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Abstract20

Population size of species with birth-pulse life-cycles varies both within and between seasons,21

but most population dynamics models assume that a population can be characterised ade-22

quately by a single number within a season. However, within-season dynamics can sometimes23

be too substantial to be ignored when modelling dynamics between seasons. Typical exam-24

ples are insect populations or migratory animals. Numerous models for only between-season25

dynamics exist, but very few have combined dynamics at both temporal scales.26

In a new approach, we extend appreciably the models of Dennis et al (2016b): we show27

how to adapt them for a generation time >1 year and fit an integrated population model28

for multiple data types, by maximising a joint likelihood for population counts of unmarked29

individuals and capture-recapture data from a study with marked individuals. We illustrate30

the approach using annual monitoring data for the endangered flightless beetle Iberodorcadion31

fuliginator from 18 populations in the Upper Rhine Valley for 1998–2016, with a 2-year32

life cycle. Standard likelihood methods are used for model fitting and comparison, and a33

concentrated (profile) likelihood approach provides computational efficiency.34

Additional information from the capture-recapture data makes the population model35

more robust and, importantly, enables true, rather than relative, abundance to be estimated.36

A dynamic stopover model provides estimates of both survival and phenology parameters37

within a season, and also of productivity between seasons. For I. fuliginator, we demonstrate38
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a population decline since 1998 and how this links with productivity, which is affected by39

temperature. A delayed mean emergence date in recent years is also shown.40

A main point of interest is the focus on the two temporal scales at which perhaps most

animal populations vary: in the short-term, a population is seldom truly closed within a

single season, and in the long term (between seasons) it never is. Hence our models may

serve as a template for a general description of population dynamics in many species. This

includes rare species with limited data sets, for which there is a general lack of population

dynamic models, yet conservation actions may greatly benefit from this kind of models.

Keywords: Beetle, Endangered, Iberodorcadion fuliginator, integrated population model,41

Multi-scale population dynamics, Population model42

1. Introduction43

Most models of population dynamics assume a study species with a birth-pulse life-cycle44

in a seasonal environment, i.e., a species that reproduces during a particular time of the45

year, typically in the spring or summer in temperate or cold latitudes. A discrete-time46

model with autoregressive representation of population dynamics is then typically chosen,47

where the state of a population at time t + 1 is expressed as a function of its state at48

time t, including parameters that describe the state transition rates between seasons, e.g.,49

demographic or growth rate parameters. Especially for large animals, such as most birds50

and mammals, it is assumed that the state (typically abundance N , which may be stratified51

by age or other classification factors), can be characterised by a single number (or a vector of52

such numbers) at time t. Matrix projection models are the typical example of such models53

(Caswell, 2001) and have proved to be extremely powerful for modelling population dynamics54

between seasons. Moreover, N may be estimated using adequate data such that imperfect55

detection can be accounted for, e.g. distance or capture-recapture sampling (McCrea and56

Morgan, 2014; Buckland et al., 2015; Böhning et al., 2017). The literature on population57

dynamics across seasons is extensive (e.g. Koons et al., 2017).58

However, many situations exist where the abundance of a population at time t cannot59

easily be characterised because the population is open within a season and there may be60
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a constant flux of individuals through the area defining a population. An estimate of N61

then comprises all individuals that enter and leave the area within a season. Examples62

are provided by migratory animals at stopover sites, reptiles and pond-breeding amphibians63

(Matechou et al., 2016), or conceivably migratory wildlife at any observation point (e.g.,64

whales or salmon along a stretch of shore or river, respectively): abundance within a season65

is then governed by the rates at which new animals arrive, stay and eventually depart again.66

Another example, which provides the motivation for the present paper, is provided by the67

imago stage of insects, many of which exhibit typical “phenological curves” within a season.68

The modelling of population dynamics for species with such pronounced short-term dynamics69

presents a challenge, because the changes in numbers must be described at two temporal70

scales: not only between seasons but also within each season.71

Previous population dynamics modelling within seasons involves stopover models (e.g.72

Schaub et al., 2001; Matechou et al., 2014) and phenological curves. The seminal Manly-73

Zonneveld (MZ) model describes numbers within a season as a function of abundance, mean74

and spread of emergence date, and a constant survival probability (Manly, 1974; Zonneveld,75

1991). This model was generalised to species with multiple generations within a season by76

Matechou et al. (2014) and Dennis et al. (2016b, henceforth DMFRB). Both approaches77

describe the trajectory of an observable population from zero to some maximum and back78

to zero again within one season. In stopover models, gains and losses for the population of79

staging animals are represented predominantly by arrival and departure, while for one insect80

generation, they are mostly represented by rates of birth/emergence and death.81

DMFRB developed a multi-scale population dynamics model for univoltine and bivol-82

tine butterfly species (i.e., with generation time < 1 year). We extend their model in two83

important ways: we adapt the model to a biennial life-cycle, where annual cohorts are es-84

sentially demographically closed and there are distinct generations from odd and even years,85

and we fit multi-scale population dynamics models as an integrated population model (IPM;86

Besbeas et al., 2002; Schaub and Abadi, 2011) by jointly fitting them to two data types: a87

multivariate time-series of counts of unmarked individuals and a capture-recapture data set88
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from marked animals.89

Our motivating example is an ongoing, long-term population study on the endangered,90

flightless beetle Iberodorcadion fuliginator at the Southern end of the Upper Rhine valley. As91

well as being important in itself for an improved understanding for this conservation flagship92

species, the analyses of this data set illustrate how to meet the challenges of modelling long93

time series of data on rare species and result in definite conclusions.94

2. Material and Methods95

2.1. Study species and area96

The beetle I. fuliginator has a life cycle of 2 years (Baur et al., 1997). Females deposit97

their eggs in stems of grass, preferably Bromus erectus, their main larval host plant, in late98

March through to May. The larvae hatch in May or June, feed on grass roots and pupate99

after c.14 months (including one hibernation in a late larval stage). Imagos (14–17 mm body100

length) eclose after 2–3 weeks in July or August, but rest in the soil until the end of the101

second hibernation. Depending on weather conditions, imagos emerge from the soil in March102

or April and are sexually active for c.1 month before they die.103

Beetle populations were studied near the Swiss city of Basel (47.56◦N, 7.58◦E), in France,104

Germany and Switzerland. The maximum extent of the study area defined by the locations105

of the populations is about 16 km in North-South and about 12 km in East-West directions.106

See Baur et al. (1997, 2002, 2005) and Table S1 in the Supporting Information for features107

of the study populations. We use ‘site’ and ‘population’ synonymously.108

2.2. Field methods109

We use data from three field studies: (1) repeated counts of adult beetles in 18 popu-110

lations from 19 years, (2) intensive, single-year capture-recapture studies in three of these111

populations, and (3) soil temperature measured over 16 years in Birsfelden, Switzerland112

(B. Baur, unpublished). Data associated with this analysis can be found here https:113

//doi.org/10.6084/m9.figshare.7740254.v1.114
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2.2.1. Population counts115

After the 1990s, 18 populations were found in the study area (see Baur et al. 2002),116

and are summarised in Table S1 of the Supporting Information. For two populations (Basel117

and Allschwil) count data were available from 1998 and for the remainder only from 2001118

onwards (up to 2016). Populations were surveyed repeatedly during each activity period119

of I. fuliginator (March-May), with typically 4–8 intensive surveys each lasting for up to120

several hours and sometimes involving several people. In most populations, total search121

time was 240 minutes per year and survey durations took an average of 40 minutes (range122

1–260 minutes).123

2.2.2. Capture-recapture study124

Data from intensive capture-recapture studies were available from three sites in two125

different years (Baur et al., 2005). In total 345 beetles were marked uniquely using coloured126

nail varnish, and recaptured during 20 daily occasions at site Basel (1st April - 22nd May127

1988). Between 19th April and 7th June 2000, 433 beetles were marked/recaptured at site128

Istein during 27 days and 102 beetles at site Huttingen during 21 days. On each day the129

study sites were carefully searched for I. fuliginator for several hours and survey duration130

(person-hours) was recorded as a measure of effort. Survey durations ranged from 1.7–8.3131

hours (mean 6.1) in Basel, from 3.0–16.0 hours (mean 9.5) in Istein and from 3.5–9.3 hours132

(mean 6.5) in Huttingen. Capture-recapture proceeded as described in Baur et al. (2005).133

Note that throughout we estimate apparent survival, due to possible movement of beetles134

outside survey areas.135

2.2.3. Temperature covariates: Heat load at each site, and sum of effective temperatures136

(SET)137

The development time of I. fuliginator depends on soil temperature, which can be ex-138

pressed as the sum of effective temperatures (SET), which is the sum of the temperature139

above the lower developmental threshold (LDT), the temperature below which there is no140

development.141
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We use measures of between-site (equivalent to between-population) and between-year142

variation in soil temperature. As a proxy for between-site differences in mean soil tempera-143

ture, we calculated the mean heat load (HL) for each site using the model of McCune and144

Keon (2002), which incorporates topographical variables (aspect, inclination) and latitude.145

For between-year variation in soil temperature, we used soil temperature measurements146

at a depth of 5 cm, which corresponds to the depth at which the larvae live, in a patch of147

nutrient-poor grassland in Birsfelden, about 5 km from the nearest population in our study148

(Basel). Soil temperature was recorded at intervals of 3 h over 16 years (2001–2016) using149

Tinytalk temperature loggers (GeminiData Loggers, Chichester, UK). In the analyses, we150

used mean soil temperature per day obtained from six measurements. In model fitting we use151

degree-days (DD; one value for each year, taking the same value for all sites) as a measure152

of cumulative soil temperature - these are the summation of temperature differences over153

time, which capture both extremity and duration of higher temperatures. However, for I.154

fuliginator the LDT is unknown, hence we calculated DD for 11 different LDT values (7–17155

◦C) and each time fitted our model to then determine which LDT value provides the best156

explanation of the observed data, in terms of predictive power, using Akaike’s information157

criterion (AIC) - see Section 2.8.158

We also use the daily mean temperature at Basel (TEMP) from 1998 to 2016 to describe159

detection probability (M. Baumann, Meteorological Office of Basel, Switzerland).160

2.3. The dynamic model and productivity parameters161

We extend a dynamic model which was originally designed for butterflies (DMFRB). We162

denote the counts by {yi,j,k}, taken on site i, during visit j, and year k, assuming that data163

are collected for S sites, each visited on ≤ T occasions, across K successive years. Each164

count can be treated as the realisation of an independent random variable from a Poisson165

distribution with expectation λi,j,k. We assume independence since the counts were taken166

far apart in time and space. The likelihood then has the form167

LS(ρ,a,p,N ;y) =
S∏

i=1

T∏
j=1

K∏
k=1

exp(−λi,j,k)λ
yi,j,k
i,j,k

yi,j,k!
. (1)
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We use boldface to indicate vectors and matrices, and we describe the model parameters168

below. For a general model we let169

λi,j,k = Ni,kpi,j,kai,j,k, (2)

where170

� Ni,k denotes abundance (= number of individuals ever alive) at site i in year k,171

� pi,j,k is the detection probability for visit j, at site i in year k,172

� ai,j,k is a unimodal function that describes the within-season variation of abundance.173

Equation 2 contains detection probabilities, which did not feature in the models of DM-174

FRB. In principle such parameters can be estimated from count data alone, making use of175

covariate regressions (Matechou et al., 2014). However this can be difficult in practice, due176

to the limited amount of information (Knape and Korner 2015). Thus we only introduce177

detection probabilities when an integrated analysis is performed; where the model is ap-178

plied to count data alone detection probabilities are not identifiable and are subsumed into179

{Ni,k}, which is therefore a measure of relative abundance, i.e., the product of N and p, as180

in DMFRB.181

The framework of the DMFRB model allows two approaches for describing within-season182

variation in abundance: a phenomenological approach, which fits one or more Gaussian183

curves directly, or a mechanistic stopover approach which fits a birth/death population184

model and explicitly models the pattern of emergence using one or more Gaussian curves.185

Here we focus on a mechanistic approach. These models provide alternative forms for the186

{ai,j,k} of Equation 2. Inserting the expression of Equation 2 into Equation 1 provides the187

likelihood for the survey data, LS, with additional parameters, ρ and those of a, to be188

described below. Results, not shown here, from adopting the alternative, phenomenological189

models (see DMFRB) for our data set are in good agreement with those that we present.190

To account for a two-year life cycle we let191

Ni,k = ρi,k−2Ni,k−2. (3)
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Here, the abundance in a given year depends on the product of the abundance from two

years previously and the productivity across the two intermediate years, which is described

by the single parameter ρi,k−2. Hence from Equation 2,

λi,j,1 = Ni,1pi,j,1ai,j,1

and

λi,j,2 = Ni,2pi,j,2ai,j,2,

and for k > 2, by iterating the relationships of Equation 3, we obtain for Equation 2192

λi,j,k = Ni,kpi,j,kai,j,k =


(
Ni,1

∏(k−1)/2
m=1 ρi,2m−1

)
pi,j,kai,j,k if year k is odd,(

Ni,2

∏(k−2)/2
m=1 ρi,2m

)
pi,j,kai,j,k if year k is even.

(4)

Equation 3 expresses a simple deterministic relationship and the corresponding stochastic193

formulation could be modelled in terms of a hidden Markov model (Besbeas and Morgan,194

2020). We have investigated both types of model, and found little difference in their results195

when applied to monitoring data for butterflies in models such as in DMFRB, and so we196

adopt the simpler model here.197

We use the total of the estimates, N̂i,k, of the site parameters, Ni,k, as a measure of198

overall abundance, Gk =
∑

i N̂i,k, for each year k.199

2.4. Describing seasonality using a stopover model200

We specify {ai,j,k} using a stopover model, which builds survival into the models by201

introducing additional parameters, including the mean emergence times of adults. These202

phenological parameters are typically unknown, and of interest in their own right as descrip-203

tors of a specific, key point in a species’ life-cycle and thus potentially useful indicators of204

phenological change. The approach is based upon the stopover model of Matechou et al.205

(2014), which DMFRB extended to the analysis of data from multiple years, introducing206

and estimating productivity parameters.207

The expected number of individuals counted at site i at time ti,j,k in year k is given as208
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λi,j,k = Ni,kpi,j,kai,j,k = Ni,kpi,j,k

{
j∑

d=1

βi,d−1,k

(
j−1∏
m=d

φi,m,k

)}
, (5)

where the index d = 1, . . . , j, indicates the possible times of emergence for an individual209

detected on visit j. We define φi,m,k as the probability that an individual that is present at210

site i at visit m in year k will remain at that site until visit m+ 1. The βi,d−1,k describe the211

proportions of Ni,k emerging at site i and visit d in year k, such that
∑T

d=1 βi,d−1,k = 1, for212

each site i and year k. In order that this emergence pattern has the right shape for univoltine213

data, we set214

βi,d−1,k = Fi,k(ti,d,k)− Fi,k(ti,d−1,k), (6)

where Fi,k(ti,d,k) = P (X ≤ ti,d,k) for X ∼ N(µi,k, σ
2
i,k), µi,k is the mean date of emergence215

and σ2
i,k is the associated variance, which represents the spread of the emergence period.216

Thus the β’s are appropriate areas under a Gaussian curve, which ensures that they have217

the correct shape, starting small, rising to a maximum over time and then reducing to zero as218

time increases within a season. For each i and k, βi,0,k = Fi,k(1) and βi,T−1,k = 1−Fi,k(T−1).219

2.5. Obtaining maximum likelihood parameter estimates by concentrated likelihood220

We obtain maximum likelihood parameter estimates for these models via a concentrated221

(profile) likelihood approach (see DMFRB). The approach reduces the dimensions of the222

likelihood by optimising with respect to parameters relating only to ρ and a, providing223

computational efficiency.224

We set out to maximise the likelihood of Equation 1 by first forming its first-order225

derivatives with respect to the individual parameters. When that is done, and the resulting226

equations are all set equal to zero in search of a maximum, we find that the initial site227

parameters can be written as a function of the data and other parameters, as228

Ni,1 =
T∑

j=1

∑(V−1)/2
k=1 yi,j,2m−1

ai,j,1 +
∑(V−1)/2

k=1 ai,j,2k+1

∏k
m=1 ρi,2m−1

, (7)

and229

Ni,2 =
T∑

j=1

∑(V−2)/2
k=1 yi,j,2k

ai,j,2 +
∑(V−2)/2

k=1 ai,j,2k
∏k

m=1 ρi,2m
. (8)
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Substituting the expressions of (7) and (8) into the likelihood, we can optimise with respect230

to parameters relating only to ρ and a.231

After the model is fitted, estimates of {Ni,1} and {Ni,2} can be obtained by inserting ρ̂232

and â in Equations 7 and 8, and {Ni,k} for k > 2 are derived from Equation 4. This approach233

appreciably speeds up the likelihood optimisation. The performance of the dynamic model,234

adapted to account for a biennial life-cycle, was checked and verified using simulated data235

(results not shown here). This demonstrates the generality of the concentrated likelihood236

approach and its potential to be used for taxa with several years in different states.237

The likelihood is maximised using the optim numerical optimisation function in R (R238

Core Team, 2018). Standard errors were obtained from the inverse of the Hessian matrix239

at the likelihood maxima, and transformed using the Delta method (Morgan, 2009, p.123),240

where appropriate link functions were used.241

2.6. Capture-recapture modelling242

Parameter estimates for apparent daily survival, φ, and detection probability, p, were243

obtained from the capture-recapture (CR) data for the Cormack-Jolly-Seber model (see244

McCrea and Morgan 2014, p.70), using the marked package in R (Laake et al., 2013). Separate245

likelihoods were formed and maximised for the data from each of the three sites. We estimate246

φ as time-independent throughout, and take p to vary logistically with survey duration. We247

note that Baur et al. (2005) used a Jolly-Seber model to estimate survival using the same248

data, and also estimate population size for the years 1988 and 2000, for particular sites. The249

component likelihood, LM , is given by McCrea and Morgan (2014, p.70).250

2.7. Integrated population modelling251

Integrated population modelling was initially proposed in the area of fisheries science (see252

McCrea and Morgan, 2014, p.227). The approach of this paper was proposed by Besbeas253

et al. (2002). By modelling independent time-series of counts and capture-recapture data254

through a joint likelihood, which is the product of likelihoods for each component data set,255

we are able to combine data from different sources on different aspects of the same species256
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in a single analysis. Common model parameters are thereby estimated more precisely than257

would otherwise be the case, and a single analysis replaces piecemeal, separate analyses. In258

general terms, this improves the understanding of the species’ ecology. In particular, as we259

shall see, it may be possible through an integrated analysis to estimate model parameter(s)260

that would not have been otherwise possible due to confounding. The approach of IPM is261

now widely adopted, and the area remains one of active research; see for example, Matechou262

et al. (2013), Besbeas and Morgan (2019) and Schaub and Kéry (2021).263

We assume that the capture-recapture and count data sets are independent. Conse-264

quently, for IPM likelihoods are formed for the separate data sets, and then multiplied265

together to form a single joint likelihood, which is maximised to obtain maximum-likelihood266

estimates of all model parameters that are informed from both the count and CR data simul-267

taneously. The capture-recapture modelling directly informs probabilities of daily survival268

and detection, which improves estimation of survival in the model for the count data. More-269

over, the IPM formulation enables us to estimate absolute, rather than relative abundance.270

The concentrated-likelihood approach is also used for the joint likelihood, LJ . Here we271

have three capture-recapture likelihoods and one count likelihood, and the joint likelihood272

has the form273

LJ = LM1LM2LM3LS,

where LS is given in Equation 1 and LMi
is the likelihood for the ith capture-recapture274

data set. The first three components are functions of φ and p parameters only, while the275

last is a function of all the model parameters. Because the capture-recapture likelihoods276

were obtained using the marked package in R, it is convenient to adopt the approach of277

Besbeas et al. (2003) to construct an approximate likelihood in each case, using a multivariate278

normal approximation with φ and p parameters that are common for the data sets. Each279

approximate likelihood was based upon the maximum-likelihood estimates from Table S2 in280

the Supporting Information, and associated estimates of variance and covariance obtained281

from the inverse Hessian matrix at the likelihood maxima.282
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2.8. Model selection283

We fitted and compared a fairly large number of models to test biological hypotheses284

about the beetle and to identify model structure that ‘best’ describes its population dy-285

namics. Following preliminary analysis of the count and capture-recapture data separately286

(see Supporting Information), we apply the integrated modelling approach, firstly with year-287

dependent productivity, ρ, either constant or year-dependent mean emergence date µ, with288

detection probability, p, varying with survey duration (DUR) and all other parameters kept289

constant.290

Prior to performing model selection for additional covariates, an optimal lower develop-291

mental threshold (LDT for I. fuliginator was chosen as follows. The integrated model was292

fitted with productivity, ρ, varying only with degree days (DD) for multiple values of LDT293

(see Section 2.2.3), and the optimal LDT chosen based on the model with lowest AIC. For294

this purpose both µ and σ were considered constant, and detection probability p varied with295

survey duration.296

The incorporation of additional covariates (including degree-days, DD, with optimal LDT297

now estimated), to describe productivity and detection probability was then explored, by298

fitting all model combinations and comparison via AIC. For computational efficiency, model299

selection was applied to models with constant rather than year-dependent mean emergence300

date, µ. Productivity, ρ, was modelled as a logistic function of site heat load (HL) and/or301

DD, as well as year effects (YEAR). For detection probability, p, survey duration (DUR)302

and temperature (TEMP) were considered, as well as quadratic effects for temperature,303

again on the logistic scale. Here temperature was the daily mean temperature in Basel304

(described in Section 2.2.3). Throughout we assume the spread of emergence date, σ, to be305

constant across site and year, since models with year-variation in both σ and µ will have306

many parameters to estimate, which is likely to be very time consuming and potentially307

problematic to fit. Following model selection, the top model was refitted but with year-308

dependent mean emergence date, µ.309
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3. Results310

3.1. Integrated modelling311

We first fit two integrated models to the count and capture-recapture data that assume312

either a constant or a year-varying mean emergence date µ, but both assume spread of313

emergence σ and apparent survival φ to be constant, detection parameter p to vary with314

survey duration in a linear-logistic manner, and productivity ρ to be year-varying (Table 1,315

a and b). Comparison with estimates from the analysis of count data alone (Table 2) shows316

increased precision from the integrated modelling, as expected. The model with year-varying317

µ produces an appreciably lower AIC, although there was minimal effect on the other model318

parameter estimates, except for σ. Estimates of productivity ρ and mean emergence date µ319

for each year from model b) are shown in Figures S2 and S3 of the Supporting Information320

and of the population size measure, G, from various integrated models in Figure S4 of the321

Supporting Information.322

Peak emergence date, µ, was estimated later under the integrated model than from the323

analysis of the count data alone, but estimates of σ were similar, and both parameters were324

estimated with increased precision (comparing Tables 1a and 2). The integrated models also325

produce a lower estimate for φ, compared with the estimates in Table 2, which we attribute326

to the role played by detection probability p in the integrated analysis, and its dependence327

upon survey duration.328

Standard errors for all model parameters were at least halved in the integrated analysis,329

compared to a simpler model for the count data alone, illustrating one of the benefits of this330

modelling approach.331

3.2. Incorporation of additional covariates332

Models without the year effect for productivity were fitted first, to compare 11 threshold333

values for the degree-days covariate. A threshold of 15 degrees C was chosen by AIC, so this334

value was used in the full model comparison, which included the models where productivity335

can vary with year as well as degree-days. Although differences in AIC thresholds between336
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Table 1: Parameter estimates and associated standard errors (SE) for four integrated models, where n

denotes the number of parameters estimated for each model. In all models, survival φ and the spread of the

emergence period σ are constant, and detection probability p varies logistically with survey duration, where

pint and pDUR are the intercept and slope parameters, and p̄ is the mean estimate of p across durations.

In models (a) and (b) productivity ρ varies only with year, whereas in models (c) and (d), following model

selection (see Table 3), ρ varies with year and site heat load, where ρHL represents the slope parameter.

Mean emergence date µ is constant in models (a) and (c), but year-dependent in models (b) and (d). Year-

dependent parameter estimates (for ρ and µ) are not given but are displayed in plots for selected models.

a) b) c) d)

n 22 40 23 41

AIC 5211.0 5024.3 5183.4 4984.9

Parameter Estimate SE Estimate SE Estimate SE Estimate SE

ρHL 1.0794 0.1980 1.2902 0.2037

µ 79.0181 3.5847 year-varying 77.7021 3.3293 year-varying

σ 33.9607 3.1798 22.4269 1.6104 32.7917 3.0024 22.5838 1.6480

φ 0.8793 0.0088 0.8757 0.0089 0.8787 0.0088 0.8778 0.0089

pint -3.0601 0.1567 -3.0628 0.1575 -3.0019 0.1566 -3.0073 0.1565

pDUR 0.1062 0.0167 0.1082 0.0167 0.0996 0.0167 0.1008 0.0167

p̄ 0.0479 0.0479 0.0504 0.0502

14 and 16 degrees C were less than 2, results were ultimately not influenced by the choice of337

threshold.338

We consequently fit integrated dynamic models for a total of 28 covariate combinations,339

however, eight cases resulted in some very large standard error estimates. In these latter340

cases, all were models where productivity varied with at least year and degree-days (for which341

the Pearson’s correlation coefficient was approximately 0.6), and they showed a minimum342

eigenvalue of the Hessian that was close to zero, suggesting that not all parameters were343

individually estimable. This finding was replicated for alternative thresholds for the degree-344

days covariate. The top 10 of the 20 remaining models are shown in Table 3.345

The model with lowest AIC had 23 parameters and year-varying productivity that also346
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Table 2: Parameter estimates (with standard errors, SE) for the dynamic model fitted to the count data

alone with constant (i) and time-varying mean emergence date µ (ii); the number of parameters is denoted

by n. σ represents the standard deviation of the emergence period. Annual estimates of productivity ρ,

overall abundance G and time-varying µ are provided in Figure S1 of the Supporting Information.

i) ii)

n 20 38

AIC 5155.2 4972.0

Parameter Estimate SE Estimate SE

µ 65.09 14.09 time-varying

σ 34.75 5.83 21.93 1.72

φ 0.98 0.03 0.90 0.04

Table 3: Range of models fitted with covariates, with associated AIC and ∆AIC values. The formulae

describe the formulation for productivity, ρ, and detection probability, p, respectively. This is a truncated

table of the models with the ten smallest AIC values. Mean emergence date µ and spread of the emergence

period σ were assumed to be constant in all models. n is the number of parameters estimated and D is the

estimated scaled deviance. HL denotes heat load, DD indicates degree-day, DUR indicates survey duration,

and TEMP is a measure of daily mean temperature in Basel.

Model n D AIC ∆AIC

ρ ∼YEAR+HL, p ∼DUR 23 1.615 5183.4 0.0

ρ ∼YEAR+HL, p ∼DUR+TEMP 24 1.614 5191.5 8.1

ρ ∼YEAR+HL, p ∼TEMP 23 1.634 5198.8 15.4

ρ ∼YEAR+HL, p ∼DUR+TEMP+I(TEMP2) 25 1.616 5200.1 16.8

ρ ∼YEAR, p ∼DUR 22 1.627 5211.0 27.6

ρ ∼YEAR, p ∼DUR+TEMP 23 1.626 5219.1 35.7

ρ ∼YEAR, p ∼DUR+TEMP+I(TEMP2) 24 1.628 5228.9 45.5

ρ ∼YEAR, p ∼TEMP 22 1.650 5231.1 47.7

ρ ∼HL+DD, p ∼DUR 8 1.868 5719.8 536.4

ρ ∼HL+DD, p ∼DUR+TEMP 9 1.866 5726.1 542.7
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varied with site heat load, and detection varying with survey duration. Inspection of the347

second best model showed the addition of temperature for detection was not needed. Refit-348

ting the top model in Table 3 but with year-varying (rather than constant) mean emergence349

date µ greatly reduced the AIC to 4984.9, with 41 parameters. The scaled deviances of these350

models were 1.62 and 1.52, respectively, suggesting adequate descriptions of the data, albeit351

with a moderate amount of overdispersion relative to the basic Poisson model assumed. For352

estimates of the year-constant parameters see Table 1c) and d). Differences between param-353

eter estimates for the models with and without the site heat load parameter were minimal354

(Table 1).355

Productivity under model d) varied greatly between years and correlated positively with356

site heat load (Figure 1). Estimates of peak emergence date µ varied from about 20 to 90357

(Figure 2), becoming later by roughly one month over the period studied, but also less vari-358

able. The additional site heat load parameter for productivity did not have much influence359

on the estimates of µ (see Figure S3 of the Supporting Information).360
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Figure 1: Estimated productivity, ρ, for each year across the range of site heat load (HL) values from the

best-fitting integrated model with year-varying µ. Confidence bands are not presented, but Figure S2 of the

Supporting Information presents confidence bands for the model where HL is not included.
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Figure 2: Estimated mean emergence date, µ, per year measured in days from the best-fitting integrated

model with year-varying µ, and associated 95% confidence intervals. Day 60 corresponds to 15 April.

Estimates of absolute population size G under the best-fitting model (d in Table 1) are361

shown in Figure 3 and indicate a downward trend over time. Estimates of G were similar362

across all four IPMs fitted (see Figure S4 of the Supporting Information), although note363

the difference in scale relative to the model applied to count data alone, where detection364

probability, p, is not separated from abundance N and where the latter therefore has a ‘rel-365

ative abundance’ interpretation only (Supporting Information Figure S1c). Low population366

sizes for the odd year populations increase as a consequence of increased productivity values367

shown in Figure 1.368

3.3. Model fit369

The best-fitting model had a scaled residual deviance of 1.52, suggesting moderate370

overdispersion relative to the Poisson assumption. We investigated this further by fitting the371

best model using one-step of the iterated methods necessary for concentrated likelihood for372

Zero-inflated Poisson (ZIP) and negative-binomial models (Dennis et al., 2016a). This was373

done as a check, as full fitting of these models is computer intensive. Examples considered374
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Figure 3: Estimated population size G (the total number of beetles ever alive across all sites) each year

from fitting the best-fitting integrated model with year-varying µ. We distinguish between those individuals

that are imagos in the first year of the study (even years, solid line) and those that become imagos one

year later (odd years, dashed line). Estimated confidence bands are not given, but could be achieved with a

computationally expensive bootstrap.

in Dennis et al. (2016a) suggested only a small amount of iteration was typically necessary.375

Here the ZIP model decreased the AIC and resulted in a reduced scaled deviance of 1.42,376

whereas the NB model appeared to overfit the data. Comparisons of parameter estimates377

between fitting the Poisson and ZIP models (Figure S5 of the Supporting Information) show378

that the two models yield point estimates that are identical for all practical purposes and379

that only the imprecision is larger under the ZIP-version of the AIC-best model. Similar re-380

sults were obtained for the negative binomial, but with larger standard errors. We conclude381

that the Poisson fit is acceptable, and that changing the distribution does not change our382

conclusions. Quasi-likelihood arguments could be used to increase the standard errors by383

multiplying by the square root of the Poisson scaled deviance (Dennis, 2015), however the384

change is minimal in this case, with standard errors increased by 23%.385
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4. Discussion386

4.1. Modelling population dynamics at two temporal scales387

We believe that (temporally) multi-scale population dynamics are common. For example,388

many species of insects have generation times that exceed one year, e.g., some dragonflies,389

many large beetles and famously cicadas, for all of which the larval stage lasts for more than390

one year, while the imagos have life spans of the order of days to weeks. However, the only391

relevant models are the open-robust-design (ORD) model of Kendall and Bjorkland (2001),392

those of DMFRB, and a further variation on the model of DMFRB which describes data on393

bumblebees (Matechou et al., 2018). The ORD model is designed for a classical capture-394

recapture study with individually marked animals, where there are primary and secondary395

capture occasions, but where closure cannot be assumed among the secondary occasions396

within the same primary occasion. Instead, in the ORD model population gains and losses397

are modelled both among secondary as well as among primary occasions.398

In contrast, the models developed by DMFRB can be fitted to simple counts of unmarked399

individuals, but they require spatial replication, i.e., multivariate time-series of counts from400

replicated sites/populations. While the between-season component of these models is usually401

rather simple (e.g., an exponential population model), several formulations are possible for402

the within-season dynamics, e.g., purely phenomenological approaches such as a GAM or a403

Gaussian curve, or more mechanistic birth/death processes such as the MZ model.404

Demographic models for insects that contain explicit parameters for the underlying birth/405

death processes are very rare, presumably because of the difficulty with which insects can406

be studied by capture-recapture. The ability of the MZ-type of models, including those by407

DMFRB and the one in this study, to estimate such demographic parameters from simple408

counts of unmarked individuals, is a great advantage and should enhance the demographic409

modelling of many insect species which can be counted. Moreover, it may be beneficial to410

consider whether further information about some of the model parameters can be obtained,411

such as by conducting additional, but spatially and temporally restricted, capture-recapture412

studies. Such an integrated population model for an insect species has been formulated by413
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Gross et al. (2007), who augment the MZ model with information from a capture-recapture414

study. However they do not link the abundance parameters across years by a population415

model as we do.416

4.2. Biology of I. fuliginator417

While we made the assumptions of constancy for both the spread of emergence times (σ)418

and apparent survival (φ), we found strong evidence for annual variation of productivity (ρ)419

and mean emergence date (µ), as well as, consequently, total annual population size (G).420

There was considerable annual variation in productivity, and 2003 and 2011 stood out421

in particular, as well as 2007 to a lesser degree. These were also the years with the overall422

smallest estimated total population sizes. Thus, there seemed to be a stabilizing tendency423

in the population dynamics, in that increases were most marked when population sizes were424

lowest. This may reflect density-dependence.425

In the Basel population, the day of first emergence was related to the mean daily tem-426

perature for February and March in the years 1985–2000 (Baur et al., 2002). In this study,427

there was also annual variation in the estimates of mean emergence date, which spanned428

more than two months and seemed to show two phases: with no trend but great year-to-year429

fluctuations up until 2006, followed by a much smoother trajectory with an increasing trend430

thereafter, where mean emergence date became about one month later in the last decade.431

Winter temperatures appear to have increased over this period in the study area (unpub-432

lished data) and this delay in appearance may appear counter-intuitive. However, it ties in433

with what is known about the physiology of insects with an obligate diapause, and which434

typically need a certain amount of cold temperatures to break diapause (W. Blanckenhorn,435

pers. comm.). For instance, St̊alhandske et al. (2017) found that milder winters lead to436

significant delays in the emergence of three out of five species studied and wrote: “the delay-437

ing effect of winter warmth has become more pronounced in the last decade, during which438

time winter durations have become shorter.” Thus climate change may have counter-intuitive439

effects on phenology.440

Our models confirmed a serious decline of the beetle total annual abundance over the 19441
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years of study. A simple linear regression of the total annual abundance (in Figure 3) on442

year suggested a decline by about 98% (from approximately 9900 individuals to only about443

250) which is comparable with findings in Baur et al. (2020), who suggest that habitat444

deterioration may be responsible for the decline of this specialised species. Although the445

time-series of counts are statistically-speaking short, there appears to be a difference between446

the two annual cohorts, with a potentially stronger decline and more even trajectory for the447

even-year cohorts whereas, in contrast, the odd-year cohorts hardly appear to exhibit a448

long-term trend, but show more pronounced annual fluctuations. The biological reasons449

underlying this pattern are unknown, and in particular the reasons for the changes in 2005450

and 2013, for example whether these may be linked to particular temperature changes.451

The covariate modelling identified heat load and year as important effects for productiv-452

ity, with much less evidence for degree-days, although this may have been influenced by the453

apparent correlation between degree-days and year. As expected, the effect of heat load was454

positive. For detection probability, there was a clear positive effect of survey duration, also455

as expected. There was limited evidence for alternative covariates given the differences in456

AIC for alternative models. Further work could consider the effects of suitable covariates on457

other stages of the life cycle of I. fuliginator (Suppo et al., 2020).458

Under simple assumptions of constancy, longevity of imagines of I. fuliginator can be459

estimated from apparent survival (φ) as 1/(1− φ) . Under model (d) in Table 1, this yields460

only 8.2 days (SE = 0.6). This species of beetle is a striking example of an insect life-cycle461

with an extremely short adult stage compared to the earlier life-stages.462

Detection probability was very low and estimated at about 0.05 per survey occasion (on463

average across the survey durations). This could be an underestimate if the population is not464

closed during the count surveys and the counts really refer to some kind of superpopulation.465

However, we believe this to be quite unlikely given the limited dispersal distances of the466

beetle (Baur et al., 2005), the duration of the sampling periods, the size and configuration of467

the habitat patches and also the short longevity of the beetles. Such low values emphasize468

the need for estimating detection probability for such insects when true population sizes are469
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needed, for instance, in a population viability analysis (Beissinger and Westphal, 1998).470

In the Basel population, a flagship for local biodiversity conservation, the last 52 visits471

did not detect a single beetle. Even under the unlikely assumption that the population472

always consisted of exactly one surviving beetle, the aggregated probability to detect that473

beetle at least once (and therefore to ascertain population survival) can be estimated as474

1 − (1 − p)52 = 0.93. This probability increases to 0.97 if there are always exactly two475

independent beetles and to > 0.99 for three or more. Hence, despite the low detection476

probability, not observing any beetles during all these surveys strongly suggests there are477

none left (McArdle, 1990; Kéry, 2002) and that the Basel population is now sadly extinct.478

4.3. Avenues for future research479

Despite the concentrated likelihood and the multivariate normal approximation to the480

joint likelihood of the IPM, fitting these models is computer-intensive. We therefore made481

some constancy assumptions, including for the spread of the date of emergence (σ) and ap-482

parent survival (φ). Calabrese (2012) shows that inferences under MZ-types of models can be483

strongly dependent on the parametric assumptions made about entry and exit probabilities,484

especially about the constancy of survival. For instance, Matechou et al. (2014) discovered485

that a model with linear and quadratic time effects on survival was best supported by AIC,486

and such a structure on φ might also be investigated here.487

We assumed a strict biennial life-cycle of I. fuliginator in our study area, which is in488

accordance with all published information and also with conventional wisdom among ento-489

mologists. Interestingly, recent genetic analyses revealed the absence of any differentiation490

between the cohorts from odd and even years (B. Baur, unpubl. data), which might seem491

to cast doubt on this important assumption, since it may suggest that individuals achieve492

eclosion within one, two or three years. However, findings in population genetics indicate493

that one reproducing migrant per generation is enough to prevent genetic differentiation494

between populations (Mills and Allendorf, 1996). Hence, it is quite probable that the vast495

majority of the beetles do adhere to a biennial life-cycle, thus making our model adequate.496

Nevertheless, it would be interesting to extend the modelling of this paper to allow for vari-497
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ation in duration of lifetime and larval polymorphism, which could have relevance for other498

species and taxa exhibiting this trait. The possibility of hot and dry conditions affecting the499

time to maturity could also be considered further.500

Further research would be valuable considering the interest and attractions in adding501

random effects to account for spatial and temporal correlations, as well as to fit multi-species502

versions of the models. Multi-scale spatial models are another avenue for further research,503

to describe population dynamics within and between sites (Raffa et al., 2008; Wildemeersch504

et al., 2019).505

5. Conclusions506

We believe that population dynamics with more than a single temporal scale is much more507

common than previously recognized. Therefore, we consider the chief conceptual interest of508

the modelling in this paper, and that in DMFRB, to be the focus on multiple temporal scales509

of population dynamics. For cases such as insects or migrating animals it is immediately510

obvious that a model is needed which describes population dynamics at two temporal scales.511

In butterflies and seasonally migrating animals, the between-season dynamics will typically512

be that of a first-order Markov process with respect to time, while in some species with513

generation time longer than one year such as some beetles, dragonflies and cicadas, a longer-514

range dependency is needed.515

However, the importance of the kind of model presented here on multi-scale population516

dynamics models may transcend the simple examples of insects and migrating animals.517

Indeed, it may represent a very general modelling framework that enables one to relax the518

typical closure assumption in much of traditional population dynamics modelling and may519

be applied to both the dynamics of reproducing populations or that of migratory animals520

at staging areas or other points along their journey. Hence, for instance, for breeding birds,521

rather than assuming a closed and constant population within what we call a breeding season,522

we would model the within-season dynamics of territory establishment and abandonment by523

territory holders in a very flexible and general way, or similarly for pond-breeding amphibians524

or beach-nesting sea-turtles. Finally, we could envisage beneficial combinations between the525
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models in this paper and DMFRB and the ORD models of Kendall and Bjorkland (2001).526

Such potential hybrid models would again fall under the rubric of integrated population527

models and provide powerful tools for improved inferences in population dynamics.528
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