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ABSTRACT 

Shape measurement plays an important role in the condition monitoring and operation control of 

inflatable rubber dams. This paper presents a method to measure the cross-sectional shape of a 

rubber dam using an array of inertial measurement units (IMUs) placed on the circumference of 

the dam. Accelerometer and gyroscope measurements are combined using an adaptive 

complementary filter to determine the tangent angles of the dam circumference. The adaptive 

complementary filter adjusts the weights of the accelerometer and gyroscope measurements 

dynamically in order to reduce the uncertainty in orientation estimation due to external 

acceleration under dynamic conditions. A natural cubic spline that interpolates the measured 

tangent angles at discrete locations is used to represent the tangent angles along the dam 

circumference as a continuous function of the arc length. Finally, the cross-sectional shape is 

reconstructed by integrating the continuous tangent angle function along the circumference of the 

dam. Experimental assessment of the measurement system was performed on a purpose-built test 

rig using a digital camera as a reference measuring device. Results under a typical static condition 

show that the measured and reference shapes agree well with each other, with a similarity index of 

3.74%, mismatch distance of the last IMU node being 12.3 mm and relative error of height 

measurement being -2.44%. Under dynamic conditions, the measurement results deteriorate due 

to external acceleration, but considerable improvement is achieved in comparison with an 

accelerometer-only approach. In addition, elimination of faulty nodes from shape reconstruction 

has negligible influence on the results, suggesting that the measurement system enjoys a high 

degree of fault tolerance. 

Keywords – Inflatable rubber dam, shape measurement, inertial measurement unit (IMU), 

adaptive complementary filter, tangent angle, natural cubic spline. 
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I. INTRODUCTION 

Inflatable rubber dams are flexible cylindrical structures for control of water level and flow in 

rivers and waterways [1]. They can be inflated by air, water or a combination of both to raise the 

upstream water level and partially or completely deflated to release the impounded water, 

working as crest-adjustable water gates. In comparison with traditional rigid hydraulic structures 

such as earth and concrete weirs, rubber dams provide a number of advantages, including low cost, 

simple structure, short construction time, easy maintenance and repair, more earthquake resistant 

and environmentally friendly. Since 1950s, thousands of rubber dams have been constructed 

around the world for various purposes, such as irrigation, water supply, hydropower generation, 

tidal barrier, flood control, recreation, etc. 

The benefits associated with the flexibility of the rubber dam structure are accompanied by 

significant challenges in their design and operation. The cross-sectional shape and height of a 

rubber dam vary continuously with external water levels and internal pressures, while the forces 

applied externally and internally depend in turn on the dam shape and height [2]. The two-way 

interaction between loading and shape calls for complex mathematical models for design and 

analysis as well as continuous monitoring and control of the dam shape and height. Knowledge 

about the dam shape provides key information about the condition of the rubber dam, such as the 

V-notch phenomenon of air-filled dams and the dam height that determines the upstream reservoir 

level. In addition, rubber dams are subject to a wide variety of disturbances such as water waves, 

overflow and impact of passing debris, which result in vibration of the dam body [3]. Long-term 

excessive vibration leads to wear and delamination of the membrane material and even premature 

failure of the rubber dam.  It is therefore desirable to monitor the dam vibration, so that 

countermeasures such as adjustment of the internal pressure can be taken to suppress the vibration. 
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This study aims to develop a smart condition monitoring system that measures the cross-sectional 

shape, height and vibration of rubber dams. To the best of our knowledge, there is no prior 

research on this topic in the rubber dam sector. Typically, rubber dams vibrate at frequencies 

below 1 Hz. If the shape of the rubber dam can be measured continuously, vibration parameters 

such as vibration frequency and amplitude can be derived from the animated shape. The height of 

the rubber dam can also be easily determined by locating the peak point in the shape. 

Consequently, this paper focuses on continuous measurement of the cross-sectional shape. 

A number of techniques based on different sensing principles have been developed in the past 

to measure the shape of structures. Non-contact methods based on stereo vision and structured 

light can reconstruct complex three-dimensional (3D) shapes with high resolution and high speed 

[4, 5], but these systems require installation of multiple cameras or controlled lighting conditions, 

which are difficult to implement in the field. Fiber Bragg grating (FBG) sensors have received 

considerable interests in recent years for shape measurement of wind turbine blades, aircraft 

wings, soft robots and high-voltage power transmission lines due to advantages of small size, light 

weight, immunity to electromagnetic interference, resistance to corrosion, and multiple measuring 

points in one optical fiber [6-8]. However, the high cost, adverse temperature effects and 

sophistication of the system make this technique not well suited for the intended application in 

this study. Resistive flex and stretch sensors that are extensively used in wearable devices can 

measure bending or flexing based on the resistance across the sensor [9, 10]. Although they are 

simple, cheap, compact and robust, shortcomings such as nonlinearity, lower sensitivity, low 

accuracy and limited length restrict wider application of this technology. Accelerometers are 

widely used to determine the inclination or tilt angles by sensing the gravity. An array of 

accelerometers attached to the measured object can provide local inclination information for 
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global shape reconstruction. A number of studies have used this technique for measurement of 

human spine postures and 3D shape sensing of flexible materials [11-15]. The developments of 

microelectromechanical-systems (MEMS) technology in the last decade have produced many low 

cost, small size, light weight and readily available accelerometers. In this study, MEMS 

accelerometers are considered best-suited for shape measurement of rubber dams among all the 

techniques reviewed.  

As aforementioned, rubber dams are prone to vibrate due to external excitation. Under such 

dynamic conditions, accelerometer measurements are easily corrupted by external acceleration, 

leading to large measurement errors of the inclination. Theoretically, it is an underdetermined 

problem to separate the gravitational acceleration and the external acceleration from the 

accelerometer signal, which is the sum of both components. Several studies have been conducted 

to compensate for external acceleration using MEMS gyroscopes and sensor fusion algorithms 

augmented by adaptation mechanisms [16-24]. The angular rate measured by a gyroscope can be 

integrated to provide an estimate of the orientation angle. However, MEMS gyroscopes suffer 

from low-frequency drift and bias, which result in unbounded accumulation errors in long-term 

monitoring. Nevertheless, it is well accepted that gyroscope and accelerometer measurements can 

be fused together to achieve better orientation estimates in dynamic conditions. Several sensor 

fusion methods have been developed in the literature, among which Kalman filter [16-18] and 

complementary filter [19-24] are most widely used. Kalman filter recursively predicts and 

corrects the orientation estimates using gyroscope and accelerometer measurements, respectively. 

It is an optimal state estimator in the sense of minimal mean square error but requires knowledge 

of the system model and noise characteristics. The complementary filter combines the low-

frequency components of the accelerometer measurements and the high-frequency components of 
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the gyroscope measurements, which are reliable under quasi-static and dynamic conditions, 

respectively. In comparison with Kalman filter, the complementary filter is simple, easy to 

implement and computationally efficient. In order to deal with external acceleration, different 

adaptation schemes have been proposed to augment both Kalman and complementary filters [16-

24]. The fundamental idea of these methods is to tune the filter gain parameters adaptively 

according to the magnitude of external acceleration. In static and quasi-static conditions, 

accelerometer measurements are given relatively larger weight in the sensor fusion algorithm, 

while the gyroscope is more trustworthy under circumstances of large external acceleration. 

The basic concept of shape measurement of rubber dams using inertial sensors along with 

preliminary experimental results was first reported in 2020 at the IEEE International 

Instrumentation and Measurement Technology Conference [25]. This paper presents in detail the 

fundamental principle, practical design and implementation, and experimental assessment of the 

measurement system under both static and dynamic conditions. In particular, an adaptive 

complementary filter algorithm is designed to address the problematic external acceleration under 

dynamic conditions.  

II. MEASUREMENT PRINCIPLE AND SYSTEM DESIGN 

A. Overall Sensing Arrangement 

A rubber dam is made of a sheet of rubber-coated fabric that is fixed to a reinforced concrete 

foundation using clamp plates and anchor bolts. When inflated, the rubber dam forms a shape of a 

teardrop, which depends on the internal pressure, upstream and downstream water depths. When 

completely deflated, the rubber membrane flattens onto the rigid foundation. The height of the 

largest rubber dam in the world reaches 6 m, while for majority of the rubber dams the height is 
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less than 3 m. A number of analytical and numerical methods have been developed to determine 

the cross-sectional shape of a rubber dam under given conditions [2, 26]. Fig. 1 illustrates the 

typical shape of a rubber dam with two clamping lines. 

 

Fig. 1. Placement of the IMU array on the rubber dam. 

An electronic device that integrates a tri-axis accelerometer, a tri-axis gyroscope and a sensor 

fusion algorithm running on a microcontroller is known as an inertial measurement unit (IMU). In 

order to measure the shape of the rubber dam, an array of IMUs with known distance between 

adjacent nodes is placed on the circumference of the rubber dam. Using the tangent angles 

measured by the IMUs, the cross-sectional shape of the rubber dam can be reconstructed 

numerically using some appropriate algorithm. Fig. 1 illustrates the overall sensing arrangement 

and principle of the measurement system. It should be noted that the placement of the IMU array 

on the rubber dam cause negligible change to the shape of the rubber dam, because the IMUs are 

light-weight and very small-size in comparison with the target. In addition, the nodes of the IMU 

array are not necessarily equidistant, which implies that outlier readings of faulty nodes can be 

removed from the shape reconstruction algorithm without inducing significant errors. 
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B. Tangent Angle Measurement 

The tangent angle of the rubber dam at the IMU location can be described by a rotation angle 

from an earth-fixed coordinate frame O-XYZ to an IMU-fixed coordinate frame o-xyz, as 

illustrated in Fig. 1. The rotation between two coordinate frames can be represented by Euler 

angles, a direction cosine matrix (DCM) or a quaternion [24]. Because of the singularity problem 

of Euler angles and the high computational cost of DCM differential equations, the quaternion 

representation is used to calculate the orientation angles. A quaternion can be regarded as a four-

element vector, with the first element denoting the scalar part and the second to last elements 

comprising the vector part [18]. Rotation about a unit vector [   ]T

x y zv v vv  by an angle   is 

represented by the following unit quaternion: 

0

1

2

3

cos
2

sin
2

sin
2

sin
2

x

y

z

q
v

q
q

q
v

q

v









 
 
  
  
      
  
  
 
 
 

                                                                                (1) 

Let [  a  a ]T

x y za a denote the gravitational vector in the IMU-fixed coordinate frame and 

[0 0 1]Tg   the normalized gravitational vector in the earth-fixed coordinate frame, respectively. 

The rotation angle 
a  between the two frames can be found from the dot product of the two 

vectors: 

cos aa g a g                                                                              (2) 

which yields: 
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 
 

                                              (3) 

where 
xa , 

ya  and 
za  are the outputs of the tri-axis accelerometer. Meanwhile, the rotation axis 

av

can be determined using the cross product of the two vectors: 

0

y

a x

a
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=                                                               (4) 

Therefore, the orientation 
aq  measured by the accelerometer can be expressed in unit quaternion 

form as: 
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  

                                                               (5) 

Assuming that the gyroscope measurement is drift-free and noiseless, orientation measurement 

can be achieved by solving the following quaternion kinematic differential equation according to 

the angular velocity measured by the gyroscope [18]: 

1
( )

2
g gq q   p                                                                       (6) 

where 
0 1 2 3[    ]T

g g g g gq q q q q  is a unit quaternion representing the orientation derived using the 

gyroscope,   is the quaternion product operator, [   ]T

x y z     represents the outputs of the 

tri-axis gyroscope, and ( )p  converts a vector to a pure quaternion, i.e. ( ) [0   ]T

x y z   p . 

Substituting the expressions of 
gq  and ( )p  into equation (6) and solving the resulting 
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differential equation using the first-order Runge-Kutta method yield the following recursive 

update equation in discrete form: 

0, 0, 1 0, 1

1, 1, 1 1, 1

2, 2, 1 2, 1

3, 3, 1 3, 1

0
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g k g k z y x g k
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q q qt

q q q

q q q
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 

 

 

 
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        
       
       

              

                                         (7) 

As discussed, the accelerometer and gyroscope have complementary characteristics in the 

frequency domain. The orientation estimates from the accelerometer and gyroscope can be 

viewed as noisy versions of the true orientation corrupted by high- and low-frequency noises, 

respectively.  Therefore, the true orientation can be estimated more accurately if the two estimates 

are combined after they pass through a low- and a high-pass filter, respectively, which share the 

same cut-off frequency. In the time domain, the orientation estimated using the accelerometer and 

gyroscope can be fused using the following linear complementary filter: 

(1 )a gq q q                                                                       (8) 

where   is a weight coefficient, which lies between 0 and 1. In equation (7), the recursive update 

operation using the angular velocity leads to unbounded accumulation error due to gyroscope drift. 

To eliminate the steady-state error, the fused orientation estimate is used to update the gyroscope 

estimate, which gives the following update equation: 

0, 0, 0, 1 0, 1

1, 1, 1, 1 1, 1

2, 2, 2, 1 2, 1

3, 3, 3, 1 3, 1

0

0(1 )
(1 )

02

0
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y z xk a k k k

z y xk a k k k

q q q q

q q q qt

q q q q

q q q q

  

  
 

  

  

 

 

 

 

          
                     
        
        

         

                  (9) 

The linear complementary filter with a fixed weight coefficient cannot yield reliable orientation 

estimates over a wide range of dynamic conditions. In order to compensate for the varying 
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external acceleration, the weight coefficient is adjusted dynamically according to the following 

adaptation law: 

G
e






a

                                                                           (10) 

where G  is the gravitational constant and   is a negative constant that determines the decay rate. 

Equation (10) suggests that the weight coefficient decreases exponentially when the magnitude of 

the measured acceleration differs from the gravitational constant, giving more credibility to the 

gyroscope. While in static conditions, the weight coefficient equals 1 and the measurement relies 

solely on the accelerometer. Fig. 2 shows a block diagram of the adaptive complementary filter.  

 

Fig. 2. Block diagram of the adaptive complementary filter. 

As illustrated in Fig. 1, the earth-fixed coordinate frame O-XYZ is defined in such a way that its 

Y-axis points from the upstream to the downstream side, the Z-axis points upward, and the X-axis 

is aligned with the longitudinal direction of the rubber dam and follows the right-hand rule. 

Following such a definition, the tangent angle of the rubber dam can be represented by the roll 

angle   of the IMU, which is derived from the orientation quaternion as: 

1 2 3 0 1

2 2

1 2
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q q q q

q q
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
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The roll angle lies in the range of -180º to 180º.  

C. Shape Measurement 

According to the theory of classical differential geometry [27], the cross-sectional shape of the 

rubber dam can be described by a differentiable curve in the YZ-plane of the earth-fixed 

coordinate frame O-XYZ, as illustrated in Fig. 1. The differentiable plane curve, if parameterized 

by the arc length, is a differentiable map 2:  [0,  ]L   given by ( ) [ ( ),  ( )]s y s z s  , where L  

is the peripheral length of the rubber dam, and s  is the arc length measured from the origin of the 

earth-fixed coordinate frame O-XYZ, which corresponds to the anchor point at the upstream side 

in Fig. 1. The tangent vector of the curve ( )s  at arc length s  is defined by the derivative of the 

parameterization variable:  

( ) ( )
( ) [ ,  ]

[cos ( ),  sin ( )]

dy s dz s
s

ds ds

s s



 

 



                                               (12) 

which is a unit vector making an angle ( )s  with the Y-axis, as shown in Fig. 3(a). It is clear that 

the tangent angle ( )s  varies continuously on the circumference of the rubber dam. 

The tangent angle 
i  measured at 

is  by the i-th (i = 1, 2, …, n) IMU can be regarded as a 

sample of the continuous tangent angle function ( )s , where n is the total number of IMUs. 

Polynomial-based interpolation methods construct an approximate function by fitting the known 

data points to a linear combination of polynomials. In this study, a natural cubic spline that 

interpolates the discrete measurement points with piecewise third-order polynomials is used to 

represent ( )s  [15], as shown in Fig. 3(b). The first and second derivatives of a cubic spline are 

continuous at the knots, which guarantees the smoothness of the curve. The following equation 

describes the natural cubic spline: 
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(1) 3 2

1 1 1 1 1 2

( 1) 3 2

1 1 1 1 1

( ) ,   

( )

( ) ,   n

n n n n n n

s a s b s c s d s s s

s

s a s b s c s d s s s





 

    

      


 
      

                       (13) 

which satisfies ( 1) ( )( ) ( )i i

i is s   , 
( 1) ( )( ) ( )i i

i is s    , 
( 1) ( )( ) ( )i i

i is s     and 

(1) ( 1)

1( ) ( ) 0n

ns s     . 

Once the analytical expression of ( )s  is obtained, the curve can be reconstructed by 

integrating the tangent vector: 

0 0
( ) [ cos ( ) ,  sin ( ) ]

s s

s t dt t dt                                            (14) 

A number of numerical integration methods based on different rules, such as midpoint, 

trapezoidal and Simpson's rules, are available to compute numerical approximation to the 

coordinates of the curve in the YZ plane. Fig. 3(a) illustrates an example of shape reconstruction 

using the above algorithm. 

 

(a) Real and reconstructed shapes. 

ϕi 

O
Y

Z
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(b) Interpolation of the tangent angles using a natural cubic spline. The distance between adjacent 

IMUs is normalized as 1. 

Fig. 3 Reconstruction of the cross-sectional shape. 

As can be seen from the example in Fig. 3(a), the reconstructed shape differs slightly from the 

real one. The main reason for the error is that the continuous tangent angle function ( )s  

established using tangent angles 
i  at discrete locations is only an approximation of the real one. 

The error can be reduced by increasing the number of IMUs, which leads to a more accurate 

approximation of the real tangent angle function. In addition, approximation errors are induced 

when solving equation (14) through numerical integration. In practice, the noise in sensor 

readings is passed down through the IMU array and the errors of orientation estimate are 

accumulated, because the coordinates of the i-th IMU node are established upon those of the (i-1)-

th node, resulting in an increasing error in the shape measurement from the first to the last node. 

D. System Design and Implementation 

The measurement system consists of an IMU array and a host PC that are serially connected by 

a RS485 bus and a power cable, as illustrated in Fig. 4. The number of IMUs depends on the 

peripheral length of the rubber dam and the desired accuracy of shape reconstruction. A USB-to-
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RS485 converter allows the IMUs to be connected to and powered by an USB port of the PC. The 

Modbus RTU protocol is used for master-slave communication between the PC and IMUs. In 

dynamic conditions, IMU readings at the same instant should be used for shape reconstruction. To 

achieve this, the PC sends out a broadcast command to prompt simultaneous storage of the 

measurement results on all IMUs, which are then collected successively by the PC. A console 

program that communicates with the IMUs, implements the shape measurement algorithm and 

visualizes the reconstructed shape on the PC was developed using Microsoft Visual C# .NET. For 

industrial applications, the IMU array will be connected to an on-site programmable logic 

controller (PLC) instead of a PC. The shape measurement results are then used for fault detection 

and control of the rubber dam. 

 

Fig. 4 Architecture of the measurement system. 

The IMU shown in Fig. 4 is a custom-made sensor module using the latest off-the-shelf devices. 

The onboard MEMS inertial sensor is MPU6050 that integrates a tri-axis gyroscope and a tri-axis 

accelerometer on a single chip. The sensor readings are accessed via a I2C interface by a 

microcontroller STM32F103C8T6 that features a 32-bit ARM Cortex-M3 core running at 72 

+5V

GND
USB-to-RS485 

Converter

RS485 Bus and Power Cable

n IMUs in Total

RS485-B

RS485-A

USB Cable

i-th IMU

STM32F103C8T6 

Microcontroller

MPU6050 Gyro 

and Accelerometer

Power Regulator

+5V to +3.3V

RS485 

Transceiver GND

RS485-B

RS485-A

+5V



16 

 

MHz. The +5 V power supply from the USB port is regulated to +3.3 V using a low dropout 

regulator MIC5207. A half-duplex RS485 transceiver ADM3485 converts the logic level UART 

signals into RS485 differential level signals. It is worth noting that the cost of the IMU is low 

because common electronic components are used. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Experimental Setup 

Experimental assessment of the measurement system was conducted on a purpose-built test rig, 

as shown in Fig. 5. An elastic steel strip with a dimension of 2060 mm × 40 mm × 1.2 mm 

(length × width × thickness) is used to simulate the cross-sectional shape of the rubber dam. A 

total of 11 IMUs are attached to the strip with an equal spacing of 200 mm, so the center-to-

center distance between the first and last IMUs along the steel strip is 2000 mm. The strip is 

fixed to a guide rod via two bearing blocks at both ends. As shown in Fig. 5(b), the distance 

between the two bearing blocks capable of sliding on the rod can be adjusted, which simulates 

the adjustment of the base width or the distance between anchor bolt lines of the rubber dam. The 

inclination of the steel strip at both ends can also be adjusted using rotation shafts shown in Fig. 

5(b), which simulates the adjustment of the rising angles at upstream and downstream sides of 

the rubber dam. The experimental setup allows the elastic steel strip to be bended into different 

shapes, simulating the shapes of the rubber dam under different upstream water level, 

downstream water level and internal pressure conditions. 



17 

 

  

(a) Test rig 

                        

(b) Mechanism for adjusting base width and rising angles                         (c) Digital camera 

Fig. 5 Experimental setup. 

In order to evaluate the shape measurement results quantitatively, a digital camera shown in 

Fig. 5(c) was used to capture the image of the test rig.  The camera is mounted approximately on 

the central axis of the test rig using a tripod from a distance of 1.9 m. The digital images are 

processed using MATLAB and the steel strip is identified based on the color information. The 
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dimension of the steel strip is measured quantitatively with the aid of an object with known 

dimensions in the image. After calibration, the uncertainty of the camera for dimensional 

measurement is 2.6 mm. The measurement results from the IMU array are compared against 

those from the digital camera. 

B. Shape Measurement Results 

The IMU array was first tested under static conditions. Fig. 6 shows a typical shape measured 

using both the IMU array and the camera. As illustrated, the measurement results from the IMU 

array and the camera agree well with each other. For quantitative assessment of the results, a 

similarity index is defined by the following equation: 

100%
diff

ref

A
SI

A
                                                        (15) 

where 
diffA  represents the area between the two shape curves measured using the IMU array and 

the camera, and 
refA  represents the area of the reference shape, i.e. the area encircled by the 

horizontal axis and the shape curve measured using the camera, as illustrated in Fig. 6. The 

similarity index is zero when the two shapes are exactly the same and overlap each other, and it 

may exceed 100% if the measured and reference shapes differ significantly. Therefore, the 

measurement error can be quantified using the similarity index defined by equation (15). For the 

shape measurement results in Fig. 6, the similarity index is 3.74%. Another quantity that can be 

used to assess the shape measurement result is the mismatch distance between the measured and 

true locations of the last IMU, which should ideally be zero. In Fig. 6, the mismatch distance is 

12.3 mm, which is very small in comparison with the dimension of the shape. In addition, the 

height of the rubber dam is an important parameter to be controlled. The relative error of height 

measurement is -2.44%. The three criteria just mentioned should be used jointly in order to 
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quantify the shape measurement result comprehensively, as one of them alone can only 

represents one facet of the result. It should be noted that the shape measured using the camera is 

not exactly the real shape of the steel strip, mainly because of the optical and perspective 

distortions of the camera [28]. Although the camera induces errors for quantitative assessment, it 

can serve as a convenient, low cost and sufficiently accurate reference measuring device. 

Moreover, the shape measurement result has been considerably improved in comparison with 

those in [25], because the rising angles on both sides have been measured using the first and last 

IMUs, respectively. 

 

Fig. 6 Shapes measured using the IMU array and the camera under static conditions. The 

locations of the IMUs are indicated using blue blobs. 

As described above, one shortcoming of the inertial sensing method for shape measurement is 

that the measurement error of one IMU node influences the shape after this node because of the 

integration operation in equation (14). It is vital that all IMU nodes measure the tangent angles 

accurately in order to obtain a reliable measurement result. If one node fails or works abnormally, 

the reading of this node should be discarded. Therefore, the influence of node elimination from 
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the array on the shape measurement result was investigated. Fig. 7 shows the shapes 

reconstructed without using one, three and five IMU nodes, respectively. As can be seen, when a 

few or even nearly half of the nodes are eliminated, the shape measurement result is affected 

only slightly. It is also obvious that the three measurement criteria, i.e. similarity index, 

mismatch distance of the last node and relative error of height are similar under the three 

conditions. The above result stems from the fact that the tangent angle varies almost linearly 

along majority of the circumference of the rubber dam, as illustrated in Fig. 3(b). If the shape is 

very complex and the tangent angle varies nonmonotonically, elimination of some IMU nodes 

would lead to significant errors. More IMU nodes not only help increase the measurement 

accuracy but also provide redundancy and fault tolerance, but a trade-off has to be made between 

these benefits and cost, system complexity as well as update rate that is subject to the 

communication bandwidth of the RS485 bus. 

 

Fig. 7 Shapes measured without using some IMU nodes. 
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The effectiveness of the adaptive complementary filter for shape measurement under dynamic 

conditions was also investigated experimentally. Two orientation estimation algorithms were 

executed simultaneously on the IMU, with one using only the accelerometer (algorithm 

described by equation (5)) and the other using both the accelerometer and the gyroscope for 

sensor fusion (algorithm described by equations (9) and (10)). In addition, the video stream from 

the digital camera was integrated into the console program using the free OpenCvSharp library 

[29], which takes snapshots of the steel strip when the broadcast command is issued to the 

RS485 bus. In this way, the shapes measured using the accelerometer array, the IMU array and 

the camera at the same instant can be obtained. Fig. 8 shows the measurement results in half of a 

vibration period when the steel strip was shaken manually at a frequency of approximately 0.8 

Hz. Table I presents the three measurement criteria for the four instants in Fig. 8. As can be seen, 

the shape measurement results using the IMU array under dynamic conditions degenerate 

considerably in comparison with those obtained under static conditions. The results from the 

accelerometer array are much worse than those from the IMU array due to lack of the 

compensation mechanism for external acceleration. The shapes measured using both 

accelerometer and IMU arrays at 0.0 s and 0.6 s resemble the reference shape more closely than 

those at 0.2 s and 0.4 s when the vibration speed is higher.  For industrial application, the 

measurement results from the accelerometer array are unacceptable because of the large 

measurement errors.  
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(a) 0.0 s                                                                       (b) 0.2 s 

 

(c) 0.4 s                                                                      (d) 0.6 s 

Fig. 8 Shapes measured using the accelerometer array, the IMU array and the camera under a 

dynamic condition. 

Table I. Measurement criteria for the four instants in Fig. 8. 

Time instant Sensor array Similarity index 
Mismatch 

distance (mm) 

Relative error of 

height 

0.0 s 
Accelerometer 6.10% 107.5 -2.26% 

IMU 3.95% 46.5 -1.65% 

0.2 s 
Accelerometer 33.87% 110.8 8.11% 

IMU 10.29% 123.0 -6.40% 

0.4 s 
Accelerometer 58.95% 304.0 2.15% 

IMU 4.61% 46.4 -3.23% 

0.6 s 
Accelerometer 36.88% 82.6 -14.48% 

IMU 8.50% 49.1 -7.47% 

It is also feasible to reconstruct the shape by starting the integration from arc length L  where 
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the 11-th IMU node is located instead of arc length 0 where the first IMU node is located. The 

resulting shapes are the same with those shown in Fig. 8, except that they align with the 

reference shape at the 11-th node rather than the first one. In Fig. 8(b) and (c), the shape 

measurement error around the 9-th node is much larger than that around the second node. This is 

because the shaking force is applied at approximately the third node, and the elasticity of the 

strip causes complex vibration dynamics and large external acceleration around the 9-th node. 

Although the uncertainty in orientation determination due to external acceleration cannot be 

completely eliminated using the adaptive complementary filter, which has been a long-standing 

problem for inertial sensors [16-24], the shape measurement results have been considerably 

improved by the proposed method, from which more accurate height and vibration parameters 

can be derived. In practice, the vibration frequency is generally lower than 0.8 Hz and therefore 

more accurate measurement results can be expected.  Under occasional circumstances, the rubber 

dam may experience impacts by sediments, ice, debris and even ships. The impulsive excitation 

may lead to large accelerations that cause high distortion of the reconstructed shape. Therefore, 

the smart condition monitoring system should be able to assess the quality of the shape and 

height measurement results based on the magnitude of external accelerations. 

C. Discussion 

The measurement system will work in harsh underwater environments. Replacement of faulty 

sensor nodes is extremely difficult, if not impossible. Therefore, the validity of the sensor 

readings should be checked using some algorithm in order to avoid erroneous sensor readings to 

be used for shape reconstruction, as mentioned above. 

A practical issue when using the IMU array fixed on the rubber dam for shape reconstruction 

is the elongation of the rubber material, which causes uncertainty in the distance between IMU 
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nodes. In order to reduce the uncertainty, the true distance will be estimated using the material 

properties of the rubber sheet (e.g. Young's modulus and thickness) as well as the tension in the 

material calculated using hydrostatic models [2, 26]. 

Reliability is a major concern when scaling up the laboratory prototype to a full-scale 

industrial measurement system in the field, as rubber dams are safety critical hydraulic structures. 

A series of testing will be performed to discover potential problems in the field, such as 

electromagnetic compatibility (EMC) testing, ingress protection (IP) testing, thermal testing, etc. 

IV. CONCLUSION 

This paper has presented an inertial sensing based method to measure the cross-sectional shape 

of an inflatable rubber dam. Accelerometer and gyroscope measurements have been adaptively 

combined to improve orientation estimation under dynamic conditions. A continuous tangent 

angle function derived by interpolating the measured tangent angles at discrete locations has been 

numerically integrated to reconstruct the cross-sectional shape. Experimental results obtained 

have demonstrated that the measured shape agrees well with the reference one under a typical 

static condition, with a similarity index of 3.74%, mismatch distance of the last IMU node being 

12.3 mm and relative error of height measurement being -2.44%. Due to the presence of external 

acceleration under dynamic conditions, the similarity index increases to 10.29%, the mismatch 

distance of the last IMU node reaches 123.0 mm and the relative error of height measurement 

increases to -7.47% when the test rig vibrates at a frequency of approximately 0.8 Hz. 

Nevertheless, the measurement results from the IMU array have been considerably improved in 

comparison with those from the accelerometer array. In addition, the measurement system has 

been demonstrated to be robust against node failure if erroneous IMU readings are identified and 
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excluded from shape reconstruction. In future, field trials will be carried out to assess the 

performance and operability of the measurement system in a real environment.  
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