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A B S T R A C T

Extensive work has been undertaken for the mass flow rate measurement of solids in a horizontal or vertical
pneumatic conveying pipe. However, flow regime of the two-phase flow is highly influenced by different ori-
entations of the pipe, resulting in different characteristics of sensor signals and hence large errors in mass flow
rate measurement using conventional methods. This paper presents a novel technique to measure the mass flow
rate of pneumatically conveyed particles in different pipe orientations. A range of low-cost sensors, including an
array of electrostatic sensors, a differential-pressure transducer, and an accelerometer, are integrated to form a
sensing unit. Data-driven models, based on support vector machine (SVM), are developed to take the selected
features from post-processed sensor data and infer the mass flow rate of solids in different pipe orientations. The
partial mutual information algorithm is applied to quantify the importance of each feature. The firefly algorithm is
used to optimize the selection of useful features and tune the learning parameters in SVM models. Experimental
tests were conducted on a pneumatic conveying test rig circulating flour over the mass flow rate of solids from 3.2
g/s to 35.8 g/s in pipe orientations from 0� to 90�. Performance comparisons are made between the conventional
SVM model and the optimised SVM models with the training data from horizontal orientation and different
orientations, respectively. Results demonstrate that the relative error and repeatability of the measured mass flow
rate of solids with the optimized SVM model are both improved to within �12%.
1. Introduction

Mass flow rate measurement of pneumatically conveyed solids in
power, cement, and food industries remains one of the primary technical
problems confronted by the operators. An online continuous and non-
invasive measurement system is desirable to monitor the flow condi-
tions, avoid pipe blockage, and maximise the process efficiency. Over the
past few years, a variety of sensing principles, including electrostatic [1],
ultrasonic [2], capacitive [3], acoustic [4], optical [5] sensors and nuclear
magnetic resonance [6], have been applied to measure the velocity, con-
centration and mass flow rate of particles in horizontal or vertical pipes.
Amongst all of these sensor paradigms, electrostatic sensors perform well
in terms of robustness in a hostile environment, non-intrusiveness in ser-
vice, low cost, and low maintenance requirements. However, the mea-
surement of suspension density (concentration) and mass flow rate of
solids in two-phase flow is still challenging through direct measurement
techniques based on the traditional sensors [7].

In order to directly obtain the mass flow rate, advanced data-driven
modelling based on machine learning techniques has been attempted as
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an effective approach [7,8]. Although some research has been undertaken
tomeasure the concentrationof solids in two-phaseflowor identify theflow
regimeusing electrostatic sensors andmachine learning algorithms, there is
still limited research on mass flow rate measurement of solids through
multi-modal sensing and data-drivenmodelling. Wang et al. [9] integrated
capacitive and electrostatic sensors to measure the coal/biomass/air
three-phase flow rate and developed an adaptive network based fuzzy
inference system to infer the volumetric-concentration of each phase. Hu
et al. [10] extracted three features from electrostatic signals and developed
backpropagation neural networks to identify the flow regime of gas-solid
two-phase flow in a horizontal pipe. Yan et al. [11] applied a single
ring-shaped electrostatic sensor and a backpropagation neural network to
measure the velocity and mass flow rate of pneumatically conveyed solids.
Our recent research [12] investigated the performance of three different
machine learningmodels includingartificialneuralnetwork, support vector
machine and convolutional neural network on the measurement of mass
flow rate of solids in gas-solid two-phase flow. It turns out that SVM out-
performs ANN and CNN in terms ofmeasurement accuracy [12]. However,
in the conventional SVM models, the model output is influenced by the
model parameters, such as learning rate, regularization, and kernel
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List of abbreviations

ANN Artificial neural network
CNN Convolutional neural network
DP Differential pressure
FA Firefly algorithm
NI DAQ National Instrument Data Acquisition Device
PMI Partial mutual information
PSD Power spectral density
PSO Particle swarm optimization
RBF Radial basis function
RMS Root mean square
SVM Support vector machine
VFD Variable frequency drive

Fig. 1. Measurement strategy.
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parameters as well as the dimension of the input feature vector. Hence, an
optimization algorithm is required to obtain the appropriate values for all
the model parameters. Many researchers have integrated SVM with a va-
riety of optimization algorithms, including grey wolf algorithm [13], brain
storm optimization [14] and PSO [15,16] algorithms and applied them in
different applications. A performance comparison between the FA, PSO,
and artificial bee colony algorithm was undertaken for non-linear mathe-
matical problems and it has been foundout that the FAperforms better than
the others for a noisy non-linear optimization problem [17]. Therefore, the
FA is used in this paper to optimise the SVMmodel parameters.

Previous research mostly focuses on the gas-solid flowmeasurement in
horizontal or vertical pipes. However, the triboelectric charge and differ-
ential pressure in the pipe also depend on the pipe orientations. At tilted
orientations, the solids hit with thewalls of the bending pipe section, which
can influence the energy and chargemagnitude of particles.Moreover, pipe
orientationmay bring a change in gravitational force andmomentumof the
solids which can disturb the differential pressure across a pipe section.
Tripathi et al. [18] investigated the total bend drop pressure in three ori-
entations of the pipe, including horizontal-horizontal, horizontal-vertical,
2

and vertical-horizontal in dilute phase conveying system. They have found
out that the change in pressure drop was caused by the change in mo-
mentum in different orientations of the pipe. As limited research is carried
out to measure the mass flow rate in different pipe orientations. Therefore,
the effects of different pipe angles on the electrostatic sensor and DP
transducer need to be investigated to produce the angle compensated mass
flow rate measurement.

This paper proposes a novel method to measure the mass flow rate of
solids in different orientations of a pipe using sensor fusion and opti-
mized SVM models. The sensing unit includes electrostatic sensors, a DP
transducer, and an accelerometer. The importance of all the statistically
extracted features, presented in Refs. [12], is quantified using the PMI
technique and then an optimal number of useful features is determined
with the FA. SVM models are developed based on the training data and
the FA is applied to optimize the parameters of SVM models to improve
the accuracy of mass flow rate measurement. Experiments were con-
ducted on a laboratory scale test rig in different pipe orientations in the
range of 0–90�. The effectiveness of the proposed method is evaluated by
comparing the results from the conventional and optimized SVM models
which are trained with one as well as all pipe angles.

2. Methodology

2.1. Overall measurement strategy

The overall measurement strategy, as shown in Fig. 1, starts with the
collection of raw data from the sensing unit which consists of an array of
electrostatic sensors, a DP transducer, and an accelerometer. These three
types of sensors are selected in order to acquire sufficient and comple-
mentary information about the physical characteristics of the flow
(Section 2.2). During pneumatic transportation, solids are electrically
charged due to triboelectric charging effect. Electrostatic sensors are used
to sense the electrostatic charge and the amplitude of electrostatic signals
is related to the velocity, concentration and hencemass flow rate of solids
[1,19,20]. The differential pressure is the pressure difference between
the inlet and outlet of a pipe section. It is directly related to the flow



Fig. 2. Structure of the sensing unit.

Fig. 3. Structure of SVM
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velocity and solids concentration [19]. Therefore, the output of the DP
transducer contains information about the mass flow rate of solids. The
raw data needs to be segregated into the corresponding clusters of mass
flow rate conditions. Unnecessary peaks and the glitches in the sensing
data are removed at the stage of removal of outliers. All the possible
statistical features, presented in the previous study [12], are extracted
from all the smoothened and conditioned sensor data. The PMI is used to
measure the information between each statistical feature and its corre-
sponding output. Based on the values of PMI, each feature is prioritized
by keeping the most useful features on the top. FA is used to optimize the
selection of input features and the learning parameters of the SVMmodel
including kernel scale, delta gradient tolerance, gap tolerance, and
epsilon. All the arrows filled with a grey colour in Fig. 1 show the per-
manent connection between blocks. However, the shaded arrow con-
nections in Fig. 1 show the temporary existence of the FA during the
training process. Once the features are selected and the parameters of the
model are optimized during the learning process, the developed SVM
model will be directly used to infer the mass flow rate of solids.
3

2.2. Sensing unit

Fig. 2 shows the internal structure of the sensing unit used to carry out
this research. When the particles travel in a pneumatic pipe, the elec-
trostatic charge is generated due to the triboelectric effect of moving
particles in the pipe. Therefore, electrostatic sensors can sense the level of
charge on the particles, which is related to the concentration of solids. A
set of four ring-shaped electrostatic sensors (E1, E2, E3 and E4) and a set
of four arc-shaped electrostatic sensor arrays (E5, E6, E7 and E8) are
combined to determine the localized and averaged charge values of
particles, respectively. The fusion of multiple electrostatic sensors can
increase the reliability of measurement and provide resilience to failure,
e.g. a faulty sensor. The width and the thickness of all the electrodes are
2 mm and 3 mm, respectively. As the pressure drop across the test section
is affected by the mass flow rate in different pipe orientations, a DP
transducer is applied to measure the pressure difference across the pipe
section. The accelerometer is installed on the pipe to record the infor-
mation of different pipe orientations.



Fig. 4. Flow chart of FA.
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2.3. Soft computing algorithms

The nature of the sensor signals becomes further complex when
recorded in different orientations of pipe. Therefore, a data-driven model
is required to establish the relationship between the input features and the
mass flow rate of solids. Owing to the good generalisation ability and
prediction accuracy, SVM is a more suitable data-driven model for gas-
solid flow measurement [12]. Fig. 3 shows the typical structure of SVM
model which is used in this research. Statistical features, optimally
selected by PMI and FA (Section 4.4), are used as the inputs to the SVM
Fig. 5. Schematic
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model. The goal of the SVM model is to identify a hyperplane in an
N-dimensional space with N number of features that classify the data
points with the highest margins. Each node in the hidden layer converts
the input data into another feature space using the kernel function.
Compared with other kernel functions including linear, polynomial, and
Gaussian, RBF is widely used in the domain of regression with better
performance. The number of nodes in the hidden layer can be determined
experimentally by the guidelines mentioned in Refs. [20]. In this paper,
the internal parametersof themodel, includingkernel scale, delta gradient
tolerance, gap tolerance and epsilon, are tuned to their optimal values
using the firefly optimization algorithm (Section 4.4). In the process of
SVM training, the algorithmdivides the element of the predictormatrix by
the value of the kernel scale. Then the appropriate kernel norm is applied
to compute the grammatrix.Delta gradient tolerancedefines the tolerance
for the gradient difference between the upper and lower violators in the
SVM solver and is used to set the threshold for optimization convergence.
Gap tolerance is the threshold defined to maximize the location of the
decisionboundary. Thewhole trainingprocess is terminated as soon as the
threshold reaches the value of gap tolerance. The value of epsilon defines
the half width of epsilon-insensitive zone which influences the number of
support vectors used to create the regression function [21]. The larger the
epsilon, the smaller the support vectors selected. On the other hand, a
higher epsilon value results inmoreflat estimates. The value of the epsilon
evaluates the accuracy of the approximated function. It relies entirely on
the target values for the training set. If the epsilon is larger than the target
range, good accuracy in the predicted result cannot be achieved.

The performance of the conventional SVM model is sensitive to its
parameters such as kernel scale, delta gradient tolerance, gap tolerance,
and epsilon. Careful tuning of these parameters can significantly improve
the prediction accuracy. Furthermore, a little change in the dimension of
the input feature vector can significantly affect the tuning of these pa-
rameters. Therefore, an optimization algorithm is required to determine
the best combination of all the parameters. Metaheuristic algorithms,
influenced by the nature of many dynamic entities, play a critical role in
modern global optimization algorithms, soft computing, and cognitive
intelligence. Among the new metaheuristics, the FA is found to be very
effective with multi-modal and global/local optimization issues. The FA
was proposedbyYang in 2008 [22]. This algorithmadapted thebehaviour
of firefly swarms to build a multi-optimal functional optimization algo-
rithm. In particular, it used the idea of how the light of the individual
firefliesmerged themanda randomness factor to facilitate thediscoveryof
the solution space. Fig. 4 shows the steps involved in the implementation
of the FA while integrated with the proposed methodology.
of the test rig.



Fig. 6. Experimental setup.

Fig. 7. Sensing unit in different orientations (a) 0� (b) 40� (c) 90�.

Table 1
Test conditions.

Test conditions Value

Mass flow rate of particles (g/
s)

3.2, 5.4, 7.7, 8.6, 11.3, 14.0, 17.6, 21.4, 25.7, 30.8,
35.8

Pipe angles (�) 0,10,20,30,40,50,60,70,80,90
Air velocity (m/s) 18
Temperature (�C) 23
Humidity (%) 46
Recording duration of each
case (s)

30

Sampling rate (kHz) 20
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The whole optimization process starts with the random initialization
of the population that contains SVM model parameters. The fitness value
of each set of model parameters is evaluated using the fitness function:

Ifitness ¼ 9:4� 1010e
�11

PNc
i¼1

aierri þ 0:3 (1)

where Nc is the total number of mass flow rate conditions, erri and ai are
the averaged relative error and scaling factor for the ith mass flow rate
5

condition, respectively. The fitness function produces the value based on
the error between SVM predicted and actual results. The way each of the
SVMmodel parameters moves towards optimal value in conjunction with
fitness value in each iteration defines the relationship between noisy non-
linear and the SVM parameters optimisation (Section 4.4).

Based on the intensity values of each firefly computed by the fitness
function, each firefly makes a move towards the firefly of the highest
intensity value. The position of ith firefly that represents the value of kth

parameter of the model can be updated using Equation (2).

xik ¼ xik þ βoe
�γ: rij

�
xik � xjk

�þ αSkðrandik � 0:5Þ (2)

where.

x ¼ Position of firefly
rand ¼ Random number generator
α ¼ General scaling factor
β ¼ Firefly attractiveness value
ϒ ¼ Media light absorption coefficient
Sk ¼ Scaling factor of each parameter
k ¼ 1, 2, 3, …, Np
Np ¼ Total number of parameters to be optimized



Fig. 8. Relationship between the RMS value of the signal from electrode E1 and mass flow rate of solids for particle velocity ¼ 18 m/s, ambient temperature ¼ 23 �C
and RH ¼ 46%.

Fig. 9. PSD of the signal from electrode E1 in different pipe orientations for mass flow rate ¼ 8.6 g/s, particle velocity ¼ 18 m/s, ambient temperature ¼ 23 �C and
RH ¼ 46%.

Fig. 10. Relationship between the DP signal and mass flow rate of solids.
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i,j ¼ 1, 2, 3, …, Nf
Nf ¼ Total number of fireflies
6

rij ¼ Distance between fireflies



Fig. 11. Relationship between the output of the accelerometer and the pipe orientation.

Fig. 12. Results from the conventional SVM model trained under horizontal
pipe conditions.

Fig. 13. Relative error of the conventional SVM m
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where rij can be computed from,

rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNp

k¼1

�
xik � xjk

�2
vuut (3)

where xik and xjk are the positions of ith and jth fireflies which represent
the values of kth parameter of the SVM model.

The whole algorithm keeps updating the parameters of the SVM
model until either the iterations reach the maximum number of iterations
or the intensity of the firefly reaches the threshold.

3. Experimental setup and test conditions

3.1. Experimental setup

Experiments were undertaken on a 50 mm bore laboratory-scale
pneumatic conveying system to assess the performance of the proposed
methodology. The pneumatic conveying system, as shown in Fig. 5,
consists of a vibratory feeder, stainless steel pipe sections, and a suction
pump. As the experiments were conducted in a laboratory environment,
baking flour was used as test particles instead of pulverized coal for
health and safety reasons. The sensing head was earthed along with the
odel trained under horizontal pipe conditions.



Fig. 14. Normalized STD of the conventional SVM model trained under horizontal pipe conditions.

Table 2
Dataset for training and testing.

Mass Flow Rate (g/s) Training Angle
(�)

Test Angle
(�)

3.2, 5.4, 7.7, 8.6, 11.3, 14.0, 17.6, 21.4, 25.7,
30.8, 35.8

0 10
20 30
40 50
60 70
80 90

Table 3
Parameters of the conventional SVM model.

Parameter Value

Kernel Scale 25
Delta Gradient Tolerance 0.005
Gap Tolerance 0.009
Epsilon 0.001
Number of Input Features 120

Fig. 15. Results from the conventional SVM model trained in different pipe
orientations.
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pipe sections to comply with relevant health and safety regulations.
Solids were placed on the vibratory feeder and fed into the pipe with the
generated vibration. The suction pump, in this case, was acting as a
source of air to assist the particles to move in the counter-clockwise di-
rection in the pneumatic flow loop. In order to change the mass flow rate
conditions, the power of the vibratory feeder and suction pump was
controlled by the variable frequency drive. All the sensor data was first
conditioned and then acquired by a NI DAQ connecting to a computer. As
illustrated in Fig. 6, the sensing unit was installed on the pneumatic pipe
via flexible joints to make the sensing unit adjustable in any orientation.
The flexible joints were only used to change the flow direction and the
sensing head was firmly fixed on the rig frame during the experimental
tests. Fig. 7 shows the orientation of the sensing unit when placed at the
angle of 0�, 40� and 90�, respectively.

3.2. Test conditions

Experimental tests were conducted under the conditions outlined in
Table 1. The test section was arranged in 10 different orientations. For
each pipe angle, the mass flow rate of solids was adjusted from 3.2 g/s to
35.8 g/s. During the experiments, the ambient conditions were
controlled at a temperature of 23 �C and humidity of 46%. For each test
condition, the sensor signals were recorded for the duration of 30 s at the
sampling rate of 20 kHz. These raw data will be analysed and processed
further for training and testing of the SVM models (Section 4.3).

4. Results and discussion

4.1. Signals from the sensors

As the velocity of air remains constant throughout all the experi-
ments, solids concentration increases with mass flow rate of solids. The
signals from electrostatic sensors were collected in different mass flow
rates in different pipe angles. The magnitude variations of the signals
from the ring-shaped sensor E1 with themass flow rate and pipe angle are
depicted in Fig. 8. The RMS value is used to quantify the magnitude of
each signal. The magnitude of each signal increases with the mass flow
rate of solids. The placement of the sensing head at tilted orientations
causes the solids to hit with the walls of the flexible joint, which can
result in a possible reduction in particle’s energy and charge magnitude.
Therefore, at the same flow rate, the RMS value declines as the pipe angle
increases. The rate of change of RMS value is higher in lower pipe angles.
However, the rate of change decreases dramatically as the pipe is being
tilted towards the vertical orientation. Furthermore, the possibility of



Fig. 16. Relative error of the conventional SVM model trained in different pipe orientations.

Fig. 17. Normalized STD of the conventional SVM model trained in different pipe orientations.

Table 4
Parameters of FA.

Parameter Value

α 0.2
β 4
ϒ 0.01
S [65, 0.3, 0.4, 1, 70]
Np 300
Nmax 500
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solids to hit with the walls of flexible joint increases at higher mass flow
rates hence a comparatively lower RMS charge value.

PSD of the electrostatic signals reflects the signal characteristics in the
frequency domain. Fig. 9 shows the typical PSD spectrum of the signal
which was collected from E1 at a constant mass flow rate of 8.6 g/s and
different pipe angles. The amplitude of PSD is reduced as the pipe angle
increases. PSD is a vital feature to comprehend the nature of variations in
mass flow rate measurements in different pipe orientations.

The variations in the DP signal amplitude with the mass flow rate of
solids in different pipe orientations are plotted in Fig. 10. With reference
to Newton’s second law of motion, the drop in line pressure is directly
9

proportional to the solids-wall friction and solids gravity. The drop in line
pressure increases with the mass flow rate of solids as a higher concen-
tration of solids introduces more solids-wall friction and hence more
energy is required to convey the solids from the upstream to the down-
stream of the spoolpiece. The velocity of conveying air was kept constant
throughout the experiments, so the increasing mass flow rate of solids
entails rising solids concentration and hence higher pressure drop.
Furthermore, for a given mass flow rate of solids, a rising trend is
observed in differential pressure with an increasing pipe angle because of
the increasing gravitational effect on solids.

RMS of electrostatic signals is a key feature in the time domain,
indicating the amplitude of electrostatic signals, which is closely related
to solids velocity and concentration. PSD is a feature in the frequency
domain, providing complementary information about the two-phase
flow. DP signal amplitude is directly related to the velocity of the
mixture flow and solids concentration. In view of their physical mean-
ings, they are three important, independent and complementary features
to infer the mass flow rate of solids.

The purpose of installing an accelerometer on the sensing unit is to
collect the information about the pipe orientation. Therefore, the signal
output from this sensor has nothing to do with the mass flow rate of solids



Fig. 18. Performance of the FA

Table 5
Optimized parameters of the SVM model.

Parameter Value

Kernel Scale 9
Delta Gradient Tolerance 0.0481
Gap Tolerance 0.0079
Epsilon 0.1469
Number of Input Features 93

Fig. 19. Results from the optimized SVM model trained in different pipe
orientations.
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but the orientation of the pipe. Fig. 11 shows the averaged value of the
post-processed signal from the accelerometer in different pipe
orientations.

4.2. Conventional SVM model trained under horizontal pipe conditions

The conventional SVM model was trained with the dataset and pa-
rameters used in the previous study [12]. Training data were collected
when the sensing unit was installed at a fixed angle of 0�. However,
testing was done with the data collected in different angles (10�, 30�, 50�,
70� and 90�). Fig. 12 shows the predicted mass flow rate from the con-
ventional SVM model at eleven different mass flow rate conditions. The
10
straight line shows the scenario where the predicted measurements are
ideally assumed to be the same as a reference. A significant amount of
variation from the ideal straight line can be seen in the predicted mea-
surements, especially at the lower mass flow rate and larger pipe angles.
This is due to the fact that the movement of sensing head towards vertical
orientation introduces the change in flow regime and result in different
characteristics in sensor signals. Because of the limitation of the gener-
alisation ability of data-driven models, the SVM model developed based
on the data from a single pipe orientation cannot well predict the mass
flow rate at other pipe orientations.

Fig. 13 shows that the relative error is moderately higher under the
lower mass flow rate conditions and reduces significantly with the mass
flow rate of solids. This is caused by the flow regime effects in the
pneumatic conveying pipe. Flow regime stays homogenous at a lower
mass flow rate due to the uniform distribution of particles. The higher
ratio of particles in uniform distribution loses the energy after hitting
with the curved wall of the flexible joint and hence causes the mea-
surement error. As the mass flow rate increases, the flow regime becomes
stratified due to the reason that at constant velocity and higher solids
concentration, most of the particles travel in the lower part of the pipe.
The particles which are moving along the lower part of the pipe can easily
pass by the curved wall of the flexible joint and hence lower measure-
ment error due to the preservation of particles energy. Repeatability of
these measurements is also observed by calculating the normalized
standard deviation, as shown in Fig. 14. Loss of particles energy at lower
mass flow rate conditions produces inconsistent and less reliable sensor
data compared to the higher mass flow rate conditions which affect the
repeatability of the measurements accordingly. Variations in the pre-
dicted mass flow measurement demonstrate the impact of the pipe
orientation on the mass flow rate measurement.
4.3. Conventional SVM model trained in different pipe orientations

As the orientation of the sensing unit does have an impact on the
characteristics of sensor signals and affect the performance of the data-
driven model, sensor signals in different orientations are added to the
training data to make the model adaptive to the orientation of the sensing
unit. The experimental test conditions for training data and test data are
summarized in Table 2. A new model based on conventional SVM was
trained in five different angles and eleven mass flow rate conditions.
However, the test data were collected completely different from the
conditions of training data to analyse the generalization capability of the
model. In the training process, the selection of useful features and SVM
model parameters were manually determined by trial and error method.



Fig. 20. Relative error of the optimized SVM model trained in different pipe orientations.

Fig. 21. Normalized STD of the optimized SVM model trained in different pipe orientations.
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Table 3 shows the parameters used in the conventional SVM model.
Fig. 15 shows the predicted measurements under eleven mass flow

rate conditions in five different angles of the sensing unit. The proximity
of measured mass flow rate values with the ideal straight line demon-
strates the effectiveness of compensation of pipe orientation. The relative
error of the predicted measurements from conventional SVM trained in
different pipe orientations is shown in Fig. 16. In comparison with the
results in Fig. 13, the relative error is significantly reduced to within
�40%. Likewise, the repeatability of the measurements has also been
improved and the maximum normalized standard deviation is reduced
down to 14% as shown in Fig. 17.
4.4. Optimised SVM model trained in different pipe orientations

In this section the SVM model is trained and tested using the data
outlined in Table 2. As the performance of the SVM model is also influ-
enced by the learning parameters of the model, therefore FA is applied to
find the optimal parameters in the SVM model. The FA has created 300
elements in the entire population where each element contains all the
tuning parameters of the SVM model, as mentioned in Section 2.3. The
FA has calculated the fitness value of each element in the population
using Equation (1) to analyze the performance. The higher fitness value
of an element indicates that the element is closer to the optimal value of
11
the model parameters. Based on the selection of the best element, FA then
keeps creating a new population around that best element of the previous
population. FA has generated the optimized SVM parameters based on
the best element of the final population when the algorithm is termi-
nated. The whole algorithm terminates when either the accuracy of the
SVMmodel reaches the desired level or if there are no significant changes
observed in the accuracy of the SVM model for a specific number of it-
erations. In this case, FA has converged to the optimized solution in 32
iterations by using the parameters, as listed in Table 4. The parameters
for FA are chosen through trial and error by limiting the maximum
number of iterations (Nmax) to 500.

The performance of the FA in each iteration including the value of
fitness function and the parameters of the SVM model, including kernel
scale, delta gradient tolerance, gap tolerance, epsilon, and the number of
input features can be seen in Fig. 18. Stability in the fitness value after
16th iteration shows that the FA has approached to its saturation state by
giving the best suitable parameters mentioned in Table 5.

Fig. 19 shows the mass flow rate measurements from the optimized
SVM model. The very close proximity of measured points to the ideal
straight line shows the effectiveness of the proposed model. A deep-down
analysis is undertaken based on the relative error between measured and
the reference mass flow rate conditions shown in Fig. 20. Measurements
taken at the angle of 10 and 30� have a relative error within the range of
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�12% for lower mass flow rate conditions and it reduces down to �4%
for higher mass flow rates. At the angle of 50�, relative error fluctuates
between �7% at lower mass flow rate conditions but it stays reasonably
low at higher mass flow rate conditions. Measurements, taken at 70 and
90�, exhibit the relative error that is heavily dispersed between �12%
because the orientation of the sensing unit is approaching towards ver-
tical orientation and the particles are partially disturbed by the walls of
the flexible joint. As shown in Fig. 21, the repeatability of the measure-
ments is improved and the normalized standard deviation is within 8%.

5. Conclusion

A multi-modal sensing unit, including ring and arc-shaped electro-
static sensors, a DP transducer and an accelerometer, in conjunction with
optimized SVM model, has been proposed to measure the mass flow rate
of solids in different pipe orientations. Experimental tests were con-
ducted with mass flow rate of solids ranging from 3.2 g/s to 35.8 g/s in a
pipe angle from 0� to 90�. It has been observed that the RMS magnitude
of the signal and corresponding PSD reduce down as the pipe moves from
the horizontal to vertical orientation. The performance of the conven-
tional SVM model trained under horizontal pipe conditions is unsatis-
factory due to the limited generalization ability and lack of flow
information in different pipe orientations. By training the SVM model in
different pipe orientations, the relative error has been reduced from
�100% to �40%. As the firefly optimization algorithm has been used to
determine the parameters of the SVM model and the number of input
features, the relative error has been reduced to�12%with the maximum
normalized standard deviation of 8%. The results have demonstrated the
effectiveness of the proposed methodology to measure the mass flow rate
of solids in an air suspension in different pipe orientations.

CRediT authorship contribution statement

Faisal Abbas: Methodology, Software, Validation, Writing - original
draft. Lijuan Wang: Methodology, Software, Supervision, Writing - re-
view & editing. Yong Yan: Conceptualization, Methodology, Supervi-
sion, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

[1] X. Qian, Y. Yan, X. Huang, Y. Hu, Measurement of the mass flow and velocity
distributions of pulverized fuel in primary air pipes using electrostatic sensing
techniques, IEEE Trans. Instrum. Meas. 66 (5) (May 2017) 944–952.

[2] N.A. Zulkiflli, S. Ibrahim, M.H.F. Rahiman, J. Pusppanathan, R.A. Rahim, K.S. Tee,
F.A. Phang, N.D. Nawi, N.M.N. Ayob, Ultrasound tomography hardware system for
multiphase flow imaging, in: 2019 IEEE International Conference on Signal and
12
Image Processing Applications (ICSIPA), Kuala Lumpur, Malaysia,, Sep. 2019,
pp. 264–268.

[3] X. Wang, Y. Hu, H. Hu, L. Li, Evaluation of the performance of capacitance sensor
for concentration measurement of gas/solid particles flow by coupled fields, IEEE
Sensor. J. 17 (12) (June 2017) 3754–3764.

[4] N.O. Mahony, T. Murphy, K. Panduru, D. Riordan, J. Walsh, Acoustic and optical
sensing configurations for bulk solids mass flow measurements, in: 2016 10th
International Conference On Sensing Technology (ICST), Nanjing, China, 2016,
pp. 1–6.

[5] X. Qian, Y. Yan, L. Wang, J. Shao, An integrated multi-channel electrostatic sensing
and digital imaging system for the on-line measurement of biomass-coal particles in
fuel injection pipelines, Fuel 151 (Jul. 2015) 2–10.

[6] A. Bilgic, J. Kunze, V. Stegemann, J. Hogendoorn, M. Zoeteweij, Multiphase flow
metering with nuclear magnetic resonance spectroscopy, in: In AMA Conferences,
May 2015, pp. 292–297. Nurnberg, Germany.

[7] Y. Yan, L. Wang, T. Wang, X. Wang, Y. Hu, Q. Duan, Application of soft computing
techniques to multiphase flow measurement: a review, Flow Meas. Instrum. 60
(Apr. 2018) 30–43.

[8] L. Wang, J. Liu, Y. Yan, X. Wang, T. Wang, Gas-liquid two-phase flow measurement
using coriolis flowmeters incorporating artificial neural network, support vector
machine and genetic programming algorithms, IEEE Trans. Instrum. Meas. 66 (5)
(May 2017) 852–868.

[9] X. Wang, H. Hu, A. Zhang, Concentration measurement of three-phase flow based
on multi-sensor data fusion using adaptive fuzzy inference system, Flow Meas.
Instrum. 39 (Jun. 2014) 1–8.

[10] H. Hu, J. Dong, J. Zhang, Y. Cheng, T. Xu, Identification of gas/solid two-phase flow
regimes using electrostatic sensors and neural-network techniques, Flow Meas.
Instrum. 22 (5) (Oct. 2011) 482–487.

[11] Y. Yan, L. Xu, P. Lee, Mass flow measurement of fine particles in a pneumatic
suspension using electrostatic sensing and neural network techniques, IEEE Trans.
Instrum. Meas. 55 (6) (Dec. 2006) 2330–2334.

[12] F. Abbas, Y. Yan, L. Wang, Mass flow measurement of pneumatically conveyed
solids through multi-modal sensing and machine learning, in: 2020 IEEE
International Instrumentation and Measurement Technology Conference (I2MTC),
Dubrovnik, Croatia, May 2020.

[13] X.-Q. Bian, L. Zhang, Z.-M. Du, J. Chen, J.-Y. Zhang, Prediction of sulfur solubility in
supercritical sour gases using grey wolf optimizer-based support vector machine,
J. Mol. Liq. 261 (Jul. 2018) 431–438.

[14] E. Tuba, I. Strumberger, T. Bezdan, N. Bacanin, M. Tuba, Classification and feature
selection method for medical datasets by brain storm optimization algorithm and
support vector machine, Procedia Comput. Sci. 162 (Nov. 2019) 307–315.

[15] N.A. Hitam, A.R. Ismail, F. Saeed, An optimized support vector machine (svm)
based on particle swarm optimization (pso) for cryptocurrency forecasting,
Procedia Comput. Sci. 163 (Dec. 2019) 427–433.

[16] M. Rajalakshmi, S. Jeyadevi, C. Karthik, “An application of hybrid firefly and pso
with support vector regression for modelling a clarifier process in sugar industry, in:
2018 National Power Engineering Conference (NPEC), Madurai, India, Oct. 2018,
pp. 1–10.

[17] S. Agarwal, A.P. Singh, N. Anand, Evaluation performance study of firefly
algorithm, particle swarm optimization and artificial bee colony algorithm for non-
linear mathematical optimization functions, in: 2013 Fourth International Conference
On Computing, Communications And Networking Technologies (ICCCNT),
Tiruchengode, India, Jul. 2013, pp. 1–8.

[18] N.M. Tripathi, D. Portnikov, A. Levy, H. Kalman, Bend pressure drop in horizontal
and vertical dilute phase pneumatic conveying systems, Chem. Eng. Sci. 209 (Dec.
2019) 115228.

[19] S. Khurram, J.-H. Choi, Y. Won, A.-R. Jeong, H.-J. Ryu, Relationship between solid
flow rate and pressure drop in the riser of a pressurized circulating fluidized bed,
J. Chem. Eng. Jpn. 49 (01 2016) 595–601.

[20] G.J. Bowden, G.C. Dandy, H.R. Maier, Input determination for neural network
models in water resources applications, J. Hydrol. 301 (1) (Jan. 2005) 75–92.

[21] N. Guenther, M. Schonlau, Support vector machines, STATA J. 16 (4) (May 2016)
917–937.

[22] X.-S. Yang, Firefly algorithms for multimodal optimization, in: “ Stochastic
Algorithms: Foundations And Applications, 2009, pp. 169–178. Berlin, Heidelberg,
Mar.

http://refhub.elsevier.com/S2665-9174(20)30018-0/sref1
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref1
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref1
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref1
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref2
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref2
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref2
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref2
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref2
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref2
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref3
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref3
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref3
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref3
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref4
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref4
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref4
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref4
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref4
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref5
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref5
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref5
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref5
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref6
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref6
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref6
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref6
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref7
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref7
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref7
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref7
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref8
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref8
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref8
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref8
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref8
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref9
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref9
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref9
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref9
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref10
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref10
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref10
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref10
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref11
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref11
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref11
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref11
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref12
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref12
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref12
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref12
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref13
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref13
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref13
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref13
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref14
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref14
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref14
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref14
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref15
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref15
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref15
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref15
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref16
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref16
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref16
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref16
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref16
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref17
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref17
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref17
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref17
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref17
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref17
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref18
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref18
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref18
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref19
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref19
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref19
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref19
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref20
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref20
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref20
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref21
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref21
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref21
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref22
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref22
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref22
http://refhub.elsevier.com/S2665-9174(20)30018-0/sref22

	Mass flow rate measurement of solids in a pneumatic conveying pipeline in different orientations
	1. Introduction
	2. Methodology
	2.1. Overall measurement strategy
	2.2. Sensing unit
	2.3. Soft computing algorithms

	3. Experimental setup and test conditions
	3.1. Experimental setup
	3.2. Test conditions

	4. Results and discussion
	4.1. Signals from the sensors
	4.2. Conventional SVM model trained under horizontal pipe conditions
	4.3. Conventional SVM model trained in different pipe orientations
	4.4. Optimised SVM model trained in different pipe orientations

	5. Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References


