6.0 0.98848 0.05

Step Forward (Random) PSO 6.83333 0.46166 0.025

Step Forward (Side) PSOSR 6.86667 0.44429 0.01667

Step Forward (Down) PSO 7.33333 0.24235 0.0125

Step Forward (Random) PSOS 7.43333 0.20921 0.01

Step Forward (Random) GA 7.8 0.11565 0.00833

Step Forward (Down) PSOSR 8.03333 0.07583 0.00714

Trend Representative PSOSR 8.38333 0.03767 0.00625

Step Forward (Down) GA 8.45 0.03266 0.00556

Step Forward (Up) PSOS 8.6 0.02345 0.005

Step Forward (Side) GA 8.73333 0.01724 0.00455

Step Forward (Up) GA 9.16667 0.00584 0.00417

Trend Representative PSO 9.38333 0.00323 0.00385

Trend Representative GA 11.0 1.39555E-5 0.00357

6.2. COMPUTATIONAL EXPERIMENTS 95

Table 10: Average Rankings of each algorithm according to the Friedman non-
parametric test with the Holm post-hoc correction over median fitness. No statis-
tical differences at the significance level 5% level were observed to identify whether
Trend Representative Testing has an edge over Step Forward Testing based on cur-
rent experimental setup.

Algorithm Ranking p Holm

Step Forward (Side) PSO 6.73333 – –

Step Forward (Random) PSO 7.11667 0.73991 0.05

Step Forward (Down) PSOSR 7.51667 0.49753 0.025

Trend Representative PSO 7.61667 0.44428 0.01667

Step Forward (Random) GA 7.65 0.42728 0.0125

Step Forward (Side) PSOSR 7.66667 0.41892 0.01

Step Forward (Random) PSOS 7.86667 0.32635 0.00833

Step Forward (Down) PSO 7.9 0.31232 0.00714

Step Forward (Up) PSOS 8.06667 0.24821 0.00625

Step Forward (Down) GA 8.08333 0.24235 0.00556

Step Forward (Side) GA 8.25 0.18902 0.005

Step Forward (Up) PSO 8.3 0.17485 0.00455

Step Forward (Up) GA 8.5 0.12602 0.00417

Trend Representative PSOSR 8.91667 0.05865 0.00385

Trend Representative GA 9.81667 0.00758 0.00357

96 CHAPTER 6. TREND REPRESENTATIVE TESTING

Table 11: Average Rankings of each algorithm according to the Friedman non-
parametric test with the Holm post-hoc correction over mean fitness. No statistical
differences at the significance level 5% level were observed to identify whether
Trend Representative Testing has an edge over Step Forward Testing based on
current experimental setup.

Algorithm Ranking p Holm

Step Forward (Random) PSO 7.23333 – –

Step Forward (Side) PSO 7.36667 0.90807 0.05

Step Forward (Down) PSOSR 7.5 0.81736 0.025

Step Forward (Random) GA 7.53333 0.79501 0.01667

Step Forward (Side) PSOSR 7.56667 0.77283 0.0125

Step Forward (Side) GA 7.9 0.56370 0.01

Trend Representative PSO 7.96667 0.52537 0.00833

Step Forward (Down) PSO 8.0 0.50672 0.00714

Step Forward (Up) GA 8.06667 0.47049 0.00625

Step Forward (Random) PSOS 8.1 0.45292 0.00556

Step Forward (Down) GA 8.2 0.40250 0.005

Step Forward (Up) PSOS 8.33333 0.34078 0.00455

Step Forward (Up) PSO 8.6 0.23658 0.00417

Trend Representative PSOSR 8.8 0.17485 0.00385

Trend Representative GA 8.83333 0.16586 0.00357

6.2. COMPUTATIONAL EXPERIMENTS 97

Table 12: Average Rankings of each algorithm according to the Friedman non-
parametric test with the Holm post-hoc correction over maximum fitness. No
statistical differences at the significance level 5% level were observed to identify
whether Trend Representative Testing has an edge over Step Forward Testing
based on current experimental setup.

Algorithm Ranking p Holm

Trend Representative GA 5.1 – –

Step Forward (Side) GA 6.38333 0.26640 0.05

Trend Representative PSO 6.88333 0.12249 0.025

Step Forward (Up) GA 6.96666 0.10597 0.01667

Step Forward (Down) GA 7.35000 0.05135 0.0125

Step Forward (Side) PSOSR 7.5 0.03767 0.01

Step Forward (Random) GA 7.75 0.02173 0.00833

Step Forward (Down) PSOSR 8.08333 0.00978 0.00714

Step Forward (Down) PSO 8.3 0.00558 0.00625

Step Forward (Random) PSO 8.38333 0.00446 0.00556

Step Forward (Random) PSOS 8.61667 0.00232 0.005

Trend Representative PSOSR 8.66667 0.00201 0.00455

Step Forward (Up) PSOS 8.95 8.55458E-4 0.00417

Step Forward (Side) PSO 10.28333 7.15924E-6 0.00385

Step Forward (Up) PSO 10.78333 8.57032E-7 0.00357

98 CHAPTER 6. TREND REPRESENTATIVE TESTING

6.2.3 Extended Experiments with Trend Representative

Testing

Our second set of experiments is designed to see if Trend Representative Testing

and PSO can produce competent market timing strategies in a larger scale scenario.

The number of technical indicators available to the algorithms was extended from

15 in the previous experiment to 63. In order to evaluate the effectiveness of the

algorithms in composing market timing strategies, we tested basic PSO, our novel

PSO variants and used GA as a benchmark to compare them against. As all the

algorithms have parameters, testing was preceded by hyperparameter optimization

performed using the iterated racing procedure (IRace) [58]. Irace is based on three

steps: generating candidate configurations based on a sampling of the variables

being optimized, racing the configurations and using the results of the racing to

adjust the sampling process. During racing, the configurations being considered

are evaluated against a dataset reserved for hyperparameter optimization and at

configurable checkpoints during the race, configurations that are performing worse

than their peers at a statistically significant level are discarded and exit the race.

At the end of the race, surviving configurations are used to bias sampling towards

the winning values and the process is repeated until the stopping criteria for IRace

are satisfied. The IRace procedure was run with a budget of 300 iterations and

a survivor limit of one, in order to arrive at a single configuration for each al-

gorithm. During hyperparameter optimization, the pruning procedure was found

to produce inferior results with the extended library of technical indicators. The

IRace algorithm consistently recommended that this feature be turned off during

hyperparameter optimization, and so only PSOS was included in the experiments

and PSOSR is excluded. The results of the IRace procedure can be seen in Table

13. In regards to PSO, IRace arrived at swarm sizes that are similar for both vari-

ants. The configuration discovered for PSO uses a much lower number of iterations

when compared with the configuration for PSOS. We can also see that the PSO

configuration is slightly more reliant on the cognitive component with an l-best

neighborhood spanning half the swarm, while the PSOS configuration is slightly

more reliant on the cognitive component with a g-best neighborhood structure.

Both PSO configurations favored velocity scaling over Clerc’s constriction, with

6.2. COMPUTATIONAL EXPERIMENTS 99

Table 13: IRace discovered configurations for each of the algorithms tested.

PSO PSOS GA

Parameter Value Parameter Value Parameter Value

Population 45 Population 59 Population 53

Iterations 28 Iterations 261 Generations 266

Neighbors 26 Neighbors 59 Mutation Probability 0.6306

c1 2.4291 c1 3.2761 Crossover Probability 0.455

c2 3.4185 c2 2.363 Tournament Size 22

Clamp Scaling Clamp Scaling

Scaling Factor 0.8974 Scaling Factor 0.551

PSO using relatively larger steps while PSOS uses relatively smaller steps based

on the scaling factors. After hyperparameter optimization, we ended up with two

PSO configurations: a fast acting l-best PSO and a slower g-best PSOS. As for GA,

the findings of IRace show that the configuration had a relatively high mutation

rate and a relatively low crossover rate when compared to typical values used for

those parameters. The discovered population size and the number of generations

are similar in size to those of PSOS.

All algorithms are trained and tested using trend representative testing. The

data used contains 30 strands, representing 10 upwards, 10 downwards and 10

sideways trends at various intensities. The details of the trends can be seen in

Table 14. The columns in Table 14 describe the symbol of the source stock data,

the beginning date, the ending date and the trend of every strand in the dataset.

The data has then been split into 10 datasets, where each dataset would contain

one of each trend for testing and the remaining 27 are then used for training.

Each step in the training and testing procedure is repeated 10 times to cater for

the effects of stochasticity.

As mentioned earlier, 63 signal generating components were used in both train-

ing and testing. These 63 components are of the technical variety, and contain a

selection of momentum indicators, oscillators, accumulation/distribution indica-

tors, candlestick continuation pattern detectors and candlestick reversal pattern

100 CHAPTER 6. TREND REPRESENTATIVE TESTING

indicators. Where the components took parameters that affected periods of data

to look at, an upper limit of 45 days was set, so that we could get at least 5

trading signals within a single trading year (which is on average compromised of

252 days in the US market). Any other parameters for the technical indicators are

initialized to random values in a manner that does not break any constraints set

on them by each indicator type. A list of the indicators available to the algorithms

can be seen in Table 17.

Table 18 shows the minimum, median, mean and maximum fitnesses based on

the Annualized Rate of Return (AROR) achieved by each algorithm, dataset and

trend. GA showed a slight edge over the PSO variants with all three trends in

dataset 1, while PSOS showed a clear advantage with the downtrend in dataset 7.

The basic PSO variant takes most of the wins based on means, when compared to

GA and PSOS. By looking at overall averages in Table 15, we can see that all three

algorithms showed a higher overall fitness during a downtrend when compared with

the other two trends, leaving us with an unbalanced performance. Nevertheless,

performing better in downtrends is positive when compared with buy-and-hold

strategies which would fail under such conditions. This issue of unbalanced per-

formance with various trend types can be mitigated once the problem of market

timing is approached as a multiobjective one, where the aim is to discover a Pareto

front with solutions that maximize fitness across all three trends. By having the

performance of the three algorithms explicitly compared across a variety of trends,

we have a better approximation of the performance of the strategies produced by

these algorithms under live market conditions, and therein lies the advantage of

using trend representative testing. With Step Forward testing, we are limited to

the price movements in the training section of the data. This can easily lead to

strategies that are overfit to one particular type of trend, because that was all they

were exposed to during training. With trend representative testing, we explicitly

avoid this issue by exposing our algorithms to a variety of trends during both

training and testing.

Table 16 shows the rankings of the algorithms after performing the non-parame-

tric Friedman test with the Holm’s post-hoc test by trend type on the mean results

[33]. The first column shows the trend type; the second column shows the algo-

rithm name; the third column shows the average rank, where the lower the rank

6.3. REVISITING PRUNING 101

the better the algorithm’s performance; the fourth column shows the p-value of

the statistical test when the average rank is compared to the average rank of the

algorithm with the best rank (control algorithm); the fifth shows the Holm’s crit-

ical value. Statistically significant differences at the 5% level between the average

ranks of an algorithm and the control algorithm are determined by the fact that

the p-value is lower than the critical value, indicating that the control algorithm

is significantly better than the algorithm in that row. The non-parametric Fried-

man test was chosen as it does not make assumptions that the data is normally

distributed, a requirement for equivalent parametric tests. We can see from this

table that PSO and PSOS were ranked higher than GA in both downtrends and

sideways, with a close tie for uptrends, although not at a statistically significant

level. This suggests that PSO, both in its basic and modified flavors, is competi-

tive with GA when it comes to the domain of market timing. PSO, in particular,

has an advantage over GA in that it achieves these highly competitive results with

an order of magnitude fewer number of iterations using a similar population size.

The stochastic state update modification has given PSOS a small improvement in

ranking when tested in downtrends and uptrends over the PSO, although this is

achieved with a greater number of iterations.

6.3 Revisiting Pruning

In Chapter 5, we introduced a pruning procedure in an attempt to arrive at shorter

solutions by actively removing signal generating components whose weight falls be-

low a specific threshold at specific checkpoints through the algorithm’s run. Our

PSO variant employing this pruning procedure is known as PSOSR. Experimen-

tation with this pruning procedure did not prove to be fruitful. This was further

confirmed when IRace found the best setting for that pruning procedure is to be

turned off during our second set of experiments. This suggests that the prun-

ing procedure is too destructive. Any components that fall below the pruning

threshold is removed from all solutions in the swarm and there is no mechanism to

reintroduce the pruned components at a later stage. Therefore, components that

do not have a good configuration at the moment, and thus not contributing to

the solution in a beneficial manner, get removed without having the opportunity

102 CHAPTER 6. TREND REPRESENTATIVE TESTING

Table 14: Data strands used for training and testing. Id is composed of the asset
symbol and a numerical identifier.

Id Begin Date End Date Length Trend

BSX1 2012-10-10 2013-07-09 185 ↑
LUV1 2008-08-22 2010-05-07 430 ↔
KFY1 2007-05-16 2007-10-12 105 ↓
EXC1 2003-04-14 2003-08-20 90 ↑
LUV2 2004-12-03 2005-05-04 105 ↔
KFY2 2007-03-20 2007-09-21 130 ↓
AVNW1 2005-07-18 2006-01-12 125 ↑
PUK1 2010-08-12 2012-04-03 415 ↔
LUV3 2008-09-02 2009-01-30 105 ↓
KFY3 2003-03-13 2003-08-04 100 ↑
EXC2 2002-10-03 2003-08-04 210 ↔
LUV4 2003-11-21 2004-04-01 90 ↓
EXC3 2003-05-12 2003-10-15 110 ↑
PUK2 2005-05-12 2006-03-13 210 ↔
MGA1 1996-02-29 1996-07-08 90 ↓
ED1 1997-07-02 1997-11-20 100 ↑
EXC4 1999-08-20 2000-03-30 155 ↔
PUK3 2002-03-19 2002-07-25 90 ↓
BSX2 2009-04-22 2009-09-18 105 ↑
ED2 2011-12-15 2012-05-16 105 ↔
JBLU1 2003-05-15 2003-11-10 125 ↓
MGA2 2012-12-28 2013-10-14 200 ↑
MGA3 1995-09-19 1996-12-13 315 ↑
ATRO1 1997-06-04 1997-11-28 125 ↓
AVNW2 2003-03-07 2003-08-05 105 ↑
EXC5 2015-03-12 2016-09-02 375 ↔
AVNW3 2013-06-11 2013-11-20 115 ↓
IAG1 2015-11-09 2016-08-24 200 ↑
MGA4 1995-10-17 1996-04-22 130 ↔
IAG2 2012-01-19 2012-06-04 95 ↓

6.3. REVISITING PRUNING 103

Table 15: Overall average fitness by trend for each algorithm.

Algorithm

Trend PSOS GA PSO

Downtrend 3.84 3.46 3.62

Sideways 0.74 0.61 1.01

Uptrend 0.55 0.31 0.81

Table 16: Average rankings of each algorithm according to the Friedman non-
parametric test with the Holm post-hoc test over the mean performance. No
statistical differences at the significance level 5% were observed.

Trend Algorithm Ranking p-value Holm

Downtrend PSOS (control) 1.7 – –

PSO 2.0 0.6708 0.05

GA 2.3 0.1797 0.025

Sideways PSO (control) 1.7 – –

GA 2.0 0.5023 0.05

PSOS 2.3 0.1797 0.025

Uptrend PSOS (control) 1.9 – –

GA 1.9 0.9999 0.05

PSO 2.2 0.5023 0.025

to explore other configurations. Shorter solutions have two main advantages over

their longer counterparts: they are faster to compute and easier to comprehend.

Since shorter solutions are composed of a fewer number of signal generating com-

ponents, they consume fewer computational resources in order to generate their

recommendations than solutions that are relatively longer. Shorter solutions are

also more easily comprehensible by human users. It is for these two reasons that

shorter solutions are more desirable than longer ones. The challenge is to find

a good balance between the quality and size of a solution. In order to arrive

at the least sufficient subset of components that optimizes a financial metric, we

104 CHAPTER 6. TREND REPRESENTATIVE TESTING

Table 17: Extended set of technical Indicators used in Trend Representative Test-
ing experiments. All parameters are of type integer, with the exception of weight,
which is of the type double.

Indicator Parameters

Moving Average Converge Diverge

(MACD)

Weight, Short Period, Long Period, Sig-

nal Period

Aroon Oscillator Weight, Period, Lookback

Relative Strength Indicator Weight, Overbought Threshold, Oversold

Threshold, Period

Stochastic Oscillator Weight, Fast K Period, Slow K Period,

Slow D Period

Chaikin Oscillator Weight, Fast Period, Slow Period

On Balance Volume (OBV) Weight, Period

Two Crows Pattern Weight, Trend Period, Smooth Period

Three Black Crows Pattern Weight, Trend Period, Smooth Period

Three Inside Pattern Weight, Trend Period, Smooth Period

Three Lines Strike Pattern Weight, Trend Period, Smooth Period

Three Outside Pattern Weight, Trend Period, Smooth Period

Three Stars In South Pattern Weight, Trend Period, Smooth Period

Three White Soldiers Pattern Weight, Trend Period, Smooth Period

Abandoned Baby Pattern Weight, Trend Period, Smooth Period

Advanced Block Pattern Weight, Trend Period, Smooth Period

Belt Hold Pattern Weight, Trend Period, Smooth Period

Break Away Pattern Weight, Trend Period, Smooth Period

Closing Marbozu Pattern Weight, Trend Period, Smooth Period

Counter Attack Pattern Weight, Trend Period, Smooth Period

Dark Cloud Cover Pattern Weight, Trend Period, Smooth Period

Doji Pattern Weight, Trend Period, Smooth Period

Doji Star Pattern Weight, Trend Period, Smooth Period

Dragonfly Doji Pattern Weight, Trend Period, Smooth Period

Engulfing Pattern Weight, Trend Period, Smooth Period

Evening Doji Star Weight, Trend Period, Smooth Period

6.3. REVISITING PRUNING 105

Table 17: (continued)

Indicator Parameters

Gap Side by Side White Lines Pattern Weight, Trend Period, Smooth Period

Gravestone Doji Pattern Weight, Trend Period, Smooth Period

Hammer Pattern Weight, Trend Period, Smooth Period

Hanging Man Pattern Weight, Trend Period, Smooth Period

Harami Pattern Weight, Trend Period, Smooth Period

Harami Cross Pattern Weight, Trend Period, Smooth Period

Hikkake Pattern Weight, Trend Period, Smooth Period

Hikkake Modified Pattern Weight, Trend Period, Smooth Period

Homing Pigeon Pattern Weight, Trend Period, Smooth Period

Identical Three Crows Pattern Weight, Trend Period, Smooth Period

In Neck Pattern Weight, Trend Period, Smooth Period

Inverted Hammer Pattern Weight, Trend Period, Smooth Period

Kicking Pattern Weight, Trend Period, Smooth Period

Kicking by Length Pattern Weight, Trend Period, Smooth Period

Ladder Bottom Pattern Weight, Trend Period, Smooth Period

Long Legged Doji Pattern Weight, Trend Period, Smooth Period

Long Line Pattern Weight, Trend Period, Smooth Period

Marbozu Pattern Weight, Trend Period, Smooth Period

Matching Low Pattern Weight, Trend Period, Smooth Period

Morning Doji Star Pattern Weight, Trend Period, Smooth Period

Mat Hold Pattern Weight, Trend Period, Smooth Period

Morning Star Pattern Weight, Trend Period, Smooth Period

On Neck Pattern Weight, Trend Period, Smooth Period

Piercing Pattern Weight, Trend Period, Smooth Period

Rickshaw Man Pattern Weight, Trend Period, Smooth Period

Rising Falling Three Methods Pattern Weight, Trend Period, Smooth Period

Separating Lines Pattern Weight, Trend Period, Smooth Period

Shooting Star Pattern Weight, Trend Period, Smooth Period

Spinning Top Pattern Weight, Trend Period, Smooth Period

Stalled Pattern Weight, Trend Period, Smooth Period

106 CHAPTER 6. TREND REPRESENTATIVE TESTING

Table 17: (continued)

Indicator Parameters

Stick Sandwich Pattern Weight, Trend Period, Smooth Period

Takuri Pattern Weight, Trend Period, Smooth Period

Tasuki Gap Pattern Weight, Trend Period, Smooth Period

Thrusting Pattern Weight, Trend Period, Smooth Period

Tri-Star Pattern Weight, Trend Period, Smooth Period

Unique Three River Pattern Weight, Trend Period, Smooth Period

Upside Gap Two Crows Pattern Weight, Trend Period, Smooth Period

Up/Down Gap Three Methods Pattern Weight, Trend Period, Smooth Period

6.3.
R
E
V
IS
IT

IN
G

P
R
U
N
IN

G
107

Table 18: Computational results for each algorithm over the 10 datasets. The min, median, mean and max values
are determined by running each algorithm 10 times on each dataset. The best result for each dataset and trend
combination is shown in bold.

PSOS GA PSO
Dataset Trend Test Strand Min Median Mean Max Min Median Mean Max Min Median Mean Max

0 ↑ IAG1 -9.71 -5.79 -6.19 -3.42 -10.35 -5.99 -6.25 -1.39 -4.41 -4.26 -4.01 -3.04
↔ MGA4 0.93 1.19 1.25 1.70 0.39 0.88 0.91 1.60 0.66 1.78 1.60 2.09
↓ IAG2 0.69 0.93 1.22 2.17 0.80 1.95 1.71 2.16 2.17 2.17 2.17 2.17

1 ↑ BSX1 -0.85 -0.34 -0.39 -0.11 -0.67 -0.35 -0.36 -0.13 -5.91 -0.31 -0.85 -0.02
↔ LUV1 -1.10 -0.34 -0.42 -0.08 -1.33 -0.10 -0.28 -0.01 -1.71 -0.11 -0.45 -0.04
↓ KFY1 2.00 2.07 2.07 2.17 2.01 2.08 2.22 2.67 1.86 2.09 2.14 2.66

2 ↑ EXC1 2.80 2.83 2.85 2.92 2.80 2.82 2.83 2.90 2.80 2.80 2.80 2.80
↔ LUV2 2.17 2.31 2.30 2.46 2.09 2.27 2.31 2.64 2.21 2.43 2.44 2.62
↓ KFY2 1.65 2.00 2.04 2.85 1.61 1.75 1.77 2.05 1.56 1.98 2.15 3.61

3 ↑ AVNW1 -3.58 -1.84 -1.21 1.22 -3.83 -2.01 -1.59 1.29 -1.97 0.70 0.10 1.26
↔ PUK1 -2.45 -1.25 -1.00 0.38 -2.84 -1.44 -1.32 0.00 -2.37 -0.05 -0.39 0.00
↓ LUV3 1.58 2.67 3.02 6.12 -0.85 2.91 2.03 4.63 1.08 3.06 3.17 4.70

4 ↑ KFY3 1.39 2.42 2.40 2.94 2.08 2.49 2.45 2.67 2.67 2.72 2.74 2.80
↔ EXC2 0.08 1.13 0.99 1.62 0.16 0.91 0.84 1.55 -0.53 1.31 1.03 1.60
↓ LUV4 2.77 2.85 2.85 2.95 2.80 2.83 2.84 2.96 2.80 2.80 2.80 2.80

5 ↑ EXC3 1.52 2.02 2.00 2.39 1.39 1.64 1.71 2.14 1.96 2.03 2.12 2.38
↔ PUK2 -1.51 -0.23 -0.28 0.76 -4.10 -0.10 -0.88 0.51 0.06 0.59 0.58 1.07
↓ MGA1 2.80 3.14 3.15 3.80 2.80 2.99 2.98 3.15 2.80 2.80 2.80 2.80

6 ↑ ED1 -0.03 1.26 1.21 2.32 0.38 1.14 1.10 1.98 1.75 1.75 1.88 2.44
↔ EXC4 1.20 1.97 2.35 3.96 1.53 2.27 2.33 3.72 0.95 2.07 2.33 3.47
↓ PUK3 2.25 2.43 2.60 3.66 2.38 2.45 2.57 3.66 2.80 2.80 2.80 2.80

7 ↑ BSX2 3.25 3.42 3.48 3.76 3.13 3.42 3.51 4.03 2.28 3.22 3.13 3.32
↔ ED2 2.35 2.52 2.51 2.67 2.46 2.57 2.58 2.70 2.36 2.44 2.45 2.63
↓ JBLU1 6.59 10.68 10.28 13.09 -0.07 9.41 7.99 12.06 0.62 8.08 7.56 11.95

8 ↑ MGA2 -4.87 -4.63 -3.29 0.00 -6.38 -4.34 -4.50 -3.39 -4.69 -4.33 -3.28 -0.04
↔ MGA3 -1.96 -0.10 -0.08 1.34 -1.09 -0.08 -0.13 0.51 -0.17 0.27 0.23 0.48
↓ ATRO1 4.76 9.51 9.17 11.51 -8.86 9.75 8.49 16.08 5.29 9.10 8.68 11.31

9 ↑ AVNW2 3.94 4.77 4.63 5.67 2.09 4.14 4.20 5.65 2.68 3.67 3.48 3.99
↔ EXC5 -0.59 -0.35 -0.19 0.56 -1.18 -0.40 -0.27 0.96 -0.61 0.44 0.27 0.87
↓ AVNW3 1.86 2.01 2.02 2.20 1.75 1.96 1.97 2.14 1.75 1.92 1.94 2.10

108 CHAPTER 6. TREND REPRESENTATIVE TESTING

introduce a novel approach to pruning as an extension to the one presented in

Chapter 5. In this novel pruning approach, components with weights falling below

a threshold will have their weights updated to zero without physically removing

them from the solution as was the case previously. Components who have a weight

of zero are effectively excluded from contributing to the aggregate signal produced

by the candidate solution and thus can be disregarded. By not permanently re-

moving them from the solutions, we allow their reintroduction in later iterations

if they learn of a useful configuration through the interaction of the particles in

the swarm. The pruning procedure is triggered at frequent points throughout the

algorithm’s run, and the deadline (the number of iterations that pass before it is

triggered) and threshold are all user defined parameters. This pruning procedure

is added on top of PSOS resulting in a new variant we will refer to as PSOSP.

Pseudocode for PSOSP can be seen in Algorithm 8.

As with the other algorithms, PSOSP underwent hyperparameter optimization

using IRace before experimentation. The configuration discovered by IRace for

the PSOSP algorithm can be seen in Table 19. Table 21 shows the minimum,

median, mean and maximum fitness achieved by the four algorithms per dataset

and trend. Regular PSO shows the most wins based on mean performance with

15 wins out of a possible 30, followed by PSOS with 6 wins, then PSOSP with 5

wins and finally GA with least wins scoring only 4 out of a possible 30. Positive

values in Table 21 indicates profits were made on the initial investment, negative

values indicate that losses were incurred and a value of zero indicates a break-

even situation. By looking at overall averages in Table 20, we can see that all

four algorithms performed considerably better with downtrends when compared

to the other two trend types. We can also see that GA is the least performing

algorithm in all of the trend types, and that a PSO variant has a slight edge over

GA in all three cases. The clear difference in fitness between downtrends and the

other two types of trends indicates that the algorithms generate market timing

strategies that are unbalanced. Nevertheless, performing better in downtrends is

positive when compared with buy-and-hold strategies which would fail under such

conditions.

Table 22 shows the rankings of the algorithms after performing the non-parame-

tric Friedman test with the Holm’s post-hoc test by trend type on the mean results

6.3. REVISITING PRUNING 109

Table 19: IRace discovered configuration for the PSOSP algorithm.

Parameter Value

Population 30

Iterations 90

Neighborhood Size 30

c1 2.908

c2 3.417

Clamp Scaling

Scaling Factor 0.5988

Pruning Enabled

Pruning Threshold 0.1799

Pruning Deadline 15

Table 20: Overall average fitness by trend for each algorithm.

Algorithm

Trend GA PSO PSOS PSOSP

Downtrend 3.46 3.62 3.84 3.89

Sideways 0.61 1.01 0.74 0.76

Uptrend 0.31 0.81 0.55 0.80

[33]. The first column shows the trend type; the second column shows the algo-

rithm name; the third column shows the average rank, where the lower the rank

the better the algorithm’s performance; the fourth column shows the p-value of

the statistical test when the average rank is compared to the average rank of the

algorithm with the best rank (control algorithm); and the fifth shows the Holm’s

critical value. Statistically significant differences at the 5% level between the aver-

age ranks of an algorithm and the control algorithm are determined by the fact that

the p-value is lower than the critical value, indicating that the control algorithm

is significantly better than the algorithm in that row. The non-parametric Fried-

man test was chosen as it does not make assumptions that the data is normally

distributed, a requirement for equivalent parametric tests.

110 CHAPTER 6. TREND REPRESENTATIVE TESTING

Algorithm 8 PSOSP with updated pruning procedure. Although this algorithm
might seem similar to Algorithm 3, it differs in its use of Trend Representative
Testing (line 6) and an updated pruning procedure (line 41).

1. archive: an archive used to keep track of elite particles

2. S: swarm

3. N : swarm size

4. x: particle state

5. y: particle personal best

6. calculate fitness: Refer o Algorithm 6

7. initialize swarm S

8. repeat

9. for every particle xi in S do

10. for every component j in particle i do

11. bias← αvij(t)

12. if random() <
f(yij(t))

f(xij(t))+f(yij(t))
then

13. cognitive← c1r1(yij(t)− xij(t))
14. else

15. cognitive← 0

16. end if

17. if random() <
f(ŷij(t))

f(xij(t))+f(ŷij(t))
then

18. social← c2r2(ŷij(t)− xij(t))
19. else

20. social← 0

21. end if

22. vij(t+ 1)← cognitive+ social

23. if clamp = Clerc then

24. vij(t+ 1) = vij(t+ 1)× clerc coefficient
25. else if clamp = Factor then

26. vij(t+ 1)← vij(t+ 1) + bias

27. vij(t+ 1) = vij(t+ 1)× velocity clamp factor
28. end if

29. vij(t) = vij(t+ 1)

30. xij = xij + vij(t)

31. end for

32. end for

6.3. REVISITING PRUNING 111

Algorithm 9 PSOSP with updated pruning procedure continued.

33. f(S)← calculate fitness(S)

34. for i: 1 to N do

35. if f(i) ≥ f(yi) then

36. yi ← xi

37. end if

38. end for

39. archive← archive∪ fittest particle in S

40. if current iteration meets pruning deadline then

41. updated pruning() . Refer to Algorithm 10

42. end if

43. until stopping criteria met

44. return fittest particle in archive

Algorithm 10 Updated Pruning Procedure

function updated pruning()

for every particle xi in S do

for every component j in xi do

if weight(xij) < Γ then

weight(xij)← 0

end if

end for

end for

end function

112
C
H
A
P
T
E
R

6.
T
R
E
N
D

R
E
P
R
E
S
E
N
T
A
T
IV

E
T
E
S
T
IN

G

Table 21: Computational results for each algorithm over the 10 datasets. The min, median, mean and max values
are determined by running each algorithm 10 times on each dataset. The best result for each dataset and trend
combination is shown in bold.

GA PSO PSOS PSOSP

Dataset Trend Test Strand Min Median Mean Max Min Median Mean Max Min Median Mean Max Min Median Mean Max

0 ↑ IAG1 -10.35 -5.99 -6.25 -1.39 -4.41 -4.26 -4.01 -3.04 -9.71 -5.79 -6.19 -3.42 -4.41 -4.00 -3.79 -2.08
↔ MGA4 0.39 0.88 0.91 1.60 0.66 1.78 1.60 2.09 0.93 1.19 1.25 1.70 0.91 1.53 1.45 1.93
↓ IAG2 0.80 1.95 1.71 2.16 2.17 2.17 2.17 2.17 0.69 0.93 1.22 2.17 2.17 2.17 2.17 2.18

1 ↑ BSX1 -0.67 -0.35 -0.36 -0.13 -5.91 -0.31 -0.85 -0.02 -0.85 -0.34 -0.39 -0.11 -0.36 -0.31 -0.28 -0.11
↔ LUV1 -1.33 -0.10 -0.28 -0.01 -1.71 -0.11 -0.45 -0.04 -1.10 -0.34 -0.42 -0.08 -4.53 -1.06 -1.58 -0.01
↓ KFY1 2.01 2.08 2.22 2.67 1.86 2.09 2.14 2.66 2.00 2.07 2.07 2.17 1.89 2.05 2.05 2.12

2 ↑ EXC1 2.80 2.82 2.83 2.90 2.80 2.80 2.80 2.80 2.80 2.83 2.85 2.92 2.80 2.80 2.80 2.80
↔ LUV2 2.09 2.27 2.31 2.64 2.21 2.43 2.44 2.62 2.17 2.31 2.30 2.46 2.20 2.37 2.37 2.51
↓ KFY2 1.61 1.75 1.77 2.05 1.56 1.98 2.15 3.61 1.65 2.00 2.04 2.85 1.76 1.87 1.90 2.20

3 ↑ AVNW1 -3.83 -2.01 -1.59 1.29 -1.97 0.70 0.10 1.26 -3.58 -1.84 -1.21 1.22 -1.70 -0.48 -0.17 1.28
↔ PUK1 -2.84 -1.44 -1.32 0.00 -2.37 -0.05 -0.39 0.00 -2.45 -1.25 -1.00 0.38 -2.53 -0.03 -0.59 0.09
↓ LUV3 -0.85 2.91 2.03 4.63 1.08 3.06 3.17 4.70 1.58 2.67 3.02 6.12 2.04 2.80 2.89 4.11

4 ↑ KFY3 2.08 2.49 2.45 2.67 2.67 2.72 2.74 2.80 1.39 2.42 2.40 2.94 2.58 2.67 2.64 2.67
↔ EXC2 0.16 0.91 0.84 1.55 -0.53 1.31 1.03 1.60 0.08 1.13 0.99 1.62 0.06 1.08 0.94 1.68
↓ LUV4 2.80 2.83 2.84 2.96 2.80 2.80 2.80 2.80 2.77 2.85 2.85 2.95 2.79 2.80 2.80 2.80

5 ↑ EXC3 1.39 1.64 1.71 2.14 1.96 2.03 2.12 2.38 1.52 2.02 2.00 2.39 1.96 1.96 1.98 2.14
↔ PUK2 -4.10 -0.10 -0.88 0.51 0.06 0.59 0.58 1.07 -1.51 -0.23 -0.28 0.76 -2.39 0.12 -0.37 0.54
↓ MGA1 2.80 2.99 2.98 3.15 2.80 2.80 2.80 2.80 2.80 3.14 3.15 3.80 2.80 2.80 2.80 2.80

6 ↑ ED1 0.38 1.14 1.10 1.98 1.75 1.75 1.88 2.44 -0.03 1.26 1.21 2.32 0.86 1.85 1.91 2.46
↔ EXC4 1.53 2.27 2.33 3.72 0.95 2.07 2.33 3.47 1.20 1.97 2.35 3.96 0.92 2.65 2.84 5.20
↓ PUK3 2.38 2.45 2.57 3.66 2.80 2.80 2.80 2.80 2.25 2.43 2.60 3.66 2.28 2.80 2.75 2.80

7 ↑ BSX2 3.13 3.42 3.51 4.03 2.28 3.22 3.13 3.32 3.25 3.42 3.48 3.76 3.13 3.25 3.24 3.32
↔ ED2 2.46 2.57 2.58 2.70 2.36 2.44 2.45 2.63 2.35 2.52 2.51 2.67 2.27 2.45 2.44 2.54
↓ JBLU1 -0.07 9.41 7.99 12.06 0.62 8.08 7.56 11.95 6.59 10.68 10.28 13.09 6.13 9.90 10.00 11.95

8 ↑ MGA2 -6.38 -4.34 -4.50 -3.39 -4.69 -4.33 -3.28 -0.04 -4.87 -4.63 -3.29 0.00 -4.74 -4.61 -4.12 -1.47
↔ MGA3 -1.09 -0.08 -0.13 0.51 -0.17 0.27 0.23 0.48 -1.96 -0.10 -0.08 1.34 -1.66 -0.21 -0.28 0.60
↓ ATRO1 -8.86 9.75 8.49 16.08 5.29 9.10 8.68 11.31 4.76 9.51 9.17 11.51 6.32 9.51 9.64 12.18

9 ↑ AVNW2 2.09 4.14 4.20 5.65 2.68 3.67 3.48 3.99 3.94 4.77 4.63 5.67 2.98 3.84 3.77 3.99
↔ EXC5 -1.18 -0.40 -0.27 0.96 -0.61 0.44 0.27 0.87 -0.59 -0.35 -0.19 0.56 -0.95 0.40 0.31 1.80
↓ AVNW3 1.75 1.96 1.97 2.14 1.75 1.92 1.94 2.10 1.86 2.01 2.02 2.20 1.78 1.95 1.92 2.01

6.3. REVISITING PRUNING 113

Figure 15: A histogram showing the solution lengths of the solutions from PSOSP.
We can clearly see that the majority of solutions range in length between 29 and
46. Only a single solution employed all 63 technical indicators.

We can see from Table 4 that PSO variants that employed the stochastic state

update procedure (namely PSOS and PSOSP) ranked highest across all three trend

types, albeit not at a statistically significant level. This leads to two interesting

observations. The first of these observations is that all three PSO variants experi-

mented with here are competitive with GA in terms of performance when it comes

to the domain of market timing. PSO can also produce these competitive results

at a lower cost in terms of total number of fitness evaluations as can be seen from

the algorithm configurations in Table 24. The second observation is that PSOSP,

the PSO variant with pruning, is also competitive with the PSO variants without

the pruning procedure as no statistical significance was observed in the results.

Figure 15 shows a histogram of the solution lengths returned by PSOSP during

testing. We can see that the majority of solution lengths were between 29 and

46 components, with only a single solution employing all 63 components. This

suggests that PSO is capable of discovering shorter solutions without adversely

affecting performance in a significant manner. This presents the opportunity of

114 CHAPTER 6. TREND REPRESENTATIVE TESTING

Table 22: Average rankings of each algorithm according to the Friedman non-
parametric test with the Holm post-hoc test over the mean performance. No
statistical differences at the significance level 5% were observed.

Trend Algorithm Ranking p-value Holm

Downtrend PSOS (control) 2.0 – –

PSO 2.35 0.5444 0.05

PSOSP 2.75 0.1939 0.025

GA 2.9 0.119 0.0167

Sideways PSOSP (control) 2.1 – –

PSO 2.2 0.8625 0.05

GA 2.7 0.2987 0.025

PSOS 3.0 0.119 0.0167

Uptrend PSOS (control) 2.2 – –

GA 2.2 1.0 0.05

PSO 2.75 0.3408 0.025

PSOSP 2.85 0.2602 0.0167

pursuing shorter and shorter solution lengths with the aim of finding the least

sufficient subset of components that maximize our financial metrics. By finding

shorter solutions, we will be capable of producing market timing strategies that

execute faster and are more easily comprehensible.

6.4 Summary

In this chapter, we addressed the shortcomings of the incumbent testing method-

ology in market timing (Step Forward Testing) by introducing a novel training

and testing methodology known as Trend Representative Testing. This method-

ology is based on the recommendations in [44] and is based on the concept that

by exposing our candidate strategies to a variety of market trends during both

training and testing we avoid the possibility of overfitting to any particular type

6.4. SUMMARY 115

of trend and have a better estimation of their performance under live trading con-

ditions. Although found to be statistically similar to Step Forward testing after an

extensive comparison, we still recommend the usage Trend Representative Testing

as it provides a better approximation of performance under a variety of market

conditions and reduces the probability of overfitting to any particular trend.

We then used Trend Representative Testing with PSO to evaluate their capacity

of producing competent market timing strategies. We tested regular PSO, along

with our PSO variants from Chapter 5: PSOS and PSOSR. We also introduce a

new PSO variant that has a less destructive approach to pruning: PSOSP. As

a benchmark, we compared the strategies produced by our PSO variants with

GA, the current incumbent algorithm in the domain of market timing based on

volume of publications. Results indicated that the performance of all PSO variants

is competitive with our benchmark, as no one algorithm attained a statistically

significant edge over another under the three market trends: uptrends, downtrends

and sideways movements. This is interesting as some of the PSO variants were

able to achieve this at a fraction of the computational cost of GA, and with PSOSP

we are able to produce solutions that are shorter in length without a significant

sacrifice in solution quality. In the next chapter, we evolve on how we tackle

market timing from considering it as a single objective optimization problem to a

multiobjective one with competing financial metrics.

116 CHAPTER 6. TREND REPRESENTATIVE TESTING

Chapter 7

A Multiobjective Approach to

Market Timing

“In formal logic, a contradiction is the signal of defeat, but in the evolution of

real knowledge it marks the first step in progress toward a victory.”

–Alfred North Whitehead

In the previous two chapters, we have seen how PSO can be used to tackle mar-

ket timing as a single objective optimization problem. In particular, we have seen

how the different algorithms can be used to produce market timing strategies that

optimize a single metric: profit. This, however, may not be sufficient to produce

market timing strategies that are suitable for live trading. Designers of market

timing strategies will usually consider multiple objectives at the same time. For

example, the designers may seek strategies that maximize profits, minimize losses

and exposure to risk, and do so with the least amount of components both for

the sake of comprehensibility and speed of execution. In this chapter, we address

the limitation of previously proposed algorithms by approaching market timing

as a multiobjective optimization problem. We begin by selecting five metrics of

financial performance that provide insight not only regarding profit, but also mea-

sures of potential loss, risk, solution length and number of transactions generated

by candidate market timing strategies. We then move on to describing how we

modified the various PSO algorithms introduced in the previous chapters, as well

as the GA benchmark, to use our new set of metrics for financial performance

117

118 CHAPTER 7. MULTIOBJECTIVE MARKET TIMING

and tackle market timing as a multiobjective optimization problem. To evaluate

their performance, we compare the all algorithms to an established multiobjec-

tive optimization algorithm (NSGA-II [26]) as well as a single technical indicator

commonly used in market timing applications.

7.1 Expansion of Metric Set

The primary characteristic that defines a given problem as a multiobjective op-

timization one is that we are required to optimize a number of measures of per-

formance that are often competing. In the context of market timing, this means

that we are required to consider more than one metric of financial performance in

order for our approach to be a multiobjective one. From the metrics introduced

in Chapter 2, we have selected the following five metrics for our multiobjective

approach:

� Annualized Rate of Return (AROR): The AROR is a measure of expected

return that is annualized for standardization. The aim is to maximize AROR,

which in turn will maximize profit.

� Annualized Portfolio Risk: This metric provides a measure of volatility in

the transactions generated by a candidate market timing strategy. As lower

volatility results in a market timing strategy that is more stable (the loss

or gain caused by missing or additional transactions can be more readily

estimated), this metric is minimized.

� Value at Risk (VaR): The VaR represents the potential value of capital that

could be lost during trading, and is annualized for standardization. As this

is a measure of potential loss, the aim is to minimize VaR.

� Transactions Count: To reduce the effects of sample error and increase confi-

dence in a candidate market timing strategy, we aim to maximize this metric

after considering the various transaction costs involved.

� Solution Length: Shorter solutions are faster to execute and more easily

comprehended by the end users. We aim to minimize this metric.

7.2. ALGORITHMS 119

For deeper insight, interpretation and calculation of these metrics, the reader is

referred to Chapter 2, where they are discussed in more detail.

7.2 Algorithms

The algorithms adapted to operate as multiobjective are PSO, PSOSP and our

GA benchmark algorithm from the previous chapter.1 We decided to adopt a

Pareto dominance-based approach for multiobjective optimization, which results

in returning a Pareto set of solutions across the five objectives being optimized.

In the following subsections, we discuss the extensions proposed in order to tackle

market timing using a dominance-based approach to multiobjective optimization.

These include modifications to fitness evaluation, global archive management, GA

selection operators, tracking personal bests for PSO and neighborhood selection

in PSO. In order to avoid confusion, the multiobjective variants of the algorithms

would be prefixed with the Greek letter Lambda, resulting in the multiobjective

algorithms being labeled as λ-PSO, λ-PSOSP and λ-GA.2

7.2.1 General Modifications

The first modification we performed was to redefine the fitness function. As the

approach presented in Chapter 6 used AROR as its sole optimized objective, eval-

uating fitness was straight forward: higher values are better. In this chapter,

we pursue the optimization of five financial metrics, and since we are using a

dominance-based approach, a solution can only be considered to be fitter than

another if, and only if, the solution at hand is not worse than the one it is be-

ing compared to in all five metrics and better than it in at least one metric. All

non-dominated solutions, those not outclassed in quality by others on any of the

1PSOSP also represents the PSOS algorithm. Since pruning is a user defined parameter in
PSOSP, the algorithm can devolve into PSOS if the pruning is disabled. The algorithm used
depends on the results of hyperparameter optimization and the value discovered for whether to
activate pruning or not.

2The reason Lambda was chosen as a prefix is due to its relation to the hypervolume calcula-
tion. The hypervolume calculation is one of the way we assess and compare the performance of
the multiobjective optimization algorithms presented in this chapter and is based on the Lebesgue
measure. The symbol used to represent this measure is the Greek letter Lambda, and we borrow
this symbol to demarcate our multiobjective optimization algorithms

120 CHAPTER 7. MULTIOBJECTIVE MARKET TIMING

metrics that are part of the fitness function, that are discovered throughout the

run of the algorithm are then collectively known as the Pareto set, and that is the

final result returned by all algorithms.

Since we need to keep track of all the non-dominated solutions as they are

discovered, a global archive is maintained by all algorithms for the storage of

all non-dominated solutions found. Upon the discovery of a new solution, the

solution is compared against the current occupants of the global archive. If the

solution is dominated by any of the current occupants, it is rejected. If the new

solution remains non-dominated after comparison with the current archive, then

it is admitted. Upon admittance, if the new solution dominates one or more

occupants, these are removed from the archive. The archive used is unbounded,

meaning it can store an arbitrary number of solutions with no limitations in terms

of size. Pseudocode for the operations maintained by the archive can be seen in

Algorithm 11. The global archive is updated at the end of every iteration of each

algorithm. For GA this occurs after the generation of a new population, and for

the PSO algorithms, this occurs after the particle state updates.

7.2.2 GA Modifications

Besides adopting a multiobjective fitness function and a global archive, the only

other modification to the GA first described in Chapter 6 is modifying the tour-

nament selection used in selecting parents for crossover and mutation. In order

to perform tournament selection, we first select random individuals from the cur-

rent population and attempt to admit them to a temporary archive. Candidates

that are dominated by other candidates will either not be allowed admittance into

the archive or be removed. A random selection is then made form the surviving,

non-dominated occupants to represent the selected individual. This is performed

twice with every crossover event and once with every mutation event to produce

the required parent(s) for the operation. The pseudocode for λ-GA can be seen in

Algorithm 12.

7.2. ALGORITHMS 121

Algorithm 11 Archive used to maintain non-dominated solutions.

1. d(x, y): dominance score – the number of objectives where solution x is better than

solution y

2. N : number of objectives being optimized.

3. archive← {}
4. procedure add to archive(x)

5. remove← {}
6. add solution← False

7. for every si in archive do

8. if d(x, si) > 0 then

9. add solution← add solution OR True

10. end if

11. if d(x, si) = N then

12. remove← remove ∪ si
13. end if

14. end for

15. if add solution = True then

16. archive← archive ∪ x
17. end if

18. for every solution ri in remove do

19. delete ri from archive

20. end for

21. end procedure

22.

23. function select()

24. return random member from archive

25. end function

122 CHAPTER 7. MULTIOBJECTIVE MARKET TIMING

Algorithm 12 λ-GA Algorithm

1. N : population size

2. M : mutation probability

3. C: crossover probability

4. population: a population of candidate solutions

5. fitnesses: fitnesses associated with population at time t

6. archive: a non-dominated archive . Refer to Algorithm 11

7. populationt ← populate with candidate solution of size N

8. fitnessest ← calculate fitness(populationt)

9. for i: 1 to N do

10. archive.add(popultaiont(i))

11. end for

12. repeat . main loop

13. populationt+1 ← {}
14. i← 0

15. repeat

16. if random() < M then

17. selected← tournament selection(populationt) . Refer to Algorithm 13

18. mutated← mutate(selected)

19. populationt+1 ← populationt+1 ∪mutated
20. i← i+ 1

21. end if

22. if random() < C then

23. p1 ← tournament selection(populationt) . Refer to Algorithm 13

24. p2 ← tournament selection(populationt) . Refer to Algorithm 13

25. populationt+1 ← populationt+1 ∪ crossover(p1, p2)
26. i← i+ 2

27. end if

28. until i = N

29. populationt+1 ← populationt+1 ∪ archive.select()
30. populationt ← populationt+1

31. fitnessest ← calculate fitness(populationt)

32. for i: 1 to N do

33. archive.add to archive(popultaiont(i))

34. end for

35. until stopping criteria met

36. return archive

7.2. ALGORITHMS 123

Algorithm 13 Tournament Selection Procedure for λ-GA

function tournament selection()

local archive← new non-dominated archive . Refer to Algorithm 11

for i: 1 to tournament size do

local archive.add to archive(populationt[random()])

end for

return local archive.select()

end function

7.2.3 PSO Modifications

As with the GA, our first modification was to adopt a multiobjective fitness func-

tion and a global archive to maintain a Pareto front. For PSO algorithms, our sec-

ond modification is related to how we maintained personal bests for the particles

to participate in the velocity update function. All the particles in our multiobjec-

tive PSO maintain a personal archive were non-dominated personal solutions are

stored. After a state update and the subsequent fitness evaluation, the particle

state is considered for admittance into its own personal archive. As with the global

archive, these personal archives are also unbounded. When it comes time to select

a personal best to participate in the velocity update function, we select one at

random from the the particle’s personal archive. Our final modification to PSO

algorithms was on how a neighborhood best is selected. For neighborhood selec-

tion, we use a temporary archive that stores the non-dominated neighbors of the

particle at hand. Each neighboring particle will also select a solution at random

from its own personal archive to be admitted into the temporary archive on the

condition that it is non-dominated by the current solutions. A solution is then

selected at random from this temporary archive to represent the neighborhood

best. The pseudocode for λ-PSO can be seen in Algorithm 14.

Another issue we faced, was how to adapt the stochastic state update pro-

cedure of PSOS and PSOSP to work with a multiobjective fitness. The solution

we proposed for calculating the probabilities of updating the cognitive and social

components is to use the dominance score. Given two solutions x and y, we de-

fine the dominance score d(x, y) as the number of objectives where solution x is

better than solution y. We can calculate the update probabilities in the following

124 CHAPTER 7. MULTIOBJECTIVE MARKET TIMING

manner:

cognitive =

yi(t)− xi(t) if rand() < | d(yi(t),xi(t))
d(xi(t),yi(t))+d(yi(t),xi(t))

|

0 otherwise
(14)

social =

ŷi(t)− xi(t) if rand() < | d(ŷi(t),xi(t))
d(xi(t),ŷi(t))+d(ŷi(t),xi(t))

|

0 otherwise
(15)

� x: particle

� i: current particle index

� y: personal best

� ŷ: neighborhood best

� d(x, y): the dominance score of x over y

� rand(): random number between 0 and 1

The pseudocode for both λ-PSOS and λ-PSOSP can be seen in Algorithm 16

7.3 Experimental Setup

In order to evaluate the performance of the algorithms, we first performed hy-

perparameter optimization on them using IRace [58]. The IRace procedure was

provided with a budget of 300 evaluations and set to return a single configuration

for the parameters of the algorithm being tuned. All algorithms have a tuned

population size and number of iterations. The additional parameters tuned for

GA are mutation probability, crossover probability and tournament size. For all

PSO variants, the parameters also included neighborhood size, cognitive coeffi-

cient, social coefficient and velocity clamping technique. For λ-PSOSP, pruning

frequency and pruning threshold are also considered for tuning. The parameter

space searched by IRace for each algorithm can be seen in Table 23 and the final

parameter values discovered can be seen in Table 24.

7.3. EXPERIMENTAL SETUP 125

Algorithm 14 λ-PSO Algorithm.

1. archive: a non-dominated archive . Refer to Algorithm 11

2. S: swarm

3. N : swarm size

4. x: particle state

5. y: particle personal best

6. initialize swarm S

7. for i: 1 to N do

8. archive.add to archive(xi)

9. yi.add to archive(xi)

10. end for

11. repeat

12. for every particle xi in S do

13. for every component j in particle i do

14. bias← αvij(t)

15. cognitive← c1r1(yi.select()j − xij(t))
16. ŷ ← get neighbor(i) . Refer to Algorithm 15

17. social← c2r2(ŷj − xij(t))
18. vij(t+ 1)← cognitive+ social

19. if clamp = Clerc then

20. vij(t+ 1) = vij(t+ 1)× clerc coefficient
21. else if clamp = Factor then

22. vij(t+ 1)← vij(t+ 1) + bias

23. vij(t+ 1) = vij(t+ 1)× velocity clamp factor
24. end if

25. vij(t) = vij(t+ 1)

26. xij = xij + vij(t)

27. end for

28. end for

29. f(S)← calculate fitness(S)

30. for i: 1 to N do

31. archive.add to archive(xi)

32. yi.add to archive(xi)

33. end for

34. until stopping criteria met

35. return archive

126 CHAPTER 7. MULTIOBJECTIVE MARKET TIMING

Algorithm 15 Get Neighbor function used to select a neighborhood guide for
multiobjective PSO algorithms.

function Get Neighbor(i)

local archive← new non-dominated archive

neighbors← current neighbors of particle i

for neighbor n in neighbors do

local archive.add to archive(n)

local archive.add to archive(yn.select())

end for

return local archive.select()

end function

All algorithms are then trained and tested using Trend Representative Testing

on the same training and testing datasets, as described in Chapter 6. For each

algorithm, we hold one partition for testing, and use the other nine partitions for

training, and go through the available strands to produce ten distinct training and

testing datasets. Each algorithm is run against each dataset ten times to factor

in the effects of stochasticity. This would result in 100 experiments being run

per algorithm. Also, as in Chapter 6, all algorithms had access to a set of 63

technical indicators to compose individuals from. All the indicator parameters are

initialized to random values, with those representing lengths of history constrained

to be within 1 and 45, guaranteeing at least five buy, sell or hold signals to be

generated with a typical US trading year of 252 days.

7.4 Computational Results

Table 25 shows the best performing solutions discovered per objective being op-

timized. For every objective, we identify the test strand where the best value

was achieved, followed by the best solutions discovered by each algorithm in that

strand. In the case of more than one solution being non-dominated, we follow

a lexicographical approach in order to determine the winning solution based on

the following order: AROR, Portfolio Risk, VaR, Transactions Count and Solu-

tion Length. The reasoning behind this ordering is that we seek solutions that

7.4. COMPUTATIONAL RESULTS 127

Algorithm 16 λ-PSOS and λ-PSOSP algorithms. If Pruning is enabled, then the
algorithm becomes λ-PSOSP. Otherwise, it is considered a λ-PSOS algorithm.

1. archive: a non-dominated archive . refer to Algorithm 11

2. S: swarm

3. N : swarm size

4. x: particle state

5. y: particle personal best

6. d(x, y): dominance score – the number of objectives where solution x is better than

solution y

7. initialize swarm S

8. for i: 1 to N do

9. archive.add to archive(xi)

10. yi.add to archive(xi)

11. end for

12. repeat

13. for every particle xi in S do

14. for every component j in particle i do

15. bias← αvij(t)

16. if random() < d(yi.select(),xi(t))
d(xi(t),yi.select())+d(yi.select(),xi(t))

then

17. cognitive← c1r1(yi.select()j − xij(t))
18. else

19. cognitive← 0

20. end if

21. ŷ ← get neighbor(i) . Refer to Algorithm 15

22. if random() < d(ŷ,xi(t))
d(xi(t),ŷ)+d(ŷ,xi(t))

then

23. social← c2r2(ŷj − xij(t))
24. else

25. social← 0

26. end if

27. vij(t+ 1)← cognitive+ social

28. if clamp = Clerc then

29. vij(t+ 1) = vij(t+ 1)× clerc coefficient
30. else if clamp = Factor then

31. vij(t+ 1)← vij(t+ 1) + bias

32. vij(t+ 1) = vij(t+ 1)× velocity clamp factor
33. end if

34. vij(t) = vij(t+ 1)

35. xij = xij + vij(t)

36. end for

37. end for

128 CHAPTER 7. MULTIOBJECTIVE MARKET TIMING

Algorithm 17 λ-PSOS and λ-PSOSP algorithms continued.

38. f(S)← calculate fitness(S)

39. for i: 1 to N do

40. archive.add to archive(xi)

41. yi.add to archive(xi)

42. end for

43. if Pruning is Enabled then . Implies λ-PSOSP if True

44. if current iteration meets pruning deadline then

45. updated pruning() . Refer to Algorithm 10

46. end if

47. end if

48. until stopping criteria met

49. return archive

Table 23: IRace Search Space for Multiobjective Algorithms

Algorithm Parameter Search Space

All Population Size integer: 20 – 50

Iterations/Generations integer: 20 – 100

GA Mutation Probability real: 0 – 1

Crossover Probability real: real: 0 – 1

Tournament Size integer: 2 – 50

PSO and PSOSP Neighborhood Size integer: 1 – 100

c1 real: 2.00 – 5.00

c2 real: 2.00 – 5.00

Clamp Type factor, clerc

Velocity Clamp Factor real: 0 – 1 (only if Clamp Type is factor)

PSOSP Prune? Enabled, Disabled

Pruning Threshold real: 0 – 1 (only if Prune is Enabled)

Pruning Deadline integer: 1 – 100 (only if Prune is Enabled)

maximize profit, first and foremost. In case of a draw we prefer solutions that

minimize risk, represented in this case by Portfolio Risk and VaR. When encoun-

tering a draw after considering profits and risk, we seek solutions that maximize

the number of transactions, as this increases our confidence in them as discussed

7.4. COMPUTATIONAL RESULTS 129

Table 24: IRace discovered configurations for each of the algorithms tested.

λ-PSO λ-PSOSP λ-GA

Parameter Value Parameter Value Parameter Value

Population 50 Population 43 Population 49

Iterations 67 Iterations 83 Generations 24

Neighbors 50 Neighbors 43 Mutation Probability 0.8087

c1 3.7543 c1 4.3644 Crossover Probability 0.1409

c2 2.502 c2 2.5136 Tournament Size 32

Clamp Scaling Clamp Clerc

Scaling Factor 0.5314 Scaling Factor –

Pruning? Enabled

Pruning Threshold 0.0959

Pruning Deadline 2

in Chapter 2. Finally, when encountering a draw after considering the preceding

four metrics, we seek solutions of minimal length as they are less computationally

expensive and are more comprehensible by the end user. We can see from Table

25 that λ-PSOSP was the algorithm that returned the best value for all objectives.

We cannot, however, claim that the solutions discovered by λ-PSOSP are Pareto-

dominant when compared to the other algorithms with the exception of the case

of Portfolio Risk with the MGA1 test strand. This is also an interesting solution

as it shows the possibility of achieving returns (a positive AROR), using a single

technical indicator (Solution length of one), with no losses at all (zero Portfolio

Risk and VaR) albeit with a low confidence (a low Transactions Count). With

multiobjective optimization, the designer of a market timing strategy now has a

choice to prioritize their objectives as they see fit. Apart from the best perform-

ing solutions reported per objective in Table 25 there is a multitude of solutions

representing various compromises between the optimized objectives from which

the designer of the market timing strategy can choose a compromise that best

fits their needs. This is only possible by using a dominance-based multiobjective

optimization approach to market timing.

When comparing AROR to the values obtained in Chapter 6, we can see that

the AROR value of the best performing solution discovered is higher than the

maximum value discovered in Chapter 6: 25.16 compared to 16.08 respectively. A

130 CHAPTER 7. MULTIOBJECTIVE MARKET TIMING

comparison of the AROR values can be seen in Table 27. The maximum values

are used in the comparison since AROR is an objective that is maximized. It

is interesting to note that all maximum values obtained via the multiobjective

versions of the algorithms are higher than their single objective counterparts with

the exception of two cases (PSOSP vs PSO on the EXC3 and PUK1 test strands).

In order to evaluate the dominance aspect of the algorithms, we compare the

hypervolume covered by the Pareto fronts produced by them. Hypervolume is a

measure of the combined dominated space across all objectives being optimized

covered by the solutions in the Pareto set returned by the algorithm. Hypervolume

measured on two objectives would simply become the area under the curve formed

by the Pareto set. When optimizing more than two objectives, the notion of hy-

pervolume is extended to measure the aggregate “volume” across all the objectives

that falls under the Pareto set. We use the implementation in [32, 9] to measure

hypervolume and the measurements can be seen in Table 26. The hypervolume

measurements used a reference point of (0, 1000000, 1000000, 0) for AROR, Port-

folio Risk, VaR and Transactions Count respectively. A value of zero was used for

AROR as this represents a break-even situation where the strategy neither lost

capital nor made any profits. The value of 1000000 is used for Portfolio Risk and

VaR as this is the same value used for initial capital when performing backtesting

and would represent risking the full volume of the capital allocated for investment.

A value of zero is used for the number of transactions as this is technically the

least amount of transactions that the market timing strategy can generate: 0 =

no transactions. As for solution length, we find the largest value reported in the

Pareto set being tested and use that as the reference point. When considering

hypervolume, larger values are better and these are highlighted in bold based on

the mean values obtained per test strand and algorithm. We can see that λ-PSOSP

has outperformed the other two algorithms when it came to downtrends. As for

uptrends, we have five wins for λ-PSOSP, two for λ-GA and two for λ-PSO. In

sideways movements, we have five wins for λ-PSOSP, three for λ-GA and a single

win for λ-PSO. In order to see if any of the algorithms has a statistically significant

advantage in terms of dominance, we used the Friedman non-parametric test with

the Holm correction on the mean hypervolumes attained by all three algorithms

divided by trend type [33]. The results of the Friedman test can be seen in Table

7.4. COMPUTATIONAL RESULTS 131

Table 25: Best performance per objective. For every optimized objective, we find
the best performing instance. The test strand where this is observed is in brackets
next to the primary objective name. The best discovered solution per algorithm
observed within the strand and objective at hand is then listed. The top performing
solution is highlighted in bold. In case of a tie, we consider the objectives in a
lexicographical approach using the following order: AROR, Portfolio Risk, VaR,
Transactions Count and Solution Length.

Primary Objective (Strand) λ-PSOSP λ-GA λ-PSO

AROR (ATRO1) I AROR 2.5162E+01 1.6296E+01 1.8093E+01

Portfolio Risk 3.3176E+06 2.0895E+06 2.5298E+06

VaR 3.9490E+05 2.6933E+05 1.8831E+05

Transactions Count 7.8000E+01 7.0000E+01 6.8000E+01

Solution Length 2.0000E+00 5.7000E+01 3.6000E+01

Portfolio Risk (MGA1) AROR 2.9173E+00 2.8743E+00 2.8743E+00

I Portfolio Risk 0.0000E+00 0.0000E+00 0.0000E+00

VaR 0.0000E+00 0.0000E+00 0.0000E+00

Transactions Count 2.0000E+00 2.0000E+00 2.0000E+00

Solution Length 1.0000E+00 3.8000E+01 3.8000E+01

VaR (JBLU1) AROR 1.4984E+01 1.2095E+01 1.3313E+01

Portfolio Risk 1.0970E+06 1.0717e+06 1.0115E+06

I VaR 0.0000E+00 0.0000E+00 0.0000E+00

Transactions Count 1.0200E+02 6.8000E+01 7.6000E+01

Solution Length 3.8000E+01 3.5000E+01 5.8000E+01

Transactions Count (LUV1) AROR -5.1663E-02 -9.9755E-02 -8.5752E-02

Portfolio Risk 4.6062E+05 4.7781E+05 4.3228E+05

VaR 5.8006E+04 6.5248E+04 6.0277E+04

I Transactions Count 6.3400E+02 6.1600E+02 6.1800E+02

Solution Length 5.1000E+01 1.0000E+01 4.4000E+01

Solution Length (ATRO1) AROR 1.8919E+01 3.6600E+00 1.2000E+01

Portfolio Risk 2.5523E+06 1.0528E+06 1.5216E+06

VaR 2.9994E+05 9.1406E+04 1.4375E+05

Transactions Count 7.8000E+01 6.6000E+01 6.0000E+01

I Solution Length 1.0000E+00 2.0000E+00 2.6000E+01

T
ab

le
26

:
H

y
p

er
vo

lu
m

e
re

su
lt

s
fo

r
ea

ch
al

go
ri

th
m

ov
er

th
e

te
n

d
at

as
et

s.
T

h
e

m
in

im
u
m

,
m

ea
n

an
d

m
ax

va
lu

es
ar

e
ob

ta
in

ed
b
y

ru
n
n
in

g
ea

ch
al

go
ri

th
m

te
n

ti
m

es
on

ea
ch

d
at

as
et

.
B

es
t

m
ea

n
re

su
lt

s
ar

e
h
ig

h
li
gh

te
d

in
b

ol
d
.

λ
-P

S
O

S
P

λ
-G

A
λ
-P

S
O

#
T
r
e
n
d

T
e
st

S
tr
a
n
d

M
in

M
e
a
n

M
a
x

M
in

M
e
a
n

M
a
x

M
in

M
e
a
n

M
a
x

0
↑

IA
G
1

0
.0
0
E
+
0
0

2
.0
7
E
+
1
2

2
.0
7
E
+
1
3

0
.0
0
E
+
0
0

3
.1
4
E
+
1
3

1
.5
7
E
+
1
4

7
.5
0
E
+
1
4

1
.0
8
E
+
1
5

1
.2
8
E
+
1
5

↔
M
G
A
4

7
.5
9
E
+
1
5

8
.6
8
E
+
1
5

9
.4
7
E
+
1
5

5
.2
7
E
+
1
5

7
.4
6
E
+
1
5

8
.3
0
E
+
1
5

4
.1
5
E
+
1
5

5
.1
5
E
+
1
5

5
.6
5
E
+
1
5

↓
IA

G
2

3
.7
9
E
+
1
5

4
.2
8
E
+
1
5

4
.8
0
E
+
1
5

1
.0
3
E
+
1
5

1
.9
3
E
+
1
5

2
.2
8
E
+
1
5

7
.4
5
E
+
1
4

1
.1
6
E
+
1
5

1
.3
0
E
+
1
5

1
↑

B
S
X
1

3
.0
0
E
+
1
3

9
.9
1
E
+
1
4

1
.4
7
E
+
1
5

1
.0
1
E
+
1
3

1
.8
1
E
+
1
5

3
.0
3
E
+
1
5

1
.9
6
E
+
1
5

2
.2
6
E
+
1
5

3
.1
4
E
+
1
5

↔
L
U
V
1

0
.0
0
E
+
0
0

2
.4
9
E
+
1
3

2
.4
9
E
+
1
4

0
.0
0
E
+
0
0

1
.8
6
E
+
1
4

4
.6
5
E
+
1
4

0
.0
0
E
+
0
0

1
.9
5
E
+
1
4

4
.4
6
E
+
1
4

↓
K
F
Y
1

8
.8
2
E
+
1
5

9
.4
3
E
+
1
5

9
.5
9
E
+
1
5

2
.4
3
E
+
1
5

5
.1
3
E
+
1
5

5
.7
1
E
+
1
5

2
.1
8
E
+
1
5

2
.7
8
E
+
1
5

2
.9
9
E
+
1
5

2
↑

E
X
C
1

8
.6
1
E
+
1
5

9
.4
0
E
+
1
5

1
.0
2
E
+
1
6

3
.0
0
E
+
1
5

4
.4
7
E
+
1
5

5
.5
4
E
+
1
5

1
.6
9
E
+
1
5

2
.3
7
E
+
1
5

3
.0
0
E
+
1
5

↔
L
U
V
2

9
.9
0
E
+
1
5

1
.0
3
E
+
1
6

1
.0
5
E
+
1
6

5
.4
4
E
+
1
5

6
.7
4
E
+
1
5

7
.7
5
E
+
1
5

3
.1
6
E
+
1
5

3
.7
1
E
+
1
5

4
.4
6
E
+
1
5

↓
K
F
Y
2

1
.0
9
E
+
1
6

1
.2
0
E
+
1
6

1
.2
4
E
+
1
6

4
.8
8
E
+
1
5

6
.8
4
E
+
1
5

8
.0
8
E
+
1
5

4
.4
1
E
+
1
5

4
.9
4
E
+
1
5

5
.5
5
E
+
1
5

3
↑

A
V
N
W

1
2
.8
9
E
+
1
3

4
.0
5
E
+
1
4

7
.1
6
E
+
1
4

2
.2
9
E
+
1
5

2
.5
1
E
+
1
5

2
.6
3
E
+
1
5

1
.9
2
E
+
1
5

2
.0
2
E
+
1
5

2
.1
3
E
+
1
5

↔
P
U
K
1

0
.0
0
E
+
0
0

2
.8
2
E
+
1
4

3
.9
3
E
+
1
4

7
.8
3
E
+
1
4

6
.6
3
E
+
1
5

1
.1
1
E
+
1
6

2
.7
4
E
+
1
5

4
.1
3
E
+
1
5

5
.2
6
E
+
1
5

↓
L
U
V
3

7
.1
4
E
+
1
5

7
.8
6
E
+
1
5

8
.2
2
E
+
1
5

1
.5
8
E
+
1
5

2
.8
6
E
+
1
5

3
.7
0
E
+
1
5

1
.8
2
E
+
1
5

2
.4
9
E
+
1
5

2
.6
6
E
+
1
5

4
↑

K
F
Y
3

5
.9
6
E
+
1
5

7
.3
0
E
+
1
5

8
.0
7
E
+
1
5

1
.9
3
E
+
1
5

3
.5
7
E
+
1
5

4
.7
0
E
+
1
5

2
.0
8
E
+
1
5

2
.6
6
E
+
1
5

2
.9
0
E
+
1
5

↔
E
X
C
2

2
.4
8
E
+
1
6

2
.6
9
E
+
1
6

2
.8
9
E
+
1
6

1
.2
0
E
+
1
6

1
.5
2
E
+
1
6

1
.6
6
E
+
1
6

1
.0
4
E
+
1
6

1
.1
7
E
+
1
6

1
.2
5
E
+
1
6

↓
L
U
V
4

1
.0
6
E
+
1
6

1
.1
6
E
+
1
6

1
.2
4
E
+
1
6

5
.5
4
E
+
1
4

3
.7
0
E
+
1
5

6
.7
7
E
+
1
5

1
.6
7
E
+
1
5

2
.3
8
E
+
1
5

2
.7
8
E
+
1
5

5
↑

E
X
C
3

8
.8
3
E
+
1
5

9
.7
8
E
+
1
5

1
.0
7
E
+
1
6

4
.6
3
E
+
1
5

6
.1
4
E
+
1
5

6
.9
5
E
+
1
5

3
.5
5
E
+
1
5

4
.1
2
E
+
1
5

4
.3
0
E
+
1
5

↔
P
U
K
2

3
.2
6
E
+
1
5

4
.6
6
E
+
1
5

6
.3
1
E
+
1
5

7
.3
8
E
+
1
5

1
.3
3
E
+
1
6

1
.7
1
E
+
1
6

9
.4
6
E
+
1
5

1
.0
6
E
+
1
6

1
.1
3
E
+
1
6

↓
M
G
A
1

2
.1
3
E
+
1
6

2
.5
7
E
+
1
6

2
.6
9
E
+
1
6

3
.5
8
E
+
1
5

4
.6
7
E
+
1
5

5
.2
2
E
+
1
5

1
.8
9
E
+
1
5

3
.2
3
E
+
1
5

3
.9
3
E
+
1
5

6
↑

E
D
1

6
.4
0
E
+
1
5

6
.8
6
E
+
1
5

7
.1
9
E
+
1
5

2
.3
1
E
+
1
5

3
.3
6
E
+
1
5

3
.9
2
E
+
1
5

1
.4
6
E
+
1
5

2
.0
4
E
+
1
5

2
.3
9
E
+
1
5

↔
E
X
C
4

3
.0
4
E
+
1
6

3
.2
7
E
+
1
6

3
.3
8
E
+
1
6

9
.9
2
E
+
1
5

1
.3
7
E
+
1
6

1
.5
9
E
+
1
6

9
.4
0
E
+
1
5

1
.0
6
E
+
1
6

1
.1
4
E
+
1
6

↓
P
U
K
3

4
.8
6
E
+
1
5

5
.7
3
E
+
1
5

6
.1
0
E
+
1
5

5
.9
2
E
+
1
4

1
.6
1
E
+
1
5

2
.2
0
E
+
1
5

5
.3
1
E
+
1
4

1
.1
6
E
+
1
5

1
.4
8
E
+
1
5

7
↑

B
S
X
2

1
.6
5
E
+
1
6

1
.7
2
E
+
1
6

1
.7
5
E
+
1
6

6
.8
7
E
+
1
5

9
.8
1
E
+
1
5

1
.1
7
E
+
1
6

4
.6
3
E
+
1
5

5
.7
4
E
+
1
5

6
.2
0
E
+
1
5

↔
E
D
2

1
.2
5
E
+
1
6

1
.2
8
E
+
1
6

1
.3
6
E
+
1
6

7
.4
1
E
+
1
5

8
.8
6
E
+
1
5

9
.1
9
E
+
1
5

4
.2
3
E
+
1
5

4
.8
2
E
+
1
5

5
.2
4
E
+
1
5

↓
J
B
L
U
1

7
.4
4
E
+
1
5

8
.4
5
E
+
1
5

8
.8
9
E
+
1
5

5
.2
7
E
+
1
5

7
.3
4
E
+
1
5

8
.3
7
E
+
1
5

2
.7
1
E
+
1
5

3
.5
0
E
+
1
5

4
.1
9
E
+
1
5

8
↑

M
G
A
2

0
.0
0
E
+
0
0

1
.8
6
E
+
1
4

2
.4
9
E
+
1
4

4
.6
8
E
+
1
4

2
.3
7
E
+
1
5

3
.5
5
E
+
1
5

9
.8
3
E
+
1
4

1
.5
5
E
+
1
5

2
.5
2
E
+
1
5

↔
M
G
A
3

2
.0
0
E
+
1
5

5
.0
1
E
+
1
5

7
.3
0
E
+
1
5

4
.6
6
E
+
1
5

7
.0
7
E
+
1
5

1
.1
5
E
+
1
6

4
.6
4
E
+
1
5

5
.6
1
E
+
1
5

6
.3
9
E
+
1
5

↓
A
T
R
O
1

1
.1
5
E
+
1
6

1
.3
7
E
+
1
6

1
.5
3
E
+
1
6

7
.6
3
E
+
1
4

6
.8
6
E
+
1
5

8
.5
9
E
+
1
5

5
.8
5
E
+
1
5

6
.7
8
E
+
1
5

7
.2
0
E
+
1
5

9
↑

A
V
N
W

2
8
.0
0
E
+
1
5

8
.8
0
E
+
1
5

9
.5
7
E
+
1
5

3
.6
1
E
+
1
5

5
.2
4
E
+
1
5

6
.1
1
E
+
1
5

4
.1
3
E
+
1
5

4
.5
8
E
+
1
5

4
.8
1
E
+
1
5

↔
E
X
C
5

1
.0
0
E
+
1
6

2
.1
9
E
+
1
6

2
.6
3
E
+
1
6

7
.0
2
E
+
1
5

2
.8
1
E
+
1
6

3
.6
7
E
+
1
6

2
.0
2
E
+
1
6

2
.2
9
E
+
1
6

2
.5
0
E
+
1
6

↓
A
V
N
W

3
9
.1
0
E
+
1
5

1
.0
3
E
+
1
6

1
.1
2
E
+
1
6

3
.5
2
E
+
1
5

6
.1
3
E
+
1
5

7
.6
1
E
+
1
5

3
.3
6
E
+
1
5

3
.8
9
E
+
1
5

4
.2
0
E
+
1
5

132

7.4. COMPUTATIONAL RESULTS 133

Table 27: A comparison of the AROR values between the single objective and
multiobjective optimization algorithms. The maximum values obtained in the
experiments are used since AROR is an objective that is maximized. The higher
values per algorithm pair (single objective versus multiobjective) is highlighted in
bold.

Algorithm

Test Strand PSOS λ-PSOSP GA λ-GA PSO λ-PSO

0 ↑ IAG1 -3.42 0.04 -1.39 0.06 -3.04 0.97

↔ MGA4 1.70 2.08 1.60 2.14 2.09 2.30

↓ IAG2 2.17 2.90 2.16 2.92 2.17 2.95

1 ↑ BSX1 -0.11 0.63 -0.13 0.73 -0.02 1.27

↔ LUV1 -0.08 0.07 -0.01 0.03 -0.04 0.07

↓ KFY1 2.17 3.39 2.67 2.81 2.66 3.02

2 ↑ EXC1 2.92 3.44 2.90 3.08 2.80 3.05

↔ LUV2 2.46 2.79 2.64 2.92 2.62 2.88

↓ KFY2 2.85 6.52 2.05 3.80 3.61 3.89

3 ↑ AVNW1 1.22 0.77 1.29 1.83 1.26 2.08

↔ PUK1 0.38 0.06 0.00 0.76 0.00 0.64

↓ LUV3 6.12 6.16 4.63 6.00 4.70 7.13

4 ↑ KFY3 2.94 3.08 2.67 2.91 2.80 3.30

↔ EXC2 1.62 5.14 1.55 2.08 1.60 2.49

↓ LUV4 2.95 4.89 2.96 3.75 2.80 3.74

5 ↑ EXC3 2.39 2.35 2.14 2.31 2.38 2.55

↔ PUK2 0.76 2.04 0.51 2.40 1.07 3.16

↓ MGA1 3.80 7.85 3.15 3.37 2.80 4.35

6 ↑ ED1 2.32 2.58 1.98 2.75 2.44 2.84

↔ EXC4 3.96 14.27 3.72 5.88 3.47 6.91

↓ PUK3 3.66 4.53 3.66 3.95 2.80 3.64

7 ↑ BSX2 3.76 4.33 4.03 4.15 3.32 4.33

↔ ED2 2.67 2.82 2.70 2.71 2.63 2.75

↓ JBLU1 13.09 14.98 12.06 12.63 11.95 13.43

8 ↑ MGA2 0.00 0.09 -3.39 0.44 -0.04 0.68

↔ MGA3 1.34 1.79 0.51 0.79 0.48 1.60

↓ ATRO1 11.51 25.16 16.08 16.30 11.31 18.09

9 ↑ AVNW2 5.67 12.02 5.65 8.60 3.99 10.88

↔ EXC5 0.56 3.54 0.96 3.85 0.87 3.42

↓ AVNW3 2.20 4.79 2.14 4.74 2.10 3.33

134 CHAPTER 7. MULTIOBJECTIVE MARKET TIMING

Table 28: Average rankings of each algorithm according to the Friedman non-
parametric test with the Holm post-hoc test over the mean hypervolume. Statisti-
cal significance at 0.05 percentage level is observed in downtrends where λ-PSOSP

outperforms both λ-PSO and λ-GA.

Trend Algorithm Ranking p-value Holm

Uptrend λ-GA (control) 1.8 – –
λ-PSOSP 1.8 0.9999 0.05
λ-PSO 2.4 0.1797 0.025

Sideways λ-GA (control) 1.5 – –
λ-PSOSP 2.0 0.2636 0.05
λ-PSO 2.5 0.0253 0.025

Downtrend λ-PSOSP (control) 1.0 – –
λ-GA 2.0 0.0253 0.05
λ-PSO 3.0 7.7442E-6 0.025

28. We can see that λ-PSOSP had a statistically significant advantage over λ-GA

and λ-PSO in downtrends; no statistically significant differences when it came to

uptrends and sideways movements.

Although hypervolume begins to provide some idea of the performance of the

algorithms on the five objectives, it does not provide information regarding the

spread of the solutions on the Pareto front. Having solutions that are evenly

spread across the Pareto front will provide a larger diversity of solutions for the

user to select from. The results also do not provide enough relative context on

their performance. We addressed these limitations in the second set of experiments

described in the next sections.

7.5 Comparison Against NSGA-II and MACD

The results presented in the previous section were limited in two primary ways.

The first limitation is that the results of PSO algorithms are only compared to

a GA benchmark that was introduced in this thesis. In this section, we compare

the performance of these algorithms against a more established, well-researched

multiobjective optimization algorithm and a widely used technique for market

timing. The second limitation is that we have no insight on the quality of the

7.5. COMPARISON AGAINST NSGA-II AND MACD 135

Pareto sets returned by the algorithms in terms of diversity. Ideally, we would

prefer sets that cover a larger area of the Pareto front on the objective space and

not sets that are clustered around a few point points on the Pareto front.

In order to compare the performance of our algorithms against a well estab-

lished multiobjective optimization algorithm and a technical analysis indicator that

is widely used for market timing applications, we have selected the Nondominated

Sorting Genetic Algorithm II (NSGA-II) [26] as a benchmark. The NSGA-II algo-

rithm was first introduced in 2002, and is now amongst the most widely used and

cited algorithms within the domain of multiobjective optimization. Early multi-

objective optimization algorithms suffered from a number of limitations, including

adopting a non-elitist approach, the need for specifying one or more parameters

for the algorithm to run and suffering high complexity on the order of O(MN3),

where M is the number of objectives and N is the population size. NSGA-II

introduces a number of measures to directly address these limitations. Since its

introduction, NSGA-II has been widely adopted in a number of domains, including

being the benchmark in a number of market timing applications such as [16]. As

for a technical analysis indicator that is widely used market timing applications,

we opted to used the Moving Average Converge Diverge (MACD) indicator [76].

The MACD indicator was explored as an example of technical analysis indicators

in Chapter 2.

In order to perform the comparison, NSGA-II and the MACD indicator uti-

lized the same experimental setup and dataset as the λ-PSOSP, λ-PSO and λ-GA

algorithms in the previous set of experiments. NSGA-II underwent hyperparame-

ter optimization using IRace with the same budget as the other algorithms. The

final configuration selected by IRace for NSGA-II can be seen in Table 29. From

Table 29, we can see that although the population size was comparable to our GA

benchmark, the number of generations needed was three times that of our GA

benchmark at 72 compared to the λ-GA’s 24. The mutation and crossover prob-

abilities discovered are relatively low compared to typical values used for genetic

algorithms, and even our own GA benchmark. There are no values for tourna-

ment selection as it is fixed at two as part of the NSGA-II specification. Since

MACD also has a set of parameters, we experimented with three versions: one

using industry standard default values, one optimized using IRace with the same

136 CHAPTER 7. MULTIOBJECTIVE MARKET TIMING

budget as the other algorithms and one optimized using IRace with three times

the budget available to the other algorithms. During experimentation though, the

MACD variants using parameter values from both IRace runs did not produce any

transactions in any of our training and testing sets. The only configuration that

did result in some transactions was the one with industry default values for the

parameters, and hence all further references to MACD will be to the one using

those values. The values used for the MACD parameters can also be seen in Table

29.

Table 30 shows the hypervolume results for all algorithms including NSGA-II

and MACD. As can be seen from Table 30, NSGA-II and MACD did not achieve

any wins in terms of mean hypervolume when compared to λ-PSOSP, λ-PSO and λ-

GA. The λ-PSOSP algorithm maintains a considerable lead with 21 wins, followed

by GA with 6 wins and finally PSO with 3 wins. In some instances, λ-PSOSP

showed a mean hypervolume an order of magnitude higher than NSGA-II as can

be seen when triplets 6 and 7 were used in testing. On the other hand, MACD on

its own failed to produce transactions under certain testing strands, indicated by

achieving zero hypervolume. In cases where it did produce transactions, the mean

hypervolume is still significantly lower than the best performing algorithm’s mean

hypervolume for that strand.

Table 31 shows the best performance achieved per objective optimized, includ-

ing solutions from both NSGA-II and MACD. As with Table 25, we identify the

algorithm and strand where the best performing solution was observed in terms of

the objective at hand, and compare it with the best performing solutions obtained

by the remaining algorithms. Again, in case of more than one solution being non-

dominated, we follow a lexicographical approach in our comparison based on the

following ordering: AROR, Portfolio Risk, VaR, Transactions Count and Solution

Length. As can be seen in Table 31, λ-PSOSP retained its edge over all other al-

gorithms including the two new benchmarks: NSGA-II and MACD. The fact that

MACD was able to achieve a value of 2.016 for AROR without any transactions

when looking for the best performing solution for VaR is not a mistake but instead

a limitation of how the AROR value is calculated. Since the JBLU1 strand is 125

days, plugging in that number in the formula from Chapter 2 with the same initial

and final capital would result in the value observed. It is in such situations that

7.5. COMPARISON AGAINST NSGA-II AND MACD 137

Table 29: IRace discovered configurations for NSGA-II and MACD.

NSGA-II MACD

Parameter Value Parameter Value

Population Size 47 Short EMA Period 12

Generations 72 Long EMA Period 26

Mutation Probability 0.0462 Signal Period 9

Crossover Probability 0.5559

it is important to consider the number of transactions and, hence, our confidence

in the strategy. A transaction count of zero would result in the lowest confidence

possible in a candidate market timing strategy, and therefore the candidate pre-

sented by MACD for the JBLU1 strand is an unworthy one. We can also see that

while optimizing for Solution Length, λ-PSOSP was able to achieve a higher AROR

and Transactions Count than MACD, albeit with a higher risk profile, while also

utilizing a single technical indicator. The indicator that λ-PSOSP ended up uti-

lizing was the Hammer Candlestick pattern with a trending period of 24 and a

smoothing period of 10. Another interesting phenomenon is that λ-PSOSP was

able to achieve the highest AROR while optimizing for that particular metric by

using only two technical indicators. With the exception of MACD, this is an order

of magnitude lower in length when compared with λ-PSO, λ-GA and NSGA-II.

The strategy proposed by λ-PSOSP in that scenario depends on the Harami Cross

and Rickshaw Man Candlestick patterns with the following parameters:

� Harami Cross: Trend Period: 21, Smoothing Period: 5, Weight: 0.97

� Rickshaw Man: Trend Period: 29, Smoothing Period: 12, Weight: 0.03

Table 32 shows the comparison of all the multiobjective optimization algo-

rithms mentioned thus far with their single objective counterparts from the previ-

ous chapter, including the additional benchmarks of MACD and NSGA-II. Instead

of highlighting the higher achievers in a pairwise comparison as in Table 27, here we

highlight the highest achiever across all the algorithms per testing strand. As with

Table 27, the reason behind including this comparison is to see whether following

a Pareto dominance-based approach to market timing improved the quality of the

T
ab

le
30

:
H

y
p

er
vo

lu
m

e
re

su
lt

s
fo

r
ea

ch
al

go
ri

th
m

ov
er

th
e

te
n

d
at

as
et

s
in

cl
u
d
in

g
N

S
G

A
-I

I
an

d
M

A
C

D
as

b
en

ch
-

m
ar

k
s.

T
h
e

m
in

im
u
m

,
m

ea
n

an
d

m
ax

va
lu

es
ar

e
ob

ta
in

ed
b
y

ru
n
n
in

g
ea

ch
al

go
ri

th
m

te
n

ti
m

es
on

ea
ch

d
at

as
et

.
B

es
t

m
ea

n
re

su
lt

s
ar

e
h
ig

h
li
gh

te
d

in
b

ol
d
.

λ
-P

S
O

S
P

λ
-G

A
λ
-P

S
O

N
S
G
A
-I
I

M
A
C
D

#
T
r
e
n
d

S
tr
a
n
d

M
in

M
e
a
n

M
a
x

M
in

M
e
a
n

M
a
x

M
in

M
e
a
n

M
a
x

M
in

M
e
a
n

M
a
x

0
↑

IA
G
1

0
.0
0
E
+
0
0

2
.0
7
E
+
1
2
2
.0
7
E
+
1
3
0
.0
0
E
+
0
0

3
.1
4
E
+
1
3
1
.5
7
E
+
1
4
7
.5
0
E
+
1
4
1
.0
8
E
+
1
5

1
.2
8
E
+
1
5
0
.0
0
E
+
0
0
0
.0
0
E
+
0
0
0
.0
0
E
+
0
0
0
.0
0
E
+
0
0

↔
M
G
A
4

7
.5
9
E
+
1
5
8
.6
8
E
+
1
5

9
.4
7
E
+
1
5
5
.2
7
E
+
1
5

7
.4
6
E
+
1
5
8
.3
0
E
+
1
5
4
.1
5
E
+
1
5

5
.1
5
E
+
1
5
5
.6
5
E
+
1
5
2
.1
8
E
+
1
4
8
.8
3
E
+
1
4
2
.2
3
E
+
1
5
3
.3
3
E
+
1
4

↓
IA

G
2

3
.7
9
E
+
1
5
4
.2
8
E
+
1
5

4
.8
0
E
+
1
5
1
.0
3
E
+
1
5

1
.9
3
E
+
1
5
2
.2
8
E
+
1
5
7
.4
5
E
+
1
4

1
.1
6
E
+
1
5
1
.3
0
E
+
1
5
3
.1
0
E
+
1
3
2
.0
6
E
+
1
4
5
.7
0
E
+
1
4
1
.4
4
E
+
1
5

1
↑

B
S
X
1

3
.0
0
E
+
1
3

9
.9
1
E
+
1
4
1
.4
7
E
+
1
5
1
.0
1
E
+
1
3

1
.8
1
E
+
1
5
3
.0
3
E
+
1
5
1
.9
6
E
+
1
5
2
.2
6
E
+
1
5

3
.1
4
E
+
1
5
0
.0
0
E
+
0
0
2
.9
0
E
+
1
4
1
.2
9
E
+
1
5
0
.0
0
E
+
0
0

↔
L
U
V
1

0
.0
0
E
+
0
0

2
.4
9
E
+
1
3
2
.4
9
E
+
1
4
0
.0
0
E
+
0
0

1
.8
6
E
+
1
4
4
.6
5
E
+
1
4
0
.0
0
E
+
0
0
1
.9
5
E
+
1
4

4
.4
6
E
+
1
4
0
.0
0
E
+
0
0
0
.0
0
E
+
0
0
0
.0
0
E
+
0
0
0
.0
0
E
+
0
0

↓
K
F
Y
1

8
.8
2
E
+
1
5
9
.4
3
E
+
1
5

9
.5
9
E
+
1
5
2
.4
3
E
+
1
5

5
.1
3
E
+
1
5
5
.7
1
E
+
1
5
2
.1
8
E
+
1
5

2
.7
8
E
+
1
5
2
.9
9
E
+
1
5
5
.4
0
E
+
1
4
1
.3
6
E
+
1
5
2
.4
7
E
+
1
5
0
.0
0
E
+
0
0

2
↑

E
X
C
1

8
.6
1
E
+
1
5
9
.4
0
E
+
1
5

1
.0
3
E
+
1
6
3
.0
0
E
+
1
5

4
.4
7
E
+
1
5
5
.5
4
E
+
1
5
1
.6
9
E
+
1
5

2
.3
7
E
+
1
5
3
.0
0
E
+
1
5
3
.1
2
E
+
1
3
6
.3
6
E
+
1
4
1
.7
3
E
+
1
5
5
.3
0
E
+
1
4

↔
L
U
V
2

9
.9
0
E
+
1
5
1
.0
3
E
+
1
6

1
.0
5
E
+
1
6
5
.4
4
E
+
1
5

6
.7
4
E
+
1
5
7
.7
5
E
+
1
5
3
.1
6
E
+
1
5

3
.7
1
E
+
1
5
4
.4
6
E
+
1
5
1
.8
6
E
+
1
4
1
.0
5
E
+
1
5
2
.3
0
E
+
1
5
1
.2
7
E
+
1
5

↓
K
F
Y
2

1
.0
9
E
+
1
6
1
.2
0
E
+
1
6

1
.2
4
E
+
1
6
4
.8
8
E
+
1
5

6
.8
4
E
+
1
5
8
.0
8
E
+
1
5
4
.4
1
E
+
1
5

4
.9
4
E
+
1
5
5
.5
5
E
+
1
5
2
.5
2
E
+
1
4
1
.0
1
E
+
1
5
1
.8
6
E
+
1
5
0
.0
0
E
+
0
0

3
↑

A
V
N
W

1
2
.8
9
E
+
1
3

4
.0
5
E
+
1
4
7
.1
6
E
+
1
4
2
.2
9
E
+
1
5
2
.5
1
E
+
1
5

2
.6
3
E
+
1
5
1
.9
2
E
+
1
5

2
.0
2
E
+
1
5
2
.1
3
E
+
1
5
0
.0
0
E
+
0
0
3
.3
0
E
+
1
3
1
.4
6
E
+
1
4
0
.0
0
E
+
0
0

↔
P
U
K
1

0
.0
0
E
+
0
0

2
.8
2
E
+
1
4
3
.9
3
E
+
1
4
7
.8
3
E
+
1
4
6
.6
3
E
+
1
5

1
.1
1
E
+
1
6
2
.7
4
E
+
1
5

4
.1
3
E
+
1
5
5
.2
6
E
+
1
5
0
.0
0
E
+
0
0
2
.0
0
E
+
1
4
8
.4
0
E
+
1
4
4
.6
7
E
+
1
4

↓
L
U
V
3

7
.1
4
E
+
1
5
7
.8
6
E
+
1
5

8
.2
2
E
+
1
5
1
.5
8
E
+
1
5

2
.8
6
E
+
1
5
3
.7
0
E
+
1
5
1
.8
2
E
+
1
5

2
.4
9
E
+
1
5
2
.6
6
E
+
1
5
1
.2
4
E
+
1
4
6
.3
0
E
+
1
4
1
.1
9
E
+
1
5
5
.0
8
E
+
1
2

4
↑

K
F
Y
3

5
.9
6
E
+
1
5
7
.3
0
E
+
1
5

8
.0
7
E
+
1
5
1
.9
3
E
+
1
5

3
.5
7
E
+
1
5
4
.7
0
E
+
1
5
2
.0
8
E
+
1
5

2
.6
6
E
+
1
5
2
.9
0
E
+
1
5
0
.0
0
E
+
0
0
8
.3
5
E
+
1
4
1
.7
2
E
+
1
5
0
.0
0
E
+
0
0

↔
E
X
C
2

2
.4
8
E
+
1
6
2
.6
9
E
+
1
6

2
.8
9
E
+
1
6
1
.2
0
E
+
1
6

1
.5
2
E
+
1
6
1
.6
6
E
+
1
6
1
.0
4
E
+
1
6

1
.1
7
E
+
1
6
1
.2
5
E
+
1
6
0
.0
0
E
+
0
0
2
.0
5
E
+
1
5
6
.1
9
E
+
1
5
0
.0
0
E
+
0
0

↓
L
U
V
4

1
.0
6
E
+
1
6
1
.1
6
E
+
1
6

1
.2
4
E
+
1
6
5
.5
4
E
+
1
4

3
.7
0
E
+
1
5
6
.7
7
E
+
1
5
1
.6
7
E
+
1
5

2
.3
8
E
+
1
5
2
.7
8
E
+
1
5
0
.0
0
E
+
0
0
9
.0
8
E
+
1
4
1
.7
5
E
+
1
5
2
.9
8
E
+
1
5

5
↑

E
X
C
3

8
.8
3
E
+
1
5
9
.7
8
E
+
1
5

1
.0
7
E
+
1
6
4
.6
3
E
+
1
5

6
.1
4
E
+
1
5
6
.9
5
E
+
1
5
3
.5
5
E
+
1
5

4
.1
2
E
+
1
5
4
.3
0
E
+
1
5
3
.7
0
E
+
1
4
9
.1
8
E
+
1
4
1
.7
6
E
+
1
5
9
.3
8
E
+
1
3

↔
P
U
K
2

3
.2
6
E
+
1
5

4
.6
6
E
+
1
5
6
.3
1
E
+
1
5
7
.3
8
E
+
1
5
1
.3
3
E
+
1
6

1
.7
1
E
+
1
6
9
.4
6
E
+
1
5

1
.0
6
E
+
1
6
1
.1
3
E
+
1
6
4
.6
6
E
+
1
4
1
.6
6
E
+
1
5
3
.9
0
E
+
1
5
8
.4
1
E
+
1
4

↓
M
G
A
1

2
.1
3
E
+
1
6
2
.5
7
E
+
1
6

2
.6
9
E
+
1
6
3
.5
8
E
+
1
5

4
.6
8
E
+
1
5
5
.2
3
E
+
1
5
1
.8
9
E
+
1
5

3
.2
3
E
+
1
5
3
.9
3
E
+
1
5
2
.6
2
E
+
1
4
7
.0
6
E
+
1
4
1
.5
2
E
+
1
5
3
.8
6
E
+
1
4

6
↑

E
D
1

6
.4
0
E
+
1
5
6
.8
6
E
+
1
5

7
.1
9
E
+
1
5
2
.3
1
E
+
1
5

3
.3
6
E
+
1
5
3
.9
2
E
+
1
5
1
.4
6
E
+
1
5

2
.0
4
E
+
1
5
2
.3
9
E
+
1
5
7
.1
9
E
+
1
3
3
.8
3
E
+
1
4
1
.3
5
E
+
1
5
0
.0
0
E
+
0
0

↔
E
X
C
4

3
.0
4
E
+
1
6
3
.2
7
E
+
1
6

3
.3
8
E
+
1
6
9
.9
2
E
+
1
5

1
.3
7
E
+
1
6
1
.5
9
E
+
1
6
9
.4
0
E
+
1
5

1
.0
6
E
+
1
6
1
.1
4
E
+
1
6
1
.1
6
E
+
1
4
1
.0
8
E
+
1
5
3
.6
5
E
+
1
5
2
.5
7
E
+
1
4

↓
P
U
K
3

4
.8
6
E
+
1
5
5
.7
3
E
+
1
5

6
.1
0
E
+
1
5
5
.9
2
E
+
1
4

1
.6
1
E
+
1
5
2
.2
0
E
+
1
5
5
.3
1
E
+
1
4

1
.1
6
E
+
1
5
1
.4
8
E
+
1
5
3
.2
9
E
+
1
3
1
.2
2
E
+
1
4
3
.5
9
E
+
1
4
1
.0
5
E
+
1
5

7
↑

B
S
X
2

1
.6
5
E
+
1
6
1
.7
2
E
+
1
6

1
.7
5
E
+
1
6
6
.8
7
E
+
1
5

9
.8
1
E
+
1
5
1
.1
7
E
+
1
6
4
.6
3
E
+
1
5

5
.7
4
E
+
1
5
6
.2
0
E
+
1
5
4
.4
4
E
+
1
4
1
.2
7
E
+
1
5
2
.1
6
E
+
1
5
3
.1
5
E
+
1
4

↔
E
D
2

1
.2
5
E
+
1
6
1
.2
8
E
+
1
6

1
.3
6
E
+
1
6
7
.4
1
E
+
1
5

8
.8
6
E
+
1
5
9
.1
9
E
+
1
5
4
.2
3
E
+
1
5

4
.8
2
E
+
1
5
5
.2
4
E
+
1
5
3
.7
8
E
+
1
4
1
.3
7
E
+
1
5
2
.4
3
E
+
1
5
3
.3
1
E
+
1
5

↓
J
B
L
U
1

7
.4
4
E
+
1
5
8
.4
5
E
+
1
5

8
.8
9
E
+
1
5
5
.2
7
E
+
1
5

7
.3
4
E
+
1
5
8
.3
7
E
+
1
5
2
.7
1
E
+
1
5

3
.5
0
E
+
1
5
4
.1
9
E
+
1
5
7
.9
5
E
+
1
3
7
.0
8
E
+
1
4
2
.0
2
E
+
1
5
0
.0
0
E
+
0
0

8
↑

M
G
A
2

0
.0
0
E
+
0
0

1
.8
6
E
+
1
4
2
.4
9
E
+
1
4
4
.6
8
E
+
1
4
2
.3
7
E
+
1
5

3
.5
5
E
+
1
5
9
.8
3
E
+
1
4

1
.5
5
E
+
1
5
2
.5
2
E
+
1
5
0
.0
0
E
+
0
0
4
.2
0
E
+
1
3
2
.1
1
E
+
1
4
0
.0
0
E
+
0
0

↔
M
G
A
3

2
.0
0
E
+
1
5

5
.0
1
E
+
1
5
7
.3
0
E
+
1
5
4
.6
6
E
+
1
5
7
.0
7
E
+
1
5

1
.1
5
E
+
1
6
4
.6
4
E
+
1
5

5
.6
1
E
+
1
5
6
.3
9
E
+
1
5
0
.0
0
E
+
0
0
4
.0
2
E
+
1
4
1
.3
2
E
+
1
5
0
.0
0
E
+
0
0

↓
A
T
R
O
1

1
.1
5
E
+
1
6
1
.3
7
E
+
1
6

1
.5
3
E
+
1
6
7
.6
3
E
+
1
4

6
.8
6
E
+
1
5
8
.5
9
E
+
1
5
5
.8
5
E
+
1
5

6
.7
8
E
+
1
5
7
.1
7
E
+
1
5
0
.0
0
E
+
0
0
2
.5
1
E
+
1
4
6
.9
5
E
+
1
4
5
.5
6
E
+
1
4

9
↑

A
V
N
W

2
8
.0
0
E
+
1
5
8
.8
0
E
+
1
5

9
.5
7
E
+
1
5
3
.6
1
E
+
1
5

5
.2
4
E
+
1
5
6
.1
1
E
+
1
5
4
.1
3
E
+
1
5

4
.5
8
E
+
1
5
4
.8
2
E
+
1
5
1
.7
7
E
+
1
4
9
.4
4
E
+
1
4
1
.9
2
E
+
1
5
0
.0
0
E
+
0
0

↔
E
X
C
5

1
.0
0
E
+
1
6

2
.1
9
E
+
1
6
2
.6
3
E
+
1
6
7
.0
2
E
+
1
5
2
.8
1
E
+
1
6

3
.6
7
E
+
1
6
2
.0
2
E
+
1
6

2
.2
9
E
+
1
6
2
.5
0
E
+
1
6
0
.0
0
E
+
0
0
2
.8
7
E
+
1
5
1
.3
4
E
+
1
6

7
.9
6
+
1
4

↓
A
V
N
W

3
9
.1
0
+
1
5
1
.0
3
E
+
1
6

1
.1
6
E
+
1
6
3
.5
2
E
+
1
5

6
.1
3
E
+
1
5
7
.6
1
E
+
1
5
3
.3
6
E
+
1
5

3
.8
6
E
+
1
5
4
.2
0
E
+
1
5
1
.6
6
E
+
1
4
1
.2
7
E
+
1
5
2
.3
5
E
+
1
5
0
.0
0
E
+
0
0

138

T
ab

le
31

:
B

es
t

P
er

fo
rm

an
ce

P
er

O
b

je
ct

iv
e

in
cl

u
d
in

g
b

ot
h

N
S
G

A
-I

I
an

d
M

A
C

D
.

F
or

ev
er

y
op

ti
m

iz
ed

ob
je

ct
iv

e,
w

e
fi
n
d

th
e

b
es

t
p

er
fo

rm
in

g
in

st
an

ce
.

T
h
e

te
st

st
ra

n
d

w
h
er

e
th

is
is

ob
se

rv
ed

is
in

b
ra

ck
et

s
n
ex

t
to

th
e

p
ri

m
ar

y
ob

je
ct

iv
e

n
am

e.
T

h
e

b
es

t
d
is

co
ve

re
d

so
lu

ti
on

p
er

al
go

ri
th

m
ob

se
rv

ed
w

it
h
in

th
e

st
ra

n
d

an
d

ob
je

ct
iv

e
at

h
an

d
is

th
en

li
st

ed
.

T
h
e

to
p

p
er

fo
rm

in
g

so
lu

ti
on

is
h
ig

h
li
gh

te
d

in
b

ol
d
.

In
ca

se
of

a
ti

e,
w

e
co

n
si

d
er

th
e

ob
je

ct
iv

es
in

a
le

x
ic

og
ra

p
h
ic

al
ap

p
ro

ac
h

u
si

n
g

th
e

fo
ll
ow

in
g

or
d
er

:
A

R
O

R
,

P
or

tf
ol

io
R

is
k
,

V
aR

,
T

ra
n
sa

ct
io

n
s

C
ou

n
t

an
d

S
ol

u
ti

on
L

en
gt

h
.

P
r
im

a
r
y

O
b
je
c
ti
v
e

λ
-P

S
O

S
P

λ
-G

A
λ
-P

S
O

N
S
G
A
-I
I

M
A
C
D

A
R
O
R

(A
T
R
O
1
)

I
A
R
O
R

2
.5
1
6
2
E
+
0
1

1
.6
2
9
6
E
+
0
1

1
.8
0
9
3
E
+
0
1

1
.3
3
0
2
E
+
0
1

1
.5
7
0
5
E
+
0
0

P
o
r
tf
o
li
o

R
is
k

3
.3
1
7
6
E
+
0
6

2
.0
8
9
5
E
+
0
6

2
.5
2
9
8
E
+
0
6

2
.0
3
1
6
E
+
0
6

4
.1
8
7
7
E
+
0
5

V
a
R

3
.9
4
9
0
E
+
0
5

2
.6
9
3
3
E
+
0
5

1
.8
8
3
1
E
+
0
5

2
.0
6
5
8
E
+
0
5

1
.7
2
1
8
E
+
0
4

T
r
a
n
sa

c
ti
o
n
s
C
o
u
n
t

7
.8
0
0
0
E
+
0
1

7
.0
0
0
0
E
+
0
1

6
.8
0
0
0
E
+
0
1

6
.4
0
0
0
E
+
0
1

1
.0
0
0
0
E
+
0
1

S
o
lu

ti
o
n

L
e
n
g
th

2
.0
0
0
0
E
+
0
0

5
.7
0
0
0
E
+
0
1

3
.6
0
0
0
E
+
0
1

3
.2
0
0
0
E
+
0
1

1
.0
0
0
0
E
+
0
0

P
o
r
tf
o
li
o

R
is
k

(M
G
A
1
)

A
R
O
R

2
.9
1
7
3
E
+
0
0

2
.8
7
4
3
E
+
0
0

2
.8
7
4
3
E
+
0
0

2
.8
0
0
0
E
+
0
0

2
.6
5
3
6
E
+
0
0

I
P
o
r
tf
o
li
o

R
is
k

0
.0
0
0
0
E
+
0
0

0
.0
0
0
0
E
+
0
0

0
.0
0
0
0
E
+
0
0

0
.0
0
0
0
E
+
0
0

4
.1
3
3
9
E
+
0
5

V
a
R

0
.0
0
0
0
E
+
0
0

0
.0
0
0
0
E
+
0
0

0
.0
0
0
0
E
+
0
0

0
.0
0
0
0
E
+
0
0

0
.0
0
0
0
E
+
0
0

T
r
a
n
sa

c
ti
o
n
s
C
o
u
n
t

2
.0
0
0
0
E
+
0
0

2
.0
0
0
0
E
+
0
0

2
.0
0
0
0
E
+
0
0

0
.0
0
0
0
E
+
0
0

4
.0
0
0
0
E
+
0
0

S
o
lu

ti
o
n

L
e
n
g
th

1
.0
0
0
0
E
+
0
0

3
.8
0
0
0
E
+
0
1

3
.8
0
0
0
E
+
0
1

1
.2
0
0
0
E
+
0
1

1
.0
0
0
0
E
+
0
0

V
a
R

(J
B
L
U
1
)

A
R
O
R

1
.4
9
8
4
E
+
0
1

1
.2
0
9
5
E
+
0
1

1
.3
3
1
3
E
+
0
1

1
.1
9
5
3
E
+
0
1

2
.0
1
6
0
E
+
0
0

P
o
r
tf
o
li
o

R
is
k

1
.0
9
7
0
E
+
0
6

1
.0
7
1
7
E
+
0
6

1
.0
1
1
5
E
+
0
6

1
.1
0
2
2
E
+
0
6

0
.0
0
0
0
E
+
0
0

I
V
a
R

0
.0
0
0
0
E
+
0
0

0
.0
0
0
0
E
+
0
0

0
.0
0
0
0
E
+
0
0

0
.0
0
0
0
E
+
0
0

0
.0
0
0
0
E
+
0
0

T
r
a
n
sa

c
ti
o
n
s
C
o
u
n
t

1
.0
2
0
0
E
+
0
2

6
.8
0
0
0
E
+
0
1

7
.6
0
0
0
E
+
0
1

6
.6
0
0
0
E
+
0
1

0
.0
0
0
0
E
+
0
0

S
o
lu

ti
o
n

L
e
n
g
th

3
.8
0
0
0
E
+
0
1

3
.5
0
0
0
E
+
0
1

5
.8
0
0
0
E
+
0
1

3
.3
0
0
0
E
+
0
1

1
.0
0
0
0
E
+
0
0

T
r
a
n
sa

c
ti
o
n
s
C
o
u
n
t
(L

U
V
1
)

A
R
O
R

-5
.1
6
6
3
E
-0

2
-9
.9
7
5
5
E
-0
2

-8
.5
7
5
2
E
-0
2

-9
.9
2
1
3
E
-0
2

6
.2
5
4
6
E
-0
1

P
o
r
tf
o
li
o

R
is
k

4
.6
0
6
2
E
+
0
5

4
.7
7
8
1
E
+
0
5

4
.3
2
2
8
E
+
0
5

6
.1
1
7
2
E
+
0
5

1
.1
3
5
8
E
+
0
6

V
a
R

5
.8
0
0
6
E
+
0
4

6
.5
2
4
8
E
+
0
4

6
.0
2
7
7
E
+
0
4

8
.3
6
1
3
E
+
0
4

3
.1
3
8
7
E
+
0
4

T
r
a
n
sa

c
ti
o
n
s
C
o
u
n
t

6
.3
4
0
0
E
+
0
2

6
.1
6
0
0
E
+
0
2

6
.1
8
0
0
E
+
0
2

6
.2
8
0
0
E
+
0
2

9
.2
0
0
0
E
+
0
1

I
S
o
lu

ti
o
n

L
e
n
g
th

5
.1
0
0
0
E
+
0
1

1
.0
0
0
0
E
+
0
1

4
.4
0
0
0
E
+
0
1

5
.0
0
0
0
E
+
0
0

1
.0
0
0
0
E
+
0
0

S
o
lu

ti
o
n

L
e
n
g
th

(A
T
R
O
1
)

A
R
O
R

1
.8
9
1
9
E
+
0
1

3
.6
6
0
0
E
+
0
0

1
.2
0
0
0
E
+
0
1

9
.7
5
5
1
E
-0
1

1
.5
7
0
5
E
+
0
0

P
o
r
tf
o
li
o

R
is
k

2
.5
5
2
3
E
+
0
6

1
.0
5
2
8
E
+
0
6

1
.5
2
1
6
E
+
0
6

9
.9
2
3
7
E
+
0
5

4
.1
8
7
7
E
+
0
5

V
a
R

2
.9
9
9
4
E
+
0
5

9
.1
4
0
6
E
+
0
4

1
.4
3
7
5
E
+
0
5

1
.2
7
1
8
E
+
0
5

1
.7
2
1
8
E
+
0
4

T
r
a
n
sa

c
ti
o
n
s
C
o
u
n
t

7
.8
0
0
0
E
+
0
1

6
.6
0
0
0
E
+
0
1

6
.0
0
0
0
E
+
0
1

8
.0
0
0
0
E
+
0
1

1
.0
0
0
0
E
+
0
1

I
S
o
lu

ti
o
n

L
e
n
g
th

1
.0
0
0
0
E
+
0
0

2
.0
0
0
0
E
+
0
0

2
.6
0
0
0
E
+
0
1

7
.0
0
0
0
E
+
0
0

1
.0
0
0
0
E
+
0
0

139

140 CHAPTER 7. MULTIOBJECTIVE MARKET TIMING

Table 32: A comparison of the AROR values between the single objective and mul-
tiobjective optimization algorithms including NSGA-II and MACD benchmarks.
The maximum values obtained in the experiments are used since AROR is an
objective that is maximized. The highest value per Test Strand is highlighted in
bold.

Algorithm

Test Strand PSOS λ-PSOSP GA λ-GA PSO λ-PSO NSGA-II MACD

0 ↑ IAG1 -3.42 0.04 -1.39 0.06 -3.04 0.97 -0.04 3.04

↔ MGA4 1.70 2.08 1.60 2.14 2.09 2.30 1.87 2.07

↓ IAG2 2.17 2.90 2.16 2.92 2.17 2.95 2.42 2.43

1 ↑ BSX1 -0.11 0.63 -0.13 0.73 -0.02 1.27 1.13 1.57

↔ LUV1 -0.08 0.07 -0.01 0.03 -0.04 0.07 -0.02 0.63

↓ KFY1 2.17 3.39 2.67 2.81 2.66 3.02 3.16 2.55

2 ↑ EXC1 2.92 3.44 2.90 3.08 2.80 3.05 2.98 2.89

↔ LUV2 2.46 2.79 2.64 2.92 2.62 2.88 2.86 2.53

↓ KFY2 2.85 6.52 2.05 3.80 3.61 3.89 3.42 1.87

3 ↑ AVNW1 1.22 0.77 1.29 1.83 1.26 2.08 2.07 2.77

↔ PUK1 0.38 0.06 0.00 0.76 0.00 0.64 0.40 0.33

↓ LUV3 6.12 6.16 4.63 6.00 4.70 7.13 4.67 1.83

4 ↑ KFY3 2.94 3.08 2.67 2.91 2.80 3.30 2.91 2.93

↔ EXC2 1.62 5.14 1.55 2.08 1.60 2.49 2.48 1.39

↓ LUV4 2.95 4.89 2.96 3.75 2.80 3.74 3.68 2.53

5 ↑ EXC3 2.39 2.35 2.14 2.31 2.38 2.55 2.31 2.11

↔ PUK2 0.76 2.04 0.51 2.40 1.07 3.16 3.09 0.99

↓ MGA1 3.80 7.85 3.15 3.37 2.80 4.35 3.70 2.65

6 ↑ ED1 2.32 2.58 1.98 2.75 2.44 2.84 2.59 2.95

↔ EXC4 3.96 14.27 3.72 5.88 3.47 6.91 4.87 2.08

↓ PUK3 3.66 4.53 3.66 3.95 2.80 3.64 3.24 3.22

7 ↑ BSX2 3.76 4.33 4.03 4.15 3.32 4.33 3.92 2.54

↔ ED2 2.67 2.82 2.70 2.71 2.63 2.75 2.75 2.24

↓ JBLU1 13.09 14.98 12.06 12.63 11.95 13.43 11.95 2.01

8 ↑ MGA2 0.00 0.09 -3.39 0.44 -0.04 0.68 0.20 1.93

↔ MGA3 1.34 1.79 0.51 0.79 0.48 1.60 0.81 0.91

↓ ATRO1 11.51 25.16 16.08 16.30 11.31 18.09 13.30 1.57

9 ↑ AVNW2 5.67 12.02 5.65 8.60 3.99 10.88 11.48 1.60

↔ EXC5 0.56 3.54 0.96 3.85 0.87 3.42 3.17 0.69

↓ AVNW3 2.20 4.79 2.14 4.74 2.10 3.33 3.54 1.75

7.5. COMPARISON AGAINST NSGA-II AND MACD 141

Figure 16: Violin plot comparing AROR performance for all multiobjective algo-
rithms, along with NSGA-II and MACD, across all testing strands. We can see
that the medians and the bulk of their solution distributions for all algorithms are
close to each other. Only λ-PSOSP has shown a tail achieving higher AROR values
than the other algorithms in the comparison.

142 CHAPTER 7. MULTIOBJECTIVE MARKET TIMING

Figure 17: Violin plot comparing Annualized Portfolio Risk performance for all
multiobjective algorithms, along with NSGA-II and MACD, across all testing
strands. With the exception of MACD, all multiobjective algorithms have their
medians and the bulk of their solution distributions are close to each other. MACD,
on the other hand displays a higher median and a long tail stretching into higher
values of risk, indicating a worse performance when compared to the other algo-
rithms.

7.5. COMPARISON AGAINST NSGA-II AND MACD 143

Figure 18: Violin plot comparing VaR performance for all multiobjective algo-
rithms, along with NSGA-II and MACD, across all testing strands. We can see
that the medians and the bulk of their solution distributions for all algorithms
are close to each other. λ-PSO displays an exceptionally long tail stretching into
higher values of VaR indicating a higher potential for losses when compared to the
other algorithms albeit at a lower probability.

144 CHAPTER 7. MULTIOBJECTIVE MARKET TIMING

Figure 19: Violin plot comparing transactions count for all multiobjective algo-
rithms, along with NSGA-II and MACD, across all testing strands. The highest
median observed was that of λ-PSOSP, followed by NSGA-II, λ-PSO, λ-GA and
finally MACD. With the exception of MACD, all algorithms have tails extending
into higher transaction counts. Based on these observations, we can conclude that
solutions returned by λ-PSOSP are relatively the most stable and have the lowest
sample error. MACD solutions, on the other hand, are relatively the least stable
and have the highest sample error compared to the solutions returned by the other
algorithms.

7.5. COMPARISON AGAINST NSGA-II AND MACD 145

Figure 20: Violin plot comparing solution length for all multiobjective algorithms,
along with NSGA-II and MACD, across all testing strands. When comparing
λ-PSO to λ-PSOSP, we can see that the pruning procedure has resulted in com-
paratively shorter solutions based on the lower median and the main body of the
solution distribution manifesting significantly lower than λ-PSO. When consider-
ing the other algorithms, we can see that λ-PSOSP has achieved shorter solutions
and are directly comparable to the MACD solution which had a fixed length of
one component.

146 CHAPTER 7. MULTIOBJECTIVE MARKET TIMING

Table 33: Average rankings of each algorithm according to the Friedman non-
parametric test with the Holm post-hoc test over the mean hypervolume. Although
λ-PSOSP lost its edge over λ-GA when compared in a wider context containing
both NSGA-II and MACD, it retains a statistically significant edge over PSO and
the two additional benchmarks. NSGA-II and MACD have performed worse than
all other algorithms under various trend conditions in a statistically significant
manner.

Trend Algorithm Ranking p-value Holm

Uptrend λ-GA (control) 1.8 – –

λ-PSOSP 1.8 1.0 0.05

λ-PSO 2.4 0.39614 0.025

NSGA-II 4.05 0.00156 0.0167

MACD 4.95 8.3982E-6 0.0125

Sideways λ-GA (control) 1.5 – –

λ-PSOSP 2.1 0.3961 0.05

λ-PSO 2.5 0.1573 0.025

NSGA-II 4.35 5.5656E-5 0.0167

MACD 4.55 1.608E-5 0.0125

Downtrend λ-PSOSP (control) 1.0 – –

λ-GA 2.0 0.1573 0.05

λ-PSO 3.2 0.0019 0.025

NSGA-II 4.4 1.522E-6 0.0167

MACD 4.4 1.522E-6 0.0125

All λ-PSOSP (control) 1.3 – –

λ-GA 1.8 0.4795 0.05

λ-PSO 2.9 0.0237 0.025

NSGA-II 4.2 4.1098E-5 0.0167

MACD 4.8 7.431E-7 0.0125

7.5. COMPARISON AGAINST NSGA-II AND MACD 147

solutions generated even if just considering the single objective AROR. The rank-

ings of the algorithms based on the number of wins via attaining maximum AROR

per testing strand are as follows: λ-PSOSP (13), λ-PSO (8), MACD (6), λ-GA (3),

NSGA-II (1), PSOS (0), GA (0) and PSO (0). We can see that the multiobjective

optimization variants of PSO dominate the rest of the algorithms and hold the top

two positions. This is followed by MACD, then the multiobjective variants of GA,

although NSGA-II was only able to achieve a singular win. The single objective

variants of our algorithms fared the worst, scoring no wins when compared with

their multiobjective counterparts. This indicates that pursuing a multiobjective

optimization approach improves the overall quality of the market timing strategies

generated when compared to a single objective optimization approach.

In order to provide an overall picture comparing the performance of the mul-

tiobjective algorithms, relative to each other and to the benchmarks, we plot the

solutions returned per financial metric and aggregated across all testing strands

using violin plots [35]. A violin plot extends Tukey’s Box and Whisker plots by

displaying a kernel density estimation of the data points along with the summary

statistics using a Gaussian kernel. The kernel density estimation is presented vi-

sually as the contours of the shape rendered for every category in the plot, while

the summary statistics are represented by three lines rendered within the body of

the shape. The dotted middle line represents the median, while the bottom and

top dotted lines represent the first and third quartiles of the interquartile range.

Figures 16 to 20 show the violin plots of all algorithms for AROR, Portfolio Risk,

VaR, Transactions Count and Solution Length. From the AROR violin plot, Fig-

ure 16, we can observe that the medians and main bulk of the solution distributions

for all algorithms are close to each other. The PSO algorithms display interesting

behavior in having long tails extending well beyond those of their counterparts:

λ-PSOSP having a tail extending higher than rest showing the potential of achiev-

ing higher returns and λ-PSO extending significantly lower than its counterparts

showing a higher potential of negative returns albeit at a lower probability. The

Portfolio Risk violin plot, Figure 17, shows that all the algorithms in the compar-

ison have the bulk of their distribution and medians around the same level. This

is with the exception of MACD that has a higher interquartile range and a long

tail stretching into higher values of risk, indicating a worse performance than the

148 CHAPTER 7. MULTIOBJECTIVE MARKET TIMING

other algorithms in the comparison. As for VaR, we can see from the associated

plot, Figure 18, that all algorithms have their medians and the main bulk of their

distributions close to each other. Only λ-PSO displays a long tail stretching into

higher values of VaR indicating a higher potential for losses albeit at a low proba-

bility. Figure 19 shows the violin plot for transactions count and from that we can

observe that the highest median was achieved by λ-PSOSP, followed by NSGA-

II, λ-PSO, λ-GA and MACD. All algorithms, bar MACD, have tails that extend

higher into transaction counts. Based on the observations, we can surmise that

λ-PSOSP returns the most stable solutions and MACD returns the least stable.

Finally, Figure 19 shows the violin plot for solution length. By comparing λ-PSO

to λ-PSOSP, we can see that the pruning procedure has resulted in comparatively

shorter solutions as evident by the lower interquartile range of λ-PSOSP and the

manifestation of its main body of its solution distribution at a significantly lower

level than λ-PSO. We can also observe that λ-PSOSP has achieved shorter solu-

tions to its counterparts and is comparable to MACD which had a fixed solution

length of one component.

As with the previous set of experiments, we reconducted the Friedman non-

parametric test with the Holm correction on the mean hypervolumes to check if

there are statistical significance differences. The results can be seen in Table 33.

From Table 33, we can see that NSGA-II and MACD have performed worse than

all other multiobjective optimization algorithms across all trend types. In partic-

ular, both NSGA-II and MACD performed statistically significantly worse than

the control algorithm across all trend types. This suggests that our algorithms

are better suited than NSGA-II and MACD when tackling market timing as a

multiobjective optimization problem. We can see that λ-PSOSP and our multiob-

jective GA have consistently ranked in the top two across each trend type, and

shows a slight edge in ranking when considering all trends, albeit in a statistically

non-significant manner.

7.6 Diversity of the Pareto Front

In the previous section, we addressed the first limitation in the results obtained by

our multiobjective optimization algorithms by comparing them with NSGA-II and

7.6. DIVERSITY OF THE PARETO FRONT 149

MACD as benchmarks. In this section, we address the second limitation which was

lack of insight into the diversity of the solutions in the returned Pareto sets and

how they are spread across their respective Pareto fronts. The more diversity in

the solutions contained within a given Pareto set, the more spread they are across

their respective Pareto front giving the end user more choice to select solutions

that better suit their needs. In order to get insight into the diversity of the Pareto

sets returned by the multiobjective optimization algorithms, we plot their results

against each test strand using RadViz [36]. RadViz is a method of adapting a scat-

ter plot to display multivariate data containing more than two dimensions. The

various dimensions being plotted in a RadViz diagram are rendered as anchors

distributed equally across the circumference of a circle containing points repre-

senting the dataset being visualized. Each point in the dataset is rendered as a

point in this circle tethered to each of the dimensional anchors on the circumfer-

ence on the plot area. The amount of tension in each tether is commensurate to

the normalized value each point has to a given dimensional anchor and the points

are rendered within the plot area, where they reach an equilibrium across all the

tensions contained within the tethers. In our case, we have five dimensional an-

chors: AROR, Portfolio Risk, VaR, Transactions Count and Solution Length. As

Portfolio Risk, VaR and Solutions Length are metrics that are minimized, we are

interested in points that are situated far from the anchors associated with those

metrics. The opposite is true for AROR and Transactions Count, where we are

interested in points that are rendered close to those dimensional anchors. An ex-

ample of a RadViz diagram and how we can interpret it can be seen in Figure 21.

By observing the RadViz plots, we can visually identify which algorithms attained

better diversity by looking at the spread of their corresponding Pareto sets. We

use RadViz to plot the Pareto sets returned by λ-PSOSP, λ-PSO, λ-GA, NSGA-II

and MACD for each testing strand, and the results can be seen in Appendix II.

From the RadViz plots, we can see that the λ-PSOSP algorithm consistently

achieves the largest spread across the plot area, covering all areas covered by the

other multiobjective optimization algorithms. This is despite the fact that no

explicit measures where taken to promote diversity, such as the crowding distance

measure used in NSGA-II. When present, MACD has consistently existed outside

the main body occupied by the Pareto sets of the other algorithms, in an area

F
ig

u
re

21
:

R
ad

V
iz

In
te

rp
re

ta
ti

on

150

7.7. SUMMARY 151

to the upper right of the plotting area. This implies that the solution presented

by MACD can achieve good values of AROR but at the expense of high risk

(attraction to the Portfolio Risk and VaR anchors) and low confidence (repulsion

from the Transactions Count anchor). The NSGA-II Pareto sets are smaller in size

when compared to the ones generated by the other algorithms, with the exception

of BSX1 (↑), where the NSGA-II Pareto set always lies to the right of the PSO

Pareto sets and to the left of both λ-GA and λ-PSOSP. This implies that the

λ-GA and λ-PSOSP have a higher probability of landing in the desired quadrant

of solutions with high profitability, low risk and high confidence – the quadrant

indicated by gray shading in the plots. The algorithm that shows the least diversity

is the λ-PSO algorithm, resulting in Pareto sets that are relatively tightly clustered

near the center of the plotting area. Based on the RadViz visualizations of the

algorithms and the observations seen in the results earlier in the chapter, we can

observe that the multiobjective λ-PSOSP algorithm returns Pareto sets with a

high level of diversity and those Pareto sets contain competent solutions across all

the metrics being considered. This is followed closely by λ-GA, then by λ-PSO,

NSGA-II and MACD, respectively.

7.7 Summary

In this chapter, we have evolved from considering market timing as a single objec-

tive optimization problem to a multiobjective one. We started by increasing the

number of financial metrics optimized from one to five to include: AROR, Port-

folio Risk, Value at Risk (VaR), Transactions Count and Solution Length. We

followed a Pareto dominance-based approach, and modified GA, PSO and PSOSP

to use the expanded set of metrics and archives to maintain sets of non-dominated

solutions. This resulted in the multiobjective algorithms: λ-GA, λ-PSO and λ-

PSOSP respectively. Computational results showed that these algorithms achieved

higher AROR values when compared to their single objective counter parts from

the previous chapter and that λ-PSOSP displayed a statistically significant im-

provement over λ-PSO and λ-GA in downtrends based on mean hypervolume. In

order to provide a better comparative context for the algorithms, we compared

152 CHAPTER 7. MULTIOBJECTIVE MARKET TIMING

their performance against NSGA-II (a well established multiobjective optimiza-

tion algorithm) and MACD (a widely used technical indicator in market timing

applications). Results from the comparison showed that NSGA-II and MACD

performed statistically significantly worse than λ-PSO, λ-GA and λ-PSOSP across

all of the three trend types based on mean hypervolume. The Pareto sets returned

by the algorithms for each testing strand was visualized using RadViz in order to

gain insight about the diversity of those Pareto sets. The RadViz plots show that

λ-PSOSP displayed the most diversity and its solutions were present in all areas of

the plot that the Pareto sets of the other algorithms occupied. The least diverse

algorithm was λ-PSO, consistently producing Pareto sets that occupied the center

of the plotting area in one contiguous body.

In the next chapter, we conclude our work on PSO and market timing by

summarizing all the work presented so far and suggest avenues for future research.

Chapter 8

Conclusions and Future Research

“There is no real ending. It’s just the place where you stop the story.”

–Frank Herbert

The research in this thesis presented novel Particle Swarm Optimization (PSO)

and Genetic Algorithms (GA) for market timing. Market timing is the issue of

deciding when to buy or sell a given asset on a financial market. A market timing

strategy can be composed of a set of components that digest current market con-

text and return a recommendation on the action to take. Each of the components

returns a recommendation on an action to take multiplied by a weight, and the

final action taken is based on an aggregate of the individual recommendations mul-

tiplied by their respective weights. Previous approaches on using computational

intelligence to aid the formation of market timing strategies was vastly dominated

by GA based on the volume of publications [40][84]. These approaches either at-

tempted to optimize the parameters for a preset selection of components or select a

subset from a set of components with predefined parameters. None of the surveyed

approaches attempted to perform both functions simultaneously. This limits the

designer of a market timing strategy to committing computational resources to

one of those functions at a time, curtailing the flexibility in choice of components

and parameters for consideration. When it came to training and testing, all of

the surveyed approaches followed a protocol known as Step Forward testing. In

Step Forward testing, a stream of financial data is split arbitrarily into two sec-

tions: the earlier section of the stream to be used for training while the latter was

153

154 CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH

used for testing. One of the main criticisms for the use of Step Forward testing is

that algorithms have the liability of overfitting to only the trends observed in the

data and thus suffering a significant degradation in performance when encounter-

ing unseen trends during live training. The majority of literature observed on the

use of computational intelligence for market timing tackled it as a single objective

optimization problem. When dealing with market timing strategies deployed in

live trading scenarios, users of these strategies would gauge performance using a

number of financial metrics that represent various aspects of profits, losses and

exposure to risk. Modeling a market timing strategy as a single objective opti-

mization problem limits its utility for live trading, as it constrains optimization to

only one of the aforementioned aspects. Although a number of approaches mod-

eled market timing as multiobjective optimization problems, such as [85, 16], they

are limited in scope and pale in comparison to those that modeled it as a single

objective optimization problem in terms of volume.

Our work in this thesis uses PSO and GA to tackle market timing in a novel

fashion and addresses some of the limitations observed in literature. In particular,

our contributions address the following challenges:

1. Optimizing both the selection of components and the tuning of their pa-

rameters by introducing a formulation that considers both in a simultaneous

fashion.

2. Explicitly exposing the algorithms to a variety of trends both during training

and testing using a novel protocol called Trend Representative Testing.

3. Tackling market timing as a multiobjective optimization problem to better

accommodate the needs of the designers of algorithmic trading systems who

would optimize various aspects of profits, losses and risks.

Our work also introduces a number of PSO variants that tackle market timing

as a single objective optimization problem (PSOS, PSOSR and PSOSP) and as

a multiobjective optimization problem (λ-PSOS and λ-PSOSP). In the next two

sections, we summarize our contributions using both PSO and GA, followed by

suggestions for future research.

8.1. CONTRIBUTIONS 155

8.1 Contributions

8.1.1 Market Timing Strategies with PSO

Our first approach addressed the question: Can PSO be adopted to tackle market

timing in such manner that considers both the selection of components and the

tuning of their parameters simultaneously? In this approach, market timing is

tackled as a single objective optimization problem, with the aim of maximizing a

single metric of financial fitness: the Sharpe Ratio.

We started by devising a suitable encoding for a market timing strategy to be

used by the particles in the swarm. As discussed earlier, a market timing strategy

is composed by a set of components, each with an associated weight and a set of

parameters. We decided to encode our market timing strategies as associative ar-

rays, with the first level identifying the component type and the second associating

a weight and parameter values with the given instance of that indicator. An exam-

ple of this encoding can be seen in Chapter 5 (Figure 5). This encoding scheme is

used to represent candidate solutions by all the algorithms presented in this thesis.

We then adapted the basic PSO algorithm to use this encoding and tackle market

timing, and that involved a number of modifications. The first modification was

that the addition, subtraction and multiplication operators were overridden and

implemented at the component level to allow for the velocity update function to

be processed while being agnostic to the type of components involved. The sec-

ond modification was adopting either a decreasing inertia schedule with velocity

clamping or Clerc’s constriction, the choice of which was left to the user. This is

used to contain the particles within the search space and prevent their explosion

beyond its bounds. With these modifications in place, the basic PSO algorithm

can tackle market timing using our proposed formulation.

We also introduced two new PSO models: PSOS and PSOSR. PSOS modifies

the velocity update procedure, making the particles more reluctant to give up their

current positions on the search landscape unless it is probabilistically beneficial to

so. The reason behind adopting this procedure, known as Stochastic State Update,

is that we want to decrease the tendency of particles to prematurely converging on

a local optima. PSOSR extends PSOS by addressing the problem of finding the least

156 CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH

sufficing subset of components that maximize the financial metric being optimized.

It does so by frequently polling the particles in the swarm for components whose

weights have fallen below a specific value. Offending components are removed

from all particles in the swarm. The frequency of pruning and the threshold under

which pruning is executed are user defined parameters. The pruning algorithm for

PSOSR was presented in Chapter 5 (Algorithm 5).

In order to test our approach, we used used five variants of PSO including

variations of basic PSO, PSOS and PSOSR. The swarm size for all variants was set

at a 100 particles. Experiments were allowed to run for a 100 iterations, repeated

20 times to account for the effects of stochasticity. For training and testing, we

used the Step Forward testing procedure on the data of four stocks with two years

of daily prices for training and another year for testing. All PSO variants had

access to six technical indicators to use for composing market timing strategies.

Although the results showed that none of the variants were able to achieve good

values for the Sharpe Ratio, the new introduced models did perform competitively

with basic PSO. Nevertheless, the experiments did prove that selecting components

and tuning their parameters in a simultaneous fashion is feasible, using PSO.

Previous approaches in literature would only do one of the tasks at a time: either

select components for the strategy with preset values for parameters or tune the

parameters of a preset combination of components.

8.1.2 Trend Representative Testing

As mentioned earlier, one of the main issues identified in current literature is the

tendency to overfit to training patterns while using Step Forward testing. We

addressed this shortcoming by explicitly exposing candidate solutions to various

trend types during both training and testing in a novel procedure we called Trend

Representative Testing. The main impetus behind Trend Representative Testing

is that through explicit exposure to upwards, downwards and sideways trends the

possibility of niching towards one particular trend over the others is reduced and

users will have better estimations of the performance of candidate market timing

solutions under various market conditions. This is based on the recommendations

of domain experts [44]. Our objectives with Trend Representative Testing were to

8.1. CONTRIBUTIONS 157

build a library of datasets that embody particular trends in price data and devise

a methodology that utilizes this library in a manner to address the shortcomings

of Step Forward Testing.

To build the library of trends, we started by acquiring the raw daily prices of

all stocks traded on the Nasdaq and NYSE markets. The raw streams are then

cleaned of price shocks, and the clean data is subsampled using sliding windows

of various sizes to produce strands. The strands are then analyzed to identify the

underlying trend and its intensity. These annotated strands are then stored in our

library for use. In order to use these strands in training and testing, we formed

two sets of triplets, where a triplet is composed of one uptrend, one sideways trend

and one downtrend. During training, one triplet is selected at random from the

set of training triplets, backtesting occurs against every constituent strand and

the average performance reported. A similar process happens during the testing

phase, but utilizing the triplets from the testing set.

Our first set of experiments with Trend Representative Testing compared it di-

rectly with Step Forward Testing. The algorithms used in this set of experiments

included PSO, PSOS and a Genetic Algorithm (GA) benchmark. The modifica-

tions required to the basic GA algorithm to allow it to use our encoding and Trend

Representative Testing included redefining the crossover and mutation operators,

the details of which can be seen in Chapter 6. As all algorithms have parameters,

they went through hyperparameter optimization using the IRace algorithm [58].

For Trend Representative Testing, 30 strands were formed into 10 triplets, where

one triplet is held out for testing and the remaining nine triplets are used in train-

ing. This results into 10 distinct training and testing datasets. All algorithms

had access to 15 technical indicators to use as components in the market timing

strategies. For Step Forward testing, we considered each of the strands as the 30%

forward testing data and obtain the preceding 70% of data required per strand

from the associated raw streams to form the training data. The Annualized Rate

of Returns (AROR) was selected as the metric to be optimized, in this case maxi-

mized as it is a measure of profits. Each of the experiments was repeated 10 times

to cater for the effects of stochasticity. Based on the Friedman non-parametric

test of the results, both Step Forward Testing and Trend Representative Testing

showed to be statistically equivalent based on mean fitness, which makes Trend

158 CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH

Representative Testing a viable alternative to Step Forward Testing. The advan-

tage Trend Representative Testing has is that it is explicit in exposing candidate

solutions to a multitude of trends, evaluating solutions’ performance under various

market conditions.

Our second set of experiments expanded the number of indicators available to

the algorithms from 15 to 63. As the algorithms have parameters, they all went

through hyperparameter optimization using IRace. During hyperparameter opti-

mization, the pruning procedure of PSOSR was found to be ineffective, and the

algorithm was excluded from experimentation. The final set of algorithms tested

was GA, PSO and PSOS. A new set of 10 triplets were used to form the training

and testing datasets. Looking at the results, no statistically significant differences

were observed among the algorithms according to the Friedman non-parametric

test of the mean fitness. This makes the PSO algorithms competitive to GA,

the current market incumbent algorithm. Since PSOSR was excluded from exper-

imentation, we devised a new pruning procedure that is not as aggressive. The

new pruning procedure only sets the weight of components market for pruning

to zero instead of removing it from all particles in the swarm. This allows their

reintroduction into the candidate solutions through a subsequent velocity update

where it is found in an effective configuration. The PSO variant using this new

pruning procedure with Stochastic State Update is labeled as PSOSP. Compar-

ing the performance of PSOSP with the other algorithms, we observed that it is

statistically equivalent, with the advantage that it was able to prune components

arriving at shorter market timing strategies that are quicker to execute and easier

to comprehend.

8.1.3 Multiobjective Optimization

Considering market timing as a single objective optimization is not sufficient in

producing market timing strategies that are suitable for live trading. Algorithmic

trading systems need to consider multiple aspects of potential profits, losses and

exposure to risk. Our next step, therefore, was to consider market timing as a mul-

tiobjective optimization problem. In order to do so, we expanded the set of metrics

optimized to include: Annualized Rate of Return (AROR), Annualized Portfolio

8.1. CONTRIBUTIONS 159

Risk, Value at Risk (VaR), Transactions Count and Solution length. We used a

Pareto dominance based approach for multiobjective optimization and modified

the PSO, PSOSP and GA algorithms to adopt this approach using the five metrics

to be optimized. This resulted in the multiobjective algorithms: λ-GA, λ-PSO

and λ-PSOSP respectively1. General modifications to all algorithms included the

use of an archive to keep track of non-dominated solutions as they are discovered

by the algorithms. At the end of an algorithm’s run, the contents of this archive

is returned as the discovered Pareto set. For λ-GA, the tournament selection op-

erator was modified to return a random non-dominated member of a subset of the

population, also selected at random. For the PSO family of algorithms, each par-

ticle maintains a personal non-dominated archive to keep track of personal bests.

A personal best is selected at random from a particle personal archive during ve-

locity update. As for selecting the neighborhood best, a non-dominated candidate

is selected at random from the a particle’s current set of non-dominated neighbors

as well as candidates from their personal archives. The Stochastic State Update

mechanism is updated to use the dominance score (a measure of the number of

objectives where one solution dominates another) in its formulation.

The algorithms are trained and tested using Trend Representative Testing, us-

ing the same dataset used Chapter 6 in order to allow for comparison. As all the

algorithms have parameters, they first go through hyperparameter optimization

using IRace. Comparing the AROR results of the multiobjective variants of the

algorithms with their single objective counterparts, we can see that the multiobjec-

tive variants achieved better results in the majority of cases. Looking at the mean

hypervolumes achieved by the multiobjective optimization algorithms, we can see

that λ-PSOSP attained a statistically significant edge over the other algorithms in

downtrends. We can also see that λ-PSOSP achieved the best results per objective

when compared to the other algorithms.

Two primary limitations are present in the results of the multiobjective opti-

mization variants of our algorithms. Firstly, the results are all from algorithms

1Both λ-PSOS and λ-PSOSP originate from the same algorithm, with the emergent variant
based on setting of the Pruning parameter. If Pruning is enabled, then the emergent variant is
λ-PSOSP, otherwise the emergent variant is λ-PSOS.

160 CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH

introduced in this thesis and we have no comparison with an established multi-

objective optimization algorithm or a widely used market timing technique. Sec-

ondly, we have no insight into the diversity of the Pareto sets returned by the

algorithms. In order to address the first limitation, we compare the performance

of our algorithms against NSGA-II and the MACD technical indicator. The re-

sults from the comparison show that NSGA-II and MACD performed statistically

significantly worse than all our multiobjective optimization algorithms. As for

the second limitation, we use RadViz [36] to visualize the Pareto sets returned by

all the algorithms, including NSGA-II and MACD. The RadViz plots show that

λ-PSOSP had the best spread across all strands, despite not having any explicit

diversity promoting measures (such as the crowding distance mechanism employed

by NSGA-II).

8.2 Suggestions for Future Research

The research presented on the application of PSO to tackling market timing can

be extended in two ways: approaches where we extend the capabilities of the

algorithms presented thus far, or approaches where we expand the scope of how

market timing is tackled. Although the suggestions presented here were made with

PSO in mind, the vast majority of them can also be applied to GA algorithms.

Suggestions for future research under both avenues are presented in the following

subsections.

8.2.1 Extending the Capabilities of the Current Algorithms

One of the most direct extensions to the work presented in this thesis is to expand

on the set of financial metrics being optimized. This can grow to include more

sophisticated measures of profit and risk, and more accurate simulation of slippage

and transaction costs. As the scope of optimization increases, the contention

between the different objectives will increase making it more difficult to locate

usable areas on the Pareto fronts.

Another extension in regards to the scope of optimization is to consider di-

versity as a first class citizen when it comes to optimization. Although λ-PSOSP

8.2. SUGGESTIONS FOR FUTURE RESEARCH 161

showed a fairly good level of diversity in its Pareto sets without implementing any

explicit measures that improve diversity, such as the crowding distance measure

used by the NSGA family of algorithms [26, 25], it will be worthwhile in evaluating

the effect of applying measures that promote diversity to the PSO algorithms pre-

sented in this thesis. The value of such an extension could be that the Pareto sets

generated by PSO algorithms will have a more controlled form of spread across

the objective landscape, giving the users greater flexibility in choosing solutions

that best suit their needs.

A third possible extension to the scope of optimization is to optimize the set of

financial metrics for every trend type. Although this would be considered niching,

it would provide the user with an increased probability of achieving their financial

goals. This however comes at the cost of increasing the complexity of the overall

algorithmic trading system as it entails the use of three separate market timing

strategies that are activated based on the current trend detected in the market.

A final suggestion to extend the capabilities of the current algorithms would

be to include fundamental analysis components into the set of signal generating

components available to the algorithms [74]. This can include considering infor-

mation regarding profits and earnings reports, information regarding mergers and

acquisitions, sales performance history and even current and previous sentiment

regarding the asset in question. The challenge here would be to align the data

required by the new components with the price data used by the current technical

analysis indicators.

8.2.2 Expanding the Scope of How Market Timing is Tack-

led

A natural extension that would expand the scope of our work is to adapt other

algorithms to use the formulation presented in Chapter 2 and Trend Representative

Testing, presented in Chapter 6. The application of other algorithms would provide

a more comprehensive comparative context for the performance of PSO. It would

also present the opportunity to use Meta-learning to see if particular algorithms

excel at producing competent market timing strategies under certain conditions

[13]. In this scenario, a user will adopt an ensemble approach [75], where a number

162 CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH

of algorithms would be used in accordance to the current circumstances detected

to produce candidate market timing strategies.

Another approach for expanding the scope of our work would be to adapt the

algorithms presented in this thesis to include other issues faced by designers of

algorithmic trading systems into consideration. As aforementioned in Chapter 1,

a designer of algorithmic trading systems is faced by a number of issues: objective

definition, portfolio optimization, market timing and execution optimization [44].

Though objectives are explicitly set by a user, the other aspects of the system can

be considered as optimization problems and we have only attended to one of them

in this thesis: market timing. By including portfolio optimization and execution

optimization alongside market timing, we will be closer to building algorithms that

in essence generate complete algorithmic trading systems, and not just strategies

to tackle singular aspects of trading.

A final suggestion for an expansion of scope is dynamic optimization [30]. Over

time, candidate solutions selected for live trading will drift from areas of optimal

performance and suffer from degradation. This can be in reaction to changes in

the domain of optimization either by internal or external factors. To stay capable

of achieving a user’s goal, a trading system would have to be able to detect these

changes and adapt. Dynamic optimization is concerned with a system’s capacity

of detecting drift from optimality at time t, find new regions of optimality and

track its trajectory over time. By considering the issue of dynamic optimization,

either on the micro scope of market timing or macro scope of algorithmic trading,

our systems would be more suited for live trading by seamlessly adapting to ever

changing market conditions and bringing us closer to autonomous trading systems

that require no user intervention.

Bibliography

[1] Abdelbar, A. M. and Abdelshahid, S. (2003). Swarm optimization with

instinct-driven particles. In Congress on Evolutionary Computation, CEC

2003 - Proceedings, vol. 2, pp. 777–782.

[2] Abido, M. (2009). Multiobjective particle swarm optimization for environ-

mental/economic dispatch problem. Electric Power Systems Research, 79(7),

pp. 1105 – 1113.

[3] Al-kazemi, B. and Mohan, C. (2002). Multi-phase generalization of the par-

ticle swarm optimization algorithm. In Proceedings of the 2002 Congress on

Evolutionary Computation. CEC’02 (Cat. No.02TH8600), vol. 1, pp. 489–494.

[4] Allen, F. and Karjalainen, R. (1999). Using genetic algorithms to find tech-

nical trading rules. Journal of Financial Economics, 51(2), pp. 245–271.

[5] Angeline, P. (1998). Using selection to improve particle swarm optimiza-

tion. In 1998 IEEE International Conference on Evolutionary Computa-

tion Proceedings. IEEE World Congress on Computational Intelligence (Cat.

No.98TH8360), pp. 84–89.

[6] Armano, G. and Farmani, M. R. (2016). Multiobjective clustering analysis

using particle swarm optimization. Expert Systems with Applications, 55, pp.

184 – 193.

[7] Bengoetxea, E. and Larranaga, P. (2010). EDA-PSO: A hybrid paradigm com-

bining estimation of distribution algorithms and particle swarm optimization.

163

164 BIBLIOGRAPHY

Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-

tificial Intelligence and Lecture Notes in Bioinformatics), 6234 LNCS, pp.

416–423.

[8] Bera, A., Sychel, D. and Sacharski, B. (2014). Improved Particle Swarm Op-

timization method for investment strategies parameters computing. Journal

of Theoretical and Applied Computer Science, 8(4), pp. 45–55.

[9] Beume, N. et al. (2009). On the complexity of computing the hypervolume

indicator. IEEE Transactions on Evolutionary Computation, 13(5), pp. 1075–

1082.

[10] Bianchi, L. et al. (2009). A survey on metaheuristics for stochastic combina-

torial optimization. Natural Computing, 8(2), pp. 239–287.

[11] Blackwell, T. M. and Bentley, P. (2002). Don’t push me! Collision-avoiding

swarms. In Proceedings of the 2002 Congress on Evolutionary Computation,

CEC 2002, vol. 2, pp. 1691–1696.

[12] Brabazon, A. and O’Neill, M. (2004). Evolving technical trading rules for

spot foreign-exchange markets using grammatical evolution. Computational

Management Science, 1(3), pp. 311–327.

[13] Brazdil, P. et al. (2008). Metalearning: Applications to Data Mining. Springer

Publishing Company, Incorporated, 1st edn.

[14] Brits, R. (2002). Niching Strategies for Particle Swarm Optimization. Ph.D.

thesis, University of Pretoria.

[15] Brits, R., Engelbrecht, A. and Bergh, F. V. D. (2002). A niching particle

swarm optimizer. In Proceedings of the 4th Asia- . . . , vol. 2, pp. 1–5.

[16] Briza, A. C. and Naval Jr., P. C. (2011). Stock trading system based on the

multi-objective particle swarm optimization of technical indicators on end-of-

day market data. Applied Soft Computing, 11(1), pp. 1191–1201.

BIBLIOGRAPHY 165

[17] C.A. Coello Coello, E. L. and Aguirre, A. (2002). Mopso: A proposal for

multiple objective particle swarm optimization. In Proceedings of the IEEE

Congress on Evolutionary Computation, vol. 2, pp. 1051–1056.

[18] Cai, Q. et al. (2013). A novel stock forecasting model based on fuzzy time

series and genetic algorithm. Procedia Computer Science, 18, pp. 1155 – 1162,

2013 International Conference on Computational Science.

[19] Carlisle, A. and Dozier, G. (2000). Adapting particle swarm optimization to

dynamic environments. In Proc. of the International Conference on Artificial

Intelligence.

[20] Chakravarty, S. and Dash, P. K. (2012). A PSO based integrated functional

link net and interval type-2 fuzzy logic system for predicting stock market

indices. Applied Soft Computing, 12(2), pp. 931–941.

[21] Chen, S.-M. and Kao, P.-Y. (2013). TAIEX forecasting based on fuzzy time

series, particle swarm optimization techniques and support vector machines.

Information Sciences, 247, pp. 62–71.

[22] Clerc, M. (1999). The swarm and the queen: towards a deterministic and

adaptive particle swarm optimization. In Proceedings of the 1999 Congress on

Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 3, pp. 1951–

1957.

[23] Clerc, M. (2002). Think locally act locally-a framework for adaptive particle

swarm optimizers. IEEE Journal of Evolutionary Computation, 29, pp. 1951–

1957.

[24] de la Fuente, D. et al. (2006). Genetic algorithms to optimise the time to

make stock market investment. In Genetic and Evolutionary Computation

Conference, pp. 1857–1858.

[25] Deb, K. and Jain, H. (2014). An Evolutionary Many-Objective Optimization

Algorithm Using Reference-Point-Based Nondominated Sorting Approach,

Part I: Solving Problems With Box Constraints. IEEE Transactions on Evo-

lutionary Computation, 18(4), pp. 577–601.

166 BIBLIOGRAPHY

[26] Deb, K. et al. (2002). A fast and elitist multiobjective genetic algorithm:

Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2), pp. 182–197.

[27] Demšar, J. (2006). Statistical comparisons of classifiers over multiple data

sets. J Mach Learn Res, 7, pp. 1–30.

[28] Eberhart, R. and Kennedy, J. (1995). A new optimizer using particle swarm

theory. MHS’95 Proceedings of the Sixth International Symposium on Micro

Machine and Human Science, pp. 39–43.

[29] Elbeltagi, E., Hegazy, T. and Grierson, D. (2005). Comparison among five

evolutionary-based optimization algorithms. Advanced Engineering Informat-

ics, 19(1), pp. 43 – 53.

[30] Engelbrecht, A. P. (2005). Fundamentals of Computational Swarm Intelli-

gence. John Wiley & Sons Ltd.

[31] Fieldsend, J. E. and Singh, S. (2002). A multiobjective algorithm based upon

particle swarm optimization, an efficient data structure and turbulence. In

Proceedings of the 2002 U.K. Workshop on Computational Intelligence, pp.

37–44.

[32] Fonseca, C. M., Paquete, L. and López-Ibáñez, M. (2006). An improved di-

mension-sweep algorithm for the hypervolume indicator. In Proceedings of

the 2006 Congress on Evolutionary Computation (CEC 2006), Piscataway,

NJ: IEEE Press, pp. 1157–1163.

[33] Garćıa, S. et al. (2010). Advanced nonparametric tests for multiple compar-

isons in the design of experiments in computational intelligence and data

mining: Experimental analysis of power. Inf Sci, 180(10), pp. 2044–2064.

[34] Glover, F. and Sörensen, K. (2015). Metaheuristics. Scholarpedia, 10, p. 6532.

[35] Hintze, J. L. and Nelson, R. D. (1998). Violin plots: A box plot-density trace

synergism. The American Statistician, 52(2), pp. 181–184.

BIBLIOGRAPHY 167

[36] Hoffman, P., Grinstein, G. and Pinkney, D. (1999). Dimensional anchors:

A graphic primitive for multidimensional multivariate information visualiza-

tions. In Proceedings of the 1999 Workshop on New Paradigms in Information

Visualization and Manipulation in Conjunction with the Eighth ACM Inter-

nation Conference on Information and Knowledge Management, New York,

NY, USA: Association for Computing Machinery, NPIVM ’99, p. 9–16.

[37] Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann

Arbor, MI: University of Michigan Press, second edition, 1992.

[38] Hoos, H. H. and Stützle, T. (2005). Stochastic Local Search Foundations And

Applications. Morgan Kaufmann.

[39] Hu, X. and Eberhart, R. (2002). Multiobjective Optimization using Dynamic

Neighborhood Particle Swarm Optimization. In Proceedings of the IEEE

Congress on Evolutionary Computation, vol. 2, pp. 1677–1681.

[40] Hu, Y. et al. (2015). Application of evolutionary computation for rule discov-

ery in stock algorithmic trading: A literature review. Applied Soft Computing,

36, pp. 534–551.

[41] Kampouridis, M. and Otero, F. E. (2017). Evolving trading strategies using

directional changes. Expert Systems with Applications, 73, pp. 145–160.

[42] Karathanasopoulos, A., Dunis, C. and Khalil, S. (2016). Modelling, forecast-

ing and trading with a new sliding window approach: the crack spread exam-

ple. Quantitative Finance, 7688(September), pp. 1–12.

[43] Kassabalidis, I. N. et al. (2002). Dynamic security border identification us-

ing enhanced particle swarm optimization. In IEEE Transactions on Power

Systems, vol. 17, pp. 723–729.

[44] Kaufman, P. J. (2013). Trading Systems and Methods. John Wiley & Sons,

Inc, 5th edn.

[45] Kennedy, J. (1997). The particle swarm: social adaptation of knowledge. In

Proceedings of 1997 IEEE International Conference on Evolutionary Compu-

tation (ICEC ’97), pp. 303–308.

168 BIBLIOGRAPHY

[46] Kennedy, J. (2003). Neighborhood Topologies in Fully-Informed and Best-Of-

Neighborhood Particle Swarms. In Proceedings of IEEE International Work-

shop on Soft Computing in Industrial Applications, pp. 45–50.

[47] Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In Neural

Networks, 1995. Proceedings., pp. 1942–1948, arXiv:1011.1669v3.

[48] Kennedy, J. and Eberhart, R. C. (2001). Swarm Intelligence. Morgan Kauf-

mann.

[49] Kennedy, J. and Spears, W. M. (1998). Matching algorithms to problems: an

experimental test of the particle swarm and some genetic algorithms on the

multimodal problem generator. In 1998 IEEE International Conference on

Evolutionary Computation Proceedings. IEEE World Congress on Computa-

tional Intelligence (Cat. No.98TH8360), pp. 78–83.

[50] Kim, Y. et al. (2017). An intelligent hybrid trading system for discovering

trading rules for the futures market using rough sets and genetic algorithms.

Applied Soft Computing, 55, pp. 127–140.

[51] Koay, C. A. and Srinivasan, D. (2003). Particle swarm optimization-based

approach for generator maintenance scheduling. In 2003 IEEE Swarm Intel-

ligence Symposium, SIS 2003 - Proceedings, pp. 167–173.

[52] Konstantinos E. Parsopoulos, M. N. V. and Tasoulis, D. (2004). Multiobjec-

tive Optimization using Parallel Vector Evaluated Particle Swarm Optimiza-

tion. In Proceedings of the IASTED International Conference on Artificial

Intelligence and Applications, vol. 2, ACTA Press, pp. 823–828.

[53] Koza, J. R. (1995). Survey of genetic algorithms and genetic programming.

In In In Proceedings of the Wescon 95 - Conference Record: Microelectron-

ics, Communications Technology, Producing Quality Products, Mobile and

Portable Power, Emerging Technologies, IEEE Press, pp. 589–594.

[54] L. Zhang, Z. M. M. M., C. Liu and Liang, Y. (2003). Solving multi objective

optimization problems using particle swarm optimization. In Proceedings of

the IEEE Congress on Evolutionary Computation, vol. 4, pp. 2400–2405.

arXiv:1011.1669v3

BIBLIOGRAPHY 169

[55] Ladyzynski, P. and Grzegorzewski, P. (2013). Particle swarm intelligence tun-

ning of fuzzy geometric protoforms for price patterns recognition and stock

trading. Expert Systems with Applications, 40(7), pp. 2391–2397.

[56] Liu, C. F., Yeh, C. Y. and Lee, S. J. (2012). Application of type-2 neuro-

fuzzy modeling in stock price prediction. Applied Soft Computing, 12(4), pp.

1348–1358.

[57] Liu, X. et al. (2019). Coevolutionary particle swarm optimization with bot-

tleneck objective learning strategy for many-objective optimization. IEEE

Transactions on Evolutionary Computation, 23(4), pp. 587–602.

[58] López-Ibáñez, M. et al. (2016). The irace package: Iterated racing for auto-

matic algorithm configuration. Operations Research Perspectives, 3, pp. 43–58.

[59] M., B. T. and Bentley, P. J. (2002). Dynamic search with charged swarms. In

Proceedings of the genetic and evolutionary, p. 8.

[60] Mendes, R., Kennedy, J. and Neves, J. (2003). Watch thy neighbor or how

the swarm can learn from its environment. In Proceedings of IEEE Swarm

Intelligence Symposium, pp. 88–94.

[61] Meza, J. et al. (2017). Movpso: Vortex multi-objective particle swarm opti-

mization. Applied Soft Computing, 52, pp. 1042 – 1057.

[62] Mohamed, I. and Otero, F. E. B. (2018). Using Particle Swarms to Build

Strategies for Market Timing: A Comparative Study. In Swarm Intelligence:

11th International Conference, ANTS 2018, Rome, Italy, October 29–31,

2018, Proceedings, Springer International Publishing, pp. 435–436.

[63] Moore, J. and Chapman, R. (1999). Application of particle swarm to mul-

tiobjective optimization. Tech. rep., Department of Computer Science and

Software Engineering, Auburn University.

[64] Moraglio, A. et al. (2008). Geometric Particle Swarm Optimization. Journal

of Artificial Evolution and Applications, 2008, pp. 1–14.

170 BIBLIOGRAPHY

[65] Mostaghim, S. and Tiech, J. (2003). Strategies for finding local guides in

multi-objective particle swarm optimization (mopso). In Proceedings of the

IEEE Swarm Intelligence Symposium, pp. 26–33.

[66] Mousa, A., El-Shorbagy, M. and Abd-El-Wahed, W. (2012). Local search

based hybrid particle swarm optimization algorithm for multiobjective opti-

mization. Swarm and Evolutionary Computation, 3, pp. 1 – 14.

[67] Murphy, J. (1999). Technical Analysis of the Financial Markets: A Compre-

hensive Guide to Trading Methods and Applications. Penguin.

[68] Nguyen, T. H., Shirai, K. and Velcin, J. (2015). Sentiment analysis on so-

cial media for stock movement prediction. Expert Systems with Applications,

42(24), pp. 9603 – 9611.

[69] Pan, A. et al. (2018). A diversity enhanced multiobjective particle swarm

optimization. Information Sciences, 436-437, pp. 441 – 465.

[70] Parsopoulos, K. E. (2001). Stretching technique for obtaining global mini-

mizers through Particle Swarm Optimization. In In Proceedings of The IEEE

Workshop on Particle Swarm Optimization, 1, pp. 22–29.

[71] Parsopoulos, K. E. and Varhatis, M. N. (2002). Particle Swarm Optimization

Method in Multiobjective Problems. In Proceedings of the ACM Symposium

on Applied Computing, pp. 603–607.

[72] Parsopoulos, K. E. and Vrahatis, M. N. (2001). Modification of the Parti-

cle Swarm Optimizer for locating all the global minima. In In Proceedings

of The International Conference on Artificial Neural Networks and Genetic

Algorithm, pp. 324–327.

[73] Patterson, S. (2013). Dark Pools: The Rise of A.I. Trading Machines and the

Looming Threat to Wall Street. Random House Business Books.

[74] Penman, S. H. (2013). Financial Statement Analysis and Security Valuation.

McGraw-Hill.

[75] Polikar, R. (2012). Ensemble Learning, Boston, MA: Springer US. pp. 1–34.

BIBLIOGRAPHY 171

[76] Pring, M. (2002). Technical Analysis Explained. McGraw-Hill.

[77] Rahimi, S., Abdollahpouri, A. and Moradi, P. (2018). A multi-objective par-

ticle swarm optimization algorithm for community detection in complex net-

works. Swarm and Evolutionary Computation, 39, pp. 297 – 309.

[78] Raquel, C. R. and Naval, P. C. (2005). An effective use of crowding distance in

multiobjective particle swarm optimization. In Proceedings of the 7th Annual

Conference on Genetic and Evolutionary Computation, New York, NY, USA:

Association for Computing Machinery, GECCO ’05, p. 257–264.

[79] Reyes-Sierra, M. and Coello, C. C. (2006). Multi-objective particle swarm

optimizers: A survey of the state-of-the-art. International Journal of Com-

putaional Intelligence Research, 2(3), pp. 1–18.

[80] Scheepers, C., Engelbrecht, A. P. and Cleghorn, C. W. (2019). Multi-guide

particle swarm optimization for multi-objective optimization: empirical and

stability analysis. Swarm Intelligence, 13(3), pp. 245–276.

[81] Sharpe, W. F. (1975). Adjusting for risk in portfolio performance measure-

ment. The Journal of Portfolio Management, 1(2), pp. 29–34.

[82] Shi, Y. and Eberhart, R. (1998). A Modified Particle Swarm Optimizer. In

The 1998 IEEE International Conferences on Evolutionary Computation, pp.

69–73.

[83] Shi, Y. and Eberhart, R. (1998). Parameter selection in particle swarm op-

timization. In Evolutionary Programming VII, 7th International Conference,

pp. 591–600.

[84] Soler-Dominguez, A., Juan, A. A. and Kizys, R. (2017). A Survey on Financial

Applications of Metaheuristics. ACM Computing Surveys, 50(1), pp. 1–23.

[85] Subramanian, H. et al. (2006). Designing Safe, Profitable Automated Stock

Trading Agents Using Evolutionary Algorithms. In Genetic and Evolutionary

Computation Conference, vol. 2, p. 1777.

172 BIBLIOGRAPHY

[86] Sun, Y. and Gao, Y. (2015). An Improved Hybrid Algorithm Based on PSO

and BP for Stock Price Forecasting. The Open Cybernetics & Systemics Jour-

nal.

[87] Togelius, J., De Nardi, R. and Moraglio, A. (2008). Geometric PSO + GP =

particle swarm programming. 2008 IEEE Congress on Evolutionary Compu-

tation, CEC 2008, pp. 3594–3600.

[88] U. Baumgartner, C. Magele and W. Renhart (2004). Pareto optimality and

particle swarm optimization. IEEE Transactions on Magnetics, pp. 1172–

1175.

[89] van den Bergh, F. (2001). An analysis of particle swarm optimizers. Ph.D.

thesis, University of Petoria.

[90] Wang, F., Yu, P. L. and Cheung, D. W. (2014). Combining technical trading

rules using particle swarm optimization. Expert Systems with Applications,

41(6), pp. 3016–3026.

[91] X. Hu, R. E. and Shi, Y. (2003). Particle Swarm with Extended Memory for

Multiobjective Optimization. In Proceedings of the IEEE swarm Intelligence

Symposium, pp. 193–197.

[92] Yen, G. and Lu, H. (2003). Dynamic population strategy assisted particle

swarm optimization. In Proceedings of the IEEE International Symposium on

Intelligent Control, pp. 697 – 702.

[93] Yu, Y., Duan, W. and Cao, Q. (2013). The impact of social and conventional

media on firm equity value: A sentiment analysis approach. Decision Support

Systems, 55(4), pp. 919 – 926.

[94] Zhang, Y. and Huang, S. (2003). Multiobjective optimization using distance-

based particle swarm optimization. In Proceedings of the International Con-

ference on Computational Intelligence, Robotics and Autonomous Systems.

BIBLIOGRAPHY 173

[95] Zhou, Y., Wang, J. and Road, X. W. (2007). A Discrete Estimation of Distri-

bution Particle Swarm Optimization for Combinatorial Optimization Prob-

lems. In Third International Conference on Natural Computation, IEEE Com-

puter Society.

174 BIBLIOGRAPHY

Appendix I: Box Plots for Step

Forward vs Trend Representative

Testing Experiments

In this appendix, we present the boxplot diagrams of the results obtained while

comparing Step Forward Testing to Trend Representative Testing. Each plot rep-

resents the results obtained per testing strand, which is visible at the top of each

plot. The algorithms and testing schemes used are listed across the x-axis, while

fitness is displayed across the y-axis.

175

176 APPENDIX I: BOX PLOTS – SF VS TRT

Figure 22: Algorithm box plots for AVNW2

177

Figure 23: Algorithm box plots for AVNW4

178 APPENDIX I: BOX PLOTS – SF VS TRT

Figure 24: Algorithm box plots for AVNW6

179

Figure 25: Algorithm box plots for BSX2

180 APPENDIX I: BOX PLOTS – SF VS TRT

Figure 26: Algorithm box plots for COMT2

181

Figure 27: Algorithm box plots for COWN10

182 APPENDIX I: BOX PLOTS – SF VS TRT

Figure 28: Algorithm box plots for COWN12

183

Figure 29: Algorithm box plots for COWN2

184 APPENDIX I: BOX PLOTS – SF VS TRT

Figure 30: Algorithm box plots for COWN4

185

Figure 31: Algorithm box plots for COWN6

186 APPENDIX I: BOX PLOTS – SF VS TRT

Figure 32: Algorithm box plots for COWN8

187

Figure 33: Algorithm box plots for ED2

188 APPENDIX I: BOX PLOTS – SF VS TRT

Figure 34: Algorithm box plots for ED4

189

Figure 35: Algorithm box plots for ETV2

190 APPENDIX I: BOX PLOTS – SF VS TRT

Figure 36: Algorithm box plots for EXC2

191

Figure 37: Algorithm box plots for IAG2

192 APPENDIX I: BOX PLOTS – SF VS TRT

Figure 38: Algorithm box plots for IAG4

193

Figure 39: Algorithm box plots for IAG4

194 APPENDIX I: BOX PLOTS – SF VS TRT

Figure 40: Algorithm box plots for IAG6

195

Figure 41: Algorithm box plots for IAG8

196 APPENDIX I: BOX PLOTS – SF VS TRT

Figure 42: Algorithm box plots for JBLU2

197

Figure 43: Algorithm box plots for JBLU4

198 APPENDIX I: BOX PLOTS – SF VS TRT

Figure 44: Algorithm box plots for JBLU6

199

Figure 45: Algorithm box plots for JBLU8

200 APPENDIX I: BOX PLOTS – SF VS TRT

Figure 46: Algorithm box plots for KFY2

201

Figure 47: Algorithm box plots for LUV2

202 APPENDIX I: BOX PLOTS – SF VS TRT

Figure 48: Algorithm box plots for LUV4

203

Figure 49: Algorithm box plots for LUV6

204 APPENDIX I: BOX PLOTS – SF VS TRT

Figure 50: Algorithm box plots for LUV8

205

Figure 51: Algorithm box plots for MGA2

206 APPENDIX I: BOX PLOTS – SF VS TRT

Figure 52: Algorithm box plots for MGA4

Appendix II: RadViz Plots for

Multiobjective Algorithms,

NSGA-II and MACD

In this appendix, we present the RadViz plots obtained for λ-PSO, λ-PSOSP,

λ-GA, NSGA-II and MACD while tackling market timing as a multiobjective

optimization problem. Each plot represents the results obtained for a particular

testing strand, the name of which can be seen at the top of the plot. An explanation

of how to interpret RadViz plots can be seen in Figure 21, Chapter 7.

207

208 APPENDIX II: RADVIZ PLOTS

Figure 53: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand IAG1

209

Figure 54: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand MGA4

210 APPENDIX II: RADVIZ PLOTS

Figure 55: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand IAG2

211

Figure 56: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand BSX1

212 APPENDIX II: RADVIZ PLOTS

Figure 57: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand LUV1

213

Figure 58: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand KFY1

214 APPENDIX II: RADVIZ PLOTS

Figure 59: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand EXC1

215

Figure 60: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand LUV2

216 APPENDIX II: RADVIZ PLOTS

Figure 61: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand KFY2

217

Figure 62: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand AVNW1

218 APPENDIX II: RADVIZ PLOTS

Figure 63: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand PUK1

219

Figure 64: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand LUV3

220 APPENDIX II: RADVIZ PLOTS

Figure 65: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand KFY3

221

Figure 66: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand EXC2

222 APPENDIX II: RADVIZ PLOTS

Figure 67: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand LUV4

223

Figure 68: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand EXC3

224 APPENDIX II: RADVIZ PLOTS

Figure 69: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand PUK2

225

Figure 70: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand MGA1

226 APPENDIX II: RADVIZ PLOTS

Figure 71: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand ED1

227

Figure 72: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand EXC4

228 APPENDIX II: RADVIZ PLOTS

Figure 73: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand PUK3

229

Figure 74: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand BSX2

230 APPENDIX II: RADVIZ PLOTS

Figure 75: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand ED2

231

Figure 76: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand JBLU1

232 APPENDIX II: RADVIZ PLOTS

Figure 77: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand MGA2

233

Figure 78: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand MGA3

234 APPENDIX II: RADVIZ PLOTS

Figure 79: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand ATRO1

235

Figure 80: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand AVNW2

236 APPENDIX II: RADVIZ PLOTS

Figure 81: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand EXC5

237

Figure 82: RadViz plot for λ-PSOSP, λ-PSO, λ-GA, NSGA-II and MACD for
test strand AVNW3

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	Thesis Structure
	Publications

	Market Timing and Financial Metrics
	Market timing
	Technical Analysis
	Fundamental Analysis
	Discussion

	Backtesting
	Financial Performance Metrics
	Annualized Rate of Returns (AROR)
	Annualized Portfolio Risk
	Value at Risk (VaR)
	Solution Length
	Transactions Count
	Sharpe Ratio

	Particle Swarm Optimization (PSO)
	What is a Metaheuristic?
	Optimization
	Single Objective Optimization
	Multiobjective Optimization

	Particle Swarm Optimization (PSO)
	Nuances of Implementing PSO
	Variations and Extensions

	Related Work in Market Timing
	Market Timing
	Other Uses of PSO
	Critique
	Volume of PSO Publications
	PSO Methodology
	Limitations of Previous PSO Works

	Composing Strategies with PSO
	Encoding Strategy
	PSO to Tackle Market Timing
	Experimental Setup
	Results
	Summary

	Trend Representative Testing
	Trend Representative Testing
	Computational Experiments
	Genetic Algorithm Benchmark
	Comparison With Step Forward Testing
	Extended Experiments

	Revisiting Pruning
	Summary

	Multiobjective Market Timing
	Expansion of Metric Set
	Algorithms
	General Modifications
	GA Modifications
	PSO Modifications

	Experimental Setup
	Computational Results
	Comparison Against NSGA-II and MACD
	Diversity of the Pareto Front
	Summary

	Conclusions and Future Research
	Contributions
	Market Timing Strategies with PSO
	Trend Representative Testing
	Multiobjective Optimization

	Suggestions for Future Research
	Extending the Capabilities of the Current Algorithms
	Expanding the Scope of How Market Timing is Tackled

	Bibliography
	Appendix I: Box Plots – SF vs TRT
	Appendix II: RadViz Plots

