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Analytical model of electric field assisted 

ion diffusion into glass containing two 

indigenous mobile species, with application 

to poling 

R. Oven  

School of Engineering, University of Kent, 

Canterbury, CT2 7NT, UK 

Abstract 

An analytical model of electric field assisted diffusion of ions into glass is extended to 

include two indigenous mobile ion species that are initially uniformly distributed within 

the glass.  A quasi-stationary state solution that includes diffusion effects and is 

applicable when the invasive ions have a lower mobility than the two indigenous 

species is presented.  It is relevant to the electrical poling of soda-lime and borosilicate 

glasses with concentrations of mobile ions (Na+, K+) that are processed with a non-

blocking anode where hydrogen ion injection occurs.  The model is compared with 

numerical solutions based on the drift-diffusion equations and Poisson’s equation and 

shows good agreement.  The increase in the concentration of the indigenous species 

with the lower mobility (K+) below the poled layer within a pile-up region is accurately 

modelled. 

 

Key words field assisted diffusion; poling; 
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I. INTRODUCTION 

The number of potential applications of electrically poled glass has widened 

considerably in the literature in recent years.  These include its use as a non-linear 

optical material [1-5] and as a layer in order to produce buried or surface channel 

optical waveguides [6-11].  The difference in refractive index between poled and un-

poled glass has been used to make diffractive phase masks [12,13].  Electrical poling 

has also be used in a process to control the size of metallic nanoparticles in glass in an 

image replication using a bleaching process [12].  The compaction of a poled glass 

layer relative to an un-poled one has been used to produce nano-surface profile 

features in glass [14, 15].  Changing the surface properties of bio-active glasses by 

electrical poling has also been investigated [16-19].  The control of the surface 

reactivity of poled borosilicate glass has also suggested its use as a smart substrate 

[20].  Finally, the removal of ions by glass poling can result in a reduction in loss and 

permittivity at microwave frequencies [21].  

 

It is well known that the ion transport processes that occur during poling of glass is 

dependent upon the nature of the anode used during the process, which at the 

extremes can be either blocking or non-blocking [22-24].  A blocking anode does not 

result in the injection of any ions into the glass.  As a result when a high voltage is 

applied at elevated temperature, mobile cations (typically Na+, K+, Ca++) are removed 

from the region of glass directly below the anode.  As a consequence a negative space 

charge and high electric field develop in the depletion region.  This high field can 

cause the motion of the negatively charged non-bridging oxygen ions towards the 

anode [23, 5].  It has also been suggested that for some glasses, if the field in the 

depletion region reaches the breakdown field then electronic motion is also possible 
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[19].  The rate at which the depletion region growth slows with time and eventually 

stops since most of the applied potential is dropped across it [5]. 

 

For non-blocking anodes the situation is different as this type allows the field assisted 

injection of low mobility hydrogen or hydronium ions (H3O
+) from the atmosphere 

into the glass.  This is similar to a field assisted ion exchange processes with the 

injection of low mobility ions, which replace the indigenous ions in the near surface 

region [25, 5].  In comparison to a blocking anode, the poled glass region for this type 

of anode can be deeper since the poling current is greater for a longer time [5]. 

For both blocking and non-blocking anodes, indigenous lower mobility ions can build 

up in the region below the poled glass layer.  The extent to which this effect is 

significant depends on the processing temperature, which determines their mobility 

and the field present in the poled glass layer.  For glasses containing  K+ ions, the 

pile-up region due to K+ ion motion has been observed in chemical and refractive 

index profiles [2, 4, 7-8,13, 26].  

 

The blocking anode case has been analysed analytically by ignoring diffusion effects 

but considering ion drift motion together with Poisson’s equation to model the space 

charge formation [25].   The modelling did not consider oxygen ion or electronic 

motion or field dependent mobility effects but was compared with numerical 

simulations based on ion drift and diffusion equations coupled with Poisson equation.  

An alternative analysis, which considered oxygen ion drift motion in a developed 

depletion region, was recently considered using a numerical approach [5].   
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The modelling of the poling process with a non-blocking anode has also been 

considered in the literature by applying an analytical model developed for field 

assisted ion exchange by Prieto and Linares [27].   This model is applicable to a glass 

with a single mobile ion species where the sample voltage is constant. In such a case, 

the total ion current reduces with time and the diffusion front between the injected and 

indigenous ions broadens due to diffusion effects.  This results in a so called quasi-

stationary state concentration profile forming for the invasive ions.  This simple 

model has been used to discuss poling experiments with non-blocking anodes [5,12, 

29-30].  One limitation of this model is that the glass is assumed to have only one 

indigenous ion species and so the pile-up of lower mobility ions mentioned above is 

not modelled despite being experimentally observed.  In a number of the above 

applications, a knowledge of the time evolution of the piled-up ion concentration 

profile is desirable.  This is obvious in optical waveguide applications where the 

refractive index profile of the pile-up region forms the guide [7]. Another application 

where the pile-up effect is important is in the formation of surface relief profiles, for 

although the relief profile in poled glass is attributed to the compaction of the poled 

layer, it is well known that the replacement of Na+ ions by K+ ions in an ion-exchange 

results in a volume expansion [14, 15, 28].  Hence, the surface relief formed in poled 

glass should be a result of the difference in poled glass compaction countered by a 

corresponding expansion of the underlying K+ pile-up region. 

 

The modelling of the poling process with a non-blocking anode has also been 

performed numerically based on ion drift and diffusion equations coupled with 

Poisson’s equation.  However, no analytical model that includes diffusion effects has 

been reported [25].  In this paper, we consider the non-blocking anode case 
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analytically where the glass has two indigenous mobile ion species.  We derive quasi-

stationary analytical solutions when the invasive ion species has a lower mobility than 

the two indigenous species.  This results in a pile-up of the indigenous species with 

the lower mobility below the exchanged layer.  The analytical results are compared 

with numerical calculations with parameters applicable to the electrically poling from 

a non-blocking electrode into borosilicate glass that has Na+ and K+ ions present.  In 

order to make the results relevant to experimental situations commonly encountered, 

we consider the case where the processing is performed with a voltage source that 

necessitates the application of the quasi-stationary state approach [27], which is an 

extension to the constant current stationary state approach [31]. 

 

II. MODEL 

II.1 First order model 

Following previous work on deriving a quasi-stationary state profile with just one 

indigenous species, we first consider the exchange process without diffusion effects in 

order to establish approximate expressions for the total ion flux  j(t) as a function of 

time and the diffusion front velocities [27].  In the next section we then include 

diffusion effects.  We consider a quasi-neutral model where we ignore space charge 

effects.  The appropriateness of this approximation to field assisted ion exchange with 

a glass with a single ion species has previously been confirmed analytically and has 

been discussed previously [32].  For glass like silica the mobile ion concentrations are 

small and space charge regions can extend over significant distances [25].  However, 

in soda-lime and borosilicate glasses the mobile ion concentrations are large so the 

distances over which space charges extend are very small, hence the space charge 

neutral approximation is valid.  The validity of this approximation will also be shown 
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by comparing our solutions to numerical solutions that include the possibility of space 

charge build-up. 

Figure 1 shows the process and the associated step-like ion profiles that will develop 

when diffusion effects are ignored.  We consider H+ ions being injected from the 

anode into a glass that contains Na+ and K+ ions that are initially uniformly 

distributed.  The H+ ions have a lower mobility than the Na+ and K+ ions.  Due to their 

lower mobility, the H ions form a step profile of depth d1.  The K+ ions have a lower 

mobility than the Na+ ions, hence the K+ ions will form a pile-up region of thickness 

(d2-d1) just below the H+ ion exchange region.  The glass will hence be divided into 

three regions with electric fields Ei that are constant in each region. 

 

 

Fig.1 Field assisted diffusion – first order model ignoring diffusion effects.  Diffusion 

fronts indicated by dotted lines. (Colour on-line) 
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If μm is the mobility of the mth ion type and W is the glass thickness then the following 

equations are applicable 

𝑑1𝐸1 + (𝑑2−𝑑1)𝐸2 + (𝑊 − 𝑑2)𝐸3 = 𝑉(𝑡) 

(1) 

𝑗(𝑡) = 𝜇𝐻𝐶𝑂𝐸1 = 𝜇𝐾𝐶𝑂𝐸2 = (𝜇𝑁𝑎𝐶𝑁𝑎𝑂 + 𝜇𝐾𝐶𝐾𝑂)𝐸3 

(2) 

𝑑𝑑1

𝑑𝑡
= 𝜇𝐻𝐸1 =

𝑗(𝑡)

𝐶𝑂
 

(3) 

𝑑𝑑2

𝑑𝑡
= 𝜇𝑁𝑎𝐸3 =

𝜇𝑁𝑎

𝜇𝑁𝑎𝐶𝑁𝑎𝑂 + 𝜇𝐾𝐶𝐾𝑂
. 𝑗(𝑡) 

(4) 

In these equations CNaO and CKO are the Na+ and K+ ion concentrations in the bulk of 

the glass and CO = CNaO + CKO is the total mobile ion concentration.  We assume for 

generality that the supply voltage V(t) is time dependant; which can be the case in real 

poling experiments.  Integrating (3) and (4), with d1(0)=0 and d2(0)=0, gives 

𝑑1(𝑡) =
1

𝐶𝑂
∫ 𝑗(𝑢)𝑑𝑢

𝑡

0

 

(5) 

and 

𝑑2(𝑡) =
𝜇𝑁𝑎

𝜇𝑁𝑎𝐶𝑁𝑎𝑂 + 𝜇𝐾𝐶𝐾𝑂
∫ 𝑗(𝑢)𝑑𝑢

𝑡

0

 

(6) 

Hence from (5) and (6), d1 and d2 are related via 

𝑑2(𝑡)

𝑑1(𝑡)
=

𝐶𝑂𝜇𝑁𝑎

𝐶𝑁𝑎𝑂𝜇𝑁𝑎 + 𝐶𝐾𝑂𝜇𝐾
 

(7) 
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It can be seen from (3) and (4) that the diffusion fronts for H+ and Na+ ions d1 and d2 

are moving in the glass with different velocities, hence quasi-stationary state solutions 

for these two ion species are to be expected. Equation (7) shows the two fronts 

maintain a fixed ratio so the K+ ion profile in not quasi-stationary.  

 

From eqn. (1-5) it is also possible to show that the time dependence of the ion flux is 

given by 

𝑗(𝑡) =  
(𝜇𝑁𝑎𝐶𝑁𝑎𝑂 + 𝜇𝐾𝐶𝐾𝑂)𝑉(𝑡)

√𝑊2 + 2𝑎𝜇𝐻 ∫ 𝑉(𝑢)𝑑𝑢
𝑡

0

 

(8) 

where 

𝑎 = (
𝜇𝑁𝑎𝐶𝑁𝑎𝑂 + 𝜇𝐾𝐶𝐾𝑂

𝜇𝐻𝐶𝑂
)

2

−
𝜇𝑁𝑎

𝜇𝐻
 +

(𝜇𝑁𝑎 − 𝜇𝐾)𝐶𝐾𝑂

𝜇𝐾𝐶𝑂
(

𝜇𝑁𝑎𝐶𝑁𝑎𝑂 + 𝜇𝐾𝐶𝐾𝑂

𝜇𝐻𝐶𝑂
) 

(9) 

If µK0 and CKO0 then (8) and (9) reduce to the expressions for a glass with a 

single ion type [27].   

 

II.2 Quasi stationary state solutions 

In this section analytical expressions for the quasi-stationary state concentration 

profiles including diffusion effects are derived.  We first derive the coupled drift 

diffusion equations for H+ and Na+ ions since these will have quasi-stationary 

solutions.  In general the three ion fluxes, jm, are given by 

𝑗𝑚 = 𝜇𝑚𝐸𝐶𝑚 − 𝐷𝑚

𝜕𝐶𝑚

𝜕𝑥
       𝑚 = 𝑁𝑎, 𝐾, 𝐻 

(10) 
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where E is the electric field, Dm is the diffusion coefficient and μm is the ion mobility.  

Dm and μm are related by  

𝐷𝑚

𝜇𝑚
=

𝐻𝑘𝑇

𝑞
 

(11)  

where H is the Haven ratio.  Following the quasi-neutral approach we assume the ion 

species are coupled by a space charge neutrality condition 

𝐶𝑁𝑎 + 𝐶𝐾 + 𝐶𝐻 = 𝐶𝑁𝑎𝑜 + 𝐶𝐾𝑜 = 𝐶𝑜 

(12) 

This approximation has been shown to be valid in a previous study for glasses with a 

high mobile ion concentration [32].   As a consequence of (12), total ion flux, j(t), is a 

constant independent of position. 

𝑗(𝑡) = 𝑗𝑁𝑎 + 𝑗𝐾 + 𝑗𝐻 

(13) 

The continuity equations for Na+ and H+ ions are  

−
𝜕𝑗𝑚

𝜕𝑥
=

𝜕𝐶𝑚

𝜕𝑡
  (𝑚 = 𝑁𝑎, 𝐻) 

(14) 

Combining eqn. (10-14) gives the electric field with diffusion terms 

𝐸 =  
𝑗(𝑡) +  (𝐷𝐻 − 𝐷𝐾)

𝜕𝐶𝐻

𝜕𝑥
+ (𝐷𝑁𝑎 − 𝐷𝐾)

𝜕𝐶𝑁𝑎

𝜕𝑥
(𝜇𝐻 − 𝜇𝐾)𝐶𝐻 + (𝜇𝑁𝑎 − 𝜇𝐾)𝐶𝑁𝑎 + 𝜇𝐾𝐶𝑂

 

(15) 

Substituting eqns. (15) and (10) into (14) gives two coupled PDEs 
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𝜕𝐶𝑚

𝜕𝑡
= −𝐷𝑚

𝜕

𝜕𝑥
{

𝑗(𝑡)𝐶𝑚

(𝐷𝑚 − 𝐷𝐾)𝐶𝑚 + (𝐷𝑛 − 𝐷𝐾)𝐶𝑛 + 𝐶𝑂𝐷𝐾
}

+ 𝐷𝑚

𝜕

𝜕𝑥
{

(𝐷𝑛 − 𝐷𝐾) [𝐶𝑛
𝜕𝐶𝑚

𝜕𝑥
− 𝐶𝑚

𝜕𝐶𝑛

𝜕𝑥
] + 𝐶𝑂𝐷𝐾

𝜕𝐶𝑚

𝜕𝑥

(𝐷𝑚 − 𝐷𝐾)𝐶𝑚 + (𝐷𝑛 − 𝐷𝐾)𝐶𝑛 + 𝐶𝑂𝐷𝐾
}    

 (16) 

where (m,n) = (Na, H) or (H, Na). The two equations of (16) are in general coupled. 

However, once the piled-up K+ ion region is established and becomes wide enough in 

comparison to any diffusional smearing of the ion profiles, the two equations will 

become uncoupled.  In terms of concentration profiles CNa = 0 in regions where CH is 

non-zero and likewise CH = 0 in regions where CNa is non-zero.  Under these 

conditions the term in square brackets in (16) is zero and hence (16) becomes 

uncoupled 

𝜕𝐶𝑚

𝜕𝑡
= −

𝐷𝑚𝐷𝐾𝐶𝑂𝑗(𝑡)

[(𝐷𝑚 − 𝐷𝐾)𝐶𝑚 + 𝐶𝑂𝐷𝐾]2

𝜕𝐶𝑚

𝜕𝑥
+ 𝐷𝑚

𝜕

𝜕𝑥
{

𝐶𝑂𝐷𝐾

(𝐷𝑚 − 𝐷𝐾)𝐶𝑚 + 𝐶𝑂𝐷𝐾

𝜕𝐶𝑚

𝜕𝑥
}     

(17) 

where m =Na or H.  Physically, this implies that the H+ ions are locally being driven 

into a glass of composition determined solely by K+ ions of concentration CO and that 

the Na+ ions are locally moving in a glass of composition determined by the Na+ and 

K+ ions. 

Following the quasi stationary approach of Prieto and Linares we now change to a 

moving frame of reference [27].  However, in this work the moving frame will be 

different for the Na+ and H+ ion rich regions as suggested by the non-diffusive model 

in the previous section.  From eqn. (5) for the H+ ions we use 

𝑥𝐻 = 𝑥 −
1

𝐶𝑂
∫ 𝑗(𝑢)𝑑𝑢

𝑡

0

 

(18) 
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and from eqn. (6) for the Na+ ions we use 

𝑥𝑁𝑎 = 𝑥 −
𝜇𝑁𝑎

𝜇𝑁𝑎𝐶𝑁𝑎𝑂 + 𝜇𝐾𝐶𝐾𝑂
∫ 𝑗(𝑢)𝑑𝑢

𝑡

0

 

(19) 

We also perform changes to dimensionless space and time variables 

𝑧𝑁𝑎 =
𝑗(𝑡)𝑥𝑁𝑎

𝐶𝑂𝐷𝑁𝑎
, 𝑧𝐻 =

𝑗(𝑡)𝑥𝐻

𝐶𝑂𝐷𝑁𝑎
,   𝜏 =

1

𝐶𝑂
2𝐷𝑁𝑎

∫ 𝑗2(𝑢)𝑑𝑢 
𝑡

0

 

(20) 

to give 

𝜕𝐶𝐻

𝜕𝜏
= {−

𝐷𝑁𝑎𝐶𝑂
2

𝑗3

𝑑𝑗

𝑑𝑡
𝑧𝐻 −

𝑀𝐻𝑀𝐾𝐶𝑂
2

[(𝑀𝐻 − 𝑀𝐾)𝐶𝐻 + 𝑀𝐾𝐶𝑂]2
+ 1}

𝜕𝐶𝐻

𝜕𝑧𝐻

+
𝜕

𝜕𝑧𝐻
{

𝑀𝐻𝑀𝐾𝐶𝑂

(𝑀𝐻 − 𝑀𝐾)𝐶𝐻 + 𝑀𝐾𝐶𝑂
.
𝜕𝐶𝐻

𝜕𝑧𝐻
}    

(21) 

and 

𝜕𝐶𝑁𝑎

𝜕𝜏
= {−

𝐷𝑁𝑎𝐶𝑂
2

𝑗3

𝑑𝑗

𝑑𝑡
𝑧𝑁𝑎 +

𝑀𝐾𝐶𝑂
2

[(1 − 𝑀𝐾)𝐶𝑁𝑎 + 𝑀𝐾𝐶𝑂]2
+

𝐶𝑂

𝐶𝑁𝑎𝑜 + 𝑀𝐾𝐶𝐾𝑜
}

𝜕𝐶𝑁𝑎

𝜕𝑧𝑁𝑎

+
𝜕

𝜕𝑧𝑁𝑎
{

𝑀𝐾𝐶𝑂

(1 − 𝑀𝐾)𝐶𝑁𝑎 + 𝑀𝐾𝐶𝑂
.
𝜕𝐶𝑁𝑎

𝜕𝑧𝑁𝑎
}   

 (22) 

where Mm is the mobility ratio 

𝑀𝑚 =
𝜇𝑚

𝜇𝑁𝑎
=

𝐷𝑚

𝐷𝑁𝑎
 

(23) 

We now apply the quasi-stationary state approximation by assuming that j(t) varies 

slowly enough such that the first terms on the r.h.s. of (21) and (22) can be neglected 

[27].  Using (8), these terms can be neglected in relation to the third terms on the r.h.s. 

of (21) if 
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𝐻𝑘𝑇

𝑞𝑉

𝐶0
2|𝑧𝐻|𝑎𝑀𝐻

(𝐶𝑁𝑎𝑂 + 𝑀𝐾𝐶𝐾𝑂)2
≪ 1 

(24) 

Likewise for eqn. (22).   

𝐻𝑘𝑇

𝑞𝑉

𝐶𝑂|𝑧𝑁𝑎|𝑎𝑀𝐻

(𝐶𝑁𝑎𝑂 + 𝑀𝐾𝐶𝐾𝑂)
≪ 1 

(25) 

We assume here that these inequalities apply and justify them in Appendix 1.   

Stationary state solutions to (21) and (22) of the form CNa(ηNa) and CH(ηH) are now 

assumed where 

𝜂𝑚 = 𝑧𝑚 − 𝜈𝑚𝜏 

 (26) 

so 
𝜕𝐶𝑚

𝜕𝑧𝑚
=

𝑑𝐶𝑚

𝑑𝜂𝑚
 and 

𝜕𝐶𝑚

𝜕𝜏
= −𝜈𝑚

𝑑𝐶𝑚

𝑑𝜂𝑚
 .  These transformations reduce (21) and (22) to the 

ordinary differential equations  

−𝑣𝐻

𝑑𝐶𝐻

𝑑𝜂𝐻
= {1 −  

𝑀𝐾𝑀𝐻𝐶𝑂
2

[(𝑀𝐻 − 𝑀𝐾)𝐶𝐻 + 𝑀𝐾𝐶𝑂]2
}

𝑑𝐶𝐻

𝑑𝜂𝐻

+
𝑑

𝑑𝜂𝐻
{

𝑀𝐾𝑀𝐻𝐶𝑂

(𝑀𝐻 − 𝑀𝐾)𝐶𝐻 + 𝑀𝐾𝐶𝑂
.
𝑑𝐶𝐻

𝑑𝜂𝐻
}   

(27) 

and 

−𝑣𝑁𝑎

𝑑𝐶𝑁𝑎

𝑑𝜂𝑁𝑎
= {

𝐶𝑂

𝐶𝑁𝑎𝑂 + 𝑀𝐾𝐶𝐾𝑂
+ 

𝑀𝐾𝐶𝑂
2

[(1 − 𝑀𝐾)𝐶𝑁𝑎 + 𝑀𝐾𝐶𝑂]2
}

𝑑𝐶𝑁𝑎

𝑑𝜂𝑁𝑎

+
𝑑

𝑑𝜂𝑁𝑎
{

𝑀𝐾𝐶𝑂

(1 − 𝑀𝐾)𝐶𝑁𝑎 + 𝑀𝐾𝐶𝑂
.
𝑑𝐶𝑁𝑎

𝑑𝜂𝑁𝑎
}   

(28) 

These may be integrated with the following boundary conditions 
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𝐶𝑁𝑎 = 0 ,
𝑑𝐶𝑁𝑎

𝑑𝜂𝑁𝑎
= 0 𝑎𝑠 𝜂𝑁𝑎 → −∞, 𝐶𝑁𝑎 = 𝐶𝑁𝑎𝑂 ,

𝑑𝐶𝑁𝑎

𝑑𝜂𝑁𝑎
= 0 𝑎𝑠 𝜂𝑁𝑎 → +∞  

(29) 

and 

 𝐶𝐻 =   𝐶𝑂 ,
𝑑𝐶𝐻

𝑑𝜂𝐻
= 0 𝑎𝑠 𝜂𝐻 → −∞,  𝐶𝐻 = 0 ,

𝑑𝐶𝐻

𝑑𝜂𝐻
= 0 𝑎𝑠 𝜂𝐻 → +∞ 

 (30) 

which give both velocities vNa = 0 and vH = 0 and show that the transformations used, 

namely (18) and (19), were appropriate for the two diffusion fronts.  Assuming 

CH(ηH=0) = CO/2 and CNa(ηNa=0) = CNaO/2 as approximate initial conditions for the 

solution and transforming back to the (x, t) co-ordinates finally gives 

𝐶𝐻(𝑥, 𝑡) =
𝐶𝑂

1 + 𝑒𝑥𝑝 (
𝑀𝐾 − 𝑀𝐻

𝑀𝐾𝑀𝐻
.

𝑗(𝑡)
𝐷𝑁𝑎𝐶𝑂

(𝑥 −  
1

𝐶𝑂
∫ 𝑗(𝑢)

𝑡

0
𝑑𝑢))

 

(31) 

and 

𝐶𝑁𝑎(𝑥, 𝑡) =
𝐶𝑁𝑎𝑂

1 + 𝑒𝑥𝑝 (−
(1 − 𝑀𝐾)𝐶𝑁𝑎𝑂

(𝐶𝑁𝑎𝑂 + 𝑀𝐾𝐶𝐾𝑂)𝑀𝐾
.

𝑗(𝑡)
𝐷𝑁𝑎𝐶𝑂

(𝑥 −
1

𝐶𝑁𝑎𝑂 + 𝑀𝐾𝐶𝐾𝑂
. ∫ 𝑗(𝑢)

𝑡

0
𝑑𝑢))

 

(32) 

where from (8) for a constant V 

∫ 𝑗
𝑡

0

(𝑢)𝑑𝑢 =  
(𝐶𝑁𝑎𝑂 + 𝑀𝐾𝐶𝐾𝑂)

𝑎𝑀𝐻
(√𝑊2 + 2𝑎𝜇𝐻𝑉𝑡 − 𝑊) 

(33) 

The analytical form for the H+ profile, eqn. (31) is similar to that for the single ion 

model [27] but with a different constant involving the mobility ratios. 

The K+ ion profile CK(x,t) can be calculated from eqn. (12) 

𝐶𝐾(𝑥, 𝑡) = 𝐶𝑜 − 𝐶𝑁𝑎(𝑥, 𝑡) − 𝐶𝐻(𝑥, 𝑡) 
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(34) 

Hence the K+ ion profile is not a simple quasi-stationary profile but involves two 

quasi-stationary profiles each moving with different velocities. 

 

III. Comparison with numerical computations. 

We compare the analytical expressions with numerical solutions of the drift-diffusion 

equations and Poisson’s equations in order to confirm the space charge neutral 

assumption and the accuracy of the quasi-stationary approximation.   Following ref. 

[25] we numerically solve 

𝜕𝐶𝑚

𝜕𝑡
+ 𝜇𝑚

𝜕𝐸𝐶𝑚

𝜕𝑥
= 𝐷𝑚

𝜕2𝐶𝑚

𝜕𝑥2
      𝑚 = 𝑁𝑎, 𝐾, 𝐻 

𝜕𝐸

𝜕𝑥
=

𝑞(𝐶𝐻 + 𝐶𝐾 + 𝐶𝑁𝑎 − 𝐶0)

𝜀𝑜𝜀𝑟
 

(34) 

with the initial and boundary conditions 

𝐶𝐻(0, 𝑡) = 𝐶𝑜 , 𝐶𝐾(𝑊, 𝑡) = 𝐶𝐾𝑜 , 𝐶𝑁𝑎(𝑊, 𝑡) = 𝐶𝑁𝑎𝑜 

𝐶𝐻(𝑥, 0) = 0, 𝐶𝐾(𝑥, 0) = 𝐶𝐾𝑜 , 𝐶𝑁𝑎(𝑥, 0) = 𝐶𝑁𝑎𝑜, 𝐸(𝑥, 0) =
𝑉

𝑊
   

(35) 

We solve these numerically by using the MATLAB PDE toolbox with model 

parameters CO= 6.8x1027m-3 and CNao/CO=0.605 and CKo/CO =0.395 and εr= 5 which 

are typical of a borosilicate crown glass.  We also assume a processing temperature of 

400oC, µNa=1.3x10-15 m2V-1s-1, H=1, MK=0.0125, MH=0.001, V=100 V and W=1 mm.  

Figure 2 shows concentration profiles calculated from computer simulations and the 

analytical model eqns. (31) to (34) corresponding to a poling time of 3 hours.  For this 

time it can be seen that the piled-up region of K+ ions and hence also the quasi-
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stationary profiles for Na+ and H+ ions are well established.  It can be seen that the 

analytical profiles are in excellent agreement with the computer simulations.  This 

confirms that for the typical processing parameters chosen the space charge neutral 

approximation and the quasi-stationary approximations are valid.  

 

Fig 2 Comparison between analytical model and computer simulations. Parameters 

used are CO= 6.8x1027m-3, CNaO/CO=0.605, CKO/CO =0.395, T= 400oC, µNa=1.3x10-15 

m2V-1s-1, MK=0.0125, MH=0.001, V=150V and W=1 mm, t=3 hours.  Concentrations 

normalized with respect to Co. For computer simulation εr= 5 was assumed.  (Colour 

on-line) 

 

From fig. 2 it can be seen that the leading (deeper) edge of the K+ ion profile is wider 

than its trailing edge due to the back diffusion of the more mobile sodium ions against 
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the applied field, whilst the trailing edge is step-like since the back diffusion of K+ 

ions into the H+ region is less due to the lower diffusion coefficient of the K+ ions.  

Further, the established K+ pile-up region prevents Na+ back diffusion into the H+ 

region.   Recent optical reflectivity measurements of leaky modes supported by poled 

soda-lime glass samples indicate a rapid almost abrupt (~10-4 µm) change in refractive 

index between the low refractive index of the poled glass and the higher refractive 

index of the underlying glass [33].   Using the model developed in this paper this 

would correspond to the H+-K+ transition in the profile.  

 

Fig 3 Comparison between analytical model and computer simulations. V=100V and 

t=30 min other parameters as for fig. 2 (Colour on-line). Concentrations normalized 

with respect to Co. 

Figure 3 shows the analytical and computer simulation profiles for the same material 

parameters but for a lower voltage V=100V and for a shorter poling time of 30 min.  

It can be seen that even for these parameters the ion profiles have reached a quasi-

stationary state.  The resulting K+ concentration profile transition is wider at the 
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leading (deeper) edge relative to the poling depth, indicating more significant 

diffusion relative to drift transport due to the lower field. 

Figure 4 compares the sample current density J(t) = qj(t) obtained from the numerical 

simulations with that obtained from the first order analytical model where j(t) is given 

by eqn. (8) for the same parameters as for fig. 2.  It can be seen that the two current 

density curves are in good agreement.  The decay is mainly due to the increase in 

resistance of the glass due to the H+ poled layer, as in a glass with a single ion species.  

It can be seen from eqn. (8) that the product aµH determines the decay rate of the 

current.   From eqn. (9) with MH~1/1000 and MK~1/100 then 

𝑎 ≅ (
𝐶𝑁𝑎𝑂 + 𝑀𝐾𝐶𝐾𝑂

𝑀𝐻𝐶𝑂
)

2

 

(36) 
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Fig. 4. Comparison between analytical model and computer simulations for current 

density, time data.  Parameters same as for fig. 2.  Analytical is solid curve, dots are 

computer simulation. (Colour on-line) 

 

which may be further approximated, since MK<<1, to 𝑎 ≅ (
𝐶𝑁𝑎𝑂

𝑀𝐻𝐶𝑂
)

2

 .  This is 

independent of 𝑀𝐾 and only differs from that of the single indigenous ion model by 

the concentration ratio (CNa0/C0)
2.  Hence, it is difficult to discern differences between 

the single and double indigenous ion models from the current-time data.  However, 

this does suggest that the mobility of H+ ions can be deduced from this data even for 

glasses with Na+ and K+ ions.   

Limitations in using drift-diffusion models to analyse the poling of glasses with high 

concentrations of mobile ions have been discussed previously [25].  These include 

ignoring concentration dependent H+ diffusion coefficients and the neglect of oxygen 

ion motion towards the surface.  It is also worth noting that due to the high field 

values developed across the H+ region, the H+ ion mobility may in practice be field 

dependent [24, 34].  Although this work is an extension of previous models, [27], in 

that it includes K+ ion motion and diffusion effects in an analytical model, the above 

limitations still apply to the poling of glass.   Further, it does not consider divalent 

Ca++ ion motion.  These have a lower mobility than H+ ions and will not form a 

stationary profile and hence will necessitate numerical modelling [25]. 

The use of the boundary condition CH=C0 at the anode, which is used in this and other 

modelling requires some discussion.  Second harmonic generation (SHG) in poled 

glass is normally attributed to a frozen-in space charge region associated with non-

uniform ionic concentrations within the depletion region although there is some 

evidence of an ionic polarization mechanism [35].  Experiments show SHG is reduced 
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but still exists in samples produced with non-blocking, in comparison to blocking, 

anodes [5].  This suggests that complete space charge compensation by H+ ions does 

not occur in all experimental situations for non-blocking anodes.  In theory, for 

complete space-charge compensation by H+ ions, the current density J(t) during 

poling needs to be limited so the supply of H+ at the anode matches that demanded by 

J(t).  When this is done experimentally, estimates suggest CH can be close to C0 [24]. 

 

IV. Conclusions 

The quasi-stationary analytical model of electric field assisted diffusion of ions in 

glass has been extended to include glasses that have two indigenous mobile ion types.  

When the invasive ions (H+) have a lower mobility than the two indigenous types 

(Na+, K+), the invasive ion profile and the ion profile of the fastest indigenous ion 

type evolve into quasi-stationary profiles.  The indigenous ion with the lower mobility 

(K+) forms a pile-up region in front of the advancing invasive ion front.  The model 

has been compared with numerical solutions based on the drift-diffusion equations 

and Poisson’s equation using parameters typically experienced in poling experiments 

using soda-lime or borosilicate glasses, which have a relatively high sodium ion 

concentration and shows excellent agreement.   The pile-up of the indigenous ion with 

the lower mobility, below the exchanged layer is modelled well by the analytical 

expressions. 

 

Appendix 1 

The approximations (24) and (25) and hence the validity of the concentration profile 

formulas are considered [27].  We first consider the H+ ion profile eqn. (31), CH 

changes from 0.99C0 to 0.01C0 over a range of zH given by 
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𝑀𝐾 − 𝑀𝐻

𝑀𝐾𝑀𝐻

|𝑧𝐻| ≪ 4.6 

(A1) 

Substituting (A1) and (36) into (24) gives 

𝐻𝑘𝑇

𝑞𝑉
[

𝑀𝐾

𝑀𝐾 − 𝑀𝐻
] 4.6 ≪ 1 

(A2) 

The term in brackets in eqn. (A2) is ~1 for MK >> MH so for H=1, then at T=623 K, V 

>> 0.25 V for the quasi-stationary state to apply.  For most poling experiments V 

>100 V so this inequality is easily met in practice. 

For the Na ion profile eqn. (32), CNa changes from 0.99CNa0 to 0.01CNa0 over a range 

of zNa given by 

(1 − 𝑀𝐾)𝐶𝑁𝑎0

(𝐶𝑁𝑎0 + 𝐶𝐾0𝑀𝐾)𝑀𝐾

|𝑧𝑁𝑎| ≪ 4.6 

(A3) 

Substituting (36) and (A3) into (25) gives 

𝐻𝑘𝑇

𝑞𝑉
[
(𝐶𝑁𝑎0 + 𝑀𝐾𝐶𝐾0)2𝑀𝐾

(1 − 𝑀𝐾)𝑀𝐻𝐶0𝐶𝑁𝑎0
] 4.6 ≪ 1 

 (A4) 

which for MK<<1 approximates to 

𝐻𝑘𝑇

𝑞𝑉
[
𝐶𝑁𝑎0𝑀𝐾

𝑀𝐻𝐶0
] 4.6 ≪ 1 

(A5) 

hence for H=1, MK~1/100, MH~1/1000, CNa0~C0/2 then at say T=623 K, V >> 0.26 V 

so this inequality is also easily met in practice. Hence the quasi-stationary 

approximation remains valid for both profiles. 
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FIGURE CAPTIONS 

 

fig.1 Field assisted diffusion – first order model ignoring diffusion effects.  Diffusion 

fronts indicated by dotted lines. (Colour on-line) 

 

fig. 2 Comparison between analytical model and computer simulations. Parameters 

used are CO= 6.8x1027m-3, CNaO/CO=0.605, CKO/CO =0.395, T= 400oC, µNa=1.3x10-15 

m2V-1s-1, MK=0.0125, MH=0.001, V=150V and W=1 mm, t=3 hours. Concentrations 

normalized with respect to Co.  For computer simulation εr= 5 was assumed. (Colour 

on-line) 

 

fig. 3 Comparison between analytical model and computer simulations. V=100V and 

t=30 min other parameters as for fig. 2 (colour on-line).  Concentrations normalized 

with respect to Co. 

 

fig. 4.Comparison between analytical model and computer simulations for current 

density, time data.  Parameters same as for fig. 2.   Analytical is solid curve, dots are 

computer simulation. (Colour on-line) 


